xref: /openbmc/linux/net/ipv4/udp.c (revision 7fe2f639)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <linux/slab.h>
99 #include <net/tcp_states.h>
100 #include <linux/skbuff.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <net/net_namespace.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include "udp_impl.h"
109 
110 struct udp_table udp_table __read_mostly;
111 EXPORT_SYMBOL(udp_table);
112 
113 long sysctl_udp_mem[3] __read_mostly;
114 EXPORT_SYMBOL(sysctl_udp_mem);
115 
116 int sysctl_udp_rmem_min __read_mostly;
117 EXPORT_SYMBOL(sysctl_udp_rmem_min);
118 
119 int sysctl_udp_wmem_min __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_wmem_min);
121 
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124 
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127 
128 static int udp_lib_lport_inuse(struct net *net, __u16 num,
129 			       const struct udp_hslot *hslot,
130 			       unsigned long *bitmap,
131 			       struct sock *sk,
132 			       int (*saddr_comp)(const struct sock *sk1,
133 						 const struct sock *sk2),
134 			       unsigned int log)
135 {
136 	struct sock *sk2;
137 	struct hlist_nulls_node *node;
138 
139 	sk_nulls_for_each(sk2, node, &hslot->head)
140 		if (net_eq(sock_net(sk2), net) &&
141 		    sk2 != sk &&
142 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
143 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
144 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
145 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
146 		    (*saddr_comp)(sk, sk2)) {
147 			if (bitmap)
148 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
149 					  bitmap);
150 			else
151 				return 1;
152 		}
153 	return 0;
154 }
155 
156 /*
157  * Note: we still hold spinlock of primary hash chain, so no other writer
158  * can insert/delete a socket with local_port == num
159  */
160 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
161 			       struct udp_hslot *hslot2,
162 			       struct sock *sk,
163 			       int (*saddr_comp)(const struct sock *sk1,
164 						 const struct sock *sk2))
165 {
166 	struct sock *sk2;
167 	struct hlist_nulls_node *node;
168 	int res = 0;
169 
170 	spin_lock(&hslot2->lock);
171 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
172 		if (net_eq(sock_net(sk2), net) &&
173 		    sk2 != sk &&
174 		    (udp_sk(sk2)->udp_port_hash == num) &&
175 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
176 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
177 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
178 		    (*saddr_comp)(sk, sk2)) {
179 			res = 1;
180 			break;
181 		}
182 	spin_unlock(&hslot2->lock);
183 	return res;
184 }
185 
186 /**
187  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
188  *
189  *  @sk:          socket struct in question
190  *  @snum:        port number to look up
191  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
192  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
193  *                   with NULL address
194  */
195 int udp_lib_get_port(struct sock *sk, unsigned short snum,
196 		       int (*saddr_comp)(const struct sock *sk1,
197 					 const struct sock *sk2),
198 		     unsigned int hash2_nulladdr)
199 {
200 	struct udp_hslot *hslot, *hslot2;
201 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
202 	int    error = 1;
203 	struct net *net = sock_net(sk);
204 
205 	if (!snum) {
206 		int low, high, remaining;
207 		unsigned rand;
208 		unsigned short first, last;
209 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
210 
211 		inet_get_local_port_range(&low, &high);
212 		remaining = (high - low) + 1;
213 
214 		rand = net_random();
215 		first = (((u64)rand * remaining) >> 32) + low;
216 		/*
217 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
218 		 */
219 		rand = (rand | 1) * (udptable->mask + 1);
220 		last = first + udptable->mask + 1;
221 		do {
222 			hslot = udp_hashslot(udptable, net, first);
223 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
224 			spin_lock_bh(&hslot->lock);
225 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
226 					    saddr_comp, udptable->log);
227 
228 			snum = first;
229 			/*
230 			 * Iterate on all possible values of snum for this hash.
231 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
232 			 * give us randomization and full range coverage.
233 			 */
234 			do {
235 				if (low <= snum && snum <= high &&
236 				    !test_bit(snum >> udptable->log, bitmap) &&
237 				    !inet_is_reserved_local_port(snum))
238 					goto found;
239 				snum += rand;
240 			} while (snum != first);
241 			spin_unlock_bh(&hslot->lock);
242 		} while (++first != last);
243 		goto fail;
244 	} else {
245 		hslot = udp_hashslot(udptable, net, snum);
246 		spin_lock_bh(&hslot->lock);
247 		if (hslot->count > 10) {
248 			int exist;
249 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
250 
251 			slot2          &= udptable->mask;
252 			hash2_nulladdr &= udptable->mask;
253 
254 			hslot2 = udp_hashslot2(udptable, slot2);
255 			if (hslot->count < hslot2->count)
256 				goto scan_primary_hash;
257 
258 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
259 						     sk, saddr_comp);
260 			if (!exist && (hash2_nulladdr != slot2)) {
261 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
262 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
263 							     sk, saddr_comp);
264 			}
265 			if (exist)
266 				goto fail_unlock;
267 			else
268 				goto found;
269 		}
270 scan_primary_hash:
271 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
272 					saddr_comp, 0))
273 			goto fail_unlock;
274 	}
275 found:
276 	inet_sk(sk)->inet_num = snum;
277 	udp_sk(sk)->udp_port_hash = snum;
278 	udp_sk(sk)->udp_portaddr_hash ^= snum;
279 	if (sk_unhashed(sk)) {
280 		sk_nulls_add_node_rcu(sk, &hslot->head);
281 		hslot->count++;
282 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
283 
284 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
285 		spin_lock(&hslot2->lock);
286 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
287 					 &hslot2->head);
288 		hslot2->count++;
289 		spin_unlock(&hslot2->lock);
290 	}
291 	error = 0;
292 fail_unlock:
293 	spin_unlock_bh(&hslot->lock);
294 fail:
295 	return error;
296 }
297 EXPORT_SYMBOL(udp_lib_get_port);
298 
299 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
300 {
301 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
302 
303 	return 	(!ipv6_only_sock(sk2)  &&
304 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
305 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
306 }
307 
308 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
309 				       unsigned int port)
310 {
311 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
312 }
313 
314 int udp_v4_get_port(struct sock *sk, unsigned short snum)
315 {
316 	unsigned int hash2_nulladdr =
317 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
318 	unsigned int hash2_partial =
319 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
320 
321 	/* precompute partial secondary hash */
322 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
323 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
324 }
325 
326 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
327 			 unsigned short hnum,
328 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
329 {
330 	int score = -1;
331 
332 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
333 			!ipv6_only_sock(sk)) {
334 		struct inet_sock *inet = inet_sk(sk);
335 
336 		score = (sk->sk_family == PF_INET ? 1 : 0);
337 		if (inet->inet_rcv_saddr) {
338 			if (inet->inet_rcv_saddr != daddr)
339 				return -1;
340 			score += 2;
341 		}
342 		if (inet->inet_daddr) {
343 			if (inet->inet_daddr != saddr)
344 				return -1;
345 			score += 2;
346 		}
347 		if (inet->inet_dport) {
348 			if (inet->inet_dport != sport)
349 				return -1;
350 			score += 2;
351 		}
352 		if (sk->sk_bound_dev_if) {
353 			if (sk->sk_bound_dev_if != dif)
354 				return -1;
355 			score += 2;
356 		}
357 	}
358 	return score;
359 }
360 
361 /*
362  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
363  */
364 #define SCORE2_MAX (1 + 2 + 2 + 2)
365 static inline int compute_score2(struct sock *sk, struct net *net,
366 				 __be32 saddr, __be16 sport,
367 				 __be32 daddr, unsigned int hnum, int dif)
368 {
369 	int score = -1;
370 
371 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
372 		struct inet_sock *inet = inet_sk(sk);
373 
374 		if (inet->inet_rcv_saddr != daddr)
375 			return -1;
376 		if (inet->inet_num != hnum)
377 			return -1;
378 
379 		score = (sk->sk_family == PF_INET ? 1 : 0);
380 		if (inet->inet_daddr) {
381 			if (inet->inet_daddr != saddr)
382 				return -1;
383 			score += 2;
384 		}
385 		if (inet->inet_dport) {
386 			if (inet->inet_dport != sport)
387 				return -1;
388 			score += 2;
389 		}
390 		if (sk->sk_bound_dev_if) {
391 			if (sk->sk_bound_dev_if != dif)
392 				return -1;
393 			score += 2;
394 		}
395 	}
396 	return score;
397 }
398 
399 
400 /* called with read_rcu_lock() */
401 static struct sock *udp4_lib_lookup2(struct net *net,
402 		__be32 saddr, __be16 sport,
403 		__be32 daddr, unsigned int hnum, int dif,
404 		struct udp_hslot *hslot2, unsigned int slot2)
405 {
406 	struct sock *sk, *result;
407 	struct hlist_nulls_node *node;
408 	int score, badness;
409 
410 begin:
411 	result = NULL;
412 	badness = -1;
413 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
414 		score = compute_score2(sk, net, saddr, sport,
415 				      daddr, hnum, dif);
416 		if (score > badness) {
417 			result = sk;
418 			badness = score;
419 			if (score == SCORE2_MAX)
420 				goto exact_match;
421 		}
422 	}
423 	/*
424 	 * if the nulls value we got at the end of this lookup is
425 	 * not the expected one, we must restart lookup.
426 	 * We probably met an item that was moved to another chain.
427 	 */
428 	if (get_nulls_value(node) != slot2)
429 		goto begin;
430 
431 	if (result) {
432 exact_match:
433 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
434 			result = NULL;
435 		else if (unlikely(compute_score2(result, net, saddr, sport,
436 				  daddr, hnum, dif) < badness)) {
437 			sock_put(result);
438 			goto begin;
439 		}
440 	}
441 	return result;
442 }
443 
444 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
445  * harder than this. -DaveM
446  */
447 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
448 		__be16 sport, __be32 daddr, __be16 dport,
449 		int dif, struct udp_table *udptable)
450 {
451 	struct sock *sk, *result;
452 	struct hlist_nulls_node *node;
453 	unsigned short hnum = ntohs(dport);
454 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
455 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
456 	int score, badness;
457 
458 	rcu_read_lock();
459 	if (hslot->count > 10) {
460 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
461 		slot2 = hash2 & udptable->mask;
462 		hslot2 = &udptable->hash2[slot2];
463 		if (hslot->count < hslot2->count)
464 			goto begin;
465 
466 		result = udp4_lib_lookup2(net, saddr, sport,
467 					  daddr, hnum, dif,
468 					  hslot2, slot2);
469 		if (!result) {
470 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
471 			slot2 = hash2 & udptable->mask;
472 			hslot2 = &udptable->hash2[slot2];
473 			if (hslot->count < hslot2->count)
474 				goto begin;
475 
476 			result = udp4_lib_lookup2(net, saddr, sport,
477 						  htonl(INADDR_ANY), hnum, dif,
478 						  hslot2, slot2);
479 		}
480 		rcu_read_unlock();
481 		return result;
482 	}
483 begin:
484 	result = NULL;
485 	badness = -1;
486 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
487 		score = compute_score(sk, net, saddr, hnum, sport,
488 				      daddr, dport, dif);
489 		if (score > badness) {
490 			result = sk;
491 			badness = score;
492 		}
493 	}
494 	/*
495 	 * if the nulls value we got at the end of this lookup is
496 	 * not the expected one, we must restart lookup.
497 	 * We probably met an item that was moved to another chain.
498 	 */
499 	if (get_nulls_value(node) != slot)
500 		goto begin;
501 
502 	if (result) {
503 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
504 			result = NULL;
505 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
506 				  daddr, dport, dif) < badness)) {
507 			sock_put(result);
508 			goto begin;
509 		}
510 	}
511 	rcu_read_unlock();
512 	return result;
513 }
514 
515 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
516 						 __be16 sport, __be16 dport,
517 						 struct udp_table *udptable)
518 {
519 	struct sock *sk;
520 	const struct iphdr *iph = ip_hdr(skb);
521 
522 	if (unlikely(sk = skb_steal_sock(skb)))
523 		return sk;
524 	else
525 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
526 					 iph->daddr, dport, inet_iif(skb),
527 					 udptable);
528 }
529 
530 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
531 			     __be32 daddr, __be16 dport, int dif)
532 {
533 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
534 }
535 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
536 
537 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
538 					     __be16 loc_port, __be32 loc_addr,
539 					     __be16 rmt_port, __be32 rmt_addr,
540 					     int dif)
541 {
542 	struct hlist_nulls_node *node;
543 	struct sock *s = sk;
544 	unsigned short hnum = ntohs(loc_port);
545 
546 	sk_nulls_for_each_from(s, node) {
547 		struct inet_sock *inet = inet_sk(s);
548 
549 		if (!net_eq(sock_net(s), net) ||
550 		    udp_sk(s)->udp_port_hash != hnum ||
551 		    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
552 		    (inet->inet_dport != rmt_port && inet->inet_dport) ||
553 		    (inet->inet_rcv_saddr &&
554 		     inet->inet_rcv_saddr != loc_addr) ||
555 		    ipv6_only_sock(s) ||
556 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
557 			continue;
558 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
559 			continue;
560 		goto found;
561 	}
562 	s = NULL;
563 found:
564 	return s;
565 }
566 
567 /*
568  * This routine is called by the ICMP module when it gets some
569  * sort of error condition.  If err < 0 then the socket should
570  * be closed and the error returned to the user.  If err > 0
571  * it's just the icmp type << 8 | icmp code.
572  * Header points to the ip header of the error packet. We move
573  * on past this. Then (as it used to claim before adjustment)
574  * header points to the first 8 bytes of the udp header.  We need
575  * to find the appropriate port.
576  */
577 
578 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
579 {
580 	struct inet_sock *inet;
581 	const struct iphdr *iph = (const struct iphdr *)skb->data;
582 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
583 	const int type = icmp_hdr(skb)->type;
584 	const int code = icmp_hdr(skb)->code;
585 	struct sock *sk;
586 	int harderr;
587 	int err;
588 	struct net *net = dev_net(skb->dev);
589 
590 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
591 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
592 	if (sk == NULL) {
593 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
594 		return;	/* No socket for error */
595 	}
596 
597 	err = 0;
598 	harderr = 0;
599 	inet = inet_sk(sk);
600 
601 	switch (type) {
602 	default:
603 	case ICMP_TIME_EXCEEDED:
604 		err = EHOSTUNREACH;
605 		break;
606 	case ICMP_SOURCE_QUENCH:
607 		goto out;
608 	case ICMP_PARAMETERPROB:
609 		err = EPROTO;
610 		harderr = 1;
611 		break;
612 	case ICMP_DEST_UNREACH:
613 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
614 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
615 				err = EMSGSIZE;
616 				harderr = 1;
617 				break;
618 			}
619 			goto out;
620 		}
621 		err = EHOSTUNREACH;
622 		if (code <= NR_ICMP_UNREACH) {
623 			harderr = icmp_err_convert[code].fatal;
624 			err = icmp_err_convert[code].errno;
625 		}
626 		break;
627 	}
628 
629 	/*
630 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
631 	 *	4.1.3.3.
632 	 */
633 	if (!inet->recverr) {
634 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
635 			goto out;
636 	} else
637 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
638 
639 	sk->sk_err = err;
640 	sk->sk_error_report(sk);
641 out:
642 	sock_put(sk);
643 }
644 
645 void udp_err(struct sk_buff *skb, u32 info)
646 {
647 	__udp4_lib_err(skb, info, &udp_table);
648 }
649 
650 /*
651  * Throw away all pending data and cancel the corking. Socket is locked.
652  */
653 void udp_flush_pending_frames(struct sock *sk)
654 {
655 	struct udp_sock *up = udp_sk(sk);
656 
657 	if (up->pending) {
658 		up->len = 0;
659 		up->pending = 0;
660 		ip_flush_pending_frames(sk);
661 	}
662 }
663 EXPORT_SYMBOL(udp_flush_pending_frames);
664 
665 /**
666  * 	udp4_hwcsum  -  handle outgoing HW checksumming
667  * 	@skb: 	sk_buff containing the filled-in UDP header
668  * 	        (checksum field must be zeroed out)
669  *	@src:	source IP address
670  *	@dst:	destination IP address
671  */
672 static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
673 {
674 	struct udphdr *uh = udp_hdr(skb);
675 	struct sk_buff *frags = skb_shinfo(skb)->frag_list;
676 	int offset = skb_transport_offset(skb);
677 	int len = skb->len - offset;
678 	int hlen = len;
679 	__wsum csum = 0;
680 
681 	if (!frags) {
682 		/*
683 		 * Only one fragment on the socket.
684 		 */
685 		skb->csum_start = skb_transport_header(skb) - skb->head;
686 		skb->csum_offset = offsetof(struct udphdr, check);
687 		uh->check = ~csum_tcpudp_magic(src, dst, len,
688 					       IPPROTO_UDP, 0);
689 	} else {
690 		/*
691 		 * HW-checksum won't work as there are two or more
692 		 * fragments on the socket so that all csums of sk_buffs
693 		 * should be together
694 		 */
695 		do {
696 			csum = csum_add(csum, frags->csum);
697 			hlen -= frags->len;
698 		} while ((frags = frags->next));
699 
700 		csum = skb_checksum(skb, offset, hlen, csum);
701 		skb->ip_summed = CHECKSUM_NONE;
702 
703 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
704 		if (uh->check == 0)
705 			uh->check = CSUM_MANGLED_0;
706 	}
707 }
708 
709 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
710 {
711 	struct sock *sk = skb->sk;
712 	struct inet_sock *inet = inet_sk(sk);
713 	struct udphdr *uh;
714 	int err = 0;
715 	int is_udplite = IS_UDPLITE(sk);
716 	int offset = skb_transport_offset(skb);
717 	int len = skb->len - offset;
718 	__wsum csum = 0;
719 
720 	/*
721 	 * Create a UDP header
722 	 */
723 	uh = udp_hdr(skb);
724 	uh->source = inet->inet_sport;
725 	uh->dest = fl4->fl4_dport;
726 	uh->len = htons(len);
727 	uh->check = 0;
728 
729 	if (is_udplite)  				 /*     UDP-Lite      */
730 		csum = udplite_csum(skb);
731 
732 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
733 
734 		skb->ip_summed = CHECKSUM_NONE;
735 		goto send;
736 
737 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
738 
739 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
740 		goto send;
741 
742 	} else
743 		csum = udp_csum(skb);
744 
745 	/* add protocol-dependent pseudo-header */
746 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
747 				      sk->sk_protocol, csum);
748 	if (uh->check == 0)
749 		uh->check = CSUM_MANGLED_0;
750 
751 send:
752 	err = ip_send_skb(skb);
753 	if (err) {
754 		if (err == -ENOBUFS && !inet->recverr) {
755 			UDP_INC_STATS_USER(sock_net(sk),
756 					   UDP_MIB_SNDBUFERRORS, is_udplite);
757 			err = 0;
758 		}
759 	} else
760 		UDP_INC_STATS_USER(sock_net(sk),
761 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
762 	return err;
763 }
764 
765 /*
766  * Push out all pending data as one UDP datagram. Socket is locked.
767  */
768 static int udp_push_pending_frames(struct sock *sk)
769 {
770 	struct udp_sock  *up = udp_sk(sk);
771 	struct inet_sock *inet = inet_sk(sk);
772 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
773 	struct sk_buff *skb;
774 	int err = 0;
775 
776 	skb = ip_finish_skb(sk, fl4);
777 	if (!skb)
778 		goto out;
779 
780 	err = udp_send_skb(skb, fl4);
781 
782 out:
783 	up->len = 0;
784 	up->pending = 0;
785 	return err;
786 }
787 
788 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
789 		size_t len)
790 {
791 	struct inet_sock *inet = inet_sk(sk);
792 	struct udp_sock *up = udp_sk(sk);
793 	struct flowi4 fl4_stack;
794 	struct flowi4 *fl4;
795 	int ulen = len;
796 	struct ipcm_cookie ipc;
797 	struct rtable *rt = NULL;
798 	int free = 0;
799 	int connected = 0;
800 	__be32 daddr, faddr, saddr;
801 	__be16 dport;
802 	u8  tos;
803 	int err, is_udplite = IS_UDPLITE(sk);
804 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
805 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
806 	struct sk_buff *skb;
807 	struct ip_options_data opt_copy;
808 
809 	if (len > 0xFFFF)
810 		return -EMSGSIZE;
811 
812 	/*
813 	 *	Check the flags.
814 	 */
815 
816 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
817 		return -EOPNOTSUPP;
818 
819 	ipc.opt = NULL;
820 	ipc.tx_flags = 0;
821 
822 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
823 
824 	fl4 = &inet->cork.fl.u.ip4;
825 	if (up->pending) {
826 		/*
827 		 * There are pending frames.
828 		 * The socket lock must be held while it's corked.
829 		 */
830 		lock_sock(sk);
831 		if (likely(up->pending)) {
832 			if (unlikely(up->pending != AF_INET)) {
833 				release_sock(sk);
834 				return -EINVAL;
835 			}
836 			goto do_append_data;
837 		}
838 		release_sock(sk);
839 	}
840 	ulen += sizeof(struct udphdr);
841 
842 	/*
843 	 *	Get and verify the address.
844 	 */
845 	if (msg->msg_name) {
846 		struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
847 		if (msg->msg_namelen < sizeof(*usin))
848 			return -EINVAL;
849 		if (usin->sin_family != AF_INET) {
850 			if (usin->sin_family != AF_UNSPEC)
851 				return -EAFNOSUPPORT;
852 		}
853 
854 		daddr = usin->sin_addr.s_addr;
855 		dport = usin->sin_port;
856 		if (dport == 0)
857 			return -EINVAL;
858 	} else {
859 		if (sk->sk_state != TCP_ESTABLISHED)
860 			return -EDESTADDRREQ;
861 		daddr = inet->inet_daddr;
862 		dport = inet->inet_dport;
863 		/* Open fast path for connected socket.
864 		   Route will not be used, if at least one option is set.
865 		 */
866 		connected = 1;
867 	}
868 	ipc.addr = inet->inet_saddr;
869 
870 	ipc.oif = sk->sk_bound_dev_if;
871 	err = sock_tx_timestamp(sk, &ipc.tx_flags);
872 	if (err)
873 		return err;
874 	if (msg->msg_controllen) {
875 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
876 		if (err)
877 			return err;
878 		if (ipc.opt)
879 			free = 1;
880 		connected = 0;
881 	}
882 	if (!ipc.opt) {
883 		struct ip_options_rcu *inet_opt;
884 
885 		rcu_read_lock();
886 		inet_opt = rcu_dereference(inet->inet_opt);
887 		if (inet_opt) {
888 			memcpy(&opt_copy, inet_opt,
889 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
890 			ipc.opt = &opt_copy.opt;
891 		}
892 		rcu_read_unlock();
893 	}
894 
895 	saddr = ipc.addr;
896 	ipc.addr = faddr = daddr;
897 
898 	if (ipc.opt && ipc.opt->opt.srr) {
899 		if (!daddr)
900 			return -EINVAL;
901 		faddr = ipc.opt->opt.faddr;
902 		connected = 0;
903 	}
904 	tos = RT_TOS(inet->tos);
905 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
906 	    (msg->msg_flags & MSG_DONTROUTE) ||
907 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
908 		tos |= RTO_ONLINK;
909 		connected = 0;
910 	}
911 
912 	if (ipv4_is_multicast(daddr)) {
913 		if (!ipc.oif)
914 			ipc.oif = inet->mc_index;
915 		if (!saddr)
916 			saddr = inet->mc_addr;
917 		connected = 0;
918 	}
919 
920 	if (connected)
921 		rt = (struct rtable *)sk_dst_check(sk, 0);
922 
923 	if (rt == NULL) {
924 		struct net *net = sock_net(sk);
925 
926 		fl4 = &fl4_stack;
927 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
928 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
929 				   inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
930 				   faddr, saddr, dport, inet->inet_sport);
931 
932 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
933 		rt = ip_route_output_flow(net, fl4, sk);
934 		if (IS_ERR(rt)) {
935 			err = PTR_ERR(rt);
936 			rt = NULL;
937 			if (err == -ENETUNREACH)
938 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
939 			goto out;
940 		}
941 
942 		err = -EACCES;
943 		if ((rt->rt_flags & RTCF_BROADCAST) &&
944 		    !sock_flag(sk, SOCK_BROADCAST))
945 			goto out;
946 		if (connected)
947 			sk_dst_set(sk, dst_clone(&rt->dst));
948 	}
949 
950 	if (msg->msg_flags&MSG_CONFIRM)
951 		goto do_confirm;
952 back_from_confirm:
953 
954 	saddr = fl4->saddr;
955 	if (!ipc.addr)
956 		daddr = ipc.addr = fl4->daddr;
957 
958 	/* Lockless fast path for the non-corking case. */
959 	if (!corkreq) {
960 		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
961 				  sizeof(struct udphdr), &ipc, &rt,
962 				  msg->msg_flags);
963 		err = PTR_ERR(skb);
964 		if (skb && !IS_ERR(skb))
965 			err = udp_send_skb(skb, fl4);
966 		goto out;
967 	}
968 
969 	lock_sock(sk);
970 	if (unlikely(up->pending)) {
971 		/* The socket is already corked while preparing it. */
972 		/* ... which is an evident application bug. --ANK */
973 		release_sock(sk);
974 
975 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
976 		err = -EINVAL;
977 		goto out;
978 	}
979 	/*
980 	 *	Now cork the socket to pend data.
981 	 */
982 	fl4 = &inet->cork.fl.u.ip4;
983 	fl4->daddr = daddr;
984 	fl4->saddr = saddr;
985 	fl4->fl4_dport = dport;
986 	fl4->fl4_sport = inet->inet_sport;
987 	up->pending = AF_INET;
988 
989 do_append_data:
990 	up->len += ulen;
991 	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
992 			     sizeof(struct udphdr), &ipc, &rt,
993 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
994 	if (err)
995 		udp_flush_pending_frames(sk);
996 	else if (!corkreq)
997 		err = udp_push_pending_frames(sk);
998 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
999 		up->pending = 0;
1000 	release_sock(sk);
1001 
1002 out:
1003 	ip_rt_put(rt);
1004 	if (free)
1005 		kfree(ipc.opt);
1006 	if (!err)
1007 		return len;
1008 	/*
1009 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1010 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1011 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1012 	 * things).  We could add another new stat but at least for now that
1013 	 * seems like overkill.
1014 	 */
1015 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1016 		UDP_INC_STATS_USER(sock_net(sk),
1017 				UDP_MIB_SNDBUFERRORS, is_udplite);
1018 	}
1019 	return err;
1020 
1021 do_confirm:
1022 	dst_confirm(&rt->dst);
1023 	if (!(msg->msg_flags&MSG_PROBE) || len)
1024 		goto back_from_confirm;
1025 	err = 0;
1026 	goto out;
1027 }
1028 EXPORT_SYMBOL(udp_sendmsg);
1029 
1030 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1031 		 size_t size, int flags)
1032 {
1033 	struct inet_sock *inet = inet_sk(sk);
1034 	struct udp_sock *up = udp_sk(sk);
1035 	int ret;
1036 
1037 	if (!up->pending) {
1038 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1039 
1040 		/* Call udp_sendmsg to specify destination address which
1041 		 * sendpage interface can't pass.
1042 		 * This will succeed only when the socket is connected.
1043 		 */
1044 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1045 		if (ret < 0)
1046 			return ret;
1047 	}
1048 
1049 	lock_sock(sk);
1050 
1051 	if (unlikely(!up->pending)) {
1052 		release_sock(sk);
1053 
1054 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
1055 		return -EINVAL;
1056 	}
1057 
1058 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1059 			     page, offset, size, flags);
1060 	if (ret == -EOPNOTSUPP) {
1061 		release_sock(sk);
1062 		return sock_no_sendpage(sk->sk_socket, page, offset,
1063 					size, flags);
1064 	}
1065 	if (ret < 0) {
1066 		udp_flush_pending_frames(sk);
1067 		goto out;
1068 	}
1069 
1070 	up->len += size;
1071 	if (!(up->corkflag || (flags&MSG_MORE)))
1072 		ret = udp_push_pending_frames(sk);
1073 	if (!ret)
1074 		ret = size;
1075 out:
1076 	release_sock(sk);
1077 	return ret;
1078 }
1079 
1080 
1081 /**
1082  *	first_packet_length	- return length of first packet in receive queue
1083  *	@sk: socket
1084  *
1085  *	Drops all bad checksum frames, until a valid one is found.
1086  *	Returns the length of found skb, or 0 if none is found.
1087  */
1088 static unsigned int first_packet_length(struct sock *sk)
1089 {
1090 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1091 	struct sk_buff *skb;
1092 	unsigned int res;
1093 
1094 	__skb_queue_head_init(&list_kill);
1095 
1096 	spin_lock_bh(&rcvq->lock);
1097 	while ((skb = skb_peek(rcvq)) != NULL &&
1098 		udp_lib_checksum_complete(skb)) {
1099 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1100 				 IS_UDPLITE(sk));
1101 		atomic_inc(&sk->sk_drops);
1102 		__skb_unlink(skb, rcvq);
1103 		__skb_queue_tail(&list_kill, skb);
1104 	}
1105 	res = skb ? skb->len : 0;
1106 	spin_unlock_bh(&rcvq->lock);
1107 
1108 	if (!skb_queue_empty(&list_kill)) {
1109 		bool slow = lock_sock_fast(sk);
1110 
1111 		__skb_queue_purge(&list_kill);
1112 		sk_mem_reclaim_partial(sk);
1113 		unlock_sock_fast(sk, slow);
1114 	}
1115 	return res;
1116 }
1117 
1118 /*
1119  *	IOCTL requests applicable to the UDP protocol
1120  */
1121 
1122 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1123 {
1124 	switch (cmd) {
1125 	case SIOCOUTQ:
1126 	{
1127 		int amount = sk_wmem_alloc_get(sk);
1128 
1129 		return put_user(amount, (int __user *)arg);
1130 	}
1131 
1132 	case SIOCINQ:
1133 	{
1134 		unsigned int amount = first_packet_length(sk);
1135 
1136 		if (amount)
1137 			/*
1138 			 * We will only return the amount
1139 			 * of this packet since that is all
1140 			 * that will be read.
1141 			 */
1142 			amount -= sizeof(struct udphdr);
1143 
1144 		return put_user(amount, (int __user *)arg);
1145 	}
1146 
1147 	default:
1148 		return -ENOIOCTLCMD;
1149 	}
1150 
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL(udp_ioctl);
1154 
1155 /*
1156  * 	This should be easy, if there is something there we
1157  * 	return it, otherwise we block.
1158  */
1159 
1160 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1161 		size_t len, int noblock, int flags, int *addr_len)
1162 {
1163 	struct inet_sock *inet = inet_sk(sk);
1164 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1165 	struct sk_buff *skb;
1166 	unsigned int ulen;
1167 	int peeked;
1168 	int err;
1169 	int is_udplite = IS_UDPLITE(sk);
1170 	bool slow;
1171 
1172 	/*
1173 	 *	Check any passed addresses
1174 	 */
1175 	if (addr_len)
1176 		*addr_len = sizeof(*sin);
1177 
1178 	if (flags & MSG_ERRQUEUE)
1179 		return ip_recv_error(sk, msg, len);
1180 
1181 try_again:
1182 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1183 				  &peeked, &err);
1184 	if (!skb)
1185 		goto out;
1186 
1187 	ulen = skb->len - sizeof(struct udphdr);
1188 	if (len > ulen)
1189 		len = ulen;
1190 	else if (len < ulen)
1191 		msg->msg_flags |= MSG_TRUNC;
1192 
1193 	/*
1194 	 * If checksum is needed at all, try to do it while copying the
1195 	 * data.  If the data is truncated, or if we only want a partial
1196 	 * coverage checksum (UDP-Lite), do it before the copy.
1197 	 */
1198 
1199 	if (len < ulen || UDP_SKB_CB(skb)->partial_cov) {
1200 		if (udp_lib_checksum_complete(skb))
1201 			goto csum_copy_err;
1202 	}
1203 
1204 	if (skb_csum_unnecessary(skb))
1205 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1206 					      msg->msg_iov, len);
1207 	else {
1208 		err = skb_copy_and_csum_datagram_iovec(skb,
1209 						       sizeof(struct udphdr),
1210 						       msg->msg_iov);
1211 
1212 		if (err == -EINVAL)
1213 			goto csum_copy_err;
1214 	}
1215 
1216 	if (err)
1217 		goto out_free;
1218 
1219 	if (!peeked)
1220 		UDP_INC_STATS_USER(sock_net(sk),
1221 				UDP_MIB_INDATAGRAMS, is_udplite);
1222 
1223 	sock_recv_ts_and_drops(msg, sk, skb);
1224 
1225 	/* Copy the address. */
1226 	if (sin) {
1227 		sin->sin_family = AF_INET;
1228 		sin->sin_port = udp_hdr(skb)->source;
1229 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1230 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1231 	}
1232 	if (inet->cmsg_flags)
1233 		ip_cmsg_recv(msg, skb);
1234 
1235 	err = len;
1236 	if (flags & MSG_TRUNC)
1237 		err = ulen;
1238 
1239 out_free:
1240 	skb_free_datagram_locked(sk, skb);
1241 out:
1242 	return err;
1243 
1244 csum_copy_err:
1245 	slow = lock_sock_fast(sk);
1246 	if (!skb_kill_datagram(sk, skb, flags))
1247 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1248 	unlock_sock_fast(sk, slow);
1249 
1250 	if (noblock)
1251 		return -EAGAIN;
1252 
1253 	/* starting over for a new packet */
1254 	msg->msg_flags &= ~MSG_TRUNC;
1255 	goto try_again;
1256 }
1257 
1258 
1259 int udp_disconnect(struct sock *sk, int flags)
1260 {
1261 	struct inet_sock *inet = inet_sk(sk);
1262 	/*
1263 	 *	1003.1g - break association.
1264 	 */
1265 
1266 	sk->sk_state = TCP_CLOSE;
1267 	inet->inet_daddr = 0;
1268 	inet->inet_dport = 0;
1269 	sock_rps_save_rxhash(sk, 0);
1270 	sk->sk_bound_dev_if = 0;
1271 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1272 		inet_reset_saddr(sk);
1273 
1274 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1275 		sk->sk_prot->unhash(sk);
1276 		inet->inet_sport = 0;
1277 	}
1278 	sk_dst_reset(sk);
1279 	return 0;
1280 }
1281 EXPORT_SYMBOL(udp_disconnect);
1282 
1283 void udp_lib_unhash(struct sock *sk)
1284 {
1285 	if (sk_hashed(sk)) {
1286 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1287 		struct udp_hslot *hslot, *hslot2;
1288 
1289 		hslot  = udp_hashslot(udptable, sock_net(sk),
1290 				      udp_sk(sk)->udp_port_hash);
1291 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1292 
1293 		spin_lock_bh(&hslot->lock);
1294 		if (sk_nulls_del_node_init_rcu(sk)) {
1295 			hslot->count--;
1296 			inet_sk(sk)->inet_num = 0;
1297 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1298 
1299 			spin_lock(&hslot2->lock);
1300 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1301 			hslot2->count--;
1302 			spin_unlock(&hslot2->lock);
1303 		}
1304 		spin_unlock_bh(&hslot->lock);
1305 	}
1306 }
1307 EXPORT_SYMBOL(udp_lib_unhash);
1308 
1309 /*
1310  * inet_rcv_saddr was changed, we must rehash secondary hash
1311  */
1312 void udp_lib_rehash(struct sock *sk, u16 newhash)
1313 {
1314 	if (sk_hashed(sk)) {
1315 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1316 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1317 
1318 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1319 		nhslot2 = udp_hashslot2(udptable, newhash);
1320 		udp_sk(sk)->udp_portaddr_hash = newhash;
1321 		if (hslot2 != nhslot2) {
1322 			hslot = udp_hashslot(udptable, sock_net(sk),
1323 					     udp_sk(sk)->udp_port_hash);
1324 			/* we must lock primary chain too */
1325 			spin_lock_bh(&hslot->lock);
1326 
1327 			spin_lock(&hslot2->lock);
1328 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1329 			hslot2->count--;
1330 			spin_unlock(&hslot2->lock);
1331 
1332 			spin_lock(&nhslot2->lock);
1333 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1334 						 &nhslot2->head);
1335 			nhslot2->count++;
1336 			spin_unlock(&nhslot2->lock);
1337 
1338 			spin_unlock_bh(&hslot->lock);
1339 		}
1340 	}
1341 }
1342 EXPORT_SYMBOL(udp_lib_rehash);
1343 
1344 static void udp_v4_rehash(struct sock *sk)
1345 {
1346 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1347 					  inet_sk(sk)->inet_rcv_saddr,
1348 					  inet_sk(sk)->inet_num);
1349 	udp_lib_rehash(sk, new_hash);
1350 }
1351 
1352 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1353 {
1354 	int rc;
1355 
1356 	if (inet_sk(sk)->inet_daddr)
1357 		sock_rps_save_rxhash(sk, skb->rxhash);
1358 
1359 	rc = ip_queue_rcv_skb(sk, skb);
1360 	if (rc < 0) {
1361 		int is_udplite = IS_UDPLITE(sk);
1362 
1363 		/* Note that an ENOMEM error is charged twice */
1364 		if (rc == -ENOMEM)
1365 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1366 					 is_udplite);
1367 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1368 		kfree_skb(skb);
1369 		return -1;
1370 	}
1371 
1372 	return 0;
1373 
1374 }
1375 
1376 /* returns:
1377  *  -1: error
1378  *   0: success
1379  *  >0: "udp encap" protocol resubmission
1380  *
1381  * Note that in the success and error cases, the skb is assumed to
1382  * have either been requeued or freed.
1383  */
1384 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1385 {
1386 	struct udp_sock *up = udp_sk(sk);
1387 	int rc;
1388 	int is_udplite = IS_UDPLITE(sk);
1389 
1390 	/*
1391 	 *	Charge it to the socket, dropping if the queue is full.
1392 	 */
1393 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1394 		goto drop;
1395 	nf_reset(skb);
1396 
1397 	if (up->encap_type) {
1398 		/*
1399 		 * This is an encapsulation socket so pass the skb to
1400 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1401 		 * fall through and pass this up the UDP socket.
1402 		 * up->encap_rcv() returns the following value:
1403 		 * =0 if skb was successfully passed to the encap
1404 		 *    handler or was discarded by it.
1405 		 * >0 if skb should be passed on to UDP.
1406 		 * <0 if skb should be resubmitted as proto -N
1407 		 */
1408 
1409 		/* if we're overly short, let UDP handle it */
1410 		if (skb->len > sizeof(struct udphdr) &&
1411 		    up->encap_rcv != NULL) {
1412 			int ret;
1413 
1414 			ret = (*up->encap_rcv)(sk, skb);
1415 			if (ret <= 0) {
1416 				UDP_INC_STATS_BH(sock_net(sk),
1417 						 UDP_MIB_INDATAGRAMS,
1418 						 is_udplite);
1419 				return -ret;
1420 			}
1421 		}
1422 
1423 		/* FALLTHROUGH -- it's a UDP Packet */
1424 	}
1425 
1426 	/*
1427 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1428 	 */
1429 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1430 
1431 		/*
1432 		 * MIB statistics other than incrementing the error count are
1433 		 * disabled for the following two types of errors: these depend
1434 		 * on the application settings, not on the functioning of the
1435 		 * protocol stack as such.
1436 		 *
1437 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1438 		 * way ... to ... at least let the receiving application block
1439 		 * delivery of packets with coverage values less than a value
1440 		 * provided by the application."
1441 		 */
1442 		if (up->pcrlen == 0) {          /* full coverage was set  */
1443 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1444 				"%d while full coverage %d requested\n",
1445 				UDP_SKB_CB(skb)->cscov, skb->len);
1446 			goto drop;
1447 		}
1448 		/* The next case involves violating the min. coverage requested
1449 		 * by the receiver. This is subtle: if receiver wants x and x is
1450 		 * greater than the buffersize/MTU then receiver will complain
1451 		 * that it wants x while sender emits packets of smaller size y.
1452 		 * Therefore the above ...()->partial_cov statement is essential.
1453 		 */
1454 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1455 			LIMIT_NETDEBUG(KERN_WARNING
1456 				"UDPLITE: coverage %d too small, need min %d\n",
1457 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1458 			goto drop;
1459 		}
1460 	}
1461 
1462 	if (rcu_dereference_raw(sk->sk_filter)) {
1463 		if (udp_lib_checksum_complete(skb))
1464 			goto drop;
1465 	}
1466 
1467 
1468 	if (sk_rcvqueues_full(sk, skb))
1469 		goto drop;
1470 
1471 	rc = 0;
1472 
1473 	bh_lock_sock(sk);
1474 	if (!sock_owned_by_user(sk))
1475 		rc = __udp_queue_rcv_skb(sk, skb);
1476 	else if (sk_add_backlog(sk, skb)) {
1477 		bh_unlock_sock(sk);
1478 		goto drop;
1479 	}
1480 	bh_unlock_sock(sk);
1481 
1482 	return rc;
1483 
1484 drop:
1485 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1486 	atomic_inc(&sk->sk_drops);
1487 	kfree_skb(skb);
1488 	return -1;
1489 }
1490 
1491 
1492 static void flush_stack(struct sock **stack, unsigned int count,
1493 			struct sk_buff *skb, unsigned int final)
1494 {
1495 	unsigned int i;
1496 	struct sk_buff *skb1 = NULL;
1497 	struct sock *sk;
1498 
1499 	for (i = 0; i < count; i++) {
1500 		sk = stack[i];
1501 		if (likely(skb1 == NULL))
1502 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1503 
1504 		if (!skb1) {
1505 			atomic_inc(&sk->sk_drops);
1506 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1507 					 IS_UDPLITE(sk));
1508 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1509 					 IS_UDPLITE(sk));
1510 		}
1511 
1512 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1513 			skb1 = NULL;
1514 	}
1515 	if (unlikely(skb1))
1516 		kfree_skb(skb1);
1517 }
1518 
1519 /*
1520  *	Multicasts and broadcasts go to each listener.
1521  *
1522  *	Note: called only from the BH handler context.
1523  */
1524 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1525 				    struct udphdr  *uh,
1526 				    __be32 saddr, __be32 daddr,
1527 				    struct udp_table *udptable)
1528 {
1529 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1530 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1531 	int dif;
1532 	unsigned int i, count = 0;
1533 
1534 	spin_lock(&hslot->lock);
1535 	sk = sk_nulls_head(&hslot->head);
1536 	dif = skb->dev->ifindex;
1537 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1538 	while (sk) {
1539 		stack[count++] = sk;
1540 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1541 				       daddr, uh->source, saddr, dif);
1542 		if (unlikely(count == ARRAY_SIZE(stack))) {
1543 			if (!sk)
1544 				break;
1545 			flush_stack(stack, count, skb, ~0);
1546 			count = 0;
1547 		}
1548 	}
1549 	/*
1550 	 * before releasing chain lock, we must take a reference on sockets
1551 	 */
1552 	for (i = 0; i < count; i++)
1553 		sock_hold(stack[i]);
1554 
1555 	spin_unlock(&hslot->lock);
1556 
1557 	/*
1558 	 * do the slow work with no lock held
1559 	 */
1560 	if (count) {
1561 		flush_stack(stack, count, skb, count - 1);
1562 
1563 		for (i = 0; i < count; i++)
1564 			sock_put(stack[i]);
1565 	} else {
1566 		kfree_skb(skb);
1567 	}
1568 	return 0;
1569 }
1570 
1571 /* Initialize UDP checksum. If exited with zero value (success),
1572  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1573  * Otherwise, csum completion requires chacksumming packet body,
1574  * including udp header and folding it to skb->csum.
1575  */
1576 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1577 				 int proto)
1578 {
1579 	const struct iphdr *iph;
1580 	int err;
1581 
1582 	UDP_SKB_CB(skb)->partial_cov = 0;
1583 	UDP_SKB_CB(skb)->cscov = skb->len;
1584 
1585 	if (proto == IPPROTO_UDPLITE) {
1586 		err = udplite_checksum_init(skb, uh);
1587 		if (err)
1588 			return err;
1589 	}
1590 
1591 	iph = ip_hdr(skb);
1592 	if (uh->check == 0) {
1593 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1594 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1595 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1596 				      proto, skb->csum))
1597 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1598 	}
1599 	if (!skb_csum_unnecessary(skb))
1600 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1601 					       skb->len, proto, 0);
1602 	/* Probably, we should checksum udp header (it should be in cache
1603 	 * in any case) and data in tiny packets (< rx copybreak).
1604 	 */
1605 
1606 	return 0;
1607 }
1608 
1609 /*
1610  *	All we need to do is get the socket, and then do a checksum.
1611  */
1612 
1613 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1614 		   int proto)
1615 {
1616 	struct sock *sk;
1617 	struct udphdr *uh;
1618 	unsigned short ulen;
1619 	struct rtable *rt = skb_rtable(skb);
1620 	__be32 saddr, daddr;
1621 	struct net *net = dev_net(skb->dev);
1622 
1623 	/*
1624 	 *  Validate the packet.
1625 	 */
1626 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1627 		goto drop;		/* No space for header. */
1628 
1629 	uh   = udp_hdr(skb);
1630 	ulen = ntohs(uh->len);
1631 	saddr = ip_hdr(skb)->saddr;
1632 	daddr = ip_hdr(skb)->daddr;
1633 
1634 	if (ulen > skb->len)
1635 		goto short_packet;
1636 
1637 	if (proto == IPPROTO_UDP) {
1638 		/* UDP validates ulen. */
1639 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1640 			goto short_packet;
1641 		uh = udp_hdr(skb);
1642 	}
1643 
1644 	if (udp4_csum_init(skb, uh, proto))
1645 		goto csum_error;
1646 
1647 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1648 		return __udp4_lib_mcast_deliver(net, skb, uh,
1649 				saddr, daddr, udptable);
1650 
1651 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1652 
1653 	if (sk != NULL) {
1654 		int ret = udp_queue_rcv_skb(sk, skb);
1655 		sock_put(sk);
1656 
1657 		/* a return value > 0 means to resubmit the input, but
1658 		 * it wants the return to be -protocol, or 0
1659 		 */
1660 		if (ret > 0)
1661 			return -ret;
1662 		return 0;
1663 	}
1664 
1665 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1666 		goto drop;
1667 	nf_reset(skb);
1668 
1669 	/* No socket. Drop packet silently, if checksum is wrong */
1670 	if (udp_lib_checksum_complete(skb))
1671 		goto csum_error;
1672 
1673 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1674 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1675 
1676 	/*
1677 	 * Hmm.  We got an UDP packet to a port to which we
1678 	 * don't wanna listen.  Ignore it.
1679 	 */
1680 	kfree_skb(skb);
1681 	return 0;
1682 
1683 short_packet:
1684 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1685 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1686 		       &saddr,
1687 		       ntohs(uh->source),
1688 		       ulen,
1689 		       skb->len,
1690 		       &daddr,
1691 		       ntohs(uh->dest));
1692 	goto drop;
1693 
1694 csum_error:
1695 	/*
1696 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1697 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1698 	 */
1699 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1700 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1701 		       &saddr,
1702 		       ntohs(uh->source),
1703 		       &daddr,
1704 		       ntohs(uh->dest),
1705 		       ulen);
1706 drop:
1707 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1708 	kfree_skb(skb);
1709 	return 0;
1710 }
1711 
1712 int udp_rcv(struct sk_buff *skb)
1713 {
1714 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1715 }
1716 
1717 void udp_destroy_sock(struct sock *sk)
1718 {
1719 	bool slow = lock_sock_fast(sk);
1720 	udp_flush_pending_frames(sk);
1721 	unlock_sock_fast(sk, slow);
1722 }
1723 
1724 /*
1725  *	Socket option code for UDP
1726  */
1727 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1728 		       char __user *optval, unsigned int optlen,
1729 		       int (*push_pending_frames)(struct sock *))
1730 {
1731 	struct udp_sock *up = udp_sk(sk);
1732 	int val;
1733 	int err = 0;
1734 	int is_udplite = IS_UDPLITE(sk);
1735 
1736 	if (optlen < sizeof(int))
1737 		return -EINVAL;
1738 
1739 	if (get_user(val, (int __user *)optval))
1740 		return -EFAULT;
1741 
1742 	switch (optname) {
1743 	case UDP_CORK:
1744 		if (val != 0) {
1745 			up->corkflag = 1;
1746 		} else {
1747 			up->corkflag = 0;
1748 			lock_sock(sk);
1749 			(*push_pending_frames)(sk);
1750 			release_sock(sk);
1751 		}
1752 		break;
1753 
1754 	case UDP_ENCAP:
1755 		switch (val) {
1756 		case 0:
1757 		case UDP_ENCAP_ESPINUDP:
1758 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1759 			up->encap_rcv = xfrm4_udp_encap_rcv;
1760 			/* FALLTHROUGH */
1761 		case UDP_ENCAP_L2TPINUDP:
1762 			up->encap_type = val;
1763 			break;
1764 		default:
1765 			err = -ENOPROTOOPT;
1766 			break;
1767 		}
1768 		break;
1769 
1770 	/*
1771 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1772 	 */
1773 	/* The sender sets actual checksum coverage length via this option.
1774 	 * The case coverage > packet length is handled by send module. */
1775 	case UDPLITE_SEND_CSCOV:
1776 		if (!is_udplite)         /* Disable the option on UDP sockets */
1777 			return -ENOPROTOOPT;
1778 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1779 			val = 8;
1780 		else if (val > USHRT_MAX)
1781 			val = USHRT_MAX;
1782 		up->pcslen = val;
1783 		up->pcflag |= UDPLITE_SEND_CC;
1784 		break;
1785 
1786 	/* The receiver specifies a minimum checksum coverage value. To make
1787 	 * sense, this should be set to at least 8 (as done below). If zero is
1788 	 * used, this again means full checksum coverage.                     */
1789 	case UDPLITE_RECV_CSCOV:
1790 		if (!is_udplite)         /* Disable the option on UDP sockets */
1791 			return -ENOPROTOOPT;
1792 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1793 			val = 8;
1794 		else if (val > USHRT_MAX)
1795 			val = USHRT_MAX;
1796 		up->pcrlen = val;
1797 		up->pcflag |= UDPLITE_RECV_CC;
1798 		break;
1799 
1800 	default:
1801 		err = -ENOPROTOOPT;
1802 		break;
1803 	}
1804 
1805 	return err;
1806 }
1807 EXPORT_SYMBOL(udp_lib_setsockopt);
1808 
1809 int udp_setsockopt(struct sock *sk, int level, int optname,
1810 		   char __user *optval, unsigned int optlen)
1811 {
1812 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1813 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1814 					  udp_push_pending_frames);
1815 	return ip_setsockopt(sk, level, optname, optval, optlen);
1816 }
1817 
1818 #ifdef CONFIG_COMPAT
1819 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1820 			  char __user *optval, unsigned int optlen)
1821 {
1822 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1823 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1824 					  udp_push_pending_frames);
1825 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1826 }
1827 #endif
1828 
1829 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1830 		       char __user *optval, int __user *optlen)
1831 {
1832 	struct udp_sock *up = udp_sk(sk);
1833 	int val, len;
1834 
1835 	if (get_user(len, optlen))
1836 		return -EFAULT;
1837 
1838 	len = min_t(unsigned int, len, sizeof(int));
1839 
1840 	if (len < 0)
1841 		return -EINVAL;
1842 
1843 	switch (optname) {
1844 	case UDP_CORK:
1845 		val = up->corkflag;
1846 		break;
1847 
1848 	case UDP_ENCAP:
1849 		val = up->encap_type;
1850 		break;
1851 
1852 	/* The following two cannot be changed on UDP sockets, the return is
1853 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1854 	case UDPLITE_SEND_CSCOV:
1855 		val = up->pcslen;
1856 		break;
1857 
1858 	case UDPLITE_RECV_CSCOV:
1859 		val = up->pcrlen;
1860 		break;
1861 
1862 	default:
1863 		return -ENOPROTOOPT;
1864 	}
1865 
1866 	if (put_user(len, optlen))
1867 		return -EFAULT;
1868 	if (copy_to_user(optval, &val, len))
1869 		return -EFAULT;
1870 	return 0;
1871 }
1872 EXPORT_SYMBOL(udp_lib_getsockopt);
1873 
1874 int udp_getsockopt(struct sock *sk, int level, int optname,
1875 		   char __user *optval, int __user *optlen)
1876 {
1877 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1878 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1879 	return ip_getsockopt(sk, level, optname, optval, optlen);
1880 }
1881 
1882 #ifdef CONFIG_COMPAT
1883 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1884 				 char __user *optval, int __user *optlen)
1885 {
1886 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1887 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1888 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1889 }
1890 #endif
1891 /**
1892  * 	udp_poll - wait for a UDP event.
1893  *	@file - file struct
1894  *	@sock - socket
1895  *	@wait - poll table
1896  *
1897  *	This is same as datagram poll, except for the special case of
1898  *	blocking sockets. If application is using a blocking fd
1899  *	and a packet with checksum error is in the queue;
1900  *	then it could get return from select indicating data available
1901  *	but then block when reading it. Add special case code
1902  *	to work around these arguably broken applications.
1903  */
1904 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1905 {
1906 	unsigned int mask = datagram_poll(file, sock, wait);
1907 	struct sock *sk = sock->sk;
1908 
1909 	/* Check for false positives due to checksum errors */
1910 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1911 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1912 		mask &= ~(POLLIN | POLLRDNORM);
1913 
1914 	return mask;
1915 
1916 }
1917 EXPORT_SYMBOL(udp_poll);
1918 
1919 struct proto udp_prot = {
1920 	.name		   = "UDP",
1921 	.owner		   = THIS_MODULE,
1922 	.close		   = udp_lib_close,
1923 	.connect	   = ip4_datagram_connect,
1924 	.disconnect	   = udp_disconnect,
1925 	.ioctl		   = udp_ioctl,
1926 	.destroy	   = udp_destroy_sock,
1927 	.setsockopt	   = udp_setsockopt,
1928 	.getsockopt	   = udp_getsockopt,
1929 	.sendmsg	   = udp_sendmsg,
1930 	.recvmsg	   = udp_recvmsg,
1931 	.sendpage	   = udp_sendpage,
1932 	.backlog_rcv	   = __udp_queue_rcv_skb,
1933 	.hash		   = udp_lib_hash,
1934 	.unhash		   = udp_lib_unhash,
1935 	.rehash		   = udp_v4_rehash,
1936 	.get_port	   = udp_v4_get_port,
1937 	.memory_allocated  = &udp_memory_allocated,
1938 	.sysctl_mem	   = sysctl_udp_mem,
1939 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1940 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1941 	.obj_size	   = sizeof(struct udp_sock),
1942 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
1943 	.h.udp_table	   = &udp_table,
1944 #ifdef CONFIG_COMPAT
1945 	.compat_setsockopt = compat_udp_setsockopt,
1946 	.compat_getsockopt = compat_udp_getsockopt,
1947 #endif
1948 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
1949 };
1950 EXPORT_SYMBOL(udp_prot);
1951 
1952 /* ------------------------------------------------------------------------ */
1953 #ifdef CONFIG_PROC_FS
1954 
1955 static struct sock *udp_get_first(struct seq_file *seq, int start)
1956 {
1957 	struct sock *sk;
1958 	struct udp_iter_state *state = seq->private;
1959 	struct net *net = seq_file_net(seq);
1960 
1961 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
1962 	     ++state->bucket) {
1963 		struct hlist_nulls_node *node;
1964 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1965 
1966 		if (hlist_nulls_empty(&hslot->head))
1967 			continue;
1968 
1969 		spin_lock_bh(&hslot->lock);
1970 		sk_nulls_for_each(sk, node, &hslot->head) {
1971 			if (!net_eq(sock_net(sk), net))
1972 				continue;
1973 			if (sk->sk_family == state->family)
1974 				goto found;
1975 		}
1976 		spin_unlock_bh(&hslot->lock);
1977 	}
1978 	sk = NULL;
1979 found:
1980 	return sk;
1981 }
1982 
1983 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1984 {
1985 	struct udp_iter_state *state = seq->private;
1986 	struct net *net = seq_file_net(seq);
1987 
1988 	do {
1989 		sk = sk_nulls_next(sk);
1990 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1991 
1992 	if (!sk) {
1993 		if (state->bucket <= state->udp_table->mask)
1994 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1995 		return udp_get_first(seq, state->bucket + 1);
1996 	}
1997 	return sk;
1998 }
1999 
2000 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2001 {
2002 	struct sock *sk = udp_get_first(seq, 0);
2003 
2004 	if (sk)
2005 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2006 			--pos;
2007 	return pos ? NULL : sk;
2008 }
2009 
2010 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2011 {
2012 	struct udp_iter_state *state = seq->private;
2013 	state->bucket = MAX_UDP_PORTS;
2014 
2015 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2016 }
2017 
2018 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2019 {
2020 	struct sock *sk;
2021 
2022 	if (v == SEQ_START_TOKEN)
2023 		sk = udp_get_idx(seq, 0);
2024 	else
2025 		sk = udp_get_next(seq, v);
2026 
2027 	++*pos;
2028 	return sk;
2029 }
2030 
2031 static void udp_seq_stop(struct seq_file *seq, void *v)
2032 {
2033 	struct udp_iter_state *state = seq->private;
2034 
2035 	if (state->bucket <= state->udp_table->mask)
2036 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2037 }
2038 
2039 static int udp_seq_open(struct inode *inode, struct file *file)
2040 {
2041 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
2042 	struct udp_iter_state *s;
2043 	int err;
2044 
2045 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2046 			   sizeof(struct udp_iter_state));
2047 	if (err < 0)
2048 		return err;
2049 
2050 	s = ((struct seq_file *)file->private_data)->private;
2051 	s->family		= afinfo->family;
2052 	s->udp_table		= afinfo->udp_table;
2053 	return err;
2054 }
2055 
2056 /* ------------------------------------------------------------------------ */
2057 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2058 {
2059 	struct proc_dir_entry *p;
2060 	int rc = 0;
2061 
2062 	afinfo->seq_fops.open		= udp_seq_open;
2063 	afinfo->seq_fops.read		= seq_read;
2064 	afinfo->seq_fops.llseek		= seq_lseek;
2065 	afinfo->seq_fops.release	= seq_release_net;
2066 
2067 	afinfo->seq_ops.start		= udp_seq_start;
2068 	afinfo->seq_ops.next		= udp_seq_next;
2069 	afinfo->seq_ops.stop		= udp_seq_stop;
2070 
2071 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2072 			     &afinfo->seq_fops, afinfo);
2073 	if (!p)
2074 		rc = -ENOMEM;
2075 	return rc;
2076 }
2077 EXPORT_SYMBOL(udp_proc_register);
2078 
2079 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2080 {
2081 	proc_net_remove(net, afinfo->name);
2082 }
2083 EXPORT_SYMBOL(udp_proc_unregister);
2084 
2085 /* ------------------------------------------------------------------------ */
2086 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2087 		int bucket, int *len)
2088 {
2089 	struct inet_sock *inet = inet_sk(sp);
2090 	__be32 dest = inet->inet_daddr;
2091 	__be32 src  = inet->inet_rcv_saddr;
2092 	__u16 destp	  = ntohs(inet->inet_dport);
2093 	__u16 srcp	  = ntohs(inet->inet_sport);
2094 
2095 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2096 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
2097 		bucket, src, srcp, dest, destp, sp->sk_state,
2098 		sk_wmem_alloc_get(sp),
2099 		sk_rmem_alloc_get(sp),
2100 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
2101 		atomic_read(&sp->sk_refcnt), sp,
2102 		atomic_read(&sp->sk_drops), len);
2103 }
2104 
2105 int udp4_seq_show(struct seq_file *seq, void *v)
2106 {
2107 	if (v == SEQ_START_TOKEN)
2108 		seq_printf(seq, "%-127s\n",
2109 			   "  sl  local_address rem_address   st tx_queue "
2110 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2111 			   "inode ref pointer drops");
2112 	else {
2113 		struct udp_iter_state *state = seq->private;
2114 		int len;
2115 
2116 		udp4_format_sock(v, seq, state->bucket, &len);
2117 		seq_printf(seq, "%*s\n", 127 - len, "");
2118 	}
2119 	return 0;
2120 }
2121 
2122 /* ------------------------------------------------------------------------ */
2123 static struct udp_seq_afinfo udp4_seq_afinfo = {
2124 	.name		= "udp",
2125 	.family		= AF_INET,
2126 	.udp_table	= &udp_table,
2127 	.seq_fops	= {
2128 		.owner	=	THIS_MODULE,
2129 	},
2130 	.seq_ops	= {
2131 		.show		= udp4_seq_show,
2132 	},
2133 };
2134 
2135 static int __net_init udp4_proc_init_net(struct net *net)
2136 {
2137 	return udp_proc_register(net, &udp4_seq_afinfo);
2138 }
2139 
2140 static void __net_exit udp4_proc_exit_net(struct net *net)
2141 {
2142 	udp_proc_unregister(net, &udp4_seq_afinfo);
2143 }
2144 
2145 static struct pernet_operations udp4_net_ops = {
2146 	.init = udp4_proc_init_net,
2147 	.exit = udp4_proc_exit_net,
2148 };
2149 
2150 int __init udp4_proc_init(void)
2151 {
2152 	return register_pernet_subsys(&udp4_net_ops);
2153 }
2154 
2155 void udp4_proc_exit(void)
2156 {
2157 	unregister_pernet_subsys(&udp4_net_ops);
2158 }
2159 #endif /* CONFIG_PROC_FS */
2160 
2161 static __initdata unsigned long uhash_entries;
2162 static int __init set_uhash_entries(char *str)
2163 {
2164 	if (!str)
2165 		return 0;
2166 	uhash_entries = simple_strtoul(str, &str, 0);
2167 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2168 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2169 	return 1;
2170 }
2171 __setup("uhash_entries=", set_uhash_entries);
2172 
2173 void __init udp_table_init(struct udp_table *table, const char *name)
2174 {
2175 	unsigned int i;
2176 
2177 	if (!CONFIG_BASE_SMALL)
2178 		table->hash = alloc_large_system_hash(name,
2179 			2 * sizeof(struct udp_hslot),
2180 			uhash_entries,
2181 			21, /* one slot per 2 MB */
2182 			0,
2183 			&table->log,
2184 			&table->mask,
2185 			64 * 1024);
2186 	/*
2187 	 * Make sure hash table has the minimum size
2188 	 */
2189 	if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2190 		table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2191 				      2 * sizeof(struct udp_hslot), GFP_KERNEL);
2192 		if (!table->hash)
2193 			panic(name);
2194 		table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2195 		table->mask = UDP_HTABLE_SIZE_MIN - 1;
2196 	}
2197 	table->hash2 = table->hash + (table->mask + 1);
2198 	for (i = 0; i <= table->mask; i++) {
2199 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2200 		table->hash[i].count = 0;
2201 		spin_lock_init(&table->hash[i].lock);
2202 	}
2203 	for (i = 0; i <= table->mask; i++) {
2204 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2205 		table->hash2[i].count = 0;
2206 		spin_lock_init(&table->hash2[i].lock);
2207 	}
2208 }
2209 
2210 void __init udp_init(void)
2211 {
2212 	unsigned long limit;
2213 
2214 	udp_table_init(&udp_table, "UDP");
2215 	limit = nr_free_buffer_pages() / 8;
2216 	limit = max(limit, 128UL);
2217 	sysctl_udp_mem[0] = limit / 4 * 3;
2218 	sysctl_udp_mem[1] = limit;
2219 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2220 
2221 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2222 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2223 }
2224 
2225 int udp4_ufo_send_check(struct sk_buff *skb)
2226 {
2227 	const struct iphdr *iph;
2228 	struct udphdr *uh;
2229 
2230 	if (!pskb_may_pull(skb, sizeof(*uh)))
2231 		return -EINVAL;
2232 
2233 	iph = ip_hdr(skb);
2234 	uh = udp_hdr(skb);
2235 
2236 	uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2237 				       IPPROTO_UDP, 0);
2238 	skb->csum_start = skb_transport_header(skb) - skb->head;
2239 	skb->csum_offset = offsetof(struct udphdr, check);
2240 	skb->ip_summed = CHECKSUM_PARTIAL;
2241 	return 0;
2242 }
2243 
2244 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, u32 features)
2245 {
2246 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2247 	unsigned int mss;
2248 	int offset;
2249 	__wsum csum;
2250 
2251 	mss = skb_shinfo(skb)->gso_size;
2252 	if (unlikely(skb->len <= mss))
2253 		goto out;
2254 
2255 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2256 		/* Packet is from an untrusted source, reset gso_segs. */
2257 		int type = skb_shinfo(skb)->gso_type;
2258 
2259 		if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2260 			     !(type & (SKB_GSO_UDP))))
2261 			goto out;
2262 
2263 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2264 
2265 		segs = NULL;
2266 		goto out;
2267 	}
2268 
2269 	/* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2270 	 * do checksum of UDP packets sent as multiple IP fragments.
2271 	 */
2272 	offset = skb_checksum_start_offset(skb);
2273 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2274 	offset += skb->csum_offset;
2275 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2276 	skb->ip_summed = CHECKSUM_NONE;
2277 
2278 	/* Fragment the skb. IP headers of the fragments are updated in
2279 	 * inet_gso_segment()
2280 	 */
2281 	segs = skb_segment(skb, features);
2282 out:
2283 	return segs;
2284 }
2285 
2286