1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <asm/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/in.h> 94 #include <linux/errno.h> 95 #include <linux/timer.h> 96 #include <linux/mm.h> 97 #include <linux/inet.h> 98 #include <linux/netdevice.h> 99 #include <linux/slab.h> 100 #include <net/tcp_states.h> 101 #include <linux/skbuff.h> 102 #include <linux/netdevice.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 117 struct udp_table udp_table __read_mostly; 118 EXPORT_SYMBOL(udp_table); 119 120 long sysctl_udp_mem[3] __read_mostly; 121 EXPORT_SYMBOL(sysctl_udp_mem); 122 123 int sysctl_udp_rmem_min __read_mostly; 124 EXPORT_SYMBOL(sysctl_udp_rmem_min); 125 126 int sysctl_udp_wmem_min __read_mostly; 127 EXPORT_SYMBOL(sysctl_udp_wmem_min); 128 129 atomic_long_t udp_memory_allocated; 130 EXPORT_SYMBOL(udp_memory_allocated); 131 132 #define MAX_UDP_PORTS 65536 133 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 134 135 static int udp_lib_lport_inuse(struct net *net, __u16 num, 136 const struct udp_hslot *hslot, 137 unsigned long *bitmap, 138 struct sock *sk, 139 int (*saddr_comp)(const struct sock *sk1, 140 const struct sock *sk2), 141 unsigned int log) 142 { 143 struct sock *sk2; 144 struct hlist_nulls_node *node; 145 kuid_t uid = sock_i_uid(sk); 146 147 sk_nulls_for_each(sk2, node, &hslot->head) { 148 if (net_eq(sock_net(sk2), net) && 149 sk2 != sk && 150 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 151 (!sk2->sk_reuse || !sk->sk_reuse) && 152 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 153 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 154 (!sk2->sk_reuseport || !sk->sk_reuseport || 155 !uid_eq(uid, sock_i_uid(sk2))) && 156 saddr_comp(sk, sk2)) { 157 if (!bitmap) 158 return 1; 159 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap); 160 } 161 } 162 return 0; 163 } 164 165 /* 166 * Note: we still hold spinlock of primary hash chain, so no other writer 167 * can insert/delete a socket with local_port == num 168 */ 169 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 170 struct udp_hslot *hslot2, 171 struct sock *sk, 172 int (*saddr_comp)(const struct sock *sk1, 173 const struct sock *sk2)) 174 { 175 struct sock *sk2; 176 struct hlist_nulls_node *node; 177 kuid_t uid = sock_i_uid(sk); 178 int res = 0; 179 180 spin_lock(&hslot2->lock); 181 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) { 182 if (net_eq(sock_net(sk2), net) && 183 sk2 != sk && 184 (udp_sk(sk2)->udp_port_hash == num) && 185 (!sk2->sk_reuse || !sk->sk_reuse) && 186 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 187 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 188 (!sk2->sk_reuseport || !sk->sk_reuseport || 189 !uid_eq(uid, sock_i_uid(sk2))) && 190 saddr_comp(sk, sk2)) { 191 res = 1; 192 break; 193 } 194 } 195 spin_unlock(&hslot2->lock); 196 return res; 197 } 198 199 /** 200 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 201 * 202 * @sk: socket struct in question 203 * @snum: port number to look up 204 * @saddr_comp: AF-dependent comparison of bound local IP addresses 205 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 206 * with NULL address 207 */ 208 int udp_lib_get_port(struct sock *sk, unsigned short snum, 209 int (*saddr_comp)(const struct sock *sk1, 210 const struct sock *sk2), 211 unsigned int hash2_nulladdr) 212 { 213 struct udp_hslot *hslot, *hslot2; 214 struct udp_table *udptable = sk->sk_prot->h.udp_table; 215 int error = 1; 216 struct net *net = sock_net(sk); 217 218 if (!snum) { 219 int low, high, remaining; 220 unsigned int rand; 221 unsigned short first, last; 222 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 223 224 inet_get_local_port_range(net, &low, &high); 225 remaining = (high - low) + 1; 226 227 rand = prandom_u32(); 228 first = reciprocal_scale(rand, remaining) + low; 229 /* 230 * force rand to be an odd multiple of UDP_HTABLE_SIZE 231 */ 232 rand = (rand | 1) * (udptable->mask + 1); 233 last = first + udptable->mask + 1; 234 do { 235 hslot = udp_hashslot(udptable, net, first); 236 bitmap_zero(bitmap, PORTS_PER_CHAIN); 237 spin_lock_bh(&hslot->lock); 238 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 239 saddr_comp, udptable->log); 240 241 snum = first; 242 /* 243 * Iterate on all possible values of snum for this hash. 244 * Using steps of an odd multiple of UDP_HTABLE_SIZE 245 * give us randomization and full range coverage. 246 */ 247 do { 248 if (low <= snum && snum <= high && 249 !test_bit(snum >> udptable->log, bitmap) && 250 !inet_is_local_reserved_port(net, snum)) 251 goto found; 252 snum += rand; 253 } while (snum != first); 254 spin_unlock_bh(&hslot->lock); 255 } while (++first != last); 256 goto fail; 257 } else { 258 hslot = udp_hashslot(udptable, net, snum); 259 spin_lock_bh(&hslot->lock); 260 if (hslot->count > 10) { 261 int exist; 262 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 263 264 slot2 &= udptable->mask; 265 hash2_nulladdr &= udptable->mask; 266 267 hslot2 = udp_hashslot2(udptable, slot2); 268 if (hslot->count < hslot2->count) 269 goto scan_primary_hash; 270 271 exist = udp_lib_lport_inuse2(net, snum, hslot2, 272 sk, saddr_comp); 273 if (!exist && (hash2_nulladdr != slot2)) { 274 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 275 exist = udp_lib_lport_inuse2(net, snum, hslot2, 276 sk, saddr_comp); 277 } 278 if (exist) 279 goto fail_unlock; 280 else 281 goto found; 282 } 283 scan_primary_hash: 284 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 285 saddr_comp, 0)) 286 goto fail_unlock; 287 } 288 found: 289 inet_sk(sk)->inet_num = snum; 290 udp_sk(sk)->udp_port_hash = snum; 291 udp_sk(sk)->udp_portaddr_hash ^= snum; 292 if (sk_unhashed(sk)) { 293 sk_nulls_add_node_rcu(sk, &hslot->head); 294 hslot->count++; 295 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 296 297 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 298 spin_lock(&hslot2->lock); 299 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 300 &hslot2->head); 301 hslot2->count++; 302 spin_unlock(&hslot2->lock); 303 } 304 error = 0; 305 fail_unlock: 306 spin_unlock_bh(&hslot->lock); 307 fail: 308 return error; 309 } 310 EXPORT_SYMBOL(udp_lib_get_port); 311 312 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2) 313 { 314 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2); 315 316 return (!ipv6_only_sock(sk2) && 317 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr || 318 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)); 319 } 320 321 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr, 322 unsigned int port) 323 { 324 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; 325 } 326 327 int udp_v4_get_port(struct sock *sk, unsigned short snum) 328 { 329 unsigned int hash2_nulladdr = 330 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 331 unsigned int hash2_partial = 332 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 333 334 /* precompute partial secondary hash */ 335 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 336 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr); 337 } 338 339 static inline int compute_score(struct sock *sk, struct net *net, 340 __be32 saddr, unsigned short hnum, __be16 sport, 341 __be32 daddr, __be16 dport, int dif) 342 { 343 int score; 344 struct inet_sock *inet; 345 346 if (!net_eq(sock_net(sk), net) || 347 udp_sk(sk)->udp_port_hash != hnum || 348 ipv6_only_sock(sk)) 349 return -1; 350 351 score = (sk->sk_family == PF_INET) ? 2 : 1; 352 inet = inet_sk(sk); 353 354 if (inet->inet_rcv_saddr) { 355 if (inet->inet_rcv_saddr != daddr) 356 return -1; 357 score += 4; 358 } 359 360 if (inet->inet_daddr) { 361 if (inet->inet_daddr != saddr) 362 return -1; 363 score += 4; 364 } 365 366 if (inet->inet_dport) { 367 if (inet->inet_dport != sport) 368 return -1; 369 score += 4; 370 } 371 372 if (sk->sk_bound_dev_if) { 373 if (sk->sk_bound_dev_if != dif) 374 return -1; 375 score += 4; 376 } 377 378 return score; 379 } 380 381 /* 382 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num) 383 */ 384 static inline int compute_score2(struct sock *sk, struct net *net, 385 __be32 saddr, __be16 sport, 386 __be32 daddr, unsigned int hnum, int dif) 387 { 388 int score; 389 struct inet_sock *inet; 390 391 if (!net_eq(sock_net(sk), net) || 392 ipv6_only_sock(sk)) 393 return -1; 394 395 inet = inet_sk(sk); 396 397 if (inet->inet_rcv_saddr != daddr || 398 inet->inet_num != hnum) 399 return -1; 400 401 score = (sk->sk_family == PF_INET) ? 2 : 1; 402 403 if (inet->inet_daddr) { 404 if (inet->inet_daddr != saddr) 405 return -1; 406 score += 4; 407 } 408 409 if (inet->inet_dport) { 410 if (inet->inet_dport != sport) 411 return -1; 412 score += 4; 413 } 414 415 if (sk->sk_bound_dev_if) { 416 if (sk->sk_bound_dev_if != dif) 417 return -1; 418 score += 4; 419 } 420 421 return score; 422 } 423 424 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 425 const __u16 lport, const __be32 faddr, 426 const __be16 fport) 427 { 428 static u32 udp_ehash_secret __read_mostly; 429 430 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 431 432 return __inet_ehashfn(laddr, lport, faddr, fport, 433 udp_ehash_secret + net_hash_mix(net)); 434 } 435 436 /* called with read_rcu_lock() */ 437 static struct sock *udp4_lib_lookup2(struct net *net, 438 __be32 saddr, __be16 sport, 439 __be32 daddr, unsigned int hnum, int dif, 440 struct udp_hslot *hslot2, unsigned int slot2) 441 { 442 struct sock *sk, *result; 443 struct hlist_nulls_node *node; 444 int score, badness, matches = 0, reuseport = 0; 445 u32 hash = 0; 446 447 begin: 448 result = NULL; 449 badness = 0; 450 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) { 451 score = compute_score2(sk, net, saddr, sport, 452 daddr, hnum, dif); 453 if (score > badness) { 454 result = sk; 455 badness = score; 456 reuseport = sk->sk_reuseport; 457 if (reuseport) { 458 hash = udp_ehashfn(net, daddr, hnum, 459 saddr, sport); 460 matches = 1; 461 } 462 } else if (score == badness && reuseport) { 463 matches++; 464 if (reciprocal_scale(hash, matches) == 0) 465 result = sk; 466 hash = next_pseudo_random32(hash); 467 } 468 } 469 /* 470 * if the nulls value we got at the end of this lookup is 471 * not the expected one, we must restart lookup. 472 * We probably met an item that was moved to another chain. 473 */ 474 if (get_nulls_value(node) != slot2) 475 goto begin; 476 if (result) { 477 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 478 result = NULL; 479 else if (unlikely(compute_score2(result, net, saddr, sport, 480 daddr, hnum, dif) < badness)) { 481 sock_put(result); 482 goto begin; 483 } 484 } 485 return result; 486 } 487 488 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 489 * harder than this. -DaveM 490 */ 491 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 492 __be16 sport, __be32 daddr, __be16 dport, 493 int dif, struct udp_table *udptable) 494 { 495 struct sock *sk, *result; 496 struct hlist_nulls_node *node; 497 unsigned short hnum = ntohs(dport); 498 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 499 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 500 int score, badness, matches = 0, reuseport = 0; 501 u32 hash = 0; 502 503 rcu_read_lock(); 504 if (hslot->count > 10) { 505 hash2 = udp4_portaddr_hash(net, daddr, hnum); 506 slot2 = hash2 & udptable->mask; 507 hslot2 = &udptable->hash2[slot2]; 508 if (hslot->count < hslot2->count) 509 goto begin; 510 511 result = udp4_lib_lookup2(net, saddr, sport, 512 daddr, hnum, dif, 513 hslot2, slot2); 514 if (!result) { 515 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 516 slot2 = hash2 & udptable->mask; 517 hslot2 = &udptable->hash2[slot2]; 518 if (hslot->count < hslot2->count) 519 goto begin; 520 521 result = udp4_lib_lookup2(net, saddr, sport, 522 htonl(INADDR_ANY), hnum, dif, 523 hslot2, slot2); 524 } 525 rcu_read_unlock(); 526 return result; 527 } 528 begin: 529 result = NULL; 530 badness = 0; 531 sk_nulls_for_each_rcu(sk, node, &hslot->head) { 532 score = compute_score(sk, net, saddr, hnum, sport, 533 daddr, dport, dif); 534 if (score > badness) { 535 result = sk; 536 badness = score; 537 reuseport = sk->sk_reuseport; 538 if (reuseport) { 539 hash = udp_ehashfn(net, daddr, hnum, 540 saddr, sport); 541 matches = 1; 542 } 543 } else if (score == badness && reuseport) { 544 matches++; 545 if (reciprocal_scale(hash, matches) == 0) 546 result = sk; 547 hash = next_pseudo_random32(hash); 548 } 549 } 550 /* 551 * if the nulls value we got at the end of this lookup is 552 * not the expected one, we must restart lookup. 553 * We probably met an item that was moved to another chain. 554 */ 555 if (get_nulls_value(node) != slot) 556 goto begin; 557 558 if (result) { 559 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 560 result = NULL; 561 else if (unlikely(compute_score(result, net, saddr, hnum, sport, 562 daddr, dport, dif) < badness)) { 563 sock_put(result); 564 goto begin; 565 } 566 } 567 rcu_read_unlock(); 568 return result; 569 } 570 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 571 572 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 573 __be16 sport, __be16 dport, 574 struct udp_table *udptable) 575 { 576 const struct iphdr *iph = ip_hdr(skb); 577 578 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport, 579 iph->daddr, dport, inet_iif(skb), 580 udptable); 581 } 582 583 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 584 __be32 daddr, __be16 dport, int dif) 585 { 586 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table); 587 } 588 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 589 590 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 591 __be16 loc_port, __be32 loc_addr, 592 __be16 rmt_port, __be32 rmt_addr, 593 int dif, unsigned short hnum) 594 { 595 struct inet_sock *inet = inet_sk(sk); 596 597 if (!net_eq(sock_net(sk), net) || 598 udp_sk(sk)->udp_port_hash != hnum || 599 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 600 (inet->inet_dport != rmt_port && inet->inet_dport) || 601 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 602 ipv6_only_sock(sk) || 603 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif)) 604 return false; 605 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif)) 606 return false; 607 return true; 608 } 609 610 /* 611 * This routine is called by the ICMP module when it gets some 612 * sort of error condition. If err < 0 then the socket should 613 * be closed and the error returned to the user. If err > 0 614 * it's just the icmp type << 8 | icmp code. 615 * Header points to the ip header of the error packet. We move 616 * on past this. Then (as it used to claim before adjustment) 617 * header points to the first 8 bytes of the udp header. We need 618 * to find the appropriate port. 619 */ 620 621 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 622 { 623 struct inet_sock *inet; 624 const struct iphdr *iph = (const struct iphdr *)skb->data; 625 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 626 const int type = icmp_hdr(skb)->type; 627 const int code = icmp_hdr(skb)->code; 628 struct sock *sk; 629 int harderr; 630 int err; 631 struct net *net = dev_net(skb->dev); 632 633 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 634 iph->saddr, uh->source, skb->dev->ifindex, udptable); 635 if (!sk) { 636 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 637 return; /* No socket for error */ 638 } 639 640 err = 0; 641 harderr = 0; 642 inet = inet_sk(sk); 643 644 switch (type) { 645 default: 646 case ICMP_TIME_EXCEEDED: 647 err = EHOSTUNREACH; 648 break; 649 case ICMP_SOURCE_QUENCH: 650 goto out; 651 case ICMP_PARAMETERPROB: 652 err = EPROTO; 653 harderr = 1; 654 break; 655 case ICMP_DEST_UNREACH: 656 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 657 ipv4_sk_update_pmtu(skb, sk, info); 658 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 659 err = EMSGSIZE; 660 harderr = 1; 661 break; 662 } 663 goto out; 664 } 665 err = EHOSTUNREACH; 666 if (code <= NR_ICMP_UNREACH) { 667 harderr = icmp_err_convert[code].fatal; 668 err = icmp_err_convert[code].errno; 669 } 670 break; 671 case ICMP_REDIRECT: 672 ipv4_sk_redirect(skb, sk); 673 goto out; 674 } 675 676 /* 677 * RFC1122: OK. Passes ICMP errors back to application, as per 678 * 4.1.3.3. 679 */ 680 if (!inet->recverr) { 681 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 682 goto out; 683 } else 684 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 685 686 sk->sk_err = err; 687 sk->sk_error_report(sk); 688 out: 689 sock_put(sk); 690 } 691 692 void udp_err(struct sk_buff *skb, u32 info) 693 { 694 __udp4_lib_err(skb, info, &udp_table); 695 } 696 697 /* 698 * Throw away all pending data and cancel the corking. Socket is locked. 699 */ 700 void udp_flush_pending_frames(struct sock *sk) 701 { 702 struct udp_sock *up = udp_sk(sk); 703 704 if (up->pending) { 705 up->len = 0; 706 up->pending = 0; 707 ip_flush_pending_frames(sk); 708 } 709 } 710 EXPORT_SYMBOL(udp_flush_pending_frames); 711 712 /** 713 * udp4_hwcsum - handle outgoing HW checksumming 714 * @skb: sk_buff containing the filled-in UDP header 715 * (checksum field must be zeroed out) 716 * @src: source IP address 717 * @dst: destination IP address 718 */ 719 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 720 { 721 struct udphdr *uh = udp_hdr(skb); 722 int offset = skb_transport_offset(skb); 723 int len = skb->len - offset; 724 int hlen = len; 725 __wsum csum = 0; 726 727 if (!skb_has_frag_list(skb)) { 728 /* 729 * Only one fragment on the socket. 730 */ 731 skb->csum_start = skb_transport_header(skb) - skb->head; 732 skb->csum_offset = offsetof(struct udphdr, check); 733 uh->check = ~csum_tcpudp_magic(src, dst, len, 734 IPPROTO_UDP, 0); 735 } else { 736 struct sk_buff *frags; 737 738 /* 739 * HW-checksum won't work as there are two or more 740 * fragments on the socket so that all csums of sk_buffs 741 * should be together 742 */ 743 skb_walk_frags(skb, frags) { 744 csum = csum_add(csum, frags->csum); 745 hlen -= frags->len; 746 } 747 748 csum = skb_checksum(skb, offset, hlen, csum); 749 skb->ip_summed = CHECKSUM_NONE; 750 751 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 752 if (uh->check == 0) 753 uh->check = CSUM_MANGLED_0; 754 } 755 } 756 EXPORT_SYMBOL_GPL(udp4_hwcsum); 757 758 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 759 * for the simple case like when setting the checksum for a UDP tunnel. 760 */ 761 void udp_set_csum(bool nocheck, struct sk_buff *skb, 762 __be32 saddr, __be32 daddr, int len) 763 { 764 struct udphdr *uh = udp_hdr(skb); 765 766 if (nocheck) 767 uh->check = 0; 768 else if (skb_is_gso(skb)) 769 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 770 else if (skb_dst(skb) && skb_dst(skb)->dev && 771 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) { 772 773 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL); 774 775 skb->ip_summed = CHECKSUM_PARTIAL; 776 skb->csum_start = skb_transport_header(skb) - skb->head; 777 skb->csum_offset = offsetof(struct udphdr, check); 778 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 779 } else { 780 __wsum csum; 781 782 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL); 783 784 uh->check = 0; 785 csum = skb_checksum(skb, 0, len, 0); 786 uh->check = udp_v4_check(len, saddr, daddr, csum); 787 if (uh->check == 0) 788 uh->check = CSUM_MANGLED_0; 789 790 skb->ip_summed = CHECKSUM_UNNECESSARY; 791 } 792 } 793 EXPORT_SYMBOL(udp_set_csum); 794 795 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 796 { 797 struct sock *sk = skb->sk; 798 struct inet_sock *inet = inet_sk(sk); 799 struct udphdr *uh; 800 int err = 0; 801 int is_udplite = IS_UDPLITE(sk); 802 int offset = skb_transport_offset(skb); 803 int len = skb->len - offset; 804 __wsum csum = 0; 805 806 /* 807 * Create a UDP header 808 */ 809 uh = udp_hdr(skb); 810 uh->source = inet->inet_sport; 811 uh->dest = fl4->fl4_dport; 812 uh->len = htons(len); 813 uh->check = 0; 814 815 if (is_udplite) /* UDP-Lite */ 816 csum = udplite_csum(skb); 817 818 else if (sk->sk_no_check_tx) { /* UDP csum disabled */ 819 820 skb->ip_summed = CHECKSUM_NONE; 821 goto send; 822 823 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 824 825 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 826 goto send; 827 828 } else 829 csum = udp_csum(skb); 830 831 /* add protocol-dependent pseudo-header */ 832 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 833 sk->sk_protocol, csum); 834 if (uh->check == 0) 835 uh->check = CSUM_MANGLED_0; 836 837 send: 838 err = ip_send_skb(sock_net(sk), skb); 839 if (err) { 840 if (err == -ENOBUFS && !inet->recverr) { 841 UDP_INC_STATS_USER(sock_net(sk), 842 UDP_MIB_SNDBUFERRORS, is_udplite); 843 err = 0; 844 } 845 } else 846 UDP_INC_STATS_USER(sock_net(sk), 847 UDP_MIB_OUTDATAGRAMS, is_udplite); 848 return err; 849 } 850 851 /* 852 * Push out all pending data as one UDP datagram. Socket is locked. 853 */ 854 int udp_push_pending_frames(struct sock *sk) 855 { 856 struct udp_sock *up = udp_sk(sk); 857 struct inet_sock *inet = inet_sk(sk); 858 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 859 struct sk_buff *skb; 860 int err = 0; 861 862 skb = ip_finish_skb(sk, fl4); 863 if (!skb) 864 goto out; 865 866 err = udp_send_skb(skb, fl4); 867 868 out: 869 up->len = 0; 870 up->pending = 0; 871 return err; 872 } 873 EXPORT_SYMBOL(udp_push_pending_frames); 874 875 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 876 { 877 struct inet_sock *inet = inet_sk(sk); 878 struct udp_sock *up = udp_sk(sk); 879 struct flowi4 fl4_stack; 880 struct flowi4 *fl4; 881 int ulen = len; 882 struct ipcm_cookie ipc; 883 struct rtable *rt = NULL; 884 int free = 0; 885 int connected = 0; 886 __be32 daddr, faddr, saddr; 887 __be16 dport; 888 u8 tos; 889 int err, is_udplite = IS_UDPLITE(sk); 890 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 891 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 892 struct sk_buff *skb; 893 struct ip_options_data opt_copy; 894 895 if (len > 0xFFFF) 896 return -EMSGSIZE; 897 898 /* 899 * Check the flags. 900 */ 901 902 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 903 return -EOPNOTSUPP; 904 905 ipc.opt = NULL; 906 ipc.tx_flags = 0; 907 ipc.ttl = 0; 908 ipc.tos = -1; 909 910 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 911 912 fl4 = &inet->cork.fl.u.ip4; 913 if (up->pending) { 914 /* 915 * There are pending frames. 916 * The socket lock must be held while it's corked. 917 */ 918 lock_sock(sk); 919 if (likely(up->pending)) { 920 if (unlikely(up->pending != AF_INET)) { 921 release_sock(sk); 922 return -EINVAL; 923 } 924 goto do_append_data; 925 } 926 release_sock(sk); 927 } 928 ulen += sizeof(struct udphdr); 929 930 /* 931 * Get and verify the address. 932 */ 933 if (msg->msg_name) { 934 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 935 if (msg->msg_namelen < sizeof(*usin)) 936 return -EINVAL; 937 if (usin->sin_family != AF_INET) { 938 if (usin->sin_family != AF_UNSPEC) 939 return -EAFNOSUPPORT; 940 } 941 942 daddr = usin->sin_addr.s_addr; 943 dport = usin->sin_port; 944 if (dport == 0) 945 return -EINVAL; 946 } else { 947 if (sk->sk_state != TCP_ESTABLISHED) 948 return -EDESTADDRREQ; 949 daddr = inet->inet_daddr; 950 dport = inet->inet_dport; 951 /* Open fast path for connected socket. 952 Route will not be used, if at least one option is set. 953 */ 954 connected = 1; 955 } 956 ipc.addr = inet->inet_saddr; 957 958 ipc.oif = sk->sk_bound_dev_if; 959 960 sock_tx_timestamp(sk, &ipc.tx_flags); 961 962 if (msg->msg_controllen) { 963 err = ip_cmsg_send(sock_net(sk), msg, &ipc, 964 sk->sk_family == AF_INET6); 965 if (err) 966 return err; 967 if (ipc.opt) 968 free = 1; 969 connected = 0; 970 } 971 if (!ipc.opt) { 972 struct ip_options_rcu *inet_opt; 973 974 rcu_read_lock(); 975 inet_opt = rcu_dereference(inet->inet_opt); 976 if (inet_opt) { 977 memcpy(&opt_copy, inet_opt, 978 sizeof(*inet_opt) + inet_opt->opt.optlen); 979 ipc.opt = &opt_copy.opt; 980 } 981 rcu_read_unlock(); 982 } 983 984 saddr = ipc.addr; 985 ipc.addr = faddr = daddr; 986 987 if (ipc.opt && ipc.opt->opt.srr) { 988 if (!daddr) 989 return -EINVAL; 990 faddr = ipc.opt->opt.faddr; 991 connected = 0; 992 } 993 tos = get_rttos(&ipc, inet); 994 if (sock_flag(sk, SOCK_LOCALROUTE) || 995 (msg->msg_flags & MSG_DONTROUTE) || 996 (ipc.opt && ipc.opt->opt.is_strictroute)) { 997 tos |= RTO_ONLINK; 998 connected = 0; 999 } 1000 1001 if (ipv4_is_multicast(daddr)) { 1002 if (!ipc.oif) 1003 ipc.oif = inet->mc_index; 1004 if (!saddr) 1005 saddr = inet->mc_addr; 1006 connected = 0; 1007 } else if (!ipc.oif) 1008 ipc.oif = inet->uc_index; 1009 1010 if (connected) 1011 rt = (struct rtable *)sk_dst_check(sk, 0); 1012 1013 if (!rt) { 1014 struct net *net = sock_net(sk); 1015 1016 fl4 = &fl4_stack; 1017 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1018 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1019 inet_sk_flowi_flags(sk), 1020 faddr, saddr, dport, inet->inet_sport); 1021 1022 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1023 rt = ip_route_output_flow(net, fl4, sk); 1024 if (IS_ERR(rt)) { 1025 err = PTR_ERR(rt); 1026 rt = NULL; 1027 if (err == -ENETUNREACH) 1028 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1029 goto out; 1030 } 1031 1032 err = -EACCES; 1033 if ((rt->rt_flags & RTCF_BROADCAST) && 1034 !sock_flag(sk, SOCK_BROADCAST)) 1035 goto out; 1036 if (connected) 1037 sk_dst_set(sk, dst_clone(&rt->dst)); 1038 } 1039 1040 if (msg->msg_flags&MSG_CONFIRM) 1041 goto do_confirm; 1042 back_from_confirm: 1043 1044 saddr = fl4->saddr; 1045 if (!ipc.addr) 1046 daddr = ipc.addr = fl4->daddr; 1047 1048 /* Lockless fast path for the non-corking case. */ 1049 if (!corkreq) { 1050 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1051 sizeof(struct udphdr), &ipc, &rt, 1052 msg->msg_flags); 1053 err = PTR_ERR(skb); 1054 if (!IS_ERR_OR_NULL(skb)) 1055 err = udp_send_skb(skb, fl4); 1056 goto out; 1057 } 1058 1059 lock_sock(sk); 1060 if (unlikely(up->pending)) { 1061 /* The socket is already corked while preparing it. */ 1062 /* ... which is an evident application bug. --ANK */ 1063 release_sock(sk); 1064 1065 net_dbg_ratelimited("cork app bug 2\n"); 1066 err = -EINVAL; 1067 goto out; 1068 } 1069 /* 1070 * Now cork the socket to pend data. 1071 */ 1072 fl4 = &inet->cork.fl.u.ip4; 1073 fl4->daddr = daddr; 1074 fl4->saddr = saddr; 1075 fl4->fl4_dport = dport; 1076 fl4->fl4_sport = inet->inet_sport; 1077 up->pending = AF_INET; 1078 1079 do_append_data: 1080 up->len += ulen; 1081 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1082 sizeof(struct udphdr), &ipc, &rt, 1083 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1084 if (err) 1085 udp_flush_pending_frames(sk); 1086 else if (!corkreq) 1087 err = udp_push_pending_frames(sk); 1088 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1089 up->pending = 0; 1090 release_sock(sk); 1091 1092 out: 1093 ip_rt_put(rt); 1094 if (free) 1095 kfree(ipc.opt); 1096 if (!err) 1097 return len; 1098 /* 1099 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1100 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1101 * we don't have a good statistic (IpOutDiscards but it can be too many 1102 * things). We could add another new stat but at least for now that 1103 * seems like overkill. 1104 */ 1105 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1106 UDP_INC_STATS_USER(sock_net(sk), 1107 UDP_MIB_SNDBUFERRORS, is_udplite); 1108 } 1109 return err; 1110 1111 do_confirm: 1112 dst_confirm(&rt->dst); 1113 if (!(msg->msg_flags&MSG_PROBE) || len) 1114 goto back_from_confirm; 1115 err = 0; 1116 goto out; 1117 } 1118 EXPORT_SYMBOL(udp_sendmsg); 1119 1120 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1121 size_t size, int flags) 1122 { 1123 struct inet_sock *inet = inet_sk(sk); 1124 struct udp_sock *up = udp_sk(sk); 1125 int ret; 1126 1127 if (flags & MSG_SENDPAGE_NOTLAST) 1128 flags |= MSG_MORE; 1129 1130 if (!up->pending) { 1131 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1132 1133 /* Call udp_sendmsg to specify destination address which 1134 * sendpage interface can't pass. 1135 * This will succeed only when the socket is connected. 1136 */ 1137 ret = udp_sendmsg(sk, &msg, 0); 1138 if (ret < 0) 1139 return ret; 1140 } 1141 1142 lock_sock(sk); 1143 1144 if (unlikely(!up->pending)) { 1145 release_sock(sk); 1146 1147 net_dbg_ratelimited("udp cork app bug 3\n"); 1148 return -EINVAL; 1149 } 1150 1151 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1152 page, offset, size, flags); 1153 if (ret == -EOPNOTSUPP) { 1154 release_sock(sk); 1155 return sock_no_sendpage(sk->sk_socket, page, offset, 1156 size, flags); 1157 } 1158 if (ret < 0) { 1159 udp_flush_pending_frames(sk); 1160 goto out; 1161 } 1162 1163 up->len += size; 1164 if (!(up->corkflag || (flags&MSG_MORE))) 1165 ret = udp_push_pending_frames(sk); 1166 if (!ret) 1167 ret = size; 1168 out: 1169 release_sock(sk); 1170 return ret; 1171 } 1172 1173 /** 1174 * first_packet_length - return length of first packet in receive queue 1175 * @sk: socket 1176 * 1177 * Drops all bad checksum frames, until a valid one is found. 1178 * Returns the length of found skb, or 0 if none is found. 1179 */ 1180 static unsigned int first_packet_length(struct sock *sk) 1181 { 1182 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue; 1183 struct sk_buff *skb; 1184 unsigned int res; 1185 1186 __skb_queue_head_init(&list_kill); 1187 1188 spin_lock_bh(&rcvq->lock); 1189 while ((skb = skb_peek(rcvq)) != NULL && 1190 udp_lib_checksum_complete(skb)) { 1191 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, 1192 IS_UDPLITE(sk)); 1193 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1194 IS_UDPLITE(sk)); 1195 atomic_inc(&sk->sk_drops); 1196 __skb_unlink(skb, rcvq); 1197 __skb_queue_tail(&list_kill, skb); 1198 } 1199 res = skb ? skb->len : 0; 1200 spin_unlock_bh(&rcvq->lock); 1201 1202 if (!skb_queue_empty(&list_kill)) { 1203 bool slow = lock_sock_fast(sk); 1204 1205 __skb_queue_purge(&list_kill); 1206 sk_mem_reclaim_partial(sk); 1207 unlock_sock_fast(sk, slow); 1208 } 1209 return res; 1210 } 1211 1212 /* 1213 * IOCTL requests applicable to the UDP protocol 1214 */ 1215 1216 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1217 { 1218 switch (cmd) { 1219 case SIOCOUTQ: 1220 { 1221 int amount = sk_wmem_alloc_get(sk); 1222 1223 return put_user(amount, (int __user *)arg); 1224 } 1225 1226 case SIOCINQ: 1227 { 1228 unsigned int amount = first_packet_length(sk); 1229 1230 if (amount) 1231 /* 1232 * We will only return the amount 1233 * of this packet since that is all 1234 * that will be read. 1235 */ 1236 amount -= sizeof(struct udphdr); 1237 1238 return put_user(amount, (int __user *)arg); 1239 } 1240 1241 default: 1242 return -ENOIOCTLCMD; 1243 } 1244 1245 return 0; 1246 } 1247 EXPORT_SYMBOL(udp_ioctl); 1248 1249 /* 1250 * This should be easy, if there is something there we 1251 * return it, otherwise we block. 1252 */ 1253 1254 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1255 int flags, int *addr_len) 1256 { 1257 struct inet_sock *inet = inet_sk(sk); 1258 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1259 struct sk_buff *skb; 1260 unsigned int ulen, copied; 1261 int peeked, off = 0; 1262 int err; 1263 int is_udplite = IS_UDPLITE(sk); 1264 bool slow; 1265 1266 if (flags & MSG_ERRQUEUE) 1267 return ip_recv_error(sk, msg, len, addr_len); 1268 1269 try_again: 1270 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0), 1271 &peeked, &off, &err); 1272 if (!skb) 1273 goto out; 1274 1275 ulen = skb->len - sizeof(struct udphdr); 1276 copied = len; 1277 if (copied > ulen) 1278 copied = ulen; 1279 else if (copied < ulen) 1280 msg->msg_flags |= MSG_TRUNC; 1281 1282 /* 1283 * If checksum is needed at all, try to do it while copying the 1284 * data. If the data is truncated, or if we only want a partial 1285 * coverage checksum (UDP-Lite), do it before the copy. 1286 */ 1287 1288 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) { 1289 if (udp_lib_checksum_complete(skb)) 1290 goto csum_copy_err; 1291 } 1292 1293 if (skb_csum_unnecessary(skb)) 1294 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr), 1295 msg, copied); 1296 else { 1297 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr), 1298 msg); 1299 1300 if (err == -EINVAL) 1301 goto csum_copy_err; 1302 } 1303 1304 if (unlikely(err)) { 1305 trace_kfree_skb(skb, udp_recvmsg); 1306 if (!peeked) { 1307 atomic_inc(&sk->sk_drops); 1308 UDP_INC_STATS_USER(sock_net(sk), 1309 UDP_MIB_INERRORS, is_udplite); 1310 } 1311 goto out_free; 1312 } 1313 1314 if (!peeked) 1315 UDP_INC_STATS_USER(sock_net(sk), 1316 UDP_MIB_INDATAGRAMS, is_udplite); 1317 1318 sock_recv_ts_and_drops(msg, sk, skb); 1319 1320 /* Copy the address. */ 1321 if (sin) { 1322 sin->sin_family = AF_INET; 1323 sin->sin_port = udp_hdr(skb)->source; 1324 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1325 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1326 *addr_len = sizeof(*sin); 1327 } 1328 if (inet->cmsg_flags) 1329 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr)); 1330 1331 err = copied; 1332 if (flags & MSG_TRUNC) 1333 err = ulen; 1334 1335 out_free: 1336 skb_free_datagram_locked(sk, skb); 1337 out: 1338 return err; 1339 1340 csum_copy_err: 1341 slow = lock_sock_fast(sk); 1342 if (!skb_kill_datagram(sk, skb, flags)) { 1343 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1344 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1345 } 1346 unlock_sock_fast(sk, slow); 1347 1348 if (noblock) 1349 return -EAGAIN; 1350 1351 /* starting over for a new packet */ 1352 msg->msg_flags &= ~MSG_TRUNC; 1353 goto try_again; 1354 } 1355 1356 int udp_disconnect(struct sock *sk, int flags) 1357 { 1358 struct inet_sock *inet = inet_sk(sk); 1359 /* 1360 * 1003.1g - break association. 1361 */ 1362 1363 sk->sk_state = TCP_CLOSE; 1364 inet->inet_daddr = 0; 1365 inet->inet_dport = 0; 1366 sock_rps_reset_rxhash(sk); 1367 sk->sk_bound_dev_if = 0; 1368 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1369 inet_reset_saddr(sk); 1370 1371 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1372 sk->sk_prot->unhash(sk); 1373 inet->inet_sport = 0; 1374 } 1375 sk_dst_reset(sk); 1376 return 0; 1377 } 1378 EXPORT_SYMBOL(udp_disconnect); 1379 1380 void udp_lib_unhash(struct sock *sk) 1381 { 1382 if (sk_hashed(sk)) { 1383 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1384 struct udp_hslot *hslot, *hslot2; 1385 1386 hslot = udp_hashslot(udptable, sock_net(sk), 1387 udp_sk(sk)->udp_port_hash); 1388 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1389 1390 spin_lock_bh(&hslot->lock); 1391 if (sk_nulls_del_node_init_rcu(sk)) { 1392 hslot->count--; 1393 inet_sk(sk)->inet_num = 0; 1394 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1395 1396 spin_lock(&hslot2->lock); 1397 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1398 hslot2->count--; 1399 spin_unlock(&hslot2->lock); 1400 } 1401 spin_unlock_bh(&hslot->lock); 1402 } 1403 } 1404 EXPORT_SYMBOL(udp_lib_unhash); 1405 1406 /* 1407 * inet_rcv_saddr was changed, we must rehash secondary hash 1408 */ 1409 void udp_lib_rehash(struct sock *sk, u16 newhash) 1410 { 1411 if (sk_hashed(sk)) { 1412 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1413 struct udp_hslot *hslot, *hslot2, *nhslot2; 1414 1415 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1416 nhslot2 = udp_hashslot2(udptable, newhash); 1417 udp_sk(sk)->udp_portaddr_hash = newhash; 1418 if (hslot2 != nhslot2) { 1419 hslot = udp_hashslot(udptable, sock_net(sk), 1420 udp_sk(sk)->udp_port_hash); 1421 /* we must lock primary chain too */ 1422 spin_lock_bh(&hslot->lock); 1423 1424 spin_lock(&hslot2->lock); 1425 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1426 hslot2->count--; 1427 spin_unlock(&hslot2->lock); 1428 1429 spin_lock(&nhslot2->lock); 1430 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1431 &nhslot2->head); 1432 nhslot2->count++; 1433 spin_unlock(&nhslot2->lock); 1434 1435 spin_unlock_bh(&hslot->lock); 1436 } 1437 } 1438 } 1439 EXPORT_SYMBOL(udp_lib_rehash); 1440 1441 static void udp_v4_rehash(struct sock *sk) 1442 { 1443 u16 new_hash = udp4_portaddr_hash(sock_net(sk), 1444 inet_sk(sk)->inet_rcv_saddr, 1445 inet_sk(sk)->inet_num); 1446 udp_lib_rehash(sk, new_hash); 1447 } 1448 1449 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1450 { 1451 int rc; 1452 1453 if (inet_sk(sk)->inet_daddr) { 1454 sock_rps_save_rxhash(sk, skb); 1455 sk_mark_napi_id(sk, skb); 1456 sk_incoming_cpu_update(sk); 1457 } 1458 1459 rc = sock_queue_rcv_skb(sk, skb); 1460 if (rc < 0) { 1461 int is_udplite = IS_UDPLITE(sk); 1462 1463 /* Note that an ENOMEM error is charged twice */ 1464 if (rc == -ENOMEM) 1465 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1466 is_udplite); 1467 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1468 kfree_skb(skb); 1469 trace_udp_fail_queue_rcv_skb(rc, sk); 1470 return -1; 1471 } 1472 1473 return 0; 1474 1475 } 1476 1477 static struct static_key udp_encap_needed __read_mostly; 1478 void udp_encap_enable(void) 1479 { 1480 if (!static_key_enabled(&udp_encap_needed)) 1481 static_key_slow_inc(&udp_encap_needed); 1482 } 1483 EXPORT_SYMBOL(udp_encap_enable); 1484 1485 /* returns: 1486 * -1: error 1487 * 0: success 1488 * >0: "udp encap" protocol resubmission 1489 * 1490 * Note that in the success and error cases, the skb is assumed to 1491 * have either been requeued or freed. 1492 */ 1493 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1494 { 1495 struct udp_sock *up = udp_sk(sk); 1496 int rc; 1497 int is_udplite = IS_UDPLITE(sk); 1498 1499 /* 1500 * Charge it to the socket, dropping if the queue is full. 1501 */ 1502 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1503 goto drop; 1504 nf_reset(skb); 1505 1506 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1507 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1508 1509 /* 1510 * This is an encapsulation socket so pass the skb to 1511 * the socket's udp_encap_rcv() hook. Otherwise, just 1512 * fall through and pass this up the UDP socket. 1513 * up->encap_rcv() returns the following value: 1514 * =0 if skb was successfully passed to the encap 1515 * handler or was discarded by it. 1516 * >0 if skb should be passed on to UDP. 1517 * <0 if skb should be resubmitted as proto -N 1518 */ 1519 1520 /* if we're overly short, let UDP handle it */ 1521 encap_rcv = ACCESS_ONCE(up->encap_rcv); 1522 if (skb->len > sizeof(struct udphdr) && encap_rcv) { 1523 int ret; 1524 1525 /* Verify checksum before giving to encap */ 1526 if (udp_lib_checksum_complete(skb)) 1527 goto csum_error; 1528 1529 ret = encap_rcv(sk, skb); 1530 if (ret <= 0) { 1531 UDP_INC_STATS_BH(sock_net(sk), 1532 UDP_MIB_INDATAGRAMS, 1533 is_udplite); 1534 return -ret; 1535 } 1536 } 1537 1538 /* FALLTHROUGH -- it's a UDP Packet */ 1539 } 1540 1541 /* 1542 * UDP-Lite specific tests, ignored on UDP sockets 1543 */ 1544 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1545 1546 /* 1547 * MIB statistics other than incrementing the error count are 1548 * disabled for the following two types of errors: these depend 1549 * on the application settings, not on the functioning of the 1550 * protocol stack as such. 1551 * 1552 * RFC 3828 here recommends (sec 3.3): "There should also be a 1553 * way ... to ... at least let the receiving application block 1554 * delivery of packets with coverage values less than a value 1555 * provided by the application." 1556 */ 1557 if (up->pcrlen == 0) { /* full coverage was set */ 1558 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1559 UDP_SKB_CB(skb)->cscov, skb->len); 1560 goto drop; 1561 } 1562 /* The next case involves violating the min. coverage requested 1563 * by the receiver. This is subtle: if receiver wants x and x is 1564 * greater than the buffersize/MTU then receiver will complain 1565 * that it wants x while sender emits packets of smaller size y. 1566 * Therefore the above ...()->partial_cov statement is essential. 1567 */ 1568 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1569 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1570 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1571 goto drop; 1572 } 1573 } 1574 1575 if (rcu_access_pointer(sk->sk_filter) && 1576 udp_lib_checksum_complete(skb)) 1577 goto csum_error; 1578 1579 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 1580 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1581 is_udplite); 1582 goto drop; 1583 } 1584 1585 rc = 0; 1586 1587 ipv4_pktinfo_prepare(sk, skb); 1588 bh_lock_sock(sk); 1589 if (!sock_owned_by_user(sk)) 1590 rc = __udp_queue_rcv_skb(sk, skb); 1591 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 1592 bh_unlock_sock(sk); 1593 goto drop; 1594 } 1595 bh_unlock_sock(sk); 1596 1597 return rc; 1598 1599 csum_error: 1600 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1601 drop: 1602 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1603 atomic_inc(&sk->sk_drops); 1604 kfree_skb(skb); 1605 return -1; 1606 } 1607 1608 static void flush_stack(struct sock **stack, unsigned int count, 1609 struct sk_buff *skb, unsigned int final) 1610 { 1611 unsigned int i; 1612 struct sk_buff *skb1 = NULL; 1613 struct sock *sk; 1614 1615 for (i = 0; i < count; i++) { 1616 sk = stack[i]; 1617 if (likely(!skb1)) 1618 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC); 1619 1620 if (!skb1) { 1621 atomic_inc(&sk->sk_drops); 1622 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1623 IS_UDPLITE(sk)); 1624 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1625 IS_UDPLITE(sk)); 1626 } 1627 1628 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0) 1629 skb1 = NULL; 1630 1631 sock_put(sk); 1632 } 1633 if (unlikely(skb1)) 1634 kfree_skb(skb1); 1635 } 1636 1637 /* For TCP sockets, sk_rx_dst is protected by socket lock 1638 * For UDP, we use xchg() to guard against concurrent changes. 1639 */ 1640 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 1641 { 1642 struct dst_entry *old; 1643 1644 dst_hold(dst); 1645 old = xchg(&sk->sk_rx_dst, dst); 1646 dst_release(old); 1647 } 1648 1649 /* 1650 * Multicasts and broadcasts go to each listener. 1651 * 1652 * Note: called only from the BH handler context. 1653 */ 1654 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1655 struct udphdr *uh, 1656 __be32 saddr, __be32 daddr, 1657 struct udp_table *udptable, 1658 int proto) 1659 { 1660 struct sock *sk, *stack[256 / sizeof(struct sock *)]; 1661 struct hlist_nulls_node *node; 1662 unsigned short hnum = ntohs(uh->dest); 1663 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 1664 int dif = skb->dev->ifindex; 1665 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node); 1666 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 1667 bool inner_flushed = false; 1668 1669 if (use_hash2) { 1670 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 1671 udp_table.mask; 1672 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask; 1673 start_lookup: 1674 hslot = &udp_table.hash2[hash2]; 1675 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 1676 } 1677 1678 spin_lock(&hslot->lock); 1679 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) { 1680 if (__udp_is_mcast_sock(net, sk, 1681 uh->dest, daddr, 1682 uh->source, saddr, 1683 dif, hnum)) { 1684 if (unlikely(count == ARRAY_SIZE(stack))) { 1685 flush_stack(stack, count, skb, ~0); 1686 inner_flushed = true; 1687 count = 0; 1688 } 1689 stack[count++] = sk; 1690 sock_hold(sk); 1691 } 1692 } 1693 1694 spin_unlock(&hslot->lock); 1695 1696 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 1697 if (use_hash2 && hash2 != hash2_any) { 1698 hash2 = hash2_any; 1699 goto start_lookup; 1700 } 1701 1702 /* 1703 * do the slow work with no lock held 1704 */ 1705 if (count) { 1706 flush_stack(stack, count, skb, count - 1); 1707 } else { 1708 if (!inner_flushed) 1709 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI, 1710 proto == IPPROTO_UDPLITE); 1711 consume_skb(skb); 1712 } 1713 return 0; 1714 } 1715 1716 /* Initialize UDP checksum. If exited with zero value (success), 1717 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1718 * Otherwise, csum completion requires chacksumming packet body, 1719 * including udp header and folding it to skb->csum. 1720 */ 1721 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 1722 int proto) 1723 { 1724 int err; 1725 1726 UDP_SKB_CB(skb)->partial_cov = 0; 1727 UDP_SKB_CB(skb)->cscov = skb->len; 1728 1729 if (proto == IPPROTO_UDPLITE) { 1730 err = udplite_checksum_init(skb, uh); 1731 if (err) 1732 return err; 1733 } 1734 1735 return skb_checksum_init_zero_check(skb, proto, uh->check, 1736 inet_compute_pseudo); 1737 } 1738 1739 /* 1740 * All we need to do is get the socket, and then do a checksum. 1741 */ 1742 1743 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 1744 int proto) 1745 { 1746 struct sock *sk; 1747 struct udphdr *uh; 1748 unsigned short ulen; 1749 struct rtable *rt = skb_rtable(skb); 1750 __be32 saddr, daddr; 1751 struct net *net = dev_net(skb->dev); 1752 1753 /* 1754 * Validate the packet. 1755 */ 1756 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1757 goto drop; /* No space for header. */ 1758 1759 uh = udp_hdr(skb); 1760 ulen = ntohs(uh->len); 1761 saddr = ip_hdr(skb)->saddr; 1762 daddr = ip_hdr(skb)->daddr; 1763 1764 if (ulen > skb->len) 1765 goto short_packet; 1766 1767 if (proto == IPPROTO_UDP) { 1768 /* UDP validates ulen. */ 1769 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 1770 goto short_packet; 1771 uh = udp_hdr(skb); 1772 } 1773 1774 if (udp4_csum_init(skb, uh, proto)) 1775 goto csum_error; 1776 1777 sk = skb_steal_sock(skb); 1778 if (sk) { 1779 struct dst_entry *dst = skb_dst(skb); 1780 int ret; 1781 1782 if (unlikely(sk->sk_rx_dst != dst)) 1783 udp_sk_rx_dst_set(sk, dst); 1784 1785 ret = udp_queue_rcv_skb(sk, skb); 1786 sock_put(sk); 1787 /* a return value > 0 means to resubmit the input, but 1788 * it wants the return to be -protocol, or 0 1789 */ 1790 if (ret > 0) 1791 return -ret; 1792 return 0; 1793 } 1794 1795 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1796 return __udp4_lib_mcast_deliver(net, skb, uh, 1797 saddr, daddr, udptable, proto); 1798 1799 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 1800 if (sk) { 1801 int ret; 1802 1803 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 1804 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 1805 inet_compute_pseudo); 1806 1807 ret = udp_queue_rcv_skb(sk, skb); 1808 sock_put(sk); 1809 1810 /* a return value > 0 means to resubmit the input, but 1811 * it wants the return to be -protocol, or 0 1812 */ 1813 if (ret > 0) 1814 return -ret; 1815 return 0; 1816 } 1817 1818 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1819 goto drop; 1820 nf_reset(skb); 1821 1822 /* No socket. Drop packet silently, if checksum is wrong */ 1823 if (udp_lib_checksum_complete(skb)) 1824 goto csum_error; 1825 1826 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 1827 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1828 1829 /* 1830 * Hmm. We got an UDP packet to a port to which we 1831 * don't wanna listen. Ignore it. 1832 */ 1833 kfree_skb(skb); 1834 return 0; 1835 1836 short_packet: 1837 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 1838 proto == IPPROTO_UDPLITE ? "Lite" : "", 1839 &saddr, ntohs(uh->source), 1840 ulen, skb->len, 1841 &daddr, ntohs(uh->dest)); 1842 goto drop; 1843 1844 csum_error: 1845 /* 1846 * RFC1122: OK. Discards the bad packet silently (as far as 1847 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1848 */ 1849 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 1850 proto == IPPROTO_UDPLITE ? "Lite" : "", 1851 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 1852 ulen); 1853 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 1854 drop: 1855 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 1856 kfree_skb(skb); 1857 return 0; 1858 } 1859 1860 /* We can only early demux multicast if there is a single matching socket. 1861 * If more than one socket found returns NULL 1862 */ 1863 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 1864 __be16 loc_port, __be32 loc_addr, 1865 __be16 rmt_port, __be32 rmt_addr, 1866 int dif) 1867 { 1868 struct sock *sk, *result; 1869 struct hlist_nulls_node *node; 1870 unsigned short hnum = ntohs(loc_port); 1871 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask); 1872 struct udp_hslot *hslot = &udp_table.hash[slot]; 1873 1874 /* Do not bother scanning a too big list */ 1875 if (hslot->count > 10) 1876 return NULL; 1877 1878 rcu_read_lock(); 1879 begin: 1880 count = 0; 1881 result = NULL; 1882 sk_nulls_for_each_rcu(sk, node, &hslot->head) { 1883 if (__udp_is_mcast_sock(net, sk, 1884 loc_port, loc_addr, 1885 rmt_port, rmt_addr, 1886 dif, hnum)) { 1887 result = sk; 1888 ++count; 1889 } 1890 } 1891 /* 1892 * if the nulls value we got at the end of this lookup is 1893 * not the expected one, we must restart lookup. 1894 * We probably met an item that was moved to another chain. 1895 */ 1896 if (get_nulls_value(node) != slot) 1897 goto begin; 1898 1899 if (result) { 1900 if (count != 1 || 1901 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 1902 result = NULL; 1903 else if (unlikely(!__udp_is_mcast_sock(net, result, 1904 loc_port, loc_addr, 1905 rmt_port, rmt_addr, 1906 dif, hnum))) { 1907 sock_put(result); 1908 result = NULL; 1909 } 1910 } 1911 rcu_read_unlock(); 1912 return result; 1913 } 1914 1915 /* For unicast we should only early demux connected sockets or we can 1916 * break forwarding setups. The chains here can be long so only check 1917 * if the first socket is an exact match and if not move on. 1918 */ 1919 static struct sock *__udp4_lib_demux_lookup(struct net *net, 1920 __be16 loc_port, __be32 loc_addr, 1921 __be16 rmt_port, __be32 rmt_addr, 1922 int dif) 1923 { 1924 struct sock *sk, *result; 1925 struct hlist_nulls_node *node; 1926 unsigned short hnum = ntohs(loc_port); 1927 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum); 1928 unsigned int slot2 = hash2 & udp_table.mask; 1929 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 1930 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 1931 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 1932 1933 rcu_read_lock(); 1934 result = NULL; 1935 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) { 1936 if (INET_MATCH(sk, net, acookie, 1937 rmt_addr, loc_addr, ports, dif)) 1938 result = sk; 1939 /* Only check first socket in chain */ 1940 break; 1941 } 1942 1943 if (result) { 1944 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 1945 result = NULL; 1946 else if (unlikely(!INET_MATCH(sk, net, acookie, 1947 rmt_addr, loc_addr, 1948 ports, dif))) { 1949 sock_put(result); 1950 result = NULL; 1951 } 1952 } 1953 rcu_read_unlock(); 1954 return result; 1955 } 1956 1957 void udp_v4_early_demux(struct sk_buff *skb) 1958 { 1959 struct net *net = dev_net(skb->dev); 1960 const struct iphdr *iph; 1961 const struct udphdr *uh; 1962 struct sock *sk; 1963 struct dst_entry *dst; 1964 int dif = skb->dev->ifindex; 1965 1966 /* validate the packet */ 1967 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 1968 return; 1969 1970 iph = ip_hdr(skb); 1971 uh = udp_hdr(skb); 1972 1973 if (skb->pkt_type == PACKET_BROADCAST || 1974 skb->pkt_type == PACKET_MULTICAST) 1975 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 1976 uh->source, iph->saddr, dif); 1977 else if (skb->pkt_type == PACKET_HOST) 1978 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 1979 uh->source, iph->saddr, dif); 1980 else 1981 return; 1982 1983 if (!sk) 1984 return; 1985 1986 skb->sk = sk; 1987 skb->destructor = sock_efree; 1988 dst = sk->sk_rx_dst; 1989 1990 if (dst) 1991 dst = dst_check(dst, 0); 1992 if (dst) 1993 skb_dst_set_noref(skb, dst); 1994 } 1995 1996 int udp_rcv(struct sk_buff *skb) 1997 { 1998 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 1999 } 2000 2001 void udp_destroy_sock(struct sock *sk) 2002 { 2003 struct udp_sock *up = udp_sk(sk); 2004 bool slow = lock_sock_fast(sk); 2005 udp_flush_pending_frames(sk); 2006 unlock_sock_fast(sk, slow); 2007 if (static_key_false(&udp_encap_needed) && up->encap_type) { 2008 void (*encap_destroy)(struct sock *sk); 2009 encap_destroy = ACCESS_ONCE(up->encap_destroy); 2010 if (encap_destroy) 2011 encap_destroy(sk); 2012 } 2013 } 2014 2015 /* 2016 * Socket option code for UDP 2017 */ 2018 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2019 char __user *optval, unsigned int optlen, 2020 int (*push_pending_frames)(struct sock *)) 2021 { 2022 struct udp_sock *up = udp_sk(sk); 2023 int val, valbool; 2024 int err = 0; 2025 int is_udplite = IS_UDPLITE(sk); 2026 2027 if (optlen < sizeof(int)) 2028 return -EINVAL; 2029 2030 if (get_user(val, (int __user *)optval)) 2031 return -EFAULT; 2032 2033 valbool = val ? 1 : 0; 2034 2035 switch (optname) { 2036 case UDP_CORK: 2037 if (val != 0) { 2038 up->corkflag = 1; 2039 } else { 2040 up->corkflag = 0; 2041 lock_sock(sk); 2042 push_pending_frames(sk); 2043 release_sock(sk); 2044 } 2045 break; 2046 2047 case UDP_ENCAP: 2048 switch (val) { 2049 case 0: 2050 case UDP_ENCAP_ESPINUDP: 2051 case UDP_ENCAP_ESPINUDP_NON_IKE: 2052 up->encap_rcv = xfrm4_udp_encap_rcv; 2053 /* FALLTHROUGH */ 2054 case UDP_ENCAP_L2TPINUDP: 2055 up->encap_type = val; 2056 udp_encap_enable(); 2057 break; 2058 default: 2059 err = -ENOPROTOOPT; 2060 break; 2061 } 2062 break; 2063 2064 case UDP_NO_CHECK6_TX: 2065 up->no_check6_tx = valbool; 2066 break; 2067 2068 case UDP_NO_CHECK6_RX: 2069 up->no_check6_rx = valbool; 2070 break; 2071 2072 /* 2073 * UDP-Lite's partial checksum coverage (RFC 3828). 2074 */ 2075 /* The sender sets actual checksum coverage length via this option. 2076 * The case coverage > packet length is handled by send module. */ 2077 case UDPLITE_SEND_CSCOV: 2078 if (!is_udplite) /* Disable the option on UDP sockets */ 2079 return -ENOPROTOOPT; 2080 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2081 val = 8; 2082 else if (val > USHRT_MAX) 2083 val = USHRT_MAX; 2084 up->pcslen = val; 2085 up->pcflag |= UDPLITE_SEND_CC; 2086 break; 2087 2088 /* The receiver specifies a minimum checksum coverage value. To make 2089 * sense, this should be set to at least 8 (as done below). If zero is 2090 * used, this again means full checksum coverage. */ 2091 case UDPLITE_RECV_CSCOV: 2092 if (!is_udplite) /* Disable the option on UDP sockets */ 2093 return -ENOPROTOOPT; 2094 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2095 val = 8; 2096 else if (val > USHRT_MAX) 2097 val = USHRT_MAX; 2098 up->pcrlen = val; 2099 up->pcflag |= UDPLITE_RECV_CC; 2100 break; 2101 2102 default: 2103 err = -ENOPROTOOPT; 2104 break; 2105 } 2106 2107 return err; 2108 } 2109 EXPORT_SYMBOL(udp_lib_setsockopt); 2110 2111 int udp_setsockopt(struct sock *sk, int level, int optname, 2112 char __user *optval, unsigned int optlen) 2113 { 2114 if (level == SOL_UDP || level == SOL_UDPLITE) 2115 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2116 udp_push_pending_frames); 2117 return ip_setsockopt(sk, level, optname, optval, optlen); 2118 } 2119 2120 #ifdef CONFIG_COMPAT 2121 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2122 char __user *optval, unsigned int optlen) 2123 { 2124 if (level == SOL_UDP || level == SOL_UDPLITE) 2125 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2126 udp_push_pending_frames); 2127 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2128 } 2129 #endif 2130 2131 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2132 char __user *optval, int __user *optlen) 2133 { 2134 struct udp_sock *up = udp_sk(sk); 2135 int val, len; 2136 2137 if (get_user(len, optlen)) 2138 return -EFAULT; 2139 2140 len = min_t(unsigned int, len, sizeof(int)); 2141 2142 if (len < 0) 2143 return -EINVAL; 2144 2145 switch (optname) { 2146 case UDP_CORK: 2147 val = up->corkflag; 2148 break; 2149 2150 case UDP_ENCAP: 2151 val = up->encap_type; 2152 break; 2153 2154 case UDP_NO_CHECK6_TX: 2155 val = up->no_check6_tx; 2156 break; 2157 2158 case UDP_NO_CHECK6_RX: 2159 val = up->no_check6_rx; 2160 break; 2161 2162 /* The following two cannot be changed on UDP sockets, the return is 2163 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2164 case UDPLITE_SEND_CSCOV: 2165 val = up->pcslen; 2166 break; 2167 2168 case UDPLITE_RECV_CSCOV: 2169 val = up->pcrlen; 2170 break; 2171 2172 default: 2173 return -ENOPROTOOPT; 2174 } 2175 2176 if (put_user(len, optlen)) 2177 return -EFAULT; 2178 if (copy_to_user(optval, &val, len)) 2179 return -EFAULT; 2180 return 0; 2181 } 2182 EXPORT_SYMBOL(udp_lib_getsockopt); 2183 2184 int udp_getsockopt(struct sock *sk, int level, int optname, 2185 char __user *optval, int __user *optlen) 2186 { 2187 if (level == SOL_UDP || level == SOL_UDPLITE) 2188 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2189 return ip_getsockopt(sk, level, optname, optval, optlen); 2190 } 2191 2192 #ifdef CONFIG_COMPAT 2193 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2194 char __user *optval, int __user *optlen) 2195 { 2196 if (level == SOL_UDP || level == SOL_UDPLITE) 2197 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2198 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2199 } 2200 #endif 2201 /** 2202 * udp_poll - wait for a UDP event. 2203 * @file - file struct 2204 * @sock - socket 2205 * @wait - poll table 2206 * 2207 * This is same as datagram poll, except for the special case of 2208 * blocking sockets. If application is using a blocking fd 2209 * and a packet with checksum error is in the queue; 2210 * then it could get return from select indicating data available 2211 * but then block when reading it. Add special case code 2212 * to work around these arguably broken applications. 2213 */ 2214 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2215 { 2216 unsigned int mask = datagram_poll(file, sock, wait); 2217 struct sock *sk = sock->sk; 2218 2219 sock_rps_record_flow(sk); 2220 2221 /* Check for false positives due to checksum errors */ 2222 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2223 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk)) 2224 mask &= ~(POLLIN | POLLRDNORM); 2225 2226 return mask; 2227 2228 } 2229 EXPORT_SYMBOL(udp_poll); 2230 2231 struct proto udp_prot = { 2232 .name = "UDP", 2233 .owner = THIS_MODULE, 2234 .close = udp_lib_close, 2235 .connect = ip4_datagram_connect, 2236 .disconnect = udp_disconnect, 2237 .ioctl = udp_ioctl, 2238 .destroy = udp_destroy_sock, 2239 .setsockopt = udp_setsockopt, 2240 .getsockopt = udp_getsockopt, 2241 .sendmsg = udp_sendmsg, 2242 .recvmsg = udp_recvmsg, 2243 .sendpage = udp_sendpage, 2244 .backlog_rcv = __udp_queue_rcv_skb, 2245 .release_cb = ip4_datagram_release_cb, 2246 .hash = udp_lib_hash, 2247 .unhash = udp_lib_unhash, 2248 .rehash = udp_v4_rehash, 2249 .get_port = udp_v4_get_port, 2250 .memory_allocated = &udp_memory_allocated, 2251 .sysctl_mem = sysctl_udp_mem, 2252 .sysctl_wmem = &sysctl_udp_wmem_min, 2253 .sysctl_rmem = &sysctl_udp_rmem_min, 2254 .obj_size = sizeof(struct udp_sock), 2255 .slab_flags = SLAB_DESTROY_BY_RCU, 2256 .h.udp_table = &udp_table, 2257 #ifdef CONFIG_COMPAT 2258 .compat_setsockopt = compat_udp_setsockopt, 2259 .compat_getsockopt = compat_udp_getsockopt, 2260 #endif 2261 .clear_sk = sk_prot_clear_portaddr_nulls, 2262 }; 2263 EXPORT_SYMBOL(udp_prot); 2264 2265 /* ------------------------------------------------------------------------ */ 2266 #ifdef CONFIG_PROC_FS 2267 2268 static struct sock *udp_get_first(struct seq_file *seq, int start) 2269 { 2270 struct sock *sk; 2271 struct udp_iter_state *state = seq->private; 2272 struct net *net = seq_file_net(seq); 2273 2274 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2275 ++state->bucket) { 2276 struct hlist_nulls_node *node; 2277 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2278 2279 if (hlist_nulls_empty(&hslot->head)) 2280 continue; 2281 2282 spin_lock_bh(&hslot->lock); 2283 sk_nulls_for_each(sk, node, &hslot->head) { 2284 if (!net_eq(sock_net(sk), net)) 2285 continue; 2286 if (sk->sk_family == state->family) 2287 goto found; 2288 } 2289 spin_unlock_bh(&hslot->lock); 2290 } 2291 sk = NULL; 2292 found: 2293 return sk; 2294 } 2295 2296 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2297 { 2298 struct udp_iter_state *state = seq->private; 2299 struct net *net = seq_file_net(seq); 2300 2301 do { 2302 sk = sk_nulls_next(sk); 2303 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2304 2305 if (!sk) { 2306 if (state->bucket <= state->udp_table->mask) 2307 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2308 return udp_get_first(seq, state->bucket + 1); 2309 } 2310 return sk; 2311 } 2312 2313 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2314 { 2315 struct sock *sk = udp_get_first(seq, 0); 2316 2317 if (sk) 2318 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2319 --pos; 2320 return pos ? NULL : sk; 2321 } 2322 2323 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2324 { 2325 struct udp_iter_state *state = seq->private; 2326 state->bucket = MAX_UDP_PORTS; 2327 2328 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2329 } 2330 2331 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2332 { 2333 struct sock *sk; 2334 2335 if (v == SEQ_START_TOKEN) 2336 sk = udp_get_idx(seq, 0); 2337 else 2338 sk = udp_get_next(seq, v); 2339 2340 ++*pos; 2341 return sk; 2342 } 2343 2344 static void udp_seq_stop(struct seq_file *seq, void *v) 2345 { 2346 struct udp_iter_state *state = seq->private; 2347 2348 if (state->bucket <= state->udp_table->mask) 2349 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2350 } 2351 2352 int udp_seq_open(struct inode *inode, struct file *file) 2353 { 2354 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2355 struct udp_iter_state *s; 2356 int err; 2357 2358 err = seq_open_net(inode, file, &afinfo->seq_ops, 2359 sizeof(struct udp_iter_state)); 2360 if (err < 0) 2361 return err; 2362 2363 s = ((struct seq_file *)file->private_data)->private; 2364 s->family = afinfo->family; 2365 s->udp_table = afinfo->udp_table; 2366 return err; 2367 } 2368 EXPORT_SYMBOL(udp_seq_open); 2369 2370 /* ------------------------------------------------------------------------ */ 2371 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2372 { 2373 struct proc_dir_entry *p; 2374 int rc = 0; 2375 2376 afinfo->seq_ops.start = udp_seq_start; 2377 afinfo->seq_ops.next = udp_seq_next; 2378 afinfo->seq_ops.stop = udp_seq_stop; 2379 2380 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2381 afinfo->seq_fops, afinfo); 2382 if (!p) 2383 rc = -ENOMEM; 2384 return rc; 2385 } 2386 EXPORT_SYMBOL(udp_proc_register); 2387 2388 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2389 { 2390 remove_proc_entry(afinfo->name, net->proc_net); 2391 } 2392 EXPORT_SYMBOL(udp_proc_unregister); 2393 2394 /* ------------------------------------------------------------------------ */ 2395 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2396 int bucket) 2397 { 2398 struct inet_sock *inet = inet_sk(sp); 2399 __be32 dest = inet->inet_daddr; 2400 __be32 src = inet->inet_rcv_saddr; 2401 __u16 destp = ntohs(inet->inet_dport); 2402 __u16 srcp = ntohs(inet->inet_sport); 2403 2404 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2405 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2406 bucket, src, srcp, dest, destp, sp->sk_state, 2407 sk_wmem_alloc_get(sp), 2408 sk_rmem_alloc_get(sp), 2409 0, 0L, 0, 2410 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2411 0, sock_i_ino(sp), 2412 atomic_read(&sp->sk_refcnt), sp, 2413 atomic_read(&sp->sk_drops)); 2414 } 2415 2416 int udp4_seq_show(struct seq_file *seq, void *v) 2417 { 2418 seq_setwidth(seq, 127); 2419 if (v == SEQ_START_TOKEN) 2420 seq_puts(seq, " sl local_address rem_address st tx_queue " 2421 "rx_queue tr tm->when retrnsmt uid timeout " 2422 "inode ref pointer drops"); 2423 else { 2424 struct udp_iter_state *state = seq->private; 2425 2426 udp4_format_sock(v, seq, state->bucket); 2427 } 2428 seq_pad(seq, '\n'); 2429 return 0; 2430 } 2431 2432 static const struct file_operations udp_afinfo_seq_fops = { 2433 .owner = THIS_MODULE, 2434 .open = udp_seq_open, 2435 .read = seq_read, 2436 .llseek = seq_lseek, 2437 .release = seq_release_net 2438 }; 2439 2440 /* ------------------------------------------------------------------------ */ 2441 static struct udp_seq_afinfo udp4_seq_afinfo = { 2442 .name = "udp", 2443 .family = AF_INET, 2444 .udp_table = &udp_table, 2445 .seq_fops = &udp_afinfo_seq_fops, 2446 .seq_ops = { 2447 .show = udp4_seq_show, 2448 }, 2449 }; 2450 2451 static int __net_init udp4_proc_init_net(struct net *net) 2452 { 2453 return udp_proc_register(net, &udp4_seq_afinfo); 2454 } 2455 2456 static void __net_exit udp4_proc_exit_net(struct net *net) 2457 { 2458 udp_proc_unregister(net, &udp4_seq_afinfo); 2459 } 2460 2461 static struct pernet_operations udp4_net_ops = { 2462 .init = udp4_proc_init_net, 2463 .exit = udp4_proc_exit_net, 2464 }; 2465 2466 int __init udp4_proc_init(void) 2467 { 2468 return register_pernet_subsys(&udp4_net_ops); 2469 } 2470 2471 void udp4_proc_exit(void) 2472 { 2473 unregister_pernet_subsys(&udp4_net_ops); 2474 } 2475 #endif /* CONFIG_PROC_FS */ 2476 2477 static __initdata unsigned long uhash_entries; 2478 static int __init set_uhash_entries(char *str) 2479 { 2480 ssize_t ret; 2481 2482 if (!str) 2483 return 0; 2484 2485 ret = kstrtoul(str, 0, &uhash_entries); 2486 if (ret) 2487 return 0; 2488 2489 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2490 uhash_entries = UDP_HTABLE_SIZE_MIN; 2491 return 1; 2492 } 2493 __setup("uhash_entries=", set_uhash_entries); 2494 2495 void __init udp_table_init(struct udp_table *table, const char *name) 2496 { 2497 unsigned int i; 2498 2499 table->hash = alloc_large_system_hash(name, 2500 2 * sizeof(struct udp_hslot), 2501 uhash_entries, 2502 21, /* one slot per 2 MB */ 2503 0, 2504 &table->log, 2505 &table->mask, 2506 UDP_HTABLE_SIZE_MIN, 2507 64 * 1024); 2508 2509 table->hash2 = table->hash + (table->mask + 1); 2510 for (i = 0; i <= table->mask; i++) { 2511 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i); 2512 table->hash[i].count = 0; 2513 spin_lock_init(&table->hash[i].lock); 2514 } 2515 for (i = 0; i <= table->mask; i++) { 2516 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i); 2517 table->hash2[i].count = 0; 2518 spin_lock_init(&table->hash2[i].lock); 2519 } 2520 } 2521 2522 u32 udp_flow_hashrnd(void) 2523 { 2524 static u32 hashrnd __read_mostly; 2525 2526 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2527 2528 return hashrnd; 2529 } 2530 EXPORT_SYMBOL(udp_flow_hashrnd); 2531 2532 void __init udp_init(void) 2533 { 2534 unsigned long limit; 2535 2536 udp_table_init(&udp_table, "UDP"); 2537 limit = nr_free_buffer_pages() / 8; 2538 limit = max(limit, 128UL); 2539 sysctl_udp_mem[0] = limit / 4 * 3; 2540 sysctl_udp_mem[1] = limit; 2541 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2542 2543 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2544 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2545 } 2546