xref: /openbmc/linux/net/ipv4/udp.c (revision 987abe82)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sock_i_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	struct sock *sk2;
182 	kuid_t uid = sock_i_uid(sk);
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sock_i_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sock_set_flag(sk, SOCK_RCU_FREE);
330 
331 		sk_add_node_rcu(sk, &hslot->head);
332 		hslot->count++;
333 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
334 
335 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
336 		spin_lock(&hslot2->lock);
337 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
338 		    sk->sk_family == AF_INET6)
339 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
340 					   &hslot2->head);
341 		else
342 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343 					   &hslot2->head);
344 		hslot2->count++;
345 		spin_unlock(&hslot2->lock);
346 	}
347 
348 	error = 0;
349 fail_unlock:
350 	spin_unlock_bh(&hslot->lock);
351 fail:
352 	return error;
353 }
354 EXPORT_SYMBOL(udp_lib_get_port);
355 
356 int udp_v4_get_port(struct sock *sk, unsigned short snum)
357 {
358 	unsigned int hash2_nulladdr =
359 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
360 	unsigned int hash2_partial =
361 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
362 
363 	/* precompute partial secondary hash */
364 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
365 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
366 }
367 
368 static int compute_score(struct sock *sk, struct net *net,
369 			 __be32 saddr, __be16 sport,
370 			 __be32 daddr, unsigned short hnum,
371 			 int dif, int sdif)
372 {
373 	int score;
374 	struct inet_sock *inet;
375 	bool dev_match;
376 
377 	if (!net_eq(sock_net(sk), net) ||
378 	    udp_sk(sk)->udp_port_hash != hnum ||
379 	    ipv6_only_sock(sk))
380 		return -1;
381 
382 	if (sk->sk_rcv_saddr != daddr)
383 		return -1;
384 
385 	score = (sk->sk_family == PF_INET) ? 2 : 1;
386 
387 	inet = inet_sk(sk);
388 	if (inet->inet_daddr) {
389 		if (inet->inet_daddr != saddr)
390 			return -1;
391 		score += 4;
392 	}
393 
394 	if (inet->inet_dport) {
395 		if (inet->inet_dport != sport)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
401 					dif, sdif);
402 	if (!dev_match)
403 		return -1;
404 	if (sk->sk_bound_dev_if)
405 		score += 4;
406 
407 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
408 		score++;
409 	return score;
410 }
411 
412 INDIRECT_CALLABLE_SCOPE
413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
414 		const __be32 faddr, const __be16 fport)
415 {
416 	static u32 udp_ehash_secret __read_mostly;
417 
418 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
419 
420 	return __inet_ehashfn(laddr, lport, faddr, fport,
421 			      udp_ehash_secret + net_hash_mix(net));
422 }
423 
424 /* called with rcu_read_lock() */
425 static struct sock *udp4_lib_lookup2(struct net *net,
426 				     __be32 saddr, __be16 sport,
427 				     __be32 daddr, unsigned int hnum,
428 				     int dif, int sdif,
429 				     struct udp_hslot *hslot2,
430 				     struct sk_buff *skb)
431 {
432 	struct sock *sk, *result;
433 	int score, badness;
434 	bool need_rescore;
435 
436 	result = NULL;
437 	badness = 0;
438 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
439 		need_rescore = false;
440 rescore:
441 		score = compute_score(need_rescore ? result : sk, net, saddr,
442 				      sport, daddr, hnum, dif, sdif);
443 		if (score > badness) {
444 			badness = score;
445 
446 			if (need_rescore)
447 				continue;
448 
449 			if (sk->sk_state == TCP_ESTABLISHED) {
450 				result = sk;
451 				continue;
452 			}
453 
454 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
455 						       saddr, sport, daddr, hnum, udp_ehashfn);
456 			if (!result) {
457 				result = sk;
458 				continue;
459 			}
460 
461 			/* Fall back to scoring if group has connections */
462 			if (!reuseport_has_conns(sk))
463 				return result;
464 
465 			/* Reuseport logic returned an error, keep original score. */
466 			if (IS_ERR(result))
467 				continue;
468 
469 			/* compute_score is too long of a function to be
470 			 * inlined, and calling it again here yields
471 			 * measureable overhead for some
472 			 * workloads. Work around it by jumping
473 			 * backwards to rescore 'result'.
474 			 */
475 			need_rescore = true;
476 			goto rescore;
477 		}
478 	}
479 	return result;
480 }
481 
482 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
483  * harder than this. -DaveM
484  */
485 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
486 		__be16 sport, __be32 daddr, __be16 dport, int dif,
487 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
488 {
489 	unsigned short hnum = ntohs(dport);
490 	unsigned int hash2, slot2;
491 	struct udp_hslot *hslot2;
492 	struct sock *result, *sk;
493 
494 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
495 	slot2 = hash2 & udptable->mask;
496 	hslot2 = &udptable->hash2[slot2];
497 
498 	/* Lookup connected or non-wildcard socket */
499 	result = udp4_lib_lookup2(net, saddr, sport,
500 				  daddr, hnum, dif, sdif,
501 				  hslot2, skb);
502 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
503 		goto done;
504 
505 	/* Lookup redirect from BPF */
506 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
507 	    udptable == net->ipv4.udp_table) {
508 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
509 					       saddr, sport, daddr, hnum, dif,
510 					       udp_ehashfn);
511 		if (sk) {
512 			result = sk;
513 			goto done;
514 		}
515 	}
516 
517 	/* Got non-wildcard socket or error on first lookup */
518 	if (result)
519 		goto done;
520 
521 	/* Lookup wildcard sockets */
522 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
523 	slot2 = hash2 & udptable->mask;
524 	hslot2 = &udptable->hash2[slot2];
525 
526 	result = udp4_lib_lookup2(net, saddr, sport,
527 				  htonl(INADDR_ANY), hnum, dif, sdif,
528 				  hslot2, skb);
529 done:
530 	if (IS_ERR(result))
531 		return NULL;
532 	return result;
533 }
534 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
535 
536 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
537 						 __be16 sport, __be16 dport,
538 						 struct udp_table *udptable)
539 {
540 	const struct iphdr *iph = ip_hdr(skb);
541 
542 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
543 				 iph->daddr, dport, inet_iif(skb),
544 				 inet_sdif(skb), udptable, skb);
545 }
546 
547 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
548 				 __be16 sport, __be16 dport)
549 {
550 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
551 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
552 	struct net *net = dev_net(skb->dev);
553 	int iif, sdif;
554 
555 	inet_get_iif_sdif(skb, &iif, &sdif);
556 
557 	return __udp4_lib_lookup(net, iph->saddr, sport,
558 				 iph->daddr, dport, iif,
559 				 sdif, net->ipv4.udp_table, NULL);
560 }
561 
562 /* Must be called under rcu_read_lock().
563  * Does increment socket refcount.
564  */
565 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
566 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
567 			     __be32 daddr, __be16 dport, int dif)
568 {
569 	struct sock *sk;
570 
571 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
572 			       dif, 0, net->ipv4.udp_table, NULL);
573 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
574 		sk = NULL;
575 	return sk;
576 }
577 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
578 #endif
579 
580 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
581 				       __be16 loc_port, __be32 loc_addr,
582 				       __be16 rmt_port, __be32 rmt_addr,
583 				       int dif, int sdif, unsigned short hnum)
584 {
585 	const struct inet_sock *inet = inet_sk(sk);
586 
587 	if (!net_eq(sock_net(sk), net) ||
588 	    udp_sk(sk)->udp_port_hash != hnum ||
589 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
590 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
591 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
592 	    ipv6_only_sock(sk) ||
593 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
594 		return false;
595 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
596 		return false;
597 	return true;
598 }
599 
600 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
601 EXPORT_SYMBOL(udp_encap_needed_key);
602 
603 #if IS_ENABLED(CONFIG_IPV6)
604 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
605 EXPORT_SYMBOL(udpv6_encap_needed_key);
606 #endif
607 
608 void udp_encap_enable(void)
609 {
610 	static_branch_inc(&udp_encap_needed_key);
611 }
612 EXPORT_SYMBOL(udp_encap_enable);
613 
614 void udp_encap_disable(void)
615 {
616 	static_branch_dec(&udp_encap_needed_key);
617 }
618 EXPORT_SYMBOL(udp_encap_disable);
619 
620 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
621  * through error handlers in encapsulations looking for a match.
622  */
623 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
624 {
625 	int i;
626 
627 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
628 		int (*handler)(struct sk_buff *skb, u32 info);
629 		const struct ip_tunnel_encap_ops *encap;
630 
631 		encap = rcu_dereference(iptun_encaps[i]);
632 		if (!encap)
633 			continue;
634 		handler = encap->err_handler;
635 		if (handler && !handler(skb, info))
636 			return 0;
637 	}
638 
639 	return -ENOENT;
640 }
641 
642 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
643  * reversing source and destination port: this will match tunnels that force the
644  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
645  * lwtunnels might actually break this assumption by being configured with
646  * different destination ports on endpoints, in this case we won't be able to
647  * trace ICMP messages back to them.
648  *
649  * If this doesn't match any socket, probe tunnels with arbitrary destination
650  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
651  * we've sent packets to won't necessarily match the local destination port.
652  *
653  * Then ask the tunnel implementation to match the error against a valid
654  * association.
655  *
656  * Return an error if we can't find a match, the socket if we need further
657  * processing, zero otherwise.
658  */
659 static struct sock *__udp4_lib_err_encap(struct net *net,
660 					 const struct iphdr *iph,
661 					 struct udphdr *uh,
662 					 struct udp_table *udptable,
663 					 struct sock *sk,
664 					 struct sk_buff *skb, u32 info)
665 {
666 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
667 	int network_offset, transport_offset;
668 	struct udp_sock *up;
669 
670 	network_offset = skb_network_offset(skb);
671 	transport_offset = skb_transport_offset(skb);
672 
673 	/* Network header needs to point to the outer IPv4 header inside ICMP */
674 	skb_reset_network_header(skb);
675 
676 	/* Transport header needs to point to the UDP header */
677 	skb_set_transport_header(skb, iph->ihl << 2);
678 
679 	if (sk) {
680 		up = udp_sk(sk);
681 
682 		lookup = READ_ONCE(up->encap_err_lookup);
683 		if (lookup && lookup(sk, skb))
684 			sk = NULL;
685 
686 		goto out;
687 	}
688 
689 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
690 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
691 			       udptable, NULL);
692 	if (sk) {
693 		up = udp_sk(sk);
694 
695 		lookup = READ_ONCE(up->encap_err_lookup);
696 		if (!lookup || lookup(sk, skb))
697 			sk = NULL;
698 	}
699 
700 out:
701 	if (!sk)
702 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
703 
704 	skb_set_transport_header(skb, transport_offset);
705 	skb_set_network_header(skb, network_offset);
706 
707 	return sk;
708 }
709 
710 /*
711  * This routine is called by the ICMP module when it gets some
712  * sort of error condition.  If err < 0 then the socket should
713  * be closed and the error returned to the user.  If err > 0
714  * it's just the icmp type << 8 | icmp code.
715  * Header points to the ip header of the error packet. We move
716  * on past this. Then (as it used to claim before adjustment)
717  * header points to the first 8 bytes of the udp header.  We need
718  * to find the appropriate port.
719  */
720 
721 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
722 {
723 	struct inet_sock *inet;
724 	const struct iphdr *iph = (const struct iphdr *)skb->data;
725 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
726 	const int type = icmp_hdr(skb)->type;
727 	const int code = icmp_hdr(skb)->code;
728 	bool tunnel = false;
729 	struct sock *sk;
730 	int harderr;
731 	int err;
732 	struct net *net = dev_net(skb->dev);
733 
734 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
735 			       iph->saddr, uh->source, skb->dev->ifindex,
736 			       inet_sdif(skb), udptable, NULL);
737 
738 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
739 		/* No socket for error: try tunnels before discarding */
740 		if (static_branch_unlikely(&udp_encap_needed_key)) {
741 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
742 						  info);
743 			if (!sk)
744 				return 0;
745 		} else
746 			sk = ERR_PTR(-ENOENT);
747 
748 		if (IS_ERR(sk)) {
749 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
750 			return PTR_ERR(sk);
751 		}
752 
753 		tunnel = true;
754 	}
755 
756 	err = 0;
757 	harderr = 0;
758 	inet = inet_sk(sk);
759 
760 	switch (type) {
761 	default:
762 	case ICMP_TIME_EXCEEDED:
763 		err = EHOSTUNREACH;
764 		break;
765 	case ICMP_SOURCE_QUENCH:
766 		goto out;
767 	case ICMP_PARAMETERPROB:
768 		err = EPROTO;
769 		harderr = 1;
770 		break;
771 	case ICMP_DEST_UNREACH:
772 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
773 			ipv4_sk_update_pmtu(skb, sk, info);
774 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
775 				err = EMSGSIZE;
776 				harderr = 1;
777 				break;
778 			}
779 			goto out;
780 		}
781 		err = EHOSTUNREACH;
782 		if (code <= NR_ICMP_UNREACH) {
783 			harderr = icmp_err_convert[code].fatal;
784 			err = icmp_err_convert[code].errno;
785 		}
786 		break;
787 	case ICMP_REDIRECT:
788 		ipv4_sk_redirect(skb, sk);
789 		goto out;
790 	}
791 
792 	/*
793 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
794 	 *	4.1.3.3.
795 	 */
796 	if (tunnel) {
797 		/* ...not for tunnels though: we don't have a sending socket */
798 		if (udp_sk(sk)->encap_err_rcv)
799 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
800 						  (u8 *)(uh+1));
801 		goto out;
802 	}
803 	if (!inet_test_bit(RECVERR, sk)) {
804 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
805 			goto out;
806 	} else
807 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
808 
809 	sk->sk_err = err;
810 	sk_error_report(sk);
811 out:
812 	return 0;
813 }
814 
815 int udp_err(struct sk_buff *skb, u32 info)
816 {
817 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
818 }
819 
820 /*
821  * Throw away all pending data and cancel the corking. Socket is locked.
822  */
823 void udp_flush_pending_frames(struct sock *sk)
824 {
825 	struct udp_sock *up = udp_sk(sk);
826 
827 	if (up->pending) {
828 		up->len = 0;
829 		WRITE_ONCE(up->pending, 0);
830 		ip_flush_pending_frames(sk);
831 	}
832 }
833 EXPORT_SYMBOL(udp_flush_pending_frames);
834 
835 /**
836  * 	udp4_hwcsum  -  handle outgoing HW checksumming
837  * 	@skb: 	sk_buff containing the filled-in UDP header
838  * 	        (checksum field must be zeroed out)
839  *	@src:	source IP address
840  *	@dst:	destination IP address
841  */
842 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
843 {
844 	struct udphdr *uh = udp_hdr(skb);
845 	int offset = skb_transport_offset(skb);
846 	int len = skb->len - offset;
847 	int hlen = len;
848 	__wsum csum = 0;
849 
850 	if (!skb_has_frag_list(skb)) {
851 		/*
852 		 * Only one fragment on the socket.
853 		 */
854 		skb->csum_start = skb_transport_header(skb) - skb->head;
855 		skb->csum_offset = offsetof(struct udphdr, check);
856 		uh->check = ~csum_tcpudp_magic(src, dst, len,
857 					       IPPROTO_UDP, 0);
858 	} else {
859 		struct sk_buff *frags;
860 
861 		/*
862 		 * HW-checksum won't work as there are two or more
863 		 * fragments on the socket so that all csums of sk_buffs
864 		 * should be together
865 		 */
866 		skb_walk_frags(skb, frags) {
867 			csum = csum_add(csum, frags->csum);
868 			hlen -= frags->len;
869 		}
870 
871 		csum = skb_checksum(skb, offset, hlen, csum);
872 		skb->ip_summed = CHECKSUM_NONE;
873 
874 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
875 		if (uh->check == 0)
876 			uh->check = CSUM_MANGLED_0;
877 	}
878 }
879 EXPORT_SYMBOL_GPL(udp4_hwcsum);
880 
881 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
882  * for the simple case like when setting the checksum for a UDP tunnel.
883  */
884 void udp_set_csum(bool nocheck, struct sk_buff *skb,
885 		  __be32 saddr, __be32 daddr, int len)
886 {
887 	struct udphdr *uh = udp_hdr(skb);
888 
889 	if (nocheck) {
890 		uh->check = 0;
891 	} else if (skb_is_gso(skb)) {
892 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
893 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
894 		uh->check = 0;
895 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
896 		if (uh->check == 0)
897 			uh->check = CSUM_MANGLED_0;
898 	} else {
899 		skb->ip_summed = CHECKSUM_PARTIAL;
900 		skb->csum_start = skb_transport_header(skb) - skb->head;
901 		skb->csum_offset = offsetof(struct udphdr, check);
902 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
903 	}
904 }
905 EXPORT_SYMBOL(udp_set_csum);
906 
907 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
908 			struct inet_cork *cork)
909 {
910 	struct sock *sk = skb->sk;
911 	struct inet_sock *inet = inet_sk(sk);
912 	struct udphdr *uh;
913 	int err;
914 	int is_udplite = IS_UDPLITE(sk);
915 	int offset = skb_transport_offset(skb);
916 	int len = skb->len - offset;
917 	int datalen = len - sizeof(*uh);
918 	__wsum csum = 0;
919 
920 	/*
921 	 * Create a UDP header
922 	 */
923 	uh = udp_hdr(skb);
924 	uh->source = inet->inet_sport;
925 	uh->dest = fl4->fl4_dport;
926 	uh->len = htons(len);
927 	uh->check = 0;
928 
929 	if (cork->gso_size) {
930 		const int hlen = skb_network_header_len(skb) +
931 				 sizeof(struct udphdr);
932 
933 		if (hlen + cork->gso_size > cork->fragsize) {
934 			kfree_skb(skb);
935 			return -EINVAL;
936 		}
937 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
938 			kfree_skb(skb);
939 			return -EINVAL;
940 		}
941 		if (sk->sk_no_check_tx) {
942 			kfree_skb(skb);
943 			return -EINVAL;
944 		}
945 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
946 		    dst_xfrm(skb_dst(skb))) {
947 			kfree_skb(skb);
948 			return -EIO;
949 		}
950 
951 		if (datalen > cork->gso_size) {
952 			skb_shinfo(skb)->gso_size = cork->gso_size;
953 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
954 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
955 								 cork->gso_size);
956 		}
957 		goto csum_partial;
958 	}
959 
960 	if (is_udplite)  				 /*     UDP-Lite      */
961 		csum = udplite_csum(skb);
962 
963 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
964 
965 		skb->ip_summed = CHECKSUM_NONE;
966 		goto send;
967 
968 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
969 csum_partial:
970 
971 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
972 		goto send;
973 
974 	} else
975 		csum = udp_csum(skb);
976 
977 	/* add protocol-dependent pseudo-header */
978 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
979 				      sk->sk_protocol, csum);
980 	if (uh->check == 0)
981 		uh->check = CSUM_MANGLED_0;
982 
983 send:
984 	err = ip_send_skb(sock_net(sk), skb);
985 	if (err) {
986 		if (err == -ENOBUFS &&
987 		    !inet_test_bit(RECVERR, sk)) {
988 			UDP_INC_STATS(sock_net(sk),
989 				      UDP_MIB_SNDBUFERRORS, is_udplite);
990 			err = 0;
991 		}
992 	} else
993 		UDP_INC_STATS(sock_net(sk),
994 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
995 	return err;
996 }
997 
998 /*
999  * Push out all pending data as one UDP datagram. Socket is locked.
1000  */
1001 int udp_push_pending_frames(struct sock *sk)
1002 {
1003 	struct udp_sock  *up = udp_sk(sk);
1004 	struct inet_sock *inet = inet_sk(sk);
1005 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1006 	struct sk_buff *skb;
1007 	int err = 0;
1008 
1009 	skb = ip_finish_skb(sk, fl4);
1010 	if (!skb)
1011 		goto out;
1012 
1013 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1014 
1015 out:
1016 	up->len = 0;
1017 	WRITE_ONCE(up->pending, 0);
1018 	return err;
1019 }
1020 EXPORT_SYMBOL(udp_push_pending_frames);
1021 
1022 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1023 {
1024 	switch (cmsg->cmsg_type) {
1025 	case UDP_SEGMENT:
1026 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1027 			return -EINVAL;
1028 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1029 		return 0;
1030 	default:
1031 		return -EINVAL;
1032 	}
1033 }
1034 
1035 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1036 {
1037 	struct cmsghdr *cmsg;
1038 	bool need_ip = false;
1039 	int err;
1040 
1041 	for_each_cmsghdr(cmsg, msg) {
1042 		if (!CMSG_OK(msg, cmsg))
1043 			return -EINVAL;
1044 
1045 		if (cmsg->cmsg_level != SOL_UDP) {
1046 			need_ip = true;
1047 			continue;
1048 		}
1049 
1050 		err = __udp_cmsg_send(cmsg, gso_size);
1051 		if (err)
1052 			return err;
1053 	}
1054 
1055 	return need_ip;
1056 }
1057 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1058 
1059 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1060 {
1061 	struct inet_sock *inet = inet_sk(sk);
1062 	struct udp_sock *up = udp_sk(sk);
1063 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1064 	struct flowi4 fl4_stack;
1065 	struct flowi4 *fl4;
1066 	int ulen = len;
1067 	struct ipcm_cookie ipc;
1068 	struct rtable *rt = NULL;
1069 	int free = 0;
1070 	int connected = 0;
1071 	__be32 daddr, faddr, saddr;
1072 	u8 tos, scope;
1073 	__be16 dport;
1074 	int err, is_udplite = IS_UDPLITE(sk);
1075 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1076 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1077 	struct sk_buff *skb;
1078 	struct ip_options_data opt_copy;
1079 
1080 	if (len > 0xFFFF)
1081 		return -EMSGSIZE;
1082 
1083 	/*
1084 	 *	Check the flags.
1085 	 */
1086 
1087 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1088 		return -EOPNOTSUPP;
1089 
1090 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1091 
1092 	fl4 = &inet->cork.fl.u.ip4;
1093 	if (READ_ONCE(up->pending)) {
1094 		/*
1095 		 * There are pending frames.
1096 		 * The socket lock must be held while it's corked.
1097 		 */
1098 		lock_sock(sk);
1099 		if (likely(up->pending)) {
1100 			if (unlikely(up->pending != AF_INET)) {
1101 				release_sock(sk);
1102 				return -EINVAL;
1103 			}
1104 			goto do_append_data;
1105 		}
1106 		release_sock(sk);
1107 	}
1108 	ulen += sizeof(struct udphdr);
1109 
1110 	/*
1111 	 *	Get and verify the address.
1112 	 */
1113 	if (usin) {
1114 		if (msg->msg_namelen < sizeof(*usin))
1115 			return -EINVAL;
1116 		if (usin->sin_family != AF_INET) {
1117 			if (usin->sin_family != AF_UNSPEC)
1118 				return -EAFNOSUPPORT;
1119 		}
1120 
1121 		daddr = usin->sin_addr.s_addr;
1122 		dport = usin->sin_port;
1123 		if (dport == 0)
1124 			return -EINVAL;
1125 	} else {
1126 		if (sk->sk_state != TCP_ESTABLISHED)
1127 			return -EDESTADDRREQ;
1128 		daddr = inet->inet_daddr;
1129 		dport = inet->inet_dport;
1130 		/* Open fast path for connected socket.
1131 		   Route will not be used, if at least one option is set.
1132 		 */
1133 		connected = 1;
1134 	}
1135 
1136 	ipcm_init_sk(&ipc, inet);
1137 	ipc.gso_size = READ_ONCE(up->gso_size);
1138 
1139 	if (msg->msg_controllen) {
1140 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1141 		if (err > 0) {
1142 			err = ip_cmsg_send(sk, msg, &ipc,
1143 					   sk->sk_family == AF_INET6);
1144 			connected = 0;
1145 		}
1146 		if (unlikely(err < 0)) {
1147 			kfree(ipc.opt);
1148 			return err;
1149 		}
1150 		if (ipc.opt)
1151 			free = 1;
1152 	}
1153 	if (!ipc.opt) {
1154 		struct ip_options_rcu *inet_opt;
1155 
1156 		rcu_read_lock();
1157 		inet_opt = rcu_dereference(inet->inet_opt);
1158 		if (inet_opt) {
1159 			memcpy(&opt_copy, inet_opt,
1160 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1161 			ipc.opt = &opt_copy.opt;
1162 		}
1163 		rcu_read_unlock();
1164 	}
1165 
1166 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1167 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1168 					    (struct sockaddr *)usin,
1169 					    &msg->msg_namelen,
1170 					    &ipc.addr);
1171 		if (err)
1172 			goto out_free;
1173 		if (usin) {
1174 			if (usin->sin_port == 0) {
1175 				/* BPF program set invalid port. Reject it. */
1176 				err = -EINVAL;
1177 				goto out_free;
1178 			}
1179 			daddr = usin->sin_addr.s_addr;
1180 			dport = usin->sin_port;
1181 		}
1182 	}
1183 
1184 	saddr = ipc.addr;
1185 	ipc.addr = faddr = daddr;
1186 
1187 	if (ipc.opt && ipc.opt->opt.srr) {
1188 		if (!daddr) {
1189 			err = -EINVAL;
1190 			goto out_free;
1191 		}
1192 		faddr = ipc.opt->opt.faddr;
1193 		connected = 0;
1194 	}
1195 	tos = get_rttos(&ipc, inet);
1196 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1197 	if (scope == RT_SCOPE_LINK)
1198 		connected = 0;
1199 
1200 	if (ipv4_is_multicast(daddr)) {
1201 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1202 			ipc.oif = inet->mc_index;
1203 		if (!saddr)
1204 			saddr = inet->mc_addr;
1205 		connected = 0;
1206 	} else if (!ipc.oif) {
1207 		ipc.oif = inet->uc_index;
1208 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1209 		/* oif is set, packet is to local broadcast and
1210 		 * uc_index is set. oif is most likely set
1211 		 * by sk_bound_dev_if. If uc_index != oif check if the
1212 		 * oif is an L3 master and uc_index is an L3 slave.
1213 		 * If so, we want to allow the send using the uc_index.
1214 		 */
1215 		if (ipc.oif != inet->uc_index &&
1216 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1217 							      inet->uc_index)) {
1218 			ipc.oif = inet->uc_index;
1219 		}
1220 	}
1221 
1222 	if (connected)
1223 		rt = (struct rtable *)sk_dst_check(sk, 0);
1224 
1225 	if (!rt) {
1226 		struct net *net = sock_net(sk);
1227 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1228 
1229 		fl4 = &fl4_stack;
1230 
1231 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1232 				   sk->sk_protocol, flow_flags, faddr, saddr,
1233 				   dport, inet->inet_sport, sk->sk_uid);
1234 
1235 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1236 		rt = ip_route_output_flow(net, fl4, sk);
1237 		if (IS_ERR(rt)) {
1238 			err = PTR_ERR(rt);
1239 			rt = NULL;
1240 			if (err == -ENETUNREACH)
1241 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1242 			goto out;
1243 		}
1244 
1245 		err = -EACCES;
1246 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1247 		    !sock_flag(sk, SOCK_BROADCAST))
1248 			goto out;
1249 		if (connected)
1250 			sk_dst_set(sk, dst_clone(&rt->dst));
1251 	}
1252 
1253 	if (msg->msg_flags&MSG_CONFIRM)
1254 		goto do_confirm;
1255 back_from_confirm:
1256 
1257 	saddr = fl4->saddr;
1258 	if (!ipc.addr)
1259 		daddr = ipc.addr = fl4->daddr;
1260 
1261 	/* Lockless fast path for the non-corking case. */
1262 	if (!corkreq) {
1263 		struct inet_cork cork;
1264 
1265 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1266 				  sizeof(struct udphdr), &ipc, &rt,
1267 				  &cork, msg->msg_flags);
1268 		err = PTR_ERR(skb);
1269 		if (!IS_ERR_OR_NULL(skb))
1270 			err = udp_send_skb(skb, fl4, &cork);
1271 		goto out;
1272 	}
1273 
1274 	lock_sock(sk);
1275 	if (unlikely(up->pending)) {
1276 		/* The socket is already corked while preparing it. */
1277 		/* ... which is an evident application bug. --ANK */
1278 		release_sock(sk);
1279 
1280 		net_dbg_ratelimited("socket already corked\n");
1281 		err = -EINVAL;
1282 		goto out;
1283 	}
1284 	/*
1285 	 *	Now cork the socket to pend data.
1286 	 */
1287 	fl4 = &inet->cork.fl.u.ip4;
1288 	fl4->daddr = daddr;
1289 	fl4->saddr = saddr;
1290 	fl4->fl4_dport = dport;
1291 	fl4->fl4_sport = inet->inet_sport;
1292 	WRITE_ONCE(up->pending, AF_INET);
1293 
1294 do_append_data:
1295 	up->len += ulen;
1296 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1297 			     sizeof(struct udphdr), &ipc, &rt,
1298 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1299 	if (err)
1300 		udp_flush_pending_frames(sk);
1301 	else if (!corkreq)
1302 		err = udp_push_pending_frames(sk);
1303 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1304 		WRITE_ONCE(up->pending, 0);
1305 	release_sock(sk);
1306 
1307 out:
1308 	ip_rt_put(rt);
1309 out_free:
1310 	if (free)
1311 		kfree(ipc.opt);
1312 	if (!err)
1313 		return len;
1314 	/*
1315 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1316 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1317 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1318 	 * things).  We could add another new stat but at least for now that
1319 	 * seems like overkill.
1320 	 */
1321 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1322 		UDP_INC_STATS(sock_net(sk),
1323 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1324 	}
1325 	return err;
1326 
1327 do_confirm:
1328 	if (msg->msg_flags & MSG_PROBE)
1329 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1330 	if (!(msg->msg_flags&MSG_PROBE) || len)
1331 		goto back_from_confirm;
1332 	err = 0;
1333 	goto out;
1334 }
1335 EXPORT_SYMBOL(udp_sendmsg);
1336 
1337 void udp_splice_eof(struct socket *sock)
1338 {
1339 	struct sock *sk = sock->sk;
1340 	struct udp_sock *up = udp_sk(sk);
1341 
1342 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1343 		return;
1344 
1345 	lock_sock(sk);
1346 	if (up->pending && !udp_test_bit(CORK, sk))
1347 		udp_push_pending_frames(sk);
1348 	release_sock(sk);
1349 }
1350 EXPORT_SYMBOL_GPL(udp_splice_eof);
1351 
1352 #define UDP_SKB_IS_STATELESS 0x80000000
1353 
1354 /* all head states (dst, sk, nf conntrack) except skb extensions are
1355  * cleared by udp_rcv().
1356  *
1357  * We need to preserve secpath, if present, to eventually process
1358  * IP_CMSG_PASSSEC at recvmsg() time.
1359  *
1360  * Other extensions can be cleared.
1361  */
1362 static bool udp_try_make_stateless(struct sk_buff *skb)
1363 {
1364 	if (!skb_has_extensions(skb))
1365 		return true;
1366 
1367 	if (!secpath_exists(skb)) {
1368 		skb_ext_reset(skb);
1369 		return true;
1370 	}
1371 
1372 	return false;
1373 }
1374 
1375 static void udp_set_dev_scratch(struct sk_buff *skb)
1376 {
1377 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1378 
1379 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1380 	scratch->_tsize_state = skb->truesize;
1381 #if BITS_PER_LONG == 64
1382 	scratch->len = skb->len;
1383 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1384 	scratch->is_linear = !skb_is_nonlinear(skb);
1385 #endif
1386 	if (udp_try_make_stateless(skb))
1387 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1388 }
1389 
1390 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1391 {
1392 	/* We come here after udp_lib_checksum_complete() returned 0.
1393 	 * This means that __skb_checksum_complete() might have
1394 	 * set skb->csum_valid to 1.
1395 	 * On 64bit platforms, we can set csum_unnecessary
1396 	 * to true, but only if the skb is not shared.
1397 	 */
1398 #if BITS_PER_LONG == 64
1399 	if (!skb_shared(skb))
1400 		udp_skb_scratch(skb)->csum_unnecessary = true;
1401 #endif
1402 }
1403 
1404 static int udp_skb_truesize(struct sk_buff *skb)
1405 {
1406 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1407 }
1408 
1409 static bool udp_skb_has_head_state(struct sk_buff *skb)
1410 {
1411 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1412 }
1413 
1414 /* fully reclaim rmem/fwd memory allocated for skb */
1415 static void udp_rmem_release(struct sock *sk, int size, int partial,
1416 			     bool rx_queue_lock_held)
1417 {
1418 	struct udp_sock *up = udp_sk(sk);
1419 	struct sk_buff_head *sk_queue;
1420 	int amt;
1421 
1422 	if (likely(partial)) {
1423 		up->forward_deficit += size;
1424 		size = up->forward_deficit;
1425 		if (size < READ_ONCE(up->forward_threshold) &&
1426 		    !skb_queue_empty(&up->reader_queue))
1427 			return;
1428 	} else {
1429 		size += up->forward_deficit;
1430 	}
1431 	up->forward_deficit = 0;
1432 
1433 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1434 	 * if the called don't held it already
1435 	 */
1436 	sk_queue = &sk->sk_receive_queue;
1437 	if (!rx_queue_lock_held)
1438 		spin_lock(&sk_queue->lock);
1439 
1440 
1441 	sk_forward_alloc_add(sk, size);
1442 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1443 	sk_forward_alloc_add(sk, -amt);
1444 
1445 	if (amt)
1446 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1447 
1448 	atomic_sub(size, &sk->sk_rmem_alloc);
1449 
1450 	/* this can save us from acquiring the rx queue lock on next receive */
1451 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1452 
1453 	if (!rx_queue_lock_held)
1454 		spin_unlock(&sk_queue->lock);
1455 }
1456 
1457 /* Note: called with reader_queue.lock held.
1458  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1459  * This avoids a cache line miss while receive_queue lock is held.
1460  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1461  */
1462 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1463 {
1464 	prefetch(&skb->data);
1465 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1466 }
1467 EXPORT_SYMBOL(udp_skb_destructor);
1468 
1469 /* as above, but the caller held the rx queue lock, too */
1470 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1471 {
1472 	prefetch(&skb->data);
1473 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1474 }
1475 
1476 /* Idea of busylocks is to let producers grab an extra spinlock
1477  * to relieve pressure on the receive_queue spinlock shared by consumer.
1478  * Under flood, this means that only one producer can be in line
1479  * trying to acquire the receive_queue spinlock.
1480  * These busylock can be allocated on a per cpu manner, instead of a
1481  * per socket one (that would consume a cache line per socket)
1482  */
1483 static int udp_busylocks_log __read_mostly;
1484 static spinlock_t *udp_busylocks __read_mostly;
1485 
1486 static spinlock_t *busylock_acquire(void *ptr)
1487 {
1488 	spinlock_t *busy;
1489 
1490 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1491 	spin_lock(busy);
1492 	return busy;
1493 }
1494 
1495 static void busylock_release(spinlock_t *busy)
1496 {
1497 	if (busy)
1498 		spin_unlock(busy);
1499 }
1500 
1501 static int udp_rmem_schedule(struct sock *sk, int size)
1502 {
1503 	int delta;
1504 
1505 	delta = size - sk->sk_forward_alloc;
1506 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1507 		return -ENOBUFS;
1508 
1509 	return 0;
1510 }
1511 
1512 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1513 {
1514 	struct sk_buff_head *list = &sk->sk_receive_queue;
1515 	int rmem, err = -ENOMEM;
1516 	spinlock_t *busy = NULL;
1517 	int size;
1518 
1519 	/* try to avoid the costly atomic add/sub pair when the receive
1520 	 * queue is full; always allow at least a packet
1521 	 */
1522 	rmem = atomic_read(&sk->sk_rmem_alloc);
1523 	if (rmem > sk->sk_rcvbuf)
1524 		goto drop;
1525 
1526 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1527 	 * having linear skbs :
1528 	 * - Reduce memory overhead and thus increase receive queue capacity
1529 	 * - Less cache line misses at copyout() time
1530 	 * - Less work at consume_skb() (less alien page frag freeing)
1531 	 */
1532 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1533 		skb_condense(skb);
1534 
1535 		busy = busylock_acquire(sk);
1536 	}
1537 	size = skb->truesize;
1538 	udp_set_dev_scratch(skb);
1539 
1540 	/* we drop only if the receive buf is full and the receive
1541 	 * queue contains some other skb
1542 	 */
1543 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1544 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1545 		goto uncharge_drop;
1546 
1547 	spin_lock(&list->lock);
1548 	err = udp_rmem_schedule(sk, size);
1549 	if (err) {
1550 		spin_unlock(&list->lock);
1551 		goto uncharge_drop;
1552 	}
1553 
1554 	sk_forward_alloc_add(sk, -size);
1555 
1556 	/* no need to setup a destructor, we will explicitly release the
1557 	 * forward allocated memory on dequeue
1558 	 */
1559 	sock_skb_set_dropcount(sk, skb);
1560 
1561 	__skb_queue_tail(list, skb);
1562 	spin_unlock(&list->lock);
1563 
1564 	if (!sock_flag(sk, SOCK_DEAD))
1565 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1566 
1567 	busylock_release(busy);
1568 	return 0;
1569 
1570 uncharge_drop:
1571 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1572 
1573 drop:
1574 	atomic_inc(&sk->sk_drops);
1575 	busylock_release(busy);
1576 	return err;
1577 }
1578 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1579 
1580 void udp_destruct_common(struct sock *sk)
1581 {
1582 	/* reclaim completely the forward allocated memory */
1583 	struct udp_sock *up = udp_sk(sk);
1584 	unsigned int total = 0;
1585 	struct sk_buff *skb;
1586 
1587 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1588 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1589 		total += skb->truesize;
1590 		kfree_skb(skb);
1591 	}
1592 	udp_rmem_release(sk, total, 0, true);
1593 }
1594 EXPORT_SYMBOL_GPL(udp_destruct_common);
1595 
1596 static void udp_destruct_sock(struct sock *sk)
1597 {
1598 	udp_destruct_common(sk);
1599 	inet_sock_destruct(sk);
1600 }
1601 
1602 int udp_init_sock(struct sock *sk)
1603 {
1604 	udp_lib_init_sock(sk);
1605 	sk->sk_destruct = udp_destruct_sock;
1606 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1607 	return 0;
1608 }
1609 
1610 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1611 {
1612 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1613 		bool slow = lock_sock_fast(sk);
1614 
1615 		sk_peek_offset_bwd(sk, len);
1616 		unlock_sock_fast(sk, slow);
1617 	}
1618 
1619 	if (!skb_unref(skb))
1620 		return;
1621 
1622 	/* In the more common cases we cleared the head states previously,
1623 	 * see __udp_queue_rcv_skb().
1624 	 */
1625 	if (unlikely(udp_skb_has_head_state(skb)))
1626 		skb_release_head_state(skb);
1627 	__consume_stateless_skb(skb);
1628 }
1629 EXPORT_SYMBOL_GPL(skb_consume_udp);
1630 
1631 static struct sk_buff *__first_packet_length(struct sock *sk,
1632 					     struct sk_buff_head *rcvq,
1633 					     int *total)
1634 {
1635 	struct sk_buff *skb;
1636 
1637 	while ((skb = skb_peek(rcvq)) != NULL) {
1638 		if (udp_lib_checksum_complete(skb)) {
1639 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1640 					IS_UDPLITE(sk));
1641 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1642 					IS_UDPLITE(sk));
1643 			atomic_inc(&sk->sk_drops);
1644 			__skb_unlink(skb, rcvq);
1645 			*total += skb->truesize;
1646 			kfree_skb(skb);
1647 		} else {
1648 			udp_skb_csum_unnecessary_set(skb);
1649 			break;
1650 		}
1651 	}
1652 	return skb;
1653 }
1654 
1655 /**
1656  *	first_packet_length	- return length of first packet in receive queue
1657  *	@sk: socket
1658  *
1659  *	Drops all bad checksum frames, until a valid one is found.
1660  *	Returns the length of found skb, or -1 if none is found.
1661  */
1662 static int first_packet_length(struct sock *sk)
1663 {
1664 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1665 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1666 	struct sk_buff *skb;
1667 	int total = 0;
1668 	int res;
1669 
1670 	spin_lock_bh(&rcvq->lock);
1671 	skb = __first_packet_length(sk, rcvq, &total);
1672 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1673 		spin_lock(&sk_queue->lock);
1674 		skb_queue_splice_tail_init(sk_queue, rcvq);
1675 		spin_unlock(&sk_queue->lock);
1676 
1677 		skb = __first_packet_length(sk, rcvq, &total);
1678 	}
1679 	res = skb ? skb->len : -1;
1680 	if (total)
1681 		udp_rmem_release(sk, total, 1, false);
1682 	spin_unlock_bh(&rcvq->lock);
1683 	return res;
1684 }
1685 
1686 /*
1687  *	IOCTL requests applicable to the UDP protocol
1688  */
1689 
1690 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1691 {
1692 	switch (cmd) {
1693 	case SIOCOUTQ:
1694 	{
1695 		*karg = sk_wmem_alloc_get(sk);
1696 		return 0;
1697 	}
1698 
1699 	case SIOCINQ:
1700 	{
1701 		*karg = max_t(int, 0, first_packet_length(sk));
1702 		return 0;
1703 	}
1704 
1705 	default:
1706 		return -ENOIOCTLCMD;
1707 	}
1708 
1709 	return 0;
1710 }
1711 EXPORT_SYMBOL(udp_ioctl);
1712 
1713 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1714 			       int *off, int *err)
1715 {
1716 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1717 	struct sk_buff_head *queue;
1718 	struct sk_buff *last;
1719 	long timeo;
1720 	int error;
1721 
1722 	queue = &udp_sk(sk)->reader_queue;
1723 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1724 	do {
1725 		struct sk_buff *skb;
1726 
1727 		error = sock_error(sk);
1728 		if (error)
1729 			break;
1730 
1731 		error = -EAGAIN;
1732 		do {
1733 			spin_lock_bh(&queue->lock);
1734 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1735 							err, &last);
1736 			if (skb) {
1737 				if (!(flags & MSG_PEEK))
1738 					udp_skb_destructor(sk, skb);
1739 				spin_unlock_bh(&queue->lock);
1740 				return skb;
1741 			}
1742 
1743 			if (skb_queue_empty_lockless(sk_queue)) {
1744 				spin_unlock_bh(&queue->lock);
1745 				goto busy_check;
1746 			}
1747 
1748 			/* refill the reader queue and walk it again
1749 			 * keep both queues locked to avoid re-acquiring
1750 			 * the sk_receive_queue lock if fwd memory scheduling
1751 			 * is needed.
1752 			 */
1753 			spin_lock(&sk_queue->lock);
1754 			skb_queue_splice_tail_init(sk_queue, queue);
1755 
1756 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1757 							err, &last);
1758 			if (skb && !(flags & MSG_PEEK))
1759 				udp_skb_dtor_locked(sk, skb);
1760 			spin_unlock(&sk_queue->lock);
1761 			spin_unlock_bh(&queue->lock);
1762 			if (skb)
1763 				return skb;
1764 
1765 busy_check:
1766 			if (!sk_can_busy_loop(sk))
1767 				break;
1768 
1769 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1770 		} while (!skb_queue_empty_lockless(sk_queue));
1771 
1772 		/* sk_queue is empty, reader_queue may contain peeked packets */
1773 	} while (timeo &&
1774 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1775 					      &error, &timeo,
1776 					      (struct sk_buff *)sk_queue));
1777 
1778 	*err = error;
1779 	return NULL;
1780 }
1781 EXPORT_SYMBOL(__skb_recv_udp);
1782 
1783 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1784 {
1785 	struct sk_buff *skb;
1786 	int err;
1787 
1788 try_again:
1789 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1790 	if (!skb)
1791 		return err;
1792 
1793 	if (udp_lib_checksum_complete(skb)) {
1794 		int is_udplite = IS_UDPLITE(sk);
1795 		struct net *net = sock_net(sk);
1796 
1797 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1798 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1799 		atomic_inc(&sk->sk_drops);
1800 		kfree_skb(skb);
1801 		goto try_again;
1802 	}
1803 
1804 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1805 	return recv_actor(sk, skb);
1806 }
1807 EXPORT_SYMBOL(udp_read_skb);
1808 
1809 /*
1810  * 	This should be easy, if there is something there we
1811  * 	return it, otherwise we block.
1812  */
1813 
1814 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1815 		int *addr_len)
1816 {
1817 	struct inet_sock *inet = inet_sk(sk);
1818 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1819 	struct sk_buff *skb;
1820 	unsigned int ulen, copied;
1821 	int off, err, peeking = flags & MSG_PEEK;
1822 	int is_udplite = IS_UDPLITE(sk);
1823 	bool checksum_valid = false;
1824 
1825 	if (flags & MSG_ERRQUEUE)
1826 		return ip_recv_error(sk, msg, len, addr_len);
1827 
1828 try_again:
1829 	off = sk_peek_offset(sk, flags);
1830 	skb = __skb_recv_udp(sk, flags, &off, &err);
1831 	if (!skb)
1832 		return err;
1833 
1834 	ulen = udp_skb_len(skb);
1835 	copied = len;
1836 	if (copied > ulen - off)
1837 		copied = ulen - off;
1838 	else if (copied < ulen)
1839 		msg->msg_flags |= MSG_TRUNC;
1840 
1841 	/*
1842 	 * If checksum is needed at all, try to do it while copying the
1843 	 * data.  If the data is truncated, or if we only want a partial
1844 	 * coverage checksum (UDP-Lite), do it before the copy.
1845 	 */
1846 
1847 	if (copied < ulen || peeking ||
1848 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1849 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1850 				!__udp_lib_checksum_complete(skb);
1851 		if (!checksum_valid)
1852 			goto csum_copy_err;
1853 	}
1854 
1855 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1856 		if (udp_skb_is_linear(skb))
1857 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1858 		else
1859 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1860 	} else {
1861 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1862 
1863 		if (err == -EINVAL)
1864 			goto csum_copy_err;
1865 	}
1866 
1867 	if (unlikely(err)) {
1868 		if (!peeking) {
1869 			atomic_inc(&sk->sk_drops);
1870 			UDP_INC_STATS(sock_net(sk),
1871 				      UDP_MIB_INERRORS, is_udplite);
1872 		}
1873 		kfree_skb(skb);
1874 		return err;
1875 	}
1876 
1877 	if (!peeking)
1878 		UDP_INC_STATS(sock_net(sk),
1879 			      UDP_MIB_INDATAGRAMS, is_udplite);
1880 
1881 	sock_recv_cmsgs(msg, sk, skb);
1882 
1883 	/* Copy the address. */
1884 	if (sin) {
1885 		sin->sin_family = AF_INET;
1886 		sin->sin_port = udp_hdr(skb)->source;
1887 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1888 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1889 		*addr_len = sizeof(*sin);
1890 
1891 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1892 						      (struct sockaddr *)sin,
1893 						      addr_len);
1894 	}
1895 
1896 	if (udp_test_bit(GRO_ENABLED, sk))
1897 		udp_cmsg_recv(msg, sk, skb);
1898 
1899 	if (inet_cmsg_flags(inet))
1900 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1901 
1902 	err = copied;
1903 	if (flags & MSG_TRUNC)
1904 		err = ulen;
1905 
1906 	skb_consume_udp(sk, skb, peeking ? -err : err);
1907 	return err;
1908 
1909 csum_copy_err:
1910 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1911 				 udp_skb_destructor)) {
1912 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1913 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1914 	}
1915 	kfree_skb(skb);
1916 
1917 	/* starting over for a new packet, but check if we need to yield */
1918 	cond_resched();
1919 	msg->msg_flags &= ~MSG_TRUNC;
1920 	goto try_again;
1921 }
1922 
1923 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1924 {
1925 	/* This check is replicated from __ip4_datagram_connect() and
1926 	 * intended to prevent BPF program called below from accessing bytes
1927 	 * that are out of the bound specified by user in addr_len.
1928 	 */
1929 	if (addr_len < sizeof(struct sockaddr_in))
1930 		return -EINVAL;
1931 
1932 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1933 }
1934 EXPORT_SYMBOL(udp_pre_connect);
1935 
1936 int __udp_disconnect(struct sock *sk, int flags)
1937 {
1938 	struct inet_sock *inet = inet_sk(sk);
1939 	/*
1940 	 *	1003.1g - break association.
1941 	 */
1942 
1943 	sk->sk_state = TCP_CLOSE;
1944 	inet->inet_daddr = 0;
1945 	inet->inet_dport = 0;
1946 	sock_rps_reset_rxhash(sk);
1947 	sk->sk_bound_dev_if = 0;
1948 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1949 		inet_reset_saddr(sk);
1950 		if (sk->sk_prot->rehash &&
1951 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1952 			sk->sk_prot->rehash(sk);
1953 	}
1954 
1955 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1956 		sk->sk_prot->unhash(sk);
1957 		inet->inet_sport = 0;
1958 	}
1959 	sk_dst_reset(sk);
1960 	return 0;
1961 }
1962 EXPORT_SYMBOL(__udp_disconnect);
1963 
1964 int udp_disconnect(struct sock *sk, int flags)
1965 {
1966 	lock_sock(sk);
1967 	__udp_disconnect(sk, flags);
1968 	release_sock(sk);
1969 	return 0;
1970 }
1971 EXPORT_SYMBOL(udp_disconnect);
1972 
1973 void udp_lib_unhash(struct sock *sk)
1974 {
1975 	if (sk_hashed(sk)) {
1976 		struct udp_table *udptable = udp_get_table_prot(sk);
1977 		struct udp_hslot *hslot, *hslot2;
1978 
1979 		hslot  = udp_hashslot(udptable, sock_net(sk),
1980 				      udp_sk(sk)->udp_port_hash);
1981 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1982 
1983 		spin_lock_bh(&hslot->lock);
1984 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1985 			reuseport_detach_sock(sk);
1986 		if (sk_del_node_init_rcu(sk)) {
1987 			hslot->count--;
1988 			inet_sk(sk)->inet_num = 0;
1989 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1990 
1991 			spin_lock(&hslot2->lock);
1992 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1993 			hslot2->count--;
1994 			spin_unlock(&hslot2->lock);
1995 		}
1996 		spin_unlock_bh(&hslot->lock);
1997 	}
1998 }
1999 EXPORT_SYMBOL(udp_lib_unhash);
2000 
2001 /*
2002  * inet_rcv_saddr was changed, we must rehash secondary hash
2003  */
2004 void udp_lib_rehash(struct sock *sk, u16 newhash)
2005 {
2006 	if (sk_hashed(sk)) {
2007 		struct udp_table *udptable = udp_get_table_prot(sk);
2008 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2009 
2010 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2011 		nhslot2 = udp_hashslot2(udptable, newhash);
2012 		udp_sk(sk)->udp_portaddr_hash = newhash;
2013 
2014 		if (hslot2 != nhslot2 ||
2015 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2016 			hslot = udp_hashslot(udptable, sock_net(sk),
2017 					     udp_sk(sk)->udp_port_hash);
2018 			/* we must lock primary chain too */
2019 			spin_lock_bh(&hslot->lock);
2020 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2021 				reuseport_detach_sock(sk);
2022 
2023 			if (hslot2 != nhslot2) {
2024 				spin_lock(&hslot2->lock);
2025 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2026 				hslot2->count--;
2027 				spin_unlock(&hslot2->lock);
2028 
2029 				spin_lock(&nhslot2->lock);
2030 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2031 							 &nhslot2->head);
2032 				nhslot2->count++;
2033 				spin_unlock(&nhslot2->lock);
2034 			}
2035 
2036 			spin_unlock_bh(&hslot->lock);
2037 		}
2038 	}
2039 }
2040 EXPORT_SYMBOL(udp_lib_rehash);
2041 
2042 void udp_v4_rehash(struct sock *sk)
2043 {
2044 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2045 					  inet_sk(sk)->inet_rcv_saddr,
2046 					  inet_sk(sk)->inet_num);
2047 	udp_lib_rehash(sk, new_hash);
2048 }
2049 
2050 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2051 {
2052 	int rc;
2053 
2054 	if (inet_sk(sk)->inet_daddr) {
2055 		sock_rps_save_rxhash(sk, skb);
2056 		sk_mark_napi_id(sk, skb);
2057 		sk_incoming_cpu_update(sk);
2058 	} else {
2059 		sk_mark_napi_id_once(sk, skb);
2060 	}
2061 
2062 	rc = __udp_enqueue_schedule_skb(sk, skb);
2063 	if (rc < 0) {
2064 		int is_udplite = IS_UDPLITE(sk);
2065 		int drop_reason;
2066 
2067 		/* Note that an ENOMEM error is charged twice */
2068 		if (rc == -ENOMEM) {
2069 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2070 					is_udplite);
2071 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2072 		} else {
2073 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2074 				      is_udplite);
2075 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2076 		}
2077 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2078 		kfree_skb_reason(skb, drop_reason);
2079 		trace_udp_fail_queue_rcv_skb(rc, sk);
2080 		return -1;
2081 	}
2082 
2083 	return 0;
2084 }
2085 
2086 /* returns:
2087  *  -1: error
2088  *   0: success
2089  *  >0: "udp encap" protocol resubmission
2090  *
2091  * Note that in the success and error cases, the skb is assumed to
2092  * have either been requeued or freed.
2093  */
2094 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2095 {
2096 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2097 	struct udp_sock *up = udp_sk(sk);
2098 	int is_udplite = IS_UDPLITE(sk);
2099 
2100 	/*
2101 	 *	Charge it to the socket, dropping if the queue is full.
2102 	 */
2103 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2104 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2105 		goto drop;
2106 	}
2107 	nf_reset_ct(skb);
2108 
2109 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2110 	    READ_ONCE(up->encap_type)) {
2111 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2112 
2113 		/*
2114 		 * This is an encapsulation socket so pass the skb to
2115 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2116 		 * fall through and pass this up the UDP socket.
2117 		 * up->encap_rcv() returns the following value:
2118 		 * =0 if skb was successfully passed to the encap
2119 		 *    handler or was discarded by it.
2120 		 * >0 if skb should be passed on to UDP.
2121 		 * <0 if skb should be resubmitted as proto -N
2122 		 */
2123 
2124 		/* if we're overly short, let UDP handle it */
2125 		encap_rcv = READ_ONCE(up->encap_rcv);
2126 		if (encap_rcv) {
2127 			int ret;
2128 
2129 			/* Verify checksum before giving to encap */
2130 			if (udp_lib_checksum_complete(skb))
2131 				goto csum_error;
2132 
2133 			ret = encap_rcv(sk, skb);
2134 			if (ret <= 0) {
2135 				__UDP_INC_STATS(sock_net(sk),
2136 						UDP_MIB_INDATAGRAMS,
2137 						is_udplite);
2138 				return -ret;
2139 			}
2140 		}
2141 
2142 		/* FALLTHROUGH -- it's a UDP Packet */
2143 	}
2144 
2145 	/*
2146 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2147 	 */
2148 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2149 		u16 pcrlen = READ_ONCE(up->pcrlen);
2150 
2151 		/*
2152 		 * MIB statistics other than incrementing the error count are
2153 		 * disabled for the following two types of errors: these depend
2154 		 * on the application settings, not on the functioning of the
2155 		 * protocol stack as such.
2156 		 *
2157 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2158 		 * way ... to ... at least let the receiving application block
2159 		 * delivery of packets with coverage values less than a value
2160 		 * provided by the application."
2161 		 */
2162 		if (pcrlen == 0) {          /* full coverage was set  */
2163 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2164 					    UDP_SKB_CB(skb)->cscov, skb->len);
2165 			goto drop;
2166 		}
2167 		/* The next case involves violating the min. coverage requested
2168 		 * by the receiver. This is subtle: if receiver wants x and x is
2169 		 * greater than the buffersize/MTU then receiver will complain
2170 		 * that it wants x while sender emits packets of smaller size y.
2171 		 * Therefore the above ...()->partial_cov statement is essential.
2172 		 */
2173 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2174 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2175 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2176 			goto drop;
2177 		}
2178 	}
2179 
2180 	prefetch(&sk->sk_rmem_alloc);
2181 	if (rcu_access_pointer(sk->sk_filter) &&
2182 	    udp_lib_checksum_complete(skb))
2183 			goto csum_error;
2184 
2185 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2186 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2187 		goto drop;
2188 	}
2189 
2190 	udp_csum_pull_header(skb);
2191 
2192 	ipv4_pktinfo_prepare(sk, skb, true);
2193 	return __udp_queue_rcv_skb(sk, skb);
2194 
2195 csum_error:
2196 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2197 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2198 drop:
2199 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2200 	atomic_inc(&sk->sk_drops);
2201 	kfree_skb_reason(skb, drop_reason);
2202 	return -1;
2203 }
2204 
2205 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2206 {
2207 	struct sk_buff *next, *segs;
2208 	int ret;
2209 
2210 	if (likely(!udp_unexpected_gso(sk, skb)))
2211 		return udp_queue_rcv_one_skb(sk, skb);
2212 
2213 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2214 	__skb_push(skb, -skb_mac_offset(skb));
2215 	segs = udp_rcv_segment(sk, skb, true);
2216 	skb_list_walk_safe(segs, skb, next) {
2217 		__skb_pull(skb, skb_transport_offset(skb));
2218 
2219 		udp_post_segment_fix_csum(skb);
2220 		ret = udp_queue_rcv_one_skb(sk, skb);
2221 		if (ret > 0)
2222 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2223 	}
2224 	return 0;
2225 }
2226 
2227 /* For TCP sockets, sk_rx_dst is protected by socket lock
2228  * For UDP, we use xchg() to guard against concurrent changes.
2229  */
2230 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2231 {
2232 	struct dst_entry *old;
2233 
2234 	if (dst_hold_safe(dst)) {
2235 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2236 		dst_release(old);
2237 		return old != dst;
2238 	}
2239 	return false;
2240 }
2241 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2242 
2243 /*
2244  *	Multicasts and broadcasts go to each listener.
2245  *
2246  *	Note: called only from the BH handler context.
2247  */
2248 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2249 				    struct udphdr  *uh,
2250 				    __be32 saddr, __be32 daddr,
2251 				    struct udp_table *udptable,
2252 				    int proto)
2253 {
2254 	struct sock *sk, *first = NULL;
2255 	unsigned short hnum = ntohs(uh->dest);
2256 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2257 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2258 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2259 	int dif = skb->dev->ifindex;
2260 	int sdif = inet_sdif(skb);
2261 	struct hlist_node *node;
2262 	struct sk_buff *nskb;
2263 
2264 	if (use_hash2) {
2265 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2266 			    udptable->mask;
2267 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2268 start_lookup:
2269 		hslot = &udptable->hash2[hash2];
2270 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2271 	}
2272 
2273 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2274 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2275 					 uh->source, saddr, dif, sdif, hnum))
2276 			continue;
2277 
2278 		if (!first) {
2279 			first = sk;
2280 			continue;
2281 		}
2282 		nskb = skb_clone(skb, GFP_ATOMIC);
2283 
2284 		if (unlikely(!nskb)) {
2285 			atomic_inc(&sk->sk_drops);
2286 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2287 					IS_UDPLITE(sk));
2288 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2289 					IS_UDPLITE(sk));
2290 			continue;
2291 		}
2292 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2293 			consume_skb(nskb);
2294 	}
2295 
2296 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2297 	if (use_hash2 && hash2 != hash2_any) {
2298 		hash2 = hash2_any;
2299 		goto start_lookup;
2300 	}
2301 
2302 	if (first) {
2303 		if (udp_queue_rcv_skb(first, skb) > 0)
2304 			consume_skb(skb);
2305 	} else {
2306 		kfree_skb(skb);
2307 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2308 				proto == IPPROTO_UDPLITE);
2309 	}
2310 	return 0;
2311 }
2312 
2313 /* Initialize UDP checksum. If exited with zero value (success),
2314  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2315  * Otherwise, csum completion requires checksumming packet body,
2316  * including udp header and folding it to skb->csum.
2317  */
2318 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2319 				 int proto)
2320 {
2321 	int err;
2322 
2323 	UDP_SKB_CB(skb)->partial_cov = 0;
2324 	UDP_SKB_CB(skb)->cscov = skb->len;
2325 
2326 	if (proto == IPPROTO_UDPLITE) {
2327 		err = udplite_checksum_init(skb, uh);
2328 		if (err)
2329 			return err;
2330 
2331 		if (UDP_SKB_CB(skb)->partial_cov) {
2332 			skb->csum = inet_compute_pseudo(skb, proto);
2333 			return 0;
2334 		}
2335 	}
2336 
2337 	/* Note, we are only interested in != 0 or == 0, thus the
2338 	 * force to int.
2339 	 */
2340 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2341 							inet_compute_pseudo);
2342 	if (err)
2343 		return err;
2344 
2345 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2346 		/* If SW calculated the value, we know it's bad */
2347 		if (skb->csum_complete_sw)
2348 			return 1;
2349 
2350 		/* HW says the value is bad. Let's validate that.
2351 		 * skb->csum is no longer the full packet checksum,
2352 		 * so don't treat it as such.
2353 		 */
2354 		skb_checksum_complete_unset(skb);
2355 	}
2356 
2357 	return 0;
2358 }
2359 
2360 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2361  * return code conversion for ip layer consumption
2362  */
2363 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2364 			       struct udphdr *uh)
2365 {
2366 	int ret;
2367 
2368 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2369 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2370 
2371 	ret = udp_queue_rcv_skb(sk, skb);
2372 
2373 	/* a return value > 0 means to resubmit the input, but
2374 	 * it wants the return to be -protocol, or 0
2375 	 */
2376 	if (ret > 0)
2377 		return -ret;
2378 	return 0;
2379 }
2380 
2381 /*
2382  *	All we need to do is get the socket, and then do a checksum.
2383  */
2384 
2385 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2386 		   int proto)
2387 {
2388 	struct sock *sk;
2389 	struct udphdr *uh;
2390 	unsigned short ulen;
2391 	struct rtable *rt = skb_rtable(skb);
2392 	__be32 saddr, daddr;
2393 	struct net *net = dev_net(skb->dev);
2394 	bool refcounted;
2395 	int drop_reason;
2396 
2397 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2398 
2399 	/*
2400 	 *  Validate the packet.
2401 	 */
2402 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2403 		goto drop;		/* No space for header. */
2404 
2405 	uh   = udp_hdr(skb);
2406 	ulen = ntohs(uh->len);
2407 	saddr = ip_hdr(skb)->saddr;
2408 	daddr = ip_hdr(skb)->daddr;
2409 
2410 	if (ulen > skb->len)
2411 		goto short_packet;
2412 
2413 	if (proto == IPPROTO_UDP) {
2414 		/* UDP validates ulen. */
2415 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2416 			goto short_packet;
2417 		uh = udp_hdr(skb);
2418 	}
2419 
2420 	if (udp4_csum_init(skb, uh, proto))
2421 		goto csum_error;
2422 
2423 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2424 			     &refcounted, udp_ehashfn);
2425 	if (IS_ERR(sk))
2426 		goto no_sk;
2427 
2428 	if (sk) {
2429 		struct dst_entry *dst = skb_dst(skb);
2430 		int ret;
2431 
2432 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2433 			udp_sk_rx_dst_set(sk, dst);
2434 
2435 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2436 		if (refcounted)
2437 			sock_put(sk);
2438 		return ret;
2439 	}
2440 
2441 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2442 		return __udp4_lib_mcast_deliver(net, skb, uh,
2443 						saddr, daddr, udptable, proto);
2444 
2445 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2446 	if (sk)
2447 		return udp_unicast_rcv_skb(sk, skb, uh);
2448 no_sk:
2449 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2450 		goto drop;
2451 	nf_reset_ct(skb);
2452 
2453 	/* No socket. Drop packet silently, if checksum is wrong */
2454 	if (udp_lib_checksum_complete(skb))
2455 		goto csum_error;
2456 
2457 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2458 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2459 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2460 
2461 	/*
2462 	 * Hmm.  We got an UDP packet to a port to which we
2463 	 * don't wanna listen.  Ignore it.
2464 	 */
2465 	kfree_skb_reason(skb, drop_reason);
2466 	return 0;
2467 
2468 short_packet:
2469 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2470 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2471 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2472 			    &saddr, ntohs(uh->source),
2473 			    ulen, skb->len,
2474 			    &daddr, ntohs(uh->dest));
2475 	goto drop;
2476 
2477 csum_error:
2478 	/*
2479 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2480 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2481 	 */
2482 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2483 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2484 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2485 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2486 			    ulen);
2487 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2488 drop:
2489 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2490 	kfree_skb_reason(skb, drop_reason);
2491 	return 0;
2492 }
2493 
2494 /* We can only early demux multicast if there is a single matching socket.
2495  * If more than one socket found returns NULL
2496  */
2497 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2498 						  __be16 loc_port, __be32 loc_addr,
2499 						  __be16 rmt_port, __be32 rmt_addr,
2500 						  int dif, int sdif)
2501 {
2502 	struct udp_table *udptable = net->ipv4.udp_table;
2503 	unsigned short hnum = ntohs(loc_port);
2504 	struct sock *sk, *result;
2505 	struct udp_hslot *hslot;
2506 	unsigned int slot;
2507 
2508 	slot = udp_hashfn(net, hnum, udptable->mask);
2509 	hslot = &udptable->hash[slot];
2510 
2511 	/* Do not bother scanning a too big list */
2512 	if (hslot->count > 10)
2513 		return NULL;
2514 
2515 	result = NULL;
2516 	sk_for_each_rcu(sk, &hslot->head) {
2517 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2518 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2519 			if (result)
2520 				return NULL;
2521 			result = sk;
2522 		}
2523 	}
2524 
2525 	return result;
2526 }
2527 
2528 /* For unicast we should only early demux connected sockets or we can
2529  * break forwarding setups.  The chains here can be long so only check
2530  * if the first socket is an exact match and if not move on.
2531  */
2532 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2533 					    __be16 loc_port, __be32 loc_addr,
2534 					    __be16 rmt_port, __be32 rmt_addr,
2535 					    int dif, int sdif)
2536 {
2537 	struct udp_table *udptable = net->ipv4.udp_table;
2538 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2539 	unsigned short hnum = ntohs(loc_port);
2540 	unsigned int hash2, slot2;
2541 	struct udp_hslot *hslot2;
2542 	__portpair ports;
2543 	struct sock *sk;
2544 
2545 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2546 	slot2 = hash2 & udptable->mask;
2547 	hslot2 = &udptable->hash2[slot2];
2548 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2549 
2550 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2551 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2552 			return sk;
2553 		/* Only check first socket in chain */
2554 		break;
2555 	}
2556 	return NULL;
2557 }
2558 
2559 int udp_v4_early_demux(struct sk_buff *skb)
2560 {
2561 	struct net *net = dev_net(skb->dev);
2562 	struct in_device *in_dev = NULL;
2563 	const struct iphdr *iph;
2564 	const struct udphdr *uh;
2565 	struct sock *sk = NULL;
2566 	struct dst_entry *dst;
2567 	int dif = skb->dev->ifindex;
2568 	int sdif = inet_sdif(skb);
2569 	int ours;
2570 
2571 	/* validate the packet */
2572 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2573 		return 0;
2574 
2575 	iph = ip_hdr(skb);
2576 	uh = udp_hdr(skb);
2577 
2578 	if (skb->pkt_type == PACKET_MULTICAST) {
2579 		in_dev = __in_dev_get_rcu(skb->dev);
2580 
2581 		if (!in_dev)
2582 			return 0;
2583 
2584 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2585 				       iph->protocol);
2586 		if (!ours)
2587 			return 0;
2588 
2589 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2590 						   uh->source, iph->saddr,
2591 						   dif, sdif);
2592 	} else if (skb->pkt_type == PACKET_HOST) {
2593 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2594 					     uh->source, iph->saddr, dif, sdif);
2595 	}
2596 
2597 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2598 		return 0;
2599 
2600 	skb->sk = sk;
2601 	skb->destructor = sock_efree;
2602 	dst = rcu_dereference(sk->sk_rx_dst);
2603 
2604 	if (dst)
2605 		dst = dst_check(dst, 0);
2606 	if (dst) {
2607 		u32 itag = 0;
2608 
2609 		/* set noref for now.
2610 		 * any place which wants to hold dst has to call
2611 		 * dst_hold_safe()
2612 		 */
2613 		skb_dst_set_noref(skb, dst);
2614 
2615 		/* for unconnected multicast sockets we need to validate
2616 		 * the source on each packet
2617 		 */
2618 		if (!inet_sk(sk)->inet_daddr && in_dev)
2619 			return ip_mc_validate_source(skb, iph->daddr,
2620 						     iph->saddr,
2621 						     iph->tos & IPTOS_RT_MASK,
2622 						     skb->dev, in_dev, &itag);
2623 	}
2624 	return 0;
2625 }
2626 
2627 int udp_rcv(struct sk_buff *skb)
2628 {
2629 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2630 }
2631 
2632 void udp_destroy_sock(struct sock *sk)
2633 {
2634 	struct udp_sock *up = udp_sk(sk);
2635 	bool slow = lock_sock_fast(sk);
2636 
2637 	/* protects from races with udp_abort() */
2638 	sock_set_flag(sk, SOCK_DEAD);
2639 	udp_flush_pending_frames(sk);
2640 	unlock_sock_fast(sk, slow);
2641 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2642 		if (up->encap_type) {
2643 			void (*encap_destroy)(struct sock *sk);
2644 			encap_destroy = READ_ONCE(up->encap_destroy);
2645 			if (encap_destroy)
2646 				encap_destroy(sk);
2647 		}
2648 		if (udp_test_bit(ENCAP_ENABLED, sk))
2649 			static_branch_dec(&udp_encap_needed_key);
2650 	}
2651 }
2652 
2653 /*
2654  *	Socket option code for UDP
2655  */
2656 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2657 		       sockptr_t optval, unsigned int optlen,
2658 		       int (*push_pending_frames)(struct sock *))
2659 {
2660 	struct udp_sock *up = udp_sk(sk);
2661 	int val, valbool;
2662 	int err = 0;
2663 	int is_udplite = IS_UDPLITE(sk);
2664 
2665 	if (level == SOL_SOCKET) {
2666 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2667 
2668 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2669 			sockopt_lock_sock(sk);
2670 			/* paired with READ_ONCE in udp_rmem_release() */
2671 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2672 			sockopt_release_sock(sk);
2673 		}
2674 		return err;
2675 	}
2676 
2677 	if (optlen < sizeof(int))
2678 		return -EINVAL;
2679 
2680 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2681 		return -EFAULT;
2682 
2683 	valbool = val ? 1 : 0;
2684 
2685 	switch (optname) {
2686 	case UDP_CORK:
2687 		if (val != 0) {
2688 			udp_set_bit(CORK, sk);
2689 		} else {
2690 			udp_clear_bit(CORK, sk);
2691 			lock_sock(sk);
2692 			push_pending_frames(sk);
2693 			release_sock(sk);
2694 		}
2695 		break;
2696 
2697 	case UDP_ENCAP:
2698 		switch (val) {
2699 		case 0:
2700 #ifdef CONFIG_XFRM
2701 		case UDP_ENCAP_ESPINUDP:
2702 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2703 #if IS_ENABLED(CONFIG_IPV6)
2704 			if (sk->sk_family == AF_INET6)
2705 				WRITE_ONCE(up->encap_rcv,
2706 					   ipv6_stub->xfrm6_udp_encap_rcv);
2707 			else
2708 #endif
2709 				WRITE_ONCE(up->encap_rcv,
2710 					   xfrm4_udp_encap_rcv);
2711 #endif
2712 			fallthrough;
2713 		case UDP_ENCAP_L2TPINUDP:
2714 			WRITE_ONCE(up->encap_type, val);
2715 			udp_tunnel_encap_enable(sk);
2716 			break;
2717 		default:
2718 			err = -ENOPROTOOPT;
2719 			break;
2720 		}
2721 		break;
2722 
2723 	case UDP_NO_CHECK6_TX:
2724 		udp_set_no_check6_tx(sk, valbool);
2725 		break;
2726 
2727 	case UDP_NO_CHECK6_RX:
2728 		udp_set_no_check6_rx(sk, valbool);
2729 		break;
2730 
2731 	case UDP_SEGMENT:
2732 		if (val < 0 || val > USHRT_MAX)
2733 			return -EINVAL;
2734 		WRITE_ONCE(up->gso_size, val);
2735 		break;
2736 
2737 	case UDP_GRO:
2738 
2739 		/* when enabling GRO, accept the related GSO packet type */
2740 		if (valbool)
2741 			udp_tunnel_encap_enable(sk);
2742 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2743 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2744 		break;
2745 
2746 	/*
2747 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2748 	 */
2749 	/* The sender sets actual checksum coverage length via this option.
2750 	 * The case coverage > packet length is handled by send module. */
2751 	case UDPLITE_SEND_CSCOV:
2752 		if (!is_udplite)         /* Disable the option on UDP sockets */
2753 			return -ENOPROTOOPT;
2754 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2755 			val = 8;
2756 		else if (val > USHRT_MAX)
2757 			val = USHRT_MAX;
2758 		WRITE_ONCE(up->pcslen, val);
2759 		udp_set_bit(UDPLITE_SEND_CC, sk);
2760 		break;
2761 
2762 	/* The receiver specifies a minimum checksum coverage value. To make
2763 	 * sense, this should be set to at least 8 (as done below). If zero is
2764 	 * used, this again means full checksum coverage.                     */
2765 	case UDPLITE_RECV_CSCOV:
2766 		if (!is_udplite)         /* Disable the option on UDP sockets */
2767 			return -ENOPROTOOPT;
2768 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2769 			val = 8;
2770 		else if (val > USHRT_MAX)
2771 			val = USHRT_MAX;
2772 		WRITE_ONCE(up->pcrlen, val);
2773 		udp_set_bit(UDPLITE_RECV_CC, sk);
2774 		break;
2775 
2776 	default:
2777 		err = -ENOPROTOOPT;
2778 		break;
2779 	}
2780 
2781 	return err;
2782 }
2783 EXPORT_SYMBOL(udp_lib_setsockopt);
2784 
2785 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2786 		   unsigned int optlen)
2787 {
2788 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2789 		return udp_lib_setsockopt(sk, level, optname,
2790 					  optval, optlen,
2791 					  udp_push_pending_frames);
2792 	return ip_setsockopt(sk, level, optname, optval, optlen);
2793 }
2794 
2795 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2796 		       char __user *optval, int __user *optlen)
2797 {
2798 	struct udp_sock *up = udp_sk(sk);
2799 	int val, len;
2800 
2801 	if (get_user(len, optlen))
2802 		return -EFAULT;
2803 
2804 	if (len < 0)
2805 		return -EINVAL;
2806 
2807 	len = min_t(unsigned int, len, sizeof(int));
2808 
2809 	switch (optname) {
2810 	case UDP_CORK:
2811 		val = udp_test_bit(CORK, sk);
2812 		break;
2813 
2814 	case UDP_ENCAP:
2815 		val = READ_ONCE(up->encap_type);
2816 		break;
2817 
2818 	case UDP_NO_CHECK6_TX:
2819 		val = udp_get_no_check6_tx(sk);
2820 		break;
2821 
2822 	case UDP_NO_CHECK6_RX:
2823 		val = udp_get_no_check6_rx(sk);
2824 		break;
2825 
2826 	case UDP_SEGMENT:
2827 		val = READ_ONCE(up->gso_size);
2828 		break;
2829 
2830 	case UDP_GRO:
2831 		val = udp_test_bit(GRO_ENABLED, sk);
2832 		break;
2833 
2834 	/* The following two cannot be changed on UDP sockets, the return is
2835 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2836 	case UDPLITE_SEND_CSCOV:
2837 		val = READ_ONCE(up->pcslen);
2838 		break;
2839 
2840 	case UDPLITE_RECV_CSCOV:
2841 		val = READ_ONCE(up->pcrlen);
2842 		break;
2843 
2844 	default:
2845 		return -ENOPROTOOPT;
2846 	}
2847 
2848 	if (put_user(len, optlen))
2849 		return -EFAULT;
2850 	if (copy_to_user(optval, &val, len))
2851 		return -EFAULT;
2852 	return 0;
2853 }
2854 EXPORT_SYMBOL(udp_lib_getsockopt);
2855 
2856 int udp_getsockopt(struct sock *sk, int level, int optname,
2857 		   char __user *optval, int __user *optlen)
2858 {
2859 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2860 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2861 	return ip_getsockopt(sk, level, optname, optval, optlen);
2862 }
2863 
2864 /**
2865  * 	udp_poll - wait for a UDP event.
2866  *	@file: - file struct
2867  *	@sock: - socket
2868  *	@wait: - poll table
2869  *
2870  *	This is same as datagram poll, except for the special case of
2871  *	blocking sockets. If application is using a blocking fd
2872  *	and a packet with checksum error is in the queue;
2873  *	then it could get return from select indicating data available
2874  *	but then block when reading it. Add special case code
2875  *	to work around these arguably broken applications.
2876  */
2877 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2878 {
2879 	__poll_t mask = datagram_poll(file, sock, wait);
2880 	struct sock *sk = sock->sk;
2881 
2882 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2883 		mask |= EPOLLIN | EPOLLRDNORM;
2884 
2885 	/* Check for false positives due to checksum errors */
2886 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2887 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2888 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2889 
2890 	/* psock ingress_msg queue should not contain any bad checksum frames */
2891 	if (sk_is_readable(sk))
2892 		mask |= EPOLLIN | EPOLLRDNORM;
2893 	return mask;
2894 
2895 }
2896 EXPORT_SYMBOL(udp_poll);
2897 
2898 int udp_abort(struct sock *sk, int err)
2899 {
2900 	if (!has_current_bpf_ctx())
2901 		lock_sock(sk);
2902 
2903 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2904 	 * with close()
2905 	 */
2906 	if (sock_flag(sk, SOCK_DEAD))
2907 		goto out;
2908 
2909 	sk->sk_err = err;
2910 	sk_error_report(sk);
2911 	__udp_disconnect(sk, 0);
2912 
2913 out:
2914 	if (!has_current_bpf_ctx())
2915 		release_sock(sk);
2916 
2917 	return 0;
2918 }
2919 EXPORT_SYMBOL_GPL(udp_abort);
2920 
2921 struct proto udp_prot = {
2922 	.name			= "UDP",
2923 	.owner			= THIS_MODULE,
2924 	.close			= udp_lib_close,
2925 	.pre_connect		= udp_pre_connect,
2926 	.connect		= ip4_datagram_connect,
2927 	.disconnect		= udp_disconnect,
2928 	.ioctl			= udp_ioctl,
2929 	.init			= udp_init_sock,
2930 	.destroy		= udp_destroy_sock,
2931 	.setsockopt		= udp_setsockopt,
2932 	.getsockopt		= udp_getsockopt,
2933 	.sendmsg		= udp_sendmsg,
2934 	.recvmsg		= udp_recvmsg,
2935 	.splice_eof		= udp_splice_eof,
2936 	.release_cb		= ip4_datagram_release_cb,
2937 	.hash			= udp_lib_hash,
2938 	.unhash			= udp_lib_unhash,
2939 	.rehash			= udp_v4_rehash,
2940 	.get_port		= udp_v4_get_port,
2941 	.put_port		= udp_lib_unhash,
2942 #ifdef CONFIG_BPF_SYSCALL
2943 	.psock_update_sk_prot	= udp_bpf_update_proto,
2944 #endif
2945 	.memory_allocated	= &udp_memory_allocated,
2946 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2947 
2948 	.sysctl_mem		= sysctl_udp_mem,
2949 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2950 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2951 	.obj_size		= sizeof(struct udp_sock),
2952 	.h.udp_table		= NULL,
2953 	.diag_destroy		= udp_abort,
2954 };
2955 EXPORT_SYMBOL(udp_prot);
2956 
2957 /* ------------------------------------------------------------------------ */
2958 #ifdef CONFIG_PROC_FS
2959 
2960 static unsigned short seq_file_family(const struct seq_file *seq);
2961 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2962 {
2963 	unsigned short family = seq_file_family(seq);
2964 
2965 	/* AF_UNSPEC is used as a match all */
2966 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2967 		net_eq(sock_net(sk), seq_file_net(seq)));
2968 }
2969 
2970 #ifdef CONFIG_BPF_SYSCALL
2971 static const struct seq_operations bpf_iter_udp_seq_ops;
2972 #endif
2973 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2974 					   struct net *net)
2975 {
2976 	const struct udp_seq_afinfo *afinfo;
2977 
2978 #ifdef CONFIG_BPF_SYSCALL
2979 	if (seq->op == &bpf_iter_udp_seq_ops)
2980 		return net->ipv4.udp_table;
2981 #endif
2982 
2983 	afinfo = pde_data(file_inode(seq->file));
2984 	return afinfo->udp_table ? : net->ipv4.udp_table;
2985 }
2986 
2987 static struct sock *udp_get_first(struct seq_file *seq, int start)
2988 {
2989 	struct udp_iter_state *state = seq->private;
2990 	struct net *net = seq_file_net(seq);
2991 	struct udp_table *udptable;
2992 	struct sock *sk;
2993 
2994 	udptable = udp_get_table_seq(seq, net);
2995 
2996 	for (state->bucket = start; state->bucket <= udptable->mask;
2997 	     ++state->bucket) {
2998 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
2999 
3000 		if (hlist_empty(&hslot->head))
3001 			continue;
3002 
3003 		spin_lock_bh(&hslot->lock);
3004 		sk_for_each(sk, &hslot->head) {
3005 			if (seq_sk_match(seq, sk))
3006 				goto found;
3007 		}
3008 		spin_unlock_bh(&hslot->lock);
3009 	}
3010 	sk = NULL;
3011 found:
3012 	return sk;
3013 }
3014 
3015 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3016 {
3017 	struct udp_iter_state *state = seq->private;
3018 	struct net *net = seq_file_net(seq);
3019 	struct udp_table *udptable;
3020 
3021 	do {
3022 		sk = sk_next(sk);
3023 	} while (sk && !seq_sk_match(seq, sk));
3024 
3025 	if (!sk) {
3026 		udptable = udp_get_table_seq(seq, net);
3027 
3028 		if (state->bucket <= udptable->mask)
3029 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3030 
3031 		return udp_get_first(seq, state->bucket + 1);
3032 	}
3033 	return sk;
3034 }
3035 
3036 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3037 {
3038 	struct sock *sk = udp_get_first(seq, 0);
3039 
3040 	if (sk)
3041 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3042 			--pos;
3043 	return pos ? NULL : sk;
3044 }
3045 
3046 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3047 {
3048 	struct udp_iter_state *state = seq->private;
3049 	state->bucket = MAX_UDP_PORTS;
3050 
3051 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3052 }
3053 EXPORT_SYMBOL(udp_seq_start);
3054 
3055 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3056 {
3057 	struct sock *sk;
3058 
3059 	if (v == SEQ_START_TOKEN)
3060 		sk = udp_get_idx(seq, 0);
3061 	else
3062 		sk = udp_get_next(seq, v);
3063 
3064 	++*pos;
3065 	return sk;
3066 }
3067 EXPORT_SYMBOL(udp_seq_next);
3068 
3069 void udp_seq_stop(struct seq_file *seq, void *v)
3070 {
3071 	struct udp_iter_state *state = seq->private;
3072 	struct udp_table *udptable;
3073 
3074 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3075 
3076 	if (state->bucket <= udptable->mask)
3077 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3078 }
3079 EXPORT_SYMBOL(udp_seq_stop);
3080 
3081 /* ------------------------------------------------------------------------ */
3082 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3083 		int bucket)
3084 {
3085 	struct inet_sock *inet = inet_sk(sp);
3086 	__be32 dest = inet->inet_daddr;
3087 	__be32 src  = inet->inet_rcv_saddr;
3088 	__u16 destp	  = ntohs(inet->inet_dport);
3089 	__u16 srcp	  = ntohs(inet->inet_sport);
3090 
3091 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3092 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3093 		bucket, src, srcp, dest, destp, sp->sk_state,
3094 		sk_wmem_alloc_get(sp),
3095 		udp_rqueue_get(sp),
3096 		0, 0L, 0,
3097 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3098 		0, sock_i_ino(sp),
3099 		refcount_read(&sp->sk_refcnt), sp,
3100 		atomic_read(&sp->sk_drops));
3101 }
3102 
3103 int udp4_seq_show(struct seq_file *seq, void *v)
3104 {
3105 	seq_setwidth(seq, 127);
3106 	if (v == SEQ_START_TOKEN)
3107 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3108 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3109 			   "inode ref pointer drops");
3110 	else {
3111 		struct udp_iter_state *state = seq->private;
3112 
3113 		udp4_format_sock(v, seq, state->bucket);
3114 	}
3115 	seq_pad(seq, '\n');
3116 	return 0;
3117 }
3118 
3119 #ifdef CONFIG_BPF_SYSCALL
3120 struct bpf_iter__udp {
3121 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3122 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3123 	uid_t uid __aligned(8);
3124 	int bucket __aligned(8);
3125 };
3126 
3127 struct bpf_udp_iter_state {
3128 	struct udp_iter_state state;
3129 	unsigned int cur_sk;
3130 	unsigned int end_sk;
3131 	unsigned int max_sk;
3132 	int offset;
3133 	struct sock **batch;
3134 	bool st_bucket_done;
3135 };
3136 
3137 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3138 				      unsigned int new_batch_sz);
3139 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3140 {
3141 	struct bpf_udp_iter_state *iter = seq->private;
3142 	struct udp_iter_state *state = &iter->state;
3143 	struct net *net = seq_file_net(seq);
3144 	int resume_bucket, resume_offset;
3145 	struct udp_table *udptable;
3146 	unsigned int batch_sks = 0;
3147 	bool resized = false;
3148 	struct sock *sk;
3149 
3150 	resume_bucket = state->bucket;
3151 	resume_offset = iter->offset;
3152 
3153 	/* The current batch is done, so advance the bucket. */
3154 	if (iter->st_bucket_done)
3155 		state->bucket++;
3156 
3157 	udptable = udp_get_table_seq(seq, net);
3158 
3159 again:
3160 	/* New batch for the next bucket.
3161 	 * Iterate over the hash table to find a bucket with sockets matching
3162 	 * the iterator attributes, and return the first matching socket from
3163 	 * the bucket. The remaining matched sockets from the bucket are batched
3164 	 * before releasing the bucket lock. This allows BPF programs that are
3165 	 * called in seq_show to acquire the bucket lock if needed.
3166 	 */
3167 	iter->cur_sk = 0;
3168 	iter->end_sk = 0;
3169 	iter->st_bucket_done = false;
3170 	batch_sks = 0;
3171 
3172 	for (; state->bucket <= udptable->mask; state->bucket++) {
3173 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3174 
3175 		if (hlist_empty(&hslot2->head))
3176 			continue;
3177 
3178 		iter->offset = 0;
3179 		spin_lock_bh(&hslot2->lock);
3180 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3181 			if (seq_sk_match(seq, sk)) {
3182 				/* Resume from the last iterated socket at the
3183 				 * offset in the bucket before iterator was stopped.
3184 				 */
3185 				if (state->bucket == resume_bucket &&
3186 				    iter->offset < resume_offset) {
3187 					++iter->offset;
3188 					continue;
3189 				}
3190 				if (iter->end_sk < iter->max_sk) {
3191 					sock_hold(sk);
3192 					iter->batch[iter->end_sk++] = sk;
3193 				}
3194 				batch_sks++;
3195 			}
3196 		}
3197 		spin_unlock_bh(&hslot2->lock);
3198 
3199 		if (iter->end_sk)
3200 			break;
3201 	}
3202 
3203 	/* All done: no batch made. */
3204 	if (!iter->end_sk)
3205 		return NULL;
3206 
3207 	if (iter->end_sk == batch_sks) {
3208 		/* Batching is done for the current bucket; return the first
3209 		 * socket to be iterated from the batch.
3210 		 */
3211 		iter->st_bucket_done = true;
3212 		goto done;
3213 	}
3214 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3215 		resized = true;
3216 		/* After allocating a larger batch, retry one more time to grab
3217 		 * the whole bucket.
3218 		 */
3219 		goto again;
3220 	}
3221 done:
3222 	return iter->batch[0];
3223 }
3224 
3225 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3226 {
3227 	struct bpf_udp_iter_state *iter = seq->private;
3228 	struct sock *sk;
3229 
3230 	/* Whenever seq_next() is called, the iter->cur_sk is
3231 	 * done with seq_show(), so unref the iter->cur_sk.
3232 	 */
3233 	if (iter->cur_sk < iter->end_sk) {
3234 		sock_put(iter->batch[iter->cur_sk++]);
3235 		++iter->offset;
3236 	}
3237 
3238 	/* After updating iter->cur_sk, check if there are more sockets
3239 	 * available in the current bucket batch.
3240 	 */
3241 	if (iter->cur_sk < iter->end_sk)
3242 		sk = iter->batch[iter->cur_sk];
3243 	else
3244 		/* Prepare a new batch. */
3245 		sk = bpf_iter_udp_batch(seq);
3246 
3247 	++*pos;
3248 	return sk;
3249 }
3250 
3251 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3252 {
3253 	/* bpf iter does not support lseek, so it always
3254 	 * continue from where it was stop()-ped.
3255 	 */
3256 	if (*pos)
3257 		return bpf_iter_udp_batch(seq);
3258 
3259 	return SEQ_START_TOKEN;
3260 }
3261 
3262 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3263 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3264 {
3265 	struct bpf_iter__udp ctx;
3266 
3267 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3268 	ctx.meta = meta;
3269 	ctx.udp_sk = udp_sk;
3270 	ctx.uid = uid;
3271 	ctx.bucket = bucket;
3272 	return bpf_iter_run_prog(prog, &ctx);
3273 }
3274 
3275 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3276 {
3277 	struct udp_iter_state *state = seq->private;
3278 	struct bpf_iter_meta meta;
3279 	struct bpf_prog *prog;
3280 	struct sock *sk = v;
3281 	uid_t uid;
3282 	int ret;
3283 
3284 	if (v == SEQ_START_TOKEN)
3285 		return 0;
3286 
3287 	lock_sock(sk);
3288 
3289 	if (unlikely(sk_unhashed(sk))) {
3290 		ret = SEQ_SKIP;
3291 		goto unlock;
3292 	}
3293 
3294 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3295 	meta.seq = seq;
3296 	prog = bpf_iter_get_info(&meta, false);
3297 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3298 
3299 unlock:
3300 	release_sock(sk);
3301 	return ret;
3302 }
3303 
3304 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3305 {
3306 	while (iter->cur_sk < iter->end_sk)
3307 		sock_put(iter->batch[iter->cur_sk++]);
3308 }
3309 
3310 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3311 {
3312 	struct bpf_udp_iter_state *iter = seq->private;
3313 	struct bpf_iter_meta meta;
3314 	struct bpf_prog *prog;
3315 
3316 	if (!v) {
3317 		meta.seq = seq;
3318 		prog = bpf_iter_get_info(&meta, true);
3319 		if (prog)
3320 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3321 	}
3322 
3323 	if (iter->cur_sk < iter->end_sk) {
3324 		bpf_iter_udp_put_batch(iter);
3325 		iter->st_bucket_done = false;
3326 	}
3327 }
3328 
3329 static const struct seq_operations bpf_iter_udp_seq_ops = {
3330 	.start		= bpf_iter_udp_seq_start,
3331 	.next		= bpf_iter_udp_seq_next,
3332 	.stop		= bpf_iter_udp_seq_stop,
3333 	.show		= bpf_iter_udp_seq_show,
3334 };
3335 #endif
3336 
3337 static unsigned short seq_file_family(const struct seq_file *seq)
3338 {
3339 	const struct udp_seq_afinfo *afinfo;
3340 
3341 #ifdef CONFIG_BPF_SYSCALL
3342 	/* BPF iterator: bpf programs to filter sockets. */
3343 	if (seq->op == &bpf_iter_udp_seq_ops)
3344 		return AF_UNSPEC;
3345 #endif
3346 
3347 	/* Proc fs iterator */
3348 	afinfo = pde_data(file_inode(seq->file));
3349 	return afinfo->family;
3350 }
3351 
3352 const struct seq_operations udp_seq_ops = {
3353 	.start		= udp_seq_start,
3354 	.next		= udp_seq_next,
3355 	.stop		= udp_seq_stop,
3356 	.show		= udp4_seq_show,
3357 };
3358 EXPORT_SYMBOL(udp_seq_ops);
3359 
3360 static struct udp_seq_afinfo udp4_seq_afinfo = {
3361 	.family		= AF_INET,
3362 	.udp_table	= NULL,
3363 };
3364 
3365 static int __net_init udp4_proc_init_net(struct net *net)
3366 {
3367 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3368 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3369 		return -ENOMEM;
3370 	return 0;
3371 }
3372 
3373 static void __net_exit udp4_proc_exit_net(struct net *net)
3374 {
3375 	remove_proc_entry("udp", net->proc_net);
3376 }
3377 
3378 static struct pernet_operations udp4_net_ops = {
3379 	.init = udp4_proc_init_net,
3380 	.exit = udp4_proc_exit_net,
3381 };
3382 
3383 int __init udp4_proc_init(void)
3384 {
3385 	return register_pernet_subsys(&udp4_net_ops);
3386 }
3387 
3388 void udp4_proc_exit(void)
3389 {
3390 	unregister_pernet_subsys(&udp4_net_ops);
3391 }
3392 #endif /* CONFIG_PROC_FS */
3393 
3394 static __initdata unsigned long uhash_entries;
3395 static int __init set_uhash_entries(char *str)
3396 {
3397 	ssize_t ret;
3398 
3399 	if (!str)
3400 		return 0;
3401 
3402 	ret = kstrtoul(str, 0, &uhash_entries);
3403 	if (ret)
3404 		return 0;
3405 
3406 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3407 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3408 	return 1;
3409 }
3410 __setup("uhash_entries=", set_uhash_entries);
3411 
3412 void __init udp_table_init(struct udp_table *table, const char *name)
3413 {
3414 	unsigned int i;
3415 
3416 	table->hash = alloc_large_system_hash(name,
3417 					      2 * sizeof(struct udp_hslot),
3418 					      uhash_entries,
3419 					      21, /* one slot per 2 MB */
3420 					      0,
3421 					      &table->log,
3422 					      &table->mask,
3423 					      UDP_HTABLE_SIZE_MIN,
3424 					      UDP_HTABLE_SIZE_MAX);
3425 
3426 	table->hash2 = table->hash + (table->mask + 1);
3427 	for (i = 0; i <= table->mask; i++) {
3428 		INIT_HLIST_HEAD(&table->hash[i].head);
3429 		table->hash[i].count = 0;
3430 		spin_lock_init(&table->hash[i].lock);
3431 	}
3432 	for (i = 0; i <= table->mask; i++) {
3433 		INIT_HLIST_HEAD(&table->hash2[i].head);
3434 		table->hash2[i].count = 0;
3435 		spin_lock_init(&table->hash2[i].lock);
3436 	}
3437 }
3438 
3439 u32 udp_flow_hashrnd(void)
3440 {
3441 	static u32 hashrnd __read_mostly;
3442 
3443 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3444 
3445 	return hashrnd;
3446 }
3447 EXPORT_SYMBOL(udp_flow_hashrnd);
3448 
3449 static void __net_init udp_sysctl_init(struct net *net)
3450 {
3451 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3452 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3453 
3454 #ifdef CONFIG_NET_L3_MASTER_DEV
3455 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3456 #endif
3457 }
3458 
3459 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3460 {
3461 	struct udp_table *udptable;
3462 	int i;
3463 
3464 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3465 	if (!udptable)
3466 		goto out;
3467 
3468 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3469 				      GFP_KERNEL_ACCOUNT);
3470 	if (!udptable->hash)
3471 		goto free_table;
3472 
3473 	udptable->hash2 = udptable->hash + hash_entries;
3474 	udptable->mask = hash_entries - 1;
3475 	udptable->log = ilog2(hash_entries);
3476 
3477 	for (i = 0; i < hash_entries; i++) {
3478 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3479 		udptable->hash[i].count = 0;
3480 		spin_lock_init(&udptable->hash[i].lock);
3481 
3482 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3483 		udptable->hash2[i].count = 0;
3484 		spin_lock_init(&udptable->hash2[i].lock);
3485 	}
3486 
3487 	return udptable;
3488 
3489 free_table:
3490 	kfree(udptable);
3491 out:
3492 	return NULL;
3493 }
3494 
3495 static void __net_exit udp_pernet_table_free(struct net *net)
3496 {
3497 	struct udp_table *udptable = net->ipv4.udp_table;
3498 
3499 	if (udptable == &udp_table)
3500 		return;
3501 
3502 	kvfree(udptable->hash);
3503 	kfree(udptable);
3504 }
3505 
3506 static void __net_init udp_set_table(struct net *net)
3507 {
3508 	struct udp_table *udptable;
3509 	unsigned int hash_entries;
3510 	struct net *old_net;
3511 
3512 	if (net_eq(net, &init_net))
3513 		goto fallback;
3514 
3515 	old_net = current->nsproxy->net_ns;
3516 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3517 	if (!hash_entries)
3518 		goto fallback;
3519 
3520 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3521 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3522 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3523 	else
3524 		hash_entries = roundup_pow_of_two(hash_entries);
3525 
3526 	udptable = udp_pernet_table_alloc(hash_entries);
3527 	if (udptable) {
3528 		net->ipv4.udp_table = udptable;
3529 	} else {
3530 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3531 			"for a netns, fallback to the global one\n",
3532 			hash_entries);
3533 fallback:
3534 		net->ipv4.udp_table = &udp_table;
3535 	}
3536 }
3537 
3538 static int __net_init udp_pernet_init(struct net *net)
3539 {
3540 	udp_sysctl_init(net);
3541 	udp_set_table(net);
3542 
3543 	return 0;
3544 }
3545 
3546 static void __net_exit udp_pernet_exit(struct net *net)
3547 {
3548 	udp_pernet_table_free(net);
3549 }
3550 
3551 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3552 	.init	= udp_pernet_init,
3553 	.exit	= udp_pernet_exit,
3554 };
3555 
3556 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3557 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3558 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3559 
3560 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3561 				      unsigned int new_batch_sz)
3562 {
3563 	struct sock **new_batch;
3564 
3565 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3566 				   GFP_USER | __GFP_NOWARN);
3567 	if (!new_batch)
3568 		return -ENOMEM;
3569 
3570 	bpf_iter_udp_put_batch(iter);
3571 	kvfree(iter->batch);
3572 	iter->batch = new_batch;
3573 	iter->max_sk = new_batch_sz;
3574 
3575 	return 0;
3576 }
3577 
3578 #define INIT_BATCH_SZ 16
3579 
3580 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3581 {
3582 	struct bpf_udp_iter_state *iter = priv_data;
3583 	int ret;
3584 
3585 	ret = bpf_iter_init_seq_net(priv_data, aux);
3586 	if (ret)
3587 		return ret;
3588 
3589 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3590 	if (ret)
3591 		bpf_iter_fini_seq_net(priv_data);
3592 
3593 	return ret;
3594 }
3595 
3596 static void bpf_iter_fini_udp(void *priv_data)
3597 {
3598 	struct bpf_udp_iter_state *iter = priv_data;
3599 
3600 	bpf_iter_fini_seq_net(priv_data);
3601 	kvfree(iter->batch);
3602 }
3603 
3604 static const struct bpf_iter_seq_info udp_seq_info = {
3605 	.seq_ops		= &bpf_iter_udp_seq_ops,
3606 	.init_seq_private	= bpf_iter_init_udp,
3607 	.fini_seq_private	= bpf_iter_fini_udp,
3608 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3609 };
3610 
3611 static struct bpf_iter_reg udp_reg_info = {
3612 	.target			= "udp",
3613 	.ctx_arg_info_size	= 1,
3614 	.ctx_arg_info		= {
3615 		{ offsetof(struct bpf_iter__udp, udp_sk),
3616 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3617 	},
3618 	.seq_info		= &udp_seq_info,
3619 };
3620 
3621 static void __init bpf_iter_register(void)
3622 {
3623 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3624 	if (bpf_iter_reg_target(&udp_reg_info))
3625 		pr_warn("Warning: could not register bpf iterator udp\n");
3626 }
3627 #endif
3628 
3629 void __init udp_init(void)
3630 {
3631 	unsigned long limit;
3632 	unsigned int i;
3633 
3634 	udp_table_init(&udp_table, "UDP");
3635 	limit = nr_free_buffer_pages() / 8;
3636 	limit = max(limit, 128UL);
3637 	sysctl_udp_mem[0] = limit / 4 * 3;
3638 	sysctl_udp_mem[1] = limit;
3639 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3640 
3641 	/* 16 spinlocks per cpu */
3642 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3643 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3644 				GFP_KERNEL);
3645 	if (!udp_busylocks)
3646 		panic("UDP: failed to alloc udp_busylocks\n");
3647 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3648 		spin_lock_init(udp_busylocks + i);
3649 
3650 	if (register_pernet_subsys(&udp_sysctl_ops))
3651 		panic("UDP: failed to init sysctl parameters.\n");
3652 
3653 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3654 	bpf_iter_register();
3655 #endif
3656 }
3657