xref: /openbmc/linux/net/ipv4/udp.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/types.h>
85 #include <linux/fcntl.h>
86 #include <linux/module.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/igmp.h>
90 #include <linux/in.h>
91 #include <linux/errno.h>
92 #include <linux/timer.h>
93 #include <linux/mm.h>
94 #include <linux/inet.h>
95 #include <linux/netdevice.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/route.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include "udp_impl.h"
106 
107 /*
108  *	Snmp MIB for the UDP layer
109  */
110 
111 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
112 DEFINE_RWLOCK(udp_hash_lock);
113 
114 int sysctl_udp_mem[3] __read_mostly;
115 int sysctl_udp_rmem_min __read_mostly;
116 int sysctl_udp_wmem_min __read_mostly;
117 
118 EXPORT_SYMBOL(sysctl_udp_mem);
119 EXPORT_SYMBOL(sysctl_udp_rmem_min);
120 EXPORT_SYMBOL(sysctl_udp_wmem_min);
121 
122 atomic_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124 
125 static int udp_lib_lport_inuse(struct net *net, __u16 num,
126 			       const struct hlist_head udptable[],
127 			       struct sock *sk,
128 			       int (*saddr_comp)(const struct sock *sk1,
129 						 const struct sock *sk2))
130 {
131 	struct sock *sk2;
132 	struct hlist_node *node;
133 
134 	sk_for_each(sk2, node, &udptable[udp_hashfn(net, num)])
135 		if (net_eq(sock_net(sk2), net)			&&
136 		    sk2 != sk					&&
137 		    sk2->sk_hash == num				&&
138 		    (!sk2->sk_reuse || !sk->sk_reuse)		&&
139 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
140 			|| sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
141 		    (*saddr_comp)(sk, sk2))
142 			return 1;
143 	return 0;
144 }
145 
146 /**
147  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
148  *
149  *  @sk:          socket struct in question
150  *  @snum:        port number to look up
151  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
152  */
153 int udp_lib_get_port(struct sock *sk, unsigned short snum,
154 		       int (*saddr_comp)(const struct sock *sk1,
155 					 const struct sock *sk2 )    )
156 {
157 	struct hlist_head *udptable = sk->sk_prot->h.udp_hash;
158 	int    error = 1;
159 	struct net *net = sock_net(sk);
160 
161 	write_lock_bh(&udp_hash_lock);
162 
163 	if (!snum) {
164 		int low, high, remaining;
165 		unsigned rand;
166 		unsigned short first;
167 
168 		inet_get_local_port_range(&low, &high);
169 		remaining = (high - low) + 1;
170 
171 		rand = net_random();
172 		snum = first = rand % remaining + low;
173 		rand |= 1;
174 		while (udp_lib_lport_inuse(net, snum, udptable, sk,
175 					   saddr_comp)) {
176 			do {
177 				snum = snum + rand;
178 			} while (snum < low || snum > high);
179 			if (snum == first)
180 				goto fail;
181 		}
182 	} else if (udp_lib_lport_inuse(net, snum, udptable, sk, saddr_comp))
183 		goto fail;
184 
185 	inet_sk(sk)->num = snum;
186 	sk->sk_hash = snum;
187 	if (sk_unhashed(sk)) {
188 		sk_add_node(sk, &udptable[udp_hashfn(net, snum)]);
189 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
190 	}
191 	error = 0;
192 fail:
193 	write_unlock_bh(&udp_hash_lock);
194 	return error;
195 }
196 
197 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
198 {
199 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
200 
201 	return 	( !ipv6_only_sock(sk2)  &&
202 		  (!inet1->rcv_saddr || !inet2->rcv_saddr ||
203 		   inet1->rcv_saddr == inet2->rcv_saddr      ));
204 }
205 
206 int udp_v4_get_port(struct sock *sk, unsigned short snum)
207 {
208 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal);
209 }
210 
211 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
212  * harder than this. -DaveM
213  */
214 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
215 		__be16 sport, __be32 daddr, __be16 dport,
216 		int dif, struct hlist_head udptable[])
217 {
218 	struct sock *sk, *result = NULL;
219 	struct hlist_node *node;
220 	unsigned short hnum = ntohs(dport);
221 	int badness = -1;
222 
223 	read_lock(&udp_hash_lock);
224 	sk_for_each(sk, node, &udptable[udp_hashfn(net, hnum)]) {
225 		struct inet_sock *inet = inet_sk(sk);
226 
227 		if (net_eq(sock_net(sk), net) && sk->sk_hash == hnum &&
228 				!ipv6_only_sock(sk)) {
229 			int score = (sk->sk_family == PF_INET ? 1 : 0);
230 			if (inet->rcv_saddr) {
231 				if (inet->rcv_saddr != daddr)
232 					continue;
233 				score+=2;
234 			}
235 			if (inet->daddr) {
236 				if (inet->daddr != saddr)
237 					continue;
238 				score+=2;
239 			}
240 			if (inet->dport) {
241 				if (inet->dport != sport)
242 					continue;
243 				score+=2;
244 			}
245 			if (sk->sk_bound_dev_if) {
246 				if (sk->sk_bound_dev_if != dif)
247 					continue;
248 				score+=2;
249 			}
250 			if (score == 9) {
251 				result = sk;
252 				break;
253 			} else if (score > badness) {
254 				result = sk;
255 				badness = score;
256 			}
257 		}
258 	}
259 	if (result)
260 		sock_hold(result);
261 	read_unlock(&udp_hash_lock);
262 	return result;
263 }
264 
265 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
266 						 __be16 sport, __be16 dport,
267 						 struct hlist_head udptable[])
268 {
269 	struct sock *sk;
270 	const struct iphdr *iph = ip_hdr(skb);
271 
272 	if (unlikely(sk = skb_steal_sock(skb)))
273 		return sk;
274 	else
275 		return __udp4_lib_lookup(dev_net(skb->dst->dev), iph->saddr, sport,
276 					 iph->daddr, dport, inet_iif(skb),
277 					 udptable);
278 }
279 
280 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
281 			     __be32 daddr, __be16 dport, int dif)
282 {
283 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, udp_hash);
284 }
285 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
286 
287 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
288 					     __be16 loc_port, __be32 loc_addr,
289 					     __be16 rmt_port, __be32 rmt_addr,
290 					     int dif)
291 {
292 	struct hlist_node *node;
293 	struct sock *s = sk;
294 	unsigned short hnum = ntohs(loc_port);
295 
296 	sk_for_each_from(s, node) {
297 		struct inet_sock *inet = inet_sk(s);
298 
299 		if (!net_eq(sock_net(s), net)				||
300 		    s->sk_hash != hnum					||
301 		    (inet->daddr && inet->daddr != rmt_addr)		||
302 		    (inet->dport != rmt_port && inet->dport)		||
303 		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
304 		    ipv6_only_sock(s)					||
305 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
306 			continue;
307 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
308 			continue;
309 		goto found;
310 	}
311 	s = NULL;
312 found:
313 	return s;
314 }
315 
316 /*
317  * This routine is called by the ICMP module when it gets some
318  * sort of error condition.  If err < 0 then the socket should
319  * be closed and the error returned to the user.  If err > 0
320  * it's just the icmp type << 8 | icmp code.
321  * Header points to the ip header of the error packet. We move
322  * on past this. Then (as it used to claim before adjustment)
323  * header points to the first 8 bytes of the udp header.  We need
324  * to find the appropriate port.
325  */
326 
327 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
328 {
329 	struct inet_sock *inet;
330 	struct iphdr *iph = (struct iphdr*)skb->data;
331 	struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
332 	const int type = icmp_hdr(skb)->type;
333 	const int code = icmp_hdr(skb)->code;
334 	struct sock *sk;
335 	int harderr;
336 	int err;
337 	struct net *net = dev_net(skb->dev);
338 
339 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
340 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
341 	if (sk == NULL) {
342 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
343 		return;	/* No socket for error */
344 	}
345 
346 	err = 0;
347 	harderr = 0;
348 	inet = inet_sk(sk);
349 
350 	switch (type) {
351 	default:
352 	case ICMP_TIME_EXCEEDED:
353 		err = EHOSTUNREACH;
354 		break;
355 	case ICMP_SOURCE_QUENCH:
356 		goto out;
357 	case ICMP_PARAMETERPROB:
358 		err = EPROTO;
359 		harderr = 1;
360 		break;
361 	case ICMP_DEST_UNREACH:
362 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
363 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
364 				err = EMSGSIZE;
365 				harderr = 1;
366 				break;
367 			}
368 			goto out;
369 		}
370 		err = EHOSTUNREACH;
371 		if (code <= NR_ICMP_UNREACH) {
372 			harderr = icmp_err_convert[code].fatal;
373 			err = icmp_err_convert[code].errno;
374 		}
375 		break;
376 	}
377 
378 	/*
379 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
380 	 *	4.1.3.3.
381 	 */
382 	if (!inet->recverr) {
383 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
384 			goto out;
385 	} else {
386 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
387 	}
388 	sk->sk_err = err;
389 	sk->sk_error_report(sk);
390 out:
391 	sock_put(sk);
392 }
393 
394 void udp_err(struct sk_buff *skb, u32 info)
395 {
396 	__udp4_lib_err(skb, info, udp_hash);
397 }
398 
399 /*
400  * Throw away all pending data and cancel the corking. Socket is locked.
401  */
402 void udp_flush_pending_frames(struct sock *sk)
403 {
404 	struct udp_sock *up = udp_sk(sk);
405 
406 	if (up->pending) {
407 		up->len = 0;
408 		up->pending = 0;
409 		ip_flush_pending_frames(sk);
410 	}
411 }
412 EXPORT_SYMBOL(udp_flush_pending_frames);
413 
414 /**
415  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
416  * 	@sk: 	socket we are sending on
417  * 	@skb: 	sk_buff containing the filled-in UDP header
418  * 	        (checksum field must be zeroed out)
419  */
420 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
421 				 __be32 src, __be32 dst, int len      )
422 {
423 	unsigned int offset;
424 	struct udphdr *uh = udp_hdr(skb);
425 	__wsum csum = 0;
426 
427 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
428 		/*
429 		 * Only one fragment on the socket.
430 		 */
431 		skb->csum_start = skb_transport_header(skb) - skb->head;
432 		skb->csum_offset = offsetof(struct udphdr, check);
433 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
434 	} else {
435 		/*
436 		 * HW-checksum won't work as there are two or more
437 		 * fragments on the socket so that all csums of sk_buffs
438 		 * should be together
439 		 */
440 		offset = skb_transport_offset(skb);
441 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
442 
443 		skb->ip_summed = CHECKSUM_NONE;
444 
445 		skb_queue_walk(&sk->sk_write_queue, skb) {
446 			csum = csum_add(csum, skb->csum);
447 		}
448 
449 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
450 		if (uh->check == 0)
451 			uh->check = CSUM_MANGLED_0;
452 	}
453 }
454 
455 /*
456  * Push out all pending data as one UDP datagram. Socket is locked.
457  */
458 static int udp_push_pending_frames(struct sock *sk)
459 {
460 	struct udp_sock  *up = udp_sk(sk);
461 	struct inet_sock *inet = inet_sk(sk);
462 	struct flowi *fl = &inet->cork.fl;
463 	struct sk_buff *skb;
464 	struct udphdr *uh;
465 	int err = 0;
466 	int is_udplite = IS_UDPLITE(sk);
467 	__wsum csum = 0;
468 
469 	/* Grab the skbuff where UDP header space exists. */
470 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
471 		goto out;
472 
473 	/*
474 	 * Create a UDP header
475 	 */
476 	uh = udp_hdr(skb);
477 	uh->source = fl->fl_ip_sport;
478 	uh->dest = fl->fl_ip_dport;
479 	uh->len = htons(up->len);
480 	uh->check = 0;
481 
482 	if (is_udplite)  				 /*     UDP-Lite      */
483 		csum  = udplite_csum_outgoing(sk, skb);
484 
485 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
486 
487 		skb->ip_summed = CHECKSUM_NONE;
488 		goto send;
489 
490 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
491 
492 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
493 		goto send;
494 
495 	} else						 /*   `normal' UDP    */
496 		csum = udp_csum_outgoing(sk, skb);
497 
498 	/* add protocol-dependent pseudo-header */
499 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
500 				      sk->sk_protocol, csum             );
501 	if (uh->check == 0)
502 		uh->check = CSUM_MANGLED_0;
503 
504 send:
505 	err = ip_push_pending_frames(sk);
506 out:
507 	up->len = 0;
508 	up->pending = 0;
509 	if (!err)
510 		UDP_INC_STATS_USER(sock_net(sk),
511 				UDP_MIB_OUTDATAGRAMS, is_udplite);
512 	return err;
513 }
514 
515 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
516 		size_t len)
517 {
518 	struct inet_sock *inet = inet_sk(sk);
519 	struct udp_sock *up = udp_sk(sk);
520 	int ulen = len;
521 	struct ipcm_cookie ipc;
522 	struct rtable *rt = NULL;
523 	int free = 0;
524 	int connected = 0;
525 	__be32 daddr, faddr, saddr;
526 	__be16 dport;
527 	u8  tos;
528 	int err, is_udplite = IS_UDPLITE(sk);
529 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
530 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
531 
532 	if (len > 0xFFFF)
533 		return -EMSGSIZE;
534 
535 	/*
536 	 *	Check the flags.
537 	 */
538 
539 	if (msg->msg_flags&MSG_OOB)	/* Mirror BSD error message compatibility */
540 		return -EOPNOTSUPP;
541 
542 	ipc.opt = NULL;
543 
544 	if (up->pending) {
545 		/*
546 		 * There are pending frames.
547 		 * The socket lock must be held while it's corked.
548 		 */
549 		lock_sock(sk);
550 		if (likely(up->pending)) {
551 			if (unlikely(up->pending != AF_INET)) {
552 				release_sock(sk);
553 				return -EINVAL;
554 			}
555 			goto do_append_data;
556 		}
557 		release_sock(sk);
558 	}
559 	ulen += sizeof(struct udphdr);
560 
561 	/*
562 	 *	Get and verify the address.
563 	 */
564 	if (msg->msg_name) {
565 		struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
566 		if (msg->msg_namelen < sizeof(*usin))
567 			return -EINVAL;
568 		if (usin->sin_family != AF_INET) {
569 			if (usin->sin_family != AF_UNSPEC)
570 				return -EAFNOSUPPORT;
571 		}
572 
573 		daddr = usin->sin_addr.s_addr;
574 		dport = usin->sin_port;
575 		if (dport == 0)
576 			return -EINVAL;
577 	} else {
578 		if (sk->sk_state != TCP_ESTABLISHED)
579 			return -EDESTADDRREQ;
580 		daddr = inet->daddr;
581 		dport = inet->dport;
582 		/* Open fast path for connected socket.
583 		   Route will not be used, if at least one option is set.
584 		 */
585 		connected = 1;
586 	}
587 	ipc.addr = inet->saddr;
588 
589 	ipc.oif = sk->sk_bound_dev_if;
590 	if (msg->msg_controllen) {
591 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
592 		if (err)
593 			return err;
594 		if (ipc.opt)
595 			free = 1;
596 		connected = 0;
597 	}
598 	if (!ipc.opt)
599 		ipc.opt = inet->opt;
600 
601 	saddr = ipc.addr;
602 	ipc.addr = faddr = daddr;
603 
604 	if (ipc.opt && ipc.opt->srr) {
605 		if (!daddr)
606 			return -EINVAL;
607 		faddr = ipc.opt->faddr;
608 		connected = 0;
609 	}
610 	tos = RT_TOS(inet->tos);
611 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
612 	    (msg->msg_flags & MSG_DONTROUTE) ||
613 	    (ipc.opt && ipc.opt->is_strictroute)) {
614 		tos |= RTO_ONLINK;
615 		connected = 0;
616 	}
617 
618 	if (ipv4_is_multicast(daddr)) {
619 		if (!ipc.oif)
620 			ipc.oif = inet->mc_index;
621 		if (!saddr)
622 			saddr = inet->mc_addr;
623 		connected = 0;
624 	}
625 
626 	if (connected)
627 		rt = (struct rtable*)sk_dst_check(sk, 0);
628 
629 	if (rt == NULL) {
630 		struct flowi fl = { .oif = ipc.oif,
631 				    .nl_u = { .ip4_u =
632 					      { .daddr = faddr,
633 						.saddr = saddr,
634 						.tos = tos } },
635 				    .proto = sk->sk_protocol,
636 				    .uli_u = { .ports =
637 					       { .sport = inet->sport,
638 						 .dport = dport } } };
639 		struct net *net = sock_net(sk);
640 
641 		security_sk_classify_flow(sk, &fl);
642 		err = ip_route_output_flow(net, &rt, &fl, sk, 1);
643 		if (err) {
644 			if (err == -ENETUNREACH)
645 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
646 			goto out;
647 		}
648 
649 		err = -EACCES;
650 		if ((rt->rt_flags & RTCF_BROADCAST) &&
651 		    !sock_flag(sk, SOCK_BROADCAST))
652 			goto out;
653 		if (connected)
654 			sk_dst_set(sk, dst_clone(&rt->u.dst));
655 	}
656 
657 	if (msg->msg_flags&MSG_CONFIRM)
658 		goto do_confirm;
659 back_from_confirm:
660 
661 	saddr = rt->rt_src;
662 	if (!ipc.addr)
663 		daddr = ipc.addr = rt->rt_dst;
664 
665 	lock_sock(sk);
666 	if (unlikely(up->pending)) {
667 		/* The socket is already corked while preparing it. */
668 		/* ... which is an evident application bug. --ANK */
669 		release_sock(sk);
670 
671 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
672 		err = -EINVAL;
673 		goto out;
674 	}
675 	/*
676 	 *	Now cork the socket to pend data.
677 	 */
678 	inet->cork.fl.fl4_dst = daddr;
679 	inet->cork.fl.fl_ip_dport = dport;
680 	inet->cork.fl.fl4_src = saddr;
681 	inet->cork.fl.fl_ip_sport = inet->sport;
682 	up->pending = AF_INET;
683 
684 do_append_data:
685 	up->len += ulen;
686 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
687 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
688 			sizeof(struct udphdr), &ipc, rt,
689 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
690 	if (err)
691 		udp_flush_pending_frames(sk);
692 	else if (!corkreq)
693 		err = udp_push_pending_frames(sk);
694 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
695 		up->pending = 0;
696 	release_sock(sk);
697 
698 out:
699 	ip_rt_put(rt);
700 	if (free)
701 		kfree(ipc.opt);
702 	if (!err)
703 		return len;
704 	/*
705 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
706 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
707 	 * we don't have a good statistic (IpOutDiscards but it can be too many
708 	 * things).  We could add another new stat but at least for now that
709 	 * seems like overkill.
710 	 */
711 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
712 		UDP_INC_STATS_USER(sock_net(sk),
713 				UDP_MIB_SNDBUFERRORS, is_udplite);
714 	}
715 	return err;
716 
717 do_confirm:
718 	dst_confirm(&rt->u.dst);
719 	if (!(msg->msg_flags&MSG_PROBE) || len)
720 		goto back_from_confirm;
721 	err = 0;
722 	goto out;
723 }
724 
725 int udp_sendpage(struct sock *sk, struct page *page, int offset,
726 		 size_t size, int flags)
727 {
728 	struct udp_sock *up = udp_sk(sk);
729 	int ret;
730 
731 	if (!up->pending) {
732 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
733 
734 		/* Call udp_sendmsg to specify destination address which
735 		 * sendpage interface can't pass.
736 		 * This will succeed only when the socket is connected.
737 		 */
738 		ret = udp_sendmsg(NULL, sk, &msg, 0);
739 		if (ret < 0)
740 			return ret;
741 	}
742 
743 	lock_sock(sk);
744 
745 	if (unlikely(!up->pending)) {
746 		release_sock(sk);
747 
748 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
749 		return -EINVAL;
750 	}
751 
752 	ret = ip_append_page(sk, page, offset, size, flags);
753 	if (ret == -EOPNOTSUPP) {
754 		release_sock(sk);
755 		return sock_no_sendpage(sk->sk_socket, page, offset,
756 					size, flags);
757 	}
758 	if (ret < 0) {
759 		udp_flush_pending_frames(sk);
760 		goto out;
761 	}
762 
763 	up->len += size;
764 	if (!(up->corkflag || (flags&MSG_MORE)))
765 		ret = udp_push_pending_frames(sk);
766 	if (!ret)
767 		ret = size;
768 out:
769 	release_sock(sk);
770 	return ret;
771 }
772 
773 /*
774  *	IOCTL requests applicable to the UDP protocol
775  */
776 
777 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
778 {
779 	switch (cmd) {
780 	case SIOCOUTQ:
781 	{
782 		int amount = atomic_read(&sk->sk_wmem_alloc);
783 		return put_user(amount, (int __user *)arg);
784 	}
785 
786 	case SIOCINQ:
787 	{
788 		struct sk_buff *skb;
789 		unsigned long amount;
790 
791 		amount = 0;
792 		spin_lock_bh(&sk->sk_receive_queue.lock);
793 		skb = skb_peek(&sk->sk_receive_queue);
794 		if (skb != NULL) {
795 			/*
796 			 * We will only return the amount
797 			 * of this packet since that is all
798 			 * that will be read.
799 			 */
800 			amount = skb->len - sizeof(struct udphdr);
801 		}
802 		spin_unlock_bh(&sk->sk_receive_queue.lock);
803 		return put_user(amount, (int __user *)arg);
804 	}
805 
806 	default:
807 		return -ENOIOCTLCMD;
808 	}
809 
810 	return 0;
811 }
812 
813 /*
814  * 	This should be easy, if there is something there we
815  * 	return it, otherwise we block.
816  */
817 
818 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
819 		size_t len, int noblock, int flags, int *addr_len)
820 {
821 	struct inet_sock *inet = inet_sk(sk);
822 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
823 	struct sk_buff *skb;
824 	unsigned int ulen, copied;
825 	int peeked;
826 	int err;
827 	int is_udplite = IS_UDPLITE(sk);
828 
829 	/*
830 	 *	Check any passed addresses
831 	 */
832 	if (addr_len)
833 		*addr_len=sizeof(*sin);
834 
835 	if (flags & MSG_ERRQUEUE)
836 		return ip_recv_error(sk, msg, len);
837 
838 try_again:
839 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
840 				  &peeked, &err);
841 	if (!skb)
842 		goto out;
843 
844 	ulen = skb->len - sizeof(struct udphdr);
845 	copied = len;
846 	if (copied > ulen)
847 		copied = ulen;
848 	else if (copied < ulen)
849 		msg->msg_flags |= MSG_TRUNC;
850 
851 	/*
852 	 * If checksum is needed at all, try to do it while copying the
853 	 * data.  If the data is truncated, or if we only want a partial
854 	 * coverage checksum (UDP-Lite), do it before the copy.
855 	 */
856 
857 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
858 		if (udp_lib_checksum_complete(skb))
859 			goto csum_copy_err;
860 	}
861 
862 	if (skb_csum_unnecessary(skb))
863 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
864 					      msg->msg_iov, copied       );
865 	else {
866 		err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
867 
868 		if (err == -EINVAL)
869 			goto csum_copy_err;
870 	}
871 
872 	if (err)
873 		goto out_free;
874 
875 	if (!peeked)
876 		UDP_INC_STATS_USER(sock_net(sk),
877 				UDP_MIB_INDATAGRAMS, is_udplite);
878 
879 	sock_recv_timestamp(msg, sk, skb);
880 
881 	/* Copy the address. */
882 	if (sin)
883 	{
884 		sin->sin_family = AF_INET;
885 		sin->sin_port = udp_hdr(skb)->source;
886 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
887 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
888 	}
889 	if (inet->cmsg_flags)
890 		ip_cmsg_recv(msg, skb);
891 
892 	err = copied;
893 	if (flags & MSG_TRUNC)
894 		err = ulen;
895 
896 out_free:
897 	lock_sock(sk);
898 	skb_free_datagram(sk, skb);
899 	release_sock(sk);
900 out:
901 	return err;
902 
903 csum_copy_err:
904 	lock_sock(sk);
905 	if (!skb_kill_datagram(sk, skb, flags))
906 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
907 	release_sock(sk);
908 
909 	if (noblock)
910 		return -EAGAIN;
911 	goto try_again;
912 }
913 
914 
915 int udp_disconnect(struct sock *sk, int flags)
916 {
917 	struct inet_sock *inet = inet_sk(sk);
918 	/*
919 	 *	1003.1g - break association.
920 	 */
921 
922 	sk->sk_state = TCP_CLOSE;
923 	inet->daddr = 0;
924 	inet->dport = 0;
925 	sk->sk_bound_dev_if = 0;
926 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
927 		inet_reset_saddr(sk);
928 
929 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
930 		sk->sk_prot->unhash(sk);
931 		inet->sport = 0;
932 	}
933 	sk_dst_reset(sk);
934 	return 0;
935 }
936 
937 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
938 {
939 	int is_udplite = IS_UDPLITE(sk);
940 	int rc;
941 
942 	if ((rc = sock_queue_rcv_skb(sk, skb)) < 0) {
943 		/* Note that an ENOMEM error is charged twice */
944 		if (rc == -ENOMEM)
945 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
946 					 is_udplite);
947 		goto drop;
948 	}
949 
950 	return 0;
951 
952 drop:
953 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
954 	kfree_skb(skb);
955 	return -1;
956 }
957 
958 /* returns:
959  *  -1: error
960  *   0: success
961  *  >0: "udp encap" protocol resubmission
962  *
963  * Note that in the success and error cases, the skb is assumed to
964  * have either been requeued or freed.
965  */
966 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
967 {
968 	struct udp_sock *up = udp_sk(sk);
969 	int rc;
970 	int is_udplite = IS_UDPLITE(sk);
971 
972 	/*
973 	 *	Charge it to the socket, dropping if the queue is full.
974 	 */
975 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
976 		goto drop;
977 	nf_reset(skb);
978 
979 	if (up->encap_type) {
980 		/*
981 		 * This is an encapsulation socket so pass the skb to
982 		 * the socket's udp_encap_rcv() hook. Otherwise, just
983 		 * fall through and pass this up the UDP socket.
984 		 * up->encap_rcv() returns the following value:
985 		 * =0 if skb was successfully passed to the encap
986 		 *    handler or was discarded by it.
987 		 * >0 if skb should be passed on to UDP.
988 		 * <0 if skb should be resubmitted as proto -N
989 		 */
990 
991 		/* if we're overly short, let UDP handle it */
992 		if (skb->len > sizeof(struct udphdr) &&
993 		    up->encap_rcv != NULL) {
994 			int ret;
995 
996 			ret = (*up->encap_rcv)(sk, skb);
997 			if (ret <= 0) {
998 				UDP_INC_STATS_BH(sock_net(sk),
999 						 UDP_MIB_INDATAGRAMS,
1000 						 is_udplite);
1001 				return -ret;
1002 			}
1003 		}
1004 
1005 		/* FALLTHROUGH -- it's a UDP Packet */
1006 	}
1007 
1008 	/*
1009 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1010 	 */
1011 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1012 
1013 		/*
1014 		 * MIB statistics other than incrementing the error count are
1015 		 * disabled for the following two types of errors: these depend
1016 		 * on the application settings, not on the functioning of the
1017 		 * protocol stack as such.
1018 		 *
1019 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1020 		 * way ... to ... at least let the receiving application block
1021 		 * delivery of packets with coverage values less than a value
1022 		 * provided by the application."
1023 		 */
1024 		if (up->pcrlen == 0) {          /* full coverage was set  */
1025 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1026 				"%d while full coverage %d requested\n",
1027 				UDP_SKB_CB(skb)->cscov, skb->len);
1028 			goto drop;
1029 		}
1030 		/* The next case involves violating the min. coverage requested
1031 		 * by the receiver. This is subtle: if receiver wants x and x is
1032 		 * greater than the buffersize/MTU then receiver will complain
1033 		 * that it wants x while sender emits packets of smaller size y.
1034 		 * Therefore the above ...()->partial_cov statement is essential.
1035 		 */
1036 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1037 			LIMIT_NETDEBUG(KERN_WARNING
1038 				"UDPLITE: coverage %d too small, need min %d\n",
1039 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1040 			goto drop;
1041 		}
1042 	}
1043 
1044 	if (sk->sk_filter) {
1045 		if (udp_lib_checksum_complete(skb))
1046 			goto drop;
1047 	}
1048 
1049 	rc = 0;
1050 
1051 	bh_lock_sock(sk);
1052 	if (!sock_owned_by_user(sk))
1053 		rc = __udp_queue_rcv_skb(sk, skb);
1054 	else
1055 		sk_add_backlog(sk, skb);
1056 	bh_unlock_sock(sk);
1057 
1058 	return rc;
1059 
1060 drop:
1061 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1062 	kfree_skb(skb);
1063 	return -1;
1064 }
1065 
1066 /*
1067  *	Multicasts and broadcasts go to each listener.
1068  *
1069  *	Note: called only from the BH handler context,
1070  *	so we don't need to lock the hashes.
1071  */
1072 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1073 				    struct udphdr  *uh,
1074 				    __be32 saddr, __be32 daddr,
1075 				    struct hlist_head udptable[])
1076 {
1077 	struct sock *sk;
1078 	int dif;
1079 
1080 	read_lock(&udp_hash_lock);
1081 	sk = sk_head(&udptable[udp_hashfn(net, ntohs(uh->dest))]);
1082 	dif = skb->dev->ifindex;
1083 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1084 	if (sk) {
1085 		struct sock *sknext = NULL;
1086 
1087 		do {
1088 			struct sk_buff *skb1 = skb;
1089 
1090 			sknext = udp_v4_mcast_next(net, sk_next(sk), uh->dest,
1091 						   daddr, uh->source, saddr,
1092 						   dif);
1093 			if (sknext)
1094 				skb1 = skb_clone(skb, GFP_ATOMIC);
1095 
1096 			if (skb1) {
1097 				int ret = udp_queue_rcv_skb(sk, skb1);
1098 				if (ret > 0)
1099 					/* we should probably re-process instead
1100 					 * of dropping packets here. */
1101 					kfree_skb(skb1);
1102 			}
1103 			sk = sknext;
1104 		} while (sknext);
1105 	} else
1106 		kfree_skb(skb);
1107 	read_unlock(&udp_hash_lock);
1108 	return 0;
1109 }
1110 
1111 /* Initialize UDP checksum. If exited with zero value (success),
1112  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1113  * Otherwise, csum completion requires chacksumming packet body,
1114  * including udp header and folding it to skb->csum.
1115  */
1116 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1117 				 int proto)
1118 {
1119 	const struct iphdr *iph;
1120 	int err;
1121 
1122 	UDP_SKB_CB(skb)->partial_cov = 0;
1123 	UDP_SKB_CB(skb)->cscov = skb->len;
1124 
1125 	if (proto == IPPROTO_UDPLITE) {
1126 		err = udplite_checksum_init(skb, uh);
1127 		if (err)
1128 			return err;
1129 	}
1130 
1131 	iph = ip_hdr(skb);
1132 	if (uh->check == 0) {
1133 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1134 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1135 	       if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1136 				      proto, skb->csum))
1137 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1138 	}
1139 	if (!skb_csum_unnecessary(skb))
1140 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1141 					       skb->len, proto, 0);
1142 	/* Probably, we should checksum udp header (it should be in cache
1143 	 * in any case) and data in tiny packets (< rx copybreak).
1144 	 */
1145 
1146 	return 0;
1147 }
1148 
1149 /*
1150  *	All we need to do is get the socket, and then do a checksum.
1151  */
1152 
1153 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1154 		   int proto)
1155 {
1156 	struct sock *sk;
1157 	struct udphdr *uh = udp_hdr(skb);
1158 	unsigned short ulen;
1159 	struct rtable *rt = (struct rtable*)skb->dst;
1160 	__be32 saddr = ip_hdr(skb)->saddr;
1161 	__be32 daddr = ip_hdr(skb)->daddr;
1162 	struct net *net = dev_net(skb->dev);
1163 
1164 	/*
1165 	 *  Validate the packet.
1166 	 */
1167 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1168 		goto drop;		/* No space for header. */
1169 
1170 	ulen = ntohs(uh->len);
1171 	if (ulen > skb->len)
1172 		goto short_packet;
1173 
1174 	if (proto == IPPROTO_UDP) {
1175 		/* UDP validates ulen. */
1176 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1177 			goto short_packet;
1178 		uh = udp_hdr(skb);
1179 	}
1180 
1181 	if (udp4_csum_init(skb, uh, proto))
1182 		goto csum_error;
1183 
1184 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1185 		return __udp4_lib_mcast_deliver(net, skb, uh,
1186 				saddr, daddr, udptable);
1187 
1188 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1189 
1190 	if (sk != NULL) {
1191 		int ret = udp_queue_rcv_skb(sk, skb);
1192 		sock_put(sk);
1193 
1194 		/* a return value > 0 means to resubmit the input, but
1195 		 * it wants the return to be -protocol, or 0
1196 		 */
1197 		if (ret > 0)
1198 			return -ret;
1199 		return 0;
1200 	}
1201 
1202 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1203 		goto drop;
1204 	nf_reset(skb);
1205 
1206 	/* No socket. Drop packet silently, if checksum is wrong */
1207 	if (udp_lib_checksum_complete(skb))
1208 		goto csum_error;
1209 
1210 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1211 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1212 
1213 	/*
1214 	 * Hmm.  We got an UDP packet to a port to which we
1215 	 * don't wanna listen.  Ignore it.
1216 	 */
1217 	kfree_skb(skb);
1218 	return 0;
1219 
1220 short_packet:
1221 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From " NIPQUAD_FMT ":%u %d/%d to " NIPQUAD_FMT ":%u\n",
1222 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1223 		       NIPQUAD(saddr),
1224 		       ntohs(uh->source),
1225 		       ulen,
1226 		       skb->len,
1227 		       NIPQUAD(daddr),
1228 		       ntohs(uh->dest));
1229 	goto drop;
1230 
1231 csum_error:
1232 	/*
1233 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1234 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1235 	 */
1236 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From " NIPQUAD_FMT ":%u to " NIPQUAD_FMT ":%u ulen %d\n",
1237 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1238 		       NIPQUAD(saddr),
1239 		       ntohs(uh->source),
1240 		       NIPQUAD(daddr),
1241 		       ntohs(uh->dest),
1242 		       ulen);
1243 drop:
1244 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1245 	kfree_skb(skb);
1246 	return 0;
1247 }
1248 
1249 int udp_rcv(struct sk_buff *skb)
1250 {
1251 	return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP);
1252 }
1253 
1254 void udp_destroy_sock(struct sock *sk)
1255 {
1256 	lock_sock(sk);
1257 	udp_flush_pending_frames(sk);
1258 	release_sock(sk);
1259 }
1260 
1261 /*
1262  *	Socket option code for UDP
1263  */
1264 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1265 		       char __user *optval, int optlen,
1266 		       int (*push_pending_frames)(struct sock *))
1267 {
1268 	struct udp_sock *up = udp_sk(sk);
1269 	int val;
1270 	int err = 0;
1271 	int is_udplite = IS_UDPLITE(sk);
1272 
1273 	if (optlen<sizeof(int))
1274 		return -EINVAL;
1275 
1276 	if (get_user(val, (int __user *)optval))
1277 		return -EFAULT;
1278 
1279 	switch (optname) {
1280 	case UDP_CORK:
1281 		if (val != 0) {
1282 			up->corkflag = 1;
1283 		} else {
1284 			up->corkflag = 0;
1285 			lock_sock(sk);
1286 			(*push_pending_frames)(sk);
1287 			release_sock(sk);
1288 		}
1289 		break;
1290 
1291 	case UDP_ENCAP:
1292 		switch (val) {
1293 		case 0:
1294 		case UDP_ENCAP_ESPINUDP:
1295 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1296 			up->encap_rcv = xfrm4_udp_encap_rcv;
1297 			/* FALLTHROUGH */
1298 		case UDP_ENCAP_L2TPINUDP:
1299 			up->encap_type = val;
1300 			break;
1301 		default:
1302 			err = -ENOPROTOOPT;
1303 			break;
1304 		}
1305 		break;
1306 
1307 	/*
1308 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1309 	 */
1310 	/* The sender sets actual checksum coverage length via this option.
1311 	 * The case coverage > packet length is handled by send module. */
1312 	case UDPLITE_SEND_CSCOV:
1313 		if (!is_udplite)         /* Disable the option on UDP sockets */
1314 			return -ENOPROTOOPT;
1315 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1316 			val = 8;
1317 		else if (val > USHORT_MAX)
1318 			val = USHORT_MAX;
1319 		up->pcslen = val;
1320 		up->pcflag |= UDPLITE_SEND_CC;
1321 		break;
1322 
1323 	/* The receiver specifies a minimum checksum coverage value. To make
1324 	 * sense, this should be set to at least 8 (as done below). If zero is
1325 	 * used, this again means full checksum coverage.                     */
1326 	case UDPLITE_RECV_CSCOV:
1327 		if (!is_udplite)         /* Disable the option on UDP sockets */
1328 			return -ENOPROTOOPT;
1329 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1330 			val = 8;
1331 		else if (val > USHORT_MAX)
1332 			val = USHORT_MAX;
1333 		up->pcrlen = val;
1334 		up->pcflag |= UDPLITE_RECV_CC;
1335 		break;
1336 
1337 	default:
1338 		err = -ENOPROTOOPT;
1339 		break;
1340 	}
1341 
1342 	return err;
1343 }
1344 
1345 int udp_setsockopt(struct sock *sk, int level, int optname,
1346 		   char __user *optval, int optlen)
1347 {
1348 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1349 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1350 					  udp_push_pending_frames);
1351 	return ip_setsockopt(sk, level, optname, optval, optlen);
1352 }
1353 
1354 #ifdef CONFIG_COMPAT
1355 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1356 			  char __user *optval, int optlen)
1357 {
1358 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1359 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1360 					  udp_push_pending_frames);
1361 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1362 }
1363 #endif
1364 
1365 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1366 		       char __user *optval, int __user *optlen)
1367 {
1368 	struct udp_sock *up = udp_sk(sk);
1369 	int val, len;
1370 
1371 	if (get_user(len,optlen))
1372 		return -EFAULT;
1373 
1374 	len = min_t(unsigned int, len, sizeof(int));
1375 
1376 	if (len < 0)
1377 		return -EINVAL;
1378 
1379 	switch (optname) {
1380 	case UDP_CORK:
1381 		val = up->corkflag;
1382 		break;
1383 
1384 	case UDP_ENCAP:
1385 		val = up->encap_type;
1386 		break;
1387 
1388 	/* The following two cannot be changed on UDP sockets, the return is
1389 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1390 	case UDPLITE_SEND_CSCOV:
1391 		val = up->pcslen;
1392 		break;
1393 
1394 	case UDPLITE_RECV_CSCOV:
1395 		val = up->pcrlen;
1396 		break;
1397 
1398 	default:
1399 		return -ENOPROTOOPT;
1400 	}
1401 
1402 	if (put_user(len, optlen))
1403 		return -EFAULT;
1404 	if (copy_to_user(optval, &val,len))
1405 		return -EFAULT;
1406 	return 0;
1407 }
1408 
1409 int udp_getsockopt(struct sock *sk, int level, int optname,
1410 		   char __user *optval, int __user *optlen)
1411 {
1412 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1413 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1414 	return ip_getsockopt(sk, level, optname, optval, optlen);
1415 }
1416 
1417 #ifdef CONFIG_COMPAT
1418 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1419 				 char __user *optval, int __user *optlen)
1420 {
1421 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1422 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1423 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1424 }
1425 #endif
1426 /**
1427  * 	udp_poll - wait for a UDP event.
1428  *	@file - file struct
1429  *	@sock - socket
1430  *	@wait - poll table
1431  *
1432  *	This is same as datagram poll, except for the special case of
1433  *	blocking sockets. If application is using a blocking fd
1434  *	and a packet with checksum error is in the queue;
1435  *	then it could get return from select indicating data available
1436  *	but then block when reading it. Add special case code
1437  *	to work around these arguably broken applications.
1438  */
1439 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1440 {
1441 	unsigned int mask = datagram_poll(file, sock, wait);
1442 	struct sock *sk = sock->sk;
1443 	int 	is_lite = IS_UDPLITE(sk);
1444 
1445 	/* Check for false positives due to checksum errors */
1446 	if ( (mask & POLLRDNORM) &&
1447 	     !(file->f_flags & O_NONBLOCK) &&
1448 	     !(sk->sk_shutdown & RCV_SHUTDOWN)){
1449 		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1450 		struct sk_buff *skb;
1451 
1452 		spin_lock_bh(&rcvq->lock);
1453 		while ((skb = skb_peek(rcvq)) != NULL &&
1454 		       udp_lib_checksum_complete(skb)) {
1455 			UDP_INC_STATS_BH(sock_net(sk),
1456 					UDP_MIB_INERRORS, is_lite);
1457 			__skb_unlink(skb, rcvq);
1458 			kfree_skb(skb);
1459 		}
1460 		spin_unlock_bh(&rcvq->lock);
1461 
1462 		/* nothing to see, move along */
1463 		if (skb == NULL)
1464 			mask &= ~(POLLIN | POLLRDNORM);
1465 	}
1466 
1467 	return mask;
1468 
1469 }
1470 
1471 struct proto udp_prot = {
1472 	.name		   = "UDP",
1473 	.owner		   = THIS_MODULE,
1474 	.close		   = udp_lib_close,
1475 	.connect	   = ip4_datagram_connect,
1476 	.disconnect	   = udp_disconnect,
1477 	.ioctl		   = udp_ioctl,
1478 	.destroy	   = udp_destroy_sock,
1479 	.setsockopt	   = udp_setsockopt,
1480 	.getsockopt	   = udp_getsockopt,
1481 	.sendmsg	   = udp_sendmsg,
1482 	.recvmsg	   = udp_recvmsg,
1483 	.sendpage	   = udp_sendpage,
1484 	.backlog_rcv	   = __udp_queue_rcv_skb,
1485 	.hash		   = udp_lib_hash,
1486 	.unhash		   = udp_lib_unhash,
1487 	.get_port	   = udp_v4_get_port,
1488 	.memory_allocated  = &udp_memory_allocated,
1489 	.sysctl_mem	   = sysctl_udp_mem,
1490 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1491 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1492 	.obj_size	   = sizeof(struct udp_sock),
1493 	.h.udp_hash	   = udp_hash,
1494 #ifdef CONFIG_COMPAT
1495 	.compat_setsockopt = compat_udp_setsockopt,
1496 	.compat_getsockopt = compat_udp_getsockopt,
1497 #endif
1498 };
1499 
1500 /* ------------------------------------------------------------------------ */
1501 #ifdef CONFIG_PROC_FS
1502 
1503 static struct sock *udp_get_first(struct seq_file *seq)
1504 {
1505 	struct sock *sk;
1506 	struct udp_iter_state *state = seq->private;
1507 	struct net *net = seq_file_net(seq);
1508 
1509 	for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1510 		struct hlist_node *node;
1511 		sk_for_each(sk, node, state->hashtable + state->bucket) {
1512 			if (!net_eq(sock_net(sk), net))
1513 				continue;
1514 			if (sk->sk_family == state->family)
1515 				goto found;
1516 		}
1517 	}
1518 	sk = NULL;
1519 found:
1520 	return sk;
1521 }
1522 
1523 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1524 {
1525 	struct udp_iter_state *state = seq->private;
1526 	struct net *net = seq_file_net(seq);
1527 
1528 	do {
1529 		sk = sk_next(sk);
1530 try_again:
1531 		;
1532 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1533 
1534 	if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1535 		sk = sk_head(state->hashtable + state->bucket);
1536 		goto try_again;
1537 	}
1538 	return sk;
1539 }
1540 
1541 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1542 {
1543 	struct sock *sk = udp_get_first(seq);
1544 
1545 	if (sk)
1546 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1547 			--pos;
1548 	return pos ? NULL : sk;
1549 }
1550 
1551 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1552 	__acquires(udp_hash_lock)
1553 {
1554 	read_lock(&udp_hash_lock);
1555 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1556 }
1557 
1558 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1559 {
1560 	struct sock *sk;
1561 
1562 	if (v == SEQ_START_TOKEN)
1563 		sk = udp_get_idx(seq, 0);
1564 	else
1565 		sk = udp_get_next(seq, v);
1566 
1567 	++*pos;
1568 	return sk;
1569 }
1570 
1571 static void udp_seq_stop(struct seq_file *seq, void *v)
1572 	__releases(udp_hash_lock)
1573 {
1574 	read_unlock(&udp_hash_lock);
1575 }
1576 
1577 static int udp_seq_open(struct inode *inode, struct file *file)
1578 {
1579 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1580 	struct udp_iter_state *s;
1581 	int err;
1582 
1583 	err = seq_open_net(inode, file, &afinfo->seq_ops,
1584 			   sizeof(struct udp_iter_state));
1585 	if (err < 0)
1586 		return err;
1587 
1588 	s = ((struct seq_file *)file->private_data)->private;
1589 	s->family		= afinfo->family;
1590 	s->hashtable		= afinfo->hashtable;
1591 	return err;
1592 }
1593 
1594 /* ------------------------------------------------------------------------ */
1595 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1596 {
1597 	struct proc_dir_entry *p;
1598 	int rc = 0;
1599 
1600 	afinfo->seq_fops.open		= udp_seq_open;
1601 	afinfo->seq_fops.read		= seq_read;
1602 	afinfo->seq_fops.llseek		= seq_lseek;
1603 	afinfo->seq_fops.release	= seq_release_net;
1604 
1605 	afinfo->seq_ops.start		= udp_seq_start;
1606 	afinfo->seq_ops.next		= udp_seq_next;
1607 	afinfo->seq_ops.stop		= udp_seq_stop;
1608 
1609 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1610 			     &afinfo->seq_fops, afinfo);
1611 	if (!p)
1612 		rc = -ENOMEM;
1613 	return rc;
1614 }
1615 
1616 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1617 {
1618 	proc_net_remove(net, afinfo->name);
1619 }
1620 
1621 /* ------------------------------------------------------------------------ */
1622 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1623 		int bucket, int *len)
1624 {
1625 	struct inet_sock *inet = inet_sk(sp);
1626 	__be32 dest = inet->daddr;
1627 	__be32 src  = inet->rcv_saddr;
1628 	__u16 destp	  = ntohs(inet->dport);
1629 	__u16 srcp	  = ntohs(inet->sport);
1630 
1631 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
1632 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
1633 		bucket, src, srcp, dest, destp, sp->sk_state,
1634 		atomic_read(&sp->sk_wmem_alloc),
1635 		atomic_read(&sp->sk_rmem_alloc),
1636 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1637 		atomic_read(&sp->sk_refcnt), sp,
1638 		atomic_read(&sp->sk_drops), len);
1639 }
1640 
1641 int udp4_seq_show(struct seq_file *seq, void *v)
1642 {
1643 	if (v == SEQ_START_TOKEN)
1644 		seq_printf(seq, "%-127s\n",
1645 			   "  sl  local_address rem_address   st tx_queue "
1646 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1647 			   "inode ref pointer drops");
1648 	else {
1649 		struct udp_iter_state *state = seq->private;
1650 		int len;
1651 
1652 		udp4_format_sock(v, seq, state->bucket, &len);
1653 		seq_printf(seq, "%*s\n", 127 - len ,"");
1654 	}
1655 	return 0;
1656 }
1657 
1658 /* ------------------------------------------------------------------------ */
1659 static struct udp_seq_afinfo udp4_seq_afinfo = {
1660 	.name		= "udp",
1661 	.family		= AF_INET,
1662 	.hashtable	= udp_hash,
1663 	.seq_fops	= {
1664 		.owner	=	THIS_MODULE,
1665 	},
1666 	.seq_ops	= {
1667 		.show		= udp4_seq_show,
1668 	},
1669 };
1670 
1671 static int udp4_proc_init_net(struct net *net)
1672 {
1673 	return udp_proc_register(net, &udp4_seq_afinfo);
1674 }
1675 
1676 static void udp4_proc_exit_net(struct net *net)
1677 {
1678 	udp_proc_unregister(net, &udp4_seq_afinfo);
1679 }
1680 
1681 static struct pernet_operations udp4_net_ops = {
1682 	.init = udp4_proc_init_net,
1683 	.exit = udp4_proc_exit_net,
1684 };
1685 
1686 int __init udp4_proc_init(void)
1687 {
1688 	return register_pernet_subsys(&udp4_net_ops);
1689 }
1690 
1691 void udp4_proc_exit(void)
1692 {
1693 	unregister_pernet_subsys(&udp4_net_ops);
1694 }
1695 #endif /* CONFIG_PROC_FS */
1696 
1697 void __init udp_init(void)
1698 {
1699 	unsigned long limit;
1700 
1701 	/* Set the pressure threshold up by the same strategy of TCP. It is a
1702 	 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
1703 	 * toward zero with the amount of memory, with a floor of 128 pages.
1704 	 */
1705 	limit = min(nr_all_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
1706 	limit = (limit * (nr_all_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
1707 	limit = max(limit, 128UL);
1708 	sysctl_udp_mem[0] = limit / 4 * 3;
1709 	sysctl_udp_mem[1] = limit;
1710 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
1711 
1712 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
1713 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
1714 }
1715 
1716 EXPORT_SYMBOL(udp_disconnect);
1717 EXPORT_SYMBOL(udp_hash);
1718 EXPORT_SYMBOL(udp_hash_lock);
1719 EXPORT_SYMBOL(udp_ioctl);
1720 EXPORT_SYMBOL(udp_prot);
1721 EXPORT_SYMBOL(udp_sendmsg);
1722 EXPORT_SYMBOL(udp_lib_getsockopt);
1723 EXPORT_SYMBOL(udp_lib_setsockopt);
1724 EXPORT_SYMBOL(udp_poll);
1725 EXPORT_SYMBOL(udp_lib_get_port);
1726 
1727 #ifdef CONFIG_PROC_FS
1728 EXPORT_SYMBOL(udp_proc_register);
1729 EXPORT_SYMBOL(udp_proc_unregister);
1730 #endif
1731