1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/uaccess.h> 78 #include <asm/ioctls.h> 79 #include <linux/memblock.h> 80 #include <linux/highmem.h> 81 #include <linux/swap.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <trace/events/udp.h> 108 #include <linux/static_key.h> 109 #include <linux/btf_ids.h> 110 #include <trace/events/skb.h> 111 #include <net/busy_poll.h> 112 #include "udp_impl.h" 113 #include <net/sock_reuseport.h> 114 #include <net/addrconf.h> 115 #include <net/udp_tunnel.h> 116 #if IS_ENABLED(CONFIG_IPV6) 117 #include <net/ipv6_stubs.h> 118 #endif 119 120 struct udp_table udp_table __read_mostly; 121 EXPORT_SYMBOL(udp_table); 122 123 long sysctl_udp_mem[3] __read_mostly; 124 EXPORT_SYMBOL(sysctl_udp_mem); 125 126 atomic_long_t udp_memory_allocated; 127 EXPORT_SYMBOL(udp_memory_allocated); 128 129 #define MAX_UDP_PORTS 65536 130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 131 132 static int udp_lib_lport_inuse(struct net *net, __u16 num, 133 const struct udp_hslot *hslot, 134 unsigned long *bitmap, 135 struct sock *sk, unsigned int log) 136 { 137 struct sock *sk2; 138 kuid_t uid = sock_i_uid(sk); 139 140 sk_for_each(sk2, &hslot->head) { 141 if (net_eq(sock_net(sk2), net) && 142 sk2 != sk && 143 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 144 (!sk2->sk_reuse || !sk->sk_reuse) && 145 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 146 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 147 inet_rcv_saddr_equal(sk, sk2, true)) { 148 if (sk2->sk_reuseport && sk->sk_reuseport && 149 !rcu_access_pointer(sk->sk_reuseport_cb) && 150 uid_eq(uid, sock_i_uid(sk2))) { 151 if (!bitmap) 152 return 0; 153 } else { 154 if (!bitmap) 155 return 1; 156 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 157 bitmap); 158 } 159 } 160 } 161 return 0; 162 } 163 164 /* 165 * Note: we still hold spinlock of primary hash chain, so no other writer 166 * can insert/delete a socket with local_port == num 167 */ 168 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 169 struct udp_hslot *hslot2, 170 struct sock *sk) 171 { 172 struct sock *sk2; 173 kuid_t uid = sock_i_uid(sk); 174 int res = 0; 175 176 spin_lock(&hslot2->lock); 177 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 178 if (net_eq(sock_net(sk2), net) && 179 sk2 != sk && 180 (udp_sk(sk2)->udp_port_hash == num) && 181 (!sk2->sk_reuse || !sk->sk_reuse) && 182 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 183 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 184 inet_rcv_saddr_equal(sk, sk2, true)) { 185 if (sk2->sk_reuseport && sk->sk_reuseport && 186 !rcu_access_pointer(sk->sk_reuseport_cb) && 187 uid_eq(uid, sock_i_uid(sk2))) { 188 res = 0; 189 } else { 190 res = 1; 191 } 192 break; 193 } 194 } 195 spin_unlock(&hslot2->lock); 196 return res; 197 } 198 199 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 200 { 201 struct net *net = sock_net(sk); 202 kuid_t uid = sock_i_uid(sk); 203 struct sock *sk2; 204 205 sk_for_each(sk2, &hslot->head) { 206 if (net_eq(sock_net(sk2), net) && 207 sk2 != sk && 208 sk2->sk_family == sk->sk_family && 209 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 210 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 211 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 212 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 213 inet_rcv_saddr_equal(sk, sk2, false)) { 214 return reuseport_add_sock(sk, sk2, 215 inet_rcv_saddr_any(sk)); 216 } 217 } 218 219 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 220 } 221 222 /** 223 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 224 * 225 * @sk: socket struct in question 226 * @snum: port number to look up 227 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 228 * with NULL address 229 */ 230 int udp_lib_get_port(struct sock *sk, unsigned short snum, 231 unsigned int hash2_nulladdr) 232 { 233 struct udp_hslot *hslot, *hslot2; 234 struct udp_table *udptable = sk->sk_prot->h.udp_table; 235 int error = 1; 236 struct net *net = sock_net(sk); 237 238 if (!snum) { 239 int low, high, remaining; 240 unsigned int rand; 241 unsigned short first, last; 242 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 243 244 inet_get_local_port_range(net, &low, &high); 245 remaining = (high - low) + 1; 246 247 rand = prandom_u32(); 248 first = reciprocal_scale(rand, remaining) + low; 249 /* 250 * force rand to be an odd multiple of UDP_HTABLE_SIZE 251 */ 252 rand = (rand | 1) * (udptable->mask + 1); 253 last = first + udptable->mask + 1; 254 do { 255 hslot = udp_hashslot(udptable, net, first); 256 bitmap_zero(bitmap, PORTS_PER_CHAIN); 257 spin_lock_bh(&hslot->lock); 258 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 259 udptable->log); 260 261 snum = first; 262 /* 263 * Iterate on all possible values of snum for this hash. 264 * Using steps of an odd multiple of UDP_HTABLE_SIZE 265 * give us randomization and full range coverage. 266 */ 267 do { 268 if (low <= snum && snum <= high && 269 !test_bit(snum >> udptable->log, bitmap) && 270 !inet_is_local_reserved_port(net, snum)) 271 goto found; 272 snum += rand; 273 } while (snum != first); 274 spin_unlock_bh(&hslot->lock); 275 cond_resched(); 276 } while (++first != last); 277 goto fail; 278 } else { 279 hslot = udp_hashslot(udptable, net, snum); 280 spin_lock_bh(&hslot->lock); 281 if (hslot->count > 10) { 282 int exist; 283 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 284 285 slot2 &= udptable->mask; 286 hash2_nulladdr &= udptable->mask; 287 288 hslot2 = udp_hashslot2(udptable, slot2); 289 if (hslot->count < hslot2->count) 290 goto scan_primary_hash; 291 292 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 293 if (!exist && (hash2_nulladdr != slot2)) { 294 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 295 exist = udp_lib_lport_inuse2(net, snum, hslot2, 296 sk); 297 } 298 if (exist) 299 goto fail_unlock; 300 else 301 goto found; 302 } 303 scan_primary_hash: 304 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 305 goto fail_unlock; 306 } 307 found: 308 inet_sk(sk)->inet_num = snum; 309 udp_sk(sk)->udp_port_hash = snum; 310 udp_sk(sk)->udp_portaddr_hash ^= snum; 311 if (sk_unhashed(sk)) { 312 if (sk->sk_reuseport && 313 udp_reuseport_add_sock(sk, hslot)) { 314 inet_sk(sk)->inet_num = 0; 315 udp_sk(sk)->udp_port_hash = 0; 316 udp_sk(sk)->udp_portaddr_hash ^= snum; 317 goto fail_unlock; 318 } 319 320 sk_add_node_rcu(sk, &hslot->head); 321 hslot->count++; 322 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 323 324 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 325 spin_lock(&hslot2->lock); 326 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 327 sk->sk_family == AF_INET6) 328 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 329 &hslot2->head); 330 else 331 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 332 &hslot2->head); 333 hslot2->count++; 334 spin_unlock(&hslot2->lock); 335 } 336 sock_set_flag(sk, SOCK_RCU_FREE); 337 error = 0; 338 fail_unlock: 339 spin_unlock_bh(&hslot->lock); 340 fail: 341 return error; 342 } 343 EXPORT_SYMBOL(udp_lib_get_port); 344 345 int udp_v4_get_port(struct sock *sk, unsigned short snum) 346 { 347 unsigned int hash2_nulladdr = 348 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 349 unsigned int hash2_partial = 350 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 351 352 /* precompute partial secondary hash */ 353 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 354 return udp_lib_get_port(sk, snum, hash2_nulladdr); 355 } 356 357 static int compute_score(struct sock *sk, struct net *net, 358 __be32 saddr, __be16 sport, 359 __be32 daddr, unsigned short hnum, 360 int dif, int sdif) 361 { 362 int score; 363 struct inet_sock *inet; 364 bool dev_match; 365 366 if (!net_eq(sock_net(sk), net) || 367 udp_sk(sk)->udp_port_hash != hnum || 368 ipv6_only_sock(sk)) 369 return -1; 370 371 if (sk->sk_rcv_saddr != daddr) 372 return -1; 373 374 score = (sk->sk_family == PF_INET) ? 2 : 1; 375 376 inet = inet_sk(sk); 377 if (inet->inet_daddr) { 378 if (inet->inet_daddr != saddr) 379 return -1; 380 score += 4; 381 } 382 383 if (inet->inet_dport) { 384 if (inet->inet_dport != sport) 385 return -1; 386 score += 4; 387 } 388 389 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 390 dif, sdif); 391 if (!dev_match) 392 return -1; 393 score += 4; 394 395 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 396 score++; 397 return score; 398 } 399 400 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 401 const __u16 lport, const __be32 faddr, 402 const __be16 fport) 403 { 404 static u32 udp_ehash_secret __read_mostly; 405 406 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 407 408 return __inet_ehashfn(laddr, lport, faddr, fport, 409 udp_ehash_secret + net_hash_mix(net)); 410 } 411 412 static struct sock *lookup_reuseport(struct net *net, struct sock *sk, 413 struct sk_buff *skb, 414 __be32 saddr, __be16 sport, 415 __be32 daddr, unsigned short hnum) 416 { 417 struct sock *reuse_sk = NULL; 418 u32 hash; 419 420 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) { 421 hash = udp_ehashfn(net, daddr, hnum, saddr, sport); 422 reuse_sk = reuseport_select_sock(sk, hash, skb, 423 sizeof(struct udphdr)); 424 } 425 return reuse_sk; 426 } 427 428 /* called with rcu_read_lock() */ 429 static struct sock *udp4_lib_lookup2(struct net *net, 430 __be32 saddr, __be16 sport, 431 __be32 daddr, unsigned int hnum, 432 int dif, int sdif, 433 struct udp_hslot *hslot2, 434 struct sk_buff *skb) 435 { 436 struct sock *sk, *result; 437 int score, badness; 438 439 result = NULL; 440 badness = 0; 441 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 442 score = compute_score(sk, net, saddr, sport, 443 daddr, hnum, dif, sdif); 444 if (score > badness) { 445 result = lookup_reuseport(net, sk, skb, 446 saddr, sport, daddr, hnum); 447 /* Fall back to scoring if group has connections */ 448 if (result && !reuseport_has_conns(sk, false)) 449 return result; 450 451 result = result ? : sk; 452 badness = score; 453 } 454 } 455 return result; 456 } 457 458 static struct sock *udp4_lookup_run_bpf(struct net *net, 459 struct udp_table *udptable, 460 struct sk_buff *skb, 461 __be32 saddr, __be16 sport, 462 __be32 daddr, u16 hnum) 463 { 464 struct sock *sk, *reuse_sk; 465 bool no_reuseport; 466 467 if (udptable != &udp_table) 468 return NULL; /* only UDP is supported */ 469 470 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, 471 saddr, sport, daddr, hnum, &sk); 472 if (no_reuseport || IS_ERR_OR_NULL(sk)) 473 return sk; 474 475 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum); 476 if (reuse_sk) 477 sk = reuse_sk; 478 return sk; 479 } 480 481 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 482 * harder than this. -DaveM 483 */ 484 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 485 __be16 sport, __be32 daddr, __be16 dport, int dif, 486 int sdif, struct udp_table *udptable, struct sk_buff *skb) 487 { 488 unsigned short hnum = ntohs(dport); 489 unsigned int hash2, slot2; 490 struct udp_hslot *hslot2; 491 struct sock *result, *sk; 492 493 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 494 slot2 = hash2 & udptable->mask; 495 hslot2 = &udptable->hash2[slot2]; 496 497 /* Lookup connected or non-wildcard socket */ 498 result = udp4_lib_lookup2(net, saddr, sport, 499 daddr, hnum, dif, sdif, 500 hslot2, skb); 501 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 502 goto done; 503 504 /* Lookup redirect from BPF */ 505 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) { 506 sk = udp4_lookup_run_bpf(net, udptable, skb, 507 saddr, sport, daddr, hnum); 508 if (sk) { 509 result = sk; 510 goto done; 511 } 512 } 513 514 /* Got non-wildcard socket or error on first lookup */ 515 if (result) 516 goto done; 517 518 /* Lookup wildcard sockets */ 519 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 520 slot2 = hash2 & udptable->mask; 521 hslot2 = &udptable->hash2[slot2]; 522 523 result = udp4_lib_lookup2(net, saddr, sport, 524 htonl(INADDR_ANY), hnum, dif, sdif, 525 hslot2, skb); 526 done: 527 if (IS_ERR(result)) 528 return NULL; 529 return result; 530 } 531 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 532 533 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 534 __be16 sport, __be16 dport, 535 struct udp_table *udptable) 536 { 537 const struct iphdr *iph = ip_hdr(skb); 538 539 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 540 iph->daddr, dport, inet_iif(skb), 541 inet_sdif(skb), udptable, skb); 542 } 543 544 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 545 __be16 sport, __be16 dport) 546 { 547 const struct iphdr *iph = ip_hdr(skb); 548 549 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 550 iph->daddr, dport, inet_iif(skb), 551 inet_sdif(skb), &udp_table, NULL); 552 } 553 554 /* Must be called under rcu_read_lock(). 555 * Does increment socket refcount. 556 */ 557 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 558 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 559 __be32 daddr, __be16 dport, int dif) 560 { 561 struct sock *sk; 562 563 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 564 dif, 0, &udp_table, NULL); 565 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 566 sk = NULL; 567 return sk; 568 } 569 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 570 #endif 571 572 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 573 __be16 loc_port, __be32 loc_addr, 574 __be16 rmt_port, __be32 rmt_addr, 575 int dif, int sdif, unsigned short hnum) 576 { 577 struct inet_sock *inet = inet_sk(sk); 578 579 if (!net_eq(sock_net(sk), net) || 580 udp_sk(sk)->udp_port_hash != hnum || 581 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 582 (inet->inet_dport != rmt_port && inet->inet_dport) || 583 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 584 ipv6_only_sock(sk) || 585 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 586 return false; 587 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 588 return false; 589 return true; 590 } 591 592 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 593 void udp_encap_enable(void) 594 { 595 static_branch_inc(&udp_encap_needed_key); 596 } 597 EXPORT_SYMBOL(udp_encap_enable); 598 599 void udp_encap_disable(void) 600 { 601 static_branch_dec(&udp_encap_needed_key); 602 } 603 EXPORT_SYMBOL(udp_encap_disable); 604 605 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 606 * through error handlers in encapsulations looking for a match. 607 */ 608 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 609 { 610 int i; 611 612 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 613 int (*handler)(struct sk_buff *skb, u32 info); 614 const struct ip_tunnel_encap_ops *encap; 615 616 encap = rcu_dereference(iptun_encaps[i]); 617 if (!encap) 618 continue; 619 handler = encap->err_handler; 620 if (handler && !handler(skb, info)) 621 return 0; 622 } 623 624 return -ENOENT; 625 } 626 627 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 628 * reversing source and destination port: this will match tunnels that force the 629 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 630 * lwtunnels might actually break this assumption by being configured with 631 * different destination ports on endpoints, in this case we won't be able to 632 * trace ICMP messages back to them. 633 * 634 * If this doesn't match any socket, probe tunnels with arbitrary destination 635 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 636 * we've sent packets to won't necessarily match the local destination port. 637 * 638 * Then ask the tunnel implementation to match the error against a valid 639 * association. 640 * 641 * Return an error if we can't find a match, the socket if we need further 642 * processing, zero otherwise. 643 */ 644 static struct sock *__udp4_lib_err_encap(struct net *net, 645 const struct iphdr *iph, 646 struct udphdr *uh, 647 struct udp_table *udptable, 648 struct sock *sk, 649 struct sk_buff *skb, u32 info) 650 { 651 int (*lookup)(struct sock *sk, struct sk_buff *skb); 652 int network_offset, transport_offset; 653 struct udp_sock *up; 654 655 network_offset = skb_network_offset(skb); 656 transport_offset = skb_transport_offset(skb); 657 658 /* Network header needs to point to the outer IPv4 header inside ICMP */ 659 skb_reset_network_header(skb); 660 661 /* Transport header needs to point to the UDP header */ 662 skb_set_transport_header(skb, iph->ihl << 2); 663 664 if (sk) { 665 up = udp_sk(sk); 666 667 lookup = READ_ONCE(up->encap_err_lookup); 668 if (lookup && lookup(sk, skb)) 669 sk = NULL; 670 671 goto out; 672 } 673 674 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 675 iph->saddr, uh->dest, skb->dev->ifindex, 0, 676 udptable, NULL); 677 if (sk) { 678 up = udp_sk(sk); 679 680 lookup = READ_ONCE(up->encap_err_lookup); 681 if (!lookup || lookup(sk, skb)) 682 sk = NULL; 683 } 684 685 out: 686 if (!sk) 687 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 688 689 skb_set_transport_header(skb, transport_offset); 690 skb_set_network_header(skb, network_offset); 691 692 return sk; 693 } 694 695 /* 696 * This routine is called by the ICMP module when it gets some 697 * sort of error condition. If err < 0 then the socket should 698 * be closed and the error returned to the user. If err > 0 699 * it's just the icmp type << 8 | icmp code. 700 * Header points to the ip header of the error packet. We move 701 * on past this. Then (as it used to claim before adjustment) 702 * header points to the first 8 bytes of the udp header. We need 703 * to find the appropriate port. 704 */ 705 706 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 707 { 708 struct inet_sock *inet; 709 const struct iphdr *iph = (const struct iphdr *)skb->data; 710 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 711 const int type = icmp_hdr(skb)->type; 712 const int code = icmp_hdr(skb)->code; 713 bool tunnel = false; 714 struct sock *sk; 715 int harderr; 716 int err; 717 struct net *net = dev_net(skb->dev); 718 719 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 720 iph->saddr, uh->source, skb->dev->ifindex, 721 inet_sdif(skb), udptable, NULL); 722 723 if (!sk || udp_sk(sk)->encap_type) { 724 /* No socket for error: try tunnels before discarding */ 725 if (static_branch_unlikely(&udp_encap_needed_key)) { 726 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 727 info); 728 if (!sk) 729 return 0; 730 } else 731 sk = ERR_PTR(-ENOENT); 732 733 if (IS_ERR(sk)) { 734 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 735 return PTR_ERR(sk); 736 } 737 738 tunnel = true; 739 } 740 741 err = 0; 742 harderr = 0; 743 inet = inet_sk(sk); 744 745 switch (type) { 746 default: 747 case ICMP_TIME_EXCEEDED: 748 err = EHOSTUNREACH; 749 break; 750 case ICMP_SOURCE_QUENCH: 751 goto out; 752 case ICMP_PARAMETERPROB: 753 err = EPROTO; 754 harderr = 1; 755 break; 756 case ICMP_DEST_UNREACH: 757 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 758 ipv4_sk_update_pmtu(skb, sk, info); 759 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 760 err = EMSGSIZE; 761 harderr = 1; 762 break; 763 } 764 goto out; 765 } 766 err = EHOSTUNREACH; 767 if (code <= NR_ICMP_UNREACH) { 768 harderr = icmp_err_convert[code].fatal; 769 err = icmp_err_convert[code].errno; 770 } 771 break; 772 case ICMP_REDIRECT: 773 ipv4_sk_redirect(skb, sk); 774 goto out; 775 } 776 777 /* 778 * RFC1122: OK. Passes ICMP errors back to application, as per 779 * 4.1.3.3. 780 */ 781 if (tunnel) { 782 /* ...not for tunnels though: we don't have a sending socket */ 783 goto out; 784 } 785 if (!inet->recverr) { 786 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 787 goto out; 788 } else 789 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 790 791 sk->sk_err = err; 792 sk_error_report(sk); 793 out: 794 return 0; 795 } 796 797 int udp_err(struct sk_buff *skb, u32 info) 798 { 799 return __udp4_lib_err(skb, info, &udp_table); 800 } 801 802 /* 803 * Throw away all pending data and cancel the corking. Socket is locked. 804 */ 805 void udp_flush_pending_frames(struct sock *sk) 806 { 807 struct udp_sock *up = udp_sk(sk); 808 809 if (up->pending) { 810 up->len = 0; 811 up->pending = 0; 812 ip_flush_pending_frames(sk); 813 } 814 } 815 EXPORT_SYMBOL(udp_flush_pending_frames); 816 817 /** 818 * udp4_hwcsum - handle outgoing HW checksumming 819 * @skb: sk_buff containing the filled-in UDP header 820 * (checksum field must be zeroed out) 821 * @src: source IP address 822 * @dst: destination IP address 823 */ 824 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 825 { 826 struct udphdr *uh = udp_hdr(skb); 827 int offset = skb_transport_offset(skb); 828 int len = skb->len - offset; 829 int hlen = len; 830 __wsum csum = 0; 831 832 if (!skb_has_frag_list(skb)) { 833 /* 834 * Only one fragment on the socket. 835 */ 836 skb->csum_start = skb_transport_header(skb) - skb->head; 837 skb->csum_offset = offsetof(struct udphdr, check); 838 uh->check = ~csum_tcpudp_magic(src, dst, len, 839 IPPROTO_UDP, 0); 840 } else { 841 struct sk_buff *frags; 842 843 /* 844 * HW-checksum won't work as there are two or more 845 * fragments on the socket so that all csums of sk_buffs 846 * should be together 847 */ 848 skb_walk_frags(skb, frags) { 849 csum = csum_add(csum, frags->csum); 850 hlen -= frags->len; 851 } 852 853 csum = skb_checksum(skb, offset, hlen, csum); 854 skb->ip_summed = CHECKSUM_NONE; 855 856 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 857 if (uh->check == 0) 858 uh->check = CSUM_MANGLED_0; 859 } 860 } 861 EXPORT_SYMBOL_GPL(udp4_hwcsum); 862 863 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 864 * for the simple case like when setting the checksum for a UDP tunnel. 865 */ 866 void udp_set_csum(bool nocheck, struct sk_buff *skb, 867 __be32 saddr, __be32 daddr, int len) 868 { 869 struct udphdr *uh = udp_hdr(skb); 870 871 if (nocheck) { 872 uh->check = 0; 873 } else if (skb_is_gso(skb)) { 874 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 875 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 876 uh->check = 0; 877 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 878 if (uh->check == 0) 879 uh->check = CSUM_MANGLED_0; 880 } else { 881 skb->ip_summed = CHECKSUM_PARTIAL; 882 skb->csum_start = skb_transport_header(skb) - skb->head; 883 skb->csum_offset = offsetof(struct udphdr, check); 884 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 885 } 886 } 887 EXPORT_SYMBOL(udp_set_csum); 888 889 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 890 struct inet_cork *cork) 891 { 892 struct sock *sk = skb->sk; 893 struct inet_sock *inet = inet_sk(sk); 894 struct udphdr *uh; 895 int err; 896 int is_udplite = IS_UDPLITE(sk); 897 int offset = skb_transport_offset(skb); 898 int len = skb->len - offset; 899 int datalen = len - sizeof(*uh); 900 __wsum csum = 0; 901 902 /* 903 * Create a UDP header 904 */ 905 uh = udp_hdr(skb); 906 uh->source = inet->inet_sport; 907 uh->dest = fl4->fl4_dport; 908 uh->len = htons(len); 909 uh->check = 0; 910 911 if (cork->gso_size) { 912 const int hlen = skb_network_header_len(skb) + 913 sizeof(struct udphdr); 914 915 if (hlen + cork->gso_size > cork->fragsize) { 916 kfree_skb(skb); 917 return -EINVAL; 918 } 919 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) { 920 kfree_skb(skb); 921 return -EINVAL; 922 } 923 if (sk->sk_no_check_tx) { 924 kfree_skb(skb); 925 return -EINVAL; 926 } 927 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 928 dst_xfrm(skb_dst(skb))) { 929 kfree_skb(skb); 930 return -EIO; 931 } 932 933 if (datalen > cork->gso_size) { 934 skb_shinfo(skb)->gso_size = cork->gso_size; 935 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 936 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 937 cork->gso_size); 938 } 939 goto csum_partial; 940 } 941 942 if (is_udplite) /* UDP-Lite */ 943 csum = udplite_csum(skb); 944 945 else if (sk->sk_no_check_tx) { /* UDP csum off */ 946 947 skb->ip_summed = CHECKSUM_NONE; 948 goto send; 949 950 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 951 csum_partial: 952 953 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 954 goto send; 955 956 } else 957 csum = udp_csum(skb); 958 959 /* add protocol-dependent pseudo-header */ 960 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 961 sk->sk_protocol, csum); 962 if (uh->check == 0) 963 uh->check = CSUM_MANGLED_0; 964 965 send: 966 err = ip_send_skb(sock_net(sk), skb); 967 if (err) { 968 if (err == -ENOBUFS && !inet->recverr) { 969 UDP_INC_STATS(sock_net(sk), 970 UDP_MIB_SNDBUFERRORS, is_udplite); 971 err = 0; 972 } 973 } else 974 UDP_INC_STATS(sock_net(sk), 975 UDP_MIB_OUTDATAGRAMS, is_udplite); 976 return err; 977 } 978 979 /* 980 * Push out all pending data as one UDP datagram. Socket is locked. 981 */ 982 int udp_push_pending_frames(struct sock *sk) 983 { 984 struct udp_sock *up = udp_sk(sk); 985 struct inet_sock *inet = inet_sk(sk); 986 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 987 struct sk_buff *skb; 988 int err = 0; 989 990 skb = ip_finish_skb(sk, fl4); 991 if (!skb) 992 goto out; 993 994 err = udp_send_skb(skb, fl4, &inet->cork.base); 995 996 out: 997 up->len = 0; 998 up->pending = 0; 999 return err; 1000 } 1001 EXPORT_SYMBOL(udp_push_pending_frames); 1002 1003 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1004 { 1005 switch (cmsg->cmsg_type) { 1006 case UDP_SEGMENT: 1007 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1008 return -EINVAL; 1009 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1010 return 0; 1011 default: 1012 return -EINVAL; 1013 } 1014 } 1015 1016 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1017 { 1018 struct cmsghdr *cmsg; 1019 bool need_ip = false; 1020 int err; 1021 1022 for_each_cmsghdr(cmsg, msg) { 1023 if (!CMSG_OK(msg, cmsg)) 1024 return -EINVAL; 1025 1026 if (cmsg->cmsg_level != SOL_UDP) { 1027 need_ip = true; 1028 continue; 1029 } 1030 1031 err = __udp_cmsg_send(cmsg, gso_size); 1032 if (err) 1033 return err; 1034 } 1035 1036 return need_ip; 1037 } 1038 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1039 1040 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1041 { 1042 struct inet_sock *inet = inet_sk(sk); 1043 struct udp_sock *up = udp_sk(sk); 1044 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1045 struct flowi4 fl4_stack; 1046 struct flowi4 *fl4; 1047 int ulen = len; 1048 struct ipcm_cookie ipc; 1049 struct rtable *rt = NULL; 1050 int free = 0; 1051 int connected = 0; 1052 __be32 daddr, faddr, saddr; 1053 __be16 dport; 1054 u8 tos; 1055 int err, is_udplite = IS_UDPLITE(sk); 1056 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 1057 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1058 struct sk_buff *skb; 1059 struct ip_options_data opt_copy; 1060 1061 if (len > 0xFFFF) 1062 return -EMSGSIZE; 1063 1064 /* 1065 * Check the flags. 1066 */ 1067 1068 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1069 return -EOPNOTSUPP; 1070 1071 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1072 1073 fl4 = &inet->cork.fl.u.ip4; 1074 if (up->pending) { 1075 /* 1076 * There are pending frames. 1077 * The socket lock must be held while it's corked. 1078 */ 1079 lock_sock(sk); 1080 if (likely(up->pending)) { 1081 if (unlikely(up->pending != AF_INET)) { 1082 release_sock(sk); 1083 return -EINVAL; 1084 } 1085 goto do_append_data; 1086 } 1087 release_sock(sk); 1088 } 1089 ulen += sizeof(struct udphdr); 1090 1091 /* 1092 * Get and verify the address. 1093 */ 1094 if (usin) { 1095 if (msg->msg_namelen < sizeof(*usin)) 1096 return -EINVAL; 1097 if (usin->sin_family != AF_INET) { 1098 if (usin->sin_family != AF_UNSPEC) 1099 return -EAFNOSUPPORT; 1100 } 1101 1102 daddr = usin->sin_addr.s_addr; 1103 dport = usin->sin_port; 1104 if (dport == 0) 1105 return -EINVAL; 1106 } else { 1107 if (sk->sk_state != TCP_ESTABLISHED) 1108 return -EDESTADDRREQ; 1109 daddr = inet->inet_daddr; 1110 dport = inet->inet_dport; 1111 /* Open fast path for connected socket. 1112 Route will not be used, if at least one option is set. 1113 */ 1114 connected = 1; 1115 } 1116 1117 ipcm_init_sk(&ipc, inet); 1118 ipc.gso_size = READ_ONCE(up->gso_size); 1119 1120 if (msg->msg_controllen) { 1121 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1122 if (err > 0) 1123 err = ip_cmsg_send(sk, msg, &ipc, 1124 sk->sk_family == AF_INET6); 1125 if (unlikely(err < 0)) { 1126 kfree(ipc.opt); 1127 return err; 1128 } 1129 if (ipc.opt) 1130 free = 1; 1131 connected = 0; 1132 } 1133 if (!ipc.opt) { 1134 struct ip_options_rcu *inet_opt; 1135 1136 rcu_read_lock(); 1137 inet_opt = rcu_dereference(inet->inet_opt); 1138 if (inet_opt) { 1139 memcpy(&opt_copy, inet_opt, 1140 sizeof(*inet_opt) + inet_opt->opt.optlen); 1141 ipc.opt = &opt_copy.opt; 1142 } 1143 rcu_read_unlock(); 1144 } 1145 1146 if (cgroup_bpf_enabled(BPF_CGROUP_UDP4_SENDMSG) && !connected) { 1147 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1148 (struct sockaddr *)usin, &ipc.addr); 1149 if (err) 1150 goto out_free; 1151 if (usin) { 1152 if (usin->sin_port == 0) { 1153 /* BPF program set invalid port. Reject it. */ 1154 err = -EINVAL; 1155 goto out_free; 1156 } 1157 daddr = usin->sin_addr.s_addr; 1158 dport = usin->sin_port; 1159 } 1160 } 1161 1162 saddr = ipc.addr; 1163 ipc.addr = faddr = daddr; 1164 1165 if (ipc.opt && ipc.opt->opt.srr) { 1166 if (!daddr) { 1167 err = -EINVAL; 1168 goto out_free; 1169 } 1170 faddr = ipc.opt->opt.faddr; 1171 connected = 0; 1172 } 1173 tos = get_rttos(&ipc, inet); 1174 if (sock_flag(sk, SOCK_LOCALROUTE) || 1175 (msg->msg_flags & MSG_DONTROUTE) || 1176 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1177 tos |= RTO_ONLINK; 1178 connected = 0; 1179 } 1180 1181 if (ipv4_is_multicast(daddr)) { 1182 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1183 ipc.oif = inet->mc_index; 1184 if (!saddr) 1185 saddr = inet->mc_addr; 1186 connected = 0; 1187 } else if (!ipc.oif) { 1188 ipc.oif = inet->uc_index; 1189 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1190 /* oif is set, packet is to local broadcast and 1191 * uc_index is set. oif is most likely set 1192 * by sk_bound_dev_if. If uc_index != oif check if the 1193 * oif is an L3 master and uc_index is an L3 slave. 1194 * If so, we want to allow the send using the uc_index. 1195 */ 1196 if (ipc.oif != inet->uc_index && 1197 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1198 inet->uc_index)) { 1199 ipc.oif = inet->uc_index; 1200 } 1201 } 1202 1203 if (connected) 1204 rt = (struct rtable *)sk_dst_check(sk, 0); 1205 1206 if (!rt) { 1207 struct net *net = sock_net(sk); 1208 __u8 flow_flags = inet_sk_flowi_flags(sk); 1209 1210 fl4 = &fl4_stack; 1211 1212 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, 1213 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1214 flow_flags, 1215 faddr, saddr, dport, inet->inet_sport, 1216 sk->sk_uid); 1217 1218 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1219 rt = ip_route_output_flow(net, fl4, sk); 1220 if (IS_ERR(rt)) { 1221 err = PTR_ERR(rt); 1222 rt = NULL; 1223 if (err == -ENETUNREACH) 1224 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1225 goto out; 1226 } 1227 1228 err = -EACCES; 1229 if ((rt->rt_flags & RTCF_BROADCAST) && 1230 !sock_flag(sk, SOCK_BROADCAST)) 1231 goto out; 1232 if (connected) 1233 sk_dst_set(sk, dst_clone(&rt->dst)); 1234 } 1235 1236 if (msg->msg_flags&MSG_CONFIRM) 1237 goto do_confirm; 1238 back_from_confirm: 1239 1240 saddr = fl4->saddr; 1241 if (!ipc.addr) 1242 daddr = ipc.addr = fl4->daddr; 1243 1244 /* Lockless fast path for the non-corking case. */ 1245 if (!corkreq) { 1246 struct inet_cork cork; 1247 1248 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1249 sizeof(struct udphdr), &ipc, &rt, 1250 &cork, msg->msg_flags); 1251 err = PTR_ERR(skb); 1252 if (!IS_ERR_OR_NULL(skb)) 1253 err = udp_send_skb(skb, fl4, &cork); 1254 goto out; 1255 } 1256 1257 lock_sock(sk); 1258 if (unlikely(up->pending)) { 1259 /* The socket is already corked while preparing it. */ 1260 /* ... which is an evident application bug. --ANK */ 1261 release_sock(sk); 1262 1263 net_dbg_ratelimited("socket already corked\n"); 1264 err = -EINVAL; 1265 goto out; 1266 } 1267 /* 1268 * Now cork the socket to pend data. 1269 */ 1270 fl4 = &inet->cork.fl.u.ip4; 1271 fl4->daddr = daddr; 1272 fl4->saddr = saddr; 1273 fl4->fl4_dport = dport; 1274 fl4->fl4_sport = inet->inet_sport; 1275 up->pending = AF_INET; 1276 1277 do_append_data: 1278 up->len += ulen; 1279 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1280 sizeof(struct udphdr), &ipc, &rt, 1281 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1282 if (err) 1283 udp_flush_pending_frames(sk); 1284 else if (!corkreq) 1285 err = udp_push_pending_frames(sk); 1286 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1287 up->pending = 0; 1288 release_sock(sk); 1289 1290 out: 1291 ip_rt_put(rt); 1292 out_free: 1293 if (free) 1294 kfree(ipc.opt); 1295 if (!err) 1296 return len; 1297 /* 1298 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1299 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1300 * we don't have a good statistic (IpOutDiscards but it can be too many 1301 * things). We could add another new stat but at least for now that 1302 * seems like overkill. 1303 */ 1304 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1305 UDP_INC_STATS(sock_net(sk), 1306 UDP_MIB_SNDBUFERRORS, is_udplite); 1307 } 1308 return err; 1309 1310 do_confirm: 1311 if (msg->msg_flags & MSG_PROBE) 1312 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1313 if (!(msg->msg_flags&MSG_PROBE) || len) 1314 goto back_from_confirm; 1315 err = 0; 1316 goto out; 1317 } 1318 EXPORT_SYMBOL(udp_sendmsg); 1319 1320 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1321 size_t size, int flags) 1322 { 1323 struct inet_sock *inet = inet_sk(sk); 1324 struct udp_sock *up = udp_sk(sk); 1325 int ret; 1326 1327 if (flags & MSG_SENDPAGE_NOTLAST) 1328 flags |= MSG_MORE; 1329 1330 if (!up->pending) { 1331 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1332 1333 /* Call udp_sendmsg to specify destination address which 1334 * sendpage interface can't pass. 1335 * This will succeed only when the socket is connected. 1336 */ 1337 ret = udp_sendmsg(sk, &msg, 0); 1338 if (ret < 0) 1339 return ret; 1340 } 1341 1342 lock_sock(sk); 1343 1344 if (unlikely(!up->pending)) { 1345 release_sock(sk); 1346 1347 net_dbg_ratelimited("cork failed\n"); 1348 return -EINVAL; 1349 } 1350 1351 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1352 page, offset, size, flags); 1353 if (ret == -EOPNOTSUPP) { 1354 release_sock(sk); 1355 return sock_no_sendpage(sk->sk_socket, page, offset, 1356 size, flags); 1357 } 1358 if (ret < 0) { 1359 udp_flush_pending_frames(sk); 1360 goto out; 1361 } 1362 1363 up->len += size; 1364 if (!(up->corkflag || (flags&MSG_MORE))) 1365 ret = udp_push_pending_frames(sk); 1366 if (!ret) 1367 ret = size; 1368 out: 1369 release_sock(sk); 1370 return ret; 1371 } 1372 1373 #define UDP_SKB_IS_STATELESS 0x80000000 1374 1375 /* all head states (dst, sk, nf conntrack) except skb extensions are 1376 * cleared by udp_rcv(). 1377 * 1378 * We need to preserve secpath, if present, to eventually process 1379 * IP_CMSG_PASSSEC at recvmsg() time. 1380 * 1381 * Other extensions can be cleared. 1382 */ 1383 static bool udp_try_make_stateless(struct sk_buff *skb) 1384 { 1385 if (!skb_has_extensions(skb)) 1386 return true; 1387 1388 if (!secpath_exists(skb)) { 1389 skb_ext_reset(skb); 1390 return true; 1391 } 1392 1393 return false; 1394 } 1395 1396 static void udp_set_dev_scratch(struct sk_buff *skb) 1397 { 1398 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1399 1400 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1401 scratch->_tsize_state = skb->truesize; 1402 #if BITS_PER_LONG == 64 1403 scratch->len = skb->len; 1404 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1405 scratch->is_linear = !skb_is_nonlinear(skb); 1406 #endif 1407 if (udp_try_make_stateless(skb)) 1408 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1409 } 1410 1411 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1412 { 1413 /* We come here after udp_lib_checksum_complete() returned 0. 1414 * This means that __skb_checksum_complete() might have 1415 * set skb->csum_valid to 1. 1416 * On 64bit platforms, we can set csum_unnecessary 1417 * to true, but only if the skb is not shared. 1418 */ 1419 #if BITS_PER_LONG == 64 1420 if (!skb_shared(skb)) 1421 udp_skb_scratch(skb)->csum_unnecessary = true; 1422 #endif 1423 } 1424 1425 static int udp_skb_truesize(struct sk_buff *skb) 1426 { 1427 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1428 } 1429 1430 static bool udp_skb_has_head_state(struct sk_buff *skb) 1431 { 1432 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1433 } 1434 1435 /* fully reclaim rmem/fwd memory allocated for skb */ 1436 static void udp_rmem_release(struct sock *sk, int size, int partial, 1437 bool rx_queue_lock_held) 1438 { 1439 struct udp_sock *up = udp_sk(sk); 1440 struct sk_buff_head *sk_queue; 1441 int amt; 1442 1443 if (likely(partial)) { 1444 up->forward_deficit += size; 1445 size = up->forward_deficit; 1446 if (size < (sk->sk_rcvbuf >> 2) && 1447 !skb_queue_empty(&up->reader_queue)) 1448 return; 1449 } else { 1450 size += up->forward_deficit; 1451 } 1452 up->forward_deficit = 0; 1453 1454 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1455 * if the called don't held it already 1456 */ 1457 sk_queue = &sk->sk_receive_queue; 1458 if (!rx_queue_lock_held) 1459 spin_lock(&sk_queue->lock); 1460 1461 1462 sk->sk_forward_alloc += size; 1463 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1464 sk->sk_forward_alloc -= amt; 1465 1466 if (amt) 1467 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1468 1469 atomic_sub(size, &sk->sk_rmem_alloc); 1470 1471 /* this can save us from acquiring the rx queue lock on next receive */ 1472 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1473 1474 if (!rx_queue_lock_held) 1475 spin_unlock(&sk_queue->lock); 1476 } 1477 1478 /* Note: called with reader_queue.lock held. 1479 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1480 * This avoids a cache line miss while receive_queue lock is held. 1481 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1482 */ 1483 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1484 { 1485 prefetch(&skb->data); 1486 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1487 } 1488 EXPORT_SYMBOL(udp_skb_destructor); 1489 1490 /* as above, but the caller held the rx queue lock, too */ 1491 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1492 { 1493 prefetch(&skb->data); 1494 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1495 } 1496 1497 /* Idea of busylocks is to let producers grab an extra spinlock 1498 * to relieve pressure on the receive_queue spinlock shared by consumer. 1499 * Under flood, this means that only one producer can be in line 1500 * trying to acquire the receive_queue spinlock. 1501 * These busylock can be allocated on a per cpu manner, instead of a 1502 * per socket one (that would consume a cache line per socket) 1503 */ 1504 static int udp_busylocks_log __read_mostly; 1505 static spinlock_t *udp_busylocks __read_mostly; 1506 1507 static spinlock_t *busylock_acquire(void *ptr) 1508 { 1509 spinlock_t *busy; 1510 1511 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1512 spin_lock(busy); 1513 return busy; 1514 } 1515 1516 static void busylock_release(spinlock_t *busy) 1517 { 1518 if (busy) 1519 spin_unlock(busy); 1520 } 1521 1522 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1523 { 1524 struct sk_buff_head *list = &sk->sk_receive_queue; 1525 int rmem, delta, amt, err = -ENOMEM; 1526 spinlock_t *busy = NULL; 1527 int size; 1528 1529 /* try to avoid the costly atomic add/sub pair when the receive 1530 * queue is full; always allow at least a packet 1531 */ 1532 rmem = atomic_read(&sk->sk_rmem_alloc); 1533 if (rmem > sk->sk_rcvbuf) 1534 goto drop; 1535 1536 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1537 * having linear skbs : 1538 * - Reduce memory overhead and thus increase receive queue capacity 1539 * - Less cache line misses at copyout() time 1540 * - Less work at consume_skb() (less alien page frag freeing) 1541 */ 1542 if (rmem > (sk->sk_rcvbuf >> 1)) { 1543 skb_condense(skb); 1544 1545 busy = busylock_acquire(sk); 1546 } 1547 size = skb->truesize; 1548 udp_set_dev_scratch(skb); 1549 1550 /* we drop only if the receive buf is full and the receive 1551 * queue contains some other skb 1552 */ 1553 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1554 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1555 goto uncharge_drop; 1556 1557 spin_lock(&list->lock); 1558 if (size >= sk->sk_forward_alloc) { 1559 amt = sk_mem_pages(size); 1560 delta = amt << SK_MEM_QUANTUM_SHIFT; 1561 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1562 err = -ENOBUFS; 1563 spin_unlock(&list->lock); 1564 goto uncharge_drop; 1565 } 1566 1567 sk->sk_forward_alloc += delta; 1568 } 1569 1570 sk->sk_forward_alloc -= size; 1571 1572 /* no need to setup a destructor, we will explicitly release the 1573 * forward allocated memory on dequeue 1574 */ 1575 sock_skb_set_dropcount(sk, skb); 1576 1577 __skb_queue_tail(list, skb); 1578 spin_unlock(&list->lock); 1579 1580 if (!sock_flag(sk, SOCK_DEAD)) 1581 sk->sk_data_ready(sk); 1582 1583 busylock_release(busy); 1584 return 0; 1585 1586 uncharge_drop: 1587 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1588 1589 drop: 1590 atomic_inc(&sk->sk_drops); 1591 busylock_release(busy); 1592 return err; 1593 } 1594 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1595 1596 void udp_destruct_sock(struct sock *sk) 1597 { 1598 /* reclaim completely the forward allocated memory */ 1599 struct udp_sock *up = udp_sk(sk); 1600 unsigned int total = 0; 1601 struct sk_buff *skb; 1602 1603 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1604 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1605 total += skb->truesize; 1606 kfree_skb(skb); 1607 } 1608 udp_rmem_release(sk, total, 0, true); 1609 1610 inet_sock_destruct(sk); 1611 } 1612 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1613 1614 int udp_init_sock(struct sock *sk) 1615 { 1616 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1617 sk->sk_destruct = udp_destruct_sock; 1618 return 0; 1619 } 1620 EXPORT_SYMBOL_GPL(udp_init_sock); 1621 1622 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1623 { 1624 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1625 bool slow = lock_sock_fast(sk); 1626 1627 sk_peek_offset_bwd(sk, len); 1628 unlock_sock_fast(sk, slow); 1629 } 1630 1631 if (!skb_unref(skb)) 1632 return; 1633 1634 /* In the more common cases we cleared the head states previously, 1635 * see __udp_queue_rcv_skb(). 1636 */ 1637 if (unlikely(udp_skb_has_head_state(skb))) 1638 skb_release_head_state(skb); 1639 __consume_stateless_skb(skb); 1640 } 1641 EXPORT_SYMBOL_GPL(skb_consume_udp); 1642 1643 static struct sk_buff *__first_packet_length(struct sock *sk, 1644 struct sk_buff_head *rcvq, 1645 int *total) 1646 { 1647 struct sk_buff *skb; 1648 1649 while ((skb = skb_peek(rcvq)) != NULL) { 1650 if (udp_lib_checksum_complete(skb)) { 1651 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1652 IS_UDPLITE(sk)); 1653 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1654 IS_UDPLITE(sk)); 1655 atomic_inc(&sk->sk_drops); 1656 __skb_unlink(skb, rcvq); 1657 *total += skb->truesize; 1658 kfree_skb(skb); 1659 } else { 1660 udp_skb_csum_unnecessary_set(skb); 1661 break; 1662 } 1663 } 1664 return skb; 1665 } 1666 1667 /** 1668 * first_packet_length - return length of first packet in receive queue 1669 * @sk: socket 1670 * 1671 * Drops all bad checksum frames, until a valid one is found. 1672 * Returns the length of found skb, or -1 if none is found. 1673 */ 1674 static int first_packet_length(struct sock *sk) 1675 { 1676 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1677 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1678 struct sk_buff *skb; 1679 int total = 0; 1680 int res; 1681 1682 spin_lock_bh(&rcvq->lock); 1683 skb = __first_packet_length(sk, rcvq, &total); 1684 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1685 spin_lock(&sk_queue->lock); 1686 skb_queue_splice_tail_init(sk_queue, rcvq); 1687 spin_unlock(&sk_queue->lock); 1688 1689 skb = __first_packet_length(sk, rcvq, &total); 1690 } 1691 res = skb ? skb->len : -1; 1692 if (total) 1693 udp_rmem_release(sk, total, 1, false); 1694 spin_unlock_bh(&rcvq->lock); 1695 return res; 1696 } 1697 1698 /* 1699 * IOCTL requests applicable to the UDP protocol 1700 */ 1701 1702 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1703 { 1704 switch (cmd) { 1705 case SIOCOUTQ: 1706 { 1707 int amount = sk_wmem_alloc_get(sk); 1708 1709 return put_user(amount, (int __user *)arg); 1710 } 1711 1712 case SIOCINQ: 1713 { 1714 int amount = max_t(int, 0, first_packet_length(sk)); 1715 1716 return put_user(amount, (int __user *)arg); 1717 } 1718 1719 default: 1720 return -ENOIOCTLCMD; 1721 } 1722 1723 return 0; 1724 } 1725 EXPORT_SYMBOL(udp_ioctl); 1726 1727 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1728 int noblock, int *off, int *err) 1729 { 1730 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1731 struct sk_buff_head *queue; 1732 struct sk_buff *last; 1733 long timeo; 1734 int error; 1735 1736 queue = &udp_sk(sk)->reader_queue; 1737 flags |= noblock ? MSG_DONTWAIT : 0; 1738 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1739 do { 1740 struct sk_buff *skb; 1741 1742 error = sock_error(sk); 1743 if (error) 1744 break; 1745 1746 error = -EAGAIN; 1747 do { 1748 spin_lock_bh(&queue->lock); 1749 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1750 err, &last); 1751 if (skb) { 1752 if (!(flags & MSG_PEEK)) 1753 udp_skb_destructor(sk, skb); 1754 spin_unlock_bh(&queue->lock); 1755 return skb; 1756 } 1757 1758 if (skb_queue_empty_lockless(sk_queue)) { 1759 spin_unlock_bh(&queue->lock); 1760 goto busy_check; 1761 } 1762 1763 /* refill the reader queue and walk it again 1764 * keep both queues locked to avoid re-acquiring 1765 * the sk_receive_queue lock if fwd memory scheduling 1766 * is needed. 1767 */ 1768 spin_lock(&sk_queue->lock); 1769 skb_queue_splice_tail_init(sk_queue, queue); 1770 1771 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1772 err, &last); 1773 if (skb && !(flags & MSG_PEEK)) 1774 udp_skb_dtor_locked(sk, skb); 1775 spin_unlock(&sk_queue->lock); 1776 spin_unlock_bh(&queue->lock); 1777 if (skb) 1778 return skb; 1779 1780 busy_check: 1781 if (!sk_can_busy_loop(sk)) 1782 break; 1783 1784 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1785 } while (!skb_queue_empty_lockless(sk_queue)); 1786 1787 /* sk_queue is empty, reader_queue may contain peeked packets */ 1788 } while (timeo && 1789 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1790 &error, &timeo, 1791 (struct sk_buff *)sk_queue)); 1792 1793 *err = error; 1794 return NULL; 1795 } 1796 EXPORT_SYMBOL(__skb_recv_udp); 1797 1798 int udp_read_sock(struct sock *sk, read_descriptor_t *desc, 1799 sk_read_actor_t recv_actor) 1800 { 1801 int copied = 0; 1802 1803 while (1) { 1804 struct sk_buff *skb; 1805 int err, used; 1806 1807 skb = skb_recv_udp(sk, 0, 1, &err); 1808 if (!skb) 1809 return err; 1810 used = recv_actor(desc, skb, 0, skb->len); 1811 if (used <= 0) { 1812 if (!copied) 1813 copied = used; 1814 kfree_skb(skb); 1815 break; 1816 } else if (used <= skb->len) { 1817 copied += used; 1818 } 1819 1820 kfree_skb(skb); 1821 if (!desc->count) 1822 break; 1823 } 1824 1825 return copied; 1826 } 1827 EXPORT_SYMBOL(udp_read_sock); 1828 1829 /* 1830 * This should be easy, if there is something there we 1831 * return it, otherwise we block. 1832 */ 1833 1834 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1835 int flags, int *addr_len) 1836 { 1837 struct inet_sock *inet = inet_sk(sk); 1838 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1839 struct sk_buff *skb; 1840 unsigned int ulen, copied; 1841 int off, err, peeking = flags & MSG_PEEK; 1842 int is_udplite = IS_UDPLITE(sk); 1843 bool checksum_valid = false; 1844 1845 if (flags & MSG_ERRQUEUE) 1846 return ip_recv_error(sk, msg, len, addr_len); 1847 1848 try_again: 1849 off = sk_peek_offset(sk, flags); 1850 skb = __skb_recv_udp(sk, flags, noblock, &off, &err); 1851 if (!skb) 1852 return err; 1853 1854 ulen = udp_skb_len(skb); 1855 copied = len; 1856 if (copied > ulen - off) 1857 copied = ulen - off; 1858 else if (copied < ulen) 1859 msg->msg_flags |= MSG_TRUNC; 1860 1861 /* 1862 * If checksum is needed at all, try to do it while copying the 1863 * data. If the data is truncated, or if we only want a partial 1864 * coverage checksum (UDP-Lite), do it before the copy. 1865 */ 1866 1867 if (copied < ulen || peeking || 1868 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1869 checksum_valid = udp_skb_csum_unnecessary(skb) || 1870 !__udp_lib_checksum_complete(skb); 1871 if (!checksum_valid) 1872 goto csum_copy_err; 1873 } 1874 1875 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1876 if (udp_skb_is_linear(skb)) 1877 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1878 else 1879 err = skb_copy_datagram_msg(skb, off, msg, copied); 1880 } else { 1881 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1882 1883 if (err == -EINVAL) 1884 goto csum_copy_err; 1885 } 1886 1887 if (unlikely(err)) { 1888 if (!peeking) { 1889 atomic_inc(&sk->sk_drops); 1890 UDP_INC_STATS(sock_net(sk), 1891 UDP_MIB_INERRORS, is_udplite); 1892 } 1893 kfree_skb(skb); 1894 return err; 1895 } 1896 1897 if (!peeking) 1898 UDP_INC_STATS(sock_net(sk), 1899 UDP_MIB_INDATAGRAMS, is_udplite); 1900 1901 sock_recv_ts_and_drops(msg, sk, skb); 1902 1903 /* Copy the address. */ 1904 if (sin) { 1905 sin->sin_family = AF_INET; 1906 sin->sin_port = udp_hdr(skb)->source; 1907 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1908 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1909 *addr_len = sizeof(*sin); 1910 1911 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1912 (struct sockaddr *)sin); 1913 } 1914 1915 if (udp_sk(sk)->gro_enabled) 1916 udp_cmsg_recv(msg, sk, skb); 1917 1918 if (inet->cmsg_flags) 1919 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1920 1921 err = copied; 1922 if (flags & MSG_TRUNC) 1923 err = ulen; 1924 1925 skb_consume_udp(sk, skb, peeking ? -err : err); 1926 return err; 1927 1928 csum_copy_err: 1929 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1930 udp_skb_destructor)) { 1931 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1932 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1933 } 1934 kfree_skb(skb); 1935 1936 /* starting over for a new packet, but check if we need to yield */ 1937 cond_resched(); 1938 msg->msg_flags &= ~MSG_TRUNC; 1939 goto try_again; 1940 } 1941 1942 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1943 { 1944 /* This check is replicated from __ip4_datagram_connect() and 1945 * intended to prevent BPF program called below from accessing bytes 1946 * that are out of the bound specified by user in addr_len. 1947 */ 1948 if (addr_len < sizeof(struct sockaddr_in)) 1949 return -EINVAL; 1950 1951 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1952 } 1953 EXPORT_SYMBOL(udp_pre_connect); 1954 1955 int __udp_disconnect(struct sock *sk, int flags) 1956 { 1957 struct inet_sock *inet = inet_sk(sk); 1958 /* 1959 * 1003.1g - break association. 1960 */ 1961 1962 sk->sk_state = TCP_CLOSE; 1963 inet->inet_daddr = 0; 1964 inet->inet_dport = 0; 1965 sock_rps_reset_rxhash(sk); 1966 sk->sk_bound_dev_if = 0; 1967 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1968 inet_reset_saddr(sk); 1969 if (sk->sk_prot->rehash && 1970 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1971 sk->sk_prot->rehash(sk); 1972 } 1973 1974 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1975 sk->sk_prot->unhash(sk); 1976 inet->inet_sport = 0; 1977 } 1978 sk_dst_reset(sk); 1979 return 0; 1980 } 1981 EXPORT_SYMBOL(__udp_disconnect); 1982 1983 int udp_disconnect(struct sock *sk, int flags) 1984 { 1985 lock_sock(sk); 1986 __udp_disconnect(sk, flags); 1987 release_sock(sk); 1988 return 0; 1989 } 1990 EXPORT_SYMBOL(udp_disconnect); 1991 1992 void udp_lib_unhash(struct sock *sk) 1993 { 1994 if (sk_hashed(sk)) { 1995 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1996 struct udp_hslot *hslot, *hslot2; 1997 1998 hslot = udp_hashslot(udptable, sock_net(sk), 1999 udp_sk(sk)->udp_port_hash); 2000 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2001 2002 spin_lock_bh(&hslot->lock); 2003 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2004 reuseport_detach_sock(sk); 2005 if (sk_del_node_init_rcu(sk)) { 2006 hslot->count--; 2007 inet_sk(sk)->inet_num = 0; 2008 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2009 2010 spin_lock(&hslot2->lock); 2011 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2012 hslot2->count--; 2013 spin_unlock(&hslot2->lock); 2014 } 2015 spin_unlock_bh(&hslot->lock); 2016 } 2017 } 2018 EXPORT_SYMBOL(udp_lib_unhash); 2019 2020 /* 2021 * inet_rcv_saddr was changed, we must rehash secondary hash 2022 */ 2023 void udp_lib_rehash(struct sock *sk, u16 newhash) 2024 { 2025 if (sk_hashed(sk)) { 2026 struct udp_table *udptable = sk->sk_prot->h.udp_table; 2027 struct udp_hslot *hslot, *hslot2, *nhslot2; 2028 2029 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2030 nhslot2 = udp_hashslot2(udptable, newhash); 2031 udp_sk(sk)->udp_portaddr_hash = newhash; 2032 2033 if (hslot2 != nhslot2 || 2034 rcu_access_pointer(sk->sk_reuseport_cb)) { 2035 hslot = udp_hashslot(udptable, sock_net(sk), 2036 udp_sk(sk)->udp_port_hash); 2037 /* we must lock primary chain too */ 2038 spin_lock_bh(&hslot->lock); 2039 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2040 reuseport_detach_sock(sk); 2041 2042 if (hslot2 != nhslot2) { 2043 spin_lock(&hslot2->lock); 2044 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2045 hslot2->count--; 2046 spin_unlock(&hslot2->lock); 2047 2048 spin_lock(&nhslot2->lock); 2049 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2050 &nhslot2->head); 2051 nhslot2->count++; 2052 spin_unlock(&nhslot2->lock); 2053 } 2054 2055 spin_unlock_bh(&hslot->lock); 2056 } 2057 } 2058 } 2059 EXPORT_SYMBOL(udp_lib_rehash); 2060 2061 void udp_v4_rehash(struct sock *sk) 2062 { 2063 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2064 inet_sk(sk)->inet_rcv_saddr, 2065 inet_sk(sk)->inet_num); 2066 udp_lib_rehash(sk, new_hash); 2067 } 2068 2069 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2070 { 2071 int rc; 2072 2073 if (inet_sk(sk)->inet_daddr) { 2074 sock_rps_save_rxhash(sk, skb); 2075 sk_mark_napi_id(sk, skb); 2076 sk_incoming_cpu_update(sk); 2077 } else { 2078 sk_mark_napi_id_once(sk, skb); 2079 } 2080 2081 rc = __udp_enqueue_schedule_skb(sk, skb); 2082 if (rc < 0) { 2083 int is_udplite = IS_UDPLITE(sk); 2084 2085 /* Note that an ENOMEM error is charged twice */ 2086 if (rc == -ENOMEM) 2087 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2088 is_udplite); 2089 else 2090 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2091 is_udplite); 2092 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2093 kfree_skb(skb); 2094 trace_udp_fail_queue_rcv_skb(rc, sk); 2095 return -1; 2096 } 2097 2098 return 0; 2099 } 2100 2101 /* returns: 2102 * -1: error 2103 * 0: success 2104 * >0: "udp encap" protocol resubmission 2105 * 2106 * Note that in the success and error cases, the skb is assumed to 2107 * have either been requeued or freed. 2108 */ 2109 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2110 { 2111 struct udp_sock *up = udp_sk(sk); 2112 int is_udplite = IS_UDPLITE(sk); 2113 2114 /* 2115 * Charge it to the socket, dropping if the queue is full. 2116 */ 2117 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 2118 goto drop; 2119 nf_reset_ct(skb); 2120 2121 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2122 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2123 2124 /* 2125 * This is an encapsulation socket so pass the skb to 2126 * the socket's udp_encap_rcv() hook. Otherwise, just 2127 * fall through and pass this up the UDP socket. 2128 * up->encap_rcv() returns the following value: 2129 * =0 if skb was successfully passed to the encap 2130 * handler or was discarded by it. 2131 * >0 if skb should be passed on to UDP. 2132 * <0 if skb should be resubmitted as proto -N 2133 */ 2134 2135 /* if we're overly short, let UDP handle it */ 2136 encap_rcv = READ_ONCE(up->encap_rcv); 2137 if (encap_rcv) { 2138 int ret; 2139 2140 /* Verify checksum before giving to encap */ 2141 if (udp_lib_checksum_complete(skb)) 2142 goto csum_error; 2143 2144 ret = encap_rcv(sk, skb); 2145 if (ret <= 0) { 2146 __UDP_INC_STATS(sock_net(sk), 2147 UDP_MIB_INDATAGRAMS, 2148 is_udplite); 2149 return -ret; 2150 } 2151 } 2152 2153 /* FALLTHROUGH -- it's a UDP Packet */ 2154 } 2155 2156 /* 2157 * UDP-Lite specific tests, ignored on UDP sockets 2158 */ 2159 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2160 2161 /* 2162 * MIB statistics other than incrementing the error count are 2163 * disabled for the following two types of errors: these depend 2164 * on the application settings, not on the functioning of the 2165 * protocol stack as such. 2166 * 2167 * RFC 3828 here recommends (sec 3.3): "There should also be a 2168 * way ... to ... at least let the receiving application block 2169 * delivery of packets with coverage values less than a value 2170 * provided by the application." 2171 */ 2172 if (up->pcrlen == 0) { /* full coverage was set */ 2173 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2174 UDP_SKB_CB(skb)->cscov, skb->len); 2175 goto drop; 2176 } 2177 /* The next case involves violating the min. coverage requested 2178 * by the receiver. This is subtle: if receiver wants x and x is 2179 * greater than the buffersize/MTU then receiver will complain 2180 * that it wants x while sender emits packets of smaller size y. 2181 * Therefore the above ...()->partial_cov statement is essential. 2182 */ 2183 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2184 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2185 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2186 goto drop; 2187 } 2188 } 2189 2190 prefetch(&sk->sk_rmem_alloc); 2191 if (rcu_access_pointer(sk->sk_filter) && 2192 udp_lib_checksum_complete(skb)) 2193 goto csum_error; 2194 2195 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 2196 goto drop; 2197 2198 udp_csum_pull_header(skb); 2199 2200 ipv4_pktinfo_prepare(sk, skb); 2201 return __udp_queue_rcv_skb(sk, skb); 2202 2203 csum_error: 2204 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2205 drop: 2206 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2207 atomic_inc(&sk->sk_drops); 2208 kfree_skb(skb); 2209 return -1; 2210 } 2211 2212 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2213 { 2214 struct sk_buff *next, *segs; 2215 int ret; 2216 2217 if (likely(!udp_unexpected_gso(sk, skb))) 2218 return udp_queue_rcv_one_skb(sk, skb); 2219 2220 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2221 __skb_push(skb, -skb_mac_offset(skb)); 2222 segs = udp_rcv_segment(sk, skb, true); 2223 skb_list_walk_safe(segs, skb, next) { 2224 __skb_pull(skb, skb_transport_offset(skb)); 2225 2226 udp_post_segment_fix_csum(skb); 2227 ret = udp_queue_rcv_one_skb(sk, skb); 2228 if (ret > 0) 2229 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2230 } 2231 return 0; 2232 } 2233 2234 /* For TCP sockets, sk_rx_dst is protected by socket lock 2235 * For UDP, we use xchg() to guard against concurrent changes. 2236 */ 2237 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2238 { 2239 struct dst_entry *old; 2240 2241 if (dst_hold_safe(dst)) { 2242 old = xchg(&sk->sk_rx_dst, dst); 2243 dst_release(old); 2244 return old != dst; 2245 } 2246 return false; 2247 } 2248 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2249 2250 /* 2251 * Multicasts and broadcasts go to each listener. 2252 * 2253 * Note: called only from the BH handler context. 2254 */ 2255 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2256 struct udphdr *uh, 2257 __be32 saddr, __be32 daddr, 2258 struct udp_table *udptable, 2259 int proto) 2260 { 2261 struct sock *sk, *first = NULL; 2262 unsigned short hnum = ntohs(uh->dest); 2263 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2264 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2265 unsigned int offset = offsetof(typeof(*sk), sk_node); 2266 int dif = skb->dev->ifindex; 2267 int sdif = inet_sdif(skb); 2268 struct hlist_node *node; 2269 struct sk_buff *nskb; 2270 2271 if (use_hash2) { 2272 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2273 udptable->mask; 2274 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2275 start_lookup: 2276 hslot = &udptable->hash2[hash2]; 2277 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2278 } 2279 2280 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2281 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2282 uh->source, saddr, dif, sdif, hnum)) 2283 continue; 2284 2285 if (!first) { 2286 first = sk; 2287 continue; 2288 } 2289 nskb = skb_clone(skb, GFP_ATOMIC); 2290 2291 if (unlikely(!nskb)) { 2292 atomic_inc(&sk->sk_drops); 2293 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2294 IS_UDPLITE(sk)); 2295 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2296 IS_UDPLITE(sk)); 2297 continue; 2298 } 2299 if (udp_queue_rcv_skb(sk, nskb) > 0) 2300 consume_skb(nskb); 2301 } 2302 2303 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2304 if (use_hash2 && hash2 != hash2_any) { 2305 hash2 = hash2_any; 2306 goto start_lookup; 2307 } 2308 2309 if (first) { 2310 if (udp_queue_rcv_skb(first, skb) > 0) 2311 consume_skb(skb); 2312 } else { 2313 kfree_skb(skb); 2314 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2315 proto == IPPROTO_UDPLITE); 2316 } 2317 return 0; 2318 } 2319 2320 /* Initialize UDP checksum. If exited with zero value (success), 2321 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2322 * Otherwise, csum completion requires checksumming packet body, 2323 * including udp header and folding it to skb->csum. 2324 */ 2325 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2326 int proto) 2327 { 2328 int err; 2329 2330 UDP_SKB_CB(skb)->partial_cov = 0; 2331 UDP_SKB_CB(skb)->cscov = skb->len; 2332 2333 if (proto == IPPROTO_UDPLITE) { 2334 err = udplite_checksum_init(skb, uh); 2335 if (err) 2336 return err; 2337 2338 if (UDP_SKB_CB(skb)->partial_cov) { 2339 skb->csum = inet_compute_pseudo(skb, proto); 2340 return 0; 2341 } 2342 } 2343 2344 /* Note, we are only interested in != 0 or == 0, thus the 2345 * force to int. 2346 */ 2347 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2348 inet_compute_pseudo); 2349 if (err) 2350 return err; 2351 2352 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2353 /* If SW calculated the value, we know it's bad */ 2354 if (skb->csum_complete_sw) 2355 return 1; 2356 2357 /* HW says the value is bad. Let's validate that. 2358 * skb->csum is no longer the full packet checksum, 2359 * so don't treat it as such. 2360 */ 2361 skb_checksum_complete_unset(skb); 2362 } 2363 2364 return 0; 2365 } 2366 2367 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2368 * return code conversion for ip layer consumption 2369 */ 2370 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2371 struct udphdr *uh) 2372 { 2373 int ret; 2374 2375 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2376 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2377 2378 ret = udp_queue_rcv_skb(sk, skb); 2379 2380 /* a return value > 0 means to resubmit the input, but 2381 * it wants the return to be -protocol, or 0 2382 */ 2383 if (ret > 0) 2384 return -ret; 2385 return 0; 2386 } 2387 2388 /* 2389 * All we need to do is get the socket, and then do a checksum. 2390 */ 2391 2392 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2393 int proto) 2394 { 2395 struct sock *sk; 2396 struct udphdr *uh; 2397 unsigned short ulen; 2398 struct rtable *rt = skb_rtable(skb); 2399 __be32 saddr, daddr; 2400 struct net *net = dev_net(skb->dev); 2401 bool refcounted; 2402 2403 /* 2404 * Validate the packet. 2405 */ 2406 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2407 goto drop; /* No space for header. */ 2408 2409 uh = udp_hdr(skb); 2410 ulen = ntohs(uh->len); 2411 saddr = ip_hdr(skb)->saddr; 2412 daddr = ip_hdr(skb)->daddr; 2413 2414 if (ulen > skb->len) 2415 goto short_packet; 2416 2417 if (proto == IPPROTO_UDP) { 2418 /* UDP validates ulen. */ 2419 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2420 goto short_packet; 2421 uh = udp_hdr(skb); 2422 } 2423 2424 if (udp4_csum_init(skb, uh, proto)) 2425 goto csum_error; 2426 2427 sk = skb_steal_sock(skb, &refcounted); 2428 if (sk) { 2429 struct dst_entry *dst = skb_dst(skb); 2430 int ret; 2431 2432 if (unlikely(sk->sk_rx_dst != dst)) 2433 udp_sk_rx_dst_set(sk, dst); 2434 2435 ret = udp_unicast_rcv_skb(sk, skb, uh); 2436 if (refcounted) 2437 sock_put(sk); 2438 return ret; 2439 } 2440 2441 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2442 return __udp4_lib_mcast_deliver(net, skb, uh, 2443 saddr, daddr, udptable, proto); 2444 2445 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2446 if (sk) 2447 return udp_unicast_rcv_skb(sk, skb, uh); 2448 2449 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2450 goto drop; 2451 nf_reset_ct(skb); 2452 2453 /* No socket. Drop packet silently, if checksum is wrong */ 2454 if (udp_lib_checksum_complete(skb)) 2455 goto csum_error; 2456 2457 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2458 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2459 2460 /* 2461 * Hmm. We got an UDP packet to a port to which we 2462 * don't wanna listen. Ignore it. 2463 */ 2464 kfree_skb(skb); 2465 return 0; 2466 2467 short_packet: 2468 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2469 proto == IPPROTO_UDPLITE ? "Lite" : "", 2470 &saddr, ntohs(uh->source), 2471 ulen, skb->len, 2472 &daddr, ntohs(uh->dest)); 2473 goto drop; 2474 2475 csum_error: 2476 /* 2477 * RFC1122: OK. Discards the bad packet silently (as far as 2478 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2479 */ 2480 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2481 proto == IPPROTO_UDPLITE ? "Lite" : "", 2482 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2483 ulen); 2484 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2485 drop: 2486 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2487 kfree_skb(skb); 2488 return 0; 2489 } 2490 2491 /* We can only early demux multicast if there is a single matching socket. 2492 * If more than one socket found returns NULL 2493 */ 2494 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2495 __be16 loc_port, __be32 loc_addr, 2496 __be16 rmt_port, __be32 rmt_addr, 2497 int dif, int sdif) 2498 { 2499 struct sock *sk, *result; 2500 unsigned short hnum = ntohs(loc_port); 2501 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2502 struct udp_hslot *hslot = &udp_table.hash[slot]; 2503 2504 /* Do not bother scanning a too big list */ 2505 if (hslot->count > 10) 2506 return NULL; 2507 2508 result = NULL; 2509 sk_for_each_rcu(sk, &hslot->head) { 2510 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2511 rmt_port, rmt_addr, dif, sdif, hnum)) { 2512 if (result) 2513 return NULL; 2514 result = sk; 2515 } 2516 } 2517 2518 return result; 2519 } 2520 2521 /* For unicast we should only early demux connected sockets or we can 2522 * break forwarding setups. The chains here can be long so only check 2523 * if the first socket is an exact match and if not move on. 2524 */ 2525 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2526 __be16 loc_port, __be32 loc_addr, 2527 __be16 rmt_port, __be32 rmt_addr, 2528 int dif, int sdif) 2529 { 2530 unsigned short hnum = ntohs(loc_port); 2531 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2532 unsigned int slot2 = hash2 & udp_table.mask; 2533 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2534 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2535 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2536 struct sock *sk; 2537 2538 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2539 if (INET_MATCH(sk, net, acookie, rmt_addr, 2540 loc_addr, ports, dif, sdif)) 2541 return sk; 2542 /* Only check first socket in chain */ 2543 break; 2544 } 2545 return NULL; 2546 } 2547 2548 int udp_v4_early_demux(struct sk_buff *skb) 2549 { 2550 struct net *net = dev_net(skb->dev); 2551 struct in_device *in_dev = NULL; 2552 const struct iphdr *iph; 2553 const struct udphdr *uh; 2554 struct sock *sk = NULL; 2555 struct dst_entry *dst; 2556 int dif = skb->dev->ifindex; 2557 int sdif = inet_sdif(skb); 2558 int ours; 2559 2560 /* validate the packet */ 2561 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2562 return 0; 2563 2564 iph = ip_hdr(skb); 2565 uh = udp_hdr(skb); 2566 2567 if (skb->pkt_type == PACKET_MULTICAST) { 2568 in_dev = __in_dev_get_rcu(skb->dev); 2569 2570 if (!in_dev) 2571 return 0; 2572 2573 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2574 iph->protocol); 2575 if (!ours) 2576 return 0; 2577 2578 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2579 uh->source, iph->saddr, 2580 dif, sdif); 2581 } else if (skb->pkt_type == PACKET_HOST) { 2582 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2583 uh->source, iph->saddr, dif, sdif); 2584 } 2585 2586 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2587 return 0; 2588 2589 skb->sk = sk; 2590 skb->destructor = sock_efree; 2591 dst = READ_ONCE(sk->sk_rx_dst); 2592 2593 if (dst) 2594 dst = dst_check(dst, 0); 2595 if (dst) { 2596 u32 itag = 0; 2597 2598 /* set noref for now. 2599 * any place which wants to hold dst has to call 2600 * dst_hold_safe() 2601 */ 2602 skb_dst_set_noref(skb, dst); 2603 2604 /* for unconnected multicast sockets we need to validate 2605 * the source on each packet 2606 */ 2607 if (!inet_sk(sk)->inet_daddr && in_dev) 2608 return ip_mc_validate_source(skb, iph->daddr, 2609 iph->saddr, 2610 iph->tos & IPTOS_RT_MASK, 2611 skb->dev, in_dev, &itag); 2612 } 2613 return 0; 2614 } 2615 2616 int udp_rcv(struct sk_buff *skb) 2617 { 2618 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2619 } 2620 2621 void udp_destroy_sock(struct sock *sk) 2622 { 2623 struct udp_sock *up = udp_sk(sk); 2624 bool slow = lock_sock_fast(sk); 2625 2626 /* protects from races with udp_abort() */ 2627 sock_set_flag(sk, SOCK_DEAD); 2628 udp_flush_pending_frames(sk); 2629 unlock_sock_fast(sk, slow); 2630 if (static_branch_unlikely(&udp_encap_needed_key)) { 2631 if (up->encap_type) { 2632 void (*encap_destroy)(struct sock *sk); 2633 encap_destroy = READ_ONCE(up->encap_destroy); 2634 if (encap_destroy) 2635 encap_destroy(sk); 2636 } 2637 if (up->encap_enabled) 2638 static_branch_dec(&udp_encap_needed_key); 2639 } 2640 } 2641 2642 /* 2643 * Socket option code for UDP 2644 */ 2645 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2646 sockptr_t optval, unsigned int optlen, 2647 int (*push_pending_frames)(struct sock *)) 2648 { 2649 struct udp_sock *up = udp_sk(sk); 2650 int val, valbool; 2651 int err = 0; 2652 int is_udplite = IS_UDPLITE(sk); 2653 2654 if (optlen < sizeof(int)) 2655 return -EINVAL; 2656 2657 if (copy_from_sockptr(&val, optval, sizeof(val))) 2658 return -EFAULT; 2659 2660 valbool = val ? 1 : 0; 2661 2662 switch (optname) { 2663 case UDP_CORK: 2664 if (val != 0) { 2665 up->corkflag = 1; 2666 } else { 2667 up->corkflag = 0; 2668 lock_sock(sk); 2669 push_pending_frames(sk); 2670 release_sock(sk); 2671 } 2672 break; 2673 2674 case UDP_ENCAP: 2675 switch (val) { 2676 case 0: 2677 #ifdef CONFIG_XFRM 2678 case UDP_ENCAP_ESPINUDP: 2679 case UDP_ENCAP_ESPINUDP_NON_IKE: 2680 #if IS_ENABLED(CONFIG_IPV6) 2681 if (sk->sk_family == AF_INET6) 2682 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv; 2683 else 2684 #endif 2685 up->encap_rcv = xfrm4_udp_encap_rcv; 2686 #endif 2687 fallthrough; 2688 case UDP_ENCAP_L2TPINUDP: 2689 up->encap_type = val; 2690 lock_sock(sk); 2691 udp_tunnel_encap_enable(sk->sk_socket); 2692 release_sock(sk); 2693 break; 2694 default: 2695 err = -ENOPROTOOPT; 2696 break; 2697 } 2698 break; 2699 2700 case UDP_NO_CHECK6_TX: 2701 up->no_check6_tx = valbool; 2702 break; 2703 2704 case UDP_NO_CHECK6_RX: 2705 up->no_check6_rx = valbool; 2706 break; 2707 2708 case UDP_SEGMENT: 2709 if (val < 0 || val > USHRT_MAX) 2710 return -EINVAL; 2711 WRITE_ONCE(up->gso_size, val); 2712 break; 2713 2714 case UDP_GRO: 2715 lock_sock(sk); 2716 2717 /* when enabling GRO, accept the related GSO packet type */ 2718 if (valbool) 2719 udp_tunnel_encap_enable(sk->sk_socket); 2720 up->gro_enabled = valbool; 2721 up->accept_udp_l4 = valbool; 2722 release_sock(sk); 2723 break; 2724 2725 /* 2726 * UDP-Lite's partial checksum coverage (RFC 3828). 2727 */ 2728 /* The sender sets actual checksum coverage length via this option. 2729 * The case coverage > packet length is handled by send module. */ 2730 case UDPLITE_SEND_CSCOV: 2731 if (!is_udplite) /* Disable the option on UDP sockets */ 2732 return -ENOPROTOOPT; 2733 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2734 val = 8; 2735 else if (val > USHRT_MAX) 2736 val = USHRT_MAX; 2737 up->pcslen = val; 2738 up->pcflag |= UDPLITE_SEND_CC; 2739 break; 2740 2741 /* The receiver specifies a minimum checksum coverage value. To make 2742 * sense, this should be set to at least 8 (as done below). If zero is 2743 * used, this again means full checksum coverage. */ 2744 case UDPLITE_RECV_CSCOV: 2745 if (!is_udplite) /* Disable the option on UDP sockets */ 2746 return -ENOPROTOOPT; 2747 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2748 val = 8; 2749 else if (val > USHRT_MAX) 2750 val = USHRT_MAX; 2751 up->pcrlen = val; 2752 up->pcflag |= UDPLITE_RECV_CC; 2753 break; 2754 2755 default: 2756 err = -ENOPROTOOPT; 2757 break; 2758 } 2759 2760 return err; 2761 } 2762 EXPORT_SYMBOL(udp_lib_setsockopt); 2763 2764 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2765 unsigned int optlen) 2766 { 2767 if (level == SOL_UDP || level == SOL_UDPLITE) 2768 return udp_lib_setsockopt(sk, level, optname, 2769 optval, optlen, 2770 udp_push_pending_frames); 2771 return ip_setsockopt(sk, level, optname, optval, optlen); 2772 } 2773 2774 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2775 char __user *optval, int __user *optlen) 2776 { 2777 struct udp_sock *up = udp_sk(sk); 2778 int val, len; 2779 2780 if (get_user(len, optlen)) 2781 return -EFAULT; 2782 2783 len = min_t(unsigned int, len, sizeof(int)); 2784 2785 if (len < 0) 2786 return -EINVAL; 2787 2788 switch (optname) { 2789 case UDP_CORK: 2790 val = up->corkflag; 2791 break; 2792 2793 case UDP_ENCAP: 2794 val = up->encap_type; 2795 break; 2796 2797 case UDP_NO_CHECK6_TX: 2798 val = up->no_check6_tx; 2799 break; 2800 2801 case UDP_NO_CHECK6_RX: 2802 val = up->no_check6_rx; 2803 break; 2804 2805 case UDP_SEGMENT: 2806 val = READ_ONCE(up->gso_size); 2807 break; 2808 2809 case UDP_GRO: 2810 val = up->gro_enabled; 2811 break; 2812 2813 /* The following two cannot be changed on UDP sockets, the return is 2814 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2815 case UDPLITE_SEND_CSCOV: 2816 val = up->pcslen; 2817 break; 2818 2819 case UDPLITE_RECV_CSCOV: 2820 val = up->pcrlen; 2821 break; 2822 2823 default: 2824 return -ENOPROTOOPT; 2825 } 2826 2827 if (put_user(len, optlen)) 2828 return -EFAULT; 2829 if (copy_to_user(optval, &val, len)) 2830 return -EFAULT; 2831 return 0; 2832 } 2833 EXPORT_SYMBOL(udp_lib_getsockopt); 2834 2835 int udp_getsockopt(struct sock *sk, int level, int optname, 2836 char __user *optval, int __user *optlen) 2837 { 2838 if (level == SOL_UDP || level == SOL_UDPLITE) 2839 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2840 return ip_getsockopt(sk, level, optname, optval, optlen); 2841 } 2842 2843 /** 2844 * udp_poll - wait for a UDP event. 2845 * @file: - file struct 2846 * @sock: - socket 2847 * @wait: - poll table 2848 * 2849 * This is same as datagram poll, except for the special case of 2850 * blocking sockets. If application is using a blocking fd 2851 * and a packet with checksum error is in the queue; 2852 * then it could get return from select indicating data available 2853 * but then block when reading it. Add special case code 2854 * to work around these arguably broken applications. 2855 */ 2856 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2857 { 2858 __poll_t mask = datagram_poll(file, sock, wait); 2859 struct sock *sk = sock->sk; 2860 2861 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2862 mask |= EPOLLIN | EPOLLRDNORM; 2863 2864 /* Check for false positives due to checksum errors */ 2865 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2866 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2867 mask &= ~(EPOLLIN | EPOLLRDNORM); 2868 2869 return mask; 2870 2871 } 2872 EXPORT_SYMBOL(udp_poll); 2873 2874 int udp_abort(struct sock *sk, int err) 2875 { 2876 lock_sock(sk); 2877 2878 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2879 * with close() 2880 */ 2881 if (sock_flag(sk, SOCK_DEAD)) 2882 goto out; 2883 2884 sk->sk_err = err; 2885 sk_error_report(sk); 2886 __udp_disconnect(sk, 0); 2887 2888 out: 2889 release_sock(sk); 2890 2891 return 0; 2892 } 2893 EXPORT_SYMBOL_GPL(udp_abort); 2894 2895 struct proto udp_prot = { 2896 .name = "UDP", 2897 .owner = THIS_MODULE, 2898 .close = udp_lib_close, 2899 .pre_connect = udp_pre_connect, 2900 .connect = ip4_datagram_connect, 2901 .disconnect = udp_disconnect, 2902 .ioctl = udp_ioctl, 2903 .init = udp_init_sock, 2904 .destroy = udp_destroy_sock, 2905 .setsockopt = udp_setsockopt, 2906 .getsockopt = udp_getsockopt, 2907 .sendmsg = udp_sendmsg, 2908 .recvmsg = udp_recvmsg, 2909 .sendpage = udp_sendpage, 2910 .release_cb = ip4_datagram_release_cb, 2911 .hash = udp_lib_hash, 2912 .unhash = udp_lib_unhash, 2913 .rehash = udp_v4_rehash, 2914 .get_port = udp_v4_get_port, 2915 #ifdef CONFIG_BPF_SYSCALL 2916 .psock_update_sk_prot = udp_bpf_update_proto, 2917 #endif 2918 .memory_allocated = &udp_memory_allocated, 2919 .sysctl_mem = sysctl_udp_mem, 2920 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2921 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2922 .obj_size = sizeof(struct udp_sock), 2923 .h.udp_table = &udp_table, 2924 .diag_destroy = udp_abort, 2925 }; 2926 EXPORT_SYMBOL(udp_prot); 2927 2928 /* ------------------------------------------------------------------------ */ 2929 #ifdef CONFIG_PROC_FS 2930 2931 static struct sock *udp_get_first(struct seq_file *seq, int start) 2932 { 2933 struct sock *sk; 2934 struct udp_seq_afinfo *afinfo; 2935 struct udp_iter_state *state = seq->private; 2936 struct net *net = seq_file_net(seq); 2937 2938 if (state->bpf_seq_afinfo) 2939 afinfo = state->bpf_seq_afinfo; 2940 else 2941 afinfo = PDE_DATA(file_inode(seq->file)); 2942 2943 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2944 ++state->bucket) { 2945 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2946 2947 if (hlist_empty(&hslot->head)) 2948 continue; 2949 2950 spin_lock_bh(&hslot->lock); 2951 sk_for_each(sk, &hslot->head) { 2952 if (!net_eq(sock_net(sk), net)) 2953 continue; 2954 if (afinfo->family == AF_UNSPEC || 2955 sk->sk_family == afinfo->family) 2956 goto found; 2957 } 2958 spin_unlock_bh(&hslot->lock); 2959 } 2960 sk = NULL; 2961 found: 2962 return sk; 2963 } 2964 2965 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2966 { 2967 struct udp_seq_afinfo *afinfo; 2968 struct udp_iter_state *state = seq->private; 2969 struct net *net = seq_file_net(seq); 2970 2971 if (state->bpf_seq_afinfo) 2972 afinfo = state->bpf_seq_afinfo; 2973 else 2974 afinfo = PDE_DATA(file_inode(seq->file)); 2975 2976 do { 2977 sk = sk_next(sk); 2978 } while (sk && (!net_eq(sock_net(sk), net) || 2979 (afinfo->family != AF_UNSPEC && 2980 sk->sk_family != afinfo->family))); 2981 2982 if (!sk) { 2983 if (state->bucket <= afinfo->udp_table->mask) 2984 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2985 return udp_get_first(seq, state->bucket + 1); 2986 } 2987 return sk; 2988 } 2989 2990 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2991 { 2992 struct sock *sk = udp_get_first(seq, 0); 2993 2994 if (sk) 2995 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2996 --pos; 2997 return pos ? NULL : sk; 2998 } 2999 3000 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3001 { 3002 struct udp_iter_state *state = seq->private; 3003 state->bucket = MAX_UDP_PORTS; 3004 3005 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3006 } 3007 EXPORT_SYMBOL(udp_seq_start); 3008 3009 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3010 { 3011 struct sock *sk; 3012 3013 if (v == SEQ_START_TOKEN) 3014 sk = udp_get_idx(seq, 0); 3015 else 3016 sk = udp_get_next(seq, v); 3017 3018 ++*pos; 3019 return sk; 3020 } 3021 EXPORT_SYMBOL(udp_seq_next); 3022 3023 void udp_seq_stop(struct seq_file *seq, void *v) 3024 { 3025 struct udp_seq_afinfo *afinfo; 3026 struct udp_iter_state *state = seq->private; 3027 3028 if (state->bpf_seq_afinfo) 3029 afinfo = state->bpf_seq_afinfo; 3030 else 3031 afinfo = PDE_DATA(file_inode(seq->file)); 3032 3033 if (state->bucket <= afinfo->udp_table->mask) 3034 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 3035 } 3036 EXPORT_SYMBOL(udp_seq_stop); 3037 3038 /* ------------------------------------------------------------------------ */ 3039 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3040 int bucket) 3041 { 3042 struct inet_sock *inet = inet_sk(sp); 3043 __be32 dest = inet->inet_daddr; 3044 __be32 src = inet->inet_rcv_saddr; 3045 __u16 destp = ntohs(inet->inet_dport); 3046 __u16 srcp = ntohs(inet->inet_sport); 3047 3048 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3049 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3050 bucket, src, srcp, dest, destp, sp->sk_state, 3051 sk_wmem_alloc_get(sp), 3052 udp_rqueue_get(sp), 3053 0, 0L, 0, 3054 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3055 0, sock_i_ino(sp), 3056 refcount_read(&sp->sk_refcnt), sp, 3057 atomic_read(&sp->sk_drops)); 3058 } 3059 3060 int udp4_seq_show(struct seq_file *seq, void *v) 3061 { 3062 seq_setwidth(seq, 127); 3063 if (v == SEQ_START_TOKEN) 3064 seq_puts(seq, " sl local_address rem_address st tx_queue " 3065 "rx_queue tr tm->when retrnsmt uid timeout " 3066 "inode ref pointer drops"); 3067 else { 3068 struct udp_iter_state *state = seq->private; 3069 3070 udp4_format_sock(v, seq, state->bucket); 3071 } 3072 seq_pad(seq, '\n'); 3073 return 0; 3074 } 3075 3076 #ifdef CONFIG_BPF_SYSCALL 3077 struct bpf_iter__udp { 3078 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3079 __bpf_md_ptr(struct udp_sock *, udp_sk); 3080 uid_t uid __aligned(8); 3081 int bucket __aligned(8); 3082 }; 3083 3084 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3085 struct udp_sock *udp_sk, uid_t uid, int bucket) 3086 { 3087 struct bpf_iter__udp ctx; 3088 3089 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3090 ctx.meta = meta; 3091 ctx.udp_sk = udp_sk; 3092 ctx.uid = uid; 3093 ctx.bucket = bucket; 3094 return bpf_iter_run_prog(prog, &ctx); 3095 } 3096 3097 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3098 { 3099 struct udp_iter_state *state = seq->private; 3100 struct bpf_iter_meta meta; 3101 struct bpf_prog *prog; 3102 struct sock *sk = v; 3103 uid_t uid; 3104 3105 if (v == SEQ_START_TOKEN) 3106 return 0; 3107 3108 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3109 meta.seq = seq; 3110 prog = bpf_iter_get_info(&meta, false); 3111 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3112 } 3113 3114 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3115 { 3116 struct bpf_iter_meta meta; 3117 struct bpf_prog *prog; 3118 3119 if (!v) { 3120 meta.seq = seq; 3121 prog = bpf_iter_get_info(&meta, true); 3122 if (prog) 3123 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3124 } 3125 3126 udp_seq_stop(seq, v); 3127 } 3128 3129 static const struct seq_operations bpf_iter_udp_seq_ops = { 3130 .start = udp_seq_start, 3131 .next = udp_seq_next, 3132 .stop = bpf_iter_udp_seq_stop, 3133 .show = bpf_iter_udp_seq_show, 3134 }; 3135 #endif 3136 3137 const struct seq_operations udp_seq_ops = { 3138 .start = udp_seq_start, 3139 .next = udp_seq_next, 3140 .stop = udp_seq_stop, 3141 .show = udp4_seq_show, 3142 }; 3143 EXPORT_SYMBOL(udp_seq_ops); 3144 3145 static struct udp_seq_afinfo udp4_seq_afinfo = { 3146 .family = AF_INET, 3147 .udp_table = &udp_table, 3148 }; 3149 3150 static int __net_init udp4_proc_init_net(struct net *net) 3151 { 3152 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3153 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3154 return -ENOMEM; 3155 return 0; 3156 } 3157 3158 static void __net_exit udp4_proc_exit_net(struct net *net) 3159 { 3160 remove_proc_entry("udp", net->proc_net); 3161 } 3162 3163 static struct pernet_operations udp4_net_ops = { 3164 .init = udp4_proc_init_net, 3165 .exit = udp4_proc_exit_net, 3166 }; 3167 3168 int __init udp4_proc_init(void) 3169 { 3170 return register_pernet_subsys(&udp4_net_ops); 3171 } 3172 3173 void udp4_proc_exit(void) 3174 { 3175 unregister_pernet_subsys(&udp4_net_ops); 3176 } 3177 #endif /* CONFIG_PROC_FS */ 3178 3179 static __initdata unsigned long uhash_entries; 3180 static int __init set_uhash_entries(char *str) 3181 { 3182 ssize_t ret; 3183 3184 if (!str) 3185 return 0; 3186 3187 ret = kstrtoul(str, 0, &uhash_entries); 3188 if (ret) 3189 return 0; 3190 3191 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3192 uhash_entries = UDP_HTABLE_SIZE_MIN; 3193 return 1; 3194 } 3195 __setup("uhash_entries=", set_uhash_entries); 3196 3197 void __init udp_table_init(struct udp_table *table, const char *name) 3198 { 3199 unsigned int i; 3200 3201 table->hash = alloc_large_system_hash(name, 3202 2 * sizeof(struct udp_hslot), 3203 uhash_entries, 3204 21, /* one slot per 2 MB */ 3205 0, 3206 &table->log, 3207 &table->mask, 3208 UDP_HTABLE_SIZE_MIN, 3209 64 * 1024); 3210 3211 table->hash2 = table->hash + (table->mask + 1); 3212 for (i = 0; i <= table->mask; i++) { 3213 INIT_HLIST_HEAD(&table->hash[i].head); 3214 table->hash[i].count = 0; 3215 spin_lock_init(&table->hash[i].lock); 3216 } 3217 for (i = 0; i <= table->mask; i++) { 3218 INIT_HLIST_HEAD(&table->hash2[i].head); 3219 table->hash2[i].count = 0; 3220 spin_lock_init(&table->hash2[i].lock); 3221 } 3222 } 3223 3224 u32 udp_flow_hashrnd(void) 3225 { 3226 static u32 hashrnd __read_mostly; 3227 3228 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3229 3230 return hashrnd; 3231 } 3232 EXPORT_SYMBOL(udp_flow_hashrnd); 3233 3234 static void __udp_sysctl_init(struct net *net) 3235 { 3236 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 3237 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 3238 3239 #ifdef CONFIG_NET_L3_MASTER_DEV 3240 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3241 #endif 3242 } 3243 3244 static int __net_init udp_sysctl_init(struct net *net) 3245 { 3246 __udp_sysctl_init(net); 3247 return 0; 3248 } 3249 3250 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3251 .init = udp_sysctl_init, 3252 }; 3253 3254 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3255 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3256 struct udp_sock *udp_sk, uid_t uid, int bucket) 3257 3258 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3259 { 3260 struct udp_iter_state *st = priv_data; 3261 struct udp_seq_afinfo *afinfo; 3262 int ret; 3263 3264 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN); 3265 if (!afinfo) 3266 return -ENOMEM; 3267 3268 afinfo->family = AF_UNSPEC; 3269 afinfo->udp_table = &udp_table; 3270 st->bpf_seq_afinfo = afinfo; 3271 ret = bpf_iter_init_seq_net(priv_data, aux); 3272 if (ret) 3273 kfree(afinfo); 3274 return ret; 3275 } 3276 3277 static void bpf_iter_fini_udp(void *priv_data) 3278 { 3279 struct udp_iter_state *st = priv_data; 3280 3281 kfree(st->bpf_seq_afinfo); 3282 bpf_iter_fini_seq_net(priv_data); 3283 } 3284 3285 static const struct bpf_iter_seq_info udp_seq_info = { 3286 .seq_ops = &bpf_iter_udp_seq_ops, 3287 .init_seq_private = bpf_iter_init_udp, 3288 .fini_seq_private = bpf_iter_fini_udp, 3289 .seq_priv_size = sizeof(struct udp_iter_state), 3290 }; 3291 3292 static struct bpf_iter_reg udp_reg_info = { 3293 .target = "udp", 3294 .ctx_arg_info_size = 1, 3295 .ctx_arg_info = { 3296 { offsetof(struct bpf_iter__udp, udp_sk), 3297 PTR_TO_BTF_ID_OR_NULL }, 3298 }, 3299 .seq_info = &udp_seq_info, 3300 }; 3301 3302 static void __init bpf_iter_register(void) 3303 { 3304 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3305 if (bpf_iter_reg_target(&udp_reg_info)) 3306 pr_warn("Warning: could not register bpf iterator udp\n"); 3307 } 3308 #endif 3309 3310 void __init udp_init(void) 3311 { 3312 unsigned long limit; 3313 unsigned int i; 3314 3315 udp_table_init(&udp_table, "UDP"); 3316 limit = nr_free_buffer_pages() / 8; 3317 limit = max(limit, 128UL); 3318 sysctl_udp_mem[0] = limit / 4 * 3; 3319 sysctl_udp_mem[1] = limit; 3320 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3321 3322 __udp_sysctl_init(&init_net); 3323 3324 /* 16 spinlocks per cpu */ 3325 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3326 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3327 GFP_KERNEL); 3328 if (!udp_busylocks) 3329 panic("UDP: failed to alloc udp_busylocks\n"); 3330 for (i = 0; i < (1U << udp_busylocks_log); i++) 3331 spin_lock_init(udp_busylocks + i); 3332 3333 if (register_pernet_subsys(&udp_sysctl_ops)) 3334 panic("UDP: failed to init sysctl parameters.\n"); 3335 3336 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3337 bpf_iter_register(); 3338 #endif 3339 } 3340