xref: /openbmc/linux/net/ipv4/udp.c (revision 7dd65feb)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <net/tcp_states.h>
99 #include <linux/skbuff.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <net/net_namespace.h>
103 #include <net/icmp.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include "udp_impl.h"
108 
109 struct udp_table udp_table __read_mostly;
110 EXPORT_SYMBOL(udp_table);
111 
112 int sysctl_udp_mem[3] __read_mostly;
113 EXPORT_SYMBOL(sysctl_udp_mem);
114 
115 int sysctl_udp_rmem_min __read_mostly;
116 EXPORT_SYMBOL(sysctl_udp_rmem_min);
117 
118 int sysctl_udp_wmem_min __read_mostly;
119 EXPORT_SYMBOL(sysctl_udp_wmem_min);
120 
121 atomic_t udp_memory_allocated;
122 EXPORT_SYMBOL(udp_memory_allocated);
123 
124 #define MAX_UDP_PORTS 65536
125 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
126 
127 static int udp_lib_lport_inuse(struct net *net, __u16 num,
128 			       const struct udp_hslot *hslot,
129 			       unsigned long *bitmap,
130 			       struct sock *sk,
131 			       int (*saddr_comp)(const struct sock *sk1,
132 						 const struct sock *sk2),
133 			       unsigned int log)
134 {
135 	struct sock *sk2;
136 	struct hlist_nulls_node *node;
137 
138 	sk_nulls_for_each(sk2, node, &hslot->head)
139 		if (net_eq(sock_net(sk2), net) &&
140 		    sk2 != sk &&
141 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
142 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
143 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
144 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
145 		    (*saddr_comp)(sk, sk2)) {
146 			if (bitmap)
147 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
148 					  bitmap);
149 			else
150 				return 1;
151 		}
152 	return 0;
153 }
154 
155 /*
156  * Note: we still hold spinlock of primary hash chain, so no other writer
157  * can insert/delete a socket with local_port == num
158  */
159 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
160 			       struct udp_hslot *hslot2,
161 			       struct sock *sk,
162 			       int (*saddr_comp)(const struct sock *sk1,
163 						 const struct sock *sk2))
164 {
165 	struct sock *sk2;
166 	struct hlist_nulls_node *node;
167 	int res = 0;
168 
169 	spin_lock(&hslot2->lock);
170 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
171 		if (net_eq(sock_net(sk2), net) &&
172 		    sk2 != sk &&
173 		    (udp_sk(sk2)->udp_port_hash == num) &&
174 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
175 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
176 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
177 		    (*saddr_comp)(sk, sk2)) {
178 			res = 1;
179 			break;
180 		}
181 	spin_unlock(&hslot2->lock);
182 	return res;
183 }
184 
185 /**
186  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
187  *
188  *  @sk:          socket struct in question
189  *  @snum:        port number to look up
190  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
191  *  @hash2_nulladdr: AF-dependant hash value in secondary hash chains,
192  *                   with NULL address
193  */
194 int udp_lib_get_port(struct sock *sk, unsigned short snum,
195 		       int (*saddr_comp)(const struct sock *sk1,
196 					 const struct sock *sk2),
197 		     unsigned int hash2_nulladdr)
198 {
199 	struct udp_hslot *hslot, *hslot2;
200 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
201 	int    error = 1;
202 	struct net *net = sock_net(sk);
203 
204 	if (!snum) {
205 		int low, high, remaining;
206 		unsigned rand;
207 		unsigned short first, last;
208 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
209 
210 		inet_get_local_port_range(&low, &high);
211 		remaining = (high - low) + 1;
212 
213 		rand = net_random();
214 		first = (((u64)rand * remaining) >> 32) + low;
215 		/*
216 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
217 		 */
218 		rand = (rand | 1) * (udptable->mask + 1);
219 		last = first + udptable->mask + 1;
220 		do {
221 			hslot = udp_hashslot(udptable, net, first);
222 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
223 			spin_lock_bh(&hslot->lock);
224 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
225 					    saddr_comp, udptable->log);
226 
227 			snum = first;
228 			/*
229 			 * Iterate on all possible values of snum for this hash.
230 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
231 			 * give us randomization and full range coverage.
232 			 */
233 			do {
234 				if (low <= snum && snum <= high &&
235 				    !test_bit(snum >> udptable->log, bitmap))
236 					goto found;
237 				snum += rand;
238 			} while (snum != first);
239 			spin_unlock_bh(&hslot->lock);
240 		} while (++first != last);
241 		goto fail;
242 	} else {
243 		hslot = udp_hashslot(udptable, net, snum);
244 		spin_lock_bh(&hslot->lock);
245 		if (hslot->count > 10) {
246 			int exist;
247 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
248 
249 			slot2          &= udptable->mask;
250 			hash2_nulladdr &= udptable->mask;
251 
252 			hslot2 = udp_hashslot2(udptable, slot2);
253 			if (hslot->count < hslot2->count)
254 				goto scan_primary_hash;
255 
256 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
257 						     sk, saddr_comp);
258 			if (!exist && (hash2_nulladdr != slot2)) {
259 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
260 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
261 							     sk, saddr_comp);
262 			}
263 			if (exist)
264 				goto fail_unlock;
265 			else
266 				goto found;
267 		}
268 scan_primary_hash:
269 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
270 					saddr_comp, 0))
271 			goto fail_unlock;
272 	}
273 found:
274 	inet_sk(sk)->inet_num = snum;
275 	udp_sk(sk)->udp_port_hash = snum;
276 	udp_sk(sk)->udp_portaddr_hash ^= snum;
277 	if (sk_unhashed(sk)) {
278 		sk_nulls_add_node_rcu(sk, &hslot->head);
279 		hslot->count++;
280 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
281 
282 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
283 		spin_lock(&hslot2->lock);
284 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
285 					 &hslot2->head);
286 		hslot2->count++;
287 		spin_unlock(&hslot2->lock);
288 	}
289 	error = 0;
290 fail_unlock:
291 	spin_unlock_bh(&hslot->lock);
292 fail:
293 	return error;
294 }
295 EXPORT_SYMBOL(udp_lib_get_port);
296 
297 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
298 {
299 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
300 
301 	return 	(!ipv6_only_sock(sk2)  &&
302 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
303 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
304 }
305 
306 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
307 				       unsigned int port)
308 {
309 	return jhash_1word(saddr, net_hash_mix(net)) ^ port;
310 }
311 
312 int udp_v4_get_port(struct sock *sk, unsigned short snum)
313 {
314 	unsigned int hash2_nulladdr =
315 		udp4_portaddr_hash(sock_net(sk), INADDR_ANY, snum);
316 	unsigned int hash2_partial =
317 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
318 
319 	/* precompute partial secondary hash */
320 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
321 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
322 }
323 
324 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
325 			 unsigned short hnum,
326 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
327 {
328 	int score = -1;
329 
330 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
331 			!ipv6_only_sock(sk)) {
332 		struct inet_sock *inet = inet_sk(sk);
333 
334 		score = (sk->sk_family == PF_INET ? 1 : 0);
335 		if (inet->inet_rcv_saddr) {
336 			if (inet->inet_rcv_saddr != daddr)
337 				return -1;
338 			score += 2;
339 		}
340 		if (inet->inet_daddr) {
341 			if (inet->inet_daddr != saddr)
342 				return -1;
343 			score += 2;
344 		}
345 		if (inet->inet_dport) {
346 			if (inet->inet_dport != sport)
347 				return -1;
348 			score += 2;
349 		}
350 		if (sk->sk_bound_dev_if) {
351 			if (sk->sk_bound_dev_if != dif)
352 				return -1;
353 			score += 2;
354 		}
355 	}
356 	return score;
357 }
358 
359 /*
360  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
361  */
362 #define SCORE2_MAX (1 + 2 + 2 + 2)
363 static inline int compute_score2(struct sock *sk, struct net *net,
364 				 __be32 saddr, __be16 sport,
365 				 __be32 daddr, unsigned int hnum, int dif)
366 {
367 	int score = -1;
368 
369 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
370 		struct inet_sock *inet = inet_sk(sk);
371 
372 		if (inet->inet_rcv_saddr != daddr)
373 			return -1;
374 		if (inet->inet_num != hnum)
375 			return -1;
376 
377 		score = (sk->sk_family == PF_INET ? 1 : 0);
378 		if (inet->inet_daddr) {
379 			if (inet->inet_daddr != saddr)
380 				return -1;
381 			score += 2;
382 		}
383 		if (inet->inet_dport) {
384 			if (inet->inet_dport != sport)
385 				return -1;
386 			score += 2;
387 		}
388 		if (sk->sk_bound_dev_if) {
389 			if (sk->sk_bound_dev_if != dif)
390 				return -1;
391 			score += 2;
392 		}
393 	}
394 	return score;
395 }
396 
397 
398 /* called with read_rcu_lock() */
399 static struct sock *udp4_lib_lookup2(struct net *net,
400 		__be32 saddr, __be16 sport,
401 		__be32 daddr, unsigned int hnum, int dif,
402 		struct udp_hslot *hslot2, unsigned int slot2)
403 {
404 	struct sock *sk, *result;
405 	struct hlist_nulls_node *node;
406 	int score, badness;
407 
408 begin:
409 	result = NULL;
410 	badness = -1;
411 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
412 		score = compute_score2(sk, net, saddr, sport,
413 				      daddr, hnum, dif);
414 		if (score > badness) {
415 			result = sk;
416 			badness = score;
417 			if (score == SCORE2_MAX)
418 				goto exact_match;
419 		}
420 	}
421 	/*
422 	 * if the nulls value we got at the end of this lookup is
423 	 * not the expected one, we must restart lookup.
424 	 * We probably met an item that was moved to another chain.
425 	 */
426 	if (get_nulls_value(node) != slot2)
427 		goto begin;
428 
429 	if (result) {
430 exact_match:
431 		if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
432 			result = NULL;
433 		else if (unlikely(compute_score2(result, net, saddr, sport,
434 				  daddr, hnum, dif) < badness)) {
435 			sock_put(result);
436 			goto begin;
437 		}
438 	}
439 	return result;
440 }
441 
442 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
443  * harder than this. -DaveM
444  */
445 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
446 		__be16 sport, __be32 daddr, __be16 dport,
447 		int dif, struct udp_table *udptable)
448 {
449 	struct sock *sk, *result;
450 	struct hlist_nulls_node *node;
451 	unsigned short hnum = ntohs(dport);
452 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
453 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
454 	int score, badness;
455 
456 	rcu_read_lock();
457 	if (hslot->count > 10) {
458 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
459 		slot2 = hash2 & udptable->mask;
460 		hslot2 = &udptable->hash2[slot2];
461 		if (hslot->count < hslot2->count)
462 			goto begin;
463 
464 		result = udp4_lib_lookup2(net, saddr, sport,
465 					  daddr, hnum, dif,
466 					  hslot2, slot2);
467 		if (!result) {
468 			hash2 = udp4_portaddr_hash(net, INADDR_ANY, hnum);
469 			slot2 = hash2 & udptable->mask;
470 			hslot2 = &udptable->hash2[slot2];
471 			if (hslot->count < hslot2->count)
472 				goto begin;
473 
474 			result = udp4_lib_lookup2(net, INADDR_ANY, sport,
475 						  daddr, hnum, dif,
476 						  hslot2, slot2);
477 		}
478 		rcu_read_unlock();
479 		return result;
480 	}
481 begin:
482 	result = NULL;
483 	badness = -1;
484 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
485 		score = compute_score(sk, net, saddr, hnum, sport,
486 				      daddr, dport, dif);
487 		if (score > badness) {
488 			result = sk;
489 			badness = score;
490 		}
491 	}
492 	/*
493 	 * if the nulls value we got at the end of this lookup is
494 	 * not the expected one, we must restart lookup.
495 	 * We probably met an item that was moved to another chain.
496 	 */
497 	if (get_nulls_value(node) != slot)
498 		goto begin;
499 
500 	if (result) {
501 		if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
502 			result = NULL;
503 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
504 				  daddr, dport, dif) < badness)) {
505 			sock_put(result);
506 			goto begin;
507 		}
508 	}
509 	rcu_read_unlock();
510 	return result;
511 }
512 
513 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
514 						 __be16 sport, __be16 dport,
515 						 struct udp_table *udptable)
516 {
517 	struct sock *sk;
518 	const struct iphdr *iph = ip_hdr(skb);
519 
520 	if (unlikely(sk = skb_steal_sock(skb)))
521 		return sk;
522 	else
523 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
524 					 iph->daddr, dport, inet_iif(skb),
525 					 udptable);
526 }
527 
528 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
529 			     __be32 daddr, __be16 dport, int dif)
530 {
531 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
532 }
533 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
534 
535 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
536 					     __be16 loc_port, __be32 loc_addr,
537 					     __be16 rmt_port, __be32 rmt_addr,
538 					     int dif)
539 {
540 	struct hlist_nulls_node *node;
541 	struct sock *s = sk;
542 	unsigned short hnum = ntohs(loc_port);
543 
544 	sk_nulls_for_each_from(s, node) {
545 		struct inet_sock *inet = inet_sk(s);
546 
547 		if (!net_eq(sock_net(s), net) ||
548 		    udp_sk(s)->udp_port_hash != hnum ||
549 		    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
550 		    (inet->inet_dport != rmt_port && inet->inet_dport) ||
551 		    (inet->inet_rcv_saddr &&
552 		     inet->inet_rcv_saddr != loc_addr) ||
553 		    ipv6_only_sock(s) ||
554 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
555 			continue;
556 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
557 			continue;
558 		goto found;
559 	}
560 	s = NULL;
561 found:
562 	return s;
563 }
564 
565 /*
566  * This routine is called by the ICMP module when it gets some
567  * sort of error condition.  If err < 0 then the socket should
568  * be closed and the error returned to the user.  If err > 0
569  * it's just the icmp type << 8 | icmp code.
570  * Header points to the ip header of the error packet. We move
571  * on past this. Then (as it used to claim before adjustment)
572  * header points to the first 8 bytes of the udp header.  We need
573  * to find the appropriate port.
574  */
575 
576 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
577 {
578 	struct inet_sock *inet;
579 	struct iphdr *iph = (struct iphdr *)skb->data;
580 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
581 	const int type = icmp_hdr(skb)->type;
582 	const int code = icmp_hdr(skb)->code;
583 	struct sock *sk;
584 	int harderr;
585 	int err;
586 	struct net *net = dev_net(skb->dev);
587 
588 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
589 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
590 	if (sk == NULL) {
591 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
592 		return;	/* No socket for error */
593 	}
594 
595 	err = 0;
596 	harderr = 0;
597 	inet = inet_sk(sk);
598 
599 	switch (type) {
600 	default:
601 	case ICMP_TIME_EXCEEDED:
602 		err = EHOSTUNREACH;
603 		break;
604 	case ICMP_SOURCE_QUENCH:
605 		goto out;
606 	case ICMP_PARAMETERPROB:
607 		err = EPROTO;
608 		harderr = 1;
609 		break;
610 	case ICMP_DEST_UNREACH:
611 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
612 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
613 				err = EMSGSIZE;
614 				harderr = 1;
615 				break;
616 			}
617 			goto out;
618 		}
619 		err = EHOSTUNREACH;
620 		if (code <= NR_ICMP_UNREACH) {
621 			harderr = icmp_err_convert[code].fatal;
622 			err = icmp_err_convert[code].errno;
623 		}
624 		break;
625 	}
626 
627 	/*
628 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
629 	 *	4.1.3.3.
630 	 */
631 	if (!inet->recverr) {
632 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
633 			goto out;
634 	} else {
635 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
636 	}
637 	sk->sk_err = err;
638 	sk->sk_error_report(sk);
639 out:
640 	sock_put(sk);
641 }
642 
643 void udp_err(struct sk_buff *skb, u32 info)
644 {
645 	__udp4_lib_err(skb, info, &udp_table);
646 }
647 
648 /*
649  * Throw away all pending data and cancel the corking. Socket is locked.
650  */
651 void udp_flush_pending_frames(struct sock *sk)
652 {
653 	struct udp_sock *up = udp_sk(sk);
654 
655 	if (up->pending) {
656 		up->len = 0;
657 		up->pending = 0;
658 		ip_flush_pending_frames(sk);
659 	}
660 }
661 EXPORT_SYMBOL(udp_flush_pending_frames);
662 
663 /**
664  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
665  * 	@sk: 	socket we are sending on
666  * 	@skb: 	sk_buff containing the filled-in UDP header
667  * 	        (checksum field must be zeroed out)
668  */
669 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
670 				 __be32 src, __be32 dst, int len)
671 {
672 	unsigned int offset;
673 	struct udphdr *uh = udp_hdr(skb);
674 	__wsum csum = 0;
675 
676 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
677 		/*
678 		 * Only one fragment on the socket.
679 		 */
680 		skb->csum_start = skb_transport_header(skb) - skb->head;
681 		skb->csum_offset = offsetof(struct udphdr, check);
682 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
683 	} else {
684 		/*
685 		 * HW-checksum won't work as there are two or more
686 		 * fragments on the socket so that all csums of sk_buffs
687 		 * should be together
688 		 */
689 		offset = skb_transport_offset(skb);
690 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
691 
692 		skb->ip_summed = CHECKSUM_NONE;
693 
694 		skb_queue_walk(&sk->sk_write_queue, skb) {
695 			csum = csum_add(csum, skb->csum);
696 		}
697 
698 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
699 		if (uh->check == 0)
700 			uh->check = CSUM_MANGLED_0;
701 	}
702 }
703 
704 /*
705  * Push out all pending data as one UDP datagram. Socket is locked.
706  */
707 static int udp_push_pending_frames(struct sock *sk)
708 {
709 	struct udp_sock  *up = udp_sk(sk);
710 	struct inet_sock *inet = inet_sk(sk);
711 	struct flowi *fl = &inet->cork.fl;
712 	struct sk_buff *skb;
713 	struct udphdr *uh;
714 	int err = 0;
715 	int is_udplite = IS_UDPLITE(sk);
716 	__wsum csum = 0;
717 
718 	/* Grab the skbuff where UDP header space exists. */
719 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
720 		goto out;
721 
722 	/*
723 	 * Create a UDP header
724 	 */
725 	uh = udp_hdr(skb);
726 	uh->source = fl->fl_ip_sport;
727 	uh->dest = fl->fl_ip_dport;
728 	uh->len = htons(up->len);
729 	uh->check = 0;
730 
731 	if (is_udplite)  				 /*     UDP-Lite      */
732 		csum  = udplite_csum_outgoing(sk, skb);
733 
734 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
735 
736 		skb->ip_summed = CHECKSUM_NONE;
737 		goto send;
738 
739 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
740 
741 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len);
742 		goto send;
743 
744 	} else						 /*   `normal' UDP    */
745 		csum = udp_csum_outgoing(sk, skb);
746 
747 	/* add protocol-dependent pseudo-header */
748 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
749 				      sk->sk_protocol, csum);
750 	if (uh->check == 0)
751 		uh->check = CSUM_MANGLED_0;
752 
753 send:
754 	err = ip_push_pending_frames(sk);
755 	if (err) {
756 		if (err == -ENOBUFS && !inet->recverr) {
757 			UDP_INC_STATS_USER(sock_net(sk),
758 					   UDP_MIB_SNDBUFERRORS, is_udplite);
759 			err = 0;
760 		}
761 	} else
762 		UDP_INC_STATS_USER(sock_net(sk),
763 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
764 out:
765 	up->len = 0;
766 	up->pending = 0;
767 	return err;
768 }
769 
770 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
771 		size_t len)
772 {
773 	struct inet_sock *inet = inet_sk(sk);
774 	struct udp_sock *up = udp_sk(sk);
775 	int ulen = len;
776 	struct ipcm_cookie ipc;
777 	struct rtable *rt = NULL;
778 	int free = 0;
779 	int connected = 0;
780 	__be32 daddr, faddr, saddr;
781 	__be16 dport;
782 	u8  tos;
783 	int err, is_udplite = IS_UDPLITE(sk);
784 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
785 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
786 
787 	if (len > 0xFFFF)
788 		return -EMSGSIZE;
789 
790 	/*
791 	 *	Check the flags.
792 	 */
793 
794 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
795 		return -EOPNOTSUPP;
796 
797 	ipc.opt = NULL;
798 	ipc.shtx.flags = 0;
799 
800 	if (up->pending) {
801 		/*
802 		 * There are pending frames.
803 		 * The socket lock must be held while it's corked.
804 		 */
805 		lock_sock(sk);
806 		if (likely(up->pending)) {
807 			if (unlikely(up->pending != AF_INET)) {
808 				release_sock(sk);
809 				return -EINVAL;
810 			}
811 			goto do_append_data;
812 		}
813 		release_sock(sk);
814 	}
815 	ulen += sizeof(struct udphdr);
816 
817 	/*
818 	 *	Get and verify the address.
819 	 */
820 	if (msg->msg_name) {
821 		struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
822 		if (msg->msg_namelen < sizeof(*usin))
823 			return -EINVAL;
824 		if (usin->sin_family != AF_INET) {
825 			if (usin->sin_family != AF_UNSPEC)
826 				return -EAFNOSUPPORT;
827 		}
828 
829 		daddr = usin->sin_addr.s_addr;
830 		dport = usin->sin_port;
831 		if (dport == 0)
832 			return -EINVAL;
833 	} else {
834 		if (sk->sk_state != TCP_ESTABLISHED)
835 			return -EDESTADDRREQ;
836 		daddr = inet->inet_daddr;
837 		dport = inet->inet_dport;
838 		/* Open fast path for connected socket.
839 		   Route will not be used, if at least one option is set.
840 		 */
841 		connected = 1;
842 	}
843 	ipc.addr = inet->inet_saddr;
844 
845 	ipc.oif = sk->sk_bound_dev_if;
846 	err = sock_tx_timestamp(msg, sk, &ipc.shtx);
847 	if (err)
848 		return err;
849 	if (msg->msg_controllen) {
850 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
851 		if (err)
852 			return err;
853 		if (ipc.opt)
854 			free = 1;
855 		connected = 0;
856 	}
857 	if (!ipc.opt)
858 		ipc.opt = inet->opt;
859 
860 	saddr = ipc.addr;
861 	ipc.addr = faddr = daddr;
862 
863 	if (ipc.opt && ipc.opt->srr) {
864 		if (!daddr)
865 			return -EINVAL;
866 		faddr = ipc.opt->faddr;
867 		connected = 0;
868 	}
869 	tos = RT_TOS(inet->tos);
870 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
871 	    (msg->msg_flags & MSG_DONTROUTE) ||
872 	    (ipc.opt && ipc.opt->is_strictroute)) {
873 		tos |= RTO_ONLINK;
874 		connected = 0;
875 	}
876 
877 	if (ipv4_is_multicast(daddr)) {
878 		if (!ipc.oif)
879 			ipc.oif = inet->mc_index;
880 		if (!saddr)
881 			saddr = inet->mc_addr;
882 		connected = 0;
883 	}
884 
885 	if (connected)
886 		rt = (struct rtable *)sk_dst_check(sk, 0);
887 
888 	if (rt == NULL) {
889 		struct flowi fl = { .oif = ipc.oif,
890 				    .mark = sk->sk_mark,
891 				    .nl_u = { .ip4_u =
892 					      { .daddr = faddr,
893 						.saddr = saddr,
894 						.tos = tos } },
895 				    .proto = sk->sk_protocol,
896 				    .flags = inet_sk_flowi_flags(sk),
897 				    .uli_u = { .ports =
898 					       { .sport = inet->inet_sport,
899 						 .dport = dport } } };
900 		struct net *net = sock_net(sk);
901 
902 		security_sk_classify_flow(sk, &fl);
903 		err = ip_route_output_flow(net, &rt, &fl, sk, 1);
904 		if (err) {
905 			if (err == -ENETUNREACH)
906 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
907 			goto out;
908 		}
909 
910 		err = -EACCES;
911 		if ((rt->rt_flags & RTCF_BROADCAST) &&
912 		    !sock_flag(sk, SOCK_BROADCAST))
913 			goto out;
914 		if (connected)
915 			sk_dst_set(sk, dst_clone(&rt->u.dst));
916 	}
917 
918 	if (msg->msg_flags&MSG_CONFIRM)
919 		goto do_confirm;
920 back_from_confirm:
921 
922 	saddr = rt->rt_src;
923 	if (!ipc.addr)
924 		daddr = ipc.addr = rt->rt_dst;
925 
926 	lock_sock(sk);
927 	if (unlikely(up->pending)) {
928 		/* The socket is already corked while preparing it. */
929 		/* ... which is an evident application bug. --ANK */
930 		release_sock(sk);
931 
932 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
933 		err = -EINVAL;
934 		goto out;
935 	}
936 	/*
937 	 *	Now cork the socket to pend data.
938 	 */
939 	inet->cork.fl.fl4_dst = daddr;
940 	inet->cork.fl.fl_ip_dport = dport;
941 	inet->cork.fl.fl4_src = saddr;
942 	inet->cork.fl.fl_ip_sport = inet->inet_sport;
943 	up->pending = AF_INET;
944 
945 do_append_data:
946 	up->len += ulen;
947 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
948 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
949 			sizeof(struct udphdr), &ipc, &rt,
950 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
951 	if (err)
952 		udp_flush_pending_frames(sk);
953 	else if (!corkreq)
954 		err = udp_push_pending_frames(sk);
955 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
956 		up->pending = 0;
957 	release_sock(sk);
958 
959 out:
960 	ip_rt_put(rt);
961 	if (free)
962 		kfree(ipc.opt);
963 	if (!err)
964 		return len;
965 	/*
966 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
967 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
968 	 * we don't have a good statistic (IpOutDiscards but it can be too many
969 	 * things).  We could add another new stat but at least for now that
970 	 * seems like overkill.
971 	 */
972 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
973 		UDP_INC_STATS_USER(sock_net(sk),
974 				UDP_MIB_SNDBUFERRORS, is_udplite);
975 	}
976 	return err;
977 
978 do_confirm:
979 	dst_confirm(&rt->u.dst);
980 	if (!(msg->msg_flags&MSG_PROBE) || len)
981 		goto back_from_confirm;
982 	err = 0;
983 	goto out;
984 }
985 EXPORT_SYMBOL(udp_sendmsg);
986 
987 int udp_sendpage(struct sock *sk, struct page *page, int offset,
988 		 size_t size, int flags)
989 {
990 	struct udp_sock *up = udp_sk(sk);
991 	int ret;
992 
993 	if (!up->pending) {
994 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
995 
996 		/* Call udp_sendmsg to specify destination address which
997 		 * sendpage interface can't pass.
998 		 * This will succeed only when the socket is connected.
999 		 */
1000 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1001 		if (ret < 0)
1002 			return ret;
1003 	}
1004 
1005 	lock_sock(sk);
1006 
1007 	if (unlikely(!up->pending)) {
1008 		release_sock(sk);
1009 
1010 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
1011 		return -EINVAL;
1012 	}
1013 
1014 	ret = ip_append_page(sk, page, offset, size, flags);
1015 	if (ret == -EOPNOTSUPP) {
1016 		release_sock(sk);
1017 		return sock_no_sendpage(sk->sk_socket, page, offset,
1018 					size, flags);
1019 	}
1020 	if (ret < 0) {
1021 		udp_flush_pending_frames(sk);
1022 		goto out;
1023 	}
1024 
1025 	up->len += size;
1026 	if (!(up->corkflag || (flags&MSG_MORE)))
1027 		ret = udp_push_pending_frames(sk);
1028 	if (!ret)
1029 		ret = size;
1030 out:
1031 	release_sock(sk);
1032 	return ret;
1033 }
1034 
1035 
1036 /**
1037  *	first_packet_length	- return length of first packet in receive queue
1038  *	@sk: socket
1039  *
1040  *	Drops all bad checksum frames, until a valid one is found.
1041  *	Returns the length of found skb, or 0 if none is found.
1042  */
1043 static unsigned int first_packet_length(struct sock *sk)
1044 {
1045 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1046 	struct sk_buff *skb;
1047 	unsigned int res;
1048 
1049 	__skb_queue_head_init(&list_kill);
1050 
1051 	spin_lock_bh(&rcvq->lock);
1052 	while ((skb = skb_peek(rcvq)) != NULL &&
1053 		udp_lib_checksum_complete(skb)) {
1054 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1055 				 IS_UDPLITE(sk));
1056 		atomic_inc(&sk->sk_drops);
1057 		__skb_unlink(skb, rcvq);
1058 		__skb_queue_tail(&list_kill, skb);
1059 	}
1060 	res = skb ? skb->len : 0;
1061 	spin_unlock_bh(&rcvq->lock);
1062 
1063 	if (!skb_queue_empty(&list_kill)) {
1064 		lock_sock(sk);
1065 		__skb_queue_purge(&list_kill);
1066 		sk_mem_reclaim_partial(sk);
1067 		release_sock(sk);
1068 	}
1069 	return res;
1070 }
1071 
1072 /*
1073  *	IOCTL requests applicable to the UDP protocol
1074  */
1075 
1076 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1077 {
1078 	switch (cmd) {
1079 	case SIOCOUTQ:
1080 	{
1081 		int amount = sk_wmem_alloc_get(sk);
1082 
1083 		return put_user(amount, (int __user *)arg);
1084 	}
1085 
1086 	case SIOCINQ:
1087 	{
1088 		unsigned int amount = first_packet_length(sk);
1089 
1090 		if (amount)
1091 			/*
1092 			 * We will only return the amount
1093 			 * of this packet since that is all
1094 			 * that will be read.
1095 			 */
1096 			amount -= sizeof(struct udphdr);
1097 
1098 		return put_user(amount, (int __user *)arg);
1099 	}
1100 
1101 	default:
1102 		return -ENOIOCTLCMD;
1103 	}
1104 
1105 	return 0;
1106 }
1107 EXPORT_SYMBOL(udp_ioctl);
1108 
1109 /*
1110  * 	This should be easy, if there is something there we
1111  * 	return it, otherwise we block.
1112  */
1113 
1114 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1115 		size_t len, int noblock, int flags, int *addr_len)
1116 {
1117 	struct inet_sock *inet = inet_sk(sk);
1118 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1119 	struct sk_buff *skb;
1120 	unsigned int ulen, copied;
1121 	int peeked;
1122 	int err;
1123 	int is_udplite = IS_UDPLITE(sk);
1124 
1125 	/*
1126 	 *	Check any passed addresses
1127 	 */
1128 	if (addr_len)
1129 		*addr_len = sizeof(*sin);
1130 
1131 	if (flags & MSG_ERRQUEUE)
1132 		return ip_recv_error(sk, msg, len);
1133 
1134 try_again:
1135 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1136 				  &peeked, &err);
1137 	if (!skb)
1138 		goto out;
1139 
1140 	ulen = skb->len - sizeof(struct udphdr);
1141 	copied = len;
1142 	if (copied > ulen)
1143 		copied = ulen;
1144 	else if (copied < ulen)
1145 		msg->msg_flags |= MSG_TRUNC;
1146 
1147 	/*
1148 	 * If checksum is needed at all, try to do it while copying the
1149 	 * data.  If the data is truncated, or if we only want a partial
1150 	 * coverage checksum (UDP-Lite), do it before the copy.
1151 	 */
1152 
1153 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1154 		if (udp_lib_checksum_complete(skb))
1155 			goto csum_copy_err;
1156 	}
1157 
1158 	if (skb_csum_unnecessary(skb))
1159 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1160 					      msg->msg_iov, copied);
1161 	else {
1162 		err = skb_copy_and_csum_datagram_iovec(skb,
1163 						       sizeof(struct udphdr),
1164 						       msg->msg_iov);
1165 
1166 		if (err == -EINVAL)
1167 			goto csum_copy_err;
1168 	}
1169 
1170 	if (err)
1171 		goto out_free;
1172 
1173 	if (!peeked)
1174 		UDP_INC_STATS_USER(sock_net(sk),
1175 				UDP_MIB_INDATAGRAMS, is_udplite);
1176 
1177 	sock_recv_ts_and_drops(msg, sk, skb);
1178 
1179 	/* Copy the address. */
1180 	if (sin) {
1181 		sin->sin_family = AF_INET;
1182 		sin->sin_port = udp_hdr(skb)->source;
1183 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1184 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1185 	}
1186 	if (inet->cmsg_flags)
1187 		ip_cmsg_recv(msg, skb);
1188 
1189 	err = copied;
1190 	if (flags & MSG_TRUNC)
1191 		err = ulen;
1192 
1193 out_free:
1194 	skb_free_datagram_locked(sk, skb);
1195 out:
1196 	return err;
1197 
1198 csum_copy_err:
1199 	lock_sock(sk);
1200 	if (!skb_kill_datagram(sk, skb, flags))
1201 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1202 	release_sock(sk);
1203 
1204 	if (noblock)
1205 		return -EAGAIN;
1206 	goto try_again;
1207 }
1208 
1209 
1210 int udp_disconnect(struct sock *sk, int flags)
1211 {
1212 	struct inet_sock *inet = inet_sk(sk);
1213 	/*
1214 	 *	1003.1g - break association.
1215 	 */
1216 
1217 	sk->sk_state = TCP_CLOSE;
1218 	inet->inet_daddr = 0;
1219 	inet->inet_dport = 0;
1220 	sk->sk_bound_dev_if = 0;
1221 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1222 		inet_reset_saddr(sk);
1223 
1224 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1225 		sk->sk_prot->unhash(sk);
1226 		inet->inet_sport = 0;
1227 	}
1228 	sk_dst_reset(sk);
1229 	return 0;
1230 }
1231 EXPORT_SYMBOL(udp_disconnect);
1232 
1233 void udp_lib_unhash(struct sock *sk)
1234 {
1235 	if (sk_hashed(sk)) {
1236 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1237 		struct udp_hslot *hslot, *hslot2;
1238 
1239 		hslot  = udp_hashslot(udptable, sock_net(sk),
1240 				      udp_sk(sk)->udp_port_hash);
1241 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1242 
1243 		spin_lock_bh(&hslot->lock);
1244 		if (sk_nulls_del_node_init_rcu(sk)) {
1245 			hslot->count--;
1246 			inet_sk(sk)->inet_num = 0;
1247 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1248 
1249 			spin_lock(&hslot2->lock);
1250 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1251 			hslot2->count--;
1252 			spin_unlock(&hslot2->lock);
1253 		}
1254 		spin_unlock_bh(&hslot->lock);
1255 	}
1256 }
1257 EXPORT_SYMBOL(udp_lib_unhash);
1258 
1259 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1260 {
1261 	int rc = sock_queue_rcv_skb(sk, skb);
1262 
1263 	if (rc < 0) {
1264 		int is_udplite = IS_UDPLITE(sk);
1265 
1266 		/* Note that an ENOMEM error is charged twice */
1267 		if (rc == -ENOMEM)
1268 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1269 					 is_udplite);
1270 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1271 		kfree_skb(skb);
1272 		return -1;
1273 	}
1274 
1275 	return 0;
1276 
1277 }
1278 
1279 /* returns:
1280  *  -1: error
1281  *   0: success
1282  *  >0: "udp encap" protocol resubmission
1283  *
1284  * Note that in the success and error cases, the skb is assumed to
1285  * have either been requeued or freed.
1286  */
1287 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1288 {
1289 	struct udp_sock *up = udp_sk(sk);
1290 	int rc;
1291 	int is_udplite = IS_UDPLITE(sk);
1292 
1293 	/*
1294 	 *	Charge it to the socket, dropping if the queue is full.
1295 	 */
1296 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1297 		goto drop;
1298 	nf_reset(skb);
1299 
1300 	if (up->encap_type) {
1301 		/*
1302 		 * This is an encapsulation socket so pass the skb to
1303 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1304 		 * fall through and pass this up the UDP socket.
1305 		 * up->encap_rcv() returns the following value:
1306 		 * =0 if skb was successfully passed to the encap
1307 		 *    handler or was discarded by it.
1308 		 * >0 if skb should be passed on to UDP.
1309 		 * <0 if skb should be resubmitted as proto -N
1310 		 */
1311 
1312 		/* if we're overly short, let UDP handle it */
1313 		if (skb->len > sizeof(struct udphdr) &&
1314 		    up->encap_rcv != NULL) {
1315 			int ret;
1316 
1317 			ret = (*up->encap_rcv)(sk, skb);
1318 			if (ret <= 0) {
1319 				UDP_INC_STATS_BH(sock_net(sk),
1320 						 UDP_MIB_INDATAGRAMS,
1321 						 is_udplite);
1322 				return -ret;
1323 			}
1324 		}
1325 
1326 		/* FALLTHROUGH -- it's a UDP Packet */
1327 	}
1328 
1329 	/*
1330 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1331 	 */
1332 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1333 
1334 		/*
1335 		 * MIB statistics other than incrementing the error count are
1336 		 * disabled for the following two types of errors: these depend
1337 		 * on the application settings, not on the functioning of the
1338 		 * protocol stack as such.
1339 		 *
1340 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1341 		 * way ... to ... at least let the receiving application block
1342 		 * delivery of packets with coverage values less than a value
1343 		 * provided by the application."
1344 		 */
1345 		if (up->pcrlen == 0) {          /* full coverage was set  */
1346 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1347 				"%d while full coverage %d requested\n",
1348 				UDP_SKB_CB(skb)->cscov, skb->len);
1349 			goto drop;
1350 		}
1351 		/* The next case involves violating the min. coverage requested
1352 		 * by the receiver. This is subtle: if receiver wants x and x is
1353 		 * greater than the buffersize/MTU then receiver will complain
1354 		 * that it wants x while sender emits packets of smaller size y.
1355 		 * Therefore the above ...()->partial_cov statement is essential.
1356 		 */
1357 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1358 			LIMIT_NETDEBUG(KERN_WARNING
1359 				"UDPLITE: coverage %d too small, need min %d\n",
1360 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1361 			goto drop;
1362 		}
1363 	}
1364 
1365 	if (sk->sk_filter) {
1366 		if (udp_lib_checksum_complete(skb))
1367 			goto drop;
1368 	}
1369 
1370 	rc = 0;
1371 
1372 	bh_lock_sock(sk);
1373 	if (!sock_owned_by_user(sk))
1374 		rc = __udp_queue_rcv_skb(sk, skb);
1375 	else
1376 		sk_add_backlog(sk, skb);
1377 	bh_unlock_sock(sk);
1378 
1379 	return rc;
1380 
1381 drop:
1382 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1383 	atomic_inc(&sk->sk_drops);
1384 	kfree_skb(skb);
1385 	return -1;
1386 }
1387 
1388 
1389 static void flush_stack(struct sock **stack, unsigned int count,
1390 			struct sk_buff *skb, unsigned int final)
1391 {
1392 	unsigned int i;
1393 	struct sk_buff *skb1 = NULL;
1394 	struct sock *sk;
1395 
1396 	for (i = 0; i < count; i++) {
1397 		sk = stack[i];
1398 		if (likely(skb1 == NULL))
1399 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1400 
1401 		if (!skb1) {
1402 			atomic_inc(&sk->sk_drops);
1403 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1404 					 IS_UDPLITE(sk));
1405 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1406 					 IS_UDPLITE(sk));
1407 		}
1408 
1409 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1410 			skb1 = NULL;
1411 	}
1412 	if (unlikely(skb1))
1413 		kfree_skb(skb1);
1414 }
1415 
1416 /*
1417  *	Multicasts and broadcasts go to each listener.
1418  *
1419  *	Note: called only from the BH handler context.
1420  */
1421 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1422 				    struct udphdr  *uh,
1423 				    __be32 saddr, __be32 daddr,
1424 				    struct udp_table *udptable)
1425 {
1426 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1427 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1428 	int dif;
1429 	unsigned int i, count = 0;
1430 
1431 	spin_lock(&hslot->lock);
1432 	sk = sk_nulls_head(&hslot->head);
1433 	dif = skb->dev->ifindex;
1434 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1435 	while (sk) {
1436 		stack[count++] = sk;
1437 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1438 				       daddr, uh->source, saddr, dif);
1439 		if (unlikely(count == ARRAY_SIZE(stack))) {
1440 			if (!sk)
1441 				break;
1442 			flush_stack(stack, count, skb, ~0);
1443 			count = 0;
1444 		}
1445 	}
1446 	/*
1447 	 * before releasing chain lock, we must take a reference on sockets
1448 	 */
1449 	for (i = 0; i < count; i++)
1450 		sock_hold(stack[i]);
1451 
1452 	spin_unlock(&hslot->lock);
1453 
1454 	/*
1455 	 * do the slow work with no lock held
1456 	 */
1457 	if (count) {
1458 		flush_stack(stack, count, skb, count - 1);
1459 
1460 		for (i = 0; i < count; i++)
1461 			sock_put(stack[i]);
1462 	} else {
1463 		kfree_skb(skb);
1464 	}
1465 	return 0;
1466 }
1467 
1468 /* Initialize UDP checksum. If exited with zero value (success),
1469  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1470  * Otherwise, csum completion requires chacksumming packet body,
1471  * including udp header and folding it to skb->csum.
1472  */
1473 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1474 				 int proto)
1475 {
1476 	const struct iphdr *iph;
1477 	int err;
1478 
1479 	UDP_SKB_CB(skb)->partial_cov = 0;
1480 	UDP_SKB_CB(skb)->cscov = skb->len;
1481 
1482 	if (proto == IPPROTO_UDPLITE) {
1483 		err = udplite_checksum_init(skb, uh);
1484 		if (err)
1485 			return err;
1486 	}
1487 
1488 	iph = ip_hdr(skb);
1489 	if (uh->check == 0) {
1490 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1491 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1492 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1493 				      proto, skb->csum))
1494 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1495 	}
1496 	if (!skb_csum_unnecessary(skb))
1497 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1498 					       skb->len, proto, 0);
1499 	/* Probably, we should checksum udp header (it should be in cache
1500 	 * in any case) and data in tiny packets (< rx copybreak).
1501 	 */
1502 
1503 	return 0;
1504 }
1505 
1506 /*
1507  *	All we need to do is get the socket, and then do a checksum.
1508  */
1509 
1510 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1511 		   int proto)
1512 {
1513 	struct sock *sk;
1514 	struct udphdr *uh;
1515 	unsigned short ulen;
1516 	struct rtable *rt = skb_rtable(skb);
1517 	__be32 saddr, daddr;
1518 	struct net *net = dev_net(skb->dev);
1519 
1520 	/*
1521 	 *  Validate the packet.
1522 	 */
1523 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1524 		goto drop;		/* No space for header. */
1525 
1526 	uh   = udp_hdr(skb);
1527 	ulen = ntohs(uh->len);
1528 	if (ulen > skb->len)
1529 		goto short_packet;
1530 
1531 	if (proto == IPPROTO_UDP) {
1532 		/* UDP validates ulen. */
1533 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1534 			goto short_packet;
1535 		uh = udp_hdr(skb);
1536 	}
1537 
1538 	if (udp4_csum_init(skb, uh, proto))
1539 		goto csum_error;
1540 
1541 	saddr = ip_hdr(skb)->saddr;
1542 	daddr = ip_hdr(skb)->daddr;
1543 
1544 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1545 		return __udp4_lib_mcast_deliver(net, skb, uh,
1546 				saddr, daddr, udptable);
1547 
1548 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1549 
1550 	if (sk != NULL) {
1551 		int ret = udp_queue_rcv_skb(sk, skb);
1552 		sock_put(sk);
1553 
1554 		/* a return value > 0 means to resubmit the input, but
1555 		 * it wants the return to be -protocol, or 0
1556 		 */
1557 		if (ret > 0)
1558 			return -ret;
1559 		return 0;
1560 	}
1561 
1562 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1563 		goto drop;
1564 	nf_reset(skb);
1565 
1566 	/* No socket. Drop packet silently, if checksum is wrong */
1567 	if (udp_lib_checksum_complete(skb))
1568 		goto csum_error;
1569 
1570 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1571 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1572 
1573 	/*
1574 	 * Hmm.  We got an UDP packet to a port to which we
1575 	 * don't wanna listen.  Ignore it.
1576 	 */
1577 	kfree_skb(skb);
1578 	return 0;
1579 
1580 short_packet:
1581 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1582 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1583 		       &saddr,
1584 		       ntohs(uh->source),
1585 		       ulen,
1586 		       skb->len,
1587 		       &daddr,
1588 		       ntohs(uh->dest));
1589 	goto drop;
1590 
1591 csum_error:
1592 	/*
1593 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1594 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1595 	 */
1596 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1597 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1598 		       &saddr,
1599 		       ntohs(uh->source),
1600 		       &daddr,
1601 		       ntohs(uh->dest),
1602 		       ulen);
1603 drop:
1604 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1605 	kfree_skb(skb);
1606 	return 0;
1607 }
1608 
1609 int udp_rcv(struct sk_buff *skb)
1610 {
1611 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1612 }
1613 
1614 void udp_destroy_sock(struct sock *sk)
1615 {
1616 	lock_sock(sk);
1617 	udp_flush_pending_frames(sk);
1618 	release_sock(sk);
1619 }
1620 
1621 /*
1622  *	Socket option code for UDP
1623  */
1624 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1625 		       char __user *optval, unsigned int optlen,
1626 		       int (*push_pending_frames)(struct sock *))
1627 {
1628 	struct udp_sock *up = udp_sk(sk);
1629 	int val;
1630 	int err = 0;
1631 	int is_udplite = IS_UDPLITE(sk);
1632 
1633 	if (optlen < sizeof(int))
1634 		return -EINVAL;
1635 
1636 	if (get_user(val, (int __user *)optval))
1637 		return -EFAULT;
1638 
1639 	switch (optname) {
1640 	case UDP_CORK:
1641 		if (val != 0) {
1642 			up->corkflag = 1;
1643 		} else {
1644 			up->corkflag = 0;
1645 			lock_sock(sk);
1646 			(*push_pending_frames)(sk);
1647 			release_sock(sk);
1648 		}
1649 		break;
1650 
1651 	case UDP_ENCAP:
1652 		switch (val) {
1653 		case 0:
1654 		case UDP_ENCAP_ESPINUDP:
1655 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1656 			up->encap_rcv = xfrm4_udp_encap_rcv;
1657 			/* FALLTHROUGH */
1658 		case UDP_ENCAP_L2TPINUDP:
1659 			up->encap_type = val;
1660 			break;
1661 		default:
1662 			err = -ENOPROTOOPT;
1663 			break;
1664 		}
1665 		break;
1666 
1667 	/*
1668 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1669 	 */
1670 	/* The sender sets actual checksum coverage length via this option.
1671 	 * The case coverage > packet length is handled by send module. */
1672 	case UDPLITE_SEND_CSCOV:
1673 		if (!is_udplite)         /* Disable the option on UDP sockets */
1674 			return -ENOPROTOOPT;
1675 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1676 			val = 8;
1677 		else if (val > USHORT_MAX)
1678 			val = USHORT_MAX;
1679 		up->pcslen = val;
1680 		up->pcflag |= UDPLITE_SEND_CC;
1681 		break;
1682 
1683 	/* The receiver specifies a minimum checksum coverage value. To make
1684 	 * sense, this should be set to at least 8 (as done below). If zero is
1685 	 * used, this again means full checksum coverage.                     */
1686 	case UDPLITE_RECV_CSCOV:
1687 		if (!is_udplite)         /* Disable the option on UDP sockets */
1688 			return -ENOPROTOOPT;
1689 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1690 			val = 8;
1691 		else if (val > USHORT_MAX)
1692 			val = USHORT_MAX;
1693 		up->pcrlen = val;
1694 		up->pcflag |= UDPLITE_RECV_CC;
1695 		break;
1696 
1697 	default:
1698 		err = -ENOPROTOOPT;
1699 		break;
1700 	}
1701 
1702 	return err;
1703 }
1704 EXPORT_SYMBOL(udp_lib_setsockopt);
1705 
1706 int udp_setsockopt(struct sock *sk, int level, int optname,
1707 		   char __user *optval, unsigned int optlen)
1708 {
1709 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1710 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1711 					  udp_push_pending_frames);
1712 	return ip_setsockopt(sk, level, optname, optval, optlen);
1713 }
1714 
1715 #ifdef CONFIG_COMPAT
1716 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1717 			  char __user *optval, unsigned int optlen)
1718 {
1719 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1720 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1721 					  udp_push_pending_frames);
1722 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1723 }
1724 #endif
1725 
1726 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1727 		       char __user *optval, int __user *optlen)
1728 {
1729 	struct udp_sock *up = udp_sk(sk);
1730 	int val, len;
1731 
1732 	if (get_user(len, optlen))
1733 		return -EFAULT;
1734 
1735 	len = min_t(unsigned int, len, sizeof(int));
1736 
1737 	if (len < 0)
1738 		return -EINVAL;
1739 
1740 	switch (optname) {
1741 	case UDP_CORK:
1742 		val = up->corkflag;
1743 		break;
1744 
1745 	case UDP_ENCAP:
1746 		val = up->encap_type;
1747 		break;
1748 
1749 	/* The following two cannot be changed on UDP sockets, the return is
1750 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1751 	case UDPLITE_SEND_CSCOV:
1752 		val = up->pcslen;
1753 		break;
1754 
1755 	case UDPLITE_RECV_CSCOV:
1756 		val = up->pcrlen;
1757 		break;
1758 
1759 	default:
1760 		return -ENOPROTOOPT;
1761 	}
1762 
1763 	if (put_user(len, optlen))
1764 		return -EFAULT;
1765 	if (copy_to_user(optval, &val, len))
1766 		return -EFAULT;
1767 	return 0;
1768 }
1769 EXPORT_SYMBOL(udp_lib_getsockopt);
1770 
1771 int udp_getsockopt(struct sock *sk, int level, int optname,
1772 		   char __user *optval, int __user *optlen)
1773 {
1774 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1775 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1776 	return ip_getsockopt(sk, level, optname, optval, optlen);
1777 }
1778 
1779 #ifdef CONFIG_COMPAT
1780 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1781 				 char __user *optval, int __user *optlen)
1782 {
1783 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1784 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1785 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1786 }
1787 #endif
1788 /**
1789  * 	udp_poll - wait for a UDP event.
1790  *	@file - file struct
1791  *	@sock - socket
1792  *	@wait - poll table
1793  *
1794  *	This is same as datagram poll, except for the special case of
1795  *	blocking sockets. If application is using a blocking fd
1796  *	and a packet with checksum error is in the queue;
1797  *	then it could get return from select indicating data available
1798  *	but then block when reading it. Add special case code
1799  *	to work around these arguably broken applications.
1800  */
1801 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1802 {
1803 	unsigned int mask = datagram_poll(file, sock, wait);
1804 	struct sock *sk = sock->sk;
1805 
1806 	/* Check for false positives due to checksum errors */
1807 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1808 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1809 		mask &= ~(POLLIN | POLLRDNORM);
1810 
1811 	return mask;
1812 
1813 }
1814 EXPORT_SYMBOL(udp_poll);
1815 
1816 struct proto udp_prot = {
1817 	.name		   = "UDP",
1818 	.owner		   = THIS_MODULE,
1819 	.close		   = udp_lib_close,
1820 	.connect	   = ip4_datagram_connect,
1821 	.disconnect	   = udp_disconnect,
1822 	.ioctl		   = udp_ioctl,
1823 	.destroy	   = udp_destroy_sock,
1824 	.setsockopt	   = udp_setsockopt,
1825 	.getsockopt	   = udp_getsockopt,
1826 	.sendmsg	   = udp_sendmsg,
1827 	.recvmsg	   = udp_recvmsg,
1828 	.sendpage	   = udp_sendpage,
1829 	.backlog_rcv	   = __udp_queue_rcv_skb,
1830 	.hash		   = udp_lib_hash,
1831 	.unhash		   = udp_lib_unhash,
1832 	.get_port	   = udp_v4_get_port,
1833 	.memory_allocated  = &udp_memory_allocated,
1834 	.sysctl_mem	   = sysctl_udp_mem,
1835 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1836 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1837 	.obj_size	   = sizeof(struct udp_sock),
1838 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
1839 	.h.udp_table	   = &udp_table,
1840 #ifdef CONFIG_COMPAT
1841 	.compat_setsockopt = compat_udp_setsockopt,
1842 	.compat_getsockopt = compat_udp_getsockopt,
1843 #endif
1844 };
1845 EXPORT_SYMBOL(udp_prot);
1846 
1847 /* ------------------------------------------------------------------------ */
1848 #ifdef CONFIG_PROC_FS
1849 
1850 static struct sock *udp_get_first(struct seq_file *seq, int start)
1851 {
1852 	struct sock *sk;
1853 	struct udp_iter_state *state = seq->private;
1854 	struct net *net = seq_file_net(seq);
1855 
1856 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
1857 	     ++state->bucket) {
1858 		struct hlist_nulls_node *node;
1859 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1860 
1861 		if (hlist_nulls_empty(&hslot->head))
1862 			continue;
1863 
1864 		spin_lock_bh(&hslot->lock);
1865 		sk_nulls_for_each(sk, node, &hslot->head) {
1866 			if (!net_eq(sock_net(sk), net))
1867 				continue;
1868 			if (sk->sk_family == state->family)
1869 				goto found;
1870 		}
1871 		spin_unlock_bh(&hslot->lock);
1872 	}
1873 	sk = NULL;
1874 found:
1875 	return sk;
1876 }
1877 
1878 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1879 {
1880 	struct udp_iter_state *state = seq->private;
1881 	struct net *net = seq_file_net(seq);
1882 
1883 	do {
1884 		sk = sk_nulls_next(sk);
1885 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1886 
1887 	if (!sk) {
1888 		if (state->bucket <= state->udp_table->mask)
1889 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1890 		return udp_get_first(seq, state->bucket + 1);
1891 	}
1892 	return sk;
1893 }
1894 
1895 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1896 {
1897 	struct sock *sk = udp_get_first(seq, 0);
1898 
1899 	if (sk)
1900 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1901 			--pos;
1902 	return pos ? NULL : sk;
1903 }
1904 
1905 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1906 {
1907 	struct udp_iter_state *state = seq->private;
1908 	state->bucket = MAX_UDP_PORTS;
1909 
1910 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1911 }
1912 
1913 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1914 {
1915 	struct sock *sk;
1916 
1917 	if (v == SEQ_START_TOKEN)
1918 		sk = udp_get_idx(seq, 0);
1919 	else
1920 		sk = udp_get_next(seq, v);
1921 
1922 	++*pos;
1923 	return sk;
1924 }
1925 
1926 static void udp_seq_stop(struct seq_file *seq, void *v)
1927 {
1928 	struct udp_iter_state *state = seq->private;
1929 
1930 	if (state->bucket <= state->udp_table->mask)
1931 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1932 }
1933 
1934 static int udp_seq_open(struct inode *inode, struct file *file)
1935 {
1936 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1937 	struct udp_iter_state *s;
1938 	int err;
1939 
1940 	err = seq_open_net(inode, file, &afinfo->seq_ops,
1941 			   sizeof(struct udp_iter_state));
1942 	if (err < 0)
1943 		return err;
1944 
1945 	s = ((struct seq_file *)file->private_data)->private;
1946 	s->family		= afinfo->family;
1947 	s->udp_table		= afinfo->udp_table;
1948 	return err;
1949 }
1950 
1951 /* ------------------------------------------------------------------------ */
1952 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1953 {
1954 	struct proc_dir_entry *p;
1955 	int rc = 0;
1956 
1957 	afinfo->seq_fops.open		= udp_seq_open;
1958 	afinfo->seq_fops.read		= seq_read;
1959 	afinfo->seq_fops.llseek		= seq_lseek;
1960 	afinfo->seq_fops.release	= seq_release_net;
1961 
1962 	afinfo->seq_ops.start		= udp_seq_start;
1963 	afinfo->seq_ops.next		= udp_seq_next;
1964 	afinfo->seq_ops.stop		= udp_seq_stop;
1965 
1966 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1967 			     &afinfo->seq_fops, afinfo);
1968 	if (!p)
1969 		rc = -ENOMEM;
1970 	return rc;
1971 }
1972 EXPORT_SYMBOL(udp_proc_register);
1973 
1974 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1975 {
1976 	proc_net_remove(net, afinfo->name);
1977 }
1978 EXPORT_SYMBOL(udp_proc_unregister);
1979 
1980 /* ------------------------------------------------------------------------ */
1981 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1982 		int bucket, int *len)
1983 {
1984 	struct inet_sock *inet = inet_sk(sp);
1985 	__be32 dest = inet->inet_daddr;
1986 	__be32 src  = inet->inet_rcv_saddr;
1987 	__u16 destp	  = ntohs(inet->inet_dport);
1988 	__u16 srcp	  = ntohs(inet->inet_sport);
1989 
1990 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
1991 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
1992 		bucket, src, srcp, dest, destp, sp->sk_state,
1993 		sk_wmem_alloc_get(sp),
1994 		sk_rmem_alloc_get(sp),
1995 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1996 		atomic_read(&sp->sk_refcnt), sp,
1997 		atomic_read(&sp->sk_drops), len);
1998 }
1999 
2000 int udp4_seq_show(struct seq_file *seq, void *v)
2001 {
2002 	if (v == SEQ_START_TOKEN)
2003 		seq_printf(seq, "%-127s\n",
2004 			   "  sl  local_address rem_address   st tx_queue "
2005 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2006 			   "inode ref pointer drops");
2007 	else {
2008 		struct udp_iter_state *state = seq->private;
2009 		int len;
2010 
2011 		udp4_format_sock(v, seq, state->bucket, &len);
2012 		seq_printf(seq, "%*s\n", 127 - len, "");
2013 	}
2014 	return 0;
2015 }
2016 
2017 /* ------------------------------------------------------------------------ */
2018 static struct udp_seq_afinfo udp4_seq_afinfo = {
2019 	.name		= "udp",
2020 	.family		= AF_INET,
2021 	.udp_table	= &udp_table,
2022 	.seq_fops	= {
2023 		.owner	=	THIS_MODULE,
2024 	},
2025 	.seq_ops	= {
2026 		.show		= udp4_seq_show,
2027 	},
2028 };
2029 
2030 static int udp4_proc_init_net(struct net *net)
2031 {
2032 	return udp_proc_register(net, &udp4_seq_afinfo);
2033 }
2034 
2035 static void udp4_proc_exit_net(struct net *net)
2036 {
2037 	udp_proc_unregister(net, &udp4_seq_afinfo);
2038 }
2039 
2040 static struct pernet_operations udp4_net_ops = {
2041 	.init = udp4_proc_init_net,
2042 	.exit = udp4_proc_exit_net,
2043 };
2044 
2045 int __init udp4_proc_init(void)
2046 {
2047 	return register_pernet_subsys(&udp4_net_ops);
2048 }
2049 
2050 void udp4_proc_exit(void)
2051 {
2052 	unregister_pernet_subsys(&udp4_net_ops);
2053 }
2054 #endif /* CONFIG_PROC_FS */
2055 
2056 static __initdata unsigned long uhash_entries;
2057 static int __init set_uhash_entries(char *str)
2058 {
2059 	if (!str)
2060 		return 0;
2061 	uhash_entries = simple_strtoul(str, &str, 0);
2062 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2063 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2064 	return 1;
2065 }
2066 __setup("uhash_entries=", set_uhash_entries);
2067 
2068 void __init udp_table_init(struct udp_table *table, const char *name)
2069 {
2070 	unsigned int i;
2071 
2072 	if (!CONFIG_BASE_SMALL)
2073 		table->hash = alloc_large_system_hash(name,
2074 			2 * sizeof(struct udp_hslot),
2075 			uhash_entries,
2076 			21, /* one slot per 2 MB */
2077 			0,
2078 			&table->log,
2079 			&table->mask,
2080 			64 * 1024);
2081 	/*
2082 	 * Make sure hash table has the minimum size
2083 	 */
2084 	if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2085 		table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2086 				      2 * sizeof(struct udp_hslot), GFP_KERNEL);
2087 		if (!table->hash)
2088 			panic(name);
2089 		table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2090 		table->mask = UDP_HTABLE_SIZE_MIN - 1;
2091 	}
2092 	table->hash2 = table->hash + (table->mask + 1);
2093 	for (i = 0; i <= table->mask; i++) {
2094 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2095 		table->hash[i].count = 0;
2096 		spin_lock_init(&table->hash[i].lock);
2097 	}
2098 	for (i = 0; i <= table->mask; i++) {
2099 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2100 		table->hash2[i].count = 0;
2101 		spin_lock_init(&table->hash2[i].lock);
2102 	}
2103 }
2104 
2105 void __init udp_init(void)
2106 {
2107 	unsigned long nr_pages, limit;
2108 
2109 	udp_table_init(&udp_table, "UDP");
2110 	/* Set the pressure threshold up by the same strategy of TCP. It is a
2111 	 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
2112 	 * toward zero with the amount of memory, with a floor of 128 pages.
2113 	 */
2114 	nr_pages = totalram_pages - totalhigh_pages;
2115 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2116 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2117 	limit = max(limit, 128UL);
2118 	sysctl_udp_mem[0] = limit / 4 * 3;
2119 	sysctl_udp_mem[1] = limit;
2120 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2121 
2122 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2123 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2124 }
2125 
2126 int udp4_ufo_send_check(struct sk_buff *skb)
2127 {
2128 	const struct iphdr *iph;
2129 	struct udphdr *uh;
2130 
2131 	if (!pskb_may_pull(skb, sizeof(*uh)))
2132 		return -EINVAL;
2133 
2134 	iph = ip_hdr(skb);
2135 	uh = udp_hdr(skb);
2136 
2137 	uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2138 				       IPPROTO_UDP, 0);
2139 	skb->csum_start = skb_transport_header(skb) - skb->head;
2140 	skb->csum_offset = offsetof(struct udphdr, check);
2141 	skb->ip_summed = CHECKSUM_PARTIAL;
2142 	return 0;
2143 }
2144 
2145 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features)
2146 {
2147 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2148 	unsigned int mss;
2149 	int offset;
2150 	__wsum csum;
2151 
2152 	mss = skb_shinfo(skb)->gso_size;
2153 	if (unlikely(skb->len <= mss))
2154 		goto out;
2155 
2156 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2157 		/* Packet is from an untrusted source, reset gso_segs. */
2158 		int type = skb_shinfo(skb)->gso_type;
2159 
2160 		if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2161 			     !(type & (SKB_GSO_UDP))))
2162 			goto out;
2163 
2164 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2165 
2166 		segs = NULL;
2167 		goto out;
2168 	}
2169 
2170 	/* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2171 	 * do checksum of UDP packets sent as multiple IP fragments.
2172 	 */
2173 	offset = skb->csum_start - skb_headroom(skb);
2174 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2175 	offset += skb->csum_offset;
2176 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2177 	skb->ip_summed = CHECKSUM_NONE;
2178 
2179 	/* Fragment the skb. IP headers of the fragments are updated in
2180 	 * inet_gso_segment()
2181 	 */
2182 	segs = skb_segment(skb, features);
2183 out:
2184 	return segs;
2185 }
2186 
2187