xref: /openbmc/linux/net/ipv4/udp.c (revision 87c2ce3b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Version:	$Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Hirokazu Takahashi, <taka@valinux.co.jp>
15  *
16  * Fixes:
17  *		Alan Cox	:	verify_area() calls
18  *		Alan Cox	: 	stopped close while in use off icmp
19  *					messages. Not a fix but a botch that
20  *					for udp at least is 'valid'.
21  *		Alan Cox	:	Fixed icmp handling properly
22  *		Alan Cox	: 	Correct error for oversized datagrams
23  *		Alan Cox	:	Tidied select() semantics.
24  *		Alan Cox	:	udp_err() fixed properly, also now
25  *					select and read wake correctly on errors
26  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
27  *		Alan Cox	:	UDP can count its memory
28  *		Alan Cox	:	send to an unknown connection causes
29  *					an ECONNREFUSED off the icmp, but
30  *					does NOT close.
31  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
32  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
33  *					bug no longer crashes it.
34  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
35  *		Alan Cox	:	Uses skb_free_datagram
36  *		Alan Cox	:	Added get/set sockopt support.
37  *		Alan Cox	:	Broadcasting without option set returns EACCES.
38  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
39  *		Alan Cox	:	Use ip_tos and ip_ttl
40  *		Alan Cox	:	SNMP Mibs
41  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
42  *		Matt Dillon	:	UDP length checks.
43  *		Alan Cox	:	Smarter af_inet used properly.
44  *		Alan Cox	:	Use new kernel side addressing.
45  *		Alan Cox	:	Incorrect return on truncated datagram receive.
46  *	Arnt Gulbrandsen 	:	New udp_send and stuff
47  *		Alan Cox	:	Cache last socket
48  *		Alan Cox	:	Route cache
49  *		Jon Peatfield	:	Minor efficiency fix to sendto().
50  *		Mike Shaver	:	RFC1122 checks.
51  *		Alan Cox	:	Nonblocking error fix.
52  *	Willy Konynenberg	:	Transparent proxying support.
53  *		Mike McLagan	:	Routing by source
54  *		David S. Miller	:	New socket lookup architecture.
55  *					Last socket cache retained as it
56  *					does have a high hit rate.
57  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
58  *		Andi Kleen	:	Some cleanups, cache destination entry
59  *					for connect.
60  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
61  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
62  *					return ENOTCONN for unconnected sockets (POSIX)
63  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
64  *					bound-to-device socket
65  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
66  *					datagrams.
67  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
68  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
69  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
70  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
71  *					a single port at the same time.
72  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
73  *
74  *
75  *		This program is free software; you can redistribute it and/or
76  *		modify it under the terms of the GNU General Public License
77  *		as published by the Free Software Foundation; either version
78  *		2 of the License, or (at your option) any later version.
79  */
80 
81 #include <asm/system.h>
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/types.h>
85 #include <linux/fcntl.h>
86 #include <linux/module.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/igmp.h>
90 #include <linux/in.h>
91 #include <linux/errno.h>
92 #include <linux/timer.h>
93 #include <linux/mm.h>
94 #include <linux/config.h>
95 #include <linux/inet.h>
96 #include <linux/ipv6.h>
97 #include <linux/netdevice.h>
98 #include <net/snmp.h>
99 #include <net/ip.h>
100 #include <net/tcp_states.h>
101 #include <net/protocol.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/sock.h>
106 #include <net/udp.h>
107 #include <net/icmp.h>
108 #include <net/route.h>
109 #include <net/inet_common.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 
113 /*
114  *	Snmp MIB for the UDP layer
115  */
116 
117 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly;
118 
119 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
120 DEFINE_RWLOCK(udp_hash_lock);
121 
122 /* Shared by v4/v6 udp. */
123 int udp_port_rover;
124 
125 static int udp_v4_get_port(struct sock *sk, unsigned short snum)
126 {
127 	struct hlist_node *node;
128 	struct sock *sk2;
129 	struct inet_sock *inet = inet_sk(sk);
130 
131 	write_lock_bh(&udp_hash_lock);
132 	if (snum == 0) {
133 		int best_size_so_far, best, result, i;
134 
135 		if (udp_port_rover > sysctl_local_port_range[1] ||
136 		    udp_port_rover < sysctl_local_port_range[0])
137 			udp_port_rover = sysctl_local_port_range[0];
138 		best_size_so_far = 32767;
139 		best = result = udp_port_rover;
140 		for (i = 0; i < UDP_HTABLE_SIZE; i++, result++) {
141 			struct hlist_head *list;
142 			int size;
143 
144 			list = &udp_hash[result & (UDP_HTABLE_SIZE - 1)];
145 			if (hlist_empty(list)) {
146 				if (result > sysctl_local_port_range[1])
147 					result = sysctl_local_port_range[0] +
148 						((result - sysctl_local_port_range[0]) &
149 						 (UDP_HTABLE_SIZE - 1));
150 				goto gotit;
151 			}
152 			size = 0;
153 			sk_for_each(sk2, node, list)
154 				if (++size >= best_size_so_far)
155 					goto next;
156 			best_size_so_far = size;
157 			best = result;
158 		next:;
159 		}
160 		result = best;
161 		for(i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++, result += UDP_HTABLE_SIZE) {
162 			if (result > sysctl_local_port_range[1])
163 				result = sysctl_local_port_range[0]
164 					+ ((result - sysctl_local_port_range[0]) &
165 					   (UDP_HTABLE_SIZE - 1));
166 			if (!udp_lport_inuse(result))
167 				break;
168 		}
169 		if (i >= (1 << 16) / UDP_HTABLE_SIZE)
170 			goto fail;
171 gotit:
172 		udp_port_rover = snum = result;
173 	} else {
174 		sk_for_each(sk2, node,
175 			    &udp_hash[snum & (UDP_HTABLE_SIZE - 1)]) {
176 			struct inet_sock *inet2 = inet_sk(sk2);
177 
178 			if (inet2->num == snum &&
179 			    sk2 != sk &&
180 			    !ipv6_only_sock(sk2) &&
181 			    (!sk2->sk_bound_dev_if ||
182 			     !sk->sk_bound_dev_if ||
183 			     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184 			    (!inet2->rcv_saddr ||
185 			     !inet->rcv_saddr ||
186 			     inet2->rcv_saddr == inet->rcv_saddr) &&
187 			    (!sk2->sk_reuse || !sk->sk_reuse))
188 				goto fail;
189 		}
190 	}
191 	inet->num = snum;
192 	if (sk_unhashed(sk)) {
193 		struct hlist_head *h = &udp_hash[snum & (UDP_HTABLE_SIZE - 1)];
194 
195 		sk_add_node(sk, h);
196 		sock_prot_inc_use(sk->sk_prot);
197 	}
198 	write_unlock_bh(&udp_hash_lock);
199 	return 0;
200 
201 fail:
202 	write_unlock_bh(&udp_hash_lock);
203 	return 1;
204 }
205 
206 static void udp_v4_hash(struct sock *sk)
207 {
208 	BUG();
209 }
210 
211 static void udp_v4_unhash(struct sock *sk)
212 {
213 	write_lock_bh(&udp_hash_lock);
214 	if (sk_del_node_init(sk)) {
215 		inet_sk(sk)->num = 0;
216 		sock_prot_dec_use(sk->sk_prot);
217 	}
218 	write_unlock_bh(&udp_hash_lock);
219 }
220 
221 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
222  * harder than this. -DaveM
223  */
224 static struct sock *udp_v4_lookup_longway(u32 saddr, u16 sport,
225 					  u32 daddr, u16 dport, int dif)
226 {
227 	struct sock *sk, *result = NULL;
228 	struct hlist_node *node;
229 	unsigned short hnum = ntohs(dport);
230 	int badness = -1;
231 
232 	sk_for_each(sk, node, &udp_hash[hnum & (UDP_HTABLE_SIZE - 1)]) {
233 		struct inet_sock *inet = inet_sk(sk);
234 
235 		if (inet->num == hnum && !ipv6_only_sock(sk)) {
236 			int score = (sk->sk_family == PF_INET ? 1 : 0);
237 			if (inet->rcv_saddr) {
238 				if (inet->rcv_saddr != daddr)
239 					continue;
240 				score+=2;
241 			}
242 			if (inet->daddr) {
243 				if (inet->daddr != saddr)
244 					continue;
245 				score+=2;
246 			}
247 			if (inet->dport) {
248 				if (inet->dport != sport)
249 					continue;
250 				score+=2;
251 			}
252 			if (sk->sk_bound_dev_if) {
253 				if (sk->sk_bound_dev_if != dif)
254 					continue;
255 				score+=2;
256 			}
257 			if(score == 9) {
258 				result = sk;
259 				break;
260 			} else if(score > badness) {
261 				result = sk;
262 				badness = score;
263 			}
264 		}
265 	}
266 	return result;
267 }
268 
269 static __inline__ struct sock *udp_v4_lookup(u32 saddr, u16 sport,
270 					     u32 daddr, u16 dport, int dif)
271 {
272 	struct sock *sk;
273 
274 	read_lock(&udp_hash_lock);
275 	sk = udp_v4_lookup_longway(saddr, sport, daddr, dport, dif);
276 	if (sk)
277 		sock_hold(sk);
278 	read_unlock(&udp_hash_lock);
279 	return sk;
280 }
281 
282 static inline struct sock *udp_v4_mcast_next(struct sock *sk,
283 					     u16 loc_port, u32 loc_addr,
284 					     u16 rmt_port, u32 rmt_addr,
285 					     int dif)
286 {
287 	struct hlist_node *node;
288 	struct sock *s = sk;
289 	unsigned short hnum = ntohs(loc_port);
290 
291 	sk_for_each_from(s, node) {
292 		struct inet_sock *inet = inet_sk(s);
293 
294 		if (inet->num != hnum					||
295 		    (inet->daddr && inet->daddr != rmt_addr)		||
296 		    (inet->dport != rmt_port && inet->dport)		||
297 		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
298 		    ipv6_only_sock(s)					||
299 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
300 			continue;
301 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
302 			continue;
303 		goto found;
304   	}
305 	s = NULL;
306 found:
307   	return s;
308 }
309 
310 /*
311  * This routine is called by the ICMP module when it gets some
312  * sort of error condition.  If err < 0 then the socket should
313  * be closed and the error returned to the user.  If err > 0
314  * it's just the icmp type << 8 | icmp code.
315  * Header points to the ip header of the error packet. We move
316  * on past this. Then (as it used to claim before adjustment)
317  * header points to the first 8 bytes of the udp header.  We need
318  * to find the appropriate port.
319  */
320 
321 void udp_err(struct sk_buff *skb, u32 info)
322 {
323 	struct inet_sock *inet;
324 	struct iphdr *iph = (struct iphdr*)skb->data;
325 	struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
326 	int type = skb->h.icmph->type;
327 	int code = skb->h.icmph->code;
328 	struct sock *sk;
329 	int harderr;
330 	int err;
331 
332 	sk = udp_v4_lookup(iph->daddr, uh->dest, iph->saddr, uh->source, skb->dev->ifindex);
333 	if (sk == NULL) {
334 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
335     	  	return;	/* No socket for error */
336 	}
337 
338 	err = 0;
339 	harderr = 0;
340 	inet = inet_sk(sk);
341 
342 	switch (type) {
343 	default:
344 	case ICMP_TIME_EXCEEDED:
345 		err = EHOSTUNREACH;
346 		break;
347 	case ICMP_SOURCE_QUENCH:
348 		goto out;
349 	case ICMP_PARAMETERPROB:
350 		err = EPROTO;
351 		harderr = 1;
352 		break;
353 	case ICMP_DEST_UNREACH:
354 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
355 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
356 				err = EMSGSIZE;
357 				harderr = 1;
358 				break;
359 			}
360 			goto out;
361 		}
362 		err = EHOSTUNREACH;
363 		if (code <= NR_ICMP_UNREACH) {
364 			harderr = icmp_err_convert[code].fatal;
365 			err = icmp_err_convert[code].errno;
366 		}
367 		break;
368 	}
369 
370 	/*
371 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
372 	 *	4.1.3.3.
373 	 */
374 	if (!inet->recverr) {
375 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
376 			goto out;
377 	} else {
378 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
379 	}
380 	sk->sk_err = err;
381 	sk->sk_error_report(sk);
382 out:
383 	sock_put(sk);
384 }
385 
386 /*
387  * Throw away all pending data and cancel the corking. Socket is locked.
388  */
389 static void udp_flush_pending_frames(struct sock *sk)
390 {
391 	struct udp_sock *up = udp_sk(sk);
392 
393 	if (up->pending) {
394 		up->len = 0;
395 		up->pending = 0;
396 		ip_flush_pending_frames(sk);
397 	}
398 }
399 
400 /*
401  * Push out all pending data as one UDP datagram. Socket is locked.
402  */
403 static int udp_push_pending_frames(struct sock *sk, struct udp_sock *up)
404 {
405 	struct inet_sock *inet = inet_sk(sk);
406 	struct flowi *fl = &inet->cork.fl;
407 	struct sk_buff *skb;
408 	struct udphdr *uh;
409 	int err = 0;
410 
411 	/* Grab the skbuff where UDP header space exists. */
412 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
413 		goto out;
414 
415 	/*
416 	 * Create a UDP header
417 	 */
418 	uh = skb->h.uh;
419 	uh->source = fl->fl_ip_sport;
420 	uh->dest = fl->fl_ip_dport;
421 	uh->len = htons(up->len);
422 	uh->check = 0;
423 
424 	if (sk->sk_no_check == UDP_CSUM_NOXMIT) {
425 		skb->ip_summed = CHECKSUM_NONE;
426 		goto send;
427 	}
428 
429 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
430 		/*
431 		 * Only one fragment on the socket.
432 		 */
433 		if (skb->ip_summed == CHECKSUM_HW) {
434 			skb->csum = offsetof(struct udphdr, check);
435 			uh->check = ~csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst,
436 					up->len, IPPROTO_UDP, 0);
437 		} else {
438 			skb->csum = csum_partial((char *)uh,
439 					sizeof(struct udphdr), skb->csum);
440 			uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst,
441 					up->len, IPPROTO_UDP, skb->csum);
442 			if (uh->check == 0)
443 				uh->check = -1;
444 		}
445 	} else {
446 		unsigned int csum = 0;
447 		/*
448 		 * HW-checksum won't work as there are two or more
449 		 * fragments on the socket so that all csums of sk_buffs
450 		 * should be together.
451 		 */
452 		if (skb->ip_summed == CHECKSUM_HW) {
453 			int offset = (unsigned char *)uh - skb->data;
454 			skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
455 
456 			skb->ip_summed = CHECKSUM_NONE;
457 		} else {
458 			skb->csum = csum_partial((char *)uh,
459 					sizeof(struct udphdr), skb->csum);
460 		}
461 
462 		skb_queue_walk(&sk->sk_write_queue, skb) {
463 			csum = csum_add(csum, skb->csum);
464 		}
465 		uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst,
466 				up->len, IPPROTO_UDP, csum);
467 		if (uh->check == 0)
468 			uh->check = -1;
469 	}
470 send:
471 	err = ip_push_pending_frames(sk);
472 out:
473 	up->len = 0;
474 	up->pending = 0;
475 	return err;
476 }
477 
478 
479 static unsigned short udp_check(struct udphdr *uh, int len, unsigned long saddr, unsigned long daddr, unsigned long base)
480 {
481 	return(csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base));
482 }
483 
484 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
485 		size_t len)
486 {
487 	struct inet_sock *inet = inet_sk(sk);
488 	struct udp_sock *up = udp_sk(sk);
489 	int ulen = len;
490 	struct ipcm_cookie ipc;
491 	struct rtable *rt = NULL;
492 	int free = 0;
493 	int connected = 0;
494 	u32 daddr, faddr, saddr;
495 	u16 dport;
496 	u8  tos;
497 	int err;
498 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
499 
500 	if (len > 0xFFFF)
501 		return -EMSGSIZE;
502 
503 	/*
504 	 *	Check the flags.
505 	 */
506 
507 	if (msg->msg_flags&MSG_OOB)	/* Mirror BSD error message compatibility */
508 		return -EOPNOTSUPP;
509 
510 	ipc.opt = NULL;
511 
512 	if (up->pending) {
513 		/*
514 		 * There are pending frames.
515 	 	 * The socket lock must be held while it's corked.
516 		 */
517 		lock_sock(sk);
518 		if (likely(up->pending)) {
519 			if (unlikely(up->pending != AF_INET)) {
520 				release_sock(sk);
521 				return -EINVAL;
522 			}
523  			goto do_append_data;
524 		}
525 		release_sock(sk);
526 	}
527 	ulen += sizeof(struct udphdr);
528 
529 	/*
530 	 *	Get and verify the address.
531 	 */
532 	if (msg->msg_name) {
533 		struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
534 		if (msg->msg_namelen < sizeof(*usin))
535 			return -EINVAL;
536 		if (usin->sin_family != AF_INET) {
537 			if (usin->sin_family != AF_UNSPEC)
538 				return -EAFNOSUPPORT;
539 		}
540 
541 		daddr = usin->sin_addr.s_addr;
542 		dport = usin->sin_port;
543 		if (dport == 0)
544 			return -EINVAL;
545 	} else {
546 		if (sk->sk_state != TCP_ESTABLISHED)
547 			return -EDESTADDRREQ;
548 		daddr = inet->daddr;
549 		dport = inet->dport;
550 		/* Open fast path for connected socket.
551 		   Route will not be used, if at least one option is set.
552 		 */
553 		connected = 1;
554   	}
555 	ipc.addr = inet->saddr;
556 
557 	ipc.oif = sk->sk_bound_dev_if;
558 	if (msg->msg_controllen) {
559 		err = ip_cmsg_send(msg, &ipc);
560 		if (err)
561 			return err;
562 		if (ipc.opt)
563 			free = 1;
564 		connected = 0;
565 	}
566 	if (!ipc.opt)
567 		ipc.opt = inet->opt;
568 
569 	saddr = ipc.addr;
570 	ipc.addr = faddr = daddr;
571 
572 	if (ipc.opt && ipc.opt->srr) {
573 		if (!daddr)
574 			return -EINVAL;
575 		faddr = ipc.opt->faddr;
576 		connected = 0;
577 	}
578 	tos = RT_TOS(inet->tos);
579 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
580 	    (msg->msg_flags & MSG_DONTROUTE) ||
581 	    (ipc.opt && ipc.opt->is_strictroute)) {
582 		tos |= RTO_ONLINK;
583 		connected = 0;
584 	}
585 
586 	if (MULTICAST(daddr)) {
587 		if (!ipc.oif)
588 			ipc.oif = inet->mc_index;
589 		if (!saddr)
590 			saddr = inet->mc_addr;
591 		connected = 0;
592 	}
593 
594 	if (connected)
595 		rt = (struct rtable*)sk_dst_check(sk, 0);
596 
597 	if (rt == NULL) {
598 		struct flowi fl = { .oif = ipc.oif,
599 				    .nl_u = { .ip4_u =
600 					      { .daddr = faddr,
601 						.saddr = saddr,
602 						.tos = tos } },
603 				    .proto = IPPROTO_UDP,
604 				    .uli_u = { .ports =
605 					       { .sport = inet->sport,
606 						 .dport = dport } } };
607 		err = ip_route_output_flow(&rt, &fl, sk, !(msg->msg_flags&MSG_DONTWAIT));
608 		if (err)
609 			goto out;
610 
611 		err = -EACCES;
612 		if ((rt->rt_flags & RTCF_BROADCAST) &&
613 		    !sock_flag(sk, SOCK_BROADCAST))
614 			goto out;
615 		if (connected)
616 			sk_dst_set(sk, dst_clone(&rt->u.dst));
617 	}
618 
619 	if (msg->msg_flags&MSG_CONFIRM)
620 		goto do_confirm;
621 back_from_confirm:
622 
623 	saddr = rt->rt_src;
624 	if (!ipc.addr)
625 		daddr = ipc.addr = rt->rt_dst;
626 
627 	lock_sock(sk);
628 	if (unlikely(up->pending)) {
629 		/* The socket is already corked while preparing it. */
630 		/* ... which is an evident application bug. --ANK */
631 		release_sock(sk);
632 
633 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
634 		err = -EINVAL;
635 		goto out;
636 	}
637 	/*
638 	 *	Now cork the socket to pend data.
639 	 */
640 	inet->cork.fl.fl4_dst = daddr;
641 	inet->cork.fl.fl_ip_dport = dport;
642 	inet->cork.fl.fl4_src = saddr;
643 	inet->cork.fl.fl_ip_sport = inet->sport;
644 	up->pending = AF_INET;
645 
646 do_append_data:
647 	up->len += ulen;
648 	err = ip_append_data(sk, ip_generic_getfrag, msg->msg_iov, ulen,
649 			sizeof(struct udphdr), &ipc, rt,
650 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
651 	if (err)
652 		udp_flush_pending_frames(sk);
653 	else if (!corkreq)
654 		err = udp_push_pending_frames(sk, up);
655 	release_sock(sk);
656 
657 out:
658 	ip_rt_put(rt);
659 	if (free)
660 		kfree(ipc.opt);
661 	if (!err) {
662 		UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS);
663 		return len;
664 	}
665 	return err;
666 
667 do_confirm:
668 	dst_confirm(&rt->u.dst);
669 	if (!(msg->msg_flags&MSG_PROBE) || len)
670 		goto back_from_confirm;
671 	err = 0;
672 	goto out;
673 }
674 
675 static int udp_sendpage(struct sock *sk, struct page *page, int offset,
676 			size_t size, int flags)
677 {
678 	struct udp_sock *up = udp_sk(sk);
679 	int ret;
680 
681 	if (!up->pending) {
682 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
683 
684 		/* Call udp_sendmsg to specify destination address which
685 		 * sendpage interface can't pass.
686 		 * This will succeed only when the socket is connected.
687 		 */
688 		ret = udp_sendmsg(NULL, sk, &msg, 0);
689 		if (ret < 0)
690 			return ret;
691 	}
692 
693 	lock_sock(sk);
694 
695 	if (unlikely(!up->pending)) {
696 		release_sock(sk);
697 
698 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
699 		return -EINVAL;
700 	}
701 
702 	ret = ip_append_page(sk, page, offset, size, flags);
703 	if (ret == -EOPNOTSUPP) {
704 		release_sock(sk);
705 		return sock_no_sendpage(sk->sk_socket, page, offset,
706 					size, flags);
707 	}
708 	if (ret < 0) {
709 		udp_flush_pending_frames(sk);
710 		goto out;
711 	}
712 
713 	up->len += size;
714 	if (!(up->corkflag || (flags&MSG_MORE)))
715 		ret = udp_push_pending_frames(sk, up);
716 	if (!ret)
717 		ret = size;
718 out:
719 	release_sock(sk);
720 	return ret;
721 }
722 
723 /*
724  *	IOCTL requests applicable to the UDP protocol
725  */
726 
727 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
728 {
729 	switch(cmd)
730 	{
731 		case SIOCOUTQ:
732 		{
733 			int amount = atomic_read(&sk->sk_wmem_alloc);
734 			return put_user(amount, (int __user *)arg);
735 		}
736 
737 		case SIOCINQ:
738 		{
739 			struct sk_buff *skb;
740 			unsigned long amount;
741 
742 			amount = 0;
743 			spin_lock_bh(&sk->sk_receive_queue.lock);
744 			skb = skb_peek(&sk->sk_receive_queue);
745 			if (skb != NULL) {
746 				/*
747 				 * We will only return the amount
748 				 * of this packet since that is all
749 				 * that will be read.
750 				 */
751 				amount = skb->len - sizeof(struct udphdr);
752 			}
753 			spin_unlock_bh(&sk->sk_receive_queue.lock);
754 			return put_user(amount, (int __user *)arg);
755 		}
756 
757 		default:
758 			return -ENOIOCTLCMD;
759 	}
760 	return(0);
761 }
762 
763 static __inline__ int __udp_checksum_complete(struct sk_buff *skb)
764 {
765 	return __skb_checksum_complete(skb);
766 }
767 
768 static __inline__ int udp_checksum_complete(struct sk_buff *skb)
769 {
770 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
771 		__udp_checksum_complete(skb);
772 }
773 
774 /*
775  * 	This should be easy, if there is something there we
776  * 	return it, otherwise we block.
777  */
778 
779 static int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
780 		       size_t len, int noblock, int flags, int *addr_len)
781 {
782 	struct inet_sock *inet = inet_sk(sk);
783   	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
784   	struct sk_buff *skb;
785   	int copied, err;
786 
787 	/*
788 	 *	Check any passed addresses
789 	 */
790 	if (addr_len)
791 		*addr_len=sizeof(*sin);
792 
793 	if (flags & MSG_ERRQUEUE)
794 		return ip_recv_error(sk, msg, len);
795 
796 try_again:
797 	skb = skb_recv_datagram(sk, flags, noblock, &err);
798 	if (!skb)
799 		goto out;
800 
801   	copied = skb->len - sizeof(struct udphdr);
802 	if (copied > len) {
803 		copied = len;
804 		msg->msg_flags |= MSG_TRUNC;
805 	}
806 
807 	if (skb->ip_summed==CHECKSUM_UNNECESSARY) {
808 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov,
809 					      copied);
810 	} else if (msg->msg_flags&MSG_TRUNC) {
811 		if (__udp_checksum_complete(skb))
812 			goto csum_copy_err;
813 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov,
814 					      copied);
815 	} else {
816 		err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
817 
818 		if (err == -EINVAL)
819 			goto csum_copy_err;
820 	}
821 
822 	if (err)
823 		goto out_free;
824 
825 	sock_recv_timestamp(msg, sk, skb);
826 
827 	/* Copy the address. */
828 	if (sin)
829 	{
830 		sin->sin_family = AF_INET;
831 		sin->sin_port = skb->h.uh->source;
832 		sin->sin_addr.s_addr = skb->nh.iph->saddr;
833 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
834   	}
835 	if (inet->cmsg_flags)
836 		ip_cmsg_recv(msg, skb);
837 
838 	err = copied;
839 	if (flags & MSG_TRUNC)
840 		err = skb->len - sizeof(struct udphdr);
841 
842 out_free:
843   	skb_free_datagram(sk, skb);
844 out:
845   	return err;
846 
847 csum_copy_err:
848 	UDP_INC_STATS_BH(UDP_MIB_INERRORS);
849 
850 	skb_kill_datagram(sk, skb, flags);
851 
852 	if (noblock)
853 		return -EAGAIN;
854 	goto try_again;
855 }
856 
857 
858 int udp_disconnect(struct sock *sk, int flags)
859 {
860 	struct inet_sock *inet = inet_sk(sk);
861 	/*
862 	 *	1003.1g - break association.
863 	 */
864 
865 	sk->sk_state = TCP_CLOSE;
866 	inet->daddr = 0;
867 	inet->dport = 0;
868 	sk->sk_bound_dev_if = 0;
869 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
870 		inet_reset_saddr(sk);
871 
872 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
873 		sk->sk_prot->unhash(sk);
874 		inet->sport = 0;
875 	}
876 	sk_dst_reset(sk);
877 	return 0;
878 }
879 
880 static void udp_close(struct sock *sk, long timeout)
881 {
882 	sk_common_release(sk);
883 }
884 
885 /* return:
886  * 	1  if the the UDP system should process it
887  *	0  if we should drop this packet
888  * 	-1 if it should get processed by xfrm4_rcv_encap
889  */
890 static int udp_encap_rcv(struct sock * sk, struct sk_buff *skb)
891 {
892 #ifndef CONFIG_XFRM
893 	return 1;
894 #else
895 	struct udp_sock *up = udp_sk(sk);
896   	struct udphdr *uh = skb->h.uh;
897 	struct iphdr *iph;
898 	int iphlen, len;
899 
900 	__u8 *udpdata = (__u8 *)uh + sizeof(struct udphdr);
901 	__u32 *udpdata32 = (__u32 *)udpdata;
902 	__u16 encap_type = up->encap_type;
903 
904 	/* if we're overly short, let UDP handle it */
905 	if (udpdata > skb->tail)
906 		return 1;
907 
908 	/* if this is not encapsulated socket, then just return now */
909 	if (!encap_type)
910 		return 1;
911 
912 	len = skb->tail - udpdata;
913 
914 	switch (encap_type) {
915 	default:
916 	case UDP_ENCAP_ESPINUDP:
917 		/* Check if this is a keepalive packet.  If so, eat it. */
918 		if (len == 1 && udpdata[0] == 0xff) {
919 			return 0;
920 		} else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0 ) {
921 			/* ESP Packet without Non-ESP header */
922 			len = sizeof(struct udphdr);
923 		} else
924 			/* Must be an IKE packet.. pass it through */
925 			return 1;
926 		break;
927 	case UDP_ENCAP_ESPINUDP_NON_IKE:
928 		/* Check if this is a keepalive packet.  If so, eat it. */
929 		if (len == 1 && udpdata[0] == 0xff) {
930 			return 0;
931 		} else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) &&
932 			   udpdata32[0] == 0 && udpdata32[1] == 0) {
933 
934 			/* ESP Packet with Non-IKE marker */
935 			len = sizeof(struct udphdr) + 2 * sizeof(u32);
936 		} else
937 			/* Must be an IKE packet.. pass it through */
938 			return 1;
939 		break;
940 	}
941 
942 	/* At this point we are sure that this is an ESPinUDP packet,
943 	 * so we need to remove 'len' bytes from the packet (the UDP
944 	 * header and optional ESP marker bytes) and then modify the
945 	 * protocol to ESP, and then call into the transform receiver.
946 	 */
947 	if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
948 		return 0;
949 
950 	/* Now we can update and verify the packet length... */
951 	iph = skb->nh.iph;
952 	iphlen = iph->ihl << 2;
953 	iph->tot_len = htons(ntohs(iph->tot_len) - len);
954 	if (skb->len < iphlen + len) {
955 		/* packet is too small!?! */
956 		return 0;
957 	}
958 
959 	/* pull the data buffer up to the ESP header and set the
960 	 * transport header to point to ESP.  Keep UDP on the stack
961 	 * for later.
962 	 */
963 	skb->h.raw = skb_pull(skb, len);
964 
965 	/* modify the protocol (it's ESP!) */
966 	iph->protocol = IPPROTO_ESP;
967 
968 	/* and let the caller know to send this into the ESP processor... */
969 	return -1;
970 #endif
971 }
972 
973 /* returns:
974  *  -1: error
975  *   0: success
976  *  >0: "udp encap" protocol resubmission
977  *
978  * Note that in the success and error cases, the skb is assumed to
979  * have either been requeued or freed.
980  */
981 static int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
982 {
983 	struct udp_sock *up = udp_sk(sk);
984 
985 	/*
986 	 *	Charge it to the socket, dropping if the queue is full.
987 	 */
988 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
989 		kfree_skb(skb);
990 		return -1;
991 	}
992 	nf_reset(skb);
993 
994 	if (up->encap_type) {
995 		/*
996 		 * This is an encapsulation socket, so let's see if this is
997 		 * an encapsulated packet.
998 		 * If it's a keepalive packet, then just eat it.
999 		 * If it's an encapsulateed packet, then pass it to the
1000 		 * IPsec xfrm input and return the response
1001 		 * appropriately.  Otherwise, just fall through and
1002 		 * pass this up the UDP socket.
1003 		 */
1004 		int ret;
1005 
1006 		ret = udp_encap_rcv(sk, skb);
1007 		if (ret == 0) {
1008 			/* Eat the packet .. */
1009 			kfree_skb(skb);
1010 			return 0;
1011 		}
1012 		if (ret < 0) {
1013 			/* process the ESP packet */
1014 			ret = xfrm4_rcv_encap(skb, up->encap_type);
1015 			UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS);
1016 			return -ret;
1017 		}
1018 		/* FALLTHROUGH -- it's a UDP Packet */
1019 	}
1020 
1021 	if (sk->sk_filter && skb->ip_summed != CHECKSUM_UNNECESSARY) {
1022 		if (__udp_checksum_complete(skb)) {
1023 			UDP_INC_STATS_BH(UDP_MIB_INERRORS);
1024 			kfree_skb(skb);
1025 			return -1;
1026 		}
1027 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1028 	}
1029 
1030 	if (sock_queue_rcv_skb(sk,skb)<0) {
1031 		UDP_INC_STATS_BH(UDP_MIB_INERRORS);
1032 		kfree_skb(skb);
1033 		return -1;
1034 	}
1035 	UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS);
1036 	return 0;
1037 }
1038 
1039 /*
1040  *	Multicasts and broadcasts go to each listener.
1041  *
1042  *	Note: called only from the BH handler context,
1043  *	so we don't need to lock the hashes.
1044  */
1045 static int udp_v4_mcast_deliver(struct sk_buff *skb, struct udphdr *uh,
1046 				 u32 saddr, u32 daddr)
1047 {
1048 	struct sock *sk;
1049 	int dif;
1050 
1051 	read_lock(&udp_hash_lock);
1052 	sk = sk_head(&udp_hash[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]);
1053 	dif = skb->dev->ifindex;
1054 	sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1055 	if (sk) {
1056 		struct sock *sknext = NULL;
1057 
1058 		do {
1059 			struct sk_buff *skb1 = skb;
1060 
1061 			sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1062 						   uh->source, saddr, dif);
1063 			if(sknext)
1064 				skb1 = skb_clone(skb, GFP_ATOMIC);
1065 
1066 			if(skb1) {
1067 				int ret = udp_queue_rcv_skb(sk, skb1);
1068 				if (ret > 0)
1069 					/* we should probably re-process instead
1070 					 * of dropping packets here. */
1071 					kfree_skb(skb1);
1072 			}
1073 			sk = sknext;
1074 		} while(sknext);
1075 	} else
1076 		kfree_skb(skb);
1077 	read_unlock(&udp_hash_lock);
1078 	return 0;
1079 }
1080 
1081 /* Initialize UDP checksum. If exited with zero value (success),
1082  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1083  * Otherwise, csum completion requires chacksumming packet body,
1084  * including udp header and folding it to skb->csum.
1085  */
1086 static void udp_checksum_init(struct sk_buff *skb, struct udphdr *uh,
1087 			     unsigned short ulen, u32 saddr, u32 daddr)
1088 {
1089 	if (uh->check == 0) {
1090 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1091 	} else if (skb->ip_summed == CHECKSUM_HW) {
1092 		if (!udp_check(uh, ulen, saddr, daddr, skb->csum))
1093 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1094 	}
1095 	if (skb->ip_summed != CHECKSUM_UNNECESSARY)
1096 		skb->csum = csum_tcpudp_nofold(saddr, daddr, ulen, IPPROTO_UDP, 0);
1097 	/* Probably, we should checksum udp header (it should be in cache
1098 	 * in any case) and data in tiny packets (< rx copybreak).
1099 	 */
1100 }
1101 
1102 /*
1103  *	All we need to do is get the socket, and then do a checksum.
1104  */
1105 
1106 int udp_rcv(struct sk_buff *skb)
1107 {
1108   	struct sock *sk;
1109   	struct udphdr *uh;
1110 	unsigned short ulen;
1111 	struct rtable *rt = (struct rtable*)skb->dst;
1112 	u32 saddr = skb->nh.iph->saddr;
1113 	u32 daddr = skb->nh.iph->daddr;
1114 	int len = skb->len;
1115 
1116 	/*
1117 	 *	Validate the packet and the UDP length.
1118 	 */
1119 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1120 		goto no_header;
1121 
1122 	uh = skb->h.uh;
1123 
1124 	ulen = ntohs(uh->len);
1125 
1126 	if (ulen > len || ulen < sizeof(*uh))
1127 		goto short_packet;
1128 
1129 	if (pskb_trim_rcsum(skb, ulen))
1130 		goto short_packet;
1131 
1132 	udp_checksum_init(skb, uh, ulen, saddr, daddr);
1133 
1134 	if(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1135 		return udp_v4_mcast_deliver(skb, uh, saddr, daddr);
1136 
1137 	sk = udp_v4_lookup(saddr, uh->source, daddr, uh->dest, skb->dev->ifindex);
1138 
1139 	if (sk != NULL) {
1140 		int ret = udp_queue_rcv_skb(sk, skb);
1141 		sock_put(sk);
1142 
1143 		/* a return value > 0 means to resubmit the input, but
1144 		 * it it wants the return to be -protocol, or 0
1145 		 */
1146 		if (ret > 0)
1147 			return -ret;
1148 		return 0;
1149 	}
1150 
1151 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1152 		goto drop;
1153 	nf_reset(skb);
1154 
1155 	/* No socket. Drop packet silently, if checksum is wrong */
1156 	if (udp_checksum_complete(skb))
1157 		goto csum_error;
1158 
1159 	UDP_INC_STATS_BH(UDP_MIB_NOPORTS);
1160 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1161 
1162 	/*
1163 	 * Hmm.  We got an UDP packet to a port to which we
1164 	 * don't wanna listen.  Ignore it.
1165 	 */
1166 	kfree_skb(skb);
1167 	return(0);
1168 
1169 short_packet:
1170 	LIMIT_NETDEBUG(KERN_DEBUG "UDP: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n",
1171 		       NIPQUAD(saddr),
1172 		       ntohs(uh->source),
1173 		       ulen,
1174 		       len,
1175 		       NIPQUAD(daddr),
1176 		       ntohs(uh->dest));
1177 no_header:
1178 	UDP_INC_STATS_BH(UDP_MIB_INERRORS);
1179 	kfree_skb(skb);
1180 	return(0);
1181 
1182 csum_error:
1183 	/*
1184 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1185 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1186 	 */
1187 	LIMIT_NETDEBUG(KERN_DEBUG "UDP: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n",
1188 		       NIPQUAD(saddr),
1189 		       ntohs(uh->source),
1190 		       NIPQUAD(daddr),
1191 		       ntohs(uh->dest),
1192 		       ulen);
1193 drop:
1194 	UDP_INC_STATS_BH(UDP_MIB_INERRORS);
1195 	kfree_skb(skb);
1196 	return(0);
1197 }
1198 
1199 static int udp_destroy_sock(struct sock *sk)
1200 {
1201 	lock_sock(sk);
1202 	udp_flush_pending_frames(sk);
1203 	release_sock(sk);
1204 	return 0;
1205 }
1206 
1207 /*
1208  *	Socket option code for UDP
1209  */
1210 static int udp_setsockopt(struct sock *sk, int level, int optname,
1211 			  char __user *optval, int optlen)
1212 {
1213 	struct udp_sock *up = udp_sk(sk);
1214 	int val;
1215 	int err = 0;
1216 
1217 	if (level != SOL_UDP)
1218 		return ip_setsockopt(sk, level, optname, optval, optlen);
1219 
1220 	if(optlen<sizeof(int))
1221 		return -EINVAL;
1222 
1223 	if (get_user(val, (int __user *)optval))
1224 		return -EFAULT;
1225 
1226 	switch(optname) {
1227 	case UDP_CORK:
1228 		if (val != 0) {
1229 			up->corkflag = 1;
1230 		} else {
1231 			up->corkflag = 0;
1232 			lock_sock(sk);
1233 			udp_push_pending_frames(sk, up);
1234 			release_sock(sk);
1235 		}
1236 		break;
1237 
1238 	case UDP_ENCAP:
1239 		switch (val) {
1240 		case 0:
1241 		case UDP_ENCAP_ESPINUDP:
1242 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1243 			up->encap_type = val;
1244 			break;
1245 		default:
1246 			err = -ENOPROTOOPT;
1247 			break;
1248 		}
1249 		break;
1250 
1251 	default:
1252 		err = -ENOPROTOOPT;
1253 		break;
1254 	};
1255 
1256 	return err;
1257 }
1258 
1259 static int udp_getsockopt(struct sock *sk, int level, int optname,
1260 			  char __user *optval, int __user *optlen)
1261 {
1262 	struct udp_sock *up = udp_sk(sk);
1263 	int val, len;
1264 
1265 	if (level != SOL_UDP)
1266 		return ip_getsockopt(sk, level, optname, optval, optlen);
1267 
1268 	if(get_user(len,optlen))
1269 		return -EFAULT;
1270 
1271 	len = min_t(unsigned int, len, sizeof(int));
1272 
1273 	if(len < 0)
1274 		return -EINVAL;
1275 
1276 	switch(optname) {
1277 	case UDP_CORK:
1278 		val = up->corkflag;
1279 		break;
1280 
1281 	case UDP_ENCAP:
1282 		val = up->encap_type;
1283 		break;
1284 
1285 	default:
1286 		return -ENOPROTOOPT;
1287 	};
1288 
1289   	if(put_user(len, optlen))
1290   		return -EFAULT;
1291 	if(copy_to_user(optval, &val,len))
1292 		return -EFAULT;
1293   	return 0;
1294 }
1295 
1296 /**
1297  * 	udp_poll - wait for a UDP event.
1298  *	@file - file struct
1299  *	@sock - socket
1300  *	@wait - poll table
1301  *
1302  *	This is same as datagram poll, except for the special case of
1303  *	blocking sockets. If application is using a blocking fd
1304  *	and a packet with checksum error is in the queue;
1305  *	then it could get return from select indicating data available
1306  *	but then block when reading it. Add special case code
1307  *	to work around these arguably broken applications.
1308  */
1309 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1310 {
1311 	unsigned int mask = datagram_poll(file, sock, wait);
1312 	struct sock *sk = sock->sk;
1313 
1314 	/* Check for false positives due to checksum errors */
1315 	if ( (mask & POLLRDNORM) &&
1316 	     !(file->f_flags & O_NONBLOCK) &&
1317 	     !(sk->sk_shutdown & RCV_SHUTDOWN)){
1318 		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1319 		struct sk_buff *skb;
1320 
1321 		spin_lock_bh(&rcvq->lock);
1322 		while ((skb = skb_peek(rcvq)) != NULL) {
1323 			if (udp_checksum_complete(skb)) {
1324 				UDP_INC_STATS_BH(UDP_MIB_INERRORS);
1325 				__skb_unlink(skb, rcvq);
1326 				kfree_skb(skb);
1327 			} else {
1328 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1329 				break;
1330 			}
1331 		}
1332 		spin_unlock_bh(&rcvq->lock);
1333 
1334 		/* nothing to see, move along */
1335 		if (skb == NULL)
1336 			mask &= ~(POLLIN | POLLRDNORM);
1337 	}
1338 
1339 	return mask;
1340 
1341 }
1342 
1343 struct proto udp_prot = {
1344  	.name =		"UDP",
1345 	.owner =	THIS_MODULE,
1346 	.close =	udp_close,
1347 	.connect =	ip4_datagram_connect,
1348 	.disconnect =	udp_disconnect,
1349 	.ioctl =	udp_ioctl,
1350 	.destroy =	udp_destroy_sock,
1351 	.setsockopt =	udp_setsockopt,
1352 	.getsockopt =	udp_getsockopt,
1353 	.sendmsg =	udp_sendmsg,
1354 	.recvmsg =	udp_recvmsg,
1355 	.sendpage =	udp_sendpage,
1356 	.backlog_rcv =	udp_queue_rcv_skb,
1357 	.hash =		udp_v4_hash,
1358 	.unhash =	udp_v4_unhash,
1359 	.get_port =	udp_v4_get_port,
1360 	.obj_size =	sizeof(struct udp_sock),
1361 };
1362 
1363 /* ------------------------------------------------------------------------ */
1364 #ifdef CONFIG_PROC_FS
1365 
1366 static struct sock *udp_get_first(struct seq_file *seq)
1367 {
1368 	struct sock *sk;
1369 	struct udp_iter_state *state = seq->private;
1370 
1371 	for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1372 		struct hlist_node *node;
1373 		sk_for_each(sk, node, &udp_hash[state->bucket]) {
1374 			if (sk->sk_family == state->family)
1375 				goto found;
1376 		}
1377 	}
1378 	sk = NULL;
1379 found:
1380 	return sk;
1381 }
1382 
1383 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1384 {
1385 	struct udp_iter_state *state = seq->private;
1386 
1387 	do {
1388 		sk = sk_next(sk);
1389 try_again:
1390 		;
1391 	} while (sk && sk->sk_family != state->family);
1392 
1393 	if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1394 		sk = sk_head(&udp_hash[state->bucket]);
1395 		goto try_again;
1396 	}
1397 	return sk;
1398 }
1399 
1400 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1401 {
1402 	struct sock *sk = udp_get_first(seq);
1403 
1404 	if (sk)
1405 		while(pos && (sk = udp_get_next(seq, sk)) != NULL)
1406 			--pos;
1407 	return pos ? NULL : sk;
1408 }
1409 
1410 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1411 {
1412 	read_lock(&udp_hash_lock);
1413 	return *pos ? udp_get_idx(seq, *pos-1) : (void *)1;
1414 }
1415 
1416 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1417 {
1418 	struct sock *sk;
1419 
1420 	if (v == (void *)1)
1421 		sk = udp_get_idx(seq, 0);
1422 	else
1423 		sk = udp_get_next(seq, v);
1424 
1425 	++*pos;
1426 	return sk;
1427 }
1428 
1429 static void udp_seq_stop(struct seq_file *seq, void *v)
1430 {
1431 	read_unlock(&udp_hash_lock);
1432 }
1433 
1434 static int udp_seq_open(struct inode *inode, struct file *file)
1435 {
1436 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1437 	struct seq_file *seq;
1438 	int rc = -ENOMEM;
1439 	struct udp_iter_state *s = kmalloc(sizeof(*s), GFP_KERNEL);
1440 
1441 	if (!s)
1442 		goto out;
1443 	memset(s, 0, sizeof(*s));
1444 	s->family		= afinfo->family;
1445 	s->seq_ops.start	= udp_seq_start;
1446 	s->seq_ops.next		= udp_seq_next;
1447 	s->seq_ops.show		= afinfo->seq_show;
1448 	s->seq_ops.stop		= udp_seq_stop;
1449 
1450 	rc = seq_open(file, &s->seq_ops);
1451 	if (rc)
1452 		goto out_kfree;
1453 
1454 	seq	     = file->private_data;
1455 	seq->private = s;
1456 out:
1457 	return rc;
1458 out_kfree:
1459 	kfree(s);
1460 	goto out;
1461 }
1462 
1463 /* ------------------------------------------------------------------------ */
1464 int udp_proc_register(struct udp_seq_afinfo *afinfo)
1465 {
1466 	struct proc_dir_entry *p;
1467 	int rc = 0;
1468 
1469 	if (!afinfo)
1470 		return -EINVAL;
1471 	afinfo->seq_fops->owner		= afinfo->owner;
1472 	afinfo->seq_fops->open		= udp_seq_open;
1473 	afinfo->seq_fops->read		= seq_read;
1474 	afinfo->seq_fops->llseek	= seq_lseek;
1475 	afinfo->seq_fops->release	= seq_release_private;
1476 
1477 	p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1478 	if (p)
1479 		p->data = afinfo;
1480 	else
1481 		rc = -ENOMEM;
1482 	return rc;
1483 }
1484 
1485 void udp_proc_unregister(struct udp_seq_afinfo *afinfo)
1486 {
1487 	if (!afinfo)
1488 		return;
1489 	proc_net_remove(afinfo->name);
1490 	memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1491 }
1492 
1493 /* ------------------------------------------------------------------------ */
1494 static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket)
1495 {
1496 	struct inet_sock *inet = inet_sk(sp);
1497 	unsigned int dest = inet->daddr;
1498 	unsigned int src  = inet->rcv_saddr;
1499 	__u16 destp	  = ntohs(inet->dport);
1500 	__u16 srcp	  = ntohs(inet->sport);
1501 
1502 	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1503 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p",
1504 		bucket, src, srcp, dest, destp, sp->sk_state,
1505 		atomic_read(&sp->sk_wmem_alloc),
1506 		atomic_read(&sp->sk_rmem_alloc),
1507 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1508 		atomic_read(&sp->sk_refcnt), sp);
1509 }
1510 
1511 static int udp4_seq_show(struct seq_file *seq, void *v)
1512 {
1513 	if (v == SEQ_START_TOKEN)
1514 		seq_printf(seq, "%-127s\n",
1515 			   "  sl  local_address rem_address   st tx_queue "
1516 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1517 			   "inode");
1518 	else {
1519 		char tmpbuf[129];
1520 		struct udp_iter_state *state = seq->private;
1521 
1522 		udp4_format_sock(v, tmpbuf, state->bucket);
1523 		seq_printf(seq, "%-127s\n", tmpbuf);
1524 	}
1525 	return 0;
1526 }
1527 
1528 /* ------------------------------------------------------------------------ */
1529 static struct file_operations udp4_seq_fops;
1530 static struct udp_seq_afinfo udp4_seq_afinfo = {
1531 	.owner		= THIS_MODULE,
1532 	.name		= "udp",
1533 	.family		= AF_INET,
1534 	.seq_show	= udp4_seq_show,
1535 	.seq_fops	= &udp4_seq_fops,
1536 };
1537 
1538 int __init udp4_proc_init(void)
1539 {
1540 	return udp_proc_register(&udp4_seq_afinfo);
1541 }
1542 
1543 void udp4_proc_exit(void)
1544 {
1545 	udp_proc_unregister(&udp4_seq_afinfo);
1546 }
1547 #endif /* CONFIG_PROC_FS */
1548 
1549 EXPORT_SYMBOL(udp_disconnect);
1550 EXPORT_SYMBOL(udp_hash);
1551 EXPORT_SYMBOL(udp_hash_lock);
1552 EXPORT_SYMBOL(udp_ioctl);
1553 EXPORT_SYMBOL(udp_port_rover);
1554 EXPORT_SYMBOL(udp_prot);
1555 EXPORT_SYMBOL(udp_sendmsg);
1556 EXPORT_SYMBOL(udp_poll);
1557 
1558 #ifdef CONFIG_PROC_FS
1559 EXPORT_SYMBOL(udp_proc_register);
1560 EXPORT_SYMBOL(udp_proc_unregister);
1561 #endif
1562