1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #include <asm/system.h> 81 #include <asm/uaccess.h> 82 #include <asm/ioctls.h> 83 #include <linux/bootmem.h> 84 #include <linux/highmem.h> 85 #include <linux/swap.h> 86 #include <linux/types.h> 87 #include <linux/fcntl.h> 88 #include <linux/module.h> 89 #include <linux/socket.h> 90 #include <linux/sockios.h> 91 #include <linux/igmp.h> 92 #include <linux/in.h> 93 #include <linux/errno.h> 94 #include <linux/timer.h> 95 #include <linux/mm.h> 96 #include <linux/inet.h> 97 #include <linux/netdevice.h> 98 #include <net/tcp_states.h> 99 #include <linux/skbuff.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <net/net_namespace.h> 103 #include <net/icmp.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include "udp_impl.h" 108 109 struct udp_table udp_table __read_mostly; 110 EXPORT_SYMBOL(udp_table); 111 112 int sysctl_udp_mem[3] __read_mostly; 113 EXPORT_SYMBOL(sysctl_udp_mem); 114 115 int sysctl_udp_rmem_min __read_mostly; 116 EXPORT_SYMBOL(sysctl_udp_rmem_min); 117 118 int sysctl_udp_wmem_min __read_mostly; 119 EXPORT_SYMBOL(sysctl_udp_wmem_min); 120 121 atomic_t udp_memory_allocated; 122 EXPORT_SYMBOL(udp_memory_allocated); 123 124 #define MAX_UDP_PORTS 65536 125 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 126 127 static int udp_lib_lport_inuse(struct net *net, __u16 num, 128 const struct udp_hslot *hslot, 129 unsigned long *bitmap, 130 struct sock *sk, 131 int (*saddr_comp)(const struct sock *sk1, 132 const struct sock *sk2), 133 unsigned int log) 134 { 135 struct sock *sk2; 136 struct hlist_nulls_node *node; 137 138 sk_nulls_for_each(sk2, node, &hslot->head) 139 if (net_eq(sock_net(sk2), net) && 140 sk2 != sk && 141 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 142 (!sk2->sk_reuse || !sk->sk_reuse) && 143 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 144 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 145 (*saddr_comp)(sk, sk2)) { 146 if (bitmap) 147 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 148 bitmap); 149 else 150 return 1; 151 } 152 return 0; 153 } 154 155 /* 156 * Note: we still hold spinlock of primary hash chain, so no other writer 157 * can insert/delete a socket with local_port == num 158 */ 159 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 160 struct udp_hslot *hslot2, 161 struct sock *sk, 162 int (*saddr_comp)(const struct sock *sk1, 163 const struct sock *sk2)) 164 { 165 struct sock *sk2; 166 struct hlist_nulls_node *node; 167 int res = 0; 168 169 spin_lock(&hslot2->lock); 170 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) 171 if (net_eq(sock_net(sk2), net) && 172 sk2 != sk && 173 (udp_sk(sk2)->udp_port_hash == num) && 174 (!sk2->sk_reuse || !sk->sk_reuse) && 175 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 176 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 177 (*saddr_comp)(sk, sk2)) { 178 res = 1; 179 break; 180 } 181 spin_unlock(&hslot2->lock); 182 return res; 183 } 184 185 /** 186 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 187 * 188 * @sk: socket struct in question 189 * @snum: port number to look up 190 * @saddr_comp: AF-dependent comparison of bound local IP addresses 191 * @hash2_nulladdr: AF-dependant hash value in secondary hash chains, 192 * with NULL address 193 */ 194 int udp_lib_get_port(struct sock *sk, unsigned short snum, 195 int (*saddr_comp)(const struct sock *sk1, 196 const struct sock *sk2), 197 unsigned int hash2_nulladdr) 198 { 199 struct udp_hslot *hslot, *hslot2; 200 struct udp_table *udptable = sk->sk_prot->h.udp_table; 201 int error = 1; 202 struct net *net = sock_net(sk); 203 204 if (!snum) { 205 int low, high, remaining; 206 unsigned rand; 207 unsigned short first, last; 208 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 209 210 inet_get_local_port_range(&low, &high); 211 remaining = (high - low) + 1; 212 213 rand = net_random(); 214 first = (((u64)rand * remaining) >> 32) + low; 215 /* 216 * force rand to be an odd multiple of UDP_HTABLE_SIZE 217 */ 218 rand = (rand | 1) * (udptable->mask + 1); 219 last = first + udptable->mask + 1; 220 do { 221 hslot = udp_hashslot(udptable, net, first); 222 bitmap_zero(bitmap, PORTS_PER_CHAIN); 223 spin_lock_bh(&hslot->lock); 224 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 225 saddr_comp, udptable->log); 226 227 snum = first; 228 /* 229 * Iterate on all possible values of snum for this hash. 230 * Using steps of an odd multiple of UDP_HTABLE_SIZE 231 * give us randomization and full range coverage. 232 */ 233 do { 234 if (low <= snum && snum <= high && 235 !test_bit(snum >> udptable->log, bitmap)) 236 goto found; 237 snum += rand; 238 } while (snum != first); 239 spin_unlock_bh(&hslot->lock); 240 } while (++first != last); 241 goto fail; 242 } else { 243 hslot = udp_hashslot(udptable, net, snum); 244 spin_lock_bh(&hslot->lock); 245 if (hslot->count > 10) { 246 int exist; 247 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 248 249 slot2 &= udptable->mask; 250 hash2_nulladdr &= udptable->mask; 251 252 hslot2 = udp_hashslot2(udptable, slot2); 253 if (hslot->count < hslot2->count) 254 goto scan_primary_hash; 255 256 exist = udp_lib_lport_inuse2(net, snum, hslot2, 257 sk, saddr_comp); 258 if (!exist && (hash2_nulladdr != slot2)) { 259 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 260 exist = udp_lib_lport_inuse2(net, snum, hslot2, 261 sk, saddr_comp); 262 } 263 if (exist) 264 goto fail_unlock; 265 else 266 goto found; 267 } 268 scan_primary_hash: 269 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 270 saddr_comp, 0)) 271 goto fail_unlock; 272 } 273 found: 274 inet_sk(sk)->inet_num = snum; 275 udp_sk(sk)->udp_port_hash = snum; 276 udp_sk(sk)->udp_portaddr_hash ^= snum; 277 if (sk_unhashed(sk)) { 278 sk_nulls_add_node_rcu(sk, &hslot->head); 279 hslot->count++; 280 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 281 282 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 283 spin_lock(&hslot2->lock); 284 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 285 &hslot2->head); 286 hslot2->count++; 287 spin_unlock(&hslot2->lock); 288 } 289 error = 0; 290 fail_unlock: 291 spin_unlock_bh(&hslot->lock); 292 fail: 293 return error; 294 } 295 EXPORT_SYMBOL(udp_lib_get_port); 296 297 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2) 298 { 299 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2); 300 301 return (!ipv6_only_sock(sk2) && 302 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr || 303 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)); 304 } 305 306 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr, 307 unsigned int port) 308 { 309 return jhash_1word(saddr, net_hash_mix(net)) ^ port; 310 } 311 312 int udp_v4_get_port(struct sock *sk, unsigned short snum) 313 { 314 unsigned int hash2_nulladdr = 315 udp4_portaddr_hash(sock_net(sk), INADDR_ANY, snum); 316 unsigned int hash2_partial = 317 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 318 319 /* precompute partial secondary hash */ 320 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 321 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr); 322 } 323 324 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr, 325 unsigned short hnum, 326 __be16 sport, __be32 daddr, __be16 dport, int dif) 327 { 328 int score = -1; 329 330 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum && 331 !ipv6_only_sock(sk)) { 332 struct inet_sock *inet = inet_sk(sk); 333 334 score = (sk->sk_family == PF_INET ? 1 : 0); 335 if (inet->inet_rcv_saddr) { 336 if (inet->inet_rcv_saddr != daddr) 337 return -1; 338 score += 2; 339 } 340 if (inet->inet_daddr) { 341 if (inet->inet_daddr != saddr) 342 return -1; 343 score += 2; 344 } 345 if (inet->inet_dport) { 346 if (inet->inet_dport != sport) 347 return -1; 348 score += 2; 349 } 350 if (sk->sk_bound_dev_if) { 351 if (sk->sk_bound_dev_if != dif) 352 return -1; 353 score += 2; 354 } 355 } 356 return score; 357 } 358 359 /* 360 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num) 361 */ 362 #define SCORE2_MAX (1 + 2 + 2 + 2) 363 static inline int compute_score2(struct sock *sk, struct net *net, 364 __be32 saddr, __be16 sport, 365 __be32 daddr, unsigned int hnum, int dif) 366 { 367 int score = -1; 368 369 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) { 370 struct inet_sock *inet = inet_sk(sk); 371 372 if (inet->inet_rcv_saddr != daddr) 373 return -1; 374 if (inet->inet_num != hnum) 375 return -1; 376 377 score = (sk->sk_family == PF_INET ? 1 : 0); 378 if (inet->inet_daddr) { 379 if (inet->inet_daddr != saddr) 380 return -1; 381 score += 2; 382 } 383 if (inet->inet_dport) { 384 if (inet->inet_dport != sport) 385 return -1; 386 score += 2; 387 } 388 if (sk->sk_bound_dev_if) { 389 if (sk->sk_bound_dev_if != dif) 390 return -1; 391 score += 2; 392 } 393 } 394 return score; 395 } 396 397 398 /* called with read_rcu_lock() */ 399 static struct sock *udp4_lib_lookup2(struct net *net, 400 __be32 saddr, __be16 sport, 401 __be32 daddr, unsigned int hnum, int dif, 402 struct udp_hslot *hslot2, unsigned int slot2) 403 { 404 struct sock *sk, *result; 405 struct hlist_nulls_node *node; 406 int score, badness; 407 408 begin: 409 result = NULL; 410 badness = -1; 411 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) { 412 score = compute_score2(sk, net, saddr, sport, 413 daddr, hnum, dif); 414 if (score > badness) { 415 result = sk; 416 badness = score; 417 if (score == SCORE2_MAX) 418 goto exact_match; 419 } 420 } 421 /* 422 * if the nulls value we got at the end of this lookup is 423 * not the expected one, we must restart lookup. 424 * We probably met an item that was moved to another chain. 425 */ 426 if (get_nulls_value(node) != slot2) 427 goto begin; 428 429 if (result) { 430 exact_match: 431 if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt))) 432 result = NULL; 433 else if (unlikely(compute_score2(result, net, saddr, sport, 434 daddr, hnum, dif) < badness)) { 435 sock_put(result); 436 goto begin; 437 } 438 } 439 return result; 440 } 441 442 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 443 * harder than this. -DaveM 444 */ 445 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 446 __be16 sport, __be32 daddr, __be16 dport, 447 int dif, struct udp_table *udptable) 448 { 449 struct sock *sk, *result; 450 struct hlist_nulls_node *node; 451 unsigned short hnum = ntohs(dport); 452 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 453 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 454 int score, badness; 455 456 rcu_read_lock(); 457 if (hslot->count > 10) { 458 hash2 = udp4_portaddr_hash(net, daddr, hnum); 459 slot2 = hash2 & udptable->mask; 460 hslot2 = &udptable->hash2[slot2]; 461 if (hslot->count < hslot2->count) 462 goto begin; 463 464 result = udp4_lib_lookup2(net, saddr, sport, 465 daddr, hnum, dif, 466 hslot2, slot2); 467 if (!result) { 468 hash2 = udp4_portaddr_hash(net, INADDR_ANY, hnum); 469 slot2 = hash2 & udptable->mask; 470 hslot2 = &udptable->hash2[slot2]; 471 if (hslot->count < hslot2->count) 472 goto begin; 473 474 result = udp4_lib_lookup2(net, INADDR_ANY, sport, 475 daddr, hnum, dif, 476 hslot2, slot2); 477 } 478 rcu_read_unlock(); 479 return result; 480 } 481 begin: 482 result = NULL; 483 badness = -1; 484 sk_nulls_for_each_rcu(sk, node, &hslot->head) { 485 score = compute_score(sk, net, saddr, hnum, sport, 486 daddr, dport, dif); 487 if (score > badness) { 488 result = sk; 489 badness = score; 490 } 491 } 492 /* 493 * if the nulls value we got at the end of this lookup is 494 * not the expected one, we must restart lookup. 495 * We probably met an item that was moved to another chain. 496 */ 497 if (get_nulls_value(node) != slot) 498 goto begin; 499 500 if (result) { 501 if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt))) 502 result = NULL; 503 else if (unlikely(compute_score(result, net, saddr, hnum, sport, 504 daddr, dport, dif) < badness)) { 505 sock_put(result); 506 goto begin; 507 } 508 } 509 rcu_read_unlock(); 510 return result; 511 } 512 513 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 514 __be16 sport, __be16 dport, 515 struct udp_table *udptable) 516 { 517 struct sock *sk; 518 const struct iphdr *iph = ip_hdr(skb); 519 520 if (unlikely(sk = skb_steal_sock(skb))) 521 return sk; 522 else 523 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport, 524 iph->daddr, dport, inet_iif(skb), 525 udptable); 526 } 527 528 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 529 __be32 daddr, __be16 dport, int dif) 530 { 531 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table); 532 } 533 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 534 535 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk, 536 __be16 loc_port, __be32 loc_addr, 537 __be16 rmt_port, __be32 rmt_addr, 538 int dif) 539 { 540 struct hlist_nulls_node *node; 541 struct sock *s = sk; 542 unsigned short hnum = ntohs(loc_port); 543 544 sk_nulls_for_each_from(s, node) { 545 struct inet_sock *inet = inet_sk(s); 546 547 if (!net_eq(sock_net(s), net) || 548 udp_sk(s)->udp_port_hash != hnum || 549 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 550 (inet->inet_dport != rmt_port && inet->inet_dport) || 551 (inet->inet_rcv_saddr && 552 inet->inet_rcv_saddr != loc_addr) || 553 ipv6_only_sock(s) || 554 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif)) 555 continue; 556 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif)) 557 continue; 558 goto found; 559 } 560 s = NULL; 561 found: 562 return s; 563 } 564 565 /* 566 * This routine is called by the ICMP module when it gets some 567 * sort of error condition. If err < 0 then the socket should 568 * be closed and the error returned to the user. If err > 0 569 * it's just the icmp type << 8 | icmp code. 570 * Header points to the ip header of the error packet. We move 571 * on past this. Then (as it used to claim before adjustment) 572 * header points to the first 8 bytes of the udp header. We need 573 * to find the appropriate port. 574 */ 575 576 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 577 { 578 struct inet_sock *inet; 579 struct iphdr *iph = (struct iphdr *)skb->data; 580 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 581 const int type = icmp_hdr(skb)->type; 582 const int code = icmp_hdr(skb)->code; 583 struct sock *sk; 584 int harderr; 585 int err; 586 struct net *net = dev_net(skb->dev); 587 588 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 589 iph->saddr, uh->source, skb->dev->ifindex, udptable); 590 if (sk == NULL) { 591 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 592 return; /* No socket for error */ 593 } 594 595 err = 0; 596 harderr = 0; 597 inet = inet_sk(sk); 598 599 switch (type) { 600 default: 601 case ICMP_TIME_EXCEEDED: 602 err = EHOSTUNREACH; 603 break; 604 case ICMP_SOURCE_QUENCH: 605 goto out; 606 case ICMP_PARAMETERPROB: 607 err = EPROTO; 608 harderr = 1; 609 break; 610 case ICMP_DEST_UNREACH: 611 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 612 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 613 err = EMSGSIZE; 614 harderr = 1; 615 break; 616 } 617 goto out; 618 } 619 err = EHOSTUNREACH; 620 if (code <= NR_ICMP_UNREACH) { 621 harderr = icmp_err_convert[code].fatal; 622 err = icmp_err_convert[code].errno; 623 } 624 break; 625 } 626 627 /* 628 * RFC1122: OK. Passes ICMP errors back to application, as per 629 * 4.1.3.3. 630 */ 631 if (!inet->recverr) { 632 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 633 goto out; 634 } else { 635 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 636 } 637 sk->sk_err = err; 638 sk->sk_error_report(sk); 639 out: 640 sock_put(sk); 641 } 642 643 void udp_err(struct sk_buff *skb, u32 info) 644 { 645 __udp4_lib_err(skb, info, &udp_table); 646 } 647 648 /* 649 * Throw away all pending data and cancel the corking. Socket is locked. 650 */ 651 void udp_flush_pending_frames(struct sock *sk) 652 { 653 struct udp_sock *up = udp_sk(sk); 654 655 if (up->pending) { 656 up->len = 0; 657 up->pending = 0; 658 ip_flush_pending_frames(sk); 659 } 660 } 661 EXPORT_SYMBOL(udp_flush_pending_frames); 662 663 /** 664 * udp4_hwcsum_outgoing - handle outgoing HW checksumming 665 * @sk: socket we are sending on 666 * @skb: sk_buff containing the filled-in UDP header 667 * (checksum field must be zeroed out) 668 */ 669 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb, 670 __be32 src, __be32 dst, int len) 671 { 672 unsigned int offset; 673 struct udphdr *uh = udp_hdr(skb); 674 __wsum csum = 0; 675 676 if (skb_queue_len(&sk->sk_write_queue) == 1) { 677 /* 678 * Only one fragment on the socket. 679 */ 680 skb->csum_start = skb_transport_header(skb) - skb->head; 681 skb->csum_offset = offsetof(struct udphdr, check); 682 uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0); 683 } else { 684 /* 685 * HW-checksum won't work as there are two or more 686 * fragments on the socket so that all csums of sk_buffs 687 * should be together 688 */ 689 offset = skb_transport_offset(skb); 690 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0); 691 692 skb->ip_summed = CHECKSUM_NONE; 693 694 skb_queue_walk(&sk->sk_write_queue, skb) { 695 csum = csum_add(csum, skb->csum); 696 } 697 698 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 699 if (uh->check == 0) 700 uh->check = CSUM_MANGLED_0; 701 } 702 } 703 704 /* 705 * Push out all pending data as one UDP datagram. Socket is locked. 706 */ 707 static int udp_push_pending_frames(struct sock *sk) 708 { 709 struct udp_sock *up = udp_sk(sk); 710 struct inet_sock *inet = inet_sk(sk); 711 struct flowi *fl = &inet->cork.fl; 712 struct sk_buff *skb; 713 struct udphdr *uh; 714 int err = 0; 715 int is_udplite = IS_UDPLITE(sk); 716 __wsum csum = 0; 717 718 /* Grab the skbuff where UDP header space exists. */ 719 if ((skb = skb_peek(&sk->sk_write_queue)) == NULL) 720 goto out; 721 722 /* 723 * Create a UDP header 724 */ 725 uh = udp_hdr(skb); 726 uh->source = fl->fl_ip_sport; 727 uh->dest = fl->fl_ip_dport; 728 uh->len = htons(up->len); 729 uh->check = 0; 730 731 if (is_udplite) /* UDP-Lite */ 732 csum = udplite_csum_outgoing(sk, skb); 733 734 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */ 735 736 skb->ip_summed = CHECKSUM_NONE; 737 goto send; 738 739 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 740 741 udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len); 742 goto send; 743 744 } else /* `normal' UDP */ 745 csum = udp_csum_outgoing(sk, skb); 746 747 /* add protocol-dependent pseudo-header */ 748 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len, 749 sk->sk_protocol, csum); 750 if (uh->check == 0) 751 uh->check = CSUM_MANGLED_0; 752 753 send: 754 err = ip_push_pending_frames(sk); 755 if (err) { 756 if (err == -ENOBUFS && !inet->recverr) { 757 UDP_INC_STATS_USER(sock_net(sk), 758 UDP_MIB_SNDBUFERRORS, is_udplite); 759 err = 0; 760 } 761 } else 762 UDP_INC_STATS_USER(sock_net(sk), 763 UDP_MIB_OUTDATAGRAMS, is_udplite); 764 out: 765 up->len = 0; 766 up->pending = 0; 767 return err; 768 } 769 770 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 771 size_t len) 772 { 773 struct inet_sock *inet = inet_sk(sk); 774 struct udp_sock *up = udp_sk(sk); 775 int ulen = len; 776 struct ipcm_cookie ipc; 777 struct rtable *rt = NULL; 778 int free = 0; 779 int connected = 0; 780 __be32 daddr, faddr, saddr; 781 __be16 dport; 782 u8 tos; 783 int err, is_udplite = IS_UDPLITE(sk); 784 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 785 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 786 787 if (len > 0xFFFF) 788 return -EMSGSIZE; 789 790 /* 791 * Check the flags. 792 */ 793 794 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 795 return -EOPNOTSUPP; 796 797 ipc.opt = NULL; 798 ipc.shtx.flags = 0; 799 800 if (up->pending) { 801 /* 802 * There are pending frames. 803 * The socket lock must be held while it's corked. 804 */ 805 lock_sock(sk); 806 if (likely(up->pending)) { 807 if (unlikely(up->pending != AF_INET)) { 808 release_sock(sk); 809 return -EINVAL; 810 } 811 goto do_append_data; 812 } 813 release_sock(sk); 814 } 815 ulen += sizeof(struct udphdr); 816 817 /* 818 * Get and verify the address. 819 */ 820 if (msg->msg_name) { 821 struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name; 822 if (msg->msg_namelen < sizeof(*usin)) 823 return -EINVAL; 824 if (usin->sin_family != AF_INET) { 825 if (usin->sin_family != AF_UNSPEC) 826 return -EAFNOSUPPORT; 827 } 828 829 daddr = usin->sin_addr.s_addr; 830 dport = usin->sin_port; 831 if (dport == 0) 832 return -EINVAL; 833 } else { 834 if (sk->sk_state != TCP_ESTABLISHED) 835 return -EDESTADDRREQ; 836 daddr = inet->inet_daddr; 837 dport = inet->inet_dport; 838 /* Open fast path for connected socket. 839 Route will not be used, if at least one option is set. 840 */ 841 connected = 1; 842 } 843 ipc.addr = inet->inet_saddr; 844 845 ipc.oif = sk->sk_bound_dev_if; 846 err = sock_tx_timestamp(msg, sk, &ipc.shtx); 847 if (err) 848 return err; 849 if (msg->msg_controllen) { 850 err = ip_cmsg_send(sock_net(sk), msg, &ipc); 851 if (err) 852 return err; 853 if (ipc.opt) 854 free = 1; 855 connected = 0; 856 } 857 if (!ipc.opt) 858 ipc.opt = inet->opt; 859 860 saddr = ipc.addr; 861 ipc.addr = faddr = daddr; 862 863 if (ipc.opt && ipc.opt->srr) { 864 if (!daddr) 865 return -EINVAL; 866 faddr = ipc.opt->faddr; 867 connected = 0; 868 } 869 tos = RT_TOS(inet->tos); 870 if (sock_flag(sk, SOCK_LOCALROUTE) || 871 (msg->msg_flags & MSG_DONTROUTE) || 872 (ipc.opt && ipc.opt->is_strictroute)) { 873 tos |= RTO_ONLINK; 874 connected = 0; 875 } 876 877 if (ipv4_is_multicast(daddr)) { 878 if (!ipc.oif) 879 ipc.oif = inet->mc_index; 880 if (!saddr) 881 saddr = inet->mc_addr; 882 connected = 0; 883 } 884 885 if (connected) 886 rt = (struct rtable *)sk_dst_check(sk, 0); 887 888 if (rt == NULL) { 889 struct flowi fl = { .oif = ipc.oif, 890 .mark = sk->sk_mark, 891 .nl_u = { .ip4_u = 892 { .daddr = faddr, 893 .saddr = saddr, 894 .tos = tos } }, 895 .proto = sk->sk_protocol, 896 .flags = inet_sk_flowi_flags(sk), 897 .uli_u = { .ports = 898 { .sport = inet->inet_sport, 899 .dport = dport } } }; 900 struct net *net = sock_net(sk); 901 902 security_sk_classify_flow(sk, &fl); 903 err = ip_route_output_flow(net, &rt, &fl, sk, 1); 904 if (err) { 905 if (err == -ENETUNREACH) 906 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES); 907 goto out; 908 } 909 910 err = -EACCES; 911 if ((rt->rt_flags & RTCF_BROADCAST) && 912 !sock_flag(sk, SOCK_BROADCAST)) 913 goto out; 914 if (connected) 915 sk_dst_set(sk, dst_clone(&rt->u.dst)); 916 } 917 918 if (msg->msg_flags&MSG_CONFIRM) 919 goto do_confirm; 920 back_from_confirm: 921 922 saddr = rt->rt_src; 923 if (!ipc.addr) 924 daddr = ipc.addr = rt->rt_dst; 925 926 lock_sock(sk); 927 if (unlikely(up->pending)) { 928 /* The socket is already corked while preparing it. */ 929 /* ... which is an evident application bug. --ANK */ 930 release_sock(sk); 931 932 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n"); 933 err = -EINVAL; 934 goto out; 935 } 936 /* 937 * Now cork the socket to pend data. 938 */ 939 inet->cork.fl.fl4_dst = daddr; 940 inet->cork.fl.fl_ip_dport = dport; 941 inet->cork.fl.fl4_src = saddr; 942 inet->cork.fl.fl_ip_sport = inet->inet_sport; 943 up->pending = AF_INET; 944 945 do_append_data: 946 up->len += ulen; 947 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 948 err = ip_append_data(sk, getfrag, msg->msg_iov, ulen, 949 sizeof(struct udphdr), &ipc, &rt, 950 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 951 if (err) 952 udp_flush_pending_frames(sk); 953 else if (!corkreq) 954 err = udp_push_pending_frames(sk); 955 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 956 up->pending = 0; 957 release_sock(sk); 958 959 out: 960 ip_rt_put(rt); 961 if (free) 962 kfree(ipc.opt); 963 if (!err) 964 return len; 965 /* 966 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 967 * ENOBUFS might not be good (it's not tunable per se), but otherwise 968 * we don't have a good statistic (IpOutDiscards but it can be too many 969 * things). We could add another new stat but at least for now that 970 * seems like overkill. 971 */ 972 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 973 UDP_INC_STATS_USER(sock_net(sk), 974 UDP_MIB_SNDBUFERRORS, is_udplite); 975 } 976 return err; 977 978 do_confirm: 979 dst_confirm(&rt->u.dst); 980 if (!(msg->msg_flags&MSG_PROBE) || len) 981 goto back_from_confirm; 982 err = 0; 983 goto out; 984 } 985 EXPORT_SYMBOL(udp_sendmsg); 986 987 int udp_sendpage(struct sock *sk, struct page *page, int offset, 988 size_t size, int flags) 989 { 990 struct udp_sock *up = udp_sk(sk); 991 int ret; 992 993 if (!up->pending) { 994 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 995 996 /* Call udp_sendmsg to specify destination address which 997 * sendpage interface can't pass. 998 * This will succeed only when the socket is connected. 999 */ 1000 ret = udp_sendmsg(NULL, sk, &msg, 0); 1001 if (ret < 0) 1002 return ret; 1003 } 1004 1005 lock_sock(sk); 1006 1007 if (unlikely(!up->pending)) { 1008 release_sock(sk); 1009 1010 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n"); 1011 return -EINVAL; 1012 } 1013 1014 ret = ip_append_page(sk, page, offset, size, flags); 1015 if (ret == -EOPNOTSUPP) { 1016 release_sock(sk); 1017 return sock_no_sendpage(sk->sk_socket, page, offset, 1018 size, flags); 1019 } 1020 if (ret < 0) { 1021 udp_flush_pending_frames(sk); 1022 goto out; 1023 } 1024 1025 up->len += size; 1026 if (!(up->corkflag || (flags&MSG_MORE))) 1027 ret = udp_push_pending_frames(sk); 1028 if (!ret) 1029 ret = size; 1030 out: 1031 release_sock(sk); 1032 return ret; 1033 } 1034 1035 1036 /** 1037 * first_packet_length - return length of first packet in receive queue 1038 * @sk: socket 1039 * 1040 * Drops all bad checksum frames, until a valid one is found. 1041 * Returns the length of found skb, or 0 if none is found. 1042 */ 1043 static unsigned int first_packet_length(struct sock *sk) 1044 { 1045 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue; 1046 struct sk_buff *skb; 1047 unsigned int res; 1048 1049 __skb_queue_head_init(&list_kill); 1050 1051 spin_lock_bh(&rcvq->lock); 1052 while ((skb = skb_peek(rcvq)) != NULL && 1053 udp_lib_checksum_complete(skb)) { 1054 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1055 IS_UDPLITE(sk)); 1056 atomic_inc(&sk->sk_drops); 1057 __skb_unlink(skb, rcvq); 1058 __skb_queue_tail(&list_kill, skb); 1059 } 1060 res = skb ? skb->len : 0; 1061 spin_unlock_bh(&rcvq->lock); 1062 1063 if (!skb_queue_empty(&list_kill)) { 1064 lock_sock(sk); 1065 __skb_queue_purge(&list_kill); 1066 sk_mem_reclaim_partial(sk); 1067 release_sock(sk); 1068 } 1069 return res; 1070 } 1071 1072 /* 1073 * IOCTL requests applicable to the UDP protocol 1074 */ 1075 1076 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1077 { 1078 switch (cmd) { 1079 case SIOCOUTQ: 1080 { 1081 int amount = sk_wmem_alloc_get(sk); 1082 1083 return put_user(amount, (int __user *)arg); 1084 } 1085 1086 case SIOCINQ: 1087 { 1088 unsigned int amount = first_packet_length(sk); 1089 1090 if (amount) 1091 /* 1092 * We will only return the amount 1093 * of this packet since that is all 1094 * that will be read. 1095 */ 1096 amount -= sizeof(struct udphdr); 1097 1098 return put_user(amount, (int __user *)arg); 1099 } 1100 1101 default: 1102 return -ENOIOCTLCMD; 1103 } 1104 1105 return 0; 1106 } 1107 EXPORT_SYMBOL(udp_ioctl); 1108 1109 /* 1110 * This should be easy, if there is something there we 1111 * return it, otherwise we block. 1112 */ 1113 1114 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1115 size_t len, int noblock, int flags, int *addr_len) 1116 { 1117 struct inet_sock *inet = inet_sk(sk); 1118 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name; 1119 struct sk_buff *skb; 1120 unsigned int ulen, copied; 1121 int peeked; 1122 int err; 1123 int is_udplite = IS_UDPLITE(sk); 1124 1125 /* 1126 * Check any passed addresses 1127 */ 1128 if (addr_len) 1129 *addr_len = sizeof(*sin); 1130 1131 if (flags & MSG_ERRQUEUE) 1132 return ip_recv_error(sk, msg, len); 1133 1134 try_again: 1135 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0), 1136 &peeked, &err); 1137 if (!skb) 1138 goto out; 1139 1140 ulen = skb->len - sizeof(struct udphdr); 1141 copied = len; 1142 if (copied > ulen) 1143 copied = ulen; 1144 else if (copied < ulen) 1145 msg->msg_flags |= MSG_TRUNC; 1146 1147 /* 1148 * If checksum is needed at all, try to do it while copying the 1149 * data. If the data is truncated, or if we only want a partial 1150 * coverage checksum (UDP-Lite), do it before the copy. 1151 */ 1152 1153 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) { 1154 if (udp_lib_checksum_complete(skb)) 1155 goto csum_copy_err; 1156 } 1157 1158 if (skb_csum_unnecessary(skb)) 1159 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), 1160 msg->msg_iov, copied); 1161 else { 1162 err = skb_copy_and_csum_datagram_iovec(skb, 1163 sizeof(struct udphdr), 1164 msg->msg_iov); 1165 1166 if (err == -EINVAL) 1167 goto csum_copy_err; 1168 } 1169 1170 if (err) 1171 goto out_free; 1172 1173 if (!peeked) 1174 UDP_INC_STATS_USER(sock_net(sk), 1175 UDP_MIB_INDATAGRAMS, is_udplite); 1176 1177 sock_recv_ts_and_drops(msg, sk, skb); 1178 1179 /* Copy the address. */ 1180 if (sin) { 1181 sin->sin_family = AF_INET; 1182 sin->sin_port = udp_hdr(skb)->source; 1183 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1184 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1185 } 1186 if (inet->cmsg_flags) 1187 ip_cmsg_recv(msg, skb); 1188 1189 err = copied; 1190 if (flags & MSG_TRUNC) 1191 err = ulen; 1192 1193 out_free: 1194 skb_free_datagram_locked(sk, skb); 1195 out: 1196 return err; 1197 1198 csum_copy_err: 1199 lock_sock(sk); 1200 if (!skb_kill_datagram(sk, skb, flags)) 1201 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1202 release_sock(sk); 1203 1204 if (noblock) 1205 return -EAGAIN; 1206 goto try_again; 1207 } 1208 1209 1210 int udp_disconnect(struct sock *sk, int flags) 1211 { 1212 struct inet_sock *inet = inet_sk(sk); 1213 /* 1214 * 1003.1g - break association. 1215 */ 1216 1217 sk->sk_state = TCP_CLOSE; 1218 inet->inet_daddr = 0; 1219 inet->inet_dport = 0; 1220 sk->sk_bound_dev_if = 0; 1221 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1222 inet_reset_saddr(sk); 1223 1224 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1225 sk->sk_prot->unhash(sk); 1226 inet->inet_sport = 0; 1227 } 1228 sk_dst_reset(sk); 1229 return 0; 1230 } 1231 EXPORT_SYMBOL(udp_disconnect); 1232 1233 void udp_lib_unhash(struct sock *sk) 1234 { 1235 if (sk_hashed(sk)) { 1236 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1237 struct udp_hslot *hslot, *hslot2; 1238 1239 hslot = udp_hashslot(udptable, sock_net(sk), 1240 udp_sk(sk)->udp_port_hash); 1241 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1242 1243 spin_lock_bh(&hslot->lock); 1244 if (sk_nulls_del_node_init_rcu(sk)) { 1245 hslot->count--; 1246 inet_sk(sk)->inet_num = 0; 1247 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1248 1249 spin_lock(&hslot2->lock); 1250 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1251 hslot2->count--; 1252 spin_unlock(&hslot2->lock); 1253 } 1254 spin_unlock_bh(&hslot->lock); 1255 } 1256 } 1257 EXPORT_SYMBOL(udp_lib_unhash); 1258 1259 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1260 { 1261 int rc = sock_queue_rcv_skb(sk, skb); 1262 1263 if (rc < 0) { 1264 int is_udplite = IS_UDPLITE(sk); 1265 1266 /* Note that an ENOMEM error is charged twice */ 1267 if (rc == -ENOMEM) 1268 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1269 is_udplite); 1270 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1271 kfree_skb(skb); 1272 return -1; 1273 } 1274 1275 return 0; 1276 1277 } 1278 1279 /* returns: 1280 * -1: error 1281 * 0: success 1282 * >0: "udp encap" protocol resubmission 1283 * 1284 * Note that in the success and error cases, the skb is assumed to 1285 * have either been requeued or freed. 1286 */ 1287 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1288 { 1289 struct udp_sock *up = udp_sk(sk); 1290 int rc; 1291 int is_udplite = IS_UDPLITE(sk); 1292 1293 /* 1294 * Charge it to the socket, dropping if the queue is full. 1295 */ 1296 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1297 goto drop; 1298 nf_reset(skb); 1299 1300 if (up->encap_type) { 1301 /* 1302 * This is an encapsulation socket so pass the skb to 1303 * the socket's udp_encap_rcv() hook. Otherwise, just 1304 * fall through and pass this up the UDP socket. 1305 * up->encap_rcv() returns the following value: 1306 * =0 if skb was successfully passed to the encap 1307 * handler or was discarded by it. 1308 * >0 if skb should be passed on to UDP. 1309 * <0 if skb should be resubmitted as proto -N 1310 */ 1311 1312 /* if we're overly short, let UDP handle it */ 1313 if (skb->len > sizeof(struct udphdr) && 1314 up->encap_rcv != NULL) { 1315 int ret; 1316 1317 ret = (*up->encap_rcv)(sk, skb); 1318 if (ret <= 0) { 1319 UDP_INC_STATS_BH(sock_net(sk), 1320 UDP_MIB_INDATAGRAMS, 1321 is_udplite); 1322 return -ret; 1323 } 1324 } 1325 1326 /* FALLTHROUGH -- it's a UDP Packet */ 1327 } 1328 1329 /* 1330 * UDP-Lite specific tests, ignored on UDP sockets 1331 */ 1332 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1333 1334 /* 1335 * MIB statistics other than incrementing the error count are 1336 * disabled for the following two types of errors: these depend 1337 * on the application settings, not on the functioning of the 1338 * protocol stack as such. 1339 * 1340 * RFC 3828 here recommends (sec 3.3): "There should also be a 1341 * way ... to ... at least let the receiving application block 1342 * delivery of packets with coverage values less than a value 1343 * provided by the application." 1344 */ 1345 if (up->pcrlen == 0) { /* full coverage was set */ 1346 LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage " 1347 "%d while full coverage %d requested\n", 1348 UDP_SKB_CB(skb)->cscov, skb->len); 1349 goto drop; 1350 } 1351 /* The next case involves violating the min. coverage requested 1352 * by the receiver. This is subtle: if receiver wants x and x is 1353 * greater than the buffersize/MTU then receiver will complain 1354 * that it wants x while sender emits packets of smaller size y. 1355 * Therefore the above ...()->partial_cov statement is essential. 1356 */ 1357 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1358 LIMIT_NETDEBUG(KERN_WARNING 1359 "UDPLITE: coverage %d too small, need min %d\n", 1360 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1361 goto drop; 1362 } 1363 } 1364 1365 if (sk->sk_filter) { 1366 if (udp_lib_checksum_complete(skb)) 1367 goto drop; 1368 } 1369 1370 rc = 0; 1371 1372 bh_lock_sock(sk); 1373 if (!sock_owned_by_user(sk)) 1374 rc = __udp_queue_rcv_skb(sk, skb); 1375 else 1376 sk_add_backlog(sk, skb); 1377 bh_unlock_sock(sk); 1378 1379 return rc; 1380 1381 drop: 1382 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1383 atomic_inc(&sk->sk_drops); 1384 kfree_skb(skb); 1385 return -1; 1386 } 1387 1388 1389 static void flush_stack(struct sock **stack, unsigned int count, 1390 struct sk_buff *skb, unsigned int final) 1391 { 1392 unsigned int i; 1393 struct sk_buff *skb1 = NULL; 1394 struct sock *sk; 1395 1396 for (i = 0; i < count; i++) { 1397 sk = stack[i]; 1398 if (likely(skb1 == NULL)) 1399 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC); 1400 1401 if (!skb1) { 1402 atomic_inc(&sk->sk_drops); 1403 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1404 IS_UDPLITE(sk)); 1405 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1406 IS_UDPLITE(sk)); 1407 } 1408 1409 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0) 1410 skb1 = NULL; 1411 } 1412 if (unlikely(skb1)) 1413 kfree_skb(skb1); 1414 } 1415 1416 /* 1417 * Multicasts and broadcasts go to each listener. 1418 * 1419 * Note: called only from the BH handler context. 1420 */ 1421 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1422 struct udphdr *uh, 1423 __be32 saddr, __be32 daddr, 1424 struct udp_table *udptable) 1425 { 1426 struct sock *sk, *stack[256 / sizeof(struct sock *)]; 1427 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest)); 1428 int dif; 1429 unsigned int i, count = 0; 1430 1431 spin_lock(&hslot->lock); 1432 sk = sk_nulls_head(&hslot->head); 1433 dif = skb->dev->ifindex; 1434 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif); 1435 while (sk) { 1436 stack[count++] = sk; 1437 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest, 1438 daddr, uh->source, saddr, dif); 1439 if (unlikely(count == ARRAY_SIZE(stack))) { 1440 if (!sk) 1441 break; 1442 flush_stack(stack, count, skb, ~0); 1443 count = 0; 1444 } 1445 } 1446 /* 1447 * before releasing chain lock, we must take a reference on sockets 1448 */ 1449 for (i = 0; i < count; i++) 1450 sock_hold(stack[i]); 1451 1452 spin_unlock(&hslot->lock); 1453 1454 /* 1455 * do the slow work with no lock held 1456 */ 1457 if (count) { 1458 flush_stack(stack, count, skb, count - 1); 1459 1460 for (i = 0; i < count; i++) 1461 sock_put(stack[i]); 1462 } else { 1463 kfree_skb(skb); 1464 } 1465 return 0; 1466 } 1467 1468 /* Initialize UDP checksum. If exited with zero value (success), 1469 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1470 * Otherwise, csum completion requires chacksumming packet body, 1471 * including udp header and folding it to skb->csum. 1472 */ 1473 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 1474 int proto) 1475 { 1476 const struct iphdr *iph; 1477 int err; 1478 1479 UDP_SKB_CB(skb)->partial_cov = 0; 1480 UDP_SKB_CB(skb)->cscov = skb->len; 1481 1482 if (proto == IPPROTO_UDPLITE) { 1483 err = udplite_checksum_init(skb, uh); 1484 if (err) 1485 return err; 1486 } 1487 1488 iph = ip_hdr(skb); 1489 if (uh->check == 0) { 1490 skb->ip_summed = CHECKSUM_UNNECESSARY; 1491 } else if (skb->ip_summed == CHECKSUM_COMPLETE) { 1492 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len, 1493 proto, skb->csum)) 1494 skb->ip_summed = CHECKSUM_UNNECESSARY; 1495 } 1496 if (!skb_csum_unnecessary(skb)) 1497 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr, 1498 skb->len, proto, 0); 1499 /* Probably, we should checksum udp header (it should be in cache 1500 * in any case) and data in tiny packets (< rx copybreak). 1501 */ 1502 1503 return 0; 1504 } 1505 1506 /* 1507 * All we need to do is get the socket, and then do a checksum. 1508 */ 1509 1510 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 1511 int proto) 1512 { 1513 struct sock *sk; 1514 struct udphdr *uh; 1515 unsigned short ulen; 1516 struct rtable *rt = skb_rtable(skb); 1517 __be32 saddr, daddr; 1518 struct net *net = dev_net(skb->dev); 1519 1520 /* 1521 * Validate the packet. 1522 */ 1523 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1524 goto drop; /* No space for header. */ 1525 1526 uh = udp_hdr(skb); 1527 ulen = ntohs(uh->len); 1528 if (ulen > skb->len) 1529 goto short_packet; 1530 1531 if (proto == IPPROTO_UDP) { 1532 /* UDP validates ulen. */ 1533 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 1534 goto short_packet; 1535 uh = udp_hdr(skb); 1536 } 1537 1538 if (udp4_csum_init(skb, uh, proto)) 1539 goto csum_error; 1540 1541 saddr = ip_hdr(skb)->saddr; 1542 daddr = ip_hdr(skb)->daddr; 1543 1544 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1545 return __udp4_lib_mcast_deliver(net, skb, uh, 1546 saddr, daddr, udptable); 1547 1548 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 1549 1550 if (sk != NULL) { 1551 int ret = udp_queue_rcv_skb(sk, skb); 1552 sock_put(sk); 1553 1554 /* a return value > 0 means to resubmit the input, but 1555 * it wants the return to be -protocol, or 0 1556 */ 1557 if (ret > 0) 1558 return -ret; 1559 return 0; 1560 } 1561 1562 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1563 goto drop; 1564 nf_reset(skb); 1565 1566 /* No socket. Drop packet silently, if checksum is wrong */ 1567 if (udp_lib_checksum_complete(skb)) 1568 goto csum_error; 1569 1570 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 1571 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1572 1573 /* 1574 * Hmm. We got an UDP packet to a port to which we 1575 * don't wanna listen. Ignore it. 1576 */ 1577 kfree_skb(skb); 1578 return 0; 1579 1580 short_packet: 1581 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 1582 proto == IPPROTO_UDPLITE ? "-Lite" : "", 1583 &saddr, 1584 ntohs(uh->source), 1585 ulen, 1586 skb->len, 1587 &daddr, 1588 ntohs(uh->dest)); 1589 goto drop; 1590 1591 csum_error: 1592 /* 1593 * RFC1122: OK. Discards the bad packet silently (as far as 1594 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1595 */ 1596 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 1597 proto == IPPROTO_UDPLITE ? "-Lite" : "", 1598 &saddr, 1599 ntohs(uh->source), 1600 &daddr, 1601 ntohs(uh->dest), 1602 ulen); 1603 drop: 1604 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 1605 kfree_skb(skb); 1606 return 0; 1607 } 1608 1609 int udp_rcv(struct sk_buff *skb) 1610 { 1611 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 1612 } 1613 1614 void udp_destroy_sock(struct sock *sk) 1615 { 1616 lock_sock(sk); 1617 udp_flush_pending_frames(sk); 1618 release_sock(sk); 1619 } 1620 1621 /* 1622 * Socket option code for UDP 1623 */ 1624 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 1625 char __user *optval, unsigned int optlen, 1626 int (*push_pending_frames)(struct sock *)) 1627 { 1628 struct udp_sock *up = udp_sk(sk); 1629 int val; 1630 int err = 0; 1631 int is_udplite = IS_UDPLITE(sk); 1632 1633 if (optlen < sizeof(int)) 1634 return -EINVAL; 1635 1636 if (get_user(val, (int __user *)optval)) 1637 return -EFAULT; 1638 1639 switch (optname) { 1640 case UDP_CORK: 1641 if (val != 0) { 1642 up->corkflag = 1; 1643 } else { 1644 up->corkflag = 0; 1645 lock_sock(sk); 1646 (*push_pending_frames)(sk); 1647 release_sock(sk); 1648 } 1649 break; 1650 1651 case UDP_ENCAP: 1652 switch (val) { 1653 case 0: 1654 case UDP_ENCAP_ESPINUDP: 1655 case UDP_ENCAP_ESPINUDP_NON_IKE: 1656 up->encap_rcv = xfrm4_udp_encap_rcv; 1657 /* FALLTHROUGH */ 1658 case UDP_ENCAP_L2TPINUDP: 1659 up->encap_type = val; 1660 break; 1661 default: 1662 err = -ENOPROTOOPT; 1663 break; 1664 } 1665 break; 1666 1667 /* 1668 * UDP-Lite's partial checksum coverage (RFC 3828). 1669 */ 1670 /* The sender sets actual checksum coverage length via this option. 1671 * The case coverage > packet length is handled by send module. */ 1672 case UDPLITE_SEND_CSCOV: 1673 if (!is_udplite) /* Disable the option on UDP sockets */ 1674 return -ENOPROTOOPT; 1675 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 1676 val = 8; 1677 else if (val > USHORT_MAX) 1678 val = USHORT_MAX; 1679 up->pcslen = val; 1680 up->pcflag |= UDPLITE_SEND_CC; 1681 break; 1682 1683 /* The receiver specifies a minimum checksum coverage value. To make 1684 * sense, this should be set to at least 8 (as done below). If zero is 1685 * used, this again means full checksum coverage. */ 1686 case UDPLITE_RECV_CSCOV: 1687 if (!is_udplite) /* Disable the option on UDP sockets */ 1688 return -ENOPROTOOPT; 1689 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 1690 val = 8; 1691 else if (val > USHORT_MAX) 1692 val = USHORT_MAX; 1693 up->pcrlen = val; 1694 up->pcflag |= UDPLITE_RECV_CC; 1695 break; 1696 1697 default: 1698 err = -ENOPROTOOPT; 1699 break; 1700 } 1701 1702 return err; 1703 } 1704 EXPORT_SYMBOL(udp_lib_setsockopt); 1705 1706 int udp_setsockopt(struct sock *sk, int level, int optname, 1707 char __user *optval, unsigned int optlen) 1708 { 1709 if (level == SOL_UDP || level == SOL_UDPLITE) 1710 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 1711 udp_push_pending_frames); 1712 return ip_setsockopt(sk, level, optname, optval, optlen); 1713 } 1714 1715 #ifdef CONFIG_COMPAT 1716 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 1717 char __user *optval, unsigned int optlen) 1718 { 1719 if (level == SOL_UDP || level == SOL_UDPLITE) 1720 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 1721 udp_push_pending_frames); 1722 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 1723 } 1724 #endif 1725 1726 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 1727 char __user *optval, int __user *optlen) 1728 { 1729 struct udp_sock *up = udp_sk(sk); 1730 int val, len; 1731 1732 if (get_user(len, optlen)) 1733 return -EFAULT; 1734 1735 len = min_t(unsigned int, len, sizeof(int)); 1736 1737 if (len < 0) 1738 return -EINVAL; 1739 1740 switch (optname) { 1741 case UDP_CORK: 1742 val = up->corkflag; 1743 break; 1744 1745 case UDP_ENCAP: 1746 val = up->encap_type; 1747 break; 1748 1749 /* The following two cannot be changed on UDP sockets, the return is 1750 * always 0 (which corresponds to the full checksum coverage of UDP). */ 1751 case UDPLITE_SEND_CSCOV: 1752 val = up->pcslen; 1753 break; 1754 1755 case UDPLITE_RECV_CSCOV: 1756 val = up->pcrlen; 1757 break; 1758 1759 default: 1760 return -ENOPROTOOPT; 1761 } 1762 1763 if (put_user(len, optlen)) 1764 return -EFAULT; 1765 if (copy_to_user(optval, &val, len)) 1766 return -EFAULT; 1767 return 0; 1768 } 1769 EXPORT_SYMBOL(udp_lib_getsockopt); 1770 1771 int udp_getsockopt(struct sock *sk, int level, int optname, 1772 char __user *optval, int __user *optlen) 1773 { 1774 if (level == SOL_UDP || level == SOL_UDPLITE) 1775 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 1776 return ip_getsockopt(sk, level, optname, optval, optlen); 1777 } 1778 1779 #ifdef CONFIG_COMPAT 1780 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 1781 char __user *optval, int __user *optlen) 1782 { 1783 if (level == SOL_UDP || level == SOL_UDPLITE) 1784 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 1785 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 1786 } 1787 #endif 1788 /** 1789 * udp_poll - wait for a UDP event. 1790 * @file - file struct 1791 * @sock - socket 1792 * @wait - poll table 1793 * 1794 * This is same as datagram poll, except for the special case of 1795 * blocking sockets. If application is using a blocking fd 1796 * and a packet with checksum error is in the queue; 1797 * then it could get return from select indicating data available 1798 * but then block when reading it. Add special case code 1799 * to work around these arguably broken applications. 1800 */ 1801 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 1802 { 1803 unsigned int mask = datagram_poll(file, sock, wait); 1804 struct sock *sk = sock->sk; 1805 1806 /* Check for false positives due to checksum errors */ 1807 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 1808 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk)) 1809 mask &= ~(POLLIN | POLLRDNORM); 1810 1811 return mask; 1812 1813 } 1814 EXPORT_SYMBOL(udp_poll); 1815 1816 struct proto udp_prot = { 1817 .name = "UDP", 1818 .owner = THIS_MODULE, 1819 .close = udp_lib_close, 1820 .connect = ip4_datagram_connect, 1821 .disconnect = udp_disconnect, 1822 .ioctl = udp_ioctl, 1823 .destroy = udp_destroy_sock, 1824 .setsockopt = udp_setsockopt, 1825 .getsockopt = udp_getsockopt, 1826 .sendmsg = udp_sendmsg, 1827 .recvmsg = udp_recvmsg, 1828 .sendpage = udp_sendpage, 1829 .backlog_rcv = __udp_queue_rcv_skb, 1830 .hash = udp_lib_hash, 1831 .unhash = udp_lib_unhash, 1832 .get_port = udp_v4_get_port, 1833 .memory_allocated = &udp_memory_allocated, 1834 .sysctl_mem = sysctl_udp_mem, 1835 .sysctl_wmem = &sysctl_udp_wmem_min, 1836 .sysctl_rmem = &sysctl_udp_rmem_min, 1837 .obj_size = sizeof(struct udp_sock), 1838 .slab_flags = SLAB_DESTROY_BY_RCU, 1839 .h.udp_table = &udp_table, 1840 #ifdef CONFIG_COMPAT 1841 .compat_setsockopt = compat_udp_setsockopt, 1842 .compat_getsockopt = compat_udp_getsockopt, 1843 #endif 1844 }; 1845 EXPORT_SYMBOL(udp_prot); 1846 1847 /* ------------------------------------------------------------------------ */ 1848 #ifdef CONFIG_PROC_FS 1849 1850 static struct sock *udp_get_first(struct seq_file *seq, int start) 1851 { 1852 struct sock *sk; 1853 struct udp_iter_state *state = seq->private; 1854 struct net *net = seq_file_net(seq); 1855 1856 for (state->bucket = start; state->bucket <= state->udp_table->mask; 1857 ++state->bucket) { 1858 struct hlist_nulls_node *node; 1859 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 1860 1861 if (hlist_nulls_empty(&hslot->head)) 1862 continue; 1863 1864 spin_lock_bh(&hslot->lock); 1865 sk_nulls_for_each(sk, node, &hslot->head) { 1866 if (!net_eq(sock_net(sk), net)) 1867 continue; 1868 if (sk->sk_family == state->family) 1869 goto found; 1870 } 1871 spin_unlock_bh(&hslot->lock); 1872 } 1873 sk = NULL; 1874 found: 1875 return sk; 1876 } 1877 1878 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 1879 { 1880 struct udp_iter_state *state = seq->private; 1881 struct net *net = seq_file_net(seq); 1882 1883 do { 1884 sk = sk_nulls_next(sk); 1885 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 1886 1887 if (!sk) { 1888 if (state->bucket <= state->udp_table->mask) 1889 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 1890 return udp_get_first(seq, state->bucket + 1); 1891 } 1892 return sk; 1893 } 1894 1895 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 1896 { 1897 struct sock *sk = udp_get_first(seq, 0); 1898 1899 if (sk) 1900 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 1901 --pos; 1902 return pos ? NULL : sk; 1903 } 1904 1905 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 1906 { 1907 struct udp_iter_state *state = seq->private; 1908 state->bucket = MAX_UDP_PORTS; 1909 1910 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 1911 } 1912 1913 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1914 { 1915 struct sock *sk; 1916 1917 if (v == SEQ_START_TOKEN) 1918 sk = udp_get_idx(seq, 0); 1919 else 1920 sk = udp_get_next(seq, v); 1921 1922 ++*pos; 1923 return sk; 1924 } 1925 1926 static void udp_seq_stop(struct seq_file *seq, void *v) 1927 { 1928 struct udp_iter_state *state = seq->private; 1929 1930 if (state->bucket <= state->udp_table->mask) 1931 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 1932 } 1933 1934 static int udp_seq_open(struct inode *inode, struct file *file) 1935 { 1936 struct udp_seq_afinfo *afinfo = PDE(inode)->data; 1937 struct udp_iter_state *s; 1938 int err; 1939 1940 err = seq_open_net(inode, file, &afinfo->seq_ops, 1941 sizeof(struct udp_iter_state)); 1942 if (err < 0) 1943 return err; 1944 1945 s = ((struct seq_file *)file->private_data)->private; 1946 s->family = afinfo->family; 1947 s->udp_table = afinfo->udp_table; 1948 return err; 1949 } 1950 1951 /* ------------------------------------------------------------------------ */ 1952 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 1953 { 1954 struct proc_dir_entry *p; 1955 int rc = 0; 1956 1957 afinfo->seq_fops.open = udp_seq_open; 1958 afinfo->seq_fops.read = seq_read; 1959 afinfo->seq_fops.llseek = seq_lseek; 1960 afinfo->seq_fops.release = seq_release_net; 1961 1962 afinfo->seq_ops.start = udp_seq_start; 1963 afinfo->seq_ops.next = udp_seq_next; 1964 afinfo->seq_ops.stop = udp_seq_stop; 1965 1966 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 1967 &afinfo->seq_fops, afinfo); 1968 if (!p) 1969 rc = -ENOMEM; 1970 return rc; 1971 } 1972 EXPORT_SYMBOL(udp_proc_register); 1973 1974 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 1975 { 1976 proc_net_remove(net, afinfo->name); 1977 } 1978 EXPORT_SYMBOL(udp_proc_unregister); 1979 1980 /* ------------------------------------------------------------------------ */ 1981 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 1982 int bucket, int *len) 1983 { 1984 struct inet_sock *inet = inet_sk(sp); 1985 __be32 dest = inet->inet_daddr; 1986 __be32 src = inet->inet_rcv_saddr; 1987 __u16 destp = ntohs(inet->inet_dport); 1988 __u16 srcp = ntohs(inet->inet_sport); 1989 1990 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 1991 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n", 1992 bucket, src, srcp, dest, destp, sp->sk_state, 1993 sk_wmem_alloc_get(sp), 1994 sk_rmem_alloc_get(sp), 1995 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp), 1996 atomic_read(&sp->sk_refcnt), sp, 1997 atomic_read(&sp->sk_drops), len); 1998 } 1999 2000 int udp4_seq_show(struct seq_file *seq, void *v) 2001 { 2002 if (v == SEQ_START_TOKEN) 2003 seq_printf(seq, "%-127s\n", 2004 " sl local_address rem_address st tx_queue " 2005 "rx_queue tr tm->when retrnsmt uid timeout " 2006 "inode ref pointer drops"); 2007 else { 2008 struct udp_iter_state *state = seq->private; 2009 int len; 2010 2011 udp4_format_sock(v, seq, state->bucket, &len); 2012 seq_printf(seq, "%*s\n", 127 - len, ""); 2013 } 2014 return 0; 2015 } 2016 2017 /* ------------------------------------------------------------------------ */ 2018 static struct udp_seq_afinfo udp4_seq_afinfo = { 2019 .name = "udp", 2020 .family = AF_INET, 2021 .udp_table = &udp_table, 2022 .seq_fops = { 2023 .owner = THIS_MODULE, 2024 }, 2025 .seq_ops = { 2026 .show = udp4_seq_show, 2027 }, 2028 }; 2029 2030 static int udp4_proc_init_net(struct net *net) 2031 { 2032 return udp_proc_register(net, &udp4_seq_afinfo); 2033 } 2034 2035 static void udp4_proc_exit_net(struct net *net) 2036 { 2037 udp_proc_unregister(net, &udp4_seq_afinfo); 2038 } 2039 2040 static struct pernet_operations udp4_net_ops = { 2041 .init = udp4_proc_init_net, 2042 .exit = udp4_proc_exit_net, 2043 }; 2044 2045 int __init udp4_proc_init(void) 2046 { 2047 return register_pernet_subsys(&udp4_net_ops); 2048 } 2049 2050 void udp4_proc_exit(void) 2051 { 2052 unregister_pernet_subsys(&udp4_net_ops); 2053 } 2054 #endif /* CONFIG_PROC_FS */ 2055 2056 static __initdata unsigned long uhash_entries; 2057 static int __init set_uhash_entries(char *str) 2058 { 2059 if (!str) 2060 return 0; 2061 uhash_entries = simple_strtoul(str, &str, 0); 2062 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2063 uhash_entries = UDP_HTABLE_SIZE_MIN; 2064 return 1; 2065 } 2066 __setup("uhash_entries=", set_uhash_entries); 2067 2068 void __init udp_table_init(struct udp_table *table, const char *name) 2069 { 2070 unsigned int i; 2071 2072 if (!CONFIG_BASE_SMALL) 2073 table->hash = alloc_large_system_hash(name, 2074 2 * sizeof(struct udp_hslot), 2075 uhash_entries, 2076 21, /* one slot per 2 MB */ 2077 0, 2078 &table->log, 2079 &table->mask, 2080 64 * 1024); 2081 /* 2082 * Make sure hash table has the minimum size 2083 */ 2084 if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) { 2085 table->hash = kmalloc(UDP_HTABLE_SIZE_MIN * 2086 2 * sizeof(struct udp_hslot), GFP_KERNEL); 2087 if (!table->hash) 2088 panic(name); 2089 table->log = ilog2(UDP_HTABLE_SIZE_MIN); 2090 table->mask = UDP_HTABLE_SIZE_MIN - 1; 2091 } 2092 table->hash2 = table->hash + (table->mask + 1); 2093 for (i = 0; i <= table->mask; i++) { 2094 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i); 2095 table->hash[i].count = 0; 2096 spin_lock_init(&table->hash[i].lock); 2097 } 2098 for (i = 0; i <= table->mask; i++) { 2099 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i); 2100 table->hash2[i].count = 0; 2101 spin_lock_init(&table->hash2[i].lock); 2102 } 2103 } 2104 2105 void __init udp_init(void) 2106 { 2107 unsigned long nr_pages, limit; 2108 2109 udp_table_init(&udp_table, "UDP"); 2110 /* Set the pressure threshold up by the same strategy of TCP. It is a 2111 * fraction of global memory that is up to 1/2 at 256 MB, decreasing 2112 * toward zero with the amount of memory, with a floor of 128 pages. 2113 */ 2114 nr_pages = totalram_pages - totalhigh_pages; 2115 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT); 2116 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11); 2117 limit = max(limit, 128UL); 2118 sysctl_udp_mem[0] = limit / 4 * 3; 2119 sysctl_udp_mem[1] = limit; 2120 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2121 2122 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2123 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2124 } 2125 2126 int udp4_ufo_send_check(struct sk_buff *skb) 2127 { 2128 const struct iphdr *iph; 2129 struct udphdr *uh; 2130 2131 if (!pskb_may_pull(skb, sizeof(*uh))) 2132 return -EINVAL; 2133 2134 iph = ip_hdr(skb); 2135 uh = udp_hdr(skb); 2136 2137 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len, 2138 IPPROTO_UDP, 0); 2139 skb->csum_start = skb_transport_header(skb) - skb->head; 2140 skb->csum_offset = offsetof(struct udphdr, check); 2141 skb->ip_summed = CHECKSUM_PARTIAL; 2142 return 0; 2143 } 2144 2145 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features) 2146 { 2147 struct sk_buff *segs = ERR_PTR(-EINVAL); 2148 unsigned int mss; 2149 int offset; 2150 __wsum csum; 2151 2152 mss = skb_shinfo(skb)->gso_size; 2153 if (unlikely(skb->len <= mss)) 2154 goto out; 2155 2156 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2157 /* Packet is from an untrusted source, reset gso_segs. */ 2158 int type = skb_shinfo(skb)->gso_type; 2159 2160 if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) || 2161 !(type & (SKB_GSO_UDP)))) 2162 goto out; 2163 2164 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2165 2166 segs = NULL; 2167 goto out; 2168 } 2169 2170 /* Do software UFO. Complete and fill in the UDP checksum as HW cannot 2171 * do checksum of UDP packets sent as multiple IP fragments. 2172 */ 2173 offset = skb->csum_start - skb_headroom(skb); 2174 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2175 offset += skb->csum_offset; 2176 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2177 skb->ip_summed = CHECKSUM_NONE; 2178 2179 /* Fragment the skb. IP headers of the fragments are updated in 2180 * inet_gso_segment() 2181 */ 2182 segs = skb_segment(skb, features); 2183 out: 2184 return segs; 2185 } 2186 2187