1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/gso.h> 107 #include <net/xfrm.h> 108 #include <trace/events/udp.h> 109 #include <linux/static_key.h> 110 #include <linux/btf_ids.h> 111 #include <trace/events/skb.h> 112 #include <net/busy_poll.h> 113 #include "udp_impl.h" 114 #include <net/sock_reuseport.h> 115 #include <net/addrconf.h> 116 #include <net/udp_tunnel.h> 117 #include <net/gro.h> 118 #if IS_ENABLED(CONFIG_IPV6) 119 #include <net/ipv6_stubs.h> 120 #endif 121 122 struct udp_table udp_table __read_mostly; 123 EXPORT_SYMBOL(udp_table); 124 125 long sysctl_udp_mem[3] __read_mostly; 126 EXPORT_SYMBOL(sysctl_udp_mem); 127 128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 129 EXPORT_SYMBOL(udp_memory_allocated); 130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 135 136 static struct udp_table *udp_get_table_prot(struct sock *sk) 137 { 138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 139 } 140 141 static int udp_lib_lport_inuse(struct net *net, __u16 num, 142 const struct udp_hslot *hslot, 143 unsigned long *bitmap, 144 struct sock *sk, unsigned int log) 145 { 146 struct sock *sk2; 147 kuid_t uid = sock_i_uid(sk); 148 149 sk_for_each(sk2, &hslot->head) { 150 if (net_eq(sock_net(sk2), net) && 151 sk2 != sk && 152 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 153 (!sk2->sk_reuse || !sk->sk_reuse) && 154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 156 inet_rcv_saddr_equal(sk, sk2, true)) { 157 if (sk2->sk_reuseport && sk->sk_reuseport && 158 !rcu_access_pointer(sk->sk_reuseport_cb) && 159 uid_eq(uid, sock_i_uid(sk2))) { 160 if (!bitmap) 161 return 0; 162 } else { 163 if (!bitmap) 164 return 1; 165 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 166 bitmap); 167 } 168 } 169 } 170 return 0; 171 } 172 173 /* 174 * Note: we still hold spinlock of primary hash chain, so no other writer 175 * can insert/delete a socket with local_port == num 176 */ 177 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 178 struct udp_hslot *hslot2, 179 struct sock *sk) 180 { 181 struct sock *sk2; 182 kuid_t uid = sock_i_uid(sk); 183 int res = 0; 184 185 spin_lock(&hslot2->lock); 186 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 187 if (net_eq(sock_net(sk2), net) && 188 sk2 != sk && 189 (udp_sk(sk2)->udp_port_hash == num) && 190 (!sk2->sk_reuse || !sk->sk_reuse) && 191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 193 inet_rcv_saddr_equal(sk, sk2, true)) { 194 if (sk2->sk_reuseport && sk->sk_reuseport && 195 !rcu_access_pointer(sk->sk_reuseport_cb) && 196 uid_eq(uid, sock_i_uid(sk2))) { 197 res = 0; 198 } else { 199 res = 1; 200 } 201 break; 202 } 203 } 204 spin_unlock(&hslot2->lock); 205 return res; 206 } 207 208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 209 { 210 struct net *net = sock_net(sk); 211 kuid_t uid = sock_i_uid(sk); 212 struct sock *sk2; 213 214 sk_for_each(sk2, &hslot->head) { 215 if (net_eq(sock_net(sk2), net) && 216 sk2 != sk && 217 sk2->sk_family == sk->sk_family && 218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 222 inet_rcv_saddr_equal(sk, sk2, false)) { 223 return reuseport_add_sock(sk, sk2, 224 inet_rcv_saddr_any(sk)); 225 } 226 } 227 228 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_table *udptable = udp_get_table_prot(sk); 243 struct udp_hslot *hslot, *hslot2; 244 struct net *net = sock_net(sk); 245 int error = -EADDRINUSE; 246 247 if (!snum) { 248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 249 unsigned short first, last; 250 int low, high, remaining; 251 unsigned int rand; 252 253 inet_sk_get_local_port_range(sk, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = get_random_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif) 370 { 371 int score; 372 struct inet_sock *inet; 373 bool dev_match; 374 375 if (!net_eq(sock_net(sk), net) || 376 udp_sk(sk)->udp_port_hash != hnum || 377 ipv6_only_sock(sk)) 378 return -1; 379 380 if (sk->sk_rcv_saddr != daddr) 381 return -1; 382 383 score = (sk->sk_family == PF_INET) ? 2 : 1; 384 385 inet = inet_sk(sk); 386 if (inet->inet_daddr) { 387 if (inet->inet_daddr != saddr) 388 return -1; 389 score += 4; 390 } 391 392 if (inet->inet_dport) { 393 if (inet->inet_dport != sport) 394 return -1; 395 score += 4; 396 } 397 398 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 399 dif, sdif); 400 if (!dev_match) 401 return -1; 402 if (sk->sk_bound_dev_if) 403 score += 4; 404 405 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 406 score++; 407 return score; 408 } 409 410 INDIRECT_CALLABLE_SCOPE 411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 412 const __be32 faddr, const __be16 fport) 413 { 414 static u32 udp_ehash_secret __read_mostly; 415 416 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 417 418 return __inet_ehashfn(laddr, lport, faddr, fport, 419 udp_ehash_secret + net_hash_mix(net)); 420 } 421 422 /* called with rcu_read_lock() */ 423 static struct sock *udp4_lib_lookup2(struct net *net, 424 __be32 saddr, __be16 sport, 425 __be32 daddr, unsigned int hnum, 426 int dif, int sdif, 427 struct udp_hslot *hslot2, 428 struct sk_buff *skb) 429 { 430 struct sock *sk, *result; 431 int score, badness; 432 433 result = NULL; 434 badness = 0; 435 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 436 score = compute_score(sk, net, saddr, sport, 437 daddr, hnum, dif, sdif); 438 if (score > badness) { 439 badness = score; 440 441 if (sk->sk_state == TCP_ESTABLISHED) { 442 result = sk; 443 continue; 444 } 445 446 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 447 saddr, sport, daddr, hnum, udp_ehashfn); 448 if (!result) { 449 result = sk; 450 continue; 451 } 452 453 /* Fall back to scoring if group has connections */ 454 if (!reuseport_has_conns(sk)) 455 return result; 456 457 /* Reuseport logic returned an error, keep original score. */ 458 if (IS_ERR(result)) 459 continue; 460 461 badness = compute_score(result, net, saddr, sport, 462 daddr, hnum, dif, sdif); 463 464 } 465 } 466 return result; 467 } 468 469 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 470 * harder than this. -DaveM 471 */ 472 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 473 __be16 sport, __be32 daddr, __be16 dport, int dif, 474 int sdif, struct udp_table *udptable, struct sk_buff *skb) 475 { 476 unsigned short hnum = ntohs(dport); 477 unsigned int hash2, slot2; 478 struct udp_hslot *hslot2; 479 struct sock *result, *sk; 480 481 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 482 slot2 = hash2 & udptable->mask; 483 hslot2 = &udptable->hash2[slot2]; 484 485 /* Lookup connected or non-wildcard socket */ 486 result = udp4_lib_lookup2(net, saddr, sport, 487 daddr, hnum, dif, sdif, 488 hslot2, skb); 489 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 490 goto done; 491 492 /* Lookup redirect from BPF */ 493 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 494 udptable == net->ipv4.udp_table) { 495 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 496 saddr, sport, daddr, hnum, dif, 497 udp_ehashfn); 498 if (sk) { 499 result = sk; 500 goto done; 501 } 502 } 503 504 /* Got non-wildcard socket or error on first lookup */ 505 if (result) 506 goto done; 507 508 /* Lookup wildcard sockets */ 509 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 510 slot2 = hash2 & udptable->mask; 511 hslot2 = &udptable->hash2[slot2]; 512 513 result = udp4_lib_lookup2(net, saddr, sport, 514 htonl(INADDR_ANY), hnum, dif, sdif, 515 hslot2, skb); 516 done: 517 if (IS_ERR(result)) 518 return NULL; 519 return result; 520 } 521 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 522 523 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 524 __be16 sport, __be16 dport, 525 struct udp_table *udptable) 526 { 527 const struct iphdr *iph = ip_hdr(skb); 528 529 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 530 iph->daddr, dport, inet_iif(skb), 531 inet_sdif(skb), udptable, skb); 532 } 533 534 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 535 __be16 sport, __be16 dport) 536 { 537 const struct iphdr *iph = ip_hdr(skb); 538 struct net *net = dev_net(skb->dev); 539 int iif, sdif; 540 541 inet_get_iif_sdif(skb, &iif, &sdif); 542 543 return __udp4_lib_lookup(net, iph->saddr, sport, 544 iph->daddr, dport, iif, 545 sdif, net->ipv4.udp_table, NULL); 546 } 547 548 /* Must be called under rcu_read_lock(). 549 * Does increment socket refcount. 550 */ 551 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 552 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 553 __be32 daddr, __be16 dport, int dif) 554 { 555 struct sock *sk; 556 557 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 558 dif, 0, net->ipv4.udp_table, NULL); 559 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 560 sk = NULL; 561 return sk; 562 } 563 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 564 #endif 565 566 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 567 __be16 loc_port, __be32 loc_addr, 568 __be16 rmt_port, __be32 rmt_addr, 569 int dif, int sdif, unsigned short hnum) 570 { 571 const struct inet_sock *inet = inet_sk(sk); 572 573 if (!net_eq(sock_net(sk), net) || 574 udp_sk(sk)->udp_port_hash != hnum || 575 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 576 (inet->inet_dport != rmt_port && inet->inet_dport) || 577 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 578 ipv6_only_sock(sk) || 579 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 580 return false; 581 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 582 return false; 583 return true; 584 } 585 586 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 587 EXPORT_SYMBOL(udp_encap_needed_key); 588 589 #if IS_ENABLED(CONFIG_IPV6) 590 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 591 EXPORT_SYMBOL(udpv6_encap_needed_key); 592 #endif 593 594 void udp_encap_enable(void) 595 { 596 static_branch_inc(&udp_encap_needed_key); 597 } 598 EXPORT_SYMBOL(udp_encap_enable); 599 600 void udp_encap_disable(void) 601 { 602 static_branch_dec(&udp_encap_needed_key); 603 } 604 EXPORT_SYMBOL(udp_encap_disable); 605 606 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 607 * through error handlers in encapsulations looking for a match. 608 */ 609 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 610 { 611 int i; 612 613 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 614 int (*handler)(struct sk_buff *skb, u32 info); 615 const struct ip_tunnel_encap_ops *encap; 616 617 encap = rcu_dereference(iptun_encaps[i]); 618 if (!encap) 619 continue; 620 handler = encap->err_handler; 621 if (handler && !handler(skb, info)) 622 return 0; 623 } 624 625 return -ENOENT; 626 } 627 628 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 629 * reversing source and destination port: this will match tunnels that force the 630 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 631 * lwtunnels might actually break this assumption by being configured with 632 * different destination ports on endpoints, in this case we won't be able to 633 * trace ICMP messages back to them. 634 * 635 * If this doesn't match any socket, probe tunnels with arbitrary destination 636 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 637 * we've sent packets to won't necessarily match the local destination port. 638 * 639 * Then ask the tunnel implementation to match the error against a valid 640 * association. 641 * 642 * Return an error if we can't find a match, the socket if we need further 643 * processing, zero otherwise. 644 */ 645 static struct sock *__udp4_lib_err_encap(struct net *net, 646 const struct iphdr *iph, 647 struct udphdr *uh, 648 struct udp_table *udptable, 649 struct sock *sk, 650 struct sk_buff *skb, u32 info) 651 { 652 int (*lookup)(struct sock *sk, struct sk_buff *skb); 653 int network_offset, transport_offset; 654 struct udp_sock *up; 655 656 network_offset = skb_network_offset(skb); 657 transport_offset = skb_transport_offset(skb); 658 659 /* Network header needs to point to the outer IPv4 header inside ICMP */ 660 skb_reset_network_header(skb); 661 662 /* Transport header needs to point to the UDP header */ 663 skb_set_transport_header(skb, iph->ihl << 2); 664 665 if (sk) { 666 up = udp_sk(sk); 667 668 lookup = READ_ONCE(up->encap_err_lookup); 669 if (lookup && lookup(sk, skb)) 670 sk = NULL; 671 672 goto out; 673 } 674 675 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 676 iph->saddr, uh->dest, skb->dev->ifindex, 0, 677 udptable, NULL); 678 if (sk) { 679 up = udp_sk(sk); 680 681 lookup = READ_ONCE(up->encap_err_lookup); 682 if (!lookup || lookup(sk, skb)) 683 sk = NULL; 684 } 685 686 out: 687 if (!sk) 688 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 689 690 skb_set_transport_header(skb, transport_offset); 691 skb_set_network_header(skb, network_offset); 692 693 return sk; 694 } 695 696 /* 697 * This routine is called by the ICMP module when it gets some 698 * sort of error condition. If err < 0 then the socket should 699 * be closed and the error returned to the user. If err > 0 700 * it's just the icmp type << 8 | icmp code. 701 * Header points to the ip header of the error packet. We move 702 * on past this. Then (as it used to claim before adjustment) 703 * header points to the first 8 bytes of the udp header. We need 704 * to find the appropriate port. 705 */ 706 707 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 708 { 709 struct inet_sock *inet; 710 const struct iphdr *iph = (const struct iphdr *)skb->data; 711 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 712 const int type = icmp_hdr(skb)->type; 713 const int code = icmp_hdr(skb)->code; 714 bool tunnel = false; 715 struct sock *sk; 716 int harderr; 717 int err; 718 struct net *net = dev_net(skb->dev); 719 720 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 721 iph->saddr, uh->source, skb->dev->ifindex, 722 inet_sdif(skb), udptable, NULL); 723 724 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 725 /* No socket for error: try tunnels before discarding */ 726 if (static_branch_unlikely(&udp_encap_needed_key)) { 727 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 728 info); 729 if (!sk) 730 return 0; 731 } else 732 sk = ERR_PTR(-ENOENT); 733 734 if (IS_ERR(sk)) { 735 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 736 return PTR_ERR(sk); 737 } 738 739 tunnel = true; 740 } 741 742 err = 0; 743 harderr = 0; 744 inet = inet_sk(sk); 745 746 switch (type) { 747 default: 748 case ICMP_TIME_EXCEEDED: 749 err = EHOSTUNREACH; 750 break; 751 case ICMP_SOURCE_QUENCH: 752 goto out; 753 case ICMP_PARAMETERPROB: 754 err = EPROTO; 755 harderr = 1; 756 break; 757 case ICMP_DEST_UNREACH: 758 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 759 ipv4_sk_update_pmtu(skb, sk, info); 760 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 761 err = EMSGSIZE; 762 harderr = 1; 763 break; 764 } 765 goto out; 766 } 767 err = EHOSTUNREACH; 768 if (code <= NR_ICMP_UNREACH) { 769 harderr = icmp_err_convert[code].fatal; 770 err = icmp_err_convert[code].errno; 771 } 772 break; 773 case ICMP_REDIRECT: 774 ipv4_sk_redirect(skb, sk); 775 goto out; 776 } 777 778 /* 779 * RFC1122: OK. Passes ICMP errors back to application, as per 780 * 4.1.3.3. 781 */ 782 if (tunnel) { 783 /* ...not for tunnels though: we don't have a sending socket */ 784 if (udp_sk(sk)->encap_err_rcv) 785 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 786 (u8 *)(uh+1)); 787 goto out; 788 } 789 if (!inet_test_bit(RECVERR, sk)) { 790 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 791 goto out; 792 } else 793 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 794 795 sk->sk_err = err; 796 sk_error_report(sk); 797 out: 798 return 0; 799 } 800 801 int udp_err(struct sk_buff *skb, u32 info) 802 { 803 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 804 } 805 806 /* 807 * Throw away all pending data and cancel the corking. Socket is locked. 808 */ 809 void udp_flush_pending_frames(struct sock *sk) 810 { 811 struct udp_sock *up = udp_sk(sk); 812 813 if (up->pending) { 814 up->len = 0; 815 WRITE_ONCE(up->pending, 0); 816 ip_flush_pending_frames(sk); 817 } 818 } 819 EXPORT_SYMBOL(udp_flush_pending_frames); 820 821 /** 822 * udp4_hwcsum - handle outgoing HW checksumming 823 * @skb: sk_buff containing the filled-in UDP header 824 * (checksum field must be zeroed out) 825 * @src: source IP address 826 * @dst: destination IP address 827 */ 828 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 829 { 830 struct udphdr *uh = udp_hdr(skb); 831 int offset = skb_transport_offset(skb); 832 int len = skb->len - offset; 833 int hlen = len; 834 __wsum csum = 0; 835 836 if (!skb_has_frag_list(skb)) { 837 /* 838 * Only one fragment on the socket. 839 */ 840 skb->csum_start = skb_transport_header(skb) - skb->head; 841 skb->csum_offset = offsetof(struct udphdr, check); 842 uh->check = ~csum_tcpudp_magic(src, dst, len, 843 IPPROTO_UDP, 0); 844 } else { 845 struct sk_buff *frags; 846 847 /* 848 * HW-checksum won't work as there are two or more 849 * fragments on the socket so that all csums of sk_buffs 850 * should be together 851 */ 852 skb_walk_frags(skb, frags) { 853 csum = csum_add(csum, frags->csum); 854 hlen -= frags->len; 855 } 856 857 csum = skb_checksum(skb, offset, hlen, csum); 858 skb->ip_summed = CHECKSUM_NONE; 859 860 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 861 if (uh->check == 0) 862 uh->check = CSUM_MANGLED_0; 863 } 864 } 865 EXPORT_SYMBOL_GPL(udp4_hwcsum); 866 867 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 868 * for the simple case like when setting the checksum for a UDP tunnel. 869 */ 870 void udp_set_csum(bool nocheck, struct sk_buff *skb, 871 __be32 saddr, __be32 daddr, int len) 872 { 873 struct udphdr *uh = udp_hdr(skb); 874 875 if (nocheck) { 876 uh->check = 0; 877 } else if (skb_is_gso(skb)) { 878 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 879 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 880 uh->check = 0; 881 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 882 if (uh->check == 0) 883 uh->check = CSUM_MANGLED_0; 884 } else { 885 skb->ip_summed = CHECKSUM_PARTIAL; 886 skb->csum_start = skb_transport_header(skb) - skb->head; 887 skb->csum_offset = offsetof(struct udphdr, check); 888 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 889 } 890 } 891 EXPORT_SYMBOL(udp_set_csum); 892 893 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 894 struct inet_cork *cork) 895 { 896 struct sock *sk = skb->sk; 897 struct inet_sock *inet = inet_sk(sk); 898 struct udphdr *uh; 899 int err; 900 int is_udplite = IS_UDPLITE(sk); 901 int offset = skb_transport_offset(skb); 902 int len = skb->len - offset; 903 int datalen = len - sizeof(*uh); 904 __wsum csum = 0; 905 906 /* 907 * Create a UDP header 908 */ 909 uh = udp_hdr(skb); 910 uh->source = inet->inet_sport; 911 uh->dest = fl4->fl4_dport; 912 uh->len = htons(len); 913 uh->check = 0; 914 915 if (cork->gso_size) { 916 const int hlen = skb_network_header_len(skb) + 917 sizeof(struct udphdr); 918 919 if (hlen + cork->gso_size > cork->fragsize) { 920 kfree_skb(skb); 921 return -EINVAL; 922 } 923 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 924 kfree_skb(skb); 925 return -EINVAL; 926 } 927 if (sk->sk_no_check_tx) { 928 kfree_skb(skb); 929 return -EINVAL; 930 } 931 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 932 dst_xfrm(skb_dst(skb))) { 933 kfree_skb(skb); 934 return -EIO; 935 } 936 937 if (datalen > cork->gso_size) { 938 skb_shinfo(skb)->gso_size = cork->gso_size; 939 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 940 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 941 cork->gso_size); 942 } 943 goto csum_partial; 944 } 945 946 if (is_udplite) /* UDP-Lite */ 947 csum = udplite_csum(skb); 948 949 else if (sk->sk_no_check_tx) { /* UDP csum off */ 950 951 skb->ip_summed = CHECKSUM_NONE; 952 goto send; 953 954 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 955 csum_partial: 956 957 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 958 goto send; 959 960 } else 961 csum = udp_csum(skb); 962 963 /* add protocol-dependent pseudo-header */ 964 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 965 sk->sk_protocol, csum); 966 if (uh->check == 0) 967 uh->check = CSUM_MANGLED_0; 968 969 send: 970 err = ip_send_skb(sock_net(sk), skb); 971 if (err) { 972 if (err == -ENOBUFS && 973 !inet_test_bit(RECVERR, sk)) { 974 UDP_INC_STATS(sock_net(sk), 975 UDP_MIB_SNDBUFERRORS, is_udplite); 976 err = 0; 977 } 978 } else 979 UDP_INC_STATS(sock_net(sk), 980 UDP_MIB_OUTDATAGRAMS, is_udplite); 981 return err; 982 } 983 984 /* 985 * Push out all pending data as one UDP datagram. Socket is locked. 986 */ 987 int udp_push_pending_frames(struct sock *sk) 988 { 989 struct udp_sock *up = udp_sk(sk); 990 struct inet_sock *inet = inet_sk(sk); 991 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 992 struct sk_buff *skb; 993 int err = 0; 994 995 skb = ip_finish_skb(sk, fl4); 996 if (!skb) 997 goto out; 998 999 err = udp_send_skb(skb, fl4, &inet->cork.base); 1000 1001 out: 1002 up->len = 0; 1003 WRITE_ONCE(up->pending, 0); 1004 return err; 1005 } 1006 EXPORT_SYMBOL(udp_push_pending_frames); 1007 1008 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1009 { 1010 switch (cmsg->cmsg_type) { 1011 case UDP_SEGMENT: 1012 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1013 return -EINVAL; 1014 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1015 return 0; 1016 default: 1017 return -EINVAL; 1018 } 1019 } 1020 1021 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1022 { 1023 struct cmsghdr *cmsg; 1024 bool need_ip = false; 1025 int err; 1026 1027 for_each_cmsghdr(cmsg, msg) { 1028 if (!CMSG_OK(msg, cmsg)) 1029 return -EINVAL; 1030 1031 if (cmsg->cmsg_level != SOL_UDP) { 1032 need_ip = true; 1033 continue; 1034 } 1035 1036 err = __udp_cmsg_send(cmsg, gso_size); 1037 if (err) 1038 return err; 1039 } 1040 1041 return need_ip; 1042 } 1043 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1044 1045 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1046 { 1047 struct inet_sock *inet = inet_sk(sk); 1048 struct udp_sock *up = udp_sk(sk); 1049 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1050 struct flowi4 fl4_stack; 1051 struct flowi4 *fl4; 1052 int ulen = len; 1053 struct ipcm_cookie ipc; 1054 struct rtable *rt = NULL; 1055 int free = 0; 1056 int connected = 0; 1057 __be32 daddr, faddr, saddr; 1058 u8 tos, scope; 1059 __be16 dport; 1060 int err, is_udplite = IS_UDPLITE(sk); 1061 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1062 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1063 struct sk_buff *skb; 1064 struct ip_options_data opt_copy; 1065 1066 if (len > 0xFFFF) 1067 return -EMSGSIZE; 1068 1069 /* 1070 * Check the flags. 1071 */ 1072 1073 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1074 return -EOPNOTSUPP; 1075 1076 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1077 1078 fl4 = &inet->cork.fl.u.ip4; 1079 if (READ_ONCE(up->pending)) { 1080 /* 1081 * There are pending frames. 1082 * The socket lock must be held while it's corked. 1083 */ 1084 lock_sock(sk); 1085 if (likely(up->pending)) { 1086 if (unlikely(up->pending != AF_INET)) { 1087 release_sock(sk); 1088 return -EINVAL; 1089 } 1090 goto do_append_data; 1091 } 1092 release_sock(sk); 1093 } 1094 ulen += sizeof(struct udphdr); 1095 1096 /* 1097 * Get and verify the address. 1098 */ 1099 if (usin) { 1100 if (msg->msg_namelen < sizeof(*usin)) 1101 return -EINVAL; 1102 if (usin->sin_family != AF_INET) { 1103 if (usin->sin_family != AF_UNSPEC) 1104 return -EAFNOSUPPORT; 1105 } 1106 1107 daddr = usin->sin_addr.s_addr; 1108 dport = usin->sin_port; 1109 if (dport == 0) 1110 return -EINVAL; 1111 } else { 1112 if (sk->sk_state != TCP_ESTABLISHED) 1113 return -EDESTADDRREQ; 1114 daddr = inet->inet_daddr; 1115 dport = inet->inet_dport; 1116 /* Open fast path for connected socket. 1117 Route will not be used, if at least one option is set. 1118 */ 1119 connected = 1; 1120 } 1121 1122 ipcm_init_sk(&ipc, inet); 1123 ipc.gso_size = READ_ONCE(up->gso_size); 1124 1125 if (msg->msg_controllen) { 1126 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1127 if (err > 0) 1128 err = ip_cmsg_send(sk, msg, &ipc, 1129 sk->sk_family == AF_INET6); 1130 if (unlikely(err < 0)) { 1131 kfree(ipc.opt); 1132 return err; 1133 } 1134 if (ipc.opt) 1135 free = 1; 1136 connected = 0; 1137 } 1138 if (!ipc.opt) { 1139 struct ip_options_rcu *inet_opt; 1140 1141 rcu_read_lock(); 1142 inet_opt = rcu_dereference(inet->inet_opt); 1143 if (inet_opt) { 1144 memcpy(&opt_copy, inet_opt, 1145 sizeof(*inet_opt) + inet_opt->opt.optlen); 1146 ipc.opt = &opt_copy.opt; 1147 } 1148 rcu_read_unlock(); 1149 } 1150 1151 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1152 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1153 (struct sockaddr *)usin, 1154 &msg->msg_namelen, 1155 &ipc.addr); 1156 if (err) 1157 goto out_free; 1158 if (usin) { 1159 if (usin->sin_port == 0) { 1160 /* BPF program set invalid port. Reject it. */ 1161 err = -EINVAL; 1162 goto out_free; 1163 } 1164 daddr = usin->sin_addr.s_addr; 1165 dport = usin->sin_port; 1166 } 1167 } 1168 1169 saddr = ipc.addr; 1170 ipc.addr = faddr = daddr; 1171 1172 if (ipc.opt && ipc.opt->opt.srr) { 1173 if (!daddr) { 1174 err = -EINVAL; 1175 goto out_free; 1176 } 1177 faddr = ipc.opt->opt.faddr; 1178 connected = 0; 1179 } 1180 tos = get_rttos(&ipc, inet); 1181 scope = ip_sendmsg_scope(inet, &ipc, msg); 1182 if (scope == RT_SCOPE_LINK) 1183 connected = 0; 1184 1185 if (ipv4_is_multicast(daddr)) { 1186 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1187 ipc.oif = inet->mc_index; 1188 if (!saddr) 1189 saddr = inet->mc_addr; 1190 connected = 0; 1191 } else if (!ipc.oif) { 1192 ipc.oif = inet->uc_index; 1193 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1194 /* oif is set, packet is to local broadcast and 1195 * uc_index is set. oif is most likely set 1196 * by sk_bound_dev_if. If uc_index != oif check if the 1197 * oif is an L3 master and uc_index is an L3 slave. 1198 * If so, we want to allow the send using the uc_index. 1199 */ 1200 if (ipc.oif != inet->uc_index && 1201 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1202 inet->uc_index)) { 1203 ipc.oif = inet->uc_index; 1204 } 1205 } 1206 1207 if (connected) 1208 rt = (struct rtable *)sk_dst_check(sk, 0); 1209 1210 if (!rt) { 1211 struct net *net = sock_net(sk); 1212 __u8 flow_flags = inet_sk_flowi_flags(sk); 1213 1214 fl4 = &fl4_stack; 1215 1216 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1217 sk->sk_protocol, flow_flags, faddr, saddr, 1218 dport, inet->inet_sport, sk->sk_uid); 1219 1220 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1221 rt = ip_route_output_flow(net, fl4, sk); 1222 if (IS_ERR(rt)) { 1223 err = PTR_ERR(rt); 1224 rt = NULL; 1225 if (err == -ENETUNREACH) 1226 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1227 goto out; 1228 } 1229 1230 err = -EACCES; 1231 if ((rt->rt_flags & RTCF_BROADCAST) && 1232 !sock_flag(sk, SOCK_BROADCAST)) 1233 goto out; 1234 if (connected) 1235 sk_dst_set(sk, dst_clone(&rt->dst)); 1236 } 1237 1238 if (msg->msg_flags&MSG_CONFIRM) 1239 goto do_confirm; 1240 back_from_confirm: 1241 1242 saddr = fl4->saddr; 1243 if (!ipc.addr) 1244 daddr = ipc.addr = fl4->daddr; 1245 1246 /* Lockless fast path for the non-corking case. */ 1247 if (!corkreq) { 1248 struct inet_cork cork; 1249 1250 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1251 sizeof(struct udphdr), &ipc, &rt, 1252 &cork, msg->msg_flags); 1253 err = PTR_ERR(skb); 1254 if (!IS_ERR_OR_NULL(skb)) 1255 err = udp_send_skb(skb, fl4, &cork); 1256 goto out; 1257 } 1258 1259 lock_sock(sk); 1260 if (unlikely(up->pending)) { 1261 /* The socket is already corked while preparing it. */ 1262 /* ... which is an evident application bug. --ANK */ 1263 release_sock(sk); 1264 1265 net_dbg_ratelimited("socket already corked\n"); 1266 err = -EINVAL; 1267 goto out; 1268 } 1269 /* 1270 * Now cork the socket to pend data. 1271 */ 1272 fl4 = &inet->cork.fl.u.ip4; 1273 fl4->daddr = daddr; 1274 fl4->saddr = saddr; 1275 fl4->fl4_dport = dport; 1276 fl4->fl4_sport = inet->inet_sport; 1277 WRITE_ONCE(up->pending, AF_INET); 1278 1279 do_append_data: 1280 up->len += ulen; 1281 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1282 sizeof(struct udphdr), &ipc, &rt, 1283 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1284 if (err) 1285 udp_flush_pending_frames(sk); 1286 else if (!corkreq) 1287 err = udp_push_pending_frames(sk); 1288 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1289 WRITE_ONCE(up->pending, 0); 1290 release_sock(sk); 1291 1292 out: 1293 ip_rt_put(rt); 1294 out_free: 1295 if (free) 1296 kfree(ipc.opt); 1297 if (!err) 1298 return len; 1299 /* 1300 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1301 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1302 * we don't have a good statistic (IpOutDiscards but it can be too many 1303 * things). We could add another new stat but at least for now that 1304 * seems like overkill. 1305 */ 1306 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1307 UDP_INC_STATS(sock_net(sk), 1308 UDP_MIB_SNDBUFERRORS, is_udplite); 1309 } 1310 return err; 1311 1312 do_confirm: 1313 if (msg->msg_flags & MSG_PROBE) 1314 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1315 if (!(msg->msg_flags&MSG_PROBE) || len) 1316 goto back_from_confirm; 1317 err = 0; 1318 goto out; 1319 } 1320 EXPORT_SYMBOL(udp_sendmsg); 1321 1322 void udp_splice_eof(struct socket *sock) 1323 { 1324 struct sock *sk = sock->sk; 1325 struct udp_sock *up = udp_sk(sk); 1326 1327 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1328 return; 1329 1330 lock_sock(sk); 1331 if (up->pending && !udp_test_bit(CORK, sk)) 1332 udp_push_pending_frames(sk); 1333 release_sock(sk); 1334 } 1335 EXPORT_SYMBOL_GPL(udp_splice_eof); 1336 1337 #define UDP_SKB_IS_STATELESS 0x80000000 1338 1339 /* all head states (dst, sk, nf conntrack) except skb extensions are 1340 * cleared by udp_rcv(). 1341 * 1342 * We need to preserve secpath, if present, to eventually process 1343 * IP_CMSG_PASSSEC at recvmsg() time. 1344 * 1345 * Other extensions can be cleared. 1346 */ 1347 static bool udp_try_make_stateless(struct sk_buff *skb) 1348 { 1349 if (!skb_has_extensions(skb)) 1350 return true; 1351 1352 if (!secpath_exists(skb)) { 1353 skb_ext_reset(skb); 1354 return true; 1355 } 1356 1357 return false; 1358 } 1359 1360 static void udp_set_dev_scratch(struct sk_buff *skb) 1361 { 1362 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1363 1364 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1365 scratch->_tsize_state = skb->truesize; 1366 #if BITS_PER_LONG == 64 1367 scratch->len = skb->len; 1368 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1369 scratch->is_linear = !skb_is_nonlinear(skb); 1370 #endif 1371 if (udp_try_make_stateless(skb)) 1372 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1373 } 1374 1375 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1376 { 1377 /* We come here after udp_lib_checksum_complete() returned 0. 1378 * This means that __skb_checksum_complete() might have 1379 * set skb->csum_valid to 1. 1380 * On 64bit platforms, we can set csum_unnecessary 1381 * to true, but only if the skb is not shared. 1382 */ 1383 #if BITS_PER_LONG == 64 1384 if (!skb_shared(skb)) 1385 udp_skb_scratch(skb)->csum_unnecessary = true; 1386 #endif 1387 } 1388 1389 static int udp_skb_truesize(struct sk_buff *skb) 1390 { 1391 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1392 } 1393 1394 static bool udp_skb_has_head_state(struct sk_buff *skb) 1395 { 1396 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1397 } 1398 1399 /* fully reclaim rmem/fwd memory allocated for skb */ 1400 static void udp_rmem_release(struct sock *sk, int size, int partial, 1401 bool rx_queue_lock_held) 1402 { 1403 struct udp_sock *up = udp_sk(sk); 1404 struct sk_buff_head *sk_queue; 1405 int amt; 1406 1407 if (likely(partial)) { 1408 up->forward_deficit += size; 1409 size = up->forward_deficit; 1410 if (size < READ_ONCE(up->forward_threshold) && 1411 !skb_queue_empty(&up->reader_queue)) 1412 return; 1413 } else { 1414 size += up->forward_deficit; 1415 } 1416 up->forward_deficit = 0; 1417 1418 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1419 * if the called don't held it already 1420 */ 1421 sk_queue = &sk->sk_receive_queue; 1422 if (!rx_queue_lock_held) 1423 spin_lock(&sk_queue->lock); 1424 1425 1426 sk_forward_alloc_add(sk, size); 1427 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1428 sk_forward_alloc_add(sk, -amt); 1429 1430 if (amt) 1431 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1432 1433 atomic_sub(size, &sk->sk_rmem_alloc); 1434 1435 /* this can save us from acquiring the rx queue lock on next receive */ 1436 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1437 1438 if (!rx_queue_lock_held) 1439 spin_unlock(&sk_queue->lock); 1440 } 1441 1442 /* Note: called with reader_queue.lock held. 1443 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1444 * This avoids a cache line miss while receive_queue lock is held. 1445 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1446 */ 1447 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1448 { 1449 prefetch(&skb->data); 1450 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1451 } 1452 EXPORT_SYMBOL(udp_skb_destructor); 1453 1454 /* as above, but the caller held the rx queue lock, too */ 1455 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1456 { 1457 prefetch(&skb->data); 1458 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1459 } 1460 1461 /* Idea of busylocks is to let producers grab an extra spinlock 1462 * to relieve pressure on the receive_queue spinlock shared by consumer. 1463 * Under flood, this means that only one producer can be in line 1464 * trying to acquire the receive_queue spinlock. 1465 * These busylock can be allocated on a per cpu manner, instead of a 1466 * per socket one (that would consume a cache line per socket) 1467 */ 1468 static int udp_busylocks_log __read_mostly; 1469 static spinlock_t *udp_busylocks __read_mostly; 1470 1471 static spinlock_t *busylock_acquire(void *ptr) 1472 { 1473 spinlock_t *busy; 1474 1475 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1476 spin_lock(busy); 1477 return busy; 1478 } 1479 1480 static void busylock_release(spinlock_t *busy) 1481 { 1482 if (busy) 1483 spin_unlock(busy); 1484 } 1485 1486 static int udp_rmem_schedule(struct sock *sk, int size) 1487 { 1488 int delta; 1489 1490 delta = size - sk->sk_forward_alloc; 1491 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1492 return -ENOBUFS; 1493 1494 return 0; 1495 } 1496 1497 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1498 { 1499 struct sk_buff_head *list = &sk->sk_receive_queue; 1500 int rmem, err = -ENOMEM; 1501 spinlock_t *busy = NULL; 1502 int size; 1503 1504 /* try to avoid the costly atomic add/sub pair when the receive 1505 * queue is full; always allow at least a packet 1506 */ 1507 rmem = atomic_read(&sk->sk_rmem_alloc); 1508 if (rmem > sk->sk_rcvbuf) 1509 goto drop; 1510 1511 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1512 * having linear skbs : 1513 * - Reduce memory overhead and thus increase receive queue capacity 1514 * - Less cache line misses at copyout() time 1515 * - Less work at consume_skb() (less alien page frag freeing) 1516 */ 1517 if (rmem > (sk->sk_rcvbuf >> 1)) { 1518 skb_condense(skb); 1519 1520 busy = busylock_acquire(sk); 1521 } 1522 size = skb->truesize; 1523 udp_set_dev_scratch(skb); 1524 1525 /* we drop only if the receive buf is full and the receive 1526 * queue contains some other skb 1527 */ 1528 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1529 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1530 goto uncharge_drop; 1531 1532 spin_lock(&list->lock); 1533 err = udp_rmem_schedule(sk, size); 1534 if (err) { 1535 spin_unlock(&list->lock); 1536 goto uncharge_drop; 1537 } 1538 1539 sk_forward_alloc_add(sk, -size); 1540 1541 /* no need to setup a destructor, we will explicitly release the 1542 * forward allocated memory on dequeue 1543 */ 1544 sock_skb_set_dropcount(sk, skb); 1545 1546 __skb_queue_tail(list, skb); 1547 spin_unlock(&list->lock); 1548 1549 if (!sock_flag(sk, SOCK_DEAD)) 1550 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); 1551 1552 busylock_release(busy); 1553 return 0; 1554 1555 uncharge_drop: 1556 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1557 1558 drop: 1559 atomic_inc(&sk->sk_drops); 1560 busylock_release(busy); 1561 return err; 1562 } 1563 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1564 1565 void udp_destruct_common(struct sock *sk) 1566 { 1567 /* reclaim completely the forward allocated memory */ 1568 struct udp_sock *up = udp_sk(sk); 1569 unsigned int total = 0; 1570 struct sk_buff *skb; 1571 1572 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1573 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1574 total += skb->truesize; 1575 kfree_skb(skb); 1576 } 1577 udp_rmem_release(sk, total, 0, true); 1578 } 1579 EXPORT_SYMBOL_GPL(udp_destruct_common); 1580 1581 static void udp_destruct_sock(struct sock *sk) 1582 { 1583 udp_destruct_common(sk); 1584 inet_sock_destruct(sk); 1585 } 1586 1587 int udp_init_sock(struct sock *sk) 1588 { 1589 udp_lib_init_sock(sk); 1590 sk->sk_destruct = udp_destruct_sock; 1591 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1592 return 0; 1593 } 1594 1595 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1596 { 1597 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1598 bool slow = lock_sock_fast(sk); 1599 1600 sk_peek_offset_bwd(sk, len); 1601 unlock_sock_fast(sk, slow); 1602 } 1603 1604 if (!skb_unref(skb)) 1605 return; 1606 1607 /* In the more common cases we cleared the head states previously, 1608 * see __udp_queue_rcv_skb(). 1609 */ 1610 if (unlikely(udp_skb_has_head_state(skb))) 1611 skb_release_head_state(skb); 1612 __consume_stateless_skb(skb); 1613 } 1614 EXPORT_SYMBOL_GPL(skb_consume_udp); 1615 1616 static struct sk_buff *__first_packet_length(struct sock *sk, 1617 struct sk_buff_head *rcvq, 1618 int *total) 1619 { 1620 struct sk_buff *skb; 1621 1622 while ((skb = skb_peek(rcvq)) != NULL) { 1623 if (udp_lib_checksum_complete(skb)) { 1624 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1625 IS_UDPLITE(sk)); 1626 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1627 IS_UDPLITE(sk)); 1628 atomic_inc(&sk->sk_drops); 1629 __skb_unlink(skb, rcvq); 1630 *total += skb->truesize; 1631 kfree_skb(skb); 1632 } else { 1633 udp_skb_csum_unnecessary_set(skb); 1634 break; 1635 } 1636 } 1637 return skb; 1638 } 1639 1640 /** 1641 * first_packet_length - return length of first packet in receive queue 1642 * @sk: socket 1643 * 1644 * Drops all bad checksum frames, until a valid one is found. 1645 * Returns the length of found skb, or -1 if none is found. 1646 */ 1647 static int first_packet_length(struct sock *sk) 1648 { 1649 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1650 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1651 struct sk_buff *skb; 1652 int total = 0; 1653 int res; 1654 1655 spin_lock_bh(&rcvq->lock); 1656 skb = __first_packet_length(sk, rcvq, &total); 1657 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1658 spin_lock(&sk_queue->lock); 1659 skb_queue_splice_tail_init(sk_queue, rcvq); 1660 spin_unlock(&sk_queue->lock); 1661 1662 skb = __first_packet_length(sk, rcvq, &total); 1663 } 1664 res = skb ? skb->len : -1; 1665 if (total) 1666 udp_rmem_release(sk, total, 1, false); 1667 spin_unlock_bh(&rcvq->lock); 1668 return res; 1669 } 1670 1671 /* 1672 * IOCTL requests applicable to the UDP protocol 1673 */ 1674 1675 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1676 { 1677 switch (cmd) { 1678 case SIOCOUTQ: 1679 { 1680 *karg = sk_wmem_alloc_get(sk); 1681 return 0; 1682 } 1683 1684 case SIOCINQ: 1685 { 1686 *karg = max_t(int, 0, first_packet_length(sk)); 1687 return 0; 1688 } 1689 1690 default: 1691 return -ENOIOCTLCMD; 1692 } 1693 1694 return 0; 1695 } 1696 EXPORT_SYMBOL(udp_ioctl); 1697 1698 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1699 int *off, int *err) 1700 { 1701 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1702 struct sk_buff_head *queue; 1703 struct sk_buff *last; 1704 long timeo; 1705 int error; 1706 1707 queue = &udp_sk(sk)->reader_queue; 1708 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1709 do { 1710 struct sk_buff *skb; 1711 1712 error = sock_error(sk); 1713 if (error) 1714 break; 1715 1716 error = -EAGAIN; 1717 do { 1718 spin_lock_bh(&queue->lock); 1719 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1720 err, &last); 1721 if (skb) { 1722 if (!(flags & MSG_PEEK)) 1723 udp_skb_destructor(sk, skb); 1724 spin_unlock_bh(&queue->lock); 1725 return skb; 1726 } 1727 1728 if (skb_queue_empty_lockless(sk_queue)) { 1729 spin_unlock_bh(&queue->lock); 1730 goto busy_check; 1731 } 1732 1733 /* refill the reader queue and walk it again 1734 * keep both queues locked to avoid re-acquiring 1735 * the sk_receive_queue lock if fwd memory scheduling 1736 * is needed. 1737 */ 1738 spin_lock(&sk_queue->lock); 1739 skb_queue_splice_tail_init(sk_queue, queue); 1740 1741 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1742 err, &last); 1743 if (skb && !(flags & MSG_PEEK)) 1744 udp_skb_dtor_locked(sk, skb); 1745 spin_unlock(&sk_queue->lock); 1746 spin_unlock_bh(&queue->lock); 1747 if (skb) 1748 return skb; 1749 1750 busy_check: 1751 if (!sk_can_busy_loop(sk)) 1752 break; 1753 1754 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1755 } while (!skb_queue_empty_lockless(sk_queue)); 1756 1757 /* sk_queue is empty, reader_queue may contain peeked packets */ 1758 } while (timeo && 1759 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1760 &error, &timeo, 1761 (struct sk_buff *)sk_queue)); 1762 1763 *err = error; 1764 return NULL; 1765 } 1766 EXPORT_SYMBOL(__skb_recv_udp); 1767 1768 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1769 { 1770 struct sk_buff *skb; 1771 int err; 1772 1773 try_again: 1774 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1775 if (!skb) 1776 return err; 1777 1778 if (udp_lib_checksum_complete(skb)) { 1779 int is_udplite = IS_UDPLITE(sk); 1780 struct net *net = sock_net(sk); 1781 1782 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1783 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1784 atomic_inc(&sk->sk_drops); 1785 kfree_skb(skb); 1786 goto try_again; 1787 } 1788 1789 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1790 return recv_actor(sk, skb); 1791 } 1792 EXPORT_SYMBOL(udp_read_skb); 1793 1794 /* 1795 * This should be easy, if there is something there we 1796 * return it, otherwise we block. 1797 */ 1798 1799 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1800 int *addr_len) 1801 { 1802 struct inet_sock *inet = inet_sk(sk); 1803 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1804 struct sk_buff *skb; 1805 unsigned int ulen, copied; 1806 int off, err, peeking = flags & MSG_PEEK; 1807 int is_udplite = IS_UDPLITE(sk); 1808 bool checksum_valid = false; 1809 1810 if (flags & MSG_ERRQUEUE) 1811 return ip_recv_error(sk, msg, len, addr_len); 1812 1813 try_again: 1814 off = sk_peek_offset(sk, flags); 1815 skb = __skb_recv_udp(sk, flags, &off, &err); 1816 if (!skb) 1817 return err; 1818 1819 ulen = udp_skb_len(skb); 1820 copied = len; 1821 if (copied > ulen - off) 1822 copied = ulen - off; 1823 else if (copied < ulen) 1824 msg->msg_flags |= MSG_TRUNC; 1825 1826 /* 1827 * If checksum is needed at all, try to do it while copying the 1828 * data. If the data is truncated, or if we only want a partial 1829 * coverage checksum (UDP-Lite), do it before the copy. 1830 */ 1831 1832 if (copied < ulen || peeking || 1833 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1834 checksum_valid = udp_skb_csum_unnecessary(skb) || 1835 !__udp_lib_checksum_complete(skb); 1836 if (!checksum_valid) 1837 goto csum_copy_err; 1838 } 1839 1840 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1841 if (udp_skb_is_linear(skb)) 1842 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1843 else 1844 err = skb_copy_datagram_msg(skb, off, msg, copied); 1845 } else { 1846 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1847 1848 if (err == -EINVAL) 1849 goto csum_copy_err; 1850 } 1851 1852 if (unlikely(err)) { 1853 if (!peeking) { 1854 atomic_inc(&sk->sk_drops); 1855 UDP_INC_STATS(sock_net(sk), 1856 UDP_MIB_INERRORS, is_udplite); 1857 } 1858 kfree_skb(skb); 1859 return err; 1860 } 1861 1862 if (!peeking) 1863 UDP_INC_STATS(sock_net(sk), 1864 UDP_MIB_INDATAGRAMS, is_udplite); 1865 1866 sock_recv_cmsgs(msg, sk, skb); 1867 1868 /* Copy the address. */ 1869 if (sin) { 1870 sin->sin_family = AF_INET; 1871 sin->sin_port = udp_hdr(skb)->source; 1872 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1873 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1874 *addr_len = sizeof(*sin); 1875 1876 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1877 (struct sockaddr *)sin, 1878 addr_len); 1879 } 1880 1881 if (udp_test_bit(GRO_ENABLED, sk)) 1882 udp_cmsg_recv(msg, sk, skb); 1883 1884 if (inet_cmsg_flags(inet)) 1885 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1886 1887 err = copied; 1888 if (flags & MSG_TRUNC) 1889 err = ulen; 1890 1891 skb_consume_udp(sk, skb, peeking ? -err : err); 1892 return err; 1893 1894 csum_copy_err: 1895 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1896 udp_skb_destructor)) { 1897 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1898 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1899 } 1900 kfree_skb(skb); 1901 1902 /* starting over for a new packet, but check if we need to yield */ 1903 cond_resched(); 1904 msg->msg_flags &= ~MSG_TRUNC; 1905 goto try_again; 1906 } 1907 1908 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1909 { 1910 /* This check is replicated from __ip4_datagram_connect() and 1911 * intended to prevent BPF program called below from accessing bytes 1912 * that are out of the bound specified by user in addr_len. 1913 */ 1914 if (addr_len < sizeof(struct sockaddr_in)) 1915 return -EINVAL; 1916 1917 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 1918 } 1919 EXPORT_SYMBOL(udp_pre_connect); 1920 1921 int __udp_disconnect(struct sock *sk, int flags) 1922 { 1923 struct inet_sock *inet = inet_sk(sk); 1924 /* 1925 * 1003.1g - break association. 1926 */ 1927 1928 sk->sk_state = TCP_CLOSE; 1929 inet->inet_daddr = 0; 1930 inet->inet_dport = 0; 1931 sock_rps_reset_rxhash(sk); 1932 sk->sk_bound_dev_if = 0; 1933 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1934 inet_reset_saddr(sk); 1935 if (sk->sk_prot->rehash && 1936 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1937 sk->sk_prot->rehash(sk); 1938 } 1939 1940 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1941 sk->sk_prot->unhash(sk); 1942 inet->inet_sport = 0; 1943 } 1944 sk_dst_reset(sk); 1945 return 0; 1946 } 1947 EXPORT_SYMBOL(__udp_disconnect); 1948 1949 int udp_disconnect(struct sock *sk, int flags) 1950 { 1951 lock_sock(sk); 1952 __udp_disconnect(sk, flags); 1953 release_sock(sk); 1954 return 0; 1955 } 1956 EXPORT_SYMBOL(udp_disconnect); 1957 1958 void udp_lib_unhash(struct sock *sk) 1959 { 1960 if (sk_hashed(sk)) { 1961 struct udp_table *udptable = udp_get_table_prot(sk); 1962 struct udp_hslot *hslot, *hslot2; 1963 1964 hslot = udp_hashslot(udptable, sock_net(sk), 1965 udp_sk(sk)->udp_port_hash); 1966 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1967 1968 spin_lock_bh(&hslot->lock); 1969 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1970 reuseport_detach_sock(sk); 1971 if (sk_del_node_init_rcu(sk)) { 1972 hslot->count--; 1973 inet_sk(sk)->inet_num = 0; 1974 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1975 1976 spin_lock(&hslot2->lock); 1977 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1978 hslot2->count--; 1979 spin_unlock(&hslot2->lock); 1980 } 1981 spin_unlock_bh(&hslot->lock); 1982 } 1983 } 1984 EXPORT_SYMBOL(udp_lib_unhash); 1985 1986 /* 1987 * inet_rcv_saddr was changed, we must rehash secondary hash 1988 */ 1989 void udp_lib_rehash(struct sock *sk, u16 newhash) 1990 { 1991 if (sk_hashed(sk)) { 1992 struct udp_table *udptable = udp_get_table_prot(sk); 1993 struct udp_hslot *hslot, *hslot2, *nhslot2; 1994 1995 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1996 nhslot2 = udp_hashslot2(udptable, newhash); 1997 udp_sk(sk)->udp_portaddr_hash = newhash; 1998 1999 if (hslot2 != nhslot2 || 2000 rcu_access_pointer(sk->sk_reuseport_cb)) { 2001 hslot = udp_hashslot(udptable, sock_net(sk), 2002 udp_sk(sk)->udp_port_hash); 2003 /* we must lock primary chain too */ 2004 spin_lock_bh(&hslot->lock); 2005 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2006 reuseport_detach_sock(sk); 2007 2008 if (hslot2 != nhslot2) { 2009 spin_lock(&hslot2->lock); 2010 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2011 hslot2->count--; 2012 spin_unlock(&hslot2->lock); 2013 2014 spin_lock(&nhslot2->lock); 2015 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2016 &nhslot2->head); 2017 nhslot2->count++; 2018 spin_unlock(&nhslot2->lock); 2019 } 2020 2021 spin_unlock_bh(&hslot->lock); 2022 } 2023 } 2024 } 2025 EXPORT_SYMBOL(udp_lib_rehash); 2026 2027 void udp_v4_rehash(struct sock *sk) 2028 { 2029 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2030 inet_sk(sk)->inet_rcv_saddr, 2031 inet_sk(sk)->inet_num); 2032 udp_lib_rehash(sk, new_hash); 2033 } 2034 2035 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2036 { 2037 int rc; 2038 2039 if (inet_sk(sk)->inet_daddr) { 2040 sock_rps_save_rxhash(sk, skb); 2041 sk_mark_napi_id(sk, skb); 2042 sk_incoming_cpu_update(sk); 2043 } else { 2044 sk_mark_napi_id_once(sk, skb); 2045 } 2046 2047 rc = __udp_enqueue_schedule_skb(sk, skb); 2048 if (rc < 0) { 2049 int is_udplite = IS_UDPLITE(sk); 2050 int drop_reason; 2051 2052 /* Note that an ENOMEM error is charged twice */ 2053 if (rc == -ENOMEM) { 2054 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2055 is_udplite); 2056 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2057 } else { 2058 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2059 is_udplite); 2060 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2061 } 2062 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2063 kfree_skb_reason(skb, drop_reason); 2064 trace_udp_fail_queue_rcv_skb(rc, sk); 2065 return -1; 2066 } 2067 2068 return 0; 2069 } 2070 2071 /* returns: 2072 * -1: error 2073 * 0: success 2074 * >0: "udp encap" protocol resubmission 2075 * 2076 * Note that in the success and error cases, the skb is assumed to 2077 * have either been requeued or freed. 2078 */ 2079 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2080 { 2081 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2082 struct udp_sock *up = udp_sk(sk); 2083 int is_udplite = IS_UDPLITE(sk); 2084 2085 /* 2086 * Charge it to the socket, dropping if the queue is full. 2087 */ 2088 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2089 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2090 goto drop; 2091 } 2092 nf_reset_ct(skb); 2093 2094 if (static_branch_unlikely(&udp_encap_needed_key) && 2095 READ_ONCE(up->encap_type)) { 2096 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2097 2098 /* 2099 * This is an encapsulation socket so pass the skb to 2100 * the socket's udp_encap_rcv() hook. Otherwise, just 2101 * fall through and pass this up the UDP socket. 2102 * up->encap_rcv() returns the following value: 2103 * =0 if skb was successfully passed to the encap 2104 * handler or was discarded by it. 2105 * >0 if skb should be passed on to UDP. 2106 * <0 if skb should be resubmitted as proto -N 2107 */ 2108 2109 /* if we're overly short, let UDP handle it */ 2110 encap_rcv = READ_ONCE(up->encap_rcv); 2111 if (encap_rcv) { 2112 int ret; 2113 2114 /* Verify checksum before giving to encap */ 2115 if (udp_lib_checksum_complete(skb)) 2116 goto csum_error; 2117 2118 ret = encap_rcv(sk, skb); 2119 if (ret <= 0) { 2120 __UDP_INC_STATS(sock_net(sk), 2121 UDP_MIB_INDATAGRAMS, 2122 is_udplite); 2123 return -ret; 2124 } 2125 } 2126 2127 /* FALLTHROUGH -- it's a UDP Packet */ 2128 } 2129 2130 /* 2131 * UDP-Lite specific tests, ignored on UDP sockets 2132 */ 2133 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2134 u16 pcrlen = READ_ONCE(up->pcrlen); 2135 2136 /* 2137 * MIB statistics other than incrementing the error count are 2138 * disabled for the following two types of errors: these depend 2139 * on the application settings, not on the functioning of the 2140 * protocol stack as such. 2141 * 2142 * RFC 3828 here recommends (sec 3.3): "There should also be a 2143 * way ... to ... at least let the receiving application block 2144 * delivery of packets with coverage values less than a value 2145 * provided by the application." 2146 */ 2147 if (pcrlen == 0) { /* full coverage was set */ 2148 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2149 UDP_SKB_CB(skb)->cscov, skb->len); 2150 goto drop; 2151 } 2152 /* The next case involves violating the min. coverage requested 2153 * by the receiver. This is subtle: if receiver wants x and x is 2154 * greater than the buffersize/MTU then receiver will complain 2155 * that it wants x while sender emits packets of smaller size y. 2156 * Therefore the above ...()->partial_cov statement is essential. 2157 */ 2158 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2159 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2160 UDP_SKB_CB(skb)->cscov, pcrlen); 2161 goto drop; 2162 } 2163 } 2164 2165 prefetch(&sk->sk_rmem_alloc); 2166 if (rcu_access_pointer(sk->sk_filter) && 2167 udp_lib_checksum_complete(skb)) 2168 goto csum_error; 2169 2170 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2171 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2172 goto drop; 2173 } 2174 2175 udp_csum_pull_header(skb); 2176 2177 ipv4_pktinfo_prepare(sk, skb, true); 2178 return __udp_queue_rcv_skb(sk, skb); 2179 2180 csum_error: 2181 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2182 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2183 drop: 2184 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2185 atomic_inc(&sk->sk_drops); 2186 kfree_skb_reason(skb, drop_reason); 2187 return -1; 2188 } 2189 2190 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2191 { 2192 struct sk_buff *next, *segs; 2193 int ret; 2194 2195 if (likely(!udp_unexpected_gso(sk, skb))) 2196 return udp_queue_rcv_one_skb(sk, skb); 2197 2198 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2199 __skb_push(skb, -skb_mac_offset(skb)); 2200 segs = udp_rcv_segment(sk, skb, true); 2201 skb_list_walk_safe(segs, skb, next) { 2202 __skb_pull(skb, skb_transport_offset(skb)); 2203 2204 udp_post_segment_fix_csum(skb); 2205 ret = udp_queue_rcv_one_skb(sk, skb); 2206 if (ret > 0) 2207 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2208 } 2209 return 0; 2210 } 2211 2212 /* For TCP sockets, sk_rx_dst is protected by socket lock 2213 * For UDP, we use xchg() to guard against concurrent changes. 2214 */ 2215 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2216 { 2217 struct dst_entry *old; 2218 2219 if (dst_hold_safe(dst)) { 2220 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst); 2221 dst_release(old); 2222 return old != dst; 2223 } 2224 return false; 2225 } 2226 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2227 2228 /* 2229 * Multicasts and broadcasts go to each listener. 2230 * 2231 * Note: called only from the BH handler context. 2232 */ 2233 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2234 struct udphdr *uh, 2235 __be32 saddr, __be32 daddr, 2236 struct udp_table *udptable, 2237 int proto) 2238 { 2239 struct sock *sk, *first = NULL; 2240 unsigned short hnum = ntohs(uh->dest); 2241 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2242 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2243 unsigned int offset = offsetof(typeof(*sk), sk_node); 2244 int dif = skb->dev->ifindex; 2245 int sdif = inet_sdif(skb); 2246 struct hlist_node *node; 2247 struct sk_buff *nskb; 2248 2249 if (use_hash2) { 2250 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2251 udptable->mask; 2252 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2253 start_lookup: 2254 hslot = &udptable->hash2[hash2]; 2255 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2256 } 2257 2258 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2259 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2260 uh->source, saddr, dif, sdif, hnum)) 2261 continue; 2262 2263 if (!first) { 2264 first = sk; 2265 continue; 2266 } 2267 nskb = skb_clone(skb, GFP_ATOMIC); 2268 2269 if (unlikely(!nskb)) { 2270 atomic_inc(&sk->sk_drops); 2271 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2272 IS_UDPLITE(sk)); 2273 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2274 IS_UDPLITE(sk)); 2275 continue; 2276 } 2277 if (udp_queue_rcv_skb(sk, nskb) > 0) 2278 consume_skb(nskb); 2279 } 2280 2281 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2282 if (use_hash2 && hash2 != hash2_any) { 2283 hash2 = hash2_any; 2284 goto start_lookup; 2285 } 2286 2287 if (first) { 2288 if (udp_queue_rcv_skb(first, skb) > 0) 2289 consume_skb(skb); 2290 } else { 2291 kfree_skb(skb); 2292 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2293 proto == IPPROTO_UDPLITE); 2294 } 2295 return 0; 2296 } 2297 2298 /* Initialize UDP checksum. If exited with zero value (success), 2299 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2300 * Otherwise, csum completion requires checksumming packet body, 2301 * including udp header and folding it to skb->csum. 2302 */ 2303 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2304 int proto) 2305 { 2306 int err; 2307 2308 UDP_SKB_CB(skb)->partial_cov = 0; 2309 UDP_SKB_CB(skb)->cscov = skb->len; 2310 2311 if (proto == IPPROTO_UDPLITE) { 2312 err = udplite_checksum_init(skb, uh); 2313 if (err) 2314 return err; 2315 2316 if (UDP_SKB_CB(skb)->partial_cov) { 2317 skb->csum = inet_compute_pseudo(skb, proto); 2318 return 0; 2319 } 2320 } 2321 2322 /* Note, we are only interested in != 0 or == 0, thus the 2323 * force to int. 2324 */ 2325 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2326 inet_compute_pseudo); 2327 if (err) 2328 return err; 2329 2330 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2331 /* If SW calculated the value, we know it's bad */ 2332 if (skb->csum_complete_sw) 2333 return 1; 2334 2335 /* HW says the value is bad. Let's validate that. 2336 * skb->csum is no longer the full packet checksum, 2337 * so don't treat it as such. 2338 */ 2339 skb_checksum_complete_unset(skb); 2340 } 2341 2342 return 0; 2343 } 2344 2345 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2346 * return code conversion for ip layer consumption 2347 */ 2348 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2349 struct udphdr *uh) 2350 { 2351 int ret; 2352 2353 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2354 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2355 2356 ret = udp_queue_rcv_skb(sk, skb); 2357 2358 /* a return value > 0 means to resubmit the input, but 2359 * it wants the return to be -protocol, or 0 2360 */ 2361 if (ret > 0) 2362 return -ret; 2363 return 0; 2364 } 2365 2366 /* 2367 * All we need to do is get the socket, and then do a checksum. 2368 */ 2369 2370 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2371 int proto) 2372 { 2373 struct sock *sk; 2374 struct udphdr *uh; 2375 unsigned short ulen; 2376 struct rtable *rt = skb_rtable(skb); 2377 __be32 saddr, daddr; 2378 struct net *net = dev_net(skb->dev); 2379 bool refcounted; 2380 int drop_reason; 2381 2382 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2383 2384 /* 2385 * Validate the packet. 2386 */ 2387 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2388 goto drop; /* No space for header. */ 2389 2390 uh = udp_hdr(skb); 2391 ulen = ntohs(uh->len); 2392 saddr = ip_hdr(skb)->saddr; 2393 daddr = ip_hdr(skb)->daddr; 2394 2395 if (ulen > skb->len) 2396 goto short_packet; 2397 2398 if (proto == IPPROTO_UDP) { 2399 /* UDP validates ulen. */ 2400 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2401 goto short_packet; 2402 uh = udp_hdr(skb); 2403 } 2404 2405 if (udp4_csum_init(skb, uh, proto)) 2406 goto csum_error; 2407 2408 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2409 &refcounted, udp_ehashfn); 2410 if (IS_ERR(sk)) 2411 goto no_sk; 2412 2413 if (sk) { 2414 struct dst_entry *dst = skb_dst(skb); 2415 int ret; 2416 2417 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2418 udp_sk_rx_dst_set(sk, dst); 2419 2420 ret = udp_unicast_rcv_skb(sk, skb, uh); 2421 if (refcounted) 2422 sock_put(sk); 2423 return ret; 2424 } 2425 2426 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2427 return __udp4_lib_mcast_deliver(net, skb, uh, 2428 saddr, daddr, udptable, proto); 2429 2430 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2431 if (sk) 2432 return udp_unicast_rcv_skb(sk, skb, uh); 2433 no_sk: 2434 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2435 goto drop; 2436 nf_reset_ct(skb); 2437 2438 /* No socket. Drop packet silently, if checksum is wrong */ 2439 if (udp_lib_checksum_complete(skb)) 2440 goto csum_error; 2441 2442 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2443 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2444 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2445 2446 /* 2447 * Hmm. We got an UDP packet to a port to which we 2448 * don't wanna listen. Ignore it. 2449 */ 2450 kfree_skb_reason(skb, drop_reason); 2451 return 0; 2452 2453 short_packet: 2454 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2455 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2456 proto == IPPROTO_UDPLITE ? "Lite" : "", 2457 &saddr, ntohs(uh->source), 2458 ulen, skb->len, 2459 &daddr, ntohs(uh->dest)); 2460 goto drop; 2461 2462 csum_error: 2463 /* 2464 * RFC1122: OK. Discards the bad packet silently (as far as 2465 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2466 */ 2467 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2468 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2469 proto == IPPROTO_UDPLITE ? "Lite" : "", 2470 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2471 ulen); 2472 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2473 drop: 2474 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2475 kfree_skb_reason(skb, drop_reason); 2476 return 0; 2477 } 2478 2479 /* We can only early demux multicast if there is a single matching socket. 2480 * If more than one socket found returns NULL 2481 */ 2482 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2483 __be16 loc_port, __be32 loc_addr, 2484 __be16 rmt_port, __be32 rmt_addr, 2485 int dif, int sdif) 2486 { 2487 struct udp_table *udptable = net->ipv4.udp_table; 2488 unsigned short hnum = ntohs(loc_port); 2489 struct sock *sk, *result; 2490 struct udp_hslot *hslot; 2491 unsigned int slot; 2492 2493 slot = udp_hashfn(net, hnum, udptable->mask); 2494 hslot = &udptable->hash[slot]; 2495 2496 /* Do not bother scanning a too big list */ 2497 if (hslot->count > 10) 2498 return NULL; 2499 2500 result = NULL; 2501 sk_for_each_rcu(sk, &hslot->head) { 2502 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2503 rmt_port, rmt_addr, dif, sdif, hnum)) { 2504 if (result) 2505 return NULL; 2506 result = sk; 2507 } 2508 } 2509 2510 return result; 2511 } 2512 2513 /* For unicast we should only early demux connected sockets or we can 2514 * break forwarding setups. The chains here can be long so only check 2515 * if the first socket is an exact match and if not move on. 2516 */ 2517 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2518 __be16 loc_port, __be32 loc_addr, 2519 __be16 rmt_port, __be32 rmt_addr, 2520 int dif, int sdif) 2521 { 2522 struct udp_table *udptable = net->ipv4.udp_table; 2523 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2524 unsigned short hnum = ntohs(loc_port); 2525 unsigned int hash2, slot2; 2526 struct udp_hslot *hslot2; 2527 __portpair ports; 2528 struct sock *sk; 2529 2530 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2531 slot2 = hash2 & udptable->mask; 2532 hslot2 = &udptable->hash2[slot2]; 2533 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2534 2535 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2536 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2537 return sk; 2538 /* Only check first socket in chain */ 2539 break; 2540 } 2541 return NULL; 2542 } 2543 2544 int udp_v4_early_demux(struct sk_buff *skb) 2545 { 2546 struct net *net = dev_net(skb->dev); 2547 struct in_device *in_dev = NULL; 2548 const struct iphdr *iph; 2549 const struct udphdr *uh; 2550 struct sock *sk = NULL; 2551 struct dst_entry *dst; 2552 int dif = skb->dev->ifindex; 2553 int sdif = inet_sdif(skb); 2554 int ours; 2555 2556 /* validate the packet */ 2557 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2558 return 0; 2559 2560 iph = ip_hdr(skb); 2561 uh = udp_hdr(skb); 2562 2563 if (skb->pkt_type == PACKET_MULTICAST) { 2564 in_dev = __in_dev_get_rcu(skb->dev); 2565 2566 if (!in_dev) 2567 return 0; 2568 2569 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2570 iph->protocol); 2571 if (!ours) 2572 return 0; 2573 2574 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2575 uh->source, iph->saddr, 2576 dif, sdif); 2577 } else if (skb->pkt_type == PACKET_HOST) { 2578 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2579 uh->source, iph->saddr, dif, sdif); 2580 } 2581 2582 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2583 return 0; 2584 2585 skb->sk = sk; 2586 skb->destructor = sock_efree; 2587 dst = rcu_dereference(sk->sk_rx_dst); 2588 2589 if (dst) 2590 dst = dst_check(dst, 0); 2591 if (dst) { 2592 u32 itag = 0; 2593 2594 /* set noref for now. 2595 * any place which wants to hold dst has to call 2596 * dst_hold_safe() 2597 */ 2598 skb_dst_set_noref(skb, dst); 2599 2600 /* for unconnected multicast sockets we need to validate 2601 * the source on each packet 2602 */ 2603 if (!inet_sk(sk)->inet_daddr && in_dev) 2604 return ip_mc_validate_source(skb, iph->daddr, 2605 iph->saddr, 2606 iph->tos & IPTOS_RT_MASK, 2607 skb->dev, in_dev, &itag); 2608 } 2609 return 0; 2610 } 2611 2612 int udp_rcv(struct sk_buff *skb) 2613 { 2614 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2615 } 2616 2617 void udp_destroy_sock(struct sock *sk) 2618 { 2619 struct udp_sock *up = udp_sk(sk); 2620 bool slow = lock_sock_fast(sk); 2621 2622 /* protects from races with udp_abort() */ 2623 sock_set_flag(sk, SOCK_DEAD); 2624 udp_flush_pending_frames(sk); 2625 unlock_sock_fast(sk, slow); 2626 if (static_branch_unlikely(&udp_encap_needed_key)) { 2627 if (up->encap_type) { 2628 void (*encap_destroy)(struct sock *sk); 2629 encap_destroy = READ_ONCE(up->encap_destroy); 2630 if (encap_destroy) 2631 encap_destroy(sk); 2632 } 2633 if (udp_test_bit(ENCAP_ENABLED, sk)) 2634 static_branch_dec(&udp_encap_needed_key); 2635 } 2636 } 2637 2638 /* 2639 * Socket option code for UDP 2640 */ 2641 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2642 sockptr_t optval, unsigned int optlen, 2643 int (*push_pending_frames)(struct sock *)) 2644 { 2645 struct udp_sock *up = udp_sk(sk); 2646 int val, valbool; 2647 int err = 0; 2648 int is_udplite = IS_UDPLITE(sk); 2649 2650 if (level == SOL_SOCKET) { 2651 err = sk_setsockopt(sk, level, optname, optval, optlen); 2652 2653 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2654 sockopt_lock_sock(sk); 2655 /* paired with READ_ONCE in udp_rmem_release() */ 2656 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2657 sockopt_release_sock(sk); 2658 } 2659 return err; 2660 } 2661 2662 if (optlen < sizeof(int)) 2663 return -EINVAL; 2664 2665 if (copy_from_sockptr(&val, optval, sizeof(val))) 2666 return -EFAULT; 2667 2668 valbool = val ? 1 : 0; 2669 2670 switch (optname) { 2671 case UDP_CORK: 2672 if (val != 0) { 2673 udp_set_bit(CORK, sk); 2674 } else { 2675 udp_clear_bit(CORK, sk); 2676 lock_sock(sk); 2677 push_pending_frames(sk); 2678 release_sock(sk); 2679 } 2680 break; 2681 2682 case UDP_ENCAP: 2683 switch (val) { 2684 case 0: 2685 #ifdef CONFIG_XFRM 2686 case UDP_ENCAP_ESPINUDP: 2687 case UDP_ENCAP_ESPINUDP_NON_IKE: 2688 #if IS_ENABLED(CONFIG_IPV6) 2689 if (sk->sk_family == AF_INET6) 2690 WRITE_ONCE(up->encap_rcv, 2691 ipv6_stub->xfrm6_udp_encap_rcv); 2692 else 2693 #endif 2694 WRITE_ONCE(up->encap_rcv, 2695 xfrm4_udp_encap_rcv); 2696 #endif 2697 fallthrough; 2698 case UDP_ENCAP_L2TPINUDP: 2699 WRITE_ONCE(up->encap_type, val); 2700 udp_tunnel_encap_enable(sk); 2701 break; 2702 default: 2703 err = -ENOPROTOOPT; 2704 break; 2705 } 2706 break; 2707 2708 case UDP_NO_CHECK6_TX: 2709 udp_set_no_check6_tx(sk, valbool); 2710 break; 2711 2712 case UDP_NO_CHECK6_RX: 2713 udp_set_no_check6_rx(sk, valbool); 2714 break; 2715 2716 case UDP_SEGMENT: 2717 if (val < 0 || val > USHRT_MAX) 2718 return -EINVAL; 2719 WRITE_ONCE(up->gso_size, val); 2720 break; 2721 2722 case UDP_GRO: 2723 2724 /* when enabling GRO, accept the related GSO packet type */ 2725 if (valbool) 2726 udp_tunnel_encap_enable(sk); 2727 udp_assign_bit(GRO_ENABLED, sk, valbool); 2728 udp_assign_bit(ACCEPT_L4, sk, valbool); 2729 break; 2730 2731 /* 2732 * UDP-Lite's partial checksum coverage (RFC 3828). 2733 */ 2734 /* The sender sets actual checksum coverage length via this option. 2735 * The case coverage > packet length is handled by send module. */ 2736 case UDPLITE_SEND_CSCOV: 2737 if (!is_udplite) /* Disable the option on UDP sockets */ 2738 return -ENOPROTOOPT; 2739 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2740 val = 8; 2741 else if (val > USHRT_MAX) 2742 val = USHRT_MAX; 2743 WRITE_ONCE(up->pcslen, val); 2744 udp_set_bit(UDPLITE_SEND_CC, sk); 2745 break; 2746 2747 /* The receiver specifies a minimum checksum coverage value. To make 2748 * sense, this should be set to at least 8 (as done below). If zero is 2749 * used, this again means full checksum coverage. */ 2750 case UDPLITE_RECV_CSCOV: 2751 if (!is_udplite) /* Disable the option on UDP sockets */ 2752 return -ENOPROTOOPT; 2753 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2754 val = 8; 2755 else if (val > USHRT_MAX) 2756 val = USHRT_MAX; 2757 WRITE_ONCE(up->pcrlen, val); 2758 udp_set_bit(UDPLITE_RECV_CC, sk); 2759 break; 2760 2761 default: 2762 err = -ENOPROTOOPT; 2763 break; 2764 } 2765 2766 return err; 2767 } 2768 EXPORT_SYMBOL(udp_lib_setsockopt); 2769 2770 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2771 unsigned int optlen) 2772 { 2773 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2774 return udp_lib_setsockopt(sk, level, optname, 2775 optval, optlen, 2776 udp_push_pending_frames); 2777 return ip_setsockopt(sk, level, optname, optval, optlen); 2778 } 2779 2780 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2781 char __user *optval, int __user *optlen) 2782 { 2783 struct udp_sock *up = udp_sk(sk); 2784 int val, len; 2785 2786 if (get_user(len, optlen)) 2787 return -EFAULT; 2788 2789 if (len < 0) 2790 return -EINVAL; 2791 2792 len = min_t(unsigned int, len, sizeof(int)); 2793 2794 switch (optname) { 2795 case UDP_CORK: 2796 val = udp_test_bit(CORK, sk); 2797 break; 2798 2799 case UDP_ENCAP: 2800 val = READ_ONCE(up->encap_type); 2801 break; 2802 2803 case UDP_NO_CHECK6_TX: 2804 val = udp_get_no_check6_tx(sk); 2805 break; 2806 2807 case UDP_NO_CHECK6_RX: 2808 val = udp_get_no_check6_rx(sk); 2809 break; 2810 2811 case UDP_SEGMENT: 2812 val = READ_ONCE(up->gso_size); 2813 break; 2814 2815 case UDP_GRO: 2816 val = udp_test_bit(GRO_ENABLED, sk); 2817 break; 2818 2819 /* The following two cannot be changed on UDP sockets, the return is 2820 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2821 case UDPLITE_SEND_CSCOV: 2822 val = READ_ONCE(up->pcslen); 2823 break; 2824 2825 case UDPLITE_RECV_CSCOV: 2826 val = READ_ONCE(up->pcrlen); 2827 break; 2828 2829 default: 2830 return -ENOPROTOOPT; 2831 } 2832 2833 if (put_user(len, optlen)) 2834 return -EFAULT; 2835 if (copy_to_user(optval, &val, len)) 2836 return -EFAULT; 2837 return 0; 2838 } 2839 EXPORT_SYMBOL(udp_lib_getsockopt); 2840 2841 int udp_getsockopt(struct sock *sk, int level, int optname, 2842 char __user *optval, int __user *optlen) 2843 { 2844 if (level == SOL_UDP || level == SOL_UDPLITE) 2845 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2846 return ip_getsockopt(sk, level, optname, optval, optlen); 2847 } 2848 2849 /** 2850 * udp_poll - wait for a UDP event. 2851 * @file: - file struct 2852 * @sock: - socket 2853 * @wait: - poll table 2854 * 2855 * This is same as datagram poll, except for the special case of 2856 * blocking sockets. If application is using a blocking fd 2857 * and a packet with checksum error is in the queue; 2858 * then it could get return from select indicating data available 2859 * but then block when reading it. Add special case code 2860 * to work around these arguably broken applications. 2861 */ 2862 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2863 { 2864 __poll_t mask = datagram_poll(file, sock, wait); 2865 struct sock *sk = sock->sk; 2866 2867 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2868 mask |= EPOLLIN | EPOLLRDNORM; 2869 2870 /* Check for false positives due to checksum errors */ 2871 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2872 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2873 mask &= ~(EPOLLIN | EPOLLRDNORM); 2874 2875 /* psock ingress_msg queue should not contain any bad checksum frames */ 2876 if (sk_is_readable(sk)) 2877 mask |= EPOLLIN | EPOLLRDNORM; 2878 return mask; 2879 2880 } 2881 EXPORT_SYMBOL(udp_poll); 2882 2883 int udp_abort(struct sock *sk, int err) 2884 { 2885 if (!has_current_bpf_ctx()) 2886 lock_sock(sk); 2887 2888 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2889 * with close() 2890 */ 2891 if (sock_flag(sk, SOCK_DEAD)) 2892 goto out; 2893 2894 sk->sk_err = err; 2895 sk_error_report(sk); 2896 __udp_disconnect(sk, 0); 2897 2898 out: 2899 if (!has_current_bpf_ctx()) 2900 release_sock(sk); 2901 2902 return 0; 2903 } 2904 EXPORT_SYMBOL_GPL(udp_abort); 2905 2906 struct proto udp_prot = { 2907 .name = "UDP", 2908 .owner = THIS_MODULE, 2909 .close = udp_lib_close, 2910 .pre_connect = udp_pre_connect, 2911 .connect = ip4_datagram_connect, 2912 .disconnect = udp_disconnect, 2913 .ioctl = udp_ioctl, 2914 .init = udp_init_sock, 2915 .destroy = udp_destroy_sock, 2916 .setsockopt = udp_setsockopt, 2917 .getsockopt = udp_getsockopt, 2918 .sendmsg = udp_sendmsg, 2919 .recvmsg = udp_recvmsg, 2920 .splice_eof = udp_splice_eof, 2921 .release_cb = ip4_datagram_release_cb, 2922 .hash = udp_lib_hash, 2923 .unhash = udp_lib_unhash, 2924 .rehash = udp_v4_rehash, 2925 .get_port = udp_v4_get_port, 2926 .put_port = udp_lib_unhash, 2927 #ifdef CONFIG_BPF_SYSCALL 2928 .psock_update_sk_prot = udp_bpf_update_proto, 2929 #endif 2930 .memory_allocated = &udp_memory_allocated, 2931 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 2932 2933 .sysctl_mem = sysctl_udp_mem, 2934 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2935 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2936 .obj_size = sizeof(struct udp_sock), 2937 .h.udp_table = NULL, 2938 .diag_destroy = udp_abort, 2939 }; 2940 EXPORT_SYMBOL(udp_prot); 2941 2942 /* ------------------------------------------------------------------------ */ 2943 #ifdef CONFIG_PROC_FS 2944 2945 static unsigned short seq_file_family(const struct seq_file *seq); 2946 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2947 { 2948 unsigned short family = seq_file_family(seq); 2949 2950 /* AF_UNSPEC is used as a match all */ 2951 return ((family == AF_UNSPEC || family == sk->sk_family) && 2952 net_eq(sock_net(sk), seq_file_net(seq))); 2953 } 2954 2955 #ifdef CONFIG_BPF_SYSCALL 2956 static const struct seq_operations bpf_iter_udp_seq_ops; 2957 #endif 2958 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 2959 struct net *net) 2960 { 2961 const struct udp_seq_afinfo *afinfo; 2962 2963 #ifdef CONFIG_BPF_SYSCALL 2964 if (seq->op == &bpf_iter_udp_seq_ops) 2965 return net->ipv4.udp_table; 2966 #endif 2967 2968 afinfo = pde_data(file_inode(seq->file)); 2969 return afinfo->udp_table ? : net->ipv4.udp_table; 2970 } 2971 2972 static struct sock *udp_get_first(struct seq_file *seq, int start) 2973 { 2974 struct udp_iter_state *state = seq->private; 2975 struct net *net = seq_file_net(seq); 2976 struct udp_table *udptable; 2977 struct sock *sk; 2978 2979 udptable = udp_get_table_seq(seq, net); 2980 2981 for (state->bucket = start; state->bucket <= udptable->mask; 2982 ++state->bucket) { 2983 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 2984 2985 if (hlist_empty(&hslot->head)) 2986 continue; 2987 2988 spin_lock_bh(&hslot->lock); 2989 sk_for_each(sk, &hslot->head) { 2990 if (seq_sk_match(seq, sk)) 2991 goto found; 2992 } 2993 spin_unlock_bh(&hslot->lock); 2994 } 2995 sk = NULL; 2996 found: 2997 return sk; 2998 } 2999 3000 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3001 { 3002 struct udp_iter_state *state = seq->private; 3003 struct net *net = seq_file_net(seq); 3004 struct udp_table *udptable; 3005 3006 do { 3007 sk = sk_next(sk); 3008 } while (sk && !seq_sk_match(seq, sk)); 3009 3010 if (!sk) { 3011 udptable = udp_get_table_seq(seq, net); 3012 3013 if (state->bucket <= udptable->mask) 3014 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3015 3016 return udp_get_first(seq, state->bucket + 1); 3017 } 3018 return sk; 3019 } 3020 3021 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3022 { 3023 struct sock *sk = udp_get_first(seq, 0); 3024 3025 if (sk) 3026 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3027 --pos; 3028 return pos ? NULL : sk; 3029 } 3030 3031 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3032 { 3033 struct udp_iter_state *state = seq->private; 3034 state->bucket = MAX_UDP_PORTS; 3035 3036 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3037 } 3038 EXPORT_SYMBOL(udp_seq_start); 3039 3040 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3041 { 3042 struct sock *sk; 3043 3044 if (v == SEQ_START_TOKEN) 3045 sk = udp_get_idx(seq, 0); 3046 else 3047 sk = udp_get_next(seq, v); 3048 3049 ++*pos; 3050 return sk; 3051 } 3052 EXPORT_SYMBOL(udp_seq_next); 3053 3054 void udp_seq_stop(struct seq_file *seq, void *v) 3055 { 3056 struct udp_iter_state *state = seq->private; 3057 struct udp_table *udptable; 3058 3059 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3060 3061 if (state->bucket <= udptable->mask) 3062 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3063 } 3064 EXPORT_SYMBOL(udp_seq_stop); 3065 3066 /* ------------------------------------------------------------------------ */ 3067 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3068 int bucket) 3069 { 3070 struct inet_sock *inet = inet_sk(sp); 3071 __be32 dest = inet->inet_daddr; 3072 __be32 src = inet->inet_rcv_saddr; 3073 __u16 destp = ntohs(inet->inet_dport); 3074 __u16 srcp = ntohs(inet->inet_sport); 3075 3076 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3077 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3078 bucket, src, srcp, dest, destp, sp->sk_state, 3079 sk_wmem_alloc_get(sp), 3080 udp_rqueue_get(sp), 3081 0, 0L, 0, 3082 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3083 0, sock_i_ino(sp), 3084 refcount_read(&sp->sk_refcnt), sp, 3085 atomic_read(&sp->sk_drops)); 3086 } 3087 3088 int udp4_seq_show(struct seq_file *seq, void *v) 3089 { 3090 seq_setwidth(seq, 127); 3091 if (v == SEQ_START_TOKEN) 3092 seq_puts(seq, " sl local_address rem_address st tx_queue " 3093 "rx_queue tr tm->when retrnsmt uid timeout " 3094 "inode ref pointer drops"); 3095 else { 3096 struct udp_iter_state *state = seq->private; 3097 3098 udp4_format_sock(v, seq, state->bucket); 3099 } 3100 seq_pad(seq, '\n'); 3101 return 0; 3102 } 3103 3104 #ifdef CONFIG_BPF_SYSCALL 3105 struct bpf_iter__udp { 3106 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3107 __bpf_md_ptr(struct udp_sock *, udp_sk); 3108 uid_t uid __aligned(8); 3109 int bucket __aligned(8); 3110 }; 3111 3112 struct bpf_udp_iter_state { 3113 struct udp_iter_state state; 3114 unsigned int cur_sk; 3115 unsigned int end_sk; 3116 unsigned int max_sk; 3117 int offset; 3118 struct sock **batch; 3119 bool st_bucket_done; 3120 }; 3121 3122 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3123 unsigned int new_batch_sz); 3124 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3125 { 3126 struct bpf_udp_iter_state *iter = seq->private; 3127 struct udp_iter_state *state = &iter->state; 3128 struct net *net = seq_file_net(seq); 3129 int resume_bucket, resume_offset; 3130 struct udp_table *udptable; 3131 unsigned int batch_sks = 0; 3132 bool resized = false; 3133 struct sock *sk; 3134 3135 resume_bucket = state->bucket; 3136 resume_offset = iter->offset; 3137 3138 /* The current batch is done, so advance the bucket. */ 3139 if (iter->st_bucket_done) 3140 state->bucket++; 3141 3142 udptable = udp_get_table_seq(seq, net); 3143 3144 again: 3145 /* New batch for the next bucket. 3146 * Iterate over the hash table to find a bucket with sockets matching 3147 * the iterator attributes, and return the first matching socket from 3148 * the bucket. The remaining matched sockets from the bucket are batched 3149 * before releasing the bucket lock. This allows BPF programs that are 3150 * called in seq_show to acquire the bucket lock if needed. 3151 */ 3152 iter->cur_sk = 0; 3153 iter->end_sk = 0; 3154 iter->st_bucket_done = false; 3155 batch_sks = 0; 3156 3157 for (; state->bucket <= udptable->mask; state->bucket++) { 3158 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket]; 3159 3160 if (hlist_empty(&hslot2->head)) 3161 continue; 3162 3163 iter->offset = 0; 3164 spin_lock_bh(&hslot2->lock); 3165 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3166 if (seq_sk_match(seq, sk)) { 3167 /* Resume from the last iterated socket at the 3168 * offset in the bucket before iterator was stopped. 3169 */ 3170 if (state->bucket == resume_bucket && 3171 iter->offset < resume_offset) { 3172 ++iter->offset; 3173 continue; 3174 } 3175 if (iter->end_sk < iter->max_sk) { 3176 sock_hold(sk); 3177 iter->batch[iter->end_sk++] = sk; 3178 } 3179 batch_sks++; 3180 } 3181 } 3182 spin_unlock_bh(&hslot2->lock); 3183 3184 if (iter->end_sk) 3185 break; 3186 } 3187 3188 /* All done: no batch made. */ 3189 if (!iter->end_sk) 3190 return NULL; 3191 3192 if (iter->end_sk == batch_sks) { 3193 /* Batching is done for the current bucket; return the first 3194 * socket to be iterated from the batch. 3195 */ 3196 iter->st_bucket_done = true; 3197 goto done; 3198 } 3199 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3200 resized = true; 3201 /* After allocating a larger batch, retry one more time to grab 3202 * the whole bucket. 3203 */ 3204 goto again; 3205 } 3206 done: 3207 return iter->batch[0]; 3208 } 3209 3210 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3211 { 3212 struct bpf_udp_iter_state *iter = seq->private; 3213 struct sock *sk; 3214 3215 /* Whenever seq_next() is called, the iter->cur_sk is 3216 * done with seq_show(), so unref the iter->cur_sk. 3217 */ 3218 if (iter->cur_sk < iter->end_sk) { 3219 sock_put(iter->batch[iter->cur_sk++]); 3220 ++iter->offset; 3221 } 3222 3223 /* After updating iter->cur_sk, check if there are more sockets 3224 * available in the current bucket batch. 3225 */ 3226 if (iter->cur_sk < iter->end_sk) 3227 sk = iter->batch[iter->cur_sk]; 3228 else 3229 /* Prepare a new batch. */ 3230 sk = bpf_iter_udp_batch(seq); 3231 3232 ++*pos; 3233 return sk; 3234 } 3235 3236 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3237 { 3238 /* bpf iter does not support lseek, so it always 3239 * continue from where it was stop()-ped. 3240 */ 3241 if (*pos) 3242 return bpf_iter_udp_batch(seq); 3243 3244 return SEQ_START_TOKEN; 3245 } 3246 3247 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3248 struct udp_sock *udp_sk, uid_t uid, int bucket) 3249 { 3250 struct bpf_iter__udp ctx; 3251 3252 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3253 ctx.meta = meta; 3254 ctx.udp_sk = udp_sk; 3255 ctx.uid = uid; 3256 ctx.bucket = bucket; 3257 return bpf_iter_run_prog(prog, &ctx); 3258 } 3259 3260 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3261 { 3262 struct udp_iter_state *state = seq->private; 3263 struct bpf_iter_meta meta; 3264 struct bpf_prog *prog; 3265 struct sock *sk = v; 3266 uid_t uid; 3267 int ret; 3268 3269 if (v == SEQ_START_TOKEN) 3270 return 0; 3271 3272 lock_sock(sk); 3273 3274 if (unlikely(sk_unhashed(sk))) { 3275 ret = SEQ_SKIP; 3276 goto unlock; 3277 } 3278 3279 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3280 meta.seq = seq; 3281 prog = bpf_iter_get_info(&meta, false); 3282 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3283 3284 unlock: 3285 release_sock(sk); 3286 return ret; 3287 } 3288 3289 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3290 { 3291 while (iter->cur_sk < iter->end_sk) 3292 sock_put(iter->batch[iter->cur_sk++]); 3293 } 3294 3295 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3296 { 3297 struct bpf_udp_iter_state *iter = seq->private; 3298 struct bpf_iter_meta meta; 3299 struct bpf_prog *prog; 3300 3301 if (!v) { 3302 meta.seq = seq; 3303 prog = bpf_iter_get_info(&meta, true); 3304 if (prog) 3305 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3306 } 3307 3308 if (iter->cur_sk < iter->end_sk) { 3309 bpf_iter_udp_put_batch(iter); 3310 iter->st_bucket_done = false; 3311 } 3312 } 3313 3314 static const struct seq_operations bpf_iter_udp_seq_ops = { 3315 .start = bpf_iter_udp_seq_start, 3316 .next = bpf_iter_udp_seq_next, 3317 .stop = bpf_iter_udp_seq_stop, 3318 .show = bpf_iter_udp_seq_show, 3319 }; 3320 #endif 3321 3322 static unsigned short seq_file_family(const struct seq_file *seq) 3323 { 3324 const struct udp_seq_afinfo *afinfo; 3325 3326 #ifdef CONFIG_BPF_SYSCALL 3327 /* BPF iterator: bpf programs to filter sockets. */ 3328 if (seq->op == &bpf_iter_udp_seq_ops) 3329 return AF_UNSPEC; 3330 #endif 3331 3332 /* Proc fs iterator */ 3333 afinfo = pde_data(file_inode(seq->file)); 3334 return afinfo->family; 3335 } 3336 3337 const struct seq_operations udp_seq_ops = { 3338 .start = udp_seq_start, 3339 .next = udp_seq_next, 3340 .stop = udp_seq_stop, 3341 .show = udp4_seq_show, 3342 }; 3343 EXPORT_SYMBOL(udp_seq_ops); 3344 3345 static struct udp_seq_afinfo udp4_seq_afinfo = { 3346 .family = AF_INET, 3347 .udp_table = NULL, 3348 }; 3349 3350 static int __net_init udp4_proc_init_net(struct net *net) 3351 { 3352 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3353 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3354 return -ENOMEM; 3355 return 0; 3356 } 3357 3358 static void __net_exit udp4_proc_exit_net(struct net *net) 3359 { 3360 remove_proc_entry("udp", net->proc_net); 3361 } 3362 3363 static struct pernet_operations udp4_net_ops = { 3364 .init = udp4_proc_init_net, 3365 .exit = udp4_proc_exit_net, 3366 }; 3367 3368 int __init udp4_proc_init(void) 3369 { 3370 return register_pernet_subsys(&udp4_net_ops); 3371 } 3372 3373 void udp4_proc_exit(void) 3374 { 3375 unregister_pernet_subsys(&udp4_net_ops); 3376 } 3377 #endif /* CONFIG_PROC_FS */ 3378 3379 static __initdata unsigned long uhash_entries; 3380 static int __init set_uhash_entries(char *str) 3381 { 3382 ssize_t ret; 3383 3384 if (!str) 3385 return 0; 3386 3387 ret = kstrtoul(str, 0, &uhash_entries); 3388 if (ret) 3389 return 0; 3390 3391 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3392 uhash_entries = UDP_HTABLE_SIZE_MIN; 3393 return 1; 3394 } 3395 __setup("uhash_entries=", set_uhash_entries); 3396 3397 void __init udp_table_init(struct udp_table *table, const char *name) 3398 { 3399 unsigned int i; 3400 3401 table->hash = alloc_large_system_hash(name, 3402 2 * sizeof(struct udp_hslot), 3403 uhash_entries, 3404 21, /* one slot per 2 MB */ 3405 0, 3406 &table->log, 3407 &table->mask, 3408 UDP_HTABLE_SIZE_MIN, 3409 UDP_HTABLE_SIZE_MAX); 3410 3411 table->hash2 = table->hash + (table->mask + 1); 3412 for (i = 0; i <= table->mask; i++) { 3413 INIT_HLIST_HEAD(&table->hash[i].head); 3414 table->hash[i].count = 0; 3415 spin_lock_init(&table->hash[i].lock); 3416 } 3417 for (i = 0; i <= table->mask; i++) { 3418 INIT_HLIST_HEAD(&table->hash2[i].head); 3419 table->hash2[i].count = 0; 3420 spin_lock_init(&table->hash2[i].lock); 3421 } 3422 } 3423 3424 u32 udp_flow_hashrnd(void) 3425 { 3426 static u32 hashrnd __read_mostly; 3427 3428 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3429 3430 return hashrnd; 3431 } 3432 EXPORT_SYMBOL(udp_flow_hashrnd); 3433 3434 static void __net_init udp_sysctl_init(struct net *net) 3435 { 3436 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3437 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3438 3439 #ifdef CONFIG_NET_L3_MASTER_DEV 3440 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3441 #endif 3442 } 3443 3444 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3445 { 3446 struct udp_table *udptable; 3447 int i; 3448 3449 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3450 if (!udptable) 3451 goto out; 3452 3453 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot), 3454 GFP_KERNEL_ACCOUNT); 3455 if (!udptable->hash) 3456 goto free_table; 3457 3458 udptable->hash2 = udptable->hash + hash_entries; 3459 udptable->mask = hash_entries - 1; 3460 udptable->log = ilog2(hash_entries); 3461 3462 for (i = 0; i < hash_entries; i++) { 3463 INIT_HLIST_HEAD(&udptable->hash[i].head); 3464 udptable->hash[i].count = 0; 3465 spin_lock_init(&udptable->hash[i].lock); 3466 3467 INIT_HLIST_HEAD(&udptable->hash2[i].head); 3468 udptable->hash2[i].count = 0; 3469 spin_lock_init(&udptable->hash2[i].lock); 3470 } 3471 3472 return udptable; 3473 3474 free_table: 3475 kfree(udptable); 3476 out: 3477 return NULL; 3478 } 3479 3480 static void __net_exit udp_pernet_table_free(struct net *net) 3481 { 3482 struct udp_table *udptable = net->ipv4.udp_table; 3483 3484 if (udptable == &udp_table) 3485 return; 3486 3487 kvfree(udptable->hash); 3488 kfree(udptable); 3489 } 3490 3491 static void __net_init udp_set_table(struct net *net) 3492 { 3493 struct udp_table *udptable; 3494 unsigned int hash_entries; 3495 struct net *old_net; 3496 3497 if (net_eq(net, &init_net)) 3498 goto fallback; 3499 3500 old_net = current->nsproxy->net_ns; 3501 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3502 if (!hash_entries) 3503 goto fallback; 3504 3505 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3506 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3507 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3508 else 3509 hash_entries = roundup_pow_of_two(hash_entries); 3510 3511 udptable = udp_pernet_table_alloc(hash_entries); 3512 if (udptable) { 3513 net->ipv4.udp_table = udptable; 3514 } else { 3515 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3516 "for a netns, fallback to the global one\n", 3517 hash_entries); 3518 fallback: 3519 net->ipv4.udp_table = &udp_table; 3520 } 3521 } 3522 3523 static int __net_init udp_pernet_init(struct net *net) 3524 { 3525 udp_sysctl_init(net); 3526 udp_set_table(net); 3527 3528 return 0; 3529 } 3530 3531 static void __net_exit udp_pernet_exit(struct net *net) 3532 { 3533 udp_pernet_table_free(net); 3534 } 3535 3536 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3537 .init = udp_pernet_init, 3538 .exit = udp_pernet_exit, 3539 }; 3540 3541 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3542 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3543 struct udp_sock *udp_sk, uid_t uid, int bucket) 3544 3545 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3546 unsigned int new_batch_sz) 3547 { 3548 struct sock **new_batch; 3549 3550 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3551 GFP_USER | __GFP_NOWARN); 3552 if (!new_batch) 3553 return -ENOMEM; 3554 3555 bpf_iter_udp_put_batch(iter); 3556 kvfree(iter->batch); 3557 iter->batch = new_batch; 3558 iter->max_sk = new_batch_sz; 3559 3560 return 0; 3561 } 3562 3563 #define INIT_BATCH_SZ 16 3564 3565 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3566 { 3567 struct bpf_udp_iter_state *iter = priv_data; 3568 int ret; 3569 3570 ret = bpf_iter_init_seq_net(priv_data, aux); 3571 if (ret) 3572 return ret; 3573 3574 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3575 if (ret) 3576 bpf_iter_fini_seq_net(priv_data); 3577 3578 return ret; 3579 } 3580 3581 static void bpf_iter_fini_udp(void *priv_data) 3582 { 3583 struct bpf_udp_iter_state *iter = priv_data; 3584 3585 bpf_iter_fini_seq_net(priv_data); 3586 kvfree(iter->batch); 3587 } 3588 3589 static const struct bpf_iter_seq_info udp_seq_info = { 3590 .seq_ops = &bpf_iter_udp_seq_ops, 3591 .init_seq_private = bpf_iter_init_udp, 3592 .fini_seq_private = bpf_iter_fini_udp, 3593 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3594 }; 3595 3596 static struct bpf_iter_reg udp_reg_info = { 3597 .target = "udp", 3598 .ctx_arg_info_size = 1, 3599 .ctx_arg_info = { 3600 { offsetof(struct bpf_iter__udp, udp_sk), 3601 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3602 }, 3603 .seq_info = &udp_seq_info, 3604 }; 3605 3606 static void __init bpf_iter_register(void) 3607 { 3608 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3609 if (bpf_iter_reg_target(&udp_reg_info)) 3610 pr_warn("Warning: could not register bpf iterator udp\n"); 3611 } 3612 #endif 3613 3614 void __init udp_init(void) 3615 { 3616 unsigned long limit; 3617 unsigned int i; 3618 3619 udp_table_init(&udp_table, "UDP"); 3620 limit = nr_free_buffer_pages() / 8; 3621 limit = max(limit, 128UL); 3622 sysctl_udp_mem[0] = limit / 4 * 3; 3623 sysctl_udp_mem[1] = limit; 3624 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3625 3626 /* 16 spinlocks per cpu */ 3627 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3628 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3629 GFP_KERNEL); 3630 if (!udp_busylocks) 3631 panic("UDP: failed to alloc udp_busylocks\n"); 3632 for (i = 0; i < (1U << udp_busylocks_log); i++) 3633 spin_lock_init(udp_busylocks + i); 3634 3635 if (register_pernet_subsys(&udp_sysctl_ops)) 3636 panic("UDP: failed to init sysctl parameters.\n"); 3637 3638 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3639 bpf_iter_register(); 3640 #endif 3641 } 3642