xref: /openbmc/linux/net/ipv4/udp.c (revision 79f08d9e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/inet_hashtables.h>
107 #include <net/route.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115 
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118 
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121 
122 int sysctl_udp_rmem_min __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_rmem_min);
124 
125 int sysctl_udp_wmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_wmem_min);
127 
128 atomic_long_t udp_memory_allocated;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133 
134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 			       const struct udp_hslot *hslot,
136 			       unsigned long *bitmap,
137 			       struct sock *sk,
138 			       int (*saddr_comp)(const struct sock *sk1,
139 						 const struct sock *sk2),
140 			       unsigned int log)
141 {
142 	struct sock *sk2;
143 	struct hlist_nulls_node *node;
144 	kuid_t uid = sock_i_uid(sk);
145 
146 	sk_nulls_for_each(sk2, node, &hslot->head)
147 		if (net_eq(sock_net(sk2), net) &&
148 		    sk2 != sk &&
149 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
150 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
151 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
152 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
153 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
154 		      !uid_eq(uid, sock_i_uid(sk2))) &&
155 		    (*saddr_comp)(sk, sk2)) {
156 			if (bitmap)
157 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 					  bitmap);
159 			else
160 				return 1;
161 		}
162 	return 0;
163 }
164 
165 /*
166  * Note: we still hold spinlock of primary hash chain, so no other writer
167  * can insert/delete a socket with local_port == num
168  */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 			       struct udp_hslot *hslot2,
171 			       struct sock *sk,
172 			       int (*saddr_comp)(const struct sock *sk1,
173 						 const struct sock *sk2))
174 {
175 	struct sock *sk2;
176 	struct hlist_nulls_node *node;
177 	kuid_t uid = sock_i_uid(sk);
178 	int res = 0;
179 
180 	spin_lock(&hslot2->lock);
181 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
182 		if (net_eq(sock_net(sk2), net) &&
183 		    sk2 != sk &&
184 		    (udp_sk(sk2)->udp_port_hash == num) &&
185 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
186 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 		      !uid_eq(uid, sock_i_uid(sk2))) &&
190 		    (*saddr_comp)(sk, sk2)) {
191 			res = 1;
192 			break;
193 		}
194 	spin_unlock(&hslot2->lock);
195 	return res;
196 }
197 
198 /**
199  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
200  *
201  *  @sk:          socket struct in question
202  *  @snum:        port number to look up
203  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
204  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
205  *                   with NULL address
206  */
207 int udp_lib_get_port(struct sock *sk, unsigned short snum,
208 		       int (*saddr_comp)(const struct sock *sk1,
209 					 const struct sock *sk2),
210 		     unsigned int hash2_nulladdr)
211 {
212 	struct udp_hslot *hslot, *hslot2;
213 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
214 	int    error = 1;
215 	struct net *net = sock_net(sk);
216 
217 	if (!snum) {
218 		int low, high, remaining;
219 		unsigned int rand;
220 		unsigned short first, last;
221 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
222 
223 		inet_get_local_port_range(net, &low, &high);
224 		remaining = (high - low) + 1;
225 
226 		rand = net_random();
227 		first = (((u64)rand * remaining) >> 32) + low;
228 		/*
229 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
230 		 */
231 		rand = (rand | 1) * (udptable->mask + 1);
232 		last = first + udptable->mask + 1;
233 		do {
234 			hslot = udp_hashslot(udptable, net, first);
235 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
236 			spin_lock_bh(&hslot->lock);
237 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
238 					    saddr_comp, udptable->log);
239 
240 			snum = first;
241 			/*
242 			 * Iterate on all possible values of snum for this hash.
243 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
244 			 * give us randomization and full range coverage.
245 			 */
246 			do {
247 				if (low <= snum && snum <= high &&
248 				    !test_bit(snum >> udptable->log, bitmap) &&
249 				    !inet_is_reserved_local_port(snum))
250 					goto found;
251 				snum += rand;
252 			} while (snum != first);
253 			spin_unlock_bh(&hslot->lock);
254 		} while (++first != last);
255 		goto fail;
256 	} else {
257 		hslot = udp_hashslot(udptable, net, snum);
258 		spin_lock_bh(&hslot->lock);
259 		if (hslot->count > 10) {
260 			int exist;
261 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
262 
263 			slot2          &= udptable->mask;
264 			hash2_nulladdr &= udptable->mask;
265 
266 			hslot2 = udp_hashslot2(udptable, slot2);
267 			if (hslot->count < hslot2->count)
268 				goto scan_primary_hash;
269 
270 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
271 						     sk, saddr_comp);
272 			if (!exist && (hash2_nulladdr != slot2)) {
273 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
274 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
275 							     sk, saddr_comp);
276 			}
277 			if (exist)
278 				goto fail_unlock;
279 			else
280 				goto found;
281 		}
282 scan_primary_hash:
283 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
284 					saddr_comp, 0))
285 			goto fail_unlock;
286 	}
287 found:
288 	inet_sk(sk)->inet_num = snum;
289 	udp_sk(sk)->udp_port_hash = snum;
290 	udp_sk(sk)->udp_portaddr_hash ^= snum;
291 	if (sk_unhashed(sk)) {
292 		sk_nulls_add_node_rcu(sk, &hslot->head);
293 		hslot->count++;
294 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
295 
296 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
297 		spin_lock(&hslot2->lock);
298 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
299 					 &hslot2->head);
300 		hslot2->count++;
301 		spin_unlock(&hslot2->lock);
302 	}
303 	error = 0;
304 fail_unlock:
305 	spin_unlock_bh(&hslot->lock);
306 fail:
307 	return error;
308 }
309 EXPORT_SYMBOL(udp_lib_get_port);
310 
311 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
312 {
313 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
314 
315 	return 	(!ipv6_only_sock(sk2)  &&
316 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
317 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
318 }
319 
320 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
321 				       unsigned int port)
322 {
323 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
324 }
325 
326 int udp_v4_get_port(struct sock *sk, unsigned short snum)
327 {
328 	unsigned int hash2_nulladdr =
329 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
330 	unsigned int hash2_partial =
331 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
332 
333 	/* precompute partial secondary hash */
334 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
335 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
336 }
337 
338 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
339 			 unsigned short hnum,
340 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
341 {
342 	int score = -1;
343 
344 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
345 			!ipv6_only_sock(sk)) {
346 		struct inet_sock *inet = inet_sk(sk);
347 
348 		score = (sk->sk_family == PF_INET ? 2 : 1);
349 		if (inet->inet_rcv_saddr) {
350 			if (inet->inet_rcv_saddr != daddr)
351 				return -1;
352 			score += 4;
353 		}
354 		if (inet->inet_daddr) {
355 			if (inet->inet_daddr != saddr)
356 				return -1;
357 			score += 4;
358 		}
359 		if (inet->inet_dport) {
360 			if (inet->inet_dport != sport)
361 				return -1;
362 			score += 4;
363 		}
364 		if (sk->sk_bound_dev_if) {
365 			if (sk->sk_bound_dev_if != dif)
366 				return -1;
367 			score += 4;
368 		}
369 	}
370 	return score;
371 }
372 
373 /*
374  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
375  */
376 static inline int compute_score2(struct sock *sk, struct net *net,
377 				 __be32 saddr, __be16 sport,
378 				 __be32 daddr, unsigned int hnum, int dif)
379 {
380 	int score = -1;
381 
382 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
383 		struct inet_sock *inet = inet_sk(sk);
384 
385 		if (inet->inet_rcv_saddr != daddr)
386 			return -1;
387 		if (inet->inet_num != hnum)
388 			return -1;
389 
390 		score = (sk->sk_family == PF_INET ? 2 : 1);
391 		if (inet->inet_daddr) {
392 			if (inet->inet_daddr != saddr)
393 				return -1;
394 			score += 4;
395 		}
396 		if (inet->inet_dport) {
397 			if (inet->inet_dport != sport)
398 				return -1;
399 			score += 4;
400 		}
401 		if (sk->sk_bound_dev_if) {
402 			if (sk->sk_bound_dev_if != dif)
403 				return -1;
404 			score += 4;
405 		}
406 	}
407 	return score;
408 }
409 
410 static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
411 				 const __u16 lport, const __be32 faddr,
412 				 const __be16 fport)
413 {
414 	static u32 udp_ehash_secret __read_mostly;
415 
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 
422 
423 /* called with read_rcu_lock() */
424 static struct sock *udp4_lib_lookup2(struct net *net,
425 		__be32 saddr, __be16 sport,
426 		__be32 daddr, unsigned int hnum, int dif,
427 		struct udp_hslot *hslot2, unsigned int slot2)
428 {
429 	struct sock *sk, *result;
430 	struct hlist_nulls_node *node;
431 	int score, badness, matches = 0, reuseport = 0;
432 	u32 hash = 0;
433 
434 begin:
435 	result = NULL;
436 	badness = 0;
437 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
438 		score = compute_score2(sk, net, saddr, sport,
439 				      daddr, hnum, dif);
440 		if (score > badness) {
441 			result = sk;
442 			badness = score;
443 			reuseport = sk->sk_reuseport;
444 			if (reuseport) {
445 				hash = udp_ehashfn(net, daddr, hnum,
446 						   saddr, sport);
447 				matches = 1;
448 			}
449 		} else if (score == badness && reuseport) {
450 			matches++;
451 			if (((u64)hash * matches) >> 32 == 0)
452 				result = sk;
453 			hash = next_pseudo_random32(hash);
454 		}
455 	}
456 	/*
457 	 * if the nulls value we got at the end of this lookup is
458 	 * not the expected one, we must restart lookup.
459 	 * We probably met an item that was moved to another chain.
460 	 */
461 	if (get_nulls_value(node) != slot2)
462 		goto begin;
463 	if (result) {
464 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
465 			result = NULL;
466 		else if (unlikely(compute_score2(result, net, saddr, sport,
467 				  daddr, hnum, dif) < badness)) {
468 			sock_put(result);
469 			goto begin;
470 		}
471 	}
472 	return result;
473 }
474 
475 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
476  * harder than this. -DaveM
477  */
478 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
479 		__be16 sport, __be32 daddr, __be16 dport,
480 		int dif, struct udp_table *udptable)
481 {
482 	struct sock *sk, *result;
483 	struct hlist_nulls_node *node;
484 	unsigned short hnum = ntohs(dport);
485 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
486 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
487 	int score, badness, matches = 0, reuseport = 0;
488 	u32 hash = 0;
489 
490 	rcu_read_lock();
491 	if (hslot->count > 10) {
492 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
493 		slot2 = hash2 & udptable->mask;
494 		hslot2 = &udptable->hash2[slot2];
495 		if (hslot->count < hslot2->count)
496 			goto begin;
497 
498 		result = udp4_lib_lookup2(net, saddr, sport,
499 					  daddr, hnum, dif,
500 					  hslot2, slot2);
501 		if (!result) {
502 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
503 			slot2 = hash2 & udptable->mask;
504 			hslot2 = &udptable->hash2[slot2];
505 			if (hslot->count < hslot2->count)
506 				goto begin;
507 
508 			result = udp4_lib_lookup2(net, saddr, sport,
509 						  htonl(INADDR_ANY), hnum, dif,
510 						  hslot2, slot2);
511 		}
512 		rcu_read_unlock();
513 		return result;
514 	}
515 begin:
516 	result = NULL;
517 	badness = 0;
518 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
519 		score = compute_score(sk, net, saddr, hnum, sport,
520 				      daddr, dport, dif);
521 		if (score > badness) {
522 			result = sk;
523 			badness = score;
524 			reuseport = sk->sk_reuseport;
525 			if (reuseport) {
526 				hash = udp_ehashfn(net, daddr, hnum,
527 						   saddr, sport);
528 				matches = 1;
529 			}
530 		} else if (score == badness && reuseport) {
531 			matches++;
532 			if (((u64)hash * matches) >> 32 == 0)
533 				result = sk;
534 			hash = next_pseudo_random32(hash);
535 		}
536 	}
537 	/*
538 	 * if the nulls value we got at the end of this lookup is
539 	 * not the expected one, we must restart lookup.
540 	 * We probably met an item that was moved to another chain.
541 	 */
542 	if (get_nulls_value(node) != slot)
543 		goto begin;
544 
545 	if (result) {
546 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
547 			result = NULL;
548 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
549 				  daddr, dport, dif) < badness)) {
550 			sock_put(result);
551 			goto begin;
552 		}
553 	}
554 	rcu_read_unlock();
555 	return result;
556 }
557 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
558 
559 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
560 						 __be16 sport, __be16 dport,
561 						 struct udp_table *udptable)
562 {
563 	struct sock *sk;
564 	const struct iphdr *iph = ip_hdr(skb);
565 
566 	if (unlikely(sk = skb_steal_sock(skb)))
567 		return sk;
568 	else
569 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
570 					 iph->daddr, dport, inet_iif(skb),
571 					 udptable);
572 }
573 
574 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
575 			     __be32 daddr, __be16 dport, int dif)
576 {
577 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
578 }
579 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
580 
581 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
582 				       __be16 loc_port, __be32 loc_addr,
583 				       __be16 rmt_port, __be32 rmt_addr,
584 				       int dif, unsigned short hnum)
585 {
586 	struct inet_sock *inet = inet_sk(sk);
587 
588 	if (!net_eq(sock_net(sk), net) ||
589 	    udp_sk(sk)->udp_port_hash != hnum ||
590 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
591 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
592 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
593 	    ipv6_only_sock(sk) ||
594 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
595 		return false;
596 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
597 		return false;
598 	return true;
599 }
600 
601 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
602 					     __be16 loc_port, __be32 loc_addr,
603 					     __be16 rmt_port, __be32 rmt_addr,
604 					     int dif)
605 {
606 	struct hlist_nulls_node *node;
607 	struct sock *s = sk;
608 	unsigned short hnum = ntohs(loc_port);
609 
610 	sk_nulls_for_each_from(s, node) {
611 		if (__udp_is_mcast_sock(net, s,
612 					loc_port, loc_addr,
613 					rmt_port, rmt_addr,
614 					dif, hnum))
615 			goto found;
616 	}
617 	s = NULL;
618 found:
619 	return s;
620 }
621 
622 /*
623  * This routine is called by the ICMP module when it gets some
624  * sort of error condition.  If err < 0 then the socket should
625  * be closed and the error returned to the user.  If err > 0
626  * it's just the icmp type << 8 | icmp code.
627  * Header points to the ip header of the error packet. We move
628  * on past this. Then (as it used to claim before adjustment)
629  * header points to the first 8 bytes of the udp header.  We need
630  * to find the appropriate port.
631  */
632 
633 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
634 {
635 	struct inet_sock *inet;
636 	const struct iphdr *iph = (const struct iphdr *)skb->data;
637 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
638 	const int type = icmp_hdr(skb)->type;
639 	const int code = icmp_hdr(skb)->code;
640 	struct sock *sk;
641 	int harderr;
642 	int err;
643 	struct net *net = dev_net(skb->dev);
644 
645 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
646 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
647 	if (sk == NULL) {
648 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
649 		return;	/* No socket for error */
650 	}
651 
652 	err = 0;
653 	harderr = 0;
654 	inet = inet_sk(sk);
655 
656 	switch (type) {
657 	default:
658 	case ICMP_TIME_EXCEEDED:
659 		err = EHOSTUNREACH;
660 		break;
661 	case ICMP_SOURCE_QUENCH:
662 		goto out;
663 	case ICMP_PARAMETERPROB:
664 		err = EPROTO;
665 		harderr = 1;
666 		break;
667 	case ICMP_DEST_UNREACH:
668 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
669 			ipv4_sk_update_pmtu(skb, sk, info);
670 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
671 				err = EMSGSIZE;
672 				harderr = 1;
673 				break;
674 			}
675 			goto out;
676 		}
677 		err = EHOSTUNREACH;
678 		if (code <= NR_ICMP_UNREACH) {
679 			harderr = icmp_err_convert[code].fatal;
680 			err = icmp_err_convert[code].errno;
681 		}
682 		break;
683 	case ICMP_REDIRECT:
684 		ipv4_sk_redirect(skb, sk);
685 		goto out;
686 	}
687 
688 	/*
689 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
690 	 *	4.1.3.3.
691 	 */
692 	if (!inet->recverr) {
693 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
694 			goto out;
695 	} else
696 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
697 
698 	sk->sk_err = err;
699 	sk->sk_error_report(sk);
700 out:
701 	sock_put(sk);
702 }
703 
704 void udp_err(struct sk_buff *skb, u32 info)
705 {
706 	__udp4_lib_err(skb, info, &udp_table);
707 }
708 
709 /*
710  * Throw away all pending data and cancel the corking. Socket is locked.
711  */
712 void udp_flush_pending_frames(struct sock *sk)
713 {
714 	struct udp_sock *up = udp_sk(sk);
715 
716 	if (up->pending) {
717 		up->len = 0;
718 		up->pending = 0;
719 		ip_flush_pending_frames(sk);
720 	}
721 }
722 EXPORT_SYMBOL(udp_flush_pending_frames);
723 
724 /**
725  * 	udp4_hwcsum  -  handle outgoing HW checksumming
726  * 	@skb: 	sk_buff containing the filled-in UDP header
727  * 	        (checksum field must be zeroed out)
728  *	@src:	source IP address
729  *	@dst:	destination IP address
730  */
731 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
732 {
733 	struct udphdr *uh = udp_hdr(skb);
734 	struct sk_buff *frags = skb_shinfo(skb)->frag_list;
735 	int offset = skb_transport_offset(skb);
736 	int len = skb->len - offset;
737 	int hlen = len;
738 	__wsum csum = 0;
739 
740 	if (!frags) {
741 		/*
742 		 * Only one fragment on the socket.
743 		 */
744 		skb->csum_start = skb_transport_header(skb) - skb->head;
745 		skb->csum_offset = offsetof(struct udphdr, check);
746 		uh->check = ~csum_tcpudp_magic(src, dst, len,
747 					       IPPROTO_UDP, 0);
748 	} else {
749 		/*
750 		 * HW-checksum won't work as there are two or more
751 		 * fragments on the socket so that all csums of sk_buffs
752 		 * should be together
753 		 */
754 		do {
755 			csum = csum_add(csum, frags->csum);
756 			hlen -= frags->len;
757 		} while ((frags = frags->next));
758 
759 		csum = skb_checksum(skb, offset, hlen, csum);
760 		skb->ip_summed = CHECKSUM_NONE;
761 
762 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
763 		if (uh->check == 0)
764 			uh->check = CSUM_MANGLED_0;
765 	}
766 }
767 EXPORT_SYMBOL_GPL(udp4_hwcsum);
768 
769 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
770 {
771 	struct sock *sk = skb->sk;
772 	struct inet_sock *inet = inet_sk(sk);
773 	struct udphdr *uh;
774 	int err = 0;
775 	int is_udplite = IS_UDPLITE(sk);
776 	int offset = skb_transport_offset(skb);
777 	int len = skb->len - offset;
778 	__wsum csum = 0;
779 
780 	/*
781 	 * Create a UDP header
782 	 */
783 	uh = udp_hdr(skb);
784 	uh->source = inet->inet_sport;
785 	uh->dest = fl4->fl4_dport;
786 	uh->len = htons(len);
787 	uh->check = 0;
788 
789 	if (is_udplite)  				 /*     UDP-Lite      */
790 		csum = udplite_csum(skb);
791 
792 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
793 
794 		skb->ip_summed = CHECKSUM_NONE;
795 		goto send;
796 
797 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
798 
799 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
800 		goto send;
801 
802 	} else
803 		csum = udp_csum(skb);
804 
805 	/* add protocol-dependent pseudo-header */
806 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
807 				      sk->sk_protocol, csum);
808 	if (uh->check == 0)
809 		uh->check = CSUM_MANGLED_0;
810 
811 send:
812 	err = ip_send_skb(sock_net(sk), skb);
813 	if (err) {
814 		if (err == -ENOBUFS && !inet->recverr) {
815 			UDP_INC_STATS_USER(sock_net(sk),
816 					   UDP_MIB_SNDBUFERRORS, is_udplite);
817 			err = 0;
818 		}
819 	} else
820 		UDP_INC_STATS_USER(sock_net(sk),
821 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
822 	return err;
823 }
824 
825 /*
826  * Push out all pending data as one UDP datagram. Socket is locked.
827  */
828 int udp_push_pending_frames(struct sock *sk)
829 {
830 	struct udp_sock  *up = udp_sk(sk);
831 	struct inet_sock *inet = inet_sk(sk);
832 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
833 	struct sk_buff *skb;
834 	int err = 0;
835 
836 	skb = ip_finish_skb(sk, fl4);
837 	if (!skb)
838 		goto out;
839 
840 	err = udp_send_skb(skb, fl4);
841 
842 out:
843 	up->len = 0;
844 	up->pending = 0;
845 	return err;
846 }
847 EXPORT_SYMBOL(udp_push_pending_frames);
848 
849 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
850 		size_t len)
851 {
852 	struct inet_sock *inet = inet_sk(sk);
853 	struct udp_sock *up = udp_sk(sk);
854 	struct flowi4 fl4_stack;
855 	struct flowi4 *fl4;
856 	int ulen = len;
857 	struct ipcm_cookie ipc;
858 	struct rtable *rt = NULL;
859 	int free = 0;
860 	int connected = 0;
861 	__be32 daddr, faddr, saddr;
862 	__be16 dport;
863 	u8  tos;
864 	int err, is_udplite = IS_UDPLITE(sk);
865 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
866 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
867 	struct sk_buff *skb;
868 	struct ip_options_data opt_copy;
869 
870 	if (len > 0xFFFF)
871 		return -EMSGSIZE;
872 
873 	/*
874 	 *	Check the flags.
875 	 */
876 
877 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
878 		return -EOPNOTSUPP;
879 
880 	ipc.opt = NULL;
881 	ipc.tx_flags = 0;
882 	ipc.ttl = 0;
883 	ipc.tos = -1;
884 
885 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
886 
887 	fl4 = &inet->cork.fl.u.ip4;
888 	if (up->pending) {
889 		/*
890 		 * There are pending frames.
891 		 * The socket lock must be held while it's corked.
892 		 */
893 		lock_sock(sk);
894 		if (likely(up->pending)) {
895 			if (unlikely(up->pending != AF_INET)) {
896 				release_sock(sk);
897 				return -EINVAL;
898 			}
899 			goto do_append_data;
900 		}
901 		release_sock(sk);
902 	}
903 	ulen += sizeof(struct udphdr);
904 
905 	/*
906 	 *	Get and verify the address.
907 	 */
908 	if (msg->msg_name) {
909 		struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
910 		if (msg->msg_namelen < sizeof(*usin))
911 			return -EINVAL;
912 		if (usin->sin_family != AF_INET) {
913 			if (usin->sin_family != AF_UNSPEC)
914 				return -EAFNOSUPPORT;
915 		}
916 
917 		daddr = usin->sin_addr.s_addr;
918 		dport = usin->sin_port;
919 		if (dport == 0)
920 			return -EINVAL;
921 	} else {
922 		if (sk->sk_state != TCP_ESTABLISHED)
923 			return -EDESTADDRREQ;
924 		daddr = inet->inet_daddr;
925 		dport = inet->inet_dport;
926 		/* Open fast path for connected socket.
927 		   Route will not be used, if at least one option is set.
928 		 */
929 		connected = 1;
930 	}
931 	ipc.addr = inet->inet_saddr;
932 
933 	ipc.oif = sk->sk_bound_dev_if;
934 
935 	sock_tx_timestamp(sk, &ipc.tx_flags);
936 
937 	if (msg->msg_controllen) {
938 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
939 		if (err)
940 			return err;
941 		if (ipc.opt)
942 			free = 1;
943 		connected = 0;
944 	}
945 	if (!ipc.opt) {
946 		struct ip_options_rcu *inet_opt;
947 
948 		rcu_read_lock();
949 		inet_opt = rcu_dereference(inet->inet_opt);
950 		if (inet_opt) {
951 			memcpy(&opt_copy, inet_opt,
952 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
953 			ipc.opt = &opt_copy.opt;
954 		}
955 		rcu_read_unlock();
956 	}
957 
958 	saddr = ipc.addr;
959 	ipc.addr = faddr = daddr;
960 
961 	if (ipc.opt && ipc.opt->opt.srr) {
962 		if (!daddr)
963 			return -EINVAL;
964 		faddr = ipc.opt->opt.faddr;
965 		connected = 0;
966 	}
967 	tos = get_rttos(&ipc, inet);
968 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
969 	    (msg->msg_flags & MSG_DONTROUTE) ||
970 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
971 		tos |= RTO_ONLINK;
972 		connected = 0;
973 	}
974 
975 	if (ipv4_is_multicast(daddr)) {
976 		if (!ipc.oif)
977 			ipc.oif = inet->mc_index;
978 		if (!saddr)
979 			saddr = inet->mc_addr;
980 		connected = 0;
981 	} else if (!ipc.oif)
982 		ipc.oif = inet->uc_index;
983 
984 	if (connected)
985 		rt = (struct rtable *)sk_dst_check(sk, 0);
986 
987 	if (rt == NULL) {
988 		struct net *net = sock_net(sk);
989 
990 		fl4 = &fl4_stack;
991 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
992 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
993 				   inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
994 				   faddr, saddr, dport, inet->inet_sport);
995 
996 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
997 		rt = ip_route_output_flow(net, fl4, sk);
998 		if (IS_ERR(rt)) {
999 			err = PTR_ERR(rt);
1000 			rt = NULL;
1001 			if (err == -ENETUNREACH)
1002 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
1003 			goto out;
1004 		}
1005 
1006 		err = -EACCES;
1007 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1008 		    !sock_flag(sk, SOCK_BROADCAST))
1009 			goto out;
1010 		if (connected)
1011 			sk_dst_set(sk, dst_clone(&rt->dst));
1012 	}
1013 
1014 	if (msg->msg_flags&MSG_CONFIRM)
1015 		goto do_confirm;
1016 back_from_confirm:
1017 
1018 	saddr = fl4->saddr;
1019 	if (!ipc.addr)
1020 		daddr = ipc.addr = fl4->daddr;
1021 
1022 	/* Lockless fast path for the non-corking case. */
1023 	if (!corkreq) {
1024 		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
1025 				  sizeof(struct udphdr), &ipc, &rt,
1026 				  msg->msg_flags);
1027 		err = PTR_ERR(skb);
1028 		if (!IS_ERR_OR_NULL(skb))
1029 			err = udp_send_skb(skb, fl4);
1030 		goto out;
1031 	}
1032 
1033 	lock_sock(sk);
1034 	if (unlikely(up->pending)) {
1035 		/* The socket is already corked while preparing it. */
1036 		/* ... which is an evident application bug. --ANK */
1037 		release_sock(sk);
1038 
1039 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1040 		err = -EINVAL;
1041 		goto out;
1042 	}
1043 	/*
1044 	 *	Now cork the socket to pend data.
1045 	 */
1046 	fl4 = &inet->cork.fl.u.ip4;
1047 	fl4->daddr = daddr;
1048 	fl4->saddr = saddr;
1049 	fl4->fl4_dport = dport;
1050 	fl4->fl4_sport = inet->inet_sport;
1051 	up->pending = AF_INET;
1052 
1053 do_append_data:
1054 	up->len += ulen;
1055 	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1056 			     sizeof(struct udphdr), &ipc, &rt,
1057 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1058 	if (err)
1059 		udp_flush_pending_frames(sk);
1060 	else if (!corkreq)
1061 		err = udp_push_pending_frames(sk);
1062 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1063 		up->pending = 0;
1064 	release_sock(sk);
1065 
1066 out:
1067 	ip_rt_put(rt);
1068 	if (free)
1069 		kfree(ipc.opt);
1070 	if (!err)
1071 		return len;
1072 	/*
1073 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1074 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1075 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1076 	 * things).  We could add another new stat but at least for now that
1077 	 * seems like overkill.
1078 	 */
1079 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1080 		UDP_INC_STATS_USER(sock_net(sk),
1081 				UDP_MIB_SNDBUFERRORS, is_udplite);
1082 	}
1083 	return err;
1084 
1085 do_confirm:
1086 	dst_confirm(&rt->dst);
1087 	if (!(msg->msg_flags&MSG_PROBE) || len)
1088 		goto back_from_confirm;
1089 	err = 0;
1090 	goto out;
1091 }
1092 EXPORT_SYMBOL(udp_sendmsg);
1093 
1094 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1095 		 size_t size, int flags)
1096 {
1097 	struct inet_sock *inet = inet_sk(sk);
1098 	struct udp_sock *up = udp_sk(sk);
1099 	int ret;
1100 
1101 	if (!up->pending) {
1102 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1103 
1104 		/* Call udp_sendmsg to specify destination address which
1105 		 * sendpage interface can't pass.
1106 		 * This will succeed only when the socket is connected.
1107 		 */
1108 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1109 		if (ret < 0)
1110 			return ret;
1111 	}
1112 
1113 	lock_sock(sk);
1114 
1115 	if (unlikely(!up->pending)) {
1116 		release_sock(sk);
1117 
1118 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1119 		return -EINVAL;
1120 	}
1121 
1122 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1123 			     page, offset, size, flags);
1124 	if (ret == -EOPNOTSUPP) {
1125 		release_sock(sk);
1126 		return sock_no_sendpage(sk->sk_socket, page, offset,
1127 					size, flags);
1128 	}
1129 	if (ret < 0) {
1130 		udp_flush_pending_frames(sk);
1131 		goto out;
1132 	}
1133 
1134 	up->len += size;
1135 	if (!(up->corkflag || (flags&MSG_MORE)))
1136 		ret = udp_push_pending_frames(sk);
1137 	if (!ret)
1138 		ret = size;
1139 out:
1140 	release_sock(sk);
1141 	return ret;
1142 }
1143 
1144 
1145 /**
1146  *	first_packet_length	- return length of first packet in receive queue
1147  *	@sk: socket
1148  *
1149  *	Drops all bad checksum frames, until a valid one is found.
1150  *	Returns the length of found skb, or 0 if none is found.
1151  */
1152 static unsigned int first_packet_length(struct sock *sk)
1153 {
1154 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1155 	struct sk_buff *skb;
1156 	unsigned int res;
1157 
1158 	__skb_queue_head_init(&list_kill);
1159 
1160 	spin_lock_bh(&rcvq->lock);
1161 	while ((skb = skb_peek(rcvq)) != NULL &&
1162 		udp_lib_checksum_complete(skb)) {
1163 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1164 				 IS_UDPLITE(sk));
1165 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1166 				 IS_UDPLITE(sk));
1167 		atomic_inc(&sk->sk_drops);
1168 		__skb_unlink(skb, rcvq);
1169 		__skb_queue_tail(&list_kill, skb);
1170 	}
1171 	res = skb ? skb->len : 0;
1172 	spin_unlock_bh(&rcvq->lock);
1173 
1174 	if (!skb_queue_empty(&list_kill)) {
1175 		bool slow = lock_sock_fast(sk);
1176 
1177 		__skb_queue_purge(&list_kill);
1178 		sk_mem_reclaim_partial(sk);
1179 		unlock_sock_fast(sk, slow);
1180 	}
1181 	return res;
1182 }
1183 
1184 /*
1185  *	IOCTL requests applicable to the UDP protocol
1186  */
1187 
1188 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1189 {
1190 	switch (cmd) {
1191 	case SIOCOUTQ:
1192 	{
1193 		int amount = sk_wmem_alloc_get(sk);
1194 
1195 		return put_user(amount, (int __user *)arg);
1196 	}
1197 
1198 	case SIOCINQ:
1199 	{
1200 		unsigned int amount = first_packet_length(sk);
1201 
1202 		if (amount)
1203 			/*
1204 			 * We will only return the amount
1205 			 * of this packet since that is all
1206 			 * that will be read.
1207 			 */
1208 			amount -= sizeof(struct udphdr);
1209 
1210 		return put_user(amount, (int __user *)arg);
1211 	}
1212 
1213 	default:
1214 		return -ENOIOCTLCMD;
1215 	}
1216 
1217 	return 0;
1218 }
1219 EXPORT_SYMBOL(udp_ioctl);
1220 
1221 /*
1222  * 	This should be easy, if there is something there we
1223  * 	return it, otherwise we block.
1224  */
1225 
1226 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1227 		size_t len, int noblock, int flags, int *addr_len)
1228 {
1229 	struct inet_sock *inet = inet_sk(sk);
1230 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1231 	struct sk_buff *skb;
1232 	unsigned int ulen, copied;
1233 	int peeked, off = 0;
1234 	int err;
1235 	int is_udplite = IS_UDPLITE(sk);
1236 	bool slow;
1237 
1238 	if (flags & MSG_ERRQUEUE)
1239 		return ip_recv_error(sk, msg, len);
1240 
1241 try_again:
1242 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1243 				  &peeked, &off, &err);
1244 	if (!skb)
1245 		goto out;
1246 
1247 	ulen = skb->len - sizeof(struct udphdr);
1248 	copied = len;
1249 	if (copied > ulen)
1250 		copied = ulen;
1251 	else if (copied < ulen)
1252 		msg->msg_flags |= MSG_TRUNC;
1253 
1254 	/*
1255 	 * If checksum is needed at all, try to do it while copying the
1256 	 * data.  If the data is truncated, or if we only want a partial
1257 	 * coverage checksum (UDP-Lite), do it before the copy.
1258 	 */
1259 
1260 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1261 		if (udp_lib_checksum_complete(skb))
1262 			goto csum_copy_err;
1263 	}
1264 
1265 	if (skb_csum_unnecessary(skb))
1266 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1267 					      msg->msg_iov, copied);
1268 	else {
1269 		err = skb_copy_and_csum_datagram_iovec(skb,
1270 						       sizeof(struct udphdr),
1271 						       msg->msg_iov);
1272 
1273 		if (err == -EINVAL)
1274 			goto csum_copy_err;
1275 	}
1276 
1277 	if (unlikely(err)) {
1278 		trace_kfree_skb(skb, udp_recvmsg);
1279 		if (!peeked) {
1280 			atomic_inc(&sk->sk_drops);
1281 			UDP_INC_STATS_USER(sock_net(sk),
1282 					   UDP_MIB_INERRORS, is_udplite);
1283 		}
1284 		goto out_free;
1285 	}
1286 
1287 	if (!peeked)
1288 		UDP_INC_STATS_USER(sock_net(sk),
1289 				UDP_MIB_INDATAGRAMS, is_udplite);
1290 
1291 	sock_recv_ts_and_drops(msg, sk, skb);
1292 
1293 	/* Copy the address. */
1294 	if (sin) {
1295 		sin->sin_family = AF_INET;
1296 		sin->sin_port = udp_hdr(skb)->source;
1297 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1298 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1299 		*addr_len = sizeof(*sin);
1300 	}
1301 	if (inet->cmsg_flags)
1302 		ip_cmsg_recv(msg, skb);
1303 
1304 	err = copied;
1305 	if (flags & MSG_TRUNC)
1306 		err = ulen;
1307 
1308 out_free:
1309 	skb_free_datagram_locked(sk, skb);
1310 out:
1311 	return err;
1312 
1313 csum_copy_err:
1314 	slow = lock_sock_fast(sk);
1315 	if (!skb_kill_datagram(sk, skb, flags)) {
1316 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1317 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1318 	}
1319 	unlock_sock_fast(sk, slow);
1320 
1321 	if (noblock)
1322 		return -EAGAIN;
1323 
1324 	/* starting over for a new packet */
1325 	msg->msg_flags &= ~MSG_TRUNC;
1326 	goto try_again;
1327 }
1328 
1329 
1330 int udp_disconnect(struct sock *sk, int flags)
1331 {
1332 	struct inet_sock *inet = inet_sk(sk);
1333 	/*
1334 	 *	1003.1g - break association.
1335 	 */
1336 
1337 	sk->sk_state = TCP_CLOSE;
1338 	inet->inet_daddr = 0;
1339 	inet->inet_dport = 0;
1340 	sock_rps_reset_rxhash(sk);
1341 	sk->sk_bound_dev_if = 0;
1342 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1343 		inet_reset_saddr(sk);
1344 
1345 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1346 		sk->sk_prot->unhash(sk);
1347 		inet->inet_sport = 0;
1348 	}
1349 	sk_dst_reset(sk);
1350 	return 0;
1351 }
1352 EXPORT_SYMBOL(udp_disconnect);
1353 
1354 void udp_lib_unhash(struct sock *sk)
1355 {
1356 	if (sk_hashed(sk)) {
1357 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1358 		struct udp_hslot *hslot, *hslot2;
1359 
1360 		hslot  = udp_hashslot(udptable, sock_net(sk),
1361 				      udp_sk(sk)->udp_port_hash);
1362 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1363 
1364 		spin_lock_bh(&hslot->lock);
1365 		if (sk_nulls_del_node_init_rcu(sk)) {
1366 			hslot->count--;
1367 			inet_sk(sk)->inet_num = 0;
1368 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1369 
1370 			spin_lock(&hslot2->lock);
1371 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1372 			hslot2->count--;
1373 			spin_unlock(&hslot2->lock);
1374 		}
1375 		spin_unlock_bh(&hslot->lock);
1376 	}
1377 }
1378 EXPORT_SYMBOL(udp_lib_unhash);
1379 
1380 /*
1381  * inet_rcv_saddr was changed, we must rehash secondary hash
1382  */
1383 void udp_lib_rehash(struct sock *sk, u16 newhash)
1384 {
1385 	if (sk_hashed(sk)) {
1386 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1387 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1388 
1389 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1390 		nhslot2 = udp_hashslot2(udptable, newhash);
1391 		udp_sk(sk)->udp_portaddr_hash = newhash;
1392 		if (hslot2 != nhslot2) {
1393 			hslot = udp_hashslot(udptable, sock_net(sk),
1394 					     udp_sk(sk)->udp_port_hash);
1395 			/* we must lock primary chain too */
1396 			spin_lock_bh(&hslot->lock);
1397 
1398 			spin_lock(&hslot2->lock);
1399 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1400 			hslot2->count--;
1401 			spin_unlock(&hslot2->lock);
1402 
1403 			spin_lock(&nhslot2->lock);
1404 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1405 						 &nhslot2->head);
1406 			nhslot2->count++;
1407 			spin_unlock(&nhslot2->lock);
1408 
1409 			spin_unlock_bh(&hslot->lock);
1410 		}
1411 	}
1412 }
1413 EXPORT_SYMBOL(udp_lib_rehash);
1414 
1415 static void udp_v4_rehash(struct sock *sk)
1416 {
1417 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1418 					  inet_sk(sk)->inet_rcv_saddr,
1419 					  inet_sk(sk)->inet_num);
1420 	udp_lib_rehash(sk, new_hash);
1421 }
1422 
1423 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1424 {
1425 	int rc;
1426 
1427 	if (inet_sk(sk)->inet_daddr) {
1428 		sock_rps_save_rxhash(sk, skb);
1429 		sk_mark_napi_id(sk, skb);
1430 	}
1431 
1432 	rc = sock_queue_rcv_skb(sk, skb);
1433 	if (rc < 0) {
1434 		int is_udplite = IS_UDPLITE(sk);
1435 
1436 		/* Note that an ENOMEM error is charged twice */
1437 		if (rc == -ENOMEM)
1438 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1439 					 is_udplite);
1440 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1441 		kfree_skb(skb);
1442 		trace_udp_fail_queue_rcv_skb(rc, sk);
1443 		return -1;
1444 	}
1445 
1446 	return 0;
1447 
1448 }
1449 
1450 static struct static_key udp_encap_needed __read_mostly;
1451 void udp_encap_enable(void)
1452 {
1453 	if (!static_key_enabled(&udp_encap_needed))
1454 		static_key_slow_inc(&udp_encap_needed);
1455 }
1456 EXPORT_SYMBOL(udp_encap_enable);
1457 
1458 /* returns:
1459  *  -1: error
1460  *   0: success
1461  *  >0: "udp encap" protocol resubmission
1462  *
1463  * Note that in the success and error cases, the skb is assumed to
1464  * have either been requeued or freed.
1465  */
1466 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1467 {
1468 	struct udp_sock *up = udp_sk(sk);
1469 	int rc;
1470 	int is_udplite = IS_UDPLITE(sk);
1471 
1472 	/*
1473 	 *	Charge it to the socket, dropping if the queue is full.
1474 	 */
1475 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1476 		goto drop;
1477 	nf_reset(skb);
1478 
1479 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1480 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1481 
1482 		/*
1483 		 * This is an encapsulation socket so pass the skb to
1484 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1485 		 * fall through and pass this up the UDP socket.
1486 		 * up->encap_rcv() returns the following value:
1487 		 * =0 if skb was successfully passed to the encap
1488 		 *    handler or was discarded by it.
1489 		 * >0 if skb should be passed on to UDP.
1490 		 * <0 if skb should be resubmitted as proto -N
1491 		 */
1492 
1493 		/* if we're overly short, let UDP handle it */
1494 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1495 		if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1496 			int ret;
1497 
1498 			ret = encap_rcv(sk, skb);
1499 			if (ret <= 0) {
1500 				UDP_INC_STATS_BH(sock_net(sk),
1501 						 UDP_MIB_INDATAGRAMS,
1502 						 is_udplite);
1503 				return -ret;
1504 			}
1505 		}
1506 
1507 		/* FALLTHROUGH -- it's a UDP Packet */
1508 	}
1509 
1510 	/*
1511 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1512 	 */
1513 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1514 
1515 		/*
1516 		 * MIB statistics other than incrementing the error count are
1517 		 * disabled for the following two types of errors: these depend
1518 		 * on the application settings, not on the functioning of the
1519 		 * protocol stack as such.
1520 		 *
1521 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1522 		 * way ... to ... at least let the receiving application block
1523 		 * delivery of packets with coverage values less than a value
1524 		 * provided by the application."
1525 		 */
1526 		if (up->pcrlen == 0) {          /* full coverage was set  */
1527 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1528 				       UDP_SKB_CB(skb)->cscov, skb->len);
1529 			goto drop;
1530 		}
1531 		/* The next case involves violating the min. coverage requested
1532 		 * by the receiver. This is subtle: if receiver wants x and x is
1533 		 * greater than the buffersize/MTU then receiver will complain
1534 		 * that it wants x while sender emits packets of smaller size y.
1535 		 * Therefore the above ...()->partial_cov statement is essential.
1536 		 */
1537 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1538 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1539 				       UDP_SKB_CB(skb)->cscov, up->pcrlen);
1540 			goto drop;
1541 		}
1542 	}
1543 
1544 	if (rcu_access_pointer(sk->sk_filter) &&
1545 	    udp_lib_checksum_complete(skb))
1546 		goto csum_error;
1547 
1548 
1549 	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1550 		goto drop;
1551 
1552 	rc = 0;
1553 
1554 	ipv4_pktinfo_prepare(sk, skb);
1555 	bh_lock_sock(sk);
1556 	if (!sock_owned_by_user(sk))
1557 		rc = __udp_queue_rcv_skb(sk, skb);
1558 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1559 		bh_unlock_sock(sk);
1560 		goto drop;
1561 	}
1562 	bh_unlock_sock(sk);
1563 
1564 	return rc;
1565 
1566 csum_error:
1567 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1568 drop:
1569 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1570 	atomic_inc(&sk->sk_drops);
1571 	kfree_skb(skb);
1572 	return -1;
1573 }
1574 
1575 
1576 static void flush_stack(struct sock **stack, unsigned int count,
1577 			struct sk_buff *skb, unsigned int final)
1578 {
1579 	unsigned int i;
1580 	struct sk_buff *skb1 = NULL;
1581 	struct sock *sk;
1582 
1583 	for (i = 0; i < count; i++) {
1584 		sk = stack[i];
1585 		if (likely(skb1 == NULL))
1586 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1587 
1588 		if (!skb1) {
1589 			atomic_inc(&sk->sk_drops);
1590 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1591 					 IS_UDPLITE(sk));
1592 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1593 					 IS_UDPLITE(sk));
1594 		}
1595 
1596 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1597 			skb1 = NULL;
1598 	}
1599 	if (unlikely(skb1))
1600 		kfree_skb(skb1);
1601 }
1602 
1603 static void udp_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1604 {
1605 	struct dst_entry *dst = skb_dst(skb);
1606 
1607 	dst_hold(dst);
1608 	sk->sk_rx_dst = dst;
1609 }
1610 
1611 /*
1612  *	Multicasts and broadcasts go to each listener.
1613  *
1614  *	Note: called only from the BH handler context.
1615  */
1616 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1617 				    struct udphdr  *uh,
1618 				    __be32 saddr, __be32 daddr,
1619 				    struct udp_table *udptable)
1620 {
1621 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1622 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1623 	int dif;
1624 	unsigned int i, count = 0;
1625 
1626 	spin_lock(&hslot->lock);
1627 	sk = sk_nulls_head(&hslot->head);
1628 	dif = skb->dev->ifindex;
1629 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1630 	while (sk) {
1631 		stack[count++] = sk;
1632 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1633 				       daddr, uh->source, saddr, dif);
1634 		if (unlikely(count == ARRAY_SIZE(stack))) {
1635 			if (!sk)
1636 				break;
1637 			flush_stack(stack, count, skb, ~0);
1638 			count = 0;
1639 		}
1640 	}
1641 	/*
1642 	 * before releasing chain lock, we must take a reference on sockets
1643 	 */
1644 	for (i = 0; i < count; i++)
1645 		sock_hold(stack[i]);
1646 
1647 	spin_unlock(&hslot->lock);
1648 
1649 	/*
1650 	 * do the slow work with no lock held
1651 	 */
1652 	if (count) {
1653 		flush_stack(stack, count, skb, count - 1);
1654 
1655 		for (i = 0; i < count; i++)
1656 			sock_put(stack[i]);
1657 	} else {
1658 		kfree_skb(skb);
1659 	}
1660 	return 0;
1661 }
1662 
1663 /* Initialize UDP checksum. If exited with zero value (success),
1664  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1665  * Otherwise, csum completion requires chacksumming packet body,
1666  * including udp header and folding it to skb->csum.
1667  */
1668 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1669 				 int proto)
1670 {
1671 	const struct iphdr *iph;
1672 	int err;
1673 
1674 	UDP_SKB_CB(skb)->partial_cov = 0;
1675 	UDP_SKB_CB(skb)->cscov = skb->len;
1676 
1677 	if (proto == IPPROTO_UDPLITE) {
1678 		err = udplite_checksum_init(skb, uh);
1679 		if (err)
1680 			return err;
1681 	}
1682 
1683 	iph = ip_hdr(skb);
1684 	if (uh->check == 0) {
1685 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1686 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1687 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1688 				      proto, skb->csum))
1689 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1690 	}
1691 	if (!skb_csum_unnecessary(skb))
1692 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1693 					       skb->len, proto, 0);
1694 	/* Probably, we should checksum udp header (it should be in cache
1695 	 * in any case) and data in tiny packets (< rx copybreak).
1696 	 */
1697 
1698 	return 0;
1699 }
1700 
1701 /*
1702  *	All we need to do is get the socket, and then do a checksum.
1703  */
1704 
1705 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1706 		   int proto)
1707 {
1708 	struct sock *sk;
1709 	struct udphdr *uh;
1710 	unsigned short ulen;
1711 	struct rtable *rt = skb_rtable(skb);
1712 	__be32 saddr, daddr;
1713 	struct net *net = dev_net(skb->dev);
1714 
1715 	/*
1716 	 *  Validate the packet.
1717 	 */
1718 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1719 		goto drop;		/* No space for header. */
1720 
1721 	uh   = udp_hdr(skb);
1722 	ulen = ntohs(uh->len);
1723 	saddr = ip_hdr(skb)->saddr;
1724 	daddr = ip_hdr(skb)->daddr;
1725 
1726 	if (ulen > skb->len)
1727 		goto short_packet;
1728 
1729 	if (proto == IPPROTO_UDP) {
1730 		/* UDP validates ulen. */
1731 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1732 			goto short_packet;
1733 		uh = udp_hdr(skb);
1734 	}
1735 
1736 	if (udp4_csum_init(skb, uh, proto))
1737 		goto csum_error;
1738 
1739 	if (skb->sk) {
1740 		int ret;
1741 		sk = skb->sk;
1742 
1743 		if (unlikely(sk->sk_rx_dst == NULL))
1744 			udp_sk_rx_dst_set(sk, skb);
1745 
1746 		ret = udp_queue_rcv_skb(sk, skb);
1747 
1748 		/* a return value > 0 means to resubmit the input, but
1749 		 * it wants the return to be -protocol, or 0
1750 		 */
1751 		if (ret > 0)
1752 			return -ret;
1753 		return 0;
1754 	} else {
1755 		if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1756 			return __udp4_lib_mcast_deliver(net, skb, uh,
1757 					saddr, daddr, udptable);
1758 
1759 		sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1760 	}
1761 
1762 	if (sk != NULL) {
1763 		int ret;
1764 
1765 		ret = udp_queue_rcv_skb(sk, skb);
1766 		sock_put(sk);
1767 
1768 		/* a return value > 0 means to resubmit the input, but
1769 		 * it wants the return to be -protocol, or 0
1770 		 */
1771 		if (ret > 0)
1772 			return -ret;
1773 		return 0;
1774 	}
1775 
1776 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1777 		goto drop;
1778 	nf_reset(skb);
1779 
1780 	/* No socket. Drop packet silently, if checksum is wrong */
1781 	if (udp_lib_checksum_complete(skb))
1782 		goto csum_error;
1783 
1784 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1785 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1786 
1787 	/*
1788 	 * Hmm.  We got an UDP packet to a port to which we
1789 	 * don't wanna listen.  Ignore it.
1790 	 */
1791 	kfree_skb(skb);
1792 	return 0;
1793 
1794 short_packet:
1795 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1796 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1797 		       &saddr, ntohs(uh->source),
1798 		       ulen, skb->len,
1799 		       &daddr, ntohs(uh->dest));
1800 	goto drop;
1801 
1802 csum_error:
1803 	/*
1804 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1805 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1806 	 */
1807 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1808 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1809 		       &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1810 		       ulen);
1811 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1812 drop:
1813 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1814 	kfree_skb(skb);
1815 	return 0;
1816 }
1817 
1818 /* We can only early demux multicast if there is a single matching socket.
1819  * If more than one socket found returns NULL
1820  */
1821 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1822 						  __be16 loc_port, __be32 loc_addr,
1823 						  __be16 rmt_port, __be32 rmt_addr,
1824 						  int dif)
1825 {
1826 	struct sock *sk, *result;
1827 	struct hlist_nulls_node *node;
1828 	unsigned short hnum = ntohs(loc_port);
1829 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1830 	struct udp_hslot *hslot = &udp_table.hash[slot];
1831 
1832 	rcu_read_lock();
1833 begin:
1834 	count = 0;
1835 	result = NULL;
1836 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1837 		if (__udp_is_mcast_sock(net, sk,
1838 					loc_port, loc_addr,
1839 					rmt_port, rmt_addr,
1840 					dif, hnum)) {
1841 			result = sk;
1842 			++count;
1843 		}
1844 	}
1845 	/*
1846 	 * if the nulls value we got at the end of this lookup is
1847 	 * not the expected one, we must restart lookup.
1848 	 * We probably met an item that was moved to another chain.
1849 	 */
1850 	if (get_nulls_value(node) != slot)
1851 		goto begin;
1852 
1853 	if (result) {
1854 		if (count != 1 ||
1855 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1856 			result = NULL;
1857 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1858 						       loc_port, loc_addr,
1859 						       rmt_port, rmt_addr,
1860 						       dif, hnum))) {
1861 			sock_put(result);
1862 			result = NULL;
1863 		}
1864 	}
1865 	rcu_read_unlock();
1866 	return result;
1867 }
1868 
1869 /* For unicast we should only early demux connected sockets or we can
1870  * break forwarding setups.  The chains here can be long so only check
1871  * if the first socket is an exact match and if not move on.
1872  */
1873 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1874 					    __be16 loc_port, __be32 loc_addr,
1875 					    __be16 rmt_port, __be32 rmt_addr,
1876 					    int dif)
1877 {
1878 	struct sock *sk, *result;
1879 	struct hlist_nulls_node *node;
1880 	unsigned short hnum = ntohs(loc_port);
1881 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1882 	unsigned int slot2 = hash2 & udp_table.mask;
1883 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1884 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr)
1885 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1886 
1887 	rcu_read_lock();
1888 	result = NULL;
1889 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1890 		if (INET_MATCH(sk, net, acookie,
1891 			       rmt_addr, loc_addr, ports, dif))
1892 			result = sk;
1893 		/* Only check first socket in chain */
1894 		break;
1895 	}
1896 
1897 	if (result) {
1898 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1899 			result = NULL;
1900 		else if (unlikely(!INET_MATCH(sk, net, acookie,
1901 					      rmt_addr, loc_addr,
1902 					      ports, dif))) {
1903 			sock_put(result);
1904 			result = NULL;
1905 		}
1906 	}
1907 	rcu_read_unlock();
1908 	return result;
1909 }
1910 
1911 void udp_v4_early_demux(struct sk_buff *skb)
1912 {
1913 	const struct iphdr *iph = ip_hdr(skb);
1914 	const struct udphdr *uh = udp_hdr(skb);
1915 	struct sock *sk;
1916 	struct dst_entry *dst;
1917 	struct net *net = dev_net(skb->dev);
1918 	int dif = skb->dev->ifindex;
1919 
1920 	/* validate the packet */
1921 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1922 		return;
1923 
1924 	if (skb->pkt_type == PACKET_BROADCAST ||
1925 	    skb->pkt_type == PACKET_MULTICAST)
1926 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1927 						   uh->source, iph->saddr, dif);
1928 	else if (skb->pkt_type == PACKET_HOST)
1929 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1930 					     uh->source, iph->saddr, dif);
1931 	else
1932 		return;
1933 
1934 	if (!sk)
1935 		return;
1936 
1937 	skb->sk = sk;
1938 	skb->destructor = sock_edemux;
1939 	dst = sk->sk_rx_dst;
1940 
1941 	if (dst)
1942 		dst = dst_check(dst, 0);
1943 	if (dst)
1944 		skb_dst_set_noref(skb, dst);
1945 }
1946 
1947 int udp_rcv(struct sk_buff *skb)
1948 {
1949 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1950 }
1951 
1952 void udp_destroy_sock(struct sock *sk)
1953 {
1954 	struct udp_sock *up = udp_sk(sk);
1955 	bool slow = lock_sock_fast(sk);
1956 	udp_flush_pending_frames(sk);
1957 	unlock_sock_fast(sk, slow);
1958 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1959 		void (*encap_destroy)(struct sock *sk);
1960 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
1961 		if (encap_destroy)
1962 			encap_destroy(sk);
1963 	}
1964 }
1965 
1966 /*
1967  *	Socket option code for UDP
1968  */
1969 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1970 		       char __user *optval, unsigned int optlen,
1971 		       int (*push_pending_frames)(struct sock *))
1972 {
1973 	struct udp_sock *up = udp_sk(sk);
1974 	int val;
1975 	int err = 0;
1976 	int is_udplite = IS_UDPLITE(sk);
1977 
1978 	if (optlen < sizeof(int))
1979 		return -EINVAL;
1980 
1981 	if (get_user(val, (int __user *)optval))
1982 		return -EFAULT;
1983 
1984 	switch (optname) {
1985 	case UDP_CORK:
1986 		if (val != 0) {
1987 			up->corkflag = 1;
1988 		} else {
1989 			up->corkflag = 0;
1990 			lock_sock(sk);
1991 			(*push_pending_frames)(sk);
1992 			release_sock(sk);
1993 		}
1994 		break;
1995 
1996 	case UDP_ENCAP:
1997 		switch (val) {
1998 		case 0:
1999 		case UDP_ENCAP_ESPINUDP:
2000 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2001 			up->encap_rcv = xfrm4_udp_encap_rcv;
2002 			/* FALLTHROUGH */
2003 		case UDP_ENCAP_L2TPINUDP:
2004 			up->encap_type = val;
2005 			udp_encap_enable();
2006 			break;
2007 		default:
2008 			err = -ENOPROTOOPT;
2009 			break;
2010 		}
2011 		break;
2012 
2013 	/*
2014 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2015 	 */
2016 	/* The sender sets actual checksum coverage length via this option.
2017 	 * The case coverage > packet length is handled by send module. */
2018 	case UDPLITE_SEND_CSCOV:
2019 		if (!is_udplite)         /* Disable the option on UDP sockets */
2020 			return -ENOPROTOOPT;
2021 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2022 			val = 8;
2023 		else if (val > USHRT_MAX)
2024 			val = USHRT_MAX;
2025 		up->pcslen = val;
2026 		up->pcflag |= UDPLITE_SEND_CC;
2027 		break;
2028 
2029 	/* The receiver specifies a minimum checksum coverage value. To make
2030 	 * sense, this should be set to at least 8 (as done below). If zero is
2031 	 * used, this again means full checksum coverage.                     */
2032 	case UDPLITE_RECV_CSCOV:
2033 		if (!is_udplite)         /* Disable the option on UDP sockets */
2034 			return -ENOPROTOOPT;
2035 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2036 			val = 8;
2037 		else if (val > USHRT_MAX)
2038 			val = USHRT_MAX;
2039 		up->pcrlen = val;
2040 		up->pcflag |= UDPLITE_RECV_CC;
2041 		break;
2042 
2043 	default:
2044 		err = -ENOPROTOOPT;
2045 		break;
2046 	}
2047 
2048 	return err;
2049 }
2050 EXPORT_SYMBOL(udp_lib_setsockopt);
2051 
2052 int udp_setsockopt(struct sock *sk, int level, int optname,
2053 		   char __user *optval, unsigned int optlen)
2054 {
2055 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2056 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2057 					  udp_push_pending_frames);
2058 	return ip_setsockopt(sk, level, optname, optval, optlen);
2059 }
2060 
2061 #ifdef CONFIG_COMPAT
2062 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2063 			  char __user *optval, unsigned int optlen)
2064 {
2065 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2066 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2067 					  udp_push_pending_frames);
2068 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2069 }
2070 #endif
2071 
2072 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2073 		       char __user *optval, int __user *optlen)
2074 {
2075 	struct udp_sock *up = udp_sk(sk);
2076 	int val, len;
2077 
2078 	if (get_user(len, optlen))
2079 		return -EFAULT;
2080 
2081 	len = min_t(unsigned int, len, sizeof(int));
2082 
2083 	if (len < 0)
2084 		return -EINVAL;
2085 
2086 	switch (optname) {
2087 	case UDP_CORK:
2088 		val = up->corkflag;
2089 		break;
2090 
2091 	case UDP_ENCAP:
2092 		val = up->encap_type;
2093 		break;
2094 
2095 	/* The following two cannot be changed on UDP sockets, the return is
2096 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2097 	case UDPLITE_SEND_CSCOV:
2098 		val = up->pcslen;
2099 		break;
2100 
2101 	case UDPLITE_RECV_CSCOV:
2102 		val = up->pcrlen;
2103 		break;
2104 
2105 	default:
2106 		return -ENOPROTOOPT;
2107 	}
2108 
2109 	if (put_user(len, optlen))
2110 		return -EFAULT;
2111 	if (copy_to_user(optval, &val, len))
2112 		return -EFAULT;
2113 	return 0;
2114 }
2115 EXPORT_SYMBOL(udp_lib_getsockopt);
2116 
2117 int udp_getsockopt(struct sock *sk, int level, int optname,
2118 		   char __user *optval, int __user *optlen)
2119 {
2120 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2121 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2122 	return ip_getsockopt(sk, level, optname, optval, optlen);
2123 }
2124 
2125 #ifdef CONFIG_COMPAT
2126 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2127 				 char __user *optval, int __user *optlen)
2128 {
2129 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2130 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2131 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2132 }
2133 #endif
2134 /**
2135  * 	udp_poll - wait for a UDP event.
2136  *	@file - file struct
2137  *	@sock - socket
2138  *	@wait - poll table
2139  *
2140  *	This is same as datagram poll, except for the special case of
2141  *	blocking sockets. If application is using a blocking fd
2142  *	and a packet with checksum error is in the queue;
2143  *	then it could get return from select indicating data available
2144  *	but then block when reading it. Add special case code
2145  *	to work around these arguably broken applications.
2146  */
2147 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2148 {
2149 	unsigned int mask = datagram_poll(file, sock, wait);
2150 	struct sock *sk = sock->sk;
2151 
2152 	sock_rps_record_flow(sk);
2153 
2154 	/* Check for false positives due to checksum errors */
2155 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2156 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2157 		mask &= ~(POLLIN | POLLRDNORM);
2158 
2159 	return mask;
2160 
2161 }
2162 EXPORT_SYMBOL(udp_poll);
2163 
2164 struct proto udp_prot = {
2165 	.name		   = "UDP",
2166 	.owner		   = THIS_MODULE,
2167 	.close		   = udp_lib_close,
2168 	.connect	   = ip4_datagram_connect,
2169 	.disconnect	   = udp_disconnect,
2170 	.ioctl		   = udp_ioctl,
2171 	.destroy	   = udp_destroy_sock,
2172 	.setsockopt	   = udp_setsockopt,
2173 	.getsockopt	   = udp_getsockopt,
2174 	.sendmsg	   = udp_sendmsg,
2175 	.recvmsg	   = udp_recvmsg,
2176 	.sendpage	   = udp_sendpage,
2177 	.backlog_rcv	   = __udp_queue_rcv_skb,
2178 	.release_cb	   = ip4_datagram_release_cb,
2179 	.hash		   = udp_lib_hash,
2180 	.unhash		   = udp_lib_unhash,
2181 	.rehash		   = udp_v4_rehash,
2182 	.get_port	   = udp_v4_get_port,
2183 	.memory_allocated  = &udp_memory_allocated,
2184 	.sysctl_mem	   = sysctl_udp_mem,
2185 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2186 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2187 	.obj_size	   = sizeof(struct udp_sock),
2188 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2189 	.h.udp_table	   = &udp_table,
2190 #ifdef CONFIG_COMPAT
2191 	.compat_setsockopt = compat_udp_setsockopt,
2192 	.compat_getsockopt = compat_udp_getsockopt,
2193 #endif
2194 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2195 };
2196 EXPORT_SYMBOL(udp_prot);
2197 
2198 /* ------------------------------------------------------------------------ */
2199 #ifdef CONFIG_PROC_FS
2200 
2201 static struct sock *udp_get_first(struct seq_file *seq, int start)
2202 {
2203 	struct sock *sk;
2204 	struct udp_iter_state *state = seq->private;
2205 	struct net *net = seq_file_net(seq);
2206 
2207 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2208 	     ++state->bucket) {
2209 		struct hlist_nulls_node *node;
2210 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2211 
2212 		if (hlist_nulls_empty(&hslot->head))
2213 			continue;
2214 
2215 		spin_lock_bh(&hslot->lock);
2216 		sk_nulls_for_each(sk, node, &hslot->head) {
2217 			if (!net_eq(sock_net(sk), net))
2218 				continue;
2219 			if (sk->sk_family == state->family)
2220 				goto found;
2221 		}
2222 		spin_unlock_bh(&hslot->lock);
2223 	}
2224 	sk = NULL;
2225 found:
2226 	return sk;
2227 }
2228 
2229 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2230 {
2231 	struct udp_iter_state *state = seq->private;
2232 	struct net *net = seq_file_net(seq);
2233 
2234 	do {
2235 		sk = sk_nulls_next(sk);
2236 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2237 
2238 	if (!sk) {
2239 		if (state->bucket <= state->udp_table->mask)
2240 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2241 		return udp_get_first(seq, state->bucket + 1);
2242 	}
2243 	return sk;
2244 }
2245 
2246 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2247 {
2248 	struct sock *sk = udp_get_first(seq, 0);
2249 
2250 	if (sk)
2251 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2252 			--pos;
2253 	return pos ? NULL : sk;
2254 }
2255 
2256 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2257 {
2258 	struct udp_iter_state *state = seq->private;
2259 	state->bucket = MAX_UDP_PORTS;
2260 
2261 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2262 }
2263 
2264 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2265 {
2266 	struct sock *sk;
2267 
2268 	if (v == SEQ_START_TOKEN)
2269 		sk = udp_get_idx(seq, 0);
2270 	else
2271 		sk = udp_get_next(seq, v);
2272 
2273 	++*pos;
2274 	return sk;
2275 }
2276 
2277 static void udp_seq_stop(struct seq_file *seq, void *v)
2278 {
2279 	struct udp_iter_state *state = seq->private;
2280 
2281 	if (state->bucket <= state->udp_table->mask)
2282 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2283 }
2284 
2285 int udp_seq_open(struct inode *inode, struct file *file)
2286 {
2287 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2288 	struct udp_iter_state *s;
2289 	int err;
2290 
2291 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2292 			   sizeof(struct udp_iter_state));
2293 	if (err < 0)
2294 		return err;
2295 
2296 	s = ((struct seq_file *)file->private_data)->private;
2297 	s->family		= afinfo->family;
2298 	s->udp_table		= afinfo->udp_table;
2299 	return err;
2300 }
2301 EXPORT_SYMBOL(udp_seq_open);
2302 
2303 /* ------------------------------------------------------------------------ */
2304 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2305 {
2306 	struct proc_dir_entry *p;
2307 	int rc = 0;
2308 
2309 	afinfo->seq_ops.start		= udp_seq_start;
2310 	afinfo->seq_ops.next		= udp_seq_next;
2311 	afinfo->seq_ops.stop		= udp_seq_stop;
2312 
2313 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2314 			     afinfo->seq_fops, afinfo);
2315 	if (!p)
2316 		rc = -ENOMEM;
2317 	return rc;
2318 }
2319 EXPORT_SYMBOL(udp_proc_register);
2320 
2321 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2322 {
2323 	remove_proc_entry(afinfo->name, net->proc_net);
2324 }
2325 EXPORT_SYMBOL(udp_proc_unregister);
2326 
2327 /* ------------------------------------------------------------------------ */
2328 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2329 		int bucket)
2330 {
2331 	struct inet_sock *inet = inet_sk(sp);
2332 	__be32 dest = inet->inet_daddr;
2333 	__be32 src  = inet->inet_rcv_saddr;
2334 	__u16 destp	  = ntohs(inet->inet_dport);
2335 	__u16 srcp	  = ntohs(inet->inet_sport);
2336 
2337 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2338 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2339 		bucket, src, srcp, dest, destp, sp->sk_state,
2340 		sk_wmem_alloc_get(sp),
2341 		sk_rmem_alloc_get(sp),
2342 		0, 0L, 0,
2343 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2344 		0, sock_i_ino(sp),
2345 		atomic_read(&sp->sk_refcnt), sp,
2346 		atomic_read(&sp->sk_drops));
2347 }
2348 
2349 int udp4_seq_show(struct seq_file *seq, void *v)
2350 {
2351 	seq_setwidth(seq, 127);
2352 	if (v == SEQ_START_TOKEN)
2353 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2354 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2355 			   "inode ref pointer drops");
2356 	else {
2357 		struct udp_iter_state *state = seq->private;
2358 
2359 		udp4_format_sock(v, seq, state->bucket);
2360 	}
2361 	seq_pad(seq, '\n');
2362 	return 0;
2363 }
2364 
2365 static const struct file_operations udp_afinfo_seq_fops = {
2366 	.owner    = THIS_MODULE,
2367 	.open     = udp_seq_open,
2368 	.read     = seq_read,
2369 	.llseek   = seq_lseek,
2370 	.release  = seq_release_net
2371 };
2372 
2373 /* ------------------------------------------------------------------------ */
2374 static struct udp_seq_afinfo udp4_seq_afinfo = {
2375 	.name		= "udp",
2376 	.family		= AF_INET,
2377 	.udp_table	= &udp_table,
2378 	.seq_fops	= &udp_afinfo_seq_fops,
2379 	.seq_ops	= {
2380 		.show		= udp4_seq_show,
2381 	},
2382 };
2383 
2384 static int __net_init udp4_proc_init_net(struct net *net)
2385 {
2386 	return udp_proc_register(net, &udp4_seq_afinfo);
2387 }
2388 
2389 static void __net_exit udp4_proc_exit_net(struct net *net)
2390 {
2391 	udp_proc_unregister(net, &udp4_seq_afinfo);
2392 }
2393 
2394 static struct pernet_operations udp4_net_ops = {
2395 	.init = udp4_proc_init_net,
2396 	.exit = udp4_proc_exit_net,
2397 };
2398 
2399 int __init udp4_proc_init(void)
2400 {
2401 	return register_pernet_subsys(&udp4_net_ops);
2402 }
2403 
2404 void udp4_proc_exit(void)
2405 {
2406 	unregister_pernet_subsys(&udp4_net_ops);
2407 }
2408 #endif /* CONFIG_PROC_FS */
2409 
2410 static __initdata unsigned long uhash_entries;
2411 static int __init set_uhash_entries(char *str)
2412 {
2413 	ssize_t ret;
2414 
2415 	if (!str)
2416 		return 0;
2417 
2418 	ret = kstrtoul(str, 0, &uhash_entries);
2419 	if (ret)
2420 		return 0;
2421 
2422 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2423 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2424 	return 1;
2425 }
2426 __setup("uhash_entries=", set_uhash_entries);
2427 
2428 void __init udp_table_init(struct udp_table *table, const char *name)
2429 {
2430 	unsigned int i;
2431 
2432 	table->hash = alloc_large_system_hash(name,
2433 					      2 * sizeof(struct udp_hslot),
2434 					      uhash_entries,
2435 					      21, /* one slot per 2 MB */
2436 					      0,
2437 					      &table->log,
2438 					      &table->mask,
2439 					      UDP_HTABLE_SIZE_MIN,
2440 					      64 * 1024);
2441 
2442 	table->hash2 = table->hash + (table->mask + 1);
2443 	for (i = 0; i <= table->mask; i++) {
2444 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2445 		table->hash[i].count = 0;
2446 		spin_lock_init(&table->hash[i].lock);
2447 	}
2448 	for (i = 0; i <= table->mask; i++) {
2449 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2450 		table->hash2[i].count = 0;
2451 		spin_lock_init(&table->hash2[i].lock);
2452 	}
2453 }
2454 
2455 void __init udp_init(void)
2456 {
2457 	unsigned long limit;
2458 
2459 	udp_table_init(&udp_table, "UDP");
2460 	limit = nr_free_buffer_pages() / 8;
2461 	limit = max(limit, 128UL);
2462 	sysctl_udp_mem[0] = limit / 4 * 3;
2463 	sysctl_udp_mem[1] = limit;
2464 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2465 
2466 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2467 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2468 }
2469 
2470 struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
2471 				       netdev_features_t features)
2472 {
2473 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2474 	int mac_len = skb->mac_len;
2475 	int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
2476 	__be16 protocol = skb->protocol;
2477 	netdev_features_t enc_features;
2478 	int outer_hlen;
2479 
2480 	if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
2481 		goto out;
2482 
2483 	skb->encapsulation = 0;
2484 	__skb_pull(skb, tnl_hlen);
2485 	skb_reset_mac_header(skb);
2486 	skb_set_network_header(skb, skb_inner_network_offset(skb));
2487 	skb->mac_len = skb_inner_network_offset(skb);
2488 	skb->protocol = htons(ETH_P_TEB);
2489 
2490 	/* segment inner packet. */
2491 	enc_features = skb->dev->hw_enc_features & netif_skb_features(skb);
2492 	segs = skb_mac_gso_segment(skb, enc_features);
2493 	if (!segs || IS_ERR(segs))
2494 		goto out;
2495 
2496 	outer_hlen = skb_tnl_header_len(skb);
2497 	skb = segs;
2498 	do {
2499 		struct udphdr *uh;
2500 		int udp_offset = outer_hlen - tnl_hlen;
2501 
2502 		skb_reset_inner_headers(skb);
2503 		skb->encapsulation = 1;
2504 
2505 		skb->mac_len = mac_len;
2506 
2507 		skb_push(skb, outer_hlen);
2508 		skb_reset_mac_header(skb);
2509 		skb_set_network_header(skb, mac_len);
2510 		skb_set_transport_header(skb, udp_offset);
2511 		uh = udp_hdr(skb);
2512 		uh->len = htons(skb->len - udp_offset);
2513 
2514 		/* csum segment if tunnel sets skb with csum. */
2515 		if (protocol == htons(ETH_P_IP) && unlikely(uh->check)) {
2516 			struct iphdr *iph = ip_hdr(skb);
2517 
2518 			uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2519 						       skb->len - udp_offset,
2520 						       IPPROTO_UDP, 0);
2521 			uh->check = csum_fold(skb_checksum(skb, udp_offset,
2522 							   skb->len - udp_offset, 0));
2523 			if (uh->check == 0)
2524 				uh->check = CSUM_MANGLED_0;
2525 
2526 		} else if (protocol == htons(ETH_P_IPV6)) {
2527 			struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2528 			u32 len = skb->len - udp_offset;
2529 
2530 			uh->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2531 						     len, IPPROTO_UDP, 0);
2532 			uh->check = csum_fold(skb_checksum(skb, udp_offset, len, 0));
2533 			if (uh->check == 0)
2534 				uh->check = CSUM_MANGLED_0;
2535 			skb->ip_summed = CHECKSUM_NONE;
2536 		}
2537 
2538 		skb->protocol = protocol;
2539 	} while ((skb = skb->next));
2540 out:
2541 	return segs;
2542 }
2543