xref: /openbmc/linux/net/ipv4/udp.c (revision 801543b2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122 
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125 
126 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
129 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
130 
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133 
134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 			       const struct udp_hslot *hslot,
136 			       unsigned long *bitmap,
137 			       struct sock *sk, unsigned int log)
138 {
139 	struct sock *sk2;
140 	kuid_t uid = sock_i_uid(sk);
141 
142 	sk_for_each(sk2, &hslot->head) {
143 		if (net_eq(sock_net(sk2), net) &&
144 		    sk2 != sk &&
145 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
146 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
147 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
148 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
149 		    inet_rcv_saddr_equal(sk, sk2, true)) {
150 			if (sk2->sk_reuseport && sk->sk_reuseport &&
151 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
152 			    uid_eq(uid, sock_i_uid(sk2))) {
153 				if (!bitmap)
154 					return 0;
155 			} else {
156 				if (!bitmap)
157 					return 1;
158 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
159 					  bitmap);
160 			}
161 		}
162 	}
163 	return 0;
164 }
165 
166 /*
167  * Note: we still hold spinlock of primary hash chain, so no other writer
168  * can insert/delete a socket with local_port == num
169  */
170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 				struct udp_hslot *hslot2,
172 				struct sock *sk)
173 {
174 	struct sock *sk2;
175 	kuid_t uid = sock_i_uid(sk);
176 	int res = 0;
177 
178 	spin_lock(&hslot2->lock);
179 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
180 		if (net_eq(sock_net(sk2), net) &&
181 		    sk2 != sk &&
182 		    (udp_sk(sk2)->udp_port_hash == num) &&
183 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
184 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
185 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
186 		    inet_rcv_saddr_equal(sk, sk2, true)) {
187 			if (sk2->sk_reuseport && sk->sk_reuseport &&
188 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
189 			    uid_eq(uid, sock_i_uid(sk2))) {
190 				res = 0;
191 			} else {
192 				res = 1;
193 			}
194 			break;
195 		}
196 	}
197 	spin_unlock(&hslot2->lock);
198 	return res;
199 }
200 
201 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
202 {
203 	struct net *net = sock_net(sk);
204 	kuid_t uid = sock_i_uid(sk);
205 	struct sock *sk2;
206 
207 	sk_for_each(sk2, &hslot->head) {
208 		if (net_eq(sock_net(sk2), net) &&
209 		    sk2 != sk &&
210 		    sk2->sk_family == sk->sk_family &&
211 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
212 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
213 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
214 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
215 		    inet_rcv_saddr_equal(sk, sk2, false)) {
216 			return reuseport_add_sock(sk, sk2,
217 						  inet_rcv_saddr_any(sk));
218 		}
219 	}
220 
221 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
222 }
223 
224 /**
225  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
226  *
227  *  @sk:          socket struct in question
228  *  @snum:        port number to look up
229  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
230  *                   with NULL address
231  */
232 int udp_lib_get_port(struct sock *sk, unsigned short snum,
233 		     unsigned int hash2_nulladdr)
234 {
235 	struct udp_hslot *hslot, *hslot2;
236 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
237 	int    error = 1;
238 	struct net *net = sock_net(sk);
239 
240 	if (!snum) {
241 		int low, high, remaining;
242 		unsigned int rand;
243 		unsigned short first, last;
244 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
245 
246 		inet_get_local_port_range(net, &low, &high);
247 		remaining = (high - low) + 1;
248 
249 		rand = prandom_u32();
250 		first = reciprocal_scale(rand, remaining) + low;
251 		/*
252 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
253 		 */
254 		rand = (rand | 1) * (udptable->mask + 1);
255 		last = first + udptable->mask + 1;
256 		do {
257 			hslot = udp_hashslot(udptable, net, first);
258 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
259 			spin_lock_bh(&hslot->lock);
260 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
261 					    udptable->log);
262 
263 			snum = first;
264 			/*
265 			 * Iterate on all possible values of snum for this hash.
266 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
267 			 * give us randomization and full range coverage.
268 			 */
269 			do {
270 				if (low <= snum && snum <= high &&
271 				    !test_bit(snum >> udptable->log, bitmap) &&
272 				    !inet_is_local_reserved_port(net, snum))
273 					goto found;
274 				snum += rand;
275 			} while (snum != first);
276 			spin_unlock_bh(&hslot->lock);
277 			cond_resched();
278 		} while (++first != last);
279 		goto fail;
280 	} else {
281 		hslot = udp_hashslot(udptable, net, snum);
282 		spin_lock_bh(&hslot->lock);
283 		if (hslot->count > 10) {
284 			int exist;
285 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
286 
287 			slot2          &= udptable->mask;
288 			hash2_nulladdr &= udptable->mask;
289 
290 			hslot2 = udp_hashslot2(udptable, slot2);
291 			if (hslot->count < hslot2->count)
292 				goto scan_primary_hash;
293 
294 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
295 			if (!exist && (hash2_nulladdr != slot2)) {
296 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
297 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
298 							     sk);
299 			}
300 			if (exist)
301 				goto fail_unlock;
302 			else
303 				goto found;
304 		}
305 scan_primary_hash:
306 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
307 			goto fail_unlock;
308 	}
309 found:
310 	inet_sk(sk)->inet_num = snum;
311 	udp_sk(sk)->udp_port_hash = snum;
312 	udp_sk(sk)->udp_portaddr_hash ^= snum;
313 	if (sk_unhashed(sk)) {
314 		if (sk->sk_reuseport &&
315 		    udp_reuseport_add_sock(sk, hslot)) {
316 			inet_sk(sk)->inet_num = 0;
317 			udp_sk(sk)->udp_port_hash = 0;
318 			udp_sk(sk)->udp_portaddr_hash ^= snum;
319 			goto fail_unlock;
320 		}
321 
322 		sk_add_node_rcu(sk, &hslot->head);
323 		hslot->count++;
324 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
325 
326 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
327 		spin_lock(&hslot2->lock);
328 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
329 		    sk->sk_family == AF_INET6)
330 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
331 					   &hslot2->head);
332 		else
333 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
334 					   &hslot2->head);
335 		hslot2->count++;
336 		spin_unlock(&hslot2->lock);
337 	}
338 	sock_set_flag(sk, SOCK_RCU_FREE);
339 	error = 0;
340 fail_unlock:
341 	spin_unlock_bh(&hslot->lock);
342 fail:
343 	return error;
344 }
345 EXPORT_SYMBOL(udp_lib_get_port);
346 
347 int udp_v4_get_port(struct sock *sk, unsigned short snum)
348 {
349 	unsigned int hash2_nulladdr =
350 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
351 	unsigned int hash2_partial =
352 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
353 
354 	/* precompute partial secondary hash */
355 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
356 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
357 }
358 
359 static int compute_score(struct sock *sk, struct net *net,
360 			 __be32 saddr, __be16 sport,
361 			 __be32 daddr, unsigned short hnum,
362 			 int dif, int sdif)
363 {
364 	int score;
365 	struct inet_sock *inet;
366 	bool dev_match;
367 
368 	if (!net_eq(sock_net(sk), net) ||
369 	    udp_sk(sk)->udp_port_hash != hnum ||
370 	    ipv6_only_sock(sk))
371 		return -1;
372 
373 	if (sk->sk_rcv_saddr != daddr)
374 		return -1;
375 
376 	score = (sk->sk_family == PF_INET) ? 2 : 1;
377 
378 	inet = inet_sk(sk);
379 	if (inet->inet_daddr) {
380 		if (inet->inet_daddr != saddr)
381 			return -1;
382 		score += 4;
383 	}
384 
385 	if (inet->inet_dport) {
386 		if (inet->inet_dport != sport)
387 			return -1;
388 		score += 4;
389 	}
390 
391 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
392 					dif, sdif);
393 	if (!dev_match)
394 		return -1;
395 	if (sk->sk_bound_dev_if)
396 		score += 4;
397 
398 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
399 		score++;
400 	return score;
401 }
402 
403 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
404 		       const __u16 lport, const __be32 faddr,
405 		       const __be16 fport)
406 {
407 	static u32 udp_ehash_secret __read_mostly;
408 
409 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
410 
411 	return __inet_ehashfn(laddr, lport, faddr, fport,
412 			      udp_ehash_secret + net_hash_mix(net));
413 }
414 
415 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
416 				     struct sk_buff *skb,
417 				     __be32 saddr, __be16 sport,
418 				     __be32 daddr, unsigned short hnum)
419 {
420 	struct sock *reuse_sk = NULL;
421 	u32 hash;
422 
423 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
424 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
425 		reuse_sk = reuseport_select_sock(sk, hash, skb,
426 						 sizeof(struct udphdr));
427 	}
428 	return reuse_sk;
429 }
430 
431 /* called with rcu_read_lock() */
432 static struct sock *udp4_lib_lookup2(struct net *net,
433 				     __be32 saddr, __be16 sport,
434 				     __be32 daddr, unsigned int hnum,
435 				     int dif, int sdif,
436 				     struct udp_hslot *hslot2,
437 				     struct sk_buff *skb)
438 {
439 	struct sock *sk, *result;
440 	int score, badness;
441 
442 	result = NULL;
443 	badness = 0;
444 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
445 		score = compute_score(sk, net, saddr, sport,
446 				      daddr, hnum, dif, sdif);
447 		if (score > badness) {
448 			result = lookup_reuseport(net, sk, skb,
449 						  saddr, sport, daddr, hnum);
450 			/* Fall back to scoring if group has connections */
451 			if (result && !reuseport_has_conns(sk, false))
452 				return result;
453 
454 			result = result ? : sk;
455 			badness = score;
456 		}
457 	}
458 	return result;
459 }
460 
461 static struct sock *udp4_lookup_run_bpf(struct net *net,
462 					struct udp_table *udptable,
463 					struct sk_buff *skb,
464 					__be32 saddr, __be16 sport,
465 					__be32 daddr, u16 hnum, const int dif)
466 {
467 	struct sock *sk, *reuse_sk;
468 	bool no_reuseport;
469 
470 	if (udptable != &udp_table)
471 		return NULL; /* only UDP is supported */
472 
473 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
474 					    daddr, hnum, dif, &sk);
475 	if (no_reuseport || IS_ERR_OR_NULL(sk))
476 		return sk;
477 
478 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
479 	if (reuse_sk)
480 		sk = reuse_sk;
481 	return sk;
482 }
483 
484 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
485  * harder than this. -DaveM
486  */
487 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
488 		__be16 sport, __be32 daddr, __be16 dport, int dif,
489 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
490 {
491 	unsigned short hnum = ntohs(dport);
492 	unsigned int hash2, slot2;
493 	struct udp_hslot *hslot2;
494 	struct sock *result, *sk;
495 
496 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
497 	slot2 = hash2 & udptable->mask;
498 	hslot2 = &udptable->hash2[slot2];
499 
500 	/* Lookup connected or non-wildcard socket */
501 	result = udp4_lib_lookup2(net, saddr, sport,
502 				  daddr, hnum, dif, sdif,
503 				  hslot2, skb);
504 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
505 		goto done;
506 
507 	/* Lookup redirect from BPF */
508 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
509 		sk = udp4_lookup_run_bpf(net, udptable, skb,
510 					 saddr, sport, daddr, hnum, dif);
511 		if (sk) {
512 			result = sk;
513 			goto done;
514 		}
515 	}
516 
517 	/* Got non-wildcard socket or error on first lookup */
518 	if (result)
519 		goto done;
520 
521 	/* Lookup wildcard sockets */
522 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
523 	slot2 = hash2 & udptable->mask;
524 	hslot2 = &udptable->hash2[slot2];
525 
526 	result = udp4_lib_lookup2(net, saddr, sport,
527 				  htonl(INADDR_ANY), hnum, dif, sdif,
528 				  hslot2, skb);
529 done:
530 	if (IS_ERR(result))
531 		return NULL;
532 	return result;
533 }
534 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
535 
536 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
537 						 __be16 sport, __be16 dport,
538 						 struct udp_table *udptable)
539 {
540 	const struct iphdr *iph = ip_hdr(skb);
541 
542 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
543 				 iph->daddr, dport, inet_iif(skb),
544 				 inet_sdif(skb), udptable, skb);
545 }
546 
547 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
548 				 __be16 sport, __be16 dport)
549 {
550 	const struct iphdr *iph = ip_hdr(skb);
551 
552 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
553 				 iph->daddr, dport, inet_iif(skb),
554 				 inet_sdif(skb), &udp_table, NULL);
555 }
556 
557 /* Must be called under rcu_read_lock().
558  * Does increment socket refcount.
559  */
560 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
561 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
562 			     __be32 daddr, __be16 dport, int dif)
563 {
564 	struct sock *sk;
565 
566 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
567 			       dif, 0, &udp_table, NULL);
568 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
569 		sk = NULL;
570 	return sk;
571 }
572 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
573 #endif
574 
575 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
576 				       __be16 loc_port, __be32 loc_addr,
577 				       __be16 rmt_port, __be32 rmt_addr,
578 				       int dif, int sdif, unsigned short hnum)
579 {
580 	struct inet_sock *inet = inet_sk(sk);
581 
582 	if (!net_eq(sock_net(sk), net) ||
583 	    udp_sk(sk)->udp_port_hash != hnum ||
584 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
585 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
586 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
587 	    ipv6_only_sock(sk) ||
588 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
589 		return false;
590 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
591 		return false;
592 	return true;
593 }
594 
595 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
596 void udp_encap_enable(void)
597 {
598 	static_branch_inc(&udp_encap_needed_key);
599 }
600 EXPORT_SYMBOL(udp_encap_enable);
601 
602 void udp_encap_disable(void)
603 {
604 	static_branch_dec(&udp_encap_needed_key);
605 }
606 EXPORT_SYMBOL(udp_encap_disable);
607 
608 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
609  * through error handlers in encapsulations looking for a match.
610  */
611 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
612 {
613 	int i;
614 
615 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
616 		int (*handler)(struct sk_buff *skb, u32 info);
617 		const struct ip_tunnel_encap_ops *encap;
618 
619 		encap = rcu_dereference(iptun_encaps[i]);
620 		if (!encap)
621 			continue;
622 		handler = encap->err_handler;
623 		if (handler && !handler(skb, info))
624 			return 0;
625 	}
626 
627 	return -ENOENT;
628 }
629 
630 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
631  * reversing source and destination port: this will match tunnels that force the
632  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
633  * lwtunnels might actually break this assumption by being configured with
634  * different destination ports on endpoints, in this case we won't be able to
635  * trace ICMP messages back to them.
636  *
637  * If this doesn't match any socket, probe tunnels with arbitrary destination
638  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
639  * we've sent packets to won't necessarily match the local destination port.
640  *
641  * Then ask the tunnel implementation to match the error against a valid
642  * association.
643  *
644  * Return an error if we can't find a match, the socket if we need further
645  * processing, zero otherwise.
646  */
647 static struct sock *__udp4_lib_err_encap(struct net *net,
648 					 const struct iphdr *iph,
649 					 struct udphdr *uh,
650 					 struct udp_table *udptable,
651 					 struct sock *sk,
652 					 struct sk_buff *skb, u32 info)
653 {
654 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
655 	int network_offset, transport_offset;
656 	struct udp_sock *up;
657 
658 	network_offset = skb_network_offset(skb);
659 	transport_offset = skb_transport_offset(skb);
660 
661 	/* Network header needs to point to the outer IPv4 header inside ICMP */
662 	skb_reset_network_header(skb);
663 
664 	/* Transport header needs to point to the UDP header */
665 	skb_set_transport_header(skb, iph->ihl << 2);
666 
667 	if (sk) {
668 		up = udp_sk(sk);
669 
670 		lookup = READ_ONCE(up->encap_err_lookup);
671 		if (lookup && lookup(sk, skb))
672 			sk = NULL;
673 
674 		goto out;
675 	}
676 
677 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
678 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
679 			       udptable, NULL);
680 	if (sk) {
681 		up = udp_sk(sk);
682 
683 		lookup = READ_ONCE(up->encap_err_lookup);
684 		if (!lookup || lookup(sk, skb))
685 			sk = NULL;
686 	}
687 
688 out:
689 	if (!sk)
690 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
691 
692 	skb_set_transport_header(skb, transport_offset);
693 	skb_set_network_header(skb, network_offset);
694 
695 	return sk;
696 }
697 
698 /*
699  * This routine is called by the ICMP module when it gets some
700  * sort of error condition.  If err < 0 then the socket should
701  * be closed and the error returned to the user.  If err > 0
702  * it's just the icmp type << 8 | icmp code.
703  * Header points to the ip header of the error packet. We move
704  * on past this. Then (as it used to claim before adjustment)
705  * header points to the first 8 bytes of the udp header.  We need
706  * to find the appropriate port.
707  */
708 
709 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
710 {
711 	struct inet_sock *inet;
712 	const struct iphdr *iph = (const struct iphdr *)skb->data;
713 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
714 	const int type = icmp_hdr(skb)->type;
715 	const int code = icmp_hdr(skb)->code;
716 	bool tunnel = false;
717 	struct sock *sk;
718 	int harderr;
719 	int err;
720 	struct net *net = dev_net(skb->dev);
721 
722 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
723 			       iph->saddr, uh->source, skb->dev->ifindex,
724 			       inet_sdif(skb), udptable, NULL);
725 
726 	if (!sk || udp_sk(sk)->encap_type) {
727 		/* No socket for error: try tunnels before discarding */
728 		if (static_branch_unlikely(&udp_encap_needed_key)) {
729 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
730 						  info);
731 			if (!sk)
732 				return 0;
733 		} else
734 			sk = ERR_PTR(-ENOENT);
735 
736 		if (IS_ERR(sk)) {
737 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
738 			return PTR_ERR(sk);
739 		}
740 
741 		tunnel = true;
742 	}
743 
744 	err = 0;
745 	harderr = 0;
746 	inet = inet_sk(sk);
747 
748 	switch (type) {
749 	default:
750 	case ICMP_TIME_EXCEEDED:
751 		err = EHOSTUNREACH;
752 		break;
753 	case ICMP_SOURCE_QUENCH:
754 		goto out;
755 	case ICMP_PARAMETERPROB:
756 		err = EPROTO;
757 		harderr = 1;
758 		break;
759 	case ICMP_DEST_UNREACH:
760 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
761 			ipv4_sk_update_pmtu(skb, sk, info);
762 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
763 				err = EMSGSIZE;
764 				harderr = 1;
765 				break;
766 			}
767 			goto out;
768 		}
769 		err = EHOSTUNREACH;
770 		if (code <= NR_ICMP_UNREACH) {
771 			harderr = icmp_err_convert[code].fatal;
772 			err = icmp_err_convert[code].errno;
773 		}
774 		break;
775 	case ICMP_REDIRECT:
776 		ipv4_sk_redirect(skb, sk);
777 		goto out;
778 	}
779 
780 	/*
781 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
782 	 *	4.1.3.3.
783 	 */
784 	if (tunnel) {
785 		/* ...not for tunnels though: we don't have a sending socket */
786 		goto out;
787 	}
788 	if (!inet->recverr) {
789 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
790 			goto out;
791 	} else
792 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
793 
794 	sk->sk_err = err;
795 	sk_error_report(sk);
796 out:
797 	return 0;
798 }
799 
800 int udp_err(struct sk_buff *skb, u32 info)
801 {
802 	return __udp4_lib_err(skb, info, &udp_table);
803 }
804 
805 /*
806  * Throw away all pending data and cancel the corking. Socket is locked.
807  */
808 void udp_flush_pending_frames(struct sock *sk)
809 {
810 	struct udp_sock *up = udp_sk(sk);
811 
812 	if (up->pending) {
813 		up->len = 0;
814 		up->pending = 0;
815 		ip_flush_pending_frames(sk);
816 	}
817 }
818 EXPORT_SYMBOL(udp_flush_pending_frames);
819 
820 /**
821  * 	udp4_hwcsum  -  handle outgoing HW checksumming
822  * 	@skb: 	sk_buff containing the filled-in UDP header
823  * 	        (checksum field must be zeroed out)
824  *	@src:	source IP address
825  *	@dst:	destination IP address
826  */
827 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
828 {
829 	struct udphdr *uh = udp_hdr(skb);
830 	int offset = skb_transport_offset(skb);
831 	int len = skb->len - offset;
832 	int hlen = len;
833 	__wsum csum = 0;
834 
835 	if (!skb_has_frag_list(skb)) {
836 		/*
837 		 * Only one fragment on the socket.
838 		 */
839 		skb->csum_start = skb_transport_header(skb) - skb->head;
840 		skb->csum_offset = offsetof(struct udphdr, check);
841 		uh->check = ~csum_tcpudp_magic(src, dst, len,
842 					       IPPROTO_UDP, 0);
843 	} else {
844 		struct sk_buff *frags;
845 
846 		/*
847 		 * HW-checksum won't work as there are two or more
848 		 * fragments on the socket so that all csums of sk_buffs
849 		 * should be together
850 		 */
851 		skb_walk_frags(skb, frags) {
852 			csum = csum_add(csum, frags->csum);
853 			hlen -= frags->len;
854 		}
855 
856 		csum = skb_checksum(skb, offset, hlen, csum);
857 		skb->ip_summed = CHECKSUM_NONE;
858 
859 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
860 		if (uh->check == 0)
861 			uh->check = CSUM_MANGLED_0;
862 	}
863 }
864 EXPORT_SYMBOL_GPL(udp4_hwcsum);
865 
866 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
867  * for the simple case like when setting the checksum for a UDP tunnel.
868  */
869 void udp_set_csum(bool nocheck, struct sk_buff *skb,
870 		  __be32 saddr, __be32 daddr, int len)
871 {
872 	struct udphdr *uh = udp_hdr(skb);
873 
874 	if (nocheck) {
875 		uh->check = 0;
876 	} else if (skb_is_gso(skb)) {
877 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
878 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
879 		uh->check = 0;
880 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
881 		if (uh->check == 0)
882 			uh->check = CSUM_MANGLED_0;
883 	} else {
884 		skb->ip_summed = CHECKSUM_PARTIAL;
885 		skb->csum_start = skb_transport_header(skb) - skb->head;
886 		skb->csum_offset = offsetof(struct udphdr, check);
887 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
888 	}
889 }
890 EXPORT_SYMBOL(udp_set_csum);
891 
892 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
893 			struct inet_cork *cork)
894 {
895 	struct sock *sk = skb->sk;
896 	struct inet_sock *inet = inet_sk(sk);
897 	struct udphdr *uh;
898 	int err;
899 	int is_udplite = IS_UDPLITE(sk);
900 	int offset = skb_transport_offset(skb);
901 	int len = skb->len - offset;
902 	int datalen = len - sizeof(*uh);
903 	__wsum csum = 0;
904 
905 	/*
906 	 * Create a UDP header
907 	 */
908 	uh = udp_hdr(skb);
909 	uh->source = inet->inet_sport;
910 	uh->dest = fl4->fl4_dport;
911 	uh->len = htons(len);
912 	uh->check = 0;
913 
914 	if (cork->gso_size) {
915 		const int hlen = skb_network_header_len(skb) +
916 				 sizeof(struct udphdr);
917 
918 		if (hlen + cork->gso_size > cork->fragsize) {
919 			kfree_skb(skb);
920 			return -EINVAL;
921 		}
922 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
923 			kfree_skb(skb);
924 			return -EINVAL;
925 		}
926 		if (sk->sk_no_check_tx) {
927 			kfree_skb(skb);
928 			return -EINVAL;
929 		}
930 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
931 		    dst_xfrm(skb_dst(skb))) {
932 			kfree_skb(skb);
933 			return -EIO;
934 		}
935 
936 		if (datalen > cork->gso_size) {
937 			skb_shinfo(skb)->gso_size = cork->gso_size;
938 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
939 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
940 								 cork->gso_size);
941 		}
942 		goto csum_partial;
943 	}
944 
945 	if (is_udplite)  				 /*     UDP-Lite      */
946 		csum = udplite_csum(skb);
947 
948 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
949 
950 		skb->ip_summed = CHECKSUM_NONE;
951 		goto send;
952 
953 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
954 csum_partial:
955 
956 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
957 		goto send;
958 
959 	} else
960 		csum = udp_csum(skb);
961 
962 	/* add protocol-dependent pseudo-header */
963 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
964 				      sk->sk_protocol, csum);
965 	if (uh->check == 0)
966 		uh->check = CSUM_MANGLED_0;
967 
968 send:
969 	err = ip_send_skb(sock_net(sk), skb);
970 	if (err) {
971 		if (err == -ENOBUFS && !inet->recverr) {
972 			UDP_INC_STATS(sock_net(sk),
973 				      UDP_MIB_SNDBUFERRORS, is_udplite);
974 			err = 0;
975 		}
976 	} else
977 		UDP_INC_STATS(sock_net(sk),
978 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
979 	return err;
980 }
981 
982 /*
983  * Push out all pending data as one UDP datagram. Socket is locked.
984  */
985 int udp_push_pending_frames(struct sock *sk)
986 {
987 	struct udp_sock  *up = udp_sk(sk);
988 	struct inet_sock *inet = inet_sk(sk);
989 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
990 	struct sk_buff *skb;
991 	int err = 0;
992 
993 	skb = ip_finish_skb(sk, fl4);
994 	if (!skb)
995 		goto out;
996 
997 	err = udp_send_skb(skb, fl4, &inet->cork.base);
998 
999 out:
1000 	up->len = 0;
1001 	up->pending = 0;
1002 	return err;
1003 }
1004 EXPORT_SYMBOL(udp_push_pending_frames);
1005 
1006 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1007 {
1008 	switch (cmsg->cmsg_type) {
1009 	case UDP_SEGMENT:
1010 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1011 			return -EINVAL;
1012 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1013 		return 0;
1014 	default:
1015 		return -EINVAL;
1016 	}
1017 }
1018 
1019 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1020 {
1021 	struct cmsghdr *cmsg;
1022 	bool need_ip = false;
1023 	int err;
1024 
1025 	for_each_cmsghdr(cmsg, msg) {
1026 		if (!CMSG_OK(msg, cmsg))
1027 			return -EINVAL;
1028 
1029 		if (cmsg->cmsg_level != SOL_UDP) {
1030 			need_ip = true;
1031 			continue;
1032 		}
1033 
1034 		err = __udp_cmsg_send(cmsg, gso_size);
1035 		if (err)
1036 			return err;
1037 	}
1038 
1039 	return need_ip;
1040 }
1041 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1042 
1043 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1044 {
1045 	struct inet_sock *inet = inet_sk(sk);
1046 	struct udp_sock *up = udp_sk(sk);
1047 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1048 	struct flowi4 fl4_stack;
1049 	struct flowi4 *fl4;
1050 	int ulen = len;
1051 	struct ipcm_cookie ipc;
1052 	struct rtable *rt = NULL;
1053 	int free = 0;
1054 	int connected = 0;
1055 	__be32 daddr, faddr, saddr;
1056 	__be16 dport;
1057 	u8  tos;
1058 	int err, is_udplite = IS_UDPLITE(sk);
1059 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1060 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1061 	struct sk_buff *skb;
1062 	struct ip_options_data opt_copy;
1063 
1064 	if (len > 0xFFFF)
1065 		return -EMSGSIZE;
1066 
1067 	/*
1068 	 *	Check the flags.
1069 	 */
1070 
1071 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1072 		return -EOPNOTSUPP;
1073 
1074 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1075 
1076 	fl4 = &inet->cork.fl.u.ip4;
1077 	if (up->pending) {
1078 		/*
1079 		 * There are pending frames.
1080 		 * The socket lock must be held while it's corked.
1081 		 */
1082 		lock_sock(sk);
1083 		if (likely(up->pending)) {
1084 			if (unlikely(up->pending != AF_INET)) {
1085 				release_sock(sk);
1086 				return -EINVAL;
1087 			}
1088 			goto do_append_data;
1089 		}
1090 		release_sock(sk);
1091 	}
1092 	ulen += sizeof(struct udphdr);
1093 
1094 	/*
1095 	 *	Get and verify the address.
1096 	 */
1097 	if (usin) {
1098 		if (msg->msg_namelen < sizeof(*usin))
1099 			return -EINVAL;
1100 		if (usin->sin_family != AF_INET) {
1101 			if (usin->sin_family != AF_UNSPEC)
1102 				return -EAFNOSUPPORT;
1103 		}
1104 
1105 		daddr = usin->sin_addr.s_addr;
1106 		dport = usin->sin_port;
1107 		if (dport == 0)
1108 			return -EINVAL;
1109 	} else {
1110 		if (sk->sk_state != TCP_ESTABLISHED)
1111 			return -EDESTADDRREQ;
1112 		daddr = inet->inet_daddr;
1113 		dport = inet->inet_dport;
1114 		/* Open fast path for connected socket.
1115 		   Route will not be used, if at least one option is set.
1116 		 */
1117 		connected = 1;
1118 	}
1119 
1120 	ipcm_init_sk(&ipc, inet);
1121 	ipc.gso_size = READ_ONCE(up->gso_size);
1122 
1123 	if (msg->msg_controllen) {
1124 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1125 		if (err > 0)
1126 			err = ip_cmsg_send(sk, msg, &ipc,
1127 					   sk->sk_family == AF_INET6);
1128 		if (unlikely(err < 0)) {
1129 			kfree(ipc.opt);
1130 			return err;
1131 		}
1132 		if (ipc.opt)
1133 			free = 1;
1134 		connected = 0;
1135 	}
1136 	if (!ipc.opt) {
1137 		struct ip_options_rcu *inet_opt;
1138 
1139 		rcu_read_lock();
1140 		inet_opt = rcu_dereference(inet->inet_opt);
1141 		if (inet_opt) {
1142 			memcpy(&opt_copy, inet_opt,
1143 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1144 			ipc.opt = &opt_copy.opt;
1145 		}
1146 		rcu_read_unlock();
1147 	}
1148 
1149 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1150 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1151 					    (struct sockaddr *)usin, &ipc.addr);
1152 		if (err)
1153 			goto out_free;
1154 		if (usin) {
1155 			if (usin->sin_port == 0) {
1156 				/* BPF program set invalid port. Reject it. */
1157 				err = -EINVAL;
1158 				goto out_free;
1159 			}
1160 			daddr = usin->sin_addr.s_addr;
1161 			dport = usin->sin_port;
1162 		}
1163 	}
1164 
1165 	saddr = ipc.addr;
1166 	ipc.addr = faddr = daddr;
1167 
1168 	if (ipc.opt && ipc.opt->opt.srr) {
1169 		if (!daddr) {
1170 			err = -EINVAL;
1171 			goto out_free;
1172 		}
1173 		faddr = ipc.opt->opt.faddr;
1174 		connected = 0;
1175 	}
1176 	tos = get_rttos(&ipc, inet);
1177 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1178 	    (msg->msg_flags & MSG_DONTROUTE) ||
1179 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1180 		tos |= RTO_ONLINK;
1181 		connected = 0;
1182 	}
1183 
1184 	if (ipv4_is_multicast(daddr)) {
1185 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1186 			ipc.oif = inet->mc_index;
1187 		if (!saddr)
1188 			saddr = inet->mc_addr;
1189 		connected = 0;
1190 	} else if (!ipc.oif) {
1191 		ipc.oif = inet->uc_index;
1192 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1193 		/* oif is set, packet is to local broadcast and
1194 		 * uc_index is set. oif is most likely set
1195 		 * by sk_bound_dev_if. If uc_index != oif check if the
1196 		 * oif is an L3 master and uc_index is an L3 slave.
1197 		 * If so, we want to allow the send using the uc_index.
1198 		 */
1199 		if (ipc.oif != inet->uc_index &&
1200 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1201 							      inet->uc_index)) {
1202 			ipc.oif = inet->uc_index;
1203 		}
1204 	}
1205 
1206 	if (connected)
1207 		rt = (struct rtable *)sk_dst_check(sk, 0);
1208 
1209 	if (!rt) {
1210 		struct net *net = sock_net(sk);
1211 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1212 
1213 		fl4 = &fl4_stack;
1214 
1215 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1216 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1217 				   flow_flags,
1218 				   faddr, saddr, dport, inet->inet_sport,
1219 				   sk->sk_uid);
1220 
1221 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1222 		rt = ip_route_output_flow(net, fl4, sk);
1223 		if (IS_ERR(rt)) {
1224 			err = PTR_ERR(rt);
1225 			rt = NULL;
1226 			if (err == -ENETUNREACH)
1227 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1228 			goto out;
1229 		}
1230 
1231 		err = -EACCES;
1232 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1233 		    !sock_flag(sk, SOCK_BROADCAST))
1234 			goto out;
1235 		if (connected)
1236 			sk_dst_set(sk, dst_clone(&rt->dst));
1237 	}
1238 
1239 	if (msg->msg_flags&MSG_CONFIRM)
1240 		goto do_confirm;
1241 back_from_confirm:
1242 
1243 	saddr = fl4->saddr;
1244 	if (!ipc.addr)
1245 		daddr = ipc.addr = fl4->daddr;
1246 
1247 	/* Lockless fast path for the non-corking case. */
1248 	if (!corkreq) {
1249 		struct inet_cork cork;
1250 
1251 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1252 				  sizeof(struct udphdr), &ipc, &rt,
1253 				  &cork, msg->msg_flags);
1254 		err = PTR_ERR(skb);
1255 		if (!IS_ERR_OR_NULL(skb))
1256 			err = udp_send_skb(skb, fl4, &cork);
1257 		goto out;
1258 	}
1259 
1260 	lock_sock(sk);
1261 	if (unlikely(up->pending)) {
1262 		/* The socket is already corked while preparing it. */
1263 		/* ... which is an evident application bug. --ANK */
1264 		release_sock(sk);
1265 
1266 		net_dbg_ratelimited("socket already corked\n");
1267 		err = -EINVAL;
1268 		goto out;
1269 	}
1270 	/*
1271 	 *	Now cork the socket to pend data.
1272 	 */
1273 	fl4 = &inet->cork.fl.u.ip4;
1274 	fl4->daddr = daddr;
1275 	fl4->saddr = saddr;
1276 	fl4->fl4_dport = dport;
1277 	fl4->fl4_sport = inet->inet_sport;
1278 	up->pending = AF_INET;
1279 
1280 do_append_data:
1281 	up->len += ulen;
1282 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1283 			     sizeof(struct udphdr), &ipc, &rt,
1284 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1285 	if (err)
1286 		udp_flush_pending_frames(sk);
1287 	else if (!corkreq)
1288 		err = udp_push_pending_frames(sk);
1289 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1290 		up->pending = 0;
1291 	release_sock(sk);
1292 
1293 out:
1294 	ip_rt_put(rt);
1295 out_free:
1296 	if (free)
1297 		kfree(ipc.opt);
1298 	if (!err)
1299 		return len;
1300 	/*
1301 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1302 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1303 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1304 	 * things).  We could add another new stat but at least for now that
1305 	 * seems like overkill.
1306 	 */
1307 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1308 		UDP_INC_STATS(sock_net(sk),
1309 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1310 	}
1311 	return err;
1312 
1313 do_confirm:
1314 	if (msg->msg_flags & MSG_PROBE)
1315 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1316 	if (!(msg->msg_flags&MSG_PROBE) || len)
1317 		goto back_from_confirm;
1318 	err = 0;
1319 	goto out;
1320 }
1321 EXPORT_SYMBOL(udp_sendmsg);
1322 
1323 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1324 		 size_t size, int flags)
1325 {
1326 	struct inet_sock *inet = inet_sk(sk);
1327 	struct udp_sock *up = udp_sk(sk);
1328 	int ret;
1329 
1330 	if (flags & MSG_SENDPAGE_NOTLAST)
1331 		flags |= MSG_MORE;
1332 
1333 	if (!up->pending) {
1334 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1335 
1336 		/* Call udp_sendmsg to specify destination address which
1337 		 * sendpage interface can't pass.
1338 		 * This will succeed only when the socket is connected.
1339 		 */
1340 		ret = udp_sendmsg(sk, &msg, 0);
1341 		if (ret < 0)
1342 			return ret;
1343 	}
1344 
1345 	lock_sock(sk);
1346 
1347 	if (unlikely(!up->pending)) {
1348 		release_sock(sk);
1349 
1350 		net_dbg_ratelimited("cork failed\n");
1351 		return -EINVAL;
1352 	}
1353 
1354 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1355 			     page, offset, size, flags);
1356 	if (ret == -EOPNOTSUPP) {
1357 		release_sock(sk);
1358 		return sock_no_sendpage(sk->sk_socket, page, offset,
1359 					size, flags);
1360 	}
1361 	if (ret < 0) {
1362 		udp_flush_pending_frames(sk);
1363 		goto out;
1364 	}
1365 
1366 	up->len += size;
1367 	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1368 		ret = udp_push_pending_frames(sk);
1369 	if (!ret)
1370 		ret = size;
1371 out:
1372 	release_sock(sk);
1373 	return ret;
1374 }
1375 
1376 #define UDP_SKB_IS_STATELESS 0x80000000
1377 
1378 /* all head states (dst, sk, nf conntrack) except skb extensions are
1379  * cleared by udp_rcv().
1380  *
1381  * We need to preserve secpath, if present, to eventually process
1382  * IP_CMSG_PASSSEC at recvmsg() time.
1383  *
1384  * Other extensions can be cleared.
1385  */
1386 static bool udp_try_make_stateless(struct sk_buff *skb)
1387 {
1388 	if (!skb_has_extensions(skb))
1389 		return true;
1390 
1391 	if (!secpath_exists(skb)) {
1392 		skb_ext_reset(skb);
1393 		return true;
1394 	}
1395 
1396 	return false;
1397 }
1398 
1399 static void udp_set_dev_scratch(struct sk_buff *skb)
1400 {
1401 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1402 
1403 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1404 	scratch->_tsize_state = skb->truesize;
1405 #if BITS_PER_LONG == 64
1406 	scratch->len = skb->len;
1407 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1408 	scratch->is_linear = !skb_is_nonlinear(skb);
1409 #endif
1410 	if (udp_try_make_stateless(skb))
1411 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1412 }
1413 
1414 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1415 {
1416 	/* We come here after udp_lib_checksum_complete() returned 0.
1417 	 * This means that __skb_checksum_complete() might have
1418 	 * set skb->csum_valid to 1.
1419 	 * On 64bit platforms, we can set csum_unnecessary
1420 	 * to true, but only if the skb is not shared.
1421 	 */
1422 #if BITS_PER_LONG == 64
1423 	if (!skb_shared(skb))
1424 		udp_skb_scratch(skb)->csum_unnecessary = true;
1425 #endif
1426 }
1427 
1428 static int udp_skb_truesize(struct sk_buff *skb)
1429 {
1430 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1431 }
1432 
1433 static bool udp_skb_has_head_state(struct sk_buff *skb)
1434 {
1435 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1436 }
1437 
1438 /* fully reclaim rmem/fwd memory allocated for skb */
1439 static void udp_rmem_release(struct sock *sk, int size, int partial,
1440 			     bool rx_queue_lock_held)
1441 {
1442 	struct udp_sock *up = udp_sk(sk);
1443 	struct sk_buff_head *sk_queue;
1444 	int amt;
1445 
1446 	if (likely(partial)) {
1447 		up->forward_deficit += size;
1448 		size = up->forward_deficit;
1449 		if (size < (sk->sk_rcvbuf >> 2) &&
1450 		    !skb_queue_empty(&up->reader_queue))
1451 			return;
1452 	} else {
1453 		size += up->forward_deficit;
1454 	}
1455 	up->forward_deficit = 0;
1456 
1457 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1458 	 * if the called don't held it already
1459 	 */
1460 	sk_queue = &sk->sk_receive_queue;
1461 	if (!rx_queue_lock_held)
1462 		spin_lock(&sk_queue->lock);
1463 
1464 
1465 	sk->sk_forward_alloc += size;
1466 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1467 	sk->sk_forward_alloc -= amt;
1468 
1469 	if (amt)
1470 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1471 
1472 	atomic_sub(size, &sk->sk_rmem_alloc);
1473 
1474 	/* this can save us from acquiring the rx queue lock on next receive */
1475 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1476 
1477 	if (!rx_queue_lock_held)
1478 		spin_unlock(&sk_queue->lock);
1479 }
1480 
1481 /* Note: called with reader_queue.lock held.
1482  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1483  * This avoids a cache line miss while receive_queue lock is held.
1484  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1485  */
1486 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1487 {
1488 	prefetch(&skb->data);
1489 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1490 }
1491 EXPORT_SYMBOL(udp_skb_destructor);
1492 
1493 /* as above, but the caller held the rx queue lock, too */
1494 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1495 {
1496 	prefetch(&skb->data);
1497 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1498 }
1499 
1500 /* Idea of busylocks is to let producers grab an extra spinlock
1501  * to relieve pressure on the receive_queue spinlock shared by consumer.
1502  * Under flood, this means that only one producer can be in line
1503  * trying to acquire the receive_queue spinlock.
1504  * These busylock can be allocated on a per cpu manner, instead of a
1505  * per socket one (that would consume a cache line per socket)
1506  */
1507 static int udp_busylocks_log __read_mostly;
1508 static spinlock_t *udp_busylocks __read_mostly;
1509 
1510 static spinlock_t *busylock_acquire(void *ptr)
1511 {
1512 	spinlock_t *busy;
1513 
1514 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1515 	spin_lock(busy);
1516 	return busy;
1517 }
1518 
1519 static void busylock_release(spinlock_t *busy)
1520 {
1521 	if (busy)
1522 		spin_unlock(busy);
1523 }
1524 
1525 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1526 {
1527 	struct sk_buff_head *list = &sk->sk_receive_queue;
1528 	int rmem, delta, amt, err = -ENOMEM;
1529 	spinlock_t *busy = NULL;
1530 	int size;
1531 
1532 	/* try to avoid the costly atomic add/sub pair when the receive
1533 	 * queue is full; always allow at least a packet
1534 	 */
1535 	rmem = atomic_read(&sk->sk_rmem_alloc);
1536 	if (rmem > sk->sk_rcvbuf)
1537 		goto drop;
1538 
1539 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1540 	 * having linear skbs :
1541 	 * - Reduce memory overhead and thus increase receive queue capacity
1542 	 * - Less cache line misses at copyout() time
1543 	 * - Less work at consume_skb() (less alien page frag freeing)
1544 	 */
1545 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1546 		skb_condense(skb);
1547 
1548 		busy = busylock_acquire(sk);
1549 	}
1550 	size = skb->truesize;
1551 	udp_set_dev_scratch(skb);
1552 
1553 	/* we drop only if the receive buf is full and the receive
1554 	 * queue contains some other skb
1555 	 */
1556 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1557 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1558 		goto uncharge_drop;
1559 
1560 	spin_lock(&list->lock);
1561 	if (size >= sk->sk_forward_alloc) {
1562 		amt = sk_mem_pages(size);
1563 		delta = amt << PAGE_SHIFT;
1564 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1565 			err = -ENOBUFS;
1566 			spin_unlock(&list->lock);
1567 			goto uncharge_drop;
1568 		}
1569 
1570 		sk->sk_forward_alloc += delta;
1571 	}
1572 
1573 	sk->sk_forward_alloc -= size;
1574 
1575 	/* no need to setup a destructor, we will explicitly release the
1576 	 * forward allocated memory on dequeue
1577 	 */
1578 	sock_skb_set_dropcount(sk, skb);
1579 
1580 	__skb_queue_tail(list, skb);
1581 	spin_unlock(&list->lock);
1582 
1583 	if (!sock_flag(sk, SOCK_DEAD))
1584 		sk->sk_data_ready(sk);
1585 
1586 	busylock_release(busy);
1587 	return 0;
1588 
1589 uncharge_drop:
1590 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1591 
1592 drop:
1593 	atomic_inc(&sk->sk_drops);
1594 	busylock_release(busy);
1595 	return err;
1596 }
1597 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1598 
1599 void udp_destruct_sock(struct sock *sk)
1600 {
1601 	/* reclaim completely the forward allocated memory */
1602 	struct udp_sock *up = udp_sk(sk);
1603 	unsigned int total = 0;
1604 	struct sk_buff *skb;
1605 
1606 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1607 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1608 		total += skb->truesize;
1609 		kfree_skb(skb);
1610 	}
1611 	udp_rmem_release(sk, total, 0, true);
1612 
1613 	inet_sock_destruct(sk);
1614 }
1615 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1616 
1617 int udp_init_sock(struct sock *sk)
1618 {
1619 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1620 	sk->sk_destruct = udp_destruct_sock;
1621 	return 0;
1622 }
1623 EXPORT_SYMBOL_GPL(udp_init_sock);
1624 
1625 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1626 {
1627 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1628 		bool slow = lock_sock_fast(sk);
1629 
1630 		sk_peek_offset_bwd(sk, len);
1631 		unlock_sock_fast(sk, slow);
1632 	}
1633 
1634 	if (!skb_unref(skb))
1635 		return;
1636 
1637 	/* In the more common cases we cleared the head states previously,
1638 	 * see __udp_queue_rcv_skb().
1639 	 */
1640 	if (unlikely(udp_skb_has_head_state(skb)))
1641 		skb_release_head_state(skb);
1642 	__consume_stateless_skb(skb);
1643 }
1644 EXPORT_SYMBOL_GPL(skb_consume_udp);
1645 
1646 static struct sk_buff *__first_packet_length(struct sock *sk,
1647 					     struct sk_buff_head *rcvq,
1648 					     int *total)
1649 {
1650 	struct sk_buff *skb;
1651 
1652 	while ((skb = skb_peek(rcvq)) != NULL) {
1653 		if (udp_lib_checksum_complete(skb)) {
1654 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1655 					IS_UDPLITE(sk));
1656 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1657 					IS_UDPLITE(sk));
1658 			atomic_inc(&sk->sk_drops);
1659 			__skb_unlink(skb, rcvq);
1660 			*total += skb->truesize;
1661 			kfree_skb(skb);
1662 		} else {
1663 			udp_skb_csum_unnecessary_set(skb);
1664 			break;
1665 		}
1666 	}
1667 	return skb;
1668 }
1669 
1670 /**
1671  *	first_packet_length	- return length of first packet in receive queue
1672  *	@sk: socket
1673  *
1674  *	Drops all bad checksum frames, until a valid one is found.
1675  *	Returns the length of found skb, or -1 if none is found.
1676  */
1677 static int first_packet_length(struct sock *sk)
1678 {
1679 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1680 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1681 	struct sk_buff *skb;
1682 	int total = 0;
1683 	int res;
1684 
1685 	spin_lock_bh(&rcvq->lock);
1686 	skb = __first_packet_length(sk, rcvq, &total);
1687 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1688 		spin_lock(&sk_queue->lock);
1689 		skb_queue_splice_tail_init(sk_queue, rcvq);
1690 		spin_unlock(&sk_queue->lock);
1691 
1692 		skb = __first_packet_length(sk, rcvq, &total);
1693 	}
1694 	res = skb ? skb->len : -1;
1695 	if (total)
1696 		udp_rmem_release(sk, total, 1, false);
1697 	spin_unlock_bh(&rcvq->lock);
1698 	return res;
1699 }
1700 
1701 /*
1702  *	IOCTL requests applicable to the UDP protocol
1703  */
1704 
1705 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1706 {
1707 	switch (cmd) {
1708 	case SIOCOUTQ:
1709 	{
1710 		int amount = sk_wmem_alloc_get(sk);
1711 
1712 		return put_user(amount, (int __user *)arg);
1713 	}
1714 
1715 	case SIOCINQ:
1716 	{
1717 		int amount = max_t(int, 0, first_packet_length(sk));
1718 
1719 		return put_user(amount, (int __user *)arg);
1720 	}
1721 
1722 	default:
1723 		return -ENOIOCTLCMD;
1724 	}
1725 
1726 	return 0;
1727 }
1728 EXPORT_SYMBOL(udp_ioctl);
1729 
1730 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1731 			       int *off, int *err)
1732 {
1733 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1734 	struct sk_buff_head *queue;
1735 	struct sk_buff *last;
1736 	long timeo;
1737 	int error;
1738 
1739 	queue = &udp_sk(sk)->reader_queue;
1740 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1741 	do {
1742 		struct sk_buff *skb;
1743 
1744 		error = sock_error(sk);
1745 		if (error)
1746 			break;
1747 
1748 		error = -EAGAIN;
1749 		do {
1750 			spin_lock_bh(&queue->lock);
1751 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1752 							err, &last);
1753 			if (skb) {
1754 				if (!(flags & MSG_PEEK))
1755 					udp_skb_destructor(sk, skb);
1756 				spin_unlock_bh(&queue->lock);
1757 				return skb;
1758 			}
1759 
1760 			if (skb_queue_empty_lockless(sk_queue)) {
1761 				spin_unlock_bh(&queue->lock);
1762 				goto busy_check;
1763 			}
1764 
1765 			/* refill the reader queue and walk it again
1766 			 * keep both queues locked to avoid re-acquiring
1767 			 * the sk_receive_queue lock if fwd memory scheduling
1768 			 * is needed.
1769 			 */
1770 			spin_lock(&sk_queue->lock);
1771 			skb_queue_splice_tail_init(sk_queue, queue);
1772 
1773 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1774 							err, &last);
1775 			if (skb && !(flags & MSG_PEEK))
1776 				udp_skb_dtor_locked(sk, skb);
1777 			spin_unlock(&sk_queue->lock);
1778 			spin_unlock_bh(&queue->lock);
1779 			if (skb)
1780 				return skb;
1781 
1782 busy_check:
1783 			if (!sk_can_busy_loop(sk))
1784 				break;
1785 
1786 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1787 		} while (!skb_queue_empty_lockless(sk_queue));
1788 
1789 		/* sk_queue is empty, reader_queue may contain peeked packets */
1790 	} while (timeo &&
1791 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1792 					      &error, &timeo,
1793 					      (struct sk_buff *)sk_queue));
1794 
1795 	*err = error;
1796 	return NULL;
1797 }
1798 EXPORT_SYMBOL(__skb_recv_udp);
1799 
1800 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1801 {
1802 	int copied = 0;
1803 
1804 	while (1) {
1805 		struct sk_buff *skb;
1806 		int err, used;
1807 
1808 		skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1809 		if (!skb)
1810 			return err;
1811 
1812 		if (udp_lib_checksum_complete(skb)) {
1813 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1814 					IS_UDPLITE(sk));
1815 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1816 					IS_UDPLITE(sk));
1817 			atomic_inc(&sk->sk_drops);
1818 			kfree_skb(skb);
1819 			continue;
1820 		}
1821 
1822 		WARN_ON(!skb_set_owner_sk_safe(skb, sk));
1823 		used = recv_actor(sk, skb);
1824 		if (used <= 0) {
1825 			if (!copied)
1826 				copied = used;
1827 			kfree_skb(skb);
1828 			break;
1829 		} else if (used <= skb->len) {
1830 			copied += used;
1831 		}
1832 
1833 		kfree_skb(skb);
1834 		break;
1835 	}
1836 
1837 	return copied;
1838 }
1839 EXPORT_SYMBOL(udp_read_skb);
1840 
1841 /*
1842  * 	This should be easy, if there is something there we
1843  * 	return it, otherwise we block.
1844  */
1845 
1846 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1847 		int *addr_len)
1848 {
1849 	struct inet_sock *inet = inet_sk(sk);
1850 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1851 	struct sk_buff *skb;
1852 	unsigned int ulen, copied;
1853 	int off, err, peeking = flags & MSG_PEEK;
1854 	int is_udplite = IS_UDPLITE(sk);
1855 	bool checksum_valid = false;
1856 
1857 	if (flags & MSG_ERRQUEUE)
1858 		return ip_recv_error(sk, msg, len, addr_len);
1859 
1860 try_again:
1861 	off = sk_peek_offset(sk, flags);
1862 	skb = __skb_recv_udp(sk, flags, &off, &err);
1863 	if (!skb)
1864 		return err;
1865 
1866 	ulen = udp_skb_len(skb);
1867 	copied = len;
1868 	if (copied > ulen - off)
1869 		copied = ulen - off;
1870 	else if (copied < ulen)
1871 		msg->msg_flags |= MSG_TRUNC;
1872 
1873 	/*
1874 	 * If checksum is needed at all, try to do it while copying the
1875 	 * data.  If the data is truncated, or if we only want a partial
1876 	 * coverage checksum (UDP-Lite), do it before the copy.
1877 	 */
1878 
1879 	if (copied < ulen || peeking ||
1880 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1881 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1882 				!__udp_lib_checksum_complete(skb);
1883 		if (!checksum_valid)
1884 			goto csum_copy_err;
1885 	}
1886 
1887 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1888 		if (udp_skb_is_linear(skb))
1889 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1890 		else
1891 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1892 	} else {
1893 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1894 
1895 		if (err == -EINVAL)
1896 			goto csum_copy_err;
1897 	}
1898 
1899 	if (unlikely(err)) {
1900 		if (!peeking) {
1901 			atomic_inc(&sk->sk_drops);
1902 			UDP_INC_STATS(sock_net(sk),
1903 				      UDP_MIB_INERRORS, is_udplite);
1904 		}
1905 		kfree_skb(skb);
1906 		return err;
1907 	}
1908 
1909 	if (!peeking)
1910 		UDP_INC_STATS(sock_net(sk),
1911 			      UDP_MIB_INDATAGRAMS, is_udplite);
1912 
1913 	sock_recv_cmsgs(msg, sk, skb);
1914 
1915 	/* Copy the address. */
1916 	if (sin) {
1917 		sin->sin_family = AF_INET;
1918 		sin->sin_port = udp_hdr(skb)->source;
1919 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1920 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1921 		*addr_len = sizeof(*sin);
1922 
1923 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1924 						      (struct sockaddr *)sin);
1925 	}
1926 
1927 	if (udp_sk(sk)->gro_enabled)
1928 		udp_cmsg_recv(msg, sk, skb);
1929 
1930 	if (inet->cmsg_flags)
1931 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1932 
1933 	err = copied;
1934 	if (flags & MSG_TRUNC)
1935 		err = ulen;
1936 
1937 	skb_consume_udp(sk, skb, peeking ? -err : err);
1938 	return err;
1939 
1940 csum_copy_err:
1941 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1942 				 udp_skb_destructor)) {
1943 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1944 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1945 	}
1946 	kfree_skb(skb);
1947 
1948 	/* starting over for a new packet, but check if we need to yield */
1949 	cond_resched();
1950 	msg->msg_flags &= ~MSG_TRUNC;
1951 	goto try_again;
1952 }
1953 
1954 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1955 {
1956 	/* This check is replicated from __ip4_datagram_connect() and
1957 	 * intended to prevent BPF program called below from accessing bytes
1958 	 * that are out of the bound specified by user in addr_len.
1959 	 */
1960 	if (addr_len < sizeof(struct sockaddr_in))
1961 		return -EINVAL;
1962 
1963 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1964 }
1965 EXPORT_SYMBOL(udp_pre_connect);
1966 
1967 int __udp_disconnect(struct sock *sk, int flags)
1968 {
1969 	struct inet_sock *inet = inet_sk(sk);
1970 	/*
1971 	 *	1003.1g - break association.
1972 	 */
1973 
1974 	sk->sk_state = TCP_CLOSE;
1975 	inet->inet_daddr = 0;
1976 	inet->inet_dport = 0;
1977 	sock_rps_reset_rxhash(sk);
1978 	sk->sk_bound_dev_if = 0;
1979 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1980 		inet_reset_saddr(sk);
1981 		if (sk->sk_prot->rehash &&
1982 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1983 			sk->sk_prot->rehash(sk);
1984 	}
1985 
1986 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1987 		sk->sk_prot->unhash(sk);
1988 		inet->inet_sport = 0;
1989 	}
1990 	sk_dst_reset(sk);
1991 	return 0;
1992 }
1993 EXPORT_SYMBOL(__udp_disconnect);
1994 
1995 int udp_disconnect(struct sock *sk, int flags)
1996 {
1997 	lock_sock(sk);
1998 	__udp_disconnect(sk, flags);
1999 	release_sock(sk);
2000 	return 0;
2001 }
2002 EXPORT_SYMBOL(udp_disconnect);
2003 
2004 void udp_lib_unhash(struct sock *sk)
2005 {
2006 	if (sk_hashed(sk)) {
2007 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2008 		struct udp_hslot *hslot, *hslot2;
2009 
2010 		hslot  = udp_hashslot(udptable, sock_net(sk),
2011 				      udp_sk(sk)->udp_port_hash);
2012 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2013 
2014 		spin_lock_bh(&hslot->lock);
2015 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2016 			reuseport_detach_sock(sk);
2017 		if (sk_del_node_init_rcu(sk)) {
2018 			hslot->count--;
2019 			inet_sk(sk)->inet_num = 0;
2020 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2021 
2022 			spin_lock(&hslot2->lock);
2023 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2024 			hslot2->count--;
2025 			spin_unlock(&hslot2->lock);
2026 		}
2027 		spin_unlock_bh(&hslot->lock);
2028 	}
2029 }
2030 EXPORT_SYMBOL(udp_lib_unhash);
2031 
2032 /*
2033  * inet_rcv_saddr was changed, we must rehash secondary hash
2034  */
2035 void udp_lib_rehash(struct sock *sk, u16 newhash)
2036 {
2037 	if (sk_hashed(sk)) {
2038 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2039 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2040 
2041 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2042 		nhslot2 = udp_hashslot2(udptable, newhash);
2043 		udp_sk(sk)->udp_portaddr_hash = newhash;
2044 
2045 		if (hslot2 != nhslot2 ||
2046 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2047 			hslot = udp_hashslot(udptable, sock_net(sk),
2048 					     udp_sk(sk)->udp_port_hash);
2049 			/* we must lock primary chain too */
2050 			spin_lock_bh(&hslot->lock);
2051 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2052 				reuseport_detach_sock(sk);
2053 
2054 			if (hslot2 != nhslot2) {
2055 				spin_lock(&hslot2->lock);
2056 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2057 				hslot2->count--;
2058 				spin_unlock(&hslot2->lock);
2059 
2060 				spin_lock(&nhslot2->lock);
2061 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2062 							 &nhslot2->head);
2063 				nhslot2->count++;
2064 				spin_unlock(&nhslot2->lock);
2065 			}
2066 
2067 			spin_unlock_bh(&hslot->lock);
2068 		}
2069 	}
2070 }
2071 EXPORT_SYMBOL(udp_lib_rehash);
2072 
2073 void udp_v4_rehash(struct sock *sk)
2074 {
2075 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2076 					  inet_sk(sk)->inet_rcv_saddr,
2077 					  inet_sk(sk)->inet_num);
2078 	udp_lib_rehash(sk, new_hash);
2079 }
2080 
2081 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2082 {
2083 	int rc;
2084 
2085 	if (inet_sk(sk)->inet_daddr) {
2086 		sock_rps_save_rxhash(sk, skb);
2087 		sk_mark_napi_id(sk, skb);
2088 		sk_incoming_cpu_update(sk);
2089 	} else {
2090 		sk_mark_napi_id_once(sk, skb);
2091 	}
2092 
2093 	rc = __udp_enqueue_schedule_skb(sk, skb);
2094 	if (rc < 0) {
2095 		int is_udplite = IS_UDPLITE(sk);
2096 		int drop_reason;
2097 
2098 		/* Note that an ENOMEM error is charged twice */
2099 		if (rc == -ENOMEM) {
2100 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2101 					is_udplite);
2102 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2103 		} else {
2104 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2105 				      is_udplite);
2106 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2107 		}
2108 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2109 		kfree_skb_reason(skb, drop_reason);
2110 		trace_udp_fail_queue_rcv_skb(rc, sk);
2111 		return -1;
2112 	}
2113 
2114 	return 0;
2115 }
2116 
2117 /* returns:
2118  *  -1: error
2119  *   0: success
2120  *  >0: "udp encap" protocol resubmission
2121  *
2122  * Note that in the success and error cases, the skb is assumed to
2123  * have either been requeued or freed.
2124  */
2125 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2126 {
2127 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2128 	struct udp_sock *up = udp_sk(sk);
2129 	int is_udplite = IS_UDPLITE(sk);
2130 
2131 	/*
2132 	 *	Charge it to the socket, dropping if the queue is full.
2133 	 */
2134 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2135 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2136 		goto drop;
2137 	}
2138 	nf_reset_ct(skb);
2139 
2140 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2141 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2142 
2143 		/*
2144 		 * This is an encapsulation socket so pass the skb to
2145 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2146 		 * fall through and pass this up the UDP socket.
2147 		 * up->encap_rcv() returns the following value:
2148 		 * =0 if skb was successfully passed to the encap
2149 		 *    handler or was discarded by it.
2150 		 * >0 if skb should be passed on to UDP.
2151 		 * <0 if skb should be resubmitted as proto -N
2152 		 */
2153 
2154 		/* if we're overly short, let UDP handle it */
2155 		encap_rcv = READ_ONCE(up->encap_rcv);
2156 		if (encap_rcv) {
2157 			int ret;
2158 
2159 			/* Verify checksum before giving to encap */
2160 			if (udp_lib_checksum_complete(skb))
2161 				goto csum_error;
2162 
2163 			ret = encap_rcv(sk, skb);
2164 			if (ret <= 0) {
2165 				__UDP_INC_STATS(sock_net(sk),
2166 						UDP_MIB_INDATAGRAMS,
2167 						is_udplite);
2168 				return -ret;
2169 			}
2170 		}
2171 
2172 		/* FALLTHROUGH -- it's a UDP Packet */
2173 	}
2174 
2175 	/*
2176 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2177 	 */
2178 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2179 
2180 		/*
2181 		 * MIB statistics other than incrementing the error count are
2182 		 * disabled for the following two types of errors: these depend
2183 		 * on the application settings, not on the functioning of the
2184 		 * protocol stack as such.
2185 		 *
2186 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2187 		 * way ... to ... at least let the receiving application block
2188 		 * delivery of packets with coverage values less than a value
2189 		 * provided by the application."
2190 		 */
2191 		if (up->pcrlen == 0) {          /* full coverage was set  */
2192 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2193 					    UDP_SKB_CB(skb)->cscov, skb->len);
2194 			goto drop;
2195 		}
2196 		/* The next case involves violating the min. coverage requested
2197 		 * by the receiver. This is subtle: if receiver wants x and x is
2198 		 * greater than the buffersize/MTU then receiver will complain
2199 		 * that it wants x while sender emits packets of smaller size y.
2200 		 * Therefore the above ...()->partial_cov statement is essential.
2201 		 */
2202 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2203 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2204 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2205 			goto drop;
2206 		}
2207 	}
2208 
2209 	prefetch(&sk->sk_rmem_alloc);
2210 	if (rcu_access_pointer(sk->sk_filter) &&
2211 	    udp_lib_checksum_complete(skb))
2212 			goto csum_error;
2213 
2214 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2215 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2216 		goto drop;
2217 	}
2218 
2219 	udp_csum_pull_header(skb);
2220 
2221 	ipv4_pktinfo_prepare(sk, skb);
2222 	return __udp_queue_rcv_skb(sk, skb);
2223 
2224 csum_error:
2225 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2226 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2227 drop:
2228 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2229 	atomic_inc(&sk->sk_drops);
2230 	kfree_skb_reason(skb, drop_reason);
2231 	return -1;
2232 }
2233 
2234 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2235 {
2236 	struct sk_buff *next, *segs;
2237 	int ret;
2238 
2239 	if (likely(!udp_unexpected_gso(sk, skb)))
2240 		return udp_queue_rcv_one_skb(sk, skb);
2241 
2242 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2243 	__skb_push(skb, -skb_mac_offset(skb));
2244 	segs = udp_rcv_segment(sk, skb, true);
2245 	skb_list_walk_safe(segs, skb, next) {
2246 		__skb_pull(skb, skb_transport_offset(skb));
2247 
2248 		udp_post_segment_fix_csum(skb);
2249 		ret = udp_queue_rcv_one_skb(sk, skb);
2250 		if (ret > 0)
2251 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2252 	}
2253 	return 0;
2254 }
2255 
2256 /* For TCP sockets, sk_rx_dst is protected by socket lock
2257  * For UDP, we use xchg() to guard against concurrent changes.
2258  */
2259 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2260 {
2261 	struct dst_entry *old;
2262 
2263 	if (dst_hold_safe(dst)) {
2264 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2265 		dst_release(old);
2266 		return old != dst;
2267 	}
2268 	return false;
2269 }
2270 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2271 
2272 /*
2273  *	Multicasts and broadcasts go to each listener.
2274  *
2275  *	Note: called only from the BH handler context.
2276  */
2277 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2278 				    struct udphdr  *uh,
2279 				    __be32 saddr, __be32 daddr,
2280 				    struct udp_table *udptable,
2281 				    int proto)
2282 {
2283 	struct sock *sk, *first = NULL;
2284 	unsigned short hnum = ntohs(uh->dest);
2285 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2286 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2287 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2288 	int dif = skb->dev->ifindex;
2289 	int sdif = inet_sdif(skb);
2290 	struct hlist_node *node;
2291 	struct sk_buff *nskb;
2292 
2293 	if (use_hash2) {
2294 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2295 			    udptable->mask;
2296 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2297 start_lookup:
2298 		hslot = &udptable->hash2[hash2];
2299 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2300 	}
2301 
2302 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2303 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2304 					 uh->source, saddr, dif, sdif, hnum))
2305 			continue;
2306 
2307 		if (!first) {
2308 			first = sk;
2309 			continue;
2310 		}
2311 		nskb = skb_clone(skb, GFP_ATOMIC);
2312 
2313 		if (unlikely(!nskb)) {
2314 			atomic_inc(&sk->sk_drops);
2315 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2316 					IS_UDPLITE(sk));
2317 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2318 					IS_UDPLITE(sk));
2319 			continue;
2320 		}
2321 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2322 			consume_skb(nskb);
2323 	}
2324 
2325 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2326 	if (use_hash2 && hash2 != hash2_any) {
2327 		hash2 = hash2_any;
2328 		goto start_lookup;
2329 	}
2330 
2331 	if (first) {
2332 		if (udp_queue_rcv_skb(first, skb) > 0)
2333 			consume_skb(skb);
2334 	} else {
2335 		kfree_skb(skb);
2336 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2337 				proto == IPPROTO_UDPLITE);
2338 	}
2339 	return 0;
2340 }
2341 
2342 /* Initialize UDP checksum. If exited with zero value (success),
2343  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2344  * Otherwise, csum completion requires checksumming packet body,
2345  * including udp header and folding it to skb->csum.
2346  */
2347 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2348 				 int proto)
2349 {
2350 	int err;
2351 
2352 	UDP_SKB_CB(skb)->partial_cov = 0;
2353 	UDP_SKB_CB(skb)->cscov = skb->len;
2354 
2355 	if (proto == IPPROTO_UDPLITE) {
2356 		err = udplite_checksum_init(skb, uh);
2357 		if (err)
2358 			return err;
2359 
2360 		if (UDP_SKB_CB(skb)->partial_cov) {
2361 			skb->csum = inet_compute_pseudo(skb, proto);
2362 			return 0;
2363 		}
2364 	}
2365 
2366 	/* Note, we are only interested in != 0 or == 0, thus the
2367 	 * force to int.
2368 	 */
2369 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2370 							inet_compute_pseudo);
2371 	if (err)
2372 		return err;
2373 
2374 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2375 		/* If SW calculated the value, we know it's bad */
2376 		if (skb->csum_complete_sw)
2377 			return 1;
2378 
2379 		/* HW says the value is bad. Let's validate that.
2380 		 * skb->csum is no longer the full packet checksum,
2381 		 * so don't treat it as such.
2382 		 */
2383 		skb_checksum_complete_unset(skb);
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2390  * return code conversion for ip layer consumption
2391  */
2392 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2393 			       struct udphdr *uh)
2394 {
2395 	int ret;
2396 
2397 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2398 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2399 
2400 	ret = udp_queue_rcv_skb(sk, skb);
2401 
2402 	/* a return value > 0 means to resubmit the input, but
2403 	 * it wants the return to be -protocol, or 0
2404 	 */
2405 	if (ret > 0)
2406 		return -ret;
2407 	return 0;
2408 }
2409 
2410 /*
2411  *	All we need to do is get the socket, and then do a checksum.
2412  */
2413 
2414 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2415 		   int proto)
2416 {
2417 	struct sock *sk;
2418 	struct udphdr *uh;
2419 	unsigned short ulen;
2420 	struct rtable *rt = skb_rtable(skb);
2421 	__be32 saddr, daddr;
2422 	struct net *net = dev_net(skb->dev);
2423 	bool refcounted;
2424 	int drop_reason;
2425 
2426 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2427 
2428 	/*
2429 	 *  Validate the packet.
2430 	 */
2431 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2432 		goto drop;		/* No space for header. */
2433 
2434 	uh   = udp_hdr(skb);
2435 	ulen = ntohs(uh->len);
2436 	saddr = ip_hdr(skb)->saddr;
2437 	daddr = ip_hdr(skb)->daddr;
2438 
2439 	if (ulen > skb->len)
2440 		goto short_packet;
2441 
2442 	if (proto == IPPROTO_UDP) {
2443 		/* UDP validates ulen. */
2444 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2445 			goto short_packet;
2446 		uh = udp_hdr(skb);
2447 	}
2448 
2449 	if (udp4_csum_init(skb, uh, proto))
2450 		goto csum_error;
2451 
2452 	sk = skb_steal_sock(skb, &refcounted);
2453 	if (sk) {
2454 		struct dst_entry *dst = skb_dst(skb);
2455 		int ret;
2456 
2457 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2458 			udp_sk_rx_dst_set(sk, dst);
2459 
2460 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2461 		if (refcounted)
2462 			sock_put(sk);
2463 		return ret;
2464 	}
2465 
2466 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2467 		return __udp4_lib_mcast_deliver(net, skb, uh,
2468 						saddr, daddr, udptable, proto);
2469 
2470 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2471 	if (sk)
2472 		return udp_unicast_rcv_skb(sk, skb, uh);
2473 
2474 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2475 		goto drop;
2476 	nf_reset_ct(skb);
2477 
2478 	/* No socket. Drop packet silently, if checksum is wrong */
2479 	if (udp_lib_checksum_complete(skb))
2480 		goto csum_error;
2481 
2482 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2483 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2484 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2485 
2486 	/*
2487 	 * Hmm.  We got an UDP packet to a port to which we
2488 	 * don't wanna listen.  Ignore it.
2489 	 */
2490 	kfree_skb_reason(skb, drop_reason);
2491 	return 0;
2492 
2493 short_packet:
2494 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2495 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2496 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2497 			    &saddr, ntohs(uh->source),
2498 			    ulen, skb->len,
2499 			    &daddr, ntohs(uh->dest));
2500 	goto drop;
2501 
2502 csum_error:
2503 	/*
2504 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2505 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2506 	 */
2507 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2508 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2509 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2510 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2511 			    ulen);
2512 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2513 drop:
2514 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2515 	kfree_skb_reason(skb, drop_reason);
2516 	return 0;
2517 }
2518 
2519 /* We can only early demux multicast if there is a single matching socket.
2520  * If more than one socket found returns NULL
2521  */
2522 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2523 						  __be16 loc_port, __be32 loc_addr,
2524 						  __be16 rmt_port, __be32 rmt_addr,
2525 						  int dif, int sdif)
2526 {
2527 	struct sock *sk, *result;
2528 	unsigned short hnum = ntohs(loc_port);
2529 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2530 	struct udp_hslot *hslot = &udp_table.hash[slot];
2531 
2532 	/* Do not bother scanning a too big list */
2533 	if (hslot->count > 10)
2534 		return NULL;
2535 
2536 	result = NULL;
2537 	sk_for_each_rcu(sk, &hslot->head) {
2538 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2539 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2540 			if (result)
2541 				return NULL;
2542 			result = sk;
2543 		}
2544 	}
2545 
2546 	return result;
2547 }
2548 
2549 /* For unicast we should only early demux connected sockets or we can
2550  * break forwarding setups.  The chains here can be long so only check
2551  * if the first socket is an exact match and if not move on.
2552  */
2553 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2554 					    __be16 loc_port, __be32 loc_addr,
2555 					    __be16 rmt_port, __be32 rmt_addr,
2556 					    int dif, int sdif)
2557 {
2558 	unsigned short hnum = ntohs(loc_port);
2559 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2560 	unsigned int slot2 = hash2 & udp_table.mask;
2561 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2562 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2563 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2564 	struct sock *sk;
2565 
2566 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2567 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2568 			return sk;
2569 		/* Only check first socket in chain */
2570 		break;
2571 	}
2572 	return NULL;
2573 }
2574 
2575 int udp_v4_early_demux(struct sk_buff *skb)
2576 {
2577 	struct net *net = dev_net(skb->dev);
2578 	struct in_device *in_dev = NULL;
2579 	const struct iphdr *iph;
2580 	const struct udphdr *uh;
2581 	struct sock *sk = NULL;
2582 	struct dst_entry *dst;
2583 	int dif = skb->dev->ifindex;
2584 	int sdif = inet_sdif(skb);
2585 	int ours;
2586 
2587 	/* validate the packet */
2588 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2589 		return 0;
2590 
2591 	iph = ip_hdr(skb);
2592 	uh = udp_hdr(skb);
2593 
2594 	if (skb->pkt_type == PACKET_MULTICAST) {
2595 		in_dev = __in_dev_get_rcu(skb->dev);
2596 
2597 		if (!in_dev)
2598 			return 0;
2599 
2600 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2601 				       iph->protocol);
2602 		if (!ours)
2603 			return 0;
2604 
2605 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2606 						   uh->source, iph->saddr,
2607 						   dif, sdif);
2608 	} else if (skb->pkt_type == PACKET_HOST) {
2609 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2610 					     uh->source, iph->saddr, dif, sdif);
2611 	}
2612 
2613 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2614 		return 0;
2615 
2616 	skb->sk = sk;
2617 	skb->destructor = sock_efree;
2618 	dst = rcu_dereference(sk->sk_rx_dst);
2619 
2620 	if (dst)
2621 		dst = dst_check(dst, 0);
2622 	if (dst) {
2623 		u32 itag = 0;
2624 
2625 		/* set noref for now.
2626 		 * any place which wants to hold dst has to call
2627 		 * dst_hold_safe()
2628 		 */
2629 		skb_dst_set_noref(skb, dst);
2630 
2631 		/* for unconnected multicast sockets we need to validate
2632 		 * the source on each packet
2633 		 */
2634 		if (!inet_sk(sk)->inet_daddr && in_dev)
2635 			return ip_mc_validate_source(skb, iph->daddr,
2636 						     iph->saddr,
2637 						     iph->tos & IPTOS_RT_MASK,
2638 						     skb->dev, in_dev, &itag);
2639 	}
2640 	return 0;
2641 }
2642 
2643 int udp_rcv(struct sk_buff *skb)
2644 {
2645 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2646 }
2647 
2648 void udp_destroy_sock(struct sock *sk)
2649 {
2650 	struct udp_sock *up = udp_sk(sk);
2651 	bool slow = lock_sock_fast(sk);
2652 
2653 	/* protects from races with udp_abort() */
2654 	sock_set_flag(sk, SOCK_DEAD);
2655 	udp_flush_pending_frames(sk);
2656 	unlock_sock_fast(sk, slow);
2657 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2658 		if (up->encap_type) {
2659 			void (*encap_destroy)(struct sock *sk);
2660 			encap_destroy = READ_ONCE(up->encap_destroy);
2661 			if (encap_destroy)
2662 				encap_destroy(sk);
2663 		}
2664 		if (up->encap_enabled)
2665 			static_branch_dec(&udp_encap_needed_key);
2666 	}
2667 }
2668 
2669 /*
2670  *	Socket option code for UDP
2671  */
2672 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2673 		       sockptr_t optval, unsigned int optlen,
2674 		       int (*push_pending_frames)(struct sock *))
2675 {
2676 	struct udp_sock *up = udp_sk(sk);
2677 	int val, valbool;
2678 	int err = 0;
2679 	int is_udplite = IS_UDPLITE(sk);
2680 
2681 	if (optlen < sizeof(int))
2682 		return -EINVAL;
2683 
2684 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2685 		return -EFAULT;
2686 
2687 	valbool = val ? 1 : 0;
2688 
2689 	switch (optname) {
2690 	case UDP_CORK:
2691 		if (val != 0) {
2692 			WRITE_ONCE(up->corkflag, 1);
2693 		} else {
2694 			WRITE_ONCE(up->corkflag, 0);
2695 			lock_sock(sk);
2696 			push_pending_frames(sk);
2697 			release_sock(sk);
2698 		}
2699 		break;
2700 
2701 	case UDP_ENCAP:
2702 		switch (val) {
2703 		case 0:
2704 #ifdef CONFIG_XFRM
2705 		case UDP_ENCAP_ESPINUDP:
2706 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2707 #if IS_ENABLED(CONFIG_IPV6)
2708 			if (sk->sk_family == AF_INET6)
2709 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2710 			else
2711 #endif
2712 				up->encap_rcv = xfrm4_udp_encap_rcv;
2713 #endif
2714 			fallthrough;
2715 		case UDP_ENCAP_L2TPINUDP:
2716 			up->encap_type = val;
2717 			lock_sock(sk);
2718 			udp_tunnel_encap_enable(sk->sk_socket);
2719 			release_sock(sk);
2720 			break;
2721 		default:
2722 			err = -ENOPROTOOPT;
2723 			break;
2724 		}
2725 		break;
2726 
2727 	case UDP_NO_CHECK6_TX:
2728 		up->no_check6_tx = valbool;
2729 		break;
2730 
2731 	case UDP_NO_CHECK6_RX:
2732 		up->no_check6_rx = valbool;
2733 		break;
2734 
2735 	case UDP_SEGMENT:
2736 		if (val < 0 || val > USHRT_MAX)
2737 			return -EINVAL;
2738 		WRITE_ONCE(up->gso_size, val);
2739 		break;
2740 
2741 	case UDP_GRO:
2742 		lock_sock(sk);
2743 
2744 		/* when enabling GRO, accept the related GSO packet type */
2745 		if (valbool)
2746 			udp_tunnel_encap_enable(sk->sk_socket);
2747 		up->gro_enabled = valbool;
2748 		up->accept_udp_l4 = valbool;
2749 		release_sock(sk);
2750 		break;
2751 
2752 	/*
2753 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2754 	 */
2755 	/* The sender sets actual checksum coverage length via this option.
2756 	 * The case coverage > packet length is handled by send module. */
2757 	case UDPLITE_SEND_CSCOV:
2758 		if (!is_udplite)         /* Disable the option on UDP sockets */
2759 			return -ENOPROTOOPT;
2760 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2761 			val = 8;
2762 		else if (val > USHRT_MAX)
2763 			val = USHRT_MAX;
2764 		up->pcslen = val;
2765 		up->pcflag |= UDPLITE_SEND_CC;
2766 		break;
2767 
2768 	/* The receiver specifies a minimum checksum coverage value. To make
2769 	 * sense, this should be set to at least 8 (as done below). If zero is
2770 	 * used, this again means full checksum coverage.                     */
2771 	case UDPLITE_RECV_CSCOV:
2772 		if (!is_udplite)         /* Disable the option on UDP sockets */
2773 			return -ENOPROTOOPT;
2774 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2775 			val = 8;
2776 		else if (val > USHRT_MAX)
2777 			val = USHRT_MAX;
2778 		up->pcrlen = val;
2779 		up->pcflag |= UDPLITE_RECV_CC;
2780 		break;
2781 
2782 	default:
2783 		err = -ENOPROTOOPT;
2784 		break;
2785 	}
2786 
2787 	return err;
2788 }
2789 EXPORT_SYMBOL(udp_lib_setsockopt);
2790 
2791 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2792 		   unsigned int optlen)
2793 {
2794 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2795 		return udp_lib_setsockopt(sk, level, optname,
2796 					  optval, optlen,
2797 					  udp_push_pending_frames);
2798 	return ip_setsockopt(sk, level, optname, optval, optlen);
2799 }
2800 
2801 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2802 		       char __user *optval, int __user *optlen)
2803 {
2804 	struct udp_sock *up = udp_sk(sk);
2805 	int val, len;
2806 
2807 	if (get_user(len, optlen))
2808 		return -EFAULT;
2809 
2810 	len = min_t(unsigned int, len, sizeof(int));
2811 
2812 	if (len < 0)
2813 		return -EINVAL;
2814 
2815 	switch (optname) {
2816 	case UDP_CORK:
2817 		val = READ_ONCE(up->corkflag);
2818 		break;
2819 
2820 	case UDP_ENCAP:
2821 		val = up->encap_type;
2822 		break;
2823 
2824 	case UDP_NO_CHECK6_TX:
2825 		val = up->no_check6_tx;
2826 		break;
2827 
2828 	case UDP_NO_CHECK6_RX:
2829 		val = up->no_check6_rx;
2830 		break;
2831 
2832 	case UDP_SEGMENT:
2833 		val = READ_ONCE(up->gso_size);
2834 		break;
2835 
2836 	case UDP_GRO:
2837 		val = up->gro_enabled;
2838 		break;
2839 
2840 	/* The following two cannot be changed on UDP sockets, the return is
2841 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2842 	case UDPLITE_SEND_CSCOV:
2843 		val = up->pcslen;
2844 		break;
2845 
2846 	case UDPLITE_RECV_CSCOV:
2847 		val = up->pcrlen;
2848 		break;
2849 
2850 	default:
2851 		return -ENOPROTOOPT;
2852 	}
2853 
2854 	if (put_user(len, optlen))
2855 		return -EFAULT;
2856 	if (copy_to_user(optval, &val, len))
2857 		return -EFAULT;
2858 	return 0;
2859 }
2860 EXPORT_SYMBOL(udp_lib_getsockopt);
2861 
2862 int udp_getsockopt(struct sock *sk, int level, int optname,
2863 		   char __user *optval, int __user *optlen)
2864 {
2865 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2866 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2867 	return ip_getsockopt(sk, level, optname, optval, optlen);
2868 }
2869 
2870 /**
2871  * 	udp_poll - wait for a UDP event.
2872  *	@file: - file struct
2873  *	@sock: - socket
2874  *	@wait: - poll table
2875  *
2876  *	This is same as datagram poll, except for the special case of
2877  *	blocking sockets. If application is using a blocking fd
2878  *	and a packet with checksum error is in the queue;
2879  *	then it could get return from select indicating data available
2880  *	but then block when reading it. Add special case code
2881  *	to work around these arguably broken applications.
2882  */
2883 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2884 {
2885 	__poll_t mask = datagram_poll(file, sock, wait);
2886 	struct sock *sk = sock->sk;
2887 
2888 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2889 		mask |= EPOLLIN | EPOLLRDNORM;
2890 
2891 	/* Check for false positives due to checksum errors */
2892 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2893 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2894 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2895 
2896 	/* psock ingress_msg queue should not contain any bad checksum frames */
2897 	if (sk_is_readable(sk))
2898 		mask |= EPOLLIN | EPOLLRDNORM;
2899 	return mask;
2900 
2901 }
2902 EXPORT_SYMBOL(udp_poll);
2903 
2904 int udp_abort(struct sock *sk, int err)
2905 {
2906 	lock_sock(sk);
2907 
2908 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2909 	 * with close()
2910 	 */
2911 	if (sock_flag(sk, SOCK_DEAD))
2912 		goto out;
2913 
2914 	sk->sk_err = err;
2915 	sk_error_report(sk);
2916 	__udp_disconnect(sk, 0);
2917 
2918 out:
2919 	release_sock(sk);
2920 
2921 	return 0;
2922 }
2923 EXPORT_SYMBOL_GPL(udp_abort);
2924 
2925 struct proto udp_prot = {
2926 	.name			= "UDP",
2927 	.owner			= THIS_MODULE,
2928 	.close			= udp_lib_close,
2929 	.pre_connect		= udp_pre_connect,
2930 	.connect		= ip4_datagram_connect,
2931 	.disconnect		= udp_disconnect,
2932 	.ioctl			= udp_ioctl,
2933 	.init			= udp_init_sock,
2934 	.destroy		= udp_destroy_sock,
2935 	.setsockopt		= udp_setsockopt,
2936 	.getsockopt		= udp_getsockopt,
2937 	.sendmsg		= udp_sendmsg,
2938 	.recvmsg		= udp_recvmsg,
2939 	.sendpage		= udp_sendpage,
2940 	.release_cb		= ip4_datagram_release_cb,
2941 	.hash			= udp_lib_hash,
2942 	.unhash			= udp_lib_unhash,
2943 	.rehash			= udp_v4_rehash,
2944 	.get_port		= udp_v4_get_port,
2945 	.put_port		= udp_lib_unhash,
2946 #ifdef CONFIG_BPF_SYSCALL
2947 	.psock_update_sk_prot	= udp_bpf_update_proto,
2948 #endif
2949 	.memory_allocated	= &udp_memory_allocated,
2950 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2951 
2952 	.sysctl_mem		= sysctl_udp_mem,
2953 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2954 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2955 	.obj_size		= sizeof(struct udp_sock),
2956 	.h.udp_table		= &udp_table,
2957 	.diag_destroy		= udp_abort,
2958 };
2959 EXPORT_SYMBOL(udp_prot);
2960 
2961 /* ------------------------------------------------------------------------ */
2962 #ifdef CONFIG_PROC_FS
2963 
2964 static struct sock *udp_get_first(struct seq_file *seq, int start)
2965 {
2966 	struct sock *sk;
2967 	struct udp_seq_afinfo *afinfo;
2968 	struct udp_iter_state *state = seq->private;
2969 	struct net *net = seq_file_net(seq);
2970 
2971 	if (state->bpf_seq_afinfo)
2972 		afinfo = state->bpf_seq_afinfo;
2973 	else
2974 		afinfo = pde_data(file_inode(seq->file));
2975 
2976 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2977 	     ++state->bucket) {
2978 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2979 
2980 		if (hlist_empty(&hslot->head))
2981 			continue;
2982 
2983 		spin_lock_bh(&hslot->lock);
2984 		sk_for_each(sk, &hslot->head) {
2985 			if (!net_eq(sock_net(sk), net))
2986 				continue;
2987 			if (afinfo->family == AF_UNSPEC ||
2988 			    sk->sk_family == afinfo->family)
2989 				goto found;
2990 		}
2991 		spin_unlock_bh(&hslot->lock);
2992 	}
2993 	sk = NULL;
2994 found:
2995 	return sk;
2996 }
2997 
2998 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2999 {
3000 	struct udp_seq_afinfo *afinfo;
3001 	struct udp_iter_state *state = seq->private;
3002 	struct net *net = seq_file_net(seq);
3003 
3004 	if (state->bpf_seq_afinfo)
3005 		afinfo = state->bpf_seq_afinfo;
3006 	else
3007 		afinfo = pde_data(file_inode(seq->file));
3008 
3009 	do {
3010 		sk = sk_next(sk);
3011 	} while (sk && (!net_eq(sock_net(sk), net) ||
3012 			(afinfo->family != AF_UNSPEC &&
3013 			 sk->sk_family != afinfo->family)));
3014 
3015 	if (!sk) {
3016 		if (state->bucket <= afinfo->udp_table->mask)
3017 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3018 		return udp_get_first(seq, state->bucket + 1);
3019 	}
3020 	return sk;
3021 }
3022 
3023 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3024 {
3025 	struct sock *sk = udp_get_first(seq, 0);
3026 
3027 	if (sk)
3028 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3029 			--pos;
3030 	return pos ? NULL : sk;
3031 }
3032 
3033 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3034 {
3035 	struct udp_iter_state *state = seq->private;
3036 	state->bucket = MAX_UDP_PORTS;
3037 
3038 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3039 }
3040 EXPORT_SYMBOL(udp_seq_start);
3041 
3042 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3043 {
3044 	struct sock *sk;
3045 
3046 	if (v == SEQ_START_TOKEN)
3047 		sk = udp_get_idx(seq, 0);
3048 	else
3049 		sk = udp_get_next(seq, v);
3050 
3051 	++*pos;
3052 	return sk;
3053 }
3054 EXPORT_SYMBOL(udp_seq_next);
3055 
3056 void udp_seq_stop(struct seq_file *seq, void *v)
3057 {
3058 	struct udp_seq_afinfo *afinfo;
3059 	struct udp_iter_state *state = seq->private;
3060 
3061 	if (state->bpf_seq_afinfo)
3062 		afinfo = state->bpf_seq_afinfo;
3063 	else
3064 		afinfo = pde_data(file_inode(seq->file));
3065 
3066 	if (state->bucket <= afinfo->udp_table->mask)
3067 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3068 }
3069 EXPORT_SYMBOL(udp_seq_stop);
3070 
3071 /* ------------------------------------------------------------------------ */
3072 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3073 		int bucket)
3074 {
3075 	struct inet_sock *inet = inet_sk(sp);
3076 	__be32 dest = inet->inet_daddr;
3077 	__be32 src  = inet->inet_rcv_saddr;
3078 	__u16 destp	  = ntohs(inet->inet_dport);
3079 	__u16 srcp	  = ntohs(inet->inet_sport);
3080 
3081 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3082 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3083 		bucket, src, srcp, dest, destp, sp->sk_state,
3084 		sk_wmem_alloc_get(sp),
3085 		udp_rqueue_get(sp),
3086 		0, 0L, 0,
3087 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3088 		0, sock_i_ino(sp),
3089 		refcount_read(&sp->sk_refcnt), sp,
3090 		atomic_read(&sp->sk_drops));
3091 }
3092 
3093 int udp4_seq_show(struct seq_file *seq, void *v)
3094 {
3095 	seq_setwidth(seq, 127);
3096 	if (v == SEQ_START_TOKEN)
3097 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3098 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3099 			   "inode ref pointer drops");
3100 	else {
3101 		struct udp_iter_state *state = seq->private;
3102 
3103 		udp4_format_sock(v, seq, state->bucket);
3104 	}
3105 	seq_pad(seq, '\n');
3106 	return 0;
3107 }
3108 
3109 #ifdef CONFIG_BPF_SYSCALL
3110 struct bpf_iter__udp {
3111 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3112 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3113 	uid_t uid __aligned(8);
3114 	int bucket __aligned(8);
3115 };
3116 
3117 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3118 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3119 {
3120 	struct bpf_iter__udp ctx;
3121 
3122 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3123 	ctx.meta = meta;
3124 	ctx.udp_sk = udp_sk;
3125 	ctx.uid = uid;
3126 	ctx.bucket = bucket;
3127 	return bpf_iter_run_prog(prog, &ctx);
3128 }
3129 
3130 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3131 {
3132 	struct udp_iter_state *state = seq->private;
3133 	struct bpf_iter_meta meta;
3134 	struct bpf_prog *prog;
3135 	struct sock *sk = v;
3136 	uid_t uid;
3137 
3138 	if (v == SEQ_START_TOKEN)
3139 		return 0;
3140 
3141 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3142 	meta.seq = seq;
3143 	prog = bpf_iter_get_info(&meta, false);
3144 	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3145 }
3146 
3147 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3148 {
3149 	struct bpf_iter_meta meta;
3150 	struct bpf_prog *prog;
3151 
3152 	if (!v) {
3153 		meta.seq = seq;
3154 		prog = bpf_iter_get_info(&meta, true);
3155 		if (prog)
3156 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3157 	}
3158 
3159 	udp_seq_stop(seq, v);
3160 }
3161 
3162 static const struct seq_operations bpf_iter_udp_seq_ops = {
3163 	.start		= udp_seq_start,
3164 	.next		= udp_seq_next,
3165 	.stop		= bpf_iter_udp_seq_stop,
3166 	.show		= bpf_iter_udp_seq_show,
3167 };
3168 #endif
3169 
3170 const struct seq_operations udp_seq_ops = {
3171 	.start		= udp_seq_start,
3172 	.next		= udp_seq_next,
3173 	.stop		= udp_seq_stop,
3174 	.show		= udp4_seq_show,
3175 };
3176 EXPORT_SYMBOL(udp_seq_ops);
3177 
3178 static struct udp_seq_afinfo udp4_seq_afinfo = {
3179 	.family		= AF_INET,
3180 	.udp_table	= &udp_table,
3181 };
3182 
3183 static int __net_init udp4_proc_init_net(struct net *net)
3184 {
3185 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3186 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3187 		return -ENOMEM;
3188 	return 0;
3189 }
3190 
3191 static void __net_exit udp4_proc_exit_net(struct net *net)
3192 {
3193 	remove_proc_entry("udp", net->proc_net);
3194 }
3195 
3196 static struct pernet_operations udp4_net_ops = {
3197 	.init = udp4_proc_init_net,
3198 	.exit = udp4_proc_exit_net,
3199 };
3200 
3201 int __init udp4_proc_init(void)
3202 {
3203 	return register_pernet_subsys(&udp4_net_ops);
3204 }
3205 
3206 void udp4_proc_exit(void)
3207 {
3208 	unregister_pernet_subsys(&udp4_net_ops);
3209 }
3210 #endif /* CONFIG_PROC_FS */
3211 
3212 static __initdata unsigned long uhash_entries;
3213 static int __init set_uhash_entries(char *str)
3214 {
3215 	ssize_t ret;
3216 
3217 	if (!str)
3218 		return 0;
3219 
3220 	ret = kstrtoul(str, 0, &uhash_entries);
3221 	if (ret)
3222 		return 0;
3223 
3224 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3225 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3226 	return 1;
3227 }
3228 __setup("uhash_entries=", set_uhash_entries);
3229 
3230 void __init udp_table_init(struct udp_table *table, const char *name)
3231 {
3232 	unsigned int i;
3233 
3234 	table->hash = alloc_large_system_hash(name,
3235 					      2 * sizeof(struct udp_hslot),
3236 					      uhash_entries,
3237 					      21, /* one slot per 2 MB */
3238 					      0,
3239 					      &table->log,
3240 					      &table->mask,
3241 					      UDP_HTABLE_SIZE_MIN,
3242 					      64 * 1024);
3243 
3244 	table->hash2 = table->hash + (table->mask + 1);
3245 	for (i = 0; i <= table->mask; i++) {
3246 		INIT_HLIST_HEAD(&table->hash[i].head);
3247 		table->hash[i].count = 0;
3248 		spin_lock_init(&table->hash[i].lock);
3249 	}
3250 	for (i = 0; i <= table->mask; i++) {
3251 		INIT_HLIST_HEAD(&table->hash2[i].head);
3252 		table->hash2[i].count = 0;
3253 		spin_lock_init(&table->hash2[i].lock);
3254 	}
3255 }
3256 
3257 u32 udp_flow_hashrnd(void)
3258 {
3259 	static u32 hashrnd __read_mostly;
3260 
3261 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3262 
3263 	return hashrnd;
3264 }
3265 EXPORT_SYMBOL(udp_flow_hashrnd);
3266 
3267 static int __net_init udp_sysctl_init(struct net *net)
3268 {
3269 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3270 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3271 
3272 #ifdef CONFIG_NET_L3_MASTER_DEV
3273 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3274 #endif
3275 
3276 	return 0;
3277 }
3278 
3279 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3280 	.init	= udp_sysctl_init,
3281 };
3282 
3283 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3284 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3285 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3286 
3287 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3288 {
3289 	struct udp_iter_state *st = priv_data;
3290 	struct udp_seq_afinfo *afinfo;
3291 	int ret;
3292 
3293 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3294 	if (!afinfo)
3295 		return -ENOMEM;
3296 
3297 	afinfo->family = AF_UNSPEC;
3298 	afinfo->udp_table = &udp_table;
3299 	st->bpf_seq_afinfo = afinfo;
3300 	ret = bpf_iter_init_seq_net(priv_data, aux);
3301 	if (ret)
3302 		kfree(afinfo);
3303 	return ret;
3304 }
3305 
3306 static void bpf_iter_fini_udp(void *priv_data)
3307 {
3308 	struct udp_iter_state *st = priv_data;
3309 
3310 	kfree(st->bpf_seq_afinfo);
3311 	bpf_iter_fini_seq_net(priv_data);
3312 }
3313 
3314 static const struct bpf_iter_seq_info udp_seq_info = {
3315 	.seq_ops		= &bpf_iter_udp_seq_ops,
3316 	.init_seq_private	= bpf_iter_init_udp,
3317 	.fini_seq_private	= bpf_iter_fini_udp,
3318 	.seq_priv_size		= sizeof(struct udp_iter_state),
3319 };
3320 
3321 static struct bpf_iter_reg udp_reg_info = {
3322 	.target			= "udp",
3323 	.ctx_arg_info_size	= 1,
3324 	.ctx_arg_info		= {
3325 		{ offsetof(struct bpf_iter__udp, udp_sk),
3326 		  PTR_TO_BTF_ID_OR_NULL },
3327 	},
3328 	.seq_info		= &udp_seq_info,
3329 };
3330 
3331 static void __init bpf_iter_register(void)
3332 {
3333 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3334 	if (bpf_iter_reg_target(&udp_reg_info))
3335 		pr_warn("Warning: could not register bpf iterator udp\n");
3336 }
3337 #endif
3338 
3339 void __init udp_init(void)
3340 {
3341 	unsigned long limit;
3342 	unsigned int i;
3343 
3344 	udp_table_init(&udp_table, "UDP");
3345 	limit = nr_free_buffer_pages() / 8;
3346 	limit = max(limit, 128UL);
3347 	sysctl_udp_mem[0] = limit / 4 * 3;
3348 	sysctl_udp_mem[1] = limit;
3349 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3350 
3351 	/* 16 spinlocks per cpu */
3352 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3353 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3354 				GFP_KERNEL);
3355 	if (!udp_busylocks)
3356 		panic("UDP: failed to alloc udp_busylocks\n");
3357 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3358 		spin_lock_init(udp_busylocks + i);
3359 
3360 	if (register_pernet_subsys(&udp_sysctl_ops))
3361 		panic("UDP: failed to init sysctl parameters.\n");
3362 
3363 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3364 	bpf_iter_register();
3365 #endif
3366 }
3367