1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 int sysctl_udp_rmem_min __read_mostly; 126 EXPORT_SYMBOL(sysctl_udp_rmem_min); 127 128 int sysctl_udp_wmem_min __read_mostly; 129 EXPORT_SYMBOL(sysctl_udp_wmem_min); 130 131 atomic_long_t udp_memory_allocated; 132 EXPORT_SYMBOL(udp_memory_allocated); 133 134 #define MAX_UDP_PORTS 65536 135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 136 137 /* IPCB reference means this can not be used from early demux */ 138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 139 { 140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 141 if (!net->ipv4.sysctl_udp_l3mdev_accept && 142 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 143 return true; 144 #endif 145 return false; 146 } 147 148 static int udp_lib_lport_inuse(struct net *net, __u16 num, 149 const struct udp_hslot *hslot, 150 unsigned long *bitmap, 151 struct sock *sk, unsigned int log) 152 { 153 struct sock *sk2; 154 kuid_t uid = sock_i_uid(sk); 155 156 sk_for_each(sk2, &hslot->head) { 157 if (net_eq(sock_net(sk2), net) && 158 sk2 != sk && 159 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 160 (!sk2->sk_reuse || !sk->sk_reuse) && 161 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 162 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 163 inet_rcv_saddr_equal(sk, sk2, true)) { 164 if (sk2->sk_reuseport && sk->sk_reuseport && 165 !rcu_access_pointer(sk->sk_reuseport_cb) && 166 uid_eq(uid, sock_i_uid(sk2))) { 167 if (!bitmap) 168 return 0; 169 } else { 170 if (!bitmap) 171 return 1; 172 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 173 bitmap); 174 } 175 } 176 } 177 return 0; 178 } 179 180 /* 181 * Note: we still hold spinlock of primary hash chain, so no other writer 182 * can insert/delete a socket with local_port == num 183 */ 184 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 185 struct udp_hslot *hslot2, 186 struct sock *sk) 187 { 188 struct sock *sk2; 189 kuid_t uid = sock_i_uid(sk); 190 int res = 0; 191 192 spin_lock(&hslot2->lock); 193 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 194 if (net_eq(sock_net(sk2), net) && 195 sk2 != sk && 196 (udp_sk(sk2)->udp_port_hash == num) && 197 (!sk2->sk_reuse || !sk->sk_reuse) && 198 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 199 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 200 inet_rcv_saddr_equal(sk, sk2, true)) { 201 if (sk2->sk_reuseport && sk->sk_reuseport && 202 !rcu_access_pointer(sk->sk_reuseport_cb) && 203 uid_eq(uid, sock_i_uid(sk2))) { 204 res = 0; 205 } else { 206 res = 1; 207 } 208 break; 209 } 210 } 211 spin_unlock(&hslot2->lock); 212 return res; 213 } 214 215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 216 { 217 struct net *net = sock_net(sk); 218 kuid_t uid = sock_i_uid(sk); 219 struct sock *sk2; 220 221 sk_for_each(sk2, &hslot->head) { 222 if (net_eq(sock_net(sk2), net) && 223 sk2 != sk && 224 sk2->sk_family == sk->sk_family && 225 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 226 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 227 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 228 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 229 inet_rcv_saddr_equal(sk, sk2, false)) { 230 return reuseport_add_sock(sk, sk2); 231 } 232 } 233 234 return reuseport_alloc(sk); 235 } 236 237 /** 238 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 239 * 240 * @sk: socket struct in question 241 * @snum: port number to look up 242 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 243 * with NULL address 244 */ 245 int udp_lib_get_port(struct sock *sk, unsigned short snum, 246 unsigned int hash2_nulladdr) 247 { 248 struct udp_hslot *hslot, *hslot2; 249 struct udp_table *udptable = sk->sk_prot->h.udp_table; 250 int error = 1; 251 struct net *net = sock_net(sk); 252 253 if (!snum) { 254 int low, high, remaining; 255 unsigned int rand; 256 unsigned short first, last; 257 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 258 259 inet_get_local_port_range(net, &low, &high); 260 remaining = (high - low) + 1; 261 262 rand = prandom_u32(); 263 first = reciprocal_scale(rand, remaining) + low; 264 /* 265 * force rand to be an odd multiple of UDP_HTABLE_SIZE 266 */ 267 rand = (rand | 1) * (udptable->mask + 1); 268 last = first + udptable->mask + 1; 269 do { 270 hslot = udp_hashslot(udptable, net, first); 271 bitmap_zero(bitmap, PORTS_PER_CHAIN); 272 spin_lock_bh(&hslot->lock); 273 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 274 udptable->log); 275 276 snum = first; 277 /* 278 * Iterate on all possible values of snum for this hash. 279 * Using steps of an odd multiple of UDP_HTABLE_SIZE 280 * give us randomization and full range coverage. 281 */ 282 do { 283 if (low <= snum && snum <= high && 284 !test_bit(snum >> udptable->log, bitmap) && 285 !inet_is_local_reserved_port(net, snum)) 286 goto found; 287 snum += rand; 288 } while (snum != first); 289 spin_unlock_bh(&hslot->lock); 290 cond_resched(); 291 } while (++first != last); 292 goto fail; 293 } else { 294 hslot = udp_hashslot(udptable, net, snum); 295 spin_lock_bh(&hslot->lock); 296 if (hslot->count > 10) { 297 int exist; 298 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 299 300 slot2 &= udptable->mask; 301 hash2_nulladdr &= udptable->mask; 302 303 hslot2 = udp_hashslot2(udptable, slot2); 304 if (hslot->count < hslot2->count) 305 goto scan_primary_hash; 306 307 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 308 if (!exist && (hash2_nulladdr != slot2)) { 309 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 310 exist = udp_lib_lport_inuse2(net, snum, hslot2, 311 sk); 312 } 313 if (exist) 314 goto fail_unlock; 315 else 316 goto found; 317 } 318 scan_primary_hash: 319 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 320 goto fail_unlock; 321 } 322 found: 323 inet_sk(sk)->inet_num = snum; 324 udp_sk(sk)->udp_port_hash = snum; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 if (sk_unhashed(sk)) { 327 if (sk->sk_reuseport && 328 udp_reuseport_add_sock(sk, hslot)) { 329 inet_sk(sk)->inet_num = 0; 330 udp_sk(sk)->udp_port_hash = 0; 331 udp_sk(sk)->udp_portaddr_hash ^= snum; 332 goto fail_unlock; 333 } 334 335 sk_add_node_rcu(sk, &hslot->head); 336 hslot->count++; 337 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 338 339 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 340 spin_lock(&hslot2->lock); 341 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 342 sk->sk_family == AF_INET6) 343 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 344 &hslot2->head); 345 else 346 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 347 &hslot2->head); 348 hslot2->count++; 349 spin_unlock(&hslot2->lock); 350 } 351 sock_set_flag(sk, SOCK_RCU_FREE); 352 error = 0; 353 fail_unlock: 354 spin_unlock_bh(&hslot->lock); 355 fail: 356 return error; 357 } 358 EXPORT_SYMBOL(udp_lib_get_port); 359 360 int udp_v4_get_port(struct sock *sk, unsigned short snum) 361 { 362 unsigned int hash2_nulladdr = 363 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 364 unsigned int hash2_partial = 365 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 366 367 /* precompute partial secondary hash */ 368 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 369 return udp_lib_get_port(sk, snum, hash2_nulladdr); 370 } 371 372 static int compute_score(struct sock *sk, struct net *net, 373 __be32 saddr, __be16 sport, 374 __be32 daddr, unsigned short hnum, 375 int dif, int sdif, bool exact_dif) 376 { 377 int score; 378 struct inet_sock *inet; 379 380 if (!net_eq(sock_net(sk), net) || 381 udp_sk(sk)->udp_port_hash != hnum || 382 ipv6_only_sock(sk)) 383 return -1; 384 385 score = (sk->sk_family == PF_INET) ? 2 : 1; 386 inet = inet_sk(sk); 387 388 if (inet->inet_rcv_saddr) { 389 if (inet->inet_rcv_saddr != daddr) 390 return -1; 391 score += 4; 392 } 393 394 if (inet->inet_daddr) { 395 if (inet->inet_daddr != saddr) 396 return -1; 397 score += 4; 398 } 399 400 if (inet->inet_dport) { 401 if (inet->inet_dport != sport) 402 return -1; 403 score += 4; 404 } 405 406 if (sk->sk_bound_dev_if || exact_dif) { 407 bool dev_match = (sk->sk_bound_dev_if == dif || 408 sk->sk_bound_dev_if == sdif); 409 410 if (exact_dif && !dev_match) 411 return -1; 412 if (sk->sk_bound_dev_if && dev_match) 413 score += 4; 414 } 415 416 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 417 score++; 418 return score; 419 } 420 421 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 422 const __u16 lport, const __be32 faddr, 423 const __be16 fport) 424 { 425 static u32 udp_ehash_secret __read_mostly; 426 427 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 428 429 return __inet_ehashfn(laddr, lport, faddr, fport, 430 udp_ehash_secret + net_hash_mix(net)); 431 } 432 433 /* called with rcu_read_lock() */ 434 static struct sock *udp4_lib_lookup2(struct net *net, 435 __be32 saddr, __be16 sport, 436 __be32 daddr, unsigned int hnum, 437 int dif, int sdif, bool exact_dif, 438 struct udp_hslot *hslot2, 439 struct sk_buff *skb) 440 { 441 struct sock *sk, *result; 442 int score, badness; 443 u32 hash = 0; 444 445 result = NULL; 446 badness = 0; 447 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 448 score = compute_score(sk, net, saddr, sport, 449 daddr, hnum, dif, sdif, exact_dif); 450 if (score > badness) { 451 if (sk->sk_reuseport) { 452 hash = udp_ehashfn(net, daddr, hnum, 453 saddr, sport); 454 result = reuseport_select_sock(sk, hash, skb, 455 sizeof(struct udphdr)); 456 if (result) 457 return result; 458 } 459 badness = score; 460 result = sk; 461 } 462 } 463 return result; 464 } 465 466 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 467 * harder than this. -DaveM 468 */ 469 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 470 __be16 sport, __be32 daddr, __be16 dport, int dif, 471 int sdif, struct udp_table *udptable, struct sk_buff *skb) 472 { 473 struct sock *sk, *result; 474 unsigned short hnum = ntohs(dport); 475 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 476 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 477 bool exact_dif = udp_lib_exact_dif_match(net, skb); 478 int score, badness; 479 u32 hash = 0; 480 481 if (hslot->count > 10) { 482 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 483 slot2 = hash2 & udptable->mask; 484 hslot2 = &udptable->hash2[slot2]; 485 if (hslot->count < hslot2->count) 486 goto begin; 487 488 result = udp4_lib_lookup2(net, saddr, sport, 489 daddr, hnum, dif, sdif, 490 exact_dif, hslot2, skb); 491 if (!result) { 492 unsigned int old_slot2 = slot2; 493 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 494 slot2 = hash2 & udptable->mask; 495 /* avoid searching the same slot again. */ 496 if (unlikely(slot2 == old_slot2)) 497 return result; 498 499 hslot2 = &udptable->hash2[slot2]; 500 if (hslot->count < hslot2->count) 501 goto begin; 502 503 result = udp4_lib_lookup2(net, saddr, sport, 504 daddr, hnum, dif, sdif, 505 exact_dif, hslot2, skb); 506 } 507 return result; 508 } 509 begin: 510 result = NULL; 511 badness = 0; 512 sk_for_each_rcu(sk, &hslot->head) { 513 score = compute_score(sk, net, saddr, sport, 514 daddr, hnum, dif, sdif, exact_dif); 515 if (score > badness) { 516 if (sk->sk_reuseport) { 517 hash = udp_ehashfn(net, daddr, hnum, 518 saddr, sport); 519 result = reuseport_select_sock(sk, hash, skb, 520 sizeof(struct udphdr)); 521 if (result) 522 return result; 523 } 524 result = sk; 525 badness = score; 526 } 527 } 528 return result; 529 } 530 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 531 532 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 533 __be16 sport, __be16 dport, 534 struct udp_table *udptable) 535 { 536 const struct iphdr *iph = ip_hdr(skb); 537 538 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 539 iph->daddr, dport, inet_iif(skb), 540 inet_sdif(skb), udptable, skb); 541 } 542 543 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 544 __be16 sport, __be16 dport) 545 { 546 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 547 } 548 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 549 550 /* Must be called under rcu_read_lock(). 551 * Does increment socket refcount. 552 */ 553 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \ 554 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \ 555 IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 556 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 557 __be32 daddr, __be16 dport, int dif) 558 { 559 struct sock *sk; 560 561 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 562 dif, 0, &udp_table, NULL); 563 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 564 sk = NULL; 565 return sk; 566 } 567 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 568 #endif 569 570 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 571 __be16 loc_port, __be32 loc_addr, 572 __be16 rmt_port, __be32 rmt_addr, 573 int dif, int sdif, unsigned short hnum) 574 { 575 struct inet_sock *inet = inet_sk(sk); 576 577 if (!net_eq(sock_net(sk), net) || 578 udp_sk(sk)->udp_port_hash != hnum || 579 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 580 (inet->inet_dport != rmt_port && inet->inet_dport) || 581 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 582 ipv6_only_sock(sk) || 583 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 584 sk->sk_bound_dev_if != sdif)) 585 return false; 586 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 587 return false; 588 return true; 589 } 590 591 /* 592 * This routine is called by the ICMP module when it gets some 593 * sort of error condition. If err < 0 then the socket should 594 * be closed and the error returned to the user. If err > 0 595 * it's just the icmp type << 8 | icmp code. 596 * Header points to the ip header of the error packet. We move 597 * on past this. Then (as it used to claim before adjustment) 598 * header points to the first 8 bytes of the udp header. We need 599 * to find the appropriate port. 600 */ 601 602 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 603 { 604 struct inet_sock *inet; 605 const struct iphdr *iph = (const struct iphdr *)skb->data; 606 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 607 const int type = icmp_hdr(skb)->type; 608 const int code = icmp_hdr(skb)->code; 609 struct sock *sk; 610 int harderr; 611 int err; 612 struct net *net = dev_net(skb->dev); 613 614 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 615 iph->saddr, uh->source, skb->dev->ifindex, 0, 616 udptable, NULL); 617 if (!sk) { 618 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 619 return; /* No socket for error */ 620 } 621 622 err = 0; 623 harderr = 0; 624 inet = inet_sk(sk); 625 626 switch (type) { 627 default: 628 case ICMP_TIME_EXCEEDED: 629 err = EHOSTUNREACH; 630 break; 631 case ICMP_SOURCE_QUENCH: 632 goto out; 633 case ICMP_PARAMETERPROB: 634 err = EPROTO; 635 harderr = 1; 636 break; 637 case ICMP_DEST_UNREACH: 638 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 639 ipv4_sk_update_pmtu(skb, sk, info); 640 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 641 err = EMSGSIZE; 642 harderr = 1; 643 break; 644 } 645 goto out; 646 } 647 err = EHOSTUNREACH; 648 if (code <= NR_ICMP_UNREACH) { 649 harderr = icmp_err_convert[code].fatal; 650 err = icmp_err_convert[code].errno; 651 } 652 break; 653 case ICMP_REDIRECT: 654 ipv4_sk_redirect(skb, sk); 655 goto out; 656 } 657 658 /* 659 * RFC1122: OK. Passes ICMP errors back to application, as per 660 * 4.1.3.3. 661 */ 662 if (!inet->recverr) { 663 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 664 goto out; 665 } else 666 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 667 668 sk->sk_err = err; 669 sk->sk_error_report(sk); 670 out: 671 return; 672 } 673 674 void udp_err(struct sk_buff *skb, u32 info) 675 { 676 __udp4_lib_err(skb, info, &udp_table); 677 } 678 679 /* 680 * Throw away all pending data and cancel the corking. Socket is locked. 681 */ 682 void udp_flush_pending_frames(struct sock *sk) 683 { 684 struct udp_sock *up = udp_sk(sk); 685 686 if (up->pending) { 687 up->len = 0; 688 up->pending = 0; 689 ip_flush_pending_frames(sk); 690 } 691 } 692 EXPORT_SYMBOL(udp_flush_pending_frames); 693 694 /** 695 * udp4_hwcsum - handle outgoing HW checksumming 696 * @skb: sk_buff containing the filled-in UDP header 697 * (checksum field must be zeroed out) 698 * @src: source IP address 699 * @dst: destination IP address 700 */ 701 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 702 { 703 struct udphdr *uh = udp_hdr(skb); 704 int offset = skb_transport_offset(skb); 705 int len = skb->len - offset; 706 int hlen = len; 707 __wsum csum = 0; 708 709 if (!skb_has_frag_list(skb)) { 710 /* 711 * Only one fragment on the socket. 712 */ 713 skb->csum_start = skb_transport_header(skb) - skb->head; 714 skb->csum_offset = offsetof(struct udphdr, check); 715 uh->check = ~csum_tcpudp_magic(src, dst, len, 716 IPPROTO_UDP, 0); 717 } else { 718 struct sk_buff *frags; 719 720 /* 721 * HW-checksum won't work as there are two or more 722 * fragments on the socket so that all csums of sk_buffs 723 * should be together 724 */ 725 skb_walk_frags(skb, frags) { 726 csum = csum_add(csum, frags->csum); 727 hlen -= frags->len; 728 } 729 730 csum = skb_checksum(skb, offset, hlen, csum); 731 skb->ip_summed = CHECKSUM_NONE; 732 733 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 734 if (uh->check == 0) 735 uh->check = CSUM_MANGLED_0; 736 } 737 } 738 EXPORT_SYMBOL_GPL(udp4_hwcsum); 739 740 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 741 * for the simple case like when setting the checksum for a UDP tunnel. 742 */ 743 void udp_set_csum(bool nocheck, struct sk_buff *skb, 744 __be32 saddr, __be32 daddr, int len) 745 { 746 struct udphdr *uh = udp_hdr(skb); 747 748 if (nocheck) { 749 uh->check = 0; 750 } else if (skb_is_gso(skb)) { 751 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 752 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 753 uh->check = 0; 754 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 755 if (uh->check == 0) 756 uh->check = CSUM_MANGLED_0; 757 } else { 758 skb->ip_summed = CHECKSUM_PARTIAL; 759 skb->csum_start = skb_transport_header(skb) - skb->head; 760 skb->csum_offset = offsetof(struct udphdr, check); 761 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 762 } 763 } 764 EXPORT_SYMBOL(udp_set_csum); 765 766 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 767 { 768 struct sock *sk = skb->sk; 769 struct inet_sock *inet = inet_sk(sk); 770 struct udphdr *uh; 771 int err = 0; 772 int is_udplite = IS_UDPLITE(sk); 773 int offset = skb_transport_offset(skb); 774 int len = skb->len - offset; 775 __wsum csum = 0; 776 777 /* 778 * Create a UDP header 779 */ 780 uh = udp_hdr(skb); 781 uh->source = inet->inet_sport; 782 uh->dest = fl4->fl4_dport; 783 uh->len = htons(len); 784 uh->check = 0; 785 786 if (is_udplite) /* UDP-Lite */ 787 csum = udplite_csum(skb); 788 789 else if (sk->sk_no_check_tx) { /* UDP csum off */ 790 791 skb->ip_summed = CHECKSUM_NONE; 792 goto send; 793 794 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 795 796 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 797 goto send; 798 799 } else 800 csum = udp_csum(skb); 801 802 /* add protocol-dependent pseudo-header */ 803 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 804 sk->sk_protocol, csum); 805 if (uh->check == 0) 806 uh->check = CSUM_MANGLED_0; 807 808 send: 809 err = ip_send_skb(sock_net(sk), skb); 810 if (err) { 811 if (err == -ENOBUFS && !inet->recverr) { 812 UDP_INC_STATS(sock_net(sk), 813 UDP_MIB_SNDBUFERRORS, is_udplite); 814 err = 0; 815 } 816 } else 817 UDP_INC_STATS(sock_net(sk), 818 UDP_MIB_OUTDATAGRAMS, is_udplite); 819 return err; 820 } 821 822 /* 823 * Push out all pending data as one UDP datagram. Socket is locked. 824 */ 825 int udp_push_pending_frames(struct sock *sk) 826 { 827 struct udp_sock *up = udp_sk(sk); 828 struct inet_sock *inet = inet_sk(sk); 829 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 830 struct sk_buff *skb; 831 int err = 0; 832 833 skb = ip_finish_skb(sk, fl4); 834 if (!skb) 835 goto out; 836 837 err = udp_send_skb(skb, fl4); 838 839 out: 840 up->len = 0; 841 up->pending = 0; 842 return err; 843 } 844 EXPORT_SYMBOL(udp_push_pending_frames); 845 846 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 847 { 848 struct inet_sock *inet = inet_sk(sk); 849 struct udp_sock *up = udp_sk(sk); 850 struct flowi4 fl4_stack; 851 struct flowi4 *fl4; 852 int ulen = len; 853 struct ipcm_cookie ipc; 854 struct rtable *rt = NULL; 855 int free = 0; 856 int connected = 0; 857 __be32 daddr, faddr, saddr; 858 __be16 dport; 859 u8 tos; 860 int err, is_udplite = IS_UDPLITE(sk); 861 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 862 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 863 struct sk_buff *skb; 864 struct ip_options_data opt_copy; 865 866 if (len > 0xFFFF) 867 return -EMSGSIZE; 868 869 /* 870 * Check the flags. 871 */ 872 873 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 874 return -EOPNOTSUPP; 875 876 ipc.opt = NULL; 877 ipc.tx_flags = 0; 878 ipc.ttl = 0; 879 ipc.tos = -1; 880 881 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 882 883 fl4 = &inet->cork.fl.u.ip4; 884 if (up->pending) { 885 /* 886 * There are pending frames. 887 * The socket lock must be held while it's corked. 888 */ 889 lock_sock(sk); 890 if (likely(up->pending)) { 891 if (unlikely(up->pending != AF_INET)) { 892 release_sock(sk); 893 return -EINVAL; 894 } 895 goto do_append_data; 896 } 897 release_sock(sk); 898 } 899 ulen += sizeof(struct udphdr); 900 901 /* 902 * Get and verify the address. 903 */ 904 if (msg->msg_name) { 905 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 906 if (msg->msg_namelen < sizeof(*usin)) 907 return -EINVAL; 908 if (usin->sin_family != AF_INET) { 909 if (usin->sin_family != AF_UNSPEC) 910 return -EAFNOSUPPORT; 911 } 912 913 daddr = usin->sin_addr.s_addr; 914 dport = usin->sin_port; 915 if (dport == 0) 916 return -EINVAL; 917 } else { 918 if (sk->sk_state != TCP_ESTABLISHED) 919 return -EDESTADDRREQ; 920 daddr = inet->inet_daddr; 921 dport = inet->inet_dport; 922 /* Open fast path for connected socket. 923 Route will not be used, if at least one option is set. 924 */ 925 connected = 1; 926 } 927 928 ipc.sockc.tsflags = sk->sk_tsflags; 929 ipc.addr = inet->inet_saddr; 930 ipc.oif = sk->sk_bound_dev_if; 931 932 if (msg->msg_controllen) { 933 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6); 934 if (unlikely(err)) { 935 kfree(ipc.opt); 936 return err; 937 } 938 if (ipc.opt) 939 free = 1; 940 connected = 0; 941 } 942 if (!ipc.opt) { 943 struct ip_options_rcu *inet_opt; 944 945 rcu_read_lock(); 946 inet_opt = rcu_dereference(inet->inet_opt); 947 if (inet_opt) { 948 memcpy(&opt_copy, inet_opt, 949 sizeof(*inet_opt) + inet_opt->opt.optlen); 950 ipc.opt = &opt_copy.opt; 951 } 952 rcu_read_unlock(); 953 } 954 955 saddr = ipc.addr; 956 ipc.addr = faddr = daddr; 957 958 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 959 960 if (ipc.opt && ipc.opt->opt.srr) { 961 if (!daddr) 962 return -EINVAL; 963 faddr = ipc.opt->opt.faddr; 964 connected = 0; 965 } 966 tos = get_rttos(&ipc, inet); 967 if (sock_flag(sk, SOCK_LOCALROUTE) || 968 (msg->msg_flags & MSG_DONTROUTE) || 969 (ipc.opt && ipc.opt->opt.is_strictroute)) { 970 tos |= RTO_ONLINK; 971 connected = 0; 972 } 973 974 if (ipv4_is_multicast(daddr)) { 975 if (!ipc.oif) 976 ipc.oif = inet->mc_index; 977 if (!saddr) 978 saddr = inet->mc_addr; 979 connected = 0; 980 } else if (!ipc.oif) { 981 ipc.oif = inet->uc_index; 982 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 983 /* oif is set, packet is to local broadcast and 984 * and uc_index is set. oif is most likely set 985 * by sk_bound_dev_if. If uc_index != oif check if the 986 * oif is an L3 master and uc_index is an L3 slave. 987 * If so, we want to allow the send using the uc_index. 988 */ 989 if (ipc.oif != inet->uc_index && 990 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 991 inet->uc_index)) { 992 ipc.oif = inet->uc_index; 993 } 994 } 995 996 if (connected) 997 rt = (struct rtable *)sk_dst_check(sk, 0); 998 999 if (!rt) { 1000 struct net *net = sock_net(sk); 1001 __u8 flow_flags = inet_sk_flowi_flags(sk); 1002 1003 fl4 = &fl4_stack; 1004 1005 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1006 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1007 flow_flags, 1008 faddr, saddr, dport, inet->inet_sport, 1009 sk->sk_uid); 1010 1011 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1012 rt = ip_route_output_flow(net, fl4, sk); 1013 if (IS_ERR(rt)) { 1014 err = PTR_ERR(rt); 1015 rt = NULL; 1016 if (err == -ENETUNREACH) 1017 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1018 goto out; 1019 } 1020 1021 err = -EACCES; 1022 if ((rt->rt_flags & RTCF_BROADCAST) && 1023 !sock_flag(sk, SOCK_BROADCAST)) 1024 goto out; 1025 if (connected) 1026 sk_dst_set(sk, dst_clone(&rt->dst)); 1027 } 1028 1029 if (msg->msg_flags&MSG_CONFIRM) 1030 goto do_confirm; 1031 back_from_confirm: 1032 1033 saddr = fl4->saddr; 1034 if (!ipc.addr) 1035 daddr = ipc.addr = fl4->daddr; 1036 1037 /* Lockless fast path for the non-corking case. */ 1038 if (!corkreq) { 1039 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1040 sizeof(struct udphdr), &ipc, &rt, 1041 msg->msg_flags); 1042 err = PTR_ERR(skb); 1043 if (!IS_ERR_OR_NULL(skb)) 1044 err = udp_send_skb(skb, fl4); 1045 goto out; 1046 } 1047 1048 lock_sock(sk); 1049 if (unlikely(up->pending)) { 1050 /* The socket is already corked while preparing it. */ 1051 /* ... which is an evident application bug. --ANK */ 1052 release_sock(sk); 1053 1054 net_dbg_ratelimited("socket already corked\n"); 1055 err = -EINVAL; 1056 goto out; 1057 } 1058 /* 1059 * Now cork the socket to pend data. 1060 */ 1061 fl4 = &inet->cork.fl.u.ip4; 1062 fl4->daddr = daddr; 1063 fl4->saddr = saddr; 1064 fl4->fl4_dport = dport; 1065 fl4->fl4_sport = inet->inet_sport; 1066 up->pending = AF_INET; 1067 1068 do_append_data: 1069 up->len += ulen; 1070 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1071 sizeof(struct udphdr), &ipc, &rt, 1072 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1073 if (err) 1074 udp_flush_pending_frames(sk); 1075 else if (!corkreq) 1076 err = udp_push_pending_frames(sk); 1077 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1078 up->pending = 0; 1079 release_sock(sk); 1080 1081 out: 1082 ip_rt_put(rt); 1083 if (free) 1084 kfree(ipc.opt); 1085 if (!err) 1086 return len; 1087 /* 1088 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1089 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1090 * we don't have a good statistic (IpOutDiscards but it can be too many 1091 * things). We could add another new stat but at least for now that 1092 * seems like overkill. 1093 */ 1094 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1095 UDP_INC_STATS(sock_net(sk), 1096 UDP_MIB_SNDBUFERRORS, is_udplite); 1097 } 1098 return err; 1099 1100 do_confirm: 1101 if (msg->msg_flags & MSG_PROBE) 1102 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1103 if (!(msg->msg_flags&MSG_PROBE) || len) 1104 goto back_from_confirm; 1105 err = 0; 1106 goto out; 1107 } 1108 EXPORT_SYMBOL(udp_sendmsg); 1109 1110 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1111 size_t size, int flags) 1112 { 1113 struct inet_sock *inet = inet_sk(sk); 1114 struct udp_sock *up = udp_sk(sk); 1115 int ret; 1116 1117 if (flags & MSG_SENDPAGE_NOTLAST) 1118 flags |= MSG_MORE; 1119 1120 if (!up->pending) { 1121 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1122 1123 /* Call udp_sendmsg to specify destination address which 1124 * sendpage interface can't pass. 1125 * This will succeed only when the socket is connected. 1126 */ 1127 ret = udp_sendmsg(sk, &msg, 0); 1128 if (ret < 0) 1129 return ret; 1130 } 1131 1132 lock_sock(sk); 1133 1134 if (unlikely(!up->pending)) { 1135 release_sock(sk); 1136 1137 net_dbg_ratelimited("cork failed\n"); 1138 return -EINVAL; 1139 } 1140 1141 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1142 page, offset, size, flags); 1143 if (ret == -EOPNOTSUPP) { 1144 release_sock(sk); 1145 return sock_no_sendpage(sk->sk_socket, page, offset, 1146 size, flags); 1147 } 1148 if (ret < 0) { 1149 udp_flush_pending_frames(sk); 1150 goto out; 1151 } 1152 1153 up->len += size; 1154 if (!(up->corkflag || (flags&MSG_MORE))) 1155 ret = udp_push_pending_frames(sk); 1156 if (!ret) 1157 ret = size; 1158 out: 1159 release_sock(sk); 1160 return ret; 1161 } 1162 1163 #define UDP_SKB_IS_STATELESS 0x80000000 1164 1165 static void udp_set_dev_scratch(struct sk_buff *skb) 1166 { 1167 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1168 1169 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1170 scratch->_tsize_state = skb->truesize; 1171 #if BITS_PER_LONG == 64 1172 scratch->len = skb->len; 1173 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1174 scratch->is_linear = !skb_is_nonlinear(skb); 1175 #endif 1176 /* all head states execept sp (dst, sk, nf) are always cleared by 1177 * udp_rcv() and we need to preserve secpath, if present, to eventually 1178 * process IP_CMSG_PASSSEC at recvmsg() time 1179 */ 1180 if (likely(!skb_sec_path(skb))) 1181 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1182 } 1183 1184 static int udp_skb_truesize(struct sk_buff *skb) 1185 { 1186 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1187 } 1188 1189 static bool udp_skb_has_head_state(struct sk_buff *skb) 1190 { 1191 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1192 } 1193 1194 /* fully reclaim rmem/fwd memory allocated for skb */ 1195 static void udp_rmem_release(struct sock *sk, int size, int partial, 1196 bool rx_queue_lock_held) 1197 { 1198 struct udp_sock *up = udp_sk(sk); 1199 struct sk_buff_head *sk_queue; 1200 int amt; 1201 1202 if (likely(partial)) { 1203 up->forward_deficit += size; 1204 size = up->forward_deficit; 1205 if (size < (sk->sk_rcvbuf >> 2)) 1206 return; 1207 } else { 1208 size += up->forward_deficit; 1209 } 1210 up->forward_deficit = 0; 1211 1212 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1213 * if the called don't held it already 1214 */ 1215 sk_queue = &sk->sk_receive_queue; 1216 if (!rx_queue_lock_held) 1217 spin_lock(&sk_queue->lock); 1218 1219 1220 sk->sk_forward_alloc += size; 1221 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1222 sk->sk_forward_alloc -= amt; 1223 1224 if (amt) 1225 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1226 1227 atomic_sub(size, &sk->sk_rmem_alloc); 1228 1229 /* this can save us from acquiring the rx queue lock on next receive */ 1230 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1231 1232 if (!rx_queue_lock_held) 1233 spin_unlock(&sk_queue->lock); 1234 } 1235 1236 /* Note: called with reader_queue.lock held. 1237 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1238 * This avoids a cache line miss while receive_queue lock is held. 1239 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1240 */ 1241 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1242 { 1243 prefetch(&skb->data); 1244 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1245 } 1246 EXPORT_SYMBOL(udp_skb_destructor); 1247 1248 /* as above, but the caller held the rx queue lock, too */ 1249 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1250 { 1251 prefetch(&skb->data); 1252 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1253 } 1254 1255 /* Idea of busylocks is to let producers grab an extra spinlock 1256 * to relieve pressure on the receive_queue spinlock shared by consumer. 1257 * Under flood, this means that only one producer can be in line 1258 * trying to acquire the receive_queue spinlock. 1259 * These busylock can be allocated on a per cpu manner, instead of a 1260 * per socket one (that would consume a cache line per socket) 1261 */ 1262 static int udp_busylocks_log __read_mostly; 1263 static spinlock_t *udp_busylocks __read_mostly; 1264 1265 static spinlock_t *busylock_acquire(void *ptr) 1266 { 1267 spinlock_t *busy; 1268 1269 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1270 spin_lock(busy); 1271 return busy; 1272 } 1273 1274 static void busylock_release(spinlock_t *busy) 1275 { 1276 if (busy) 1277 spin_unlock(busy); 1278 } 1279 1280 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1281 { 1282 struct sk_buff_head *list = &sk->sk_receive_queue; 1283 int rmem, delta, amt, err = -ENOMEM; 1284 spinlock_t *busy = NULL; 1285 int size; 1286 1287 /* try to avoid the costly atomic add/sub pair when the receive 1288 * queue is full; always allow at least a packet 1289 */ 1290 rmem = atomic_read(&sk->sk_rmem_alloc); 1291 if (rmem > sk->sk_rcvbuf) 1292 goto drop; 1293 1294 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1295 * having linear skbs : 1296 * - Reduce memory overhead and thus increase receive queue capacity 1297 * - Less cache line misses at copyout() time 1298 * - Less work at consume_skb() (less alien page frag freeing) 1299 */ 1300 if (rmem > (sk->sk_rcvbuf >> 1)) { 1301 skb_condense(skb); 1302 1303 busy = busylock_acquire(sk); 1304 } 1305 size = skb->truesize; 1306 udp_set_dev_scratch(skb); 1307 1308 /* we drop only if the receive buf is full and the receive 1309 * queue contains some other skb 1310 */ 1311 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1312 if (rmem > (size + sk->sk_rcvbuf)) 1313 goto uncharge_drop; 1314 1315 spin_lock(&list->lock); 1316 if (size >= sk->sk_forward_alloc) { 1317 amt = sk_mem_pages(size); 1318 delta = amt << SK_MEM_QUANTUM_SHIFT; 1319 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1320 err = -ENOBUFS; 1321 spin_unlock(&list->lock); 1322 goto uncharge_drop; 1323 } 1324 1325 sk->sk_forward_alloc += delta; 1326 } 1327 1328 sk->sk_forward_alloc -= size; 1329 1330 /* no need to setup a destructor, we will explicitly release the 1331 * forward allocated memory on dequeue 1332 */ 1333 sock_skb_set_dropcount(sk, skb); 1334 1335 __skb_queue_tail(list, skb); 1336 spin_unlock(&list->lock); 1337 1338 if (!sock_flag(sk, SOCK_DEAD)) 1339 sk->sk_data_ready(sk); 1340 1341 busylock_release(busy); 1342 return 0; 1343 1344 uncharge_drop: 1345 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1346 1347 drop: 1348 atomic_inc(&sk->sk_drops); 1349 busylock_release(busy); 1350 return err; 1351 } 1352 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1353 1354 void udp_destruct_sock(struct sock *sk) 1355 { 1356 /* reclaim completely the forward allocated memory */ 1357 struct udp_sock *up = udp_sk(sk); 1358 unsigned int total = 0; 1359 struct sk_buff *skb; 1360 1361 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1362 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1363 total += skb->truesize; 1364 kfree_skb(skb); 1365 } 1366 udp_rmem_release(sk, total, 0, true); 1367 1368 inet_sock_destruct(sk); 1369 } 1370 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1371 1372 int udp_init_sock(struct sock *sk) 1373 { 1374 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1375 sk->sk_destruct = udp_destruct_sock; 1376 return 0; 1377 } 1378 EXPORT_SYMBOL_GPL(udp_init_sock); 1379 1380 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1381 { 1382 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1383 bool slow = lock_sock_fast(sk); 1384 1385 sk_peek_offset_bwd(sk, len); 1386 unlock_sock_fast(sk, slow); 1387 } 1388 1389 if (!skb_unref(skb)) 1390 return; 1391 1392 /* In the more common cases we cleared the head states previously, 1393 * see __udp_queue_rcv_skb(). 1394 */ 1395 if (unlikely(udp_skb_has_head_state(skb))) 1396 skb_release_head_state(skb); 1397 __consume_stateless_skb(skb); 1398 } 1399 EXPORT_SYMBOL_GPL(skb_consume_udp); 1400 1401 static struct sk_buff *__first_packet_length(struct sock *sk, 1402 struct sk_buff_head *rcvq, 1403 int *total) 1404 { 1405 struct sk_buff *skb; 1406 1407 while ((skb = skb_peek(rcvq)) != NULL) { 1408 if (udp_lib_checksum_complete(skb)) { 1409 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1410 IS_UDPLITE(sk)); 1411 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1412 IS_UDPLITE(sk)); 1413 atomic_inc(&sk->sk_drops); 1414 __skb_unlink(skb, rcvq); 1415 *total += skb->truesize; 1416 kfree_skb(skb); 1417 } else { 1418 /* the csum related bits could be changed, refresh 1419 * the scratch area 1420 */ 1421 udp_set_dev_scratch(skb); 1422 break; 1423 } 1424 } 1425 return skb; 1426 } 1427 1428 /** 1429 * first_packet_length - return length of first packet in receive queue 1430 * @sk: socket 1431 * 1432 * Drops all bad checksum frames, until a valid one is found. 1433 * Returns the length of found skb, or -1 if none is found. 1434 */ 1435 static int first_packet_length(struct sock *sk) 1436 { 1437 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1438 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1439 struct sk_buff *skb; 1440 int total = 0; 1441 int res; 1442 1443 spin_lock_bh(&rcvq->lock); 1444 skb = __first_packet_length(sk, rcvq, &total); 1445 if (!skb && !skb_queue_empty(sk_queue)) { 1446 spin_lock(&sk_queue->lock); 1447 skb_queue_splice_tail_init(sk_queue, rcvq); 1448 spin_unlock(&sk_queue->lock); 1449 1450 skb = __first_packet_length(sk, rcvq, &total); 1451 } 1452 res = skb ? skb->len : -1; 1453 if (total) 1454 udp_rmem_release(sk, total, 1, false); 1455 spin_unlock_bh(&rcvq->lock); 1456 return res; 1457 } 1458 1459 /* 1460 * IOCTL requests applicable to the UDP protocol 1461 */ 1462 1463 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1464 { 1465 switch (cmd) { 1466 case SIOCOUTQ: 1467 { 1468 int amount = sk_wmem_alloc_get(sk); 1469 1470 return put_user(amount, (int __user *)arg); 1471 } 1472 1473 case SIOCINQ: 1474 { 1475 int amount = max_t(int, 0, first_packet_length(sk)); 1476 1477 return put_user(amount, (int __user *)arg); 1478 } 1479 1480 default: 1481 return -ENOIOCTLCMD; 1482 } 1483 1484 return 0; 1485 } 1486 EXPORT_SYMBOL(udp_ioctl); 1487 1488 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1489 int noblock, int *peeked, int *off, int *err) 1490 { 1491 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1492 struct sk_buff_head *queue; 1493 struct sk_buff *last; 1494 long timeo; 1495 int error; 1496 1497 queue = &udp_sk(sk)->reader_queue; 1498 flags |= noblock ? MSG_DONTWAIT : 0; 1499 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1500 do { 1501 struct sk_buff *skb; 1502 1503 error = sock_error(sk); 1504 if (error) 1505 break; 1506 1507 error = -EAGAIN; 1508 *peeked = 0; 1509 do { 1510 spin_lock_bh(&queue->lock); 1511 skb = __skb_try_recv_from_queue(sk, queue, flags, 1512 udp_skb_destructor, 1513 peeked, off, err, 1514 &last); 1515 if (skb) { 1516 spin_unlock_bh(&queue->lock); 1517 return skb; 1518 } 1519 1520 if (skb_queue_empty(sk_queue)) { 1521 spin_unlock_bh(&queue->lock); 1522 goto busy_check; 1523 } 1524 1525 /* refill the reader queue and walk it again 1526 * keep both queues locked to avoid re-acquiring 1527 * the sk_receive_queue lock if fwd memory scheduling 1528 * is needed. 1529 */ 1530 spin_lock(&sk_queue->lock); 1531 skb_queue_splice_tail_init(sk_queue, queue); 1532 1533 skb = __skb_try_recv_from_queue(sk, queue, flags, 1534 udp_skb_dtor_locked, 1535 peeked, off, err, 1536 &last); 1537 spin_unlock(&sk_queue->lock); 1538 spin_unlock_bh(&queue->lock); 1539 if (skb) 1540 return skb; 1541 1542 busy_check: 1543 if (!sk_can_busy_loop(sk)) 1544 break; 1545 1546 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1547 } while (!skb_queue_empty(sk_queue)); 1548 1549 /* sk_queue is empty, reader_queue may contain peeked packets */ 1550 } while (timeo && 1551 !__skb_wait_for_more_packets(sk, &error, &timeo, 1552 (struct sk_buff *)sk_queue)); 1553 1554 *err = error; 1555 return NULL; 1556 } 1557 EXPORT_SYMBOL_GPL(__skb_recv_udp); 1558 1559 /* 1560 * This should be easy, if there is something there we 1561 * return it, otherwise we block. 1562 */ 1563 1564 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1565 int flags, int *addr_len) 1566 { 1567 struct inet_sock *inet = inet_sk(sk); 1568 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1569 struct sk_buff *skb; 1570 unsigned int ulen, copied; 1571 int peeked, peeking, off; 1572 int err; 1573 int is_udplite = IS_UDPLITE(sk); 1574 bool checksum_valid = false; 1575 1576 if (flags & MSG_ERRQUEUE) 1577 return ip_recv_error(sk, msg, len, addr_len); 1578 1579 try_again: 1580 peeking = flags & MSG_PEEK; 1581 off = sk_peek_offset(sk, flags); 1582 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1583 if (!skb) 1584 return err; 1585 1586 ulen = udp_skb_len(skb); 1587 copied = len; 1588 if (copied > ulen - off) 1589 copied = ulen - off; 1590 else if (copied < ulen) 1591 msg->msg_flags |= MSG_TRUNC; 1592 1593 /* 1594 * If checksum is needed at all, try to do it while copying the 1595 * data. If the data is truncated, or if we only want a partial 1596 * coverage checksum (UDP-Lite), do it before the copy. 1597 */ 1598 1599 if (copied < ulen || peeking || 1600 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1601 checksum_valid = udp_skb_csum_unnecessary(skb) || 1602 !__udp_lib_checksum_complete(skb); 1603 if (!checksum_valid) 1604 goto csum_copy_err; 1605 } 1606 1607 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1608 if (udp_skb_is_linear(skb)) 1609 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1610 else 1611 err = skb_copy_datagram_msg(skb, off, msg, copied); 1612 } else { 1613 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1614 1615 if (err == -EINVAL) 1616 goto csum_copy_err; 1617 } 1618 1619 if (unlikely(err)) { 1620 if (!peeked) { 1621 atomic_inc(&sk->sk_drops); 1622 UDP_INC_STATS(sock_net(sk), 1623 UDP_MIB_INERRORS, is_udplite); 1624 } 1625 kfree_skb(skb); 1626 return err; 1627 } 1628 1629 if (!peeked) 1630 UDP_INC_STATS(sock_net(sk), 1631 UDP_MIB_INDATAGRAMS, is_udplite); 1632 1633 sock_recv_ts_and_drops(msg, sk, skb); 1634 1635 /* Copy the address. */ 1636 if (sin) { 1637 sin->sin_family = AF_INET; 1638 sin->sin_port = udp_hdr(skb)->source; 1639 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1640 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1641 *addr_len = sizeof(*sin); 1642 } 1643 if (inet->cmsg_flags) 1644 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1645 1646 err = copied; 1647 if (flags & MSG_TRUNC) 1648 err = ulen; 1649 1650 skb_consume_udp(sk, skb, peeking ? -err : err); 1651 return err; 1652 1653 csum_copy_err: 1654 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1655 udp_skb_destructor)) { 1656 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1657 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1658 } 1659 kfree_skb(skb); 1660 1661 /* starting over for a new packet, but check if we need to yield */ 1662 cond_resched(); 1663 msg->msg_flags &= ~MSG_TRUNC; 1664 goto try_again; 1665 } 1666 1667 int __udp_disconnect(struct sock *sk, int flags) 1668 { 1669 struct inet_sock *inet = inet_sk(sk); 1670 /* 1671 * 1003.1g - break association. 1672 */ 1673 1674 sk->sk_state = TCP_CLOSE; 1675 inet->inet_daddr = 0; 1676 inet->inet_dport = 0; 1677 sock_rps_reset_rxhash(sk); 1678 sk->sk_bound_dev_if = 0; 1679 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1680 inet_reset_saddr(sk); 1681 1682 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1683 sk->sk_prot->unhash(sk); 1684 inet->inet_sport = 0; 1685 } 1686 sk_dst_reset(sk); 1687 return 0; 1688 } 1689 EXPORT_SYMBOL(__udp_disconnect); 1690 1691 int udp_disconnect(struct sock *sk, int flags) 1692 { 1693 lock_sock(sk); 1694 __udp_disconnect(sk, flags); 1695 release_sock(sk); 1696 return 0; 1697 } 1698 EXPORT_SYMBOL(udp_disconnect); 1699 1700 void udp_lib_unhash(struct sock *sk) 1701 { 1702 if (sk_hashed(sk)) { 1703 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1704 struct udp_hslot *hslot, *hslot2; 1705 1706 hslot = udp_hashslot(udptable, sock_net(sk), 1707 udp_sk(sk)->udp_port_hash); 1708 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1709 1710 spin_lock_bh(&hslot->lock); 1711 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1712 reuseport_detach_sock(sk); 1713 if (sk_del_node_init_rcu(sk)) { 1714 hslot->count--; 1715 inet_sk(sk)->inet_num = 0; 1716 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1717 1718 spin_lock(&hslot2->lock); 1719 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1720 hslot2->count--; 1721 spin_unlock(&hslot2->lock); 1722 } 1723 spin_unlock_bh(&hslot->lock); 1724 } 1725 } 1726 EXPORT_SYMBOL(udp_lib_unhash); 1727 1728 /* 1729 * inet_rcv_saddr was changed, we must rehash secondary hash 1730 */ 1731 void udp_lib_rehash(struct sock *sk, u16 newhash) 1732 { 1733 if (sk_hashed(sk)) { 1734 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1735 struct udp_hslot *hslot, *hslot2, *nhslot2; 1736 1737 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1738 nhslot2 = udp_hashslot2(udptable, newhash); 1739 udp_sk(sk)->udp_portaddr_hash = newhash; 1740 1741 if (hslot2 != nhslot2 || 1742 rcu_access_pointer(sk->sk_reuseport_cb)) { 1743 hslot = udp_hashslot(udptable, sock_net(sk), 1744 udp_sk(sk)->udp_port_hash); 1745 /* we must lock primary chain too */ 1746 spin_lock_bh(&hslot->lock); 1747 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1748 reuseport_detach_sock(sk); 1749 1750 if (hslot2 != nhslot2) { 1751 spin_lock(&hslot2->lock); 1752 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1753 hslot2->count--; 1754 spin_unlock(&hslot2->lock); 1755 1756 spin_lock(&nhslot2->lock); 1757 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1758 &nhslot2->head); 1759 nhslot2->count++; 1760 spin_unlock(&nhslot2->lock); 1761 } 1762 1763 spin_unlock_bh(&hslot->lock); 1764 } 1765 } 1766 } 1767 EXPORT_SYMBOL(udp_lib_rehash); 1768 1769 static void udp_v4_rehash(struct sock *sk) 1770 { 1771 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1772 inet_sk(sk)->inet_rcv_saddr, 1773 inet_sk(sk)->inet_num); 1774 udp_lib_rehash(sk, new_hash); 1775 } 1776 1777 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1778 { 1779 int rc; 1780 1781 if (inet_sk(sk)->inet_daddr) { 1782 sock_rps_save_rxhash(sk, skb); 1783 sk_mark_napi_id(sk, skb); 1784 sk_incoming_cpu_update(sk); 1785 } else { 1786 sk_mark_napi_id_once(sk, skb); 1787 } 1788 1789 rc = __udp_enqueue_schedule_skb(sk, skb); 1790 if (rc < 0) { 1791 int is_udplite = IS_UDPLITE(sk); 1792 1793 /* Note that an ENOMEM error is charged twice */ 1794 if (rc == -ENOMEM) 1795 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1796 is_udplite); 1797 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1798 kfree_skb(skb); 1799 trace_udp_fail_queue_rcv_skb(rc, sk); 1800 return -1; 1801 } 1802 1803 return 0; 1804 } 1805 1806 static struct static_key udp_encap_needed __read_mostly; 1807 void udp_encap_enable(void) 1808 { 1809 static_key_enable(&udp_encap_needed); 1810 } 1811 EXPORT_SYMBOL(udp_encap_enable); 1812 1813 /* returns: 1814 * -1: error 1815 * 0: success 1816 * >0: "udp encap" protocol resubmission 1817 * 1818 * Note that in the success and error cases, the skb is assumed to 1819 * have either been requeued or freed. 1820 */ 1821 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1822 { 1823 struct udp_sock *up = udp_sk(sk); 1824 int is_udplite = IS_UDPLITE(sk); 1825 1826 /* 1827 * Charge it to the socket, dropping if the queue is full. 1828 */ 1829 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1830 goto drop; 1831 nf_reset(skb); 1832 1833 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1834 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1835 1836 /* 1837 * This is an encapsulation socket so pass the skb to 1838 * the socket's udp_encap_rcv() hook. Otherwise, just 1839 * fall through and pass this up the UDP socket. 1840 * up->encap_rcv() returns the following value: 1841 * =0 if skb was successfully passed to the encap 1842 * handler or was discarded by it. 1843 * >0 if skb should be passed on to UDP. 1844 * <0 if skb should be resubmitted as proto -N 1845 */ 1846 1847 /* if we're overly short, let UDP handle it */ 1848 encap_rcv = READ_ONCE(up->encap_rcv); 1849 if (encap_rcv) { 1850 int ret; 1851 1852 /* Verify checksum before giving to encap */ 1853 if (udp_lib_checksum_complete(skb)) 1854 goto csum_error; 1855 1856 ret = encap_rcv(sk, skb); 1857 if (ret <= 0) { 1858 __UDP_INC_STATS(sock_net(sk), 1859 UDP_MIB_INDATAGRAMS, 1860 is_udplite); 1861 return -ret; 1862 } 1863 } 1864 1865 /* FALLTHROUGH -- it's a UDP Packet */ 1866 } 1867 1868 /* 1869 * UDP-Lite specific tests, ignored on UDP sockets 1870 */ 1871 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1872 1873 /* 1874 * MIB statistics other than incrementing the error count are 1875 * disabled for the following two types of errors: these depend 1876 * on the application settings, not on the functioning of the 1877 * protocol stack as such. 1878 * 1879 * RFC 3828 here recommends (sec 3.3): "There should also be a 1880 * way ... to ... at least let the receiving application block 1881 * delivery of packets with coverage values less than a value 1882 * provided by the application." 1883 */ 1884 if (up->pcrlen == 0) { /* full coverage was set */ 1885 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1886 UDP_SKB_CB(skb)->cscov, skb->len); 1887 goto drop; 1888 } 1889 /* The next case involves violating the min. coverage requested 1890 * by the receiver. This is subtle: if receiver wants x and x is 1891 * greater than the buffersize/MTU then receiver will complain 1892 * that it wants x while sender emits packets of smaller size y. 1893 * Therefore the above ...()->partial_cov statement is essential. 1894 */ 1895 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1896 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1897 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1898 goto drop; 1899 } 1900 } 1901 1902 prefetch(&sk->sk_rmem_alloc); 1903 if (rcu_access_pointer(sk->sk_filter) && 1904 udp_lib_checksum_complete(skb)) 1905 goto csum_error; 1906 1907 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1908 goto drop; 1909 1910 udp_csum_pull_header(skb); 1911 1912 ipv4_pktinfo_prepare(sk, skb); 1913 return __udp_queue_rcv_skb(sk, skb); 1914 1915 csum_error: 1916 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1917 drop: 1918 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1919 atomic_inc(&sk->sk_drops); 1920 kfree_skb(skb); 1921 return -1; 1922 } 1923 1924 /* For TCP sockets, sk_rx_dst is protected by socket lock 1925 * For UDP, we use xchg() to guard against concurrent changes. 1926 */ 1927 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 1928 { 1929 struct dst_entry *old; 1930 1931 if (dst_hold_safe(dst)) { 1932 old = xchg(&sk->sk_rx_dst, dst); 1933 dst_release(old); 1934 return old != dst; 1935 } 1936 return false; 1937 } 1938 EXPORT_SYMBOL(udp_sk_rx_dst_set); 1939 1940 /* 1941 * Multicasts and broadcasts go to each listener. 1942 * 1943 * Note: called only from the BH handler context. 1944 */ 1945 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1946 struct udphdr *uh, 1947 __be32 saddr, __be32 daddr, 1948 struct udp_table *udptable, 1949 int proto) 1950 { 1951 struct sock *sk, *first = NULL; 1952 unsigned short hnum = ntohs(uh->dest); 1953 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 1954 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 1955 unsigned int offset = offsetof(typeof(*sk), sk_node); 1956 int dif = skb->dev->ifindex; 1957 int sdif = inet_sdif(skb); 1958 struct hlist_node *node; 1959 struct sk_buff *nskb; 1960 1961 if (use_hash2) { 1962 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 1963 udptable->mask; 1964 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 1965 start_lookup: 1966 hslot = &udptable->hash2[hash2]; 1967 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 1968 } 1969 1970 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 1971 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 1972 uh->source, saddr, dif, sdif, hnum)) 1973 continue; 1974 1975 if (!first) { 1976 first = sk; 1977 continue; 1978 } 1979 nskb = skb_clone(skb, GFP_ATOMIC); 1980 1981 if (unlikely(!nskb)) { 1982 atomic_inc(&sk->sk_drops); 1983 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 1984 IS_UDPLITE(sk)); 1985 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 1986 IS_UDPLITE(sk)); 1987 continue; 1988 } 1989 if (udp_queue_rcv_skb(sk, nskb) > 0) 1990 consume_skb(nskb); 1991 } 1992 1993 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 1994 if (use_hash2 && hash2 != hash2_any) { 1995 hash2 = hash2_any; 1996 goto start_lookup; 1997 } 1998 1999 if (first) { 2000 if (udp_queue_rcv_skb(first, skb) > 0) 2001 consume_skb(skb); 2002 } else { 2003 kfree_skb(skb); 2004 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2005 proto == IPPROTO_UDPLITE); 2006 } 2007 return 0; 2008 } 2009 2010 /* Initialize UDP checksum. If exited with zero value (success), 2011 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2012 * Otherwise, csum completion requires chacksumming packet body, 2013 * including udp header and folding it to skb->csum. 2014 */ 2015 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2016 int proto) 2017 { 2018 int err; 2019 2020 UDP_SKB_CB(skb)->partial_cov = 0; 2021 UDP_SKB_CB(skb)->cscov = skb->len; 2022 2023 if (proto == IPPROTO_UDPLITE) { 2024 err = udplite_checksum_init(skb, uh); 2025 if (err) 2026 return err; 2027 2028 if (UDP_SKB_CB(skb)->partial_cov) { 2029 skb->csum = inet_compute_pseudo(skb, proto); 2030 return 0; 2031 } 2032 } 2033 2034 /* Note, we are only interested in != 0 or == 0, thus the 2035 * force to int. 2036 */ 2037 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2038 inet_compute_pseudo); 2039 } 2040 2041 /* 2042 * All we need to do is get the socket, and then do a checksum. 2043 */ 2044 2045 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2046 int proto) 2047 { 2048 struct sock *sk; 2049 struct udphdr *uh; 2050 unsigned short ulen; 2051 struct rtable *rt = skb_rtable(skb); 2052 __be32 saddr, daddr; 2053 struct net *net = dev_net(skb->dev); 2054 2055 /* 2056 * Validate the packet. 2057 */ 2058 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2059 goto drop; /* No space for header. */ 2060 2061 uh = udp_hdr(skb); 2062 ulen = ntohs(uh->len); 2063 saddr = ip_hdr(skb)->saddr; 2064 daddr = ip_hdr(skb)->daddr; 2065 2066 if (ulen > skb->len) 2067 goto short_packet; 2068 2069 if (proto == IPPROTO_UDP) { 2070 /* UDP validates ulen. */ 2071 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2072 goto short_packet; 2073 uh = udp_hdr(skb); 2074 } 2075 2076 if (udp4_csum_init(skb, uh, proto)) 2077 goto csum_error; 2078 2079 sk = skb_steal_sock(skb); 2080 if (sk) { 2081 struct dst_entry *dst = skb_dst(skb); 2082 int ret; 2083 2084 if (unlikely(sk->sk_rx_dst != dst)) 2085 udp_sk_rx_dst_set(sk, dst); 2086 2087 ret = udp_queue_rcv_skb(sk, skb); 2088 sock_put(sk); 2089 /* a return value > 0 means to resubmit the input, but 2090 * it wants the return to be -protocol, or 0 2091 */ 2092 if (ret > 0) 2093 return -ret; 2094 return 0; 2095 } 2096 2097 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2098 return __udp4_lib_mcast_deliver(net, skb, uh, 2099 saddr, daddr, udptable, proto); 2100 2101 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2102 if (sk) { 2103 int ret; 2104 2105 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2106 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2107 inet_compute_pseudo); 2108 2109 ret = udp_queue_rcv_skb(sk, skb); 2110 2111 /* a return value > 0 means to resubmit the input, but 2112 * it wants the return to be -protocol, or 0 2113 */ 2114 if (ret > 0) 2115 return -ret; 2116 return 0; 2117 } 2118 2119 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2120 goto drop; 2121 nf_reset(skb); 2122 2123 /* No socket. Drop packet silently, if checksum is wrong */ 2124 if (udp_lib_checksum_complete(skb)) 2125 goto csum_error; 2126 2127 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2128 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2129 2130 /* 2131 * Hmm. We got an UDP packet to a port to which we 2132 * don't wanna listen. Ignore it. 2133 */ 2134 kfree_skb(skb); 2135 return 0; 2136 2137 short_packet: 2138 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2139 proto == IPPROTO_UDPLITE ? "Lite" : "", 2140 &saddr, ntohs(uh->source), 2141 ulen, skb->len, 2142 &daddr, ntohs(uh->dest)); 2143 goto drop; 2144 2145 csum_error: 2146 /* 2147 * RFC1122: OK. Discards the bad packet silently (as far as 2148 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2149 */ 2150 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2151 proto == IPPROTO_UDPLITE ? "Lite" : "", 2152 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2153 ulen); 2154 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2155 drop: 2156 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2157 kfree_skb(skb); 2158 return 0; 2159 } 2160 2161 /* We can only early demux multicast if there is a single matching socket. 2162 * If more than one socket found returns NULL 2163 */ 2164 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2165 __be16 loc_port, __be32 loc_addr, 2166 __be16 rmt_port, __be32 rmt_addr, 2167 int dif, int sdif) 2168 { 2169 struct sock *sk, *result; 2170 unsigned short hnum = ntohs(loc_port); 2171 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2172 struct udp_hslot *hslot = &udp_table.hash[slot]; 2173 2174 /* Do not bother scanning a too big list */ 2175 if (hslot->count > 10) 2176 return NULL; 2177 2178 result = NULL; 2179 sk_for_each_rcu(sk, &hslot->head) { 2180 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2181 rmt_port, rmt_addr, dif, sdif, hnum)) { 2182 if (result) 2183 return NULL; 2184 result = sk; 2185 } 2186 } 2187 2188 return result; 2189 } 2190 2191 /* For unicast we should only early demux connected sockets or we can 2192 * break forwarding setups. The chains here can be long so only check 2193 * if the first socket is an exact match and if not move on. 2194 */ 2195 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2196 __be16 loc_port, __be32 loc_addr, 2197 __be16 rmt_port, __be32 rmt_addr, 2198 int dif, int sdif) 2199 { 2200 unsigned short hnum = ntohs(loc_port); 2201 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2202 unsigned int slot2 = hash2 & udp_table.mask; 2203 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2204 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2205 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2206 struct sock *sk; 2207 2208 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2209 if (INET_MATCH(sk, net, acookie, rmt_addr, 2210 loc_addr, ports, dif, sdif)) 2211 return sk; 2212 /* Only check first socket in chain */ 2213 break; 2214 } 2215 return NULL; 2216 } 2217 2218 int udp_v4_early_demux(struct sk_buff *skb) 2219 { 2220 struct net *net = dev_net(skb->dev); 2221 struct in_device *in_dev = NULL; 2222 const struct iphdr *iph; 2223 const struct udphdr *uh; 2224 struct sock *sk = NULL; 2225 struct dst_entry *dst; 2226 int dif = skb->dev->ifindex; 2227 int sdif = inet_sdif(skb); 2228 int ours; 2229 2230 /* validate the packet */ 2231 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2232 return 0; 2233 2234 iph = ip_hdr(skb); 2235 uh = udp_hdr(skb); 2236 2237 if (skb->pkt_type == PACKET_MULTICAST) { 2238 in_dev = __in_dev_get_rcu(skb->dev); 2239 2240 if (!in_dev) 2241 return 0; 2242 2243 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2244 iph->protocol); 2245 if (!ours) 2246 return 0; 2247 2248 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2249 uh->source, iph->saddr, 2250 dif, sdif); 2251 } else if (skb->pkt_type == PACKET_HOST) { 2252 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2253 uh->source, iph->saddr, dif, sdif); 2254 } 2255 2256 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2257 return 0; 2258 2259 skb->sk = sk; 2260 skb->destructor = sock_efree; 2261 dst = READ_ONCE(sk->sk_rx_dst); 2262 2263 if (dst) 2264 dst = dst_check(dst, 0); 2265 if (dst) { 2266 u32 itag = 0; 2267 2268 /* set noref for now. 2269 * any place which wants to hold dst has to call 2270 * dst_hold_safe() 2271 */ 2272 skb_dst_set_noref(skb, dst); 2273 2274 /* for unconnected multicast sockets we need to validate 2275 * the source on each packet 2276 */ 2277 if (!inet_sk(sk)->inet_daddr && in_dev) 2278 return ip_mc_validate_source(skb, iph->daddr, 2279 iph->saddr, iph->tos, 2280 skb->dev, in_dev, &itag); 2281 } 2282 return 0; 2283 } 2284 2285 int udp_rcv(struct sk_buff *skb) 2286 { 2287 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2288 } 2289 2290 void udp_destroy_sock(struct sock *sk) 2291 { 2292 struct udp_sock *up = udp_sk(sk); 2293 bool slow = lock_sock_fast(sk); 2294 udp_flush_pending_frames(sk); 2295 unlock_sock_fast(sk, slow); 2296 if (static_key_false(&udp_encap_needed) && up->encap_type) { 2297 void (*encap_destroy)(struct sock *sk); 2298 encap_destroy = READ_ONCE(up->encap_destroy); 2299 if (encap_destroy) 2300 encap_destroy(sk); 2301 } 2302 } 2303 2304 /* 2305 * Socket option code for UDP 2306 */ 2307 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2308 char __user *optval, unsigned int optlen, 2309 int (*push_pending_frames)(struct sock *)) 2310 { 2311 struct udp_sock *up = udp_sk(sk); 2312 int val, valbool; 2313 int err = 0; 2314 int is_udplite = IS_UDPLITE(sk); 2315 2316 if (optlen < sizeof(int)) 2317 return -EINVAL; 2318 2319 if (get_user(val, (int __user *)optval)) 2320 return -EFAULT; 2321 2322 valbool = val ? 1 : 0; 2323 2324 switch (optname) { 2325 case UDP_CORK: 2326 if (val != 0) { 2327 up->corkflag = 1; 2328 } else { 2329 up->corkflag = 0; 2330 lock_sock(sk); 2331 push_pending_frames(sk); 2332 release_sock(sk); 2333 } 2334 break; 2335 2336 case UDP_ENCAP: 2337 switch (val) { 2338 case 0: 2339 case UDP_ENCAP_ESPINUDP: 2340 case UDP_ENCAP_ESPINUDP_NON_IKE: 2341 up->encap_rcv = xfrm4_udp_encap_rcv; 2342 /* FALLTHROUGH */ 2343 case UDP_ENCAP_L2TPINUDP: 2344 up->encap_type = val; 2345 udp_encap_enable(); 2346 break; 2347 default: 2348 err = -ENOPROTOOPT; 2349 break; 2350 } 2351 break; 2352 2353 case UDP_NO_CHECK6_TX: 2354 up->no_check6_tx = valbool; 2355 break; 2356 2357 case UDP_NO_CHECK6_RX: 2358 up->no_check6_rx = valbool; 2359 break; 2360 2361 /* 2362 * UDP-Lite's partial checksum coverage (RFC 3828). 2363 */ 2364 /* The sender sets actual checksum coverage length via this option. 2365 * The case coverage > packet length is handled by send module. */ 2366 case UDPLITE_SEND_CSCOV: 2367 if (!is_udplite) /* Disable the option on UDP sockets */ 2368 return -ENOPROTOOPT; 2369 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2370 val = 8; 2371 else if (val > USHRT_MAX) 2372 val = USHRT_MAX; 2373 up->pcslen = val; 2374 up->pcflag |= UDPLITE_SEND_CC; 2375 break; 2376 2377 /* The receiver specifies a minimum checksum coverage value. To make 2378 * sense, this should be set to at least 8 (as done below). If zero is 2379 * used, this again means full checksum coverage. */ 2380 case UDPLITE_RECV_CSCOV: 2381 if (!is_udplite) /* Disable the option on UDP sockets */ 2382 return -ENOPROTOOPT; 2383 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2384 val = 8; 2385 else if (val > USHRT_MAX) 2386 val = USHRT_MAX; 2387 up->pcrlen = val; 2388 up->pcflag |= UDPLITE_RECV_CC; 2389 break; 2390 2391 default: 2392 err = -ENOPROTOOPT; 2393 break; 2394 } 2395 2396 return err; 2397 } 2398 EXPORT_SYMBOL(udp_lib_setsockopt); 2399 2400 int udp_setsockopt(struct sock *sk, int level, int optname, 2401 char __user *optval, unsigned int optlen) 2402 { 2403 if (level == SOL_UDP || level == SOL_UDPLITE) 2404 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2405 udp_push_pending_frames); 2406 return ip_setsockopt(sk, level, optname, optval, optlen); 2407 } 2408 2409 #ifdef CONFIG_COMPAT 2410 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2411 char __user *optval, unsigned int optlen) 2412 { 2413 if (level == SOL_UDP || level == SOL_UDPLITE) 2414 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2415 udp_push_pending_frames); 2416 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2417 } 2418 #endif 2419 2420 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2421 char __user *optval, int __user *optlen) 2422 { 2423 struct udp_sock *up = udp_sk(sk); 2424 int val, len; 2425 2426 if (get_user(len, optlen)) 2427 return -EFAULT; 2428 2429 len = min_t(unsigned int, len, sizeof(int)); 2430 2431 if (len < 0) 2432 return -EINVAL; 2433 2434 switch (optname) { 2435 case UDP_CORK: 2436 val = up->corkflag; 2437 break; 2438 2439 case UDP_ENCAP: 2440 val = up->encap_type; 2441 break; 2442 2443 case UDP_NO_CHECK6_TX: 2444 val = up->no_check6_tx; 2445 break; 2446 2447 case UDP_NO_CHECK6_RX: 2448 val = up->no_check6_rx; 2449 break; 2450 2451 /* The following two cannot be changed on UDP sockets, the return is 2452 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2453 case UDPLITE_SEND_CSCOV: 2454 val = up->pcslen; 2455 break; 2456 2457 case UDPLITE_RECV_CSCOV: 2458 val = up->pcrlen; 2459 break; 2460 2461 default: 2462 return -ENOPROTOOPT; 2463 } 2464 2465 if (put_user(len, optlen)) 2466 return -EFAULT; 2467 if (copy_to_user(optval, &val, len)) 2468 return -EFAULT; 2469 return 0; 2470 } 2471 EXPORT_SYMBOL(udp_lib_getsockopt); 2472 2473 int udp_getsockopt(struct sock *sk, int level, int optname, 2474 char __user *optval, int __user *optlen) 2475 { 2476 if (level == SOL_UDP || level == SOL_UDPLITE) 2477 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2478 return ip_getsockopt(sk, level, optname, optval, optlen); 2479 } 2480 2481 #ifdef CONFIG_COMPAT 2482 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2483 char __user *optval, int __user *optlen) 2484 { 2485 if (level == SOL_UDP || level == SOL_UDPLITE) 2486 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2487 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2488 } 2489 #endif 2490 /** 2491 * udp_poll - wait for a UDP event. 2492 * @file - file struct 2493 * @sock - socket 2494 * @wait - poll table 2495 * 2496 * This is same as datagram poll, except for the special case of 2497 * blocking sockets. If application is using a blocking fd 2498 * and a packet with checksum error is in the queue; 2499 * then it could get return from select indicating data available 2500 * but then block when reading it. Add special case code 2501 * to work around these arguably broken applications. 2502 */ 2503 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2504 { 2505 __poll_t mask = datagram_poll(file, sock, wait); 2506 struct sock *sk = sock->sk; 2507 2508 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2509 mask |= EPOLLIN | EPOLLRDNORM; 2510 2511 /* Check for false positives due to checksum errors */ 2512 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2513 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2514 mask &= ~(EPOLLIN | EPOLLRDNORM); 2515 2516 return mask; 2517 2518 } 2519 EXPORT_SYMBOL(udp_poll); 2520 2521 int udp_abort(struct sock *sk, int err) 2522 { 2523 lock_sock(sk); 2524 2525 sk->sk_err = err; 2526 sk->sk_error_report(sk); 2527 __udp_disconnect(sk, 0); 2528 2529 release_sock(sk); 2530 2531 return 0; 2532 } 2533 EXPORT_SYMBOL_GPL(udp_abort); 2534 2535 struct proto udp_prot = { 2536 .name = "UDP", 2537 .owner = THIS_MODULE, 2538 .close = udp_lib_close, 2539 .connect = ip4_datagram_connect, 2540 .disconnect = udp_disconnect, 2541 .ioctl = udp_ioctl, 2542 .init = udp_init_sock, 2543 .destroy = udp_destroy_sock, 2544 .setsockopt = udp_setsockopt, 2545 .getsockopt = udp_getsockopt, 2546 .sendmsg = udp_sendmsg, 2547 .recvmsg = udp_recvmsg, 2548 .sendpage = udp_sendpage, 2549 .release_cb = ip4_datagram_release_cb, 2550 .hash = udp_lib_hash, 2551 .unhash = udp_lib_unhash, 2552 .rehash = udp_v4_rehash, 2553 .get_port = udp_v4_get_port, 2554 .memory_allocated = &udp_memory_allocated, 2555 .sysctl_mem = sysctl_udp_mem, 2556 .sysctl_wmem = &sysctl_udp_wmem_min, 2557 .sysctl_rmem = &sysctl_udp_rmem_min, 2558 .obj_size = sizeof(struct udp_sock), 2559 .h.udp_table = &udp_table, 2560 #ifdef CONFIG_COMPAT 2561 .compat_setsockopt = compat_udp_setsockopt, 2562 .compat_getsockopt = compat_udp_getsockopt, 2563 #endif 2564 .diag_destroy = udp_abort, 2565 }; 2566 EXPORT_SYMBOL(udp_prot); 2567 2568 /* ------------------------------------------------------------------------ */ 2569 #ifdef CONFIG_PROC_FS 2570 2571 static struct sock *udp_get_first(struct seq_file *seq, int start) 2572 { 2573 struct sock *sk; 2574 struct udp_iter_state *state = seq->private; 2575 struct net *net = seq_file_net(seq); 2576 2577 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2578 ++state->bucket) { 2579 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2580 2581 if (hlist_empty(&hslot->head)) 2582 continue; 2583 2584 spin_lock_bh(&hslot->lock); 2585 sk_for_each(sk, &hslot->head) { 2586 if (!net_eq(sock_net(sk), net)) 2587 continue; 2588 if (sk->sk_family == state->family) 2589 goto found; 2590 } 2591 spin_unlock_bh(&hslot->lock); 2592 } 2593 sk = NULL; 2594 found: 2595 return sk; 2596 } 2597 2598 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2599 { 2600 struct udp_iter_state *state = seq->private; 2601 struct net *net = seq_file_net(seq); 2602 2603 do { 2604 sk = sk_next(sk); 2605 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2606 2607 if (!sk) { 2608 if (state->bucket <= state->udp_table->mask) 2609 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2610 return udp_get_first(seq, state->bucket + 1); 2611 } 2612 return sk; 2613 } 2614 2615 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2616 { 2617 struct sock *sk = udp_get_first(seq, 0); 2618 2619 if (sk) 2620 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2621 --pos; 2622 return pos ? NULL : sk; 2623 } 2624 2625 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2626 { 2627 struct udp_iter_state *state = seq->private; 2628 state->bucket = MAX_UDP_PORTS; 2629 2630 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2631 } 2632 2633 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2634 { 2635 struct sock *sk; 2636 2637 if (v == SEQ_START_TOKEN) 2638 sk = udp_get_idx(seq, 0); 2639 else 2640 sk = udp_get_next(seq, v); 2641 2642 ++*pos; 2643 return sk; 2644 } 2645 2646 static void udp_seq_stop(struct seq_file *seq, void *v) 2647 { 2648 struct udp_iter_state *state = seq->private; 2649 2650 if (state->bucket <= state->udp_table->mask) 2651 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2652 } 2653 2654 int udp_seq_open(struct inode *inode, struct file *file) 2655 { 2656 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2657 struct udp_iter_state *s; 2658 int err; 2659 2660 err = seq_open_net(inode, file, &afinfo->seq_ops, 2661 sizeof(struct udp_iter_state)); 2662 if (err < 0) 2663 return err; 2664 2665 s = ((struct seq_file *)file->private_data)->private; 2666 s->family = afinfo->family; 2667 s->udp_table = afinfo->udp_table; 2668 return err; 2669 } 2670 EXPORT_SYMBOL(udp_seq_open); 2671 2672 /* ------------------------------------------------------------------------ */ 2673 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2674 { 2675 struct proc_dir_entry *p; 2676 int rc = 0; 2677 2678 afinfo->seq_ops.start = udp_seq_start; 2679 afinfo->seq_ops.next = udp_seq_next; 2680 afinfo->seq_ops.stop = udp_seq_stop; 2681 2682 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2683 afinfo->seq_fops, afinfo); 2684 if (!p) 2685 rc = -ENOMEM; 2686 return rc; 2687 } 2688 EXPORT_SYMBOL(udp_proc_register); 2689 2690 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2691 { 2692 remove_proc_entry(afinfo->name, net->proc_net); 2693 } 2694 EXPORT_SYMBOL(udp_proc_unregister); 2695 2696 /* ------------------------------------------------------------------------ */ 2697 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2698 int bucket) 2699 { 2700 struct inet_sock *inet = inet_sk(sp); 2701 __be32 dest = inet->inet_daddr; 2702 __be32 src = inet->inet_rcv_saddr; 2703 __u16 destp = ntohs(inet->inet_dport); 2704 __u16 srcp = ntohs(inet->inet_sport); 2705 2706 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2707 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2708 bucket, src, srcp, dest, destp, sp->sk_state, 2709 sk_wmem_alloc_get(sp), 2710 sk_rmem_alloc_get(sp), 2711 0, 0L, 0, 2712 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2713 0, sock_i_ino(sp), 2714 refcount_read(&sp->sk_refcnt), sp, 2715 atomic_read(&sp->sk_drops)); 2716 } 2717 2718 int udp4_seq_show(struct seq_file *seq, void *v) 2719 { 2720 seq_setwidth(seq, 127); 2721 if (v == SEQ_START_TOKEN) 2722 seq_puts(seq, " sl local_address rem_address st tx_queue " 2723 "rx_queue tr tm->when retrnsmt uid timeout " 2724 "inode ref pointer drops"); 2725 else { 2726 struct udp_iter_state *state = seq->private; 2727 2728 udp4_format_sock(v, seq, state->bucket); 2729 } 2730 seq_pad(seq, '\n'); 2731 return 0; 2732 } 2733 2734 static const struct file_operations udp_afinfo_seq_fops = { 2735 .open = udp_seq_open, 2736 .read = seq_read, 2737 .llseek = seq_lseek, 2738 .release = seq_release_net 2739 }; 2740 2741 /* ------------------------------------------------------------------------ */ 2742 static struct udp_seq_afinfo udp4_seq_afinfo = { 2743 .name = "udp", 2744 .family = AF_INET, 2745 .udp_table = &udp_table, 2746 .seq_fops = &udp_afinfo_seq_fops, 2747 .seq_ops = { 2748 .show = udp4_seq_show, 2749 }, 2750 }; 2751 2752 static int __net_init udp4_proc_init_net(struct net *net) 2753 { 2754 return udp_proc_register(net, &udp4_seq_afinfo); 2755 } 2756 2757 static void __net_exit udp4_proc_exit_net(struct net *net) 2758 { 2759 udp_proc_unregister(net, &udp4_seq_afinfo); 2760 } 2761 2762 static struct pernet_operations udp4_net_ops = { 2763 .init = udp4_proc_init_net, 2764 .exit = udp4_proc_exit_net, 2765 }; 2766 2767 int __init udp4_proc_init(void) 2768 { 2769 return register_pernet_subsys(&udp4_net_ops); 2770 } 2771 2772 void udp4_proc_exit(void) 2773 { 2774 unregister_pernet_subsys(&udp4_net_ops); 2775 } 2776 #endif /* CONFIG_PROC_FS */ 2777 2778 static __initdata unsigned long uhash_entries; 2779 static int __init set_uhash_entries(char *str) 2780 { 2781 ssize_t ret; 2782 2783 if (!str) 2784 return 0; 2785 2786 ret = kstrtoul(str, 0, &uhash_entries); 2787 if (ret) 2788 return 0; 2789 2790 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2791 uhash_entries = UDP_HTABLE_SIZE_MIN; 2792 return 1; 2793 } 2794 __setup("uhash_entries=", set_uhash_entries); 2795 2796 void __init udp_table_init(struct udp_table *table, const char *name) 2797 { 2798 unsigned int i; 2799 2800 table->hash = alloc_large_system_hash(name, 2801 2 * sizeof(struct udp_hslot), 2802 uhash_entries, 2803 21, /* one slot per 2 MB */ 2804 0, 2805 &table->log, 2806 &table->mask, 2807 UDP_HTABLE_SIZE_MIN, 2808 64 * 1024); 2809 2810 table->hash2 = table->hash + (table->mask + 1); 2811 for (i = 0; i <= table->mask; i++) { 2812 INIT_HLIST_HEAD(&table->hash[i].head); 2813 table->hash[i].count = 0; 2814 spin_lock_init(&table->hash[i].lock); 2815 } 2816 for (i = 0; i <= table->mask; i++) { 2817 INIT_HLIST_HEAD(&table->hash2[i].head); 2818 table->hash2[i].count = 0; 2819 spin_lock_init(&table->hash2[i].lock); 2820 } 2821 } 2822 2823 u32 udp_flow_hashrnd(void) 2824 { 2825 static u32 hashrnd __read_mostly; 2826 2827 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2828 2829 return hashrnd; 2830 } 2831 EXPORT_SYMBOL(udp_flow_hashrnd); 2832 2833 void __init udp_init(void) 2834 { 2835 unsigned long limit; 2836 unsigned int i; 2837 2838 udp_table_init(&udp_table, "UDP"); 2839 limit = nr_free_buffer_pages() / 8; 2840 limit = max(limit, 128UL); 2841 sysctl_udp_mem[0] = limit / 4 * 3; 2842 sysctl_udp_mem[1] = limit; 2843 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2844 2845 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2846 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2847 2848 /* 16 spinlocks per cpu */ 2849 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2850 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2851 GFP_KERNEL); 2852 if (!udp_busylocks) 2853 panic("UDP: failed to alloc udp_busylocks\n"); 2854 for (i = 0; i < (1U << udp_busylocks_log); i++) 2855 spin_lock_init(udp_busylocks + i); 2856 } 2857