xref: /openbmc/linux/net/ipv4/udp.c (revision 77ab8d5d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
127 
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
130 
131 /* IPCB reference means this can not be used from early demux */
132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
133 {
134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
135 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
136 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
137 		return true;
138 #endif
139 	return false;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2);
225 		}
226 	}
227 
228 	return reuseport_alloc(sk);
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_hslot *hslot, *hslot2;
243 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
244 	int    error = 1;
245 	struct net *net = sock_net(sk);
246 
247 	if (!snum) {
248 		int low, high, remaining;
249 		unsigned int rand;
250 		unsigned short first, last;
251 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
252 
253 		inet_get_local_port_range(net, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = prandom_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif, bool exact_dif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 
374 	if (!net_eq(sock_net(sk), net) ||
375 	    udp_sk(sk)->udp_port_hash != hnum ||
376 	    ipv6_only_sock(sk))
377 		return -1;
378 
379 	score = (sk->sk_family == PF_INET) ? 2 : 1;
380 	inet = inet_sk(sk);
381 
382 	if (inet->inet_rcv_saddr) {
383 		if (inet->inet_rcv_saddr != daddr)
384 			return -1;
385 		score += 4;
386 	}
387 
388 	if (inet->inet_daddr) {
389 		if (inet->inet_daddr != saddr)
390 			return -1;
391 		score += 4;
392 	}
393 
394 	if (inet->inet_dport) {
395 		if (inet->inet_dport != sport)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	if (sk->sk_bound_dev_if || exact_dif) {
401 		bool dev_match = (sk->sk_bound_dev_if == dif ||
402 				  sk->sk_bound_dev_if == sdif);
403 
404 		if (!dev_match)
405 			return -1;
406 		if (sk->sk_bound_dev_if)
407 			score += 4;
408 	}
409 
410 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
411 		score++;
412 	return score;
413 }
414 
415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
416 		       const __u16 lport, const __be32 faddr,
417 		       const __be16 fport)
418 {
419 	static u32 udp_ehash_secret __read_mostly;
420 
421 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
422 
423 	return __inet_ehashfn(laddr, lport, faddr, fport,
424 			      udp_ehash_secret + net_hash_mix(net));
425 }
426 
427 /* called with rcu_read_lock() */
428 static struct sock *udp4_lib_lookup2(struct net *net,
429 				     __be32 saddr, __be16 sport,
430 				     __be32 daddr, unsigned int hnum,
431 				     int dif, int sdif, bool exact_dif,
432 				     struct udp_hslot *hslot2,
433 				     struct sk_buff *skb)
434 {
435 	struct sock *sk, *result;
436 	int score, badness;
437 	u32 hash = 0;
438 
439 	result = NULL;
440 	badness = 0;
441 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
442 		score = compute_score(sk, net, saddr, sport,
443 				      daddr, hnum, dif, sdif, exact_dif);
444 		if (score > badness) {
445 			if (sk->sk_reuseport) {
446 				hash = udp_ehashfn(net, daddr, hnum,
447 						   saddr, sport);
448 				result = reuseport_select_sock(sk, hash, skb,
449 							sizeof(struct udphdr));
450 				if (result)
451 					return result;
452 			}
453 			badness = score;
454 			result = sk;
455 		}
456 	}
457 	return result;
458 }
459 
460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
461  * harder than this. -DaveM
462  */
463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
464 		__be16 sport, __be32 daddr, __be16 dport, int dif,
465 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
466 {
467 	struct sock *sk, *result;
468 	unsigned short hnum = ntohs(dport);
469 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
470 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
471 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
472 	int score, badness;
473 	u32 hash = 0;
474 
475 	if (hslot->count > 10) {
476 		hash2 = ipv4_portaddr_hash(net, daddr, hnum);
477 		slot2 = hash2 & udptable->mask;
478 		hslot2 = &udptable->hash2[slot2];
479 		if (hslot->count < hslot2->count)
480 			goto begin;
481 
482 		result = udp4_lib_lookup2(net, saddr, sport,
483 					  daddr, hnum, dif, sdif,
484 					  exact_dif, hslot2, skb);
485 		if (!result) {
486 			unsigned int old_slot2 = slot2;
487 			hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
488 			slot2 = hash2 & udptable->mask;
489 			/* avoid searching the same slot again. */
490 			if (unlikely(slot2 == old_slot2))
491 				return result;
492 
493 			hslot2 = &udptable->hash2[slot2];
494 			if (hslot->count < hslot2->count)
495 				goto begin;
496 
497 			result = udp4_lib_lookup2(net, saddr, sport,
498 						  daddr, hnum, dif, sdif,
499 						  exact_dif, hslot2, skb);
500 		}
501 		return result;
502 	}
503 begin:
504 	result = NULL;
505 	badness = 0;
506 	sk_for_each_rcu(sk, &hslot->head) {
507 		score = compute_score(sk, net, saddr, sport,
508 				      daddr, hnum, dif, sdif, exact_dif);
509 		if (score > badness) {
510 			if (sk->sk_reuseport) {
511 				hash = udp_ehashfn(net, daddr, hnum,
512 						   saddr, sport);
513 				result = reuseport_select_sock(sk, hash, skb,
514 							sizeof(struct udphdr));
515 				if (result)
516 					return result;
517 			}
518 			result = sk;
519 			badness = score;
520 		}
521 	}
522 	return result;
523 }
524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
525 
526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
527 						 __be16 sport, __be16 dport,
528 						 struct udp_table *udptable)
529 {
530 	const struct iphdr *iph = ip_hdr(skb);
531 
532 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
533 				 iph->daddr, dport, inet_iif(skb),
534 				 inet_sdif(skb), udptable, skb);
535 }
536 
537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
538 				 __be16 sport, __be16 dport)
539 {
540 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
541 }
542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
543 
544 /* Must be called under rcu_read_lock().
545  * Does increment socket refcount.
546  */
547 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
548     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
549     IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
550 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
551 			     __be32 daddr, __be16 dport, int dif)
552 {
553 	struct sock *sk;
554 
555 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
556 			       dif, 0, &udp_table, NULL);
557 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
558 		sk = NULL;
559 	return sk;
560 }
561 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
562 #endif
563 
564 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
565 				       __be16 loc_port, __be32 loc_addr,
566 				       __be16 rmt_port, __be32 rmt_addr,
567 				       int dif, int sdif, unsigned short hnum)
568 {
569 	struct inet_sock *inet = inet_sk(sk);
570 
571 	if (!net_eq(sock_net(sk), net) ||
572 	    udp_sk(sk)->udp_port_hash != hnum ||
573 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
574 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
575 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
576 	    ipv6_only_sock(sk) ||
577 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
578 	     sk->sk_bound_dev_if != sdif))
579 		return false;
580 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
581 		return false;
582 	return true;
583 }
584 
585 /*
586  * This routine is called by the ICMP module when it gets some
587  * sort of error condition.  If err < 0 then the socket should
588  * be closed and the error returned to the user.  If err > 0
589  * it's just the icmp type << 8 | icmp code.
590  * Header points to the ip header of the error packet. We move
591  * on past this. Then (as it used to claim before adjustment)
592  * header points to the first 8 bytes of the udp header.  We need
593  * to find the appropriate port.
594  */
595 
596 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
597 {
598 	struct inet_sock *inet;
599 	const struct iphdr *iph = (const struct iphdr *)skb->data;
600 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
601 	const int type = icmp_hdr(skb)->type;
602 	const int code = icmp_hdr(skb)->code;
603 	struct sock *sk;
604 	int harderr;
605 	int err;
606 	struct net *net = dev_net(skb->dev);
607 
608 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
609 			       iph->saddr, uh->source, skb->dev->ifindex, 0,
610 			       udptable, NULL);
611 	if (!sk) {
612 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
613 		return;	/* No socket for error */
614 	}
615 
616 	err = 0;
617 	harderr = 0;
618 	inet = inet_sk(sk);
619 
620 	switch (type) {
621 	default:
622 	case ICMP_TIME_EXCEEDED:
623 		err = EHOSTUNREACH;
624 		break;
625 	case ICMP_SOURCE_QUENCH:
626 		goto out;
627 	case ICMP_PARAMETERPROB:
628 		err = EPROTO;
629 		harderr = 1;
630 		break;
631 	case ICMP_DEST_UNREACH:
632 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
633 			ipv4_sk_update_pmtu(skb, sk, info);
634 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
635 				err = EMSGSIZE;
636 				harderr = 1;
637 				break;
638 			}
639 			goto out;
640 		}
641 		err = EHOSTUNREACH;
642 		if (code <= NR_ICMP_UNREACH) {
643 			harderr = icmp_err_convert[code].fatal;
644 			err = icmp_err_convert[code].errno;
645 		}
646 		break;
647 	case ICMP_REDIRECT:
648 		ipv4_sk_redirect(skb, sk);
649 		goto out;
650 	}
651 
652 	/*
653 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
654 	 *	4.1.3.3.
655 	 */
656 	if (!inet->recverr) {
657 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
658 			goto out;
659 	} else
660 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
661 
662 	sk->sk_err = err;
663 	sk->sk_error_report(sk);
664 out:
665 	return;
666 }
667 
668 void udp_err(struct sk_buff *skb, u32 info)
669 {
670 	__udp4_lib_err(skb, info, &udp_table);
671 }
672 
673 /*
674  * Throw away all pending data and cancel the corking. Socket is locked.
675  */
676 void udp_flush_pending_frames(struct sock *sk)
677 {
678 	struct udp_sock *up = udp_sk(sk);
679 
680 	if (up->pending) {
681 		up->len = 0;
682 		up->pending = 0;
683 		ip_flush_pending_frames(sk);
684 	}
685 }
686 EXPORT_SYMBOL(udp_flush_pending_frames);
687 
688 /**
689  * 	udp4_hwcsum  -  handle outgoing HW checksumming
690  * 	@skb: 	sk_buff containing the filled-in UDP header
691  * 	        (checksum field must be zeroed out)
692  *	@src:	source IP address
693  *	@dst:	destination IP address
694  */
695 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
696 {
697 	struct udphdr *uh = udp_hdr(skb);
698 	int offset = skb_transport_offset(skb);
699 	int len = skb->len - offset;
700 	int hlen = len;
701 	__wsum csum = 0;
702 
703 	if (!skb_has_frag_list(skb)) {
704 		/*
705 		 * Only one fragment on the socket.
706 		 */
707 		skb->csum_start = skb_transport_header(skb) - skb->head;
708 		skb->csum_offset = offsetof(struct udphdr, check);
709 		uh->check = ~csum_tcpudp_magic(src, dst, len,
710 					       IPPROTO_UDP, 0);
711 	} else {
712 		struct sk_buff *frags;
713 
714 		/*
715 		 * HW-checksum won't work as there are two or more
716 		 * fragments on the socket so that all csums of sk_buffs
717 		 * should be together
718 		 */
719 		skb_walk_frags(skb, frags) {
720 			csum = csum_add(csum, frags->csum);
721 			hlen -= frags->len;
722 		}
723 
724 		csum = skb_checksum(skb, offset, hlen, csum);
725 		skb->ip_summed = CHECKSUM_NONE;
726 
727 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
728 		if (uh->check == 0)
729 			uh->check = CSUM_MANGLED_0;
730 	}
731 }
732 EXPORT_SYMBOL_GPL(udp4_hwcsum);
733 
734 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
735  * for the simple case like when setting the checksum for a UDP tunnel.
736  */
737 void udp_set_csum(bool nocheck, struct sk_buff *skb,
738 		  __be32 saddr, __be32 daddr, int len)
739 {
740 	struct udphdr *uh = udp_hdr(skb);
741 
742 	if (nocheck) {
743 		uh->check = 0;
744 	} else if (skb_is_gso(skb)) {
745 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
746 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
747 		uh->check = 0;
748 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
749 		if (uh->check == 0)
750 			uh->check = CSUM_MANGLED_0;
751 	} else {
752 		skb->ip_summed = CHECKSUM_PARTIAL;
753 		skb->csum_start = skb_transport_header(skb) - skb->head;
754 		skb->csum_offset = offsetof(struct udphdr, check);
755 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
756 	}
757 }
758 EXPORT_SYMBOL(udp_set_csum);
759 
760 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
761 			struct inet_cork *cork)
762 {
763 	struct sock *sk = skb->sk;
764 	struct inet_sock *inet = inet_sk(sk);
765 	struct udphdr *uh;
766 	int err = 0;
767 	int is_udplite = IS_UDPLITE(sk);
768 	int offset = skb_transport_offset(skb);
769 	int len = skb->len - offset;
770 	__wsum csum = 0;
771 
772 	/*
773 	 * Create a UDP header
774 	 */
775 	uh = udp_hdr(skb);
776 	uh->source = inet->inet_sport;
777 	uh->dest = fl4->fl4_dport;
778 	uh->len = htons(len);
779 	uh->check = 0;
780 
781 	if (cork->gso_size) {
782 		const int hlen = skb_network_header_len(skb) +
783 				 sizeof(struct udphdr);
784 
785 		if (hlen + cork->gso_size > cork->fragsize)
786 			return -EINVAL;
787 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS)
788 			return -EINVAL;
789 		if (sk->sk_no_check_tx)
790 			return -EINVAL;
791 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
792 		    dst_xfrm(skb_dst(skb)))
793 			return -EIO;
794 
795 		skb_shinfo(skb)->gso_size = cork->gso_size;
796 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
797 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
798 							 cork->gso_size);
799 		goto csum_partial;
800 	}
801 
802 	if (is_udplite)  				 /*     UDP-Lite      */
803 		csum = udplite_csum(skb);
804 
805 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
806 
807 		skb->ip_summed = CHECKSUM_NONE;
808 		goto send;
809 
810 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
811 csum_partial:
812 
813 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
814 		goto send;
815 
816 	} else
817 		csum = udp_csum(skb);
818 
819 	/* add protocol-dependent pseudo-header */
820 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
821 				      sk->sk_protocol, csum);
822 	if (uh->check == 0)
823 		uh->check = CSUM_MANGLED_0;
824 
825 send:
826 	err = ip_send_skb(sock_net(sk), skb);
827 	if (err) {
828 		if (err == -ENOBUFS && !inet->recverr) {
829 			UDP_INC_STATS(sock_net(sk),
830 				      UDP_MIB_SNDBUFERRORS, is_udplite);
831 			err = 0;
832 		}
833 	} else
834 		UDP_INC_STATS(sock_net(sk),
835 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
836 	return err;
837 }
838 
839 /*
840  * Push out all pending data as one UDP datagram. Socket is locked.
841  */
842 int udp_push_pending_frames(struct sock *sk)
843 {
844 	struct udp_sock  *up = udp_sk(sk);
845 	struct inet_sock *inet = inet_sk(sk);
846 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
847 	struct sk_buff *skb;
848 	int err = 0;
849 
850 	skb = ip_finish_skb(sk, fl4);
851 	if (!skb)
852 		goto out;
853 
854 	err = udp_send_skb(skb, fl4, &inet->cork.base);
855 
856 out:
857 	up->len = 0;
858 	up->pending = 0;
859 	return err;
860 }
861 EXPORT_SYMBOL(udp_push_pending_frames);
862 
863 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
864 {
865 	switch (cmsg->cmsg_type) {
866 	case UDP_SEGMENT:
867 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
868 			return -EINVAL;
869 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
870 		return 0;
871 	default:
872 		return -EINVAL;
873 	}
874 }
875 
876 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
877 {
878 	struct cmsghdr *cmsg;
879 	bool need_ip = false;
880 	int err;
881 
882 	for_each_cmsghdr(cmsg, msg) {
883 		if (!CMSG_OK(msg, cmsg))
884 			return -EINVAL;
885 
886 		if (cmsg->cmsg_level != SOL_UDP) {
887 			need_ip = true;
888 			continue;
889 		}
890 
891 		err = __udp_cmsg_send(cmsg, gso_size);
892 		if (err)
893 			return err;
894 	}
895 
896 	return need_ip;
897 }
898 EXPORT_SYMBOL_GPL(udp_cmsg_send);
899 
900 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
901 {
902 	struct inet_sock *inet = inet_sk(sk);
903 	struct udp_sock *up = udp_sk(sk);
904 	struct flowi4 fl4_stack;
905 	struct flowi4 *fl4;
906 	int ulen = len;
907 	struct ipcm_cookie ipc;
908 	struct rtable *rt = NULL;
909 	int free = 0;
910 	int connected = 0;
911 	__be32 daddr, faddr, saddr;
912 	__be16 dport;
913 	u8  tos;
914 	int err, is_udplite = IS_UDPLITE(sk);
915 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
916 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
917 	struct sk_buff *skb;
918 	struct ip_options_data opt_copy;
919 
920 	if (len > 0xFFFF)
921 		return -EMSGSIZE;
922 
923 	/*
924 	 *	Check the flags.
925 	 */
926 
927 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
928 		return -EOPNOTSUPP;
929 
930 	ipc.opt = NULL;
931 	ipc.tx_flags = 0;
932 	ipc.ttl = 0;
933 	ipc.tos = -1;
934 
935 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
936 
937 	fl4 = &inet->cork.fl.u.ip4;
938 	if (up->pending) {
939 		/*
940 		 * There are pending frames.
941 		 * The socket lock must be held while it's corked.
942 		 */
943 		lock_sock(sk);
944 		if (likely(up->pending)) {
945 			if (unlikely(up->pending != AF_INET)) {
946 				release_sock(sk);
947 				return -EINVAL;
948 			}
949 			goto do_append_data;
950 		}
951 		release_sock(sk);
952 	}
953 	ulen += sizeof(struct udphdr);
954 
955 	/*
956 	 *	Get and verify the address.
957 	 */
958 	if (msg->msg_name) {
959 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
960 		if (msg->msg_namelen < sizeof(*usin))
961 			return -EINVAL;
962 		if (usin->sin_family != AF_INET) {
963 			if (usin->sin_family != AF_UNSPEC)
964 				return -EAFNOSUPPORT;
965 		}
966 
967 		daddr = usin->sin_addr.s_addr;
968 		dport = usin->sin_port;
969 		if (dport == 0)
970 			return -EINVAL;
971 	} else {
972 		if (sk->sk_state != TCP_ESTABLISHED)
973 			return -EDESTADDRREQ;
974 		daddr = inet->inet_daddr;
975 		dport = inet->inet_dport;
976 		/* Open fast path for connected socket.
977 		   Route will not be used, if at least one option is set.
978 		 */
979 		connected = 1;
980 	}
981 
982 	ipc.sockc.tsflags = sk->sk_tsflags;
983 	ipc.addr = inet->inet_saddr;
984 	ipc.oif = sk->sk_bound_dev_if;
985 	ipc.gso_size = up->gso_size;
986 
987 	if (msg->msg_controllen) {
988 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
989 		if (err > 0)
990 			err = ip_cmsg_send(sk, msg, &ipc,
991 					   sk->sk_family == AF_INET6);
992 		if (unlikely(err < 0)) {
993 			kfree(ipc.opt);
994 			return err;
995 		}
996 		if (ipc.opt)
997 			free = 1;
998 		connected = 0;
999 	}
1000 	if (!ipc.opt) {
1001 		struct ip_options_rcu *inet_opt;
1002 
1003 		rcu_read_lock();
1004 		inet_opt = rcu_dereference(inet->inet_opt);
1005 		if (inet_opt) {
1006 			memcpy(&opt_copy, inet_opt,
1007 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1008 			ipc.opt = &opt_copy.opt;
1009 		}
1010 		rcu_read_unlock();
1011 	}
1012 
1013 	saddr = ipc.addr;
1014 	ipc.addr = faddr = daddr;
1015 
1016 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
1017 
1018 	if (ipc.opt && ipc.opt->opt.srr) {
1019 		if (!daddr) {
1020 			err = -EINVAL;
1021 			goto out_free;
1022 		}
1023 		faddr = ipc.opt->opt.faddr;
1024 		connected = 0;
1025 	}
1026 	tos = get_rttos(&ipc, inet);
1027 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1028 	    (msg->msg_flags & MSG_DONTROUTE) ||
1029 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1030 		tos |= RTO_ONLINK;
1031 		connected = 0;
1032 	}
1033 
1034 	if (ipv4_is_multicast(daddr)) {
1035 		if (!ipc.oif)
1036 			ipc.oif = inet->mc_index;
1037 		if (!saddr)
1038 			saddr = inet->mc_addr;
1039 		connected = 0;
1040 	} else if (!ipc.oif) {
1041 		ipc.oif = inet->uc_index;
1042 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1043 		/* oif is set, packet is to local broadcast and
1044 		 * and uc_index is set. oif is most likely set
1045 		 * by sk_bound_dev_if. If uc_index != oif check if the
1046 		 * oif is an L3 master and uc_index is an L3 slave.
1047 		 * If so, we want to allow the send using the uc_index.
1048 		 */
1049 		if (ipc.oif != inet->uc_index &&
1050 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1051 							      inet->uc_index)) {
1052 			ipc.oif = inet->uc_index;
1053 		}
1054 	}
1055 
1056 	if (connected)
1057 		rt = (struct rtable *)sk_dst_check(sk, 0);
1058 
1059 	if (!rt) {
1060 		struct net *net = sock_net(sk);
1061 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1062 
1063 		fl4 = &fl4_stack;
1064 
1065 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1066 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1067 				   flow_flags,
1068 				   faddr, saddr, dport, inet->inet_sport,
1069 				   sk->sk_uid);
1070 
1071 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1072 		rt = ip_route_output_flow(net, fl4, sk);
1073 		if (IS_ERR(rt)) {
1074 			err = PTR_ERR(rt);
1075 			rt = NULL;
1076 			if (err == -ENETUNREACH)
1077 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1078 			goto out;
1079 		}
1080 
1081 		err = -EACCES;
1082 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1083 		    !sock_flag(sk, SOCK_BROADCAST))
1084 			goto out;
1085 		if (connected)
1086 			sk_dst_set(sk, dst_clone(&rt->dst));
1087 	}
1088 
1089 	if (msg->msg_flags&MSG_CONFIRM)
1090 		goto do_confirm;
1091 back_from_confirm:
1092 
1093 	saddr = fl4->saddr;
1094 	if (!ipc.addr)
1095 		daddr = ipc.addr = fl4->daddr;
1096 
1097 	/* Lockless fast path for the non-corking case. */
1098 	if (!corkreq) {
1099 		struct inet_cork cork;
1100 
1101 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1102 				  sizeof(struct udphdr), &ipc, &rt,
1103 				  &cork, msg->msg_flags);
1104 		err = PTR_ERR(skb);
1105 		if (!IS_ERR_OR_NULL(skb))
1106 			err = udp_send_skb(skb, fl4, &cork);
1107 		goto out;
1108 	}
1109 
1110 	lock_sock(sk);
1111 	if (unlikely(up->pending)) {
1112 		/* The socket is already corked while preparing it. */
1113 		/* ... which is an evident application bug. --ANK */
1114 		release_sock(sk);
1115 
1116 		net_dbg_ratelimited("socket already corked\n");
1117 		err = -EINVAL;
1118 		goto out;
1119 	}
1120 	/*
1121 	 *	Now cork the socket to pend data.
1122 	 */
1123 	fl4 = &inet->cork.fl.u.ip4;
1124 	fl4->daddr = daddr;
1125 	fl4->saddr = saddr;
1126 	fl4->fl4_dport = dport;
1127 	fl4->fl4_sport = inet->inet_sport;
1128 	up->pending = AF_INET;
1129 
1130 do_append_data:
1131 	up->len += ulen;
1132 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1133 			     sizeof(struct udphdr), &ipc, &rt,
1134 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1135 	if (err)
1136 		udp_flush_pending_frames(sk);
1137 	else if (!corkreq)
1138 		err = udp_push_pending_frames(sk);
1139 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1140 		up->pending = 0;
1141 	release_sock(sk);
1142 
1143 out:
1144 	ip_rt_put(rt);
1145 out_free:
1146 	if (free)
1147 		kfree(ipc.opt);
1148 	if (!err)
1149 		return len;
1150 	/*
1151 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1152 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1153 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1154 	 * things).  We could add another new stat but at least for now that
1155 	 * seems like overkill.
1156 	 */
1157 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1158 		UDP_INC_STATS(sock_net(sk),
1159 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1160 	}
1161 	return err;
1162 
1163 do_confirm:
1164 	if (msg->msg_flags & MSG_PROBE)
1165 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1166 	if (!(msg->msg_flags&MSG_PROBE) || len)
1167 		goto back_from_confirm;
1168 	err = 0;
1169 	goto out;
1170 }
1171 EXPORT_SYMBOL(udp_sendmsg);
1172 
1173 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1174 		 size_t size, int flags)
1175 {
1176 	struct inet_sock *inet = inet_sk(sk);
1177 	struct udp_sock *up = udp_sk(sk);
1178 	int ret;
1179 
1180 	if (flags & MSG_SENDPAGE_NOTLAST)
1181 		flags |= MSG_MORE;
1182 
1183 	if (!up->pending) {
1184 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1185 
1186 		/* Call udp_sendmsg to specify destination address which
1187 		 * sendpage interface can't pass.
1188 		 * This will succeed only when the socket is connected.
1189 		 */
1190 		ret = udp_sendmsg(sk, &msg, 0);
1191 		if (ret < 0)
1192 			return ret;
1193 	}
1194 
1195 	lock_sock(sk);
1196 
1197 	if (unlikely(!up->pending)) {
1198 		release_sock(sk);
1199 
1200 		net_dbg_ratelimited("cork failed\n");
1201 		return -EINVAL;
1202 	}
1203 
1204 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1205 			     page, offset, size, flags);
1206 	if (ret == -EOPNOTSUPP) {
1207 		release_sock(sk);
1208 		return sock_no_sendpage(sk->sk_socket, page, offset,
1209 					size, flags);
1210 	}
1211 	if (ret < 0) {
1212 		udp_flush_pending_frames(sk);
1213 		goto out;
1214 	}
1215 
1216 	up->len += size;
1217 	if (!(up->corkflag || (flags&MSG_MORE)))
1218 		ret = udp_push_pending_frames(sk);
1219 	if (!ret)
1220 		ret = size;
1221 out:
1222 	release_sock(sk);
1223 	return ret;
1224 }
1225 
1226 #define UDP_SKB_IS_STATELESS 0x80000000
1227 
1228 static void udp_set_dev_scratch(struct sk_buff *skb)
1229 {
1230 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1231 
1232 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1233 	scratch->_tsize_state = skb->truesize;
1234 #if BITS_PER_LONG == 64
1235 	scratch->len = skb->len;
1236 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1237 	scratch->is_linear = !skb_is_nonlinear(skb);
1238 #endif
1239 	/* all head states execept sp (dst, sk, nf) are always cleared by
1240 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1241 	 * process IP_CMSG_PASSSEC at recvmsg() time
1242 	 */
1243 	if (likely(!skb_sec_path(skb)))
1244 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1245 }
1246 
1247 static int udp_skb_truesize(struct sk_buff *skb)
1248 {
1249 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1250 }
1251 
1252 static bool udp_skb_has_head_state(struct sk_buff *skb)
1253 {
1254 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1255 }
1256 
1257 /* fully reclaim rmem/fwd memory allocated for skb */
1258 static void udp_rmem_release(struct sock *sk, int size, int partial,
1259 			     bool rx_queue_lock_held)
1260 {
1261 	struct udp_sock *up = udp_sk(sk);
1262 	struct sk_buff_head *sk_queue;
1263 	int amt;
1264 
1265 	if (likely(partial)) {
1266 		up->forward_deficit += size;
1267 		size = up->forward_deficit;
1268 		if (size < (sk->sk_rcvbuf >> 2))
1269 			return;
1270 	} else {
1271 		size += up->forward_deficit;
1272 	}
1273 	up->forward_deficit = 0;
1274 
1275 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1276 	 * if the called don't held it already
1277 	 */
1278 	sk_queue = &sk->sk_receive_queue;
1279 	if (!rx_queue_lock_held)
1280 		spin_lock(&sk_queue->lock);
1281 
1282 
1283 	sk->sk_forward_alloc += size;
1284 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1285 	sk->sk_forward_alloc -= amt;
1286 
1287 	if (amt)
1288 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1289 
1290 	atomic_sub(size, &sk->sk_rmem_alloc);
1291 
1292 	/* this can save us from acquiring the rx queue lock on next receive */
1293 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1294 
1295 	if (!rx_queue_lock_held)
1296 		spin_unlock(&sk_queue->lock);
1297 }
1298 
1299 /* Note: called with reader_queue.lock held.
1300  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1301  * This avoids a cache line miss while receive_queue lock is held.
1302  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1303  */
1304 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1305 {
1306 	prefetch(&skb->data);
1307 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1308 }
1309 EXPORT_SYMBOL(udp_skb_destructor);
1310 
1311 /* as above, but the caller held the rx queue lock, too */
1312 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1313 {
1314 	prefetch(&skb->data);
1315 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1316 }
1317 
1318 /* Idea of busylocks is to let producers grab an extra spinlock
1319  * to relieve pressure on the receive_queue spinlock shared by consumer.
1320  * Under flood, this means that only one producer can be in line
1321  * trying to acquire the receive_queue spinlock.
1322  * These busylock can be allocated on a per cpu manner, instead of a
1323  * per socket one (that would consume a cache line per socket)
1324  */
1325 static int udp_busylocks_log __read_mostly;
1326 static spinlock_t *udp_busylocks __read_mostly;
1327 
1328 static spinlock_t *busylock_acquire(void *ptr)
1329 {
1330 	spinlock_t *busy;
1331 
1332 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1333 	spin_lock(busy);
1334 	return busy;
1335 }
1336 
1337 static void busylock_release(spinlock_t *busy)
1338 {
1339 	if (busy)
1340 		spin_unlock(busy);
1341 }
1342 
1343 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1344 {
1345 	struct sk_buff_head *list = &sk->sk_receive_queue;
1346 	int rmem, delta, amt, err = -ENOMEM;
1347 	spinlock_t *busy = NULL;
1348 	int size;
1349 
1350 	/* try to avoid the costly atomic add/sub pair when the receive
1351 	 * queue is full; always allow at least a packet
1352 	 */
1353 	rmem = atomic_read(&sk->sk_rmem_alloc);
1354 	if (rmem > sk->sk_rcvbuf)
1355 		goto drop;
1356 
1357 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1358 	 * having linear skbs :
1359 	 * - Reduce memory overhead and thus increase receive queue capacity
1360 	 * - Less cache line misses at copyout() time
1361 	 * - Less work at consume_skb() (less alien page frag freeing)
1362 	 */
1363 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1364 		skb_condense(skb);
1365 
1366 		busy = busylock_acquire(sk);
1367 	}
1368 	size = skb->truesize;
1369 	udp_set_dev_scratch(skb);
1370 
1371 	/* we drop only if the receive buf is full and the receive
1372 	 * queue contains some other skb
1373 	 */
1374 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1375 	if (rmem > (size + sk->sk_rcvbuf))
1376 		goto uncharge_drop;
1377 
1378 	spin_lock(&list->lock);
1379 	if (size >= sk->sk_forward_alloc) {
1380 		amt = sk_mem_pages(size);
1381 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1382 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1383 			err = -ENOBUFS;
1384 			spin_unlock(&list->lock);
1385 			goto uncharge_drop;
1386 		}
1387 
1388 		sk->sk_forward_alloc += delta;
1389 	}
1390 
1391 	sk->sk_forward_alloc -= size;
1392 
1393 	/* no need to setup a destructor, we will explicitly release the
1394 	 * forward allocated memory on dequeue
1395 	 */
1396 	sock_skb_set_dropcount(sk, skb);
1397 
1398 	__skb_queue_tail(list, skb);
1399 	spin_unlock(&list->lock);
1400 
1401 	if (!sock_flag(sk, SOCK_DEAD))
1402 		sk->sk_data_ready(sk);
1403 
1404 	busylock_release(busy);
1405 	return 0;
1406 
1407 uncharge_drop:
1408 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1409 
1410 drop:
1411 	atomic_inc(&sk->sk_drops);
1412 	busylock_release(busy);
1413 	return err;
1414 }
1415 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1416 
1417 void udp_destruct_sock(struct sock *sk)
1418 {
1419 	/* reclaim completely the forward allocated memory */
1420 	struct udp_sock *up = udp_sk(sk);
1421 	unsigned int total = 0;
1422 	struct sk_buff *skb;
1423 
1424 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1425 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1426 		total += skb->truesize;
1427 		kfree_skb(skb);
1428 	}
1429 	udp_rmem_release(sk, total, 0, true);
1430 
1431 	inet_sock_destruct(sk);
1432 }
1433 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1434 
1435 int udp_init_sock(struct sock *sk)
1436 {
1437 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1438 	sk->sk_destruct = udp_destruct_sock;
1439 	return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(udp_init_sock);
1442 
1443 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1444 {
1445 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1446 		bool slow = lock_sock_fast(sk);
1447 
1448 		sk_peek_offset_bwd(sk, len);
1449 		unlock_sock_fast(sk, slow);
1450 	}
1451 
1452 	if (!skb_unref(skb))
1453 		return;
1454 
1455 	/* In the more common cases we cleared the head states previously,
1456 	 * see __udp_queue_rcv_skb().
1457 	 */
1458 	if (unlikely(udp_skb_has_head_state(skb)))
1459 		skb_release_head_state(skb);
1460 	__consume_stateless_skb(skb);
1461 }
1462 EXPORT_SYMBOL_GPL(skb_consume_udp);
1463 
1464 static struct sk_buff *__first_packet_length(struct sock *sk,
1465 					     struct sk_buff_head *rcvq,
1466 					     int *total)
1467 {
1468 	struct sk_buff *skb;
1469 
1470 	while ((skb = skb_peek(rcvq)) != NULL) {
1471 		if (udp_lib_checksum_complete(skb)) {
1472 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1473 					IS_UDPLITE(sk));
1474 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1475 					IS_UDPLITE(sk));
1476 			atomic_inc(&sk->sk_drops);
1477 			__skb_unlink(skb, rcvq);
1478 			*total += skb->truesize;
1479 			kfree_skb(skb);
1480 		} else {
1481 			/* the csum related bits could be changed, refresh
1482 			 * the scratch area
1483 			 */
1484 			udp_set_dev_scratch(skb);
1485 			break;
1486 		}
1487 	}
1488 	return skb;
1489 }
1490 
1491 /**
1492  *	first_packet_length	- return length of first packet in receive queue
1493  *	@sk: socket
1494  *
1495  *	Drops all bad checksum frames, until a valid one is found.
1496  *	Returns the length of found skb, or -1 if none is found.
1497  */
1498 static int first_packet_length(struct sock *sk)
1499 {
1500 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1501 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1502 	struct sk_buff *skb;
1503 	int total = 0;
1504 	int res;
1505 
1506 	spin_lock_bh(&rcvq->lock);
1507 	skb = __first_packet_length(sk, rcvq, &total);
1508 	if (!skb && !skb_queue_empty(sk_queue)) {
1509 		spin_lock(&sk_queue->lock);
1510 		skb_queue_splice_tail_init(sk_queue, rcvq);
1511 		spin_unlock(&sk_queue->lock);
1512 
1513 		skb = __first_packet_length(sk, rcvq, &total);
1514 	}
1515 	res = skb ? skb->len : -1;
1516 	if (total)
1517 		udp_rmem_release(sk, total, 1, false);
1518 	spin_unlock_bh(&rcvq->lock);
1519 	return res;
1520 }
1521 
1522 /*
1523  *	IOCTL requests applicable to the UDP protocol
1524  */
1525 
1526 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1527 {
1528 	switch (cmd) {
1529 	case SIOCOUTQ:
1530 	{
1531 		int amount = sk_wmem_alloc_get(sk);
1532 
1533 		return put_user(amount, (int __user *)arg);
1534 	}
1535 
1536 	case SIOCINQ:
1537 	{
1538 		int amount = max_t(int, 0, first_packet_length(sk));
1539 
1540 		return put_user(amount, (int __user *)arg);
1541 	}
1542 
1543 	default:
1544 		return -ENOIOCTLCMD;
1545 	}
1546 
1547 	return 0;
1548 }
1549 EXPORT_SYMBOL(udp_ioctl);
1550 
1551 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1552 			       int noblock, int *peeked, int *off, int *err)
1553 {
1554 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1555 	struct sk_buff_head *queue;
1556 	struct sk_buff *last;
1557 	long timeo;
1558 	int error;
1559 
1560 	queue = &udp_sk(sk)->reader_queue;
1561 	flags |= noblock ? MSG_DONTWAIT : 0;
1562 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1563 	do {
1564 		struct sk_buff *skb;
1565 
1566 		error = sock_error(sk);
1567 		if (error)
1568 			break;
1569 
1570 		error = -EAGAIN;
1571 		*peeked = 0;
1572 		do {
1573 			spin_lock_bh(&queue->lock);
1574 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1575 							udp_skb_destructor,
1576 							peeked, off, err,
1577 							&last);
1578 			if (skb) {
1579 				spin_unlock_bh(&queue->lock);
1580 				return skb;
1581 			}
1582 
1583 			if (skb_queue_empty(sk_queue)) {
1584 				spin_unlock_bh(&queue->lock);
1585 				goto busy_check;
1586 			}
1587 
1588 			/* refill the reader queue and walk it again
1589 			 * keep both queues locked to avoid re-acquiring
1590 			 * the sk_receive_queue lock if fwd memory scheduling
1591 			 * is needed.
1592 			 */
1593 			spin_lock(&sk_queue->lock);
1594 			skb_queue_splice_tail_init(sk_queue, queue);
1595 
1596 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1597 							udp_skb_dtor_locked,
1598 							peeked, off, err,
1599 							&last);
1600 			spin_unlock(&sk_queue->lock);
1601 			spin_unlock_bh(&queue->lock);
1602 			if (skb)
1603 				return skb;
1604 
1605 busy_check:
1606 			if (!sk_can_busy_loop(sk))
1607 				break;
1608 
1609 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1610 		} while (!skb_queue_empty(sk_queue));
1611 
1612 		/* sk_queue is empty, reader_queue may contain peeked packets */
1613 	} while (timeo &&
1614 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1615 					      (struct sk_buff *)sk_queue));
1616 
1617 	*err = error;
1618 	return NULL;
1619 }
1620 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1621 
1622 /*
1623  * 	This should be easy, if there is something there we
1624  * 	return it, otherwise we block.
1625  */
1626 
1627 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1628 		int flags, int *addr_len)
1629 {
1630 	struct inet_sock *inet = inet_sk(sk);
1631 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1632 	struct sk_buff *skb;
1633 	unsigned int ulen, copied;
1634 	int peeked, peeking, off;
1635 	int err;
1636 	int is_udplite = IS_UDPLITE(sk);
1637 	bool checksum_valid = false;
1638 
1639 	if (flags & MSG_ERRQUEUE)
1640 		return ip_recv_error(sk, msg, len, addr_len);
1641 
1642 try_again:
1643 	peeking = flags & MSG_PEEK;
1644 	off = sk_peek_offset(sk, flags);
1645 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1646 	if (!skb)
1647 		return err;
1648 
1649 	ulen = udp_skb_len(skb);
1650 	copied = len;
1651 	if (copied > ulen - off)
1652 		copied = ulen - off;
1653 	else if (copied < ulen)
1654 		msg->msg_flags |= MSG_TRUNC;
1655 
1656 	/*
1657 	 * If checksum is needed at all, try to do it while copying the
1658 	 * data.  If the data is truncated, or if we only want a partial
1659 	 * coverage checksum (UDP-Lite), do it before the copy.
1660 	 */
1661 
1662 	if (copied < ulen || peeking ||
1663 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1664 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1665 				!__udp_lib_checksum_complete(skb);
1666 		if (!checksum_valid)
1667 			goto csum_copy_err;
1668 	}
1669 
1670 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1671 		if (udp_skb_is_linear(skb))
1672 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1673 		else
1674 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1675 	} else {
1676 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1677 
1678 		if (err == -EINVAL)
1679 			goto csum_copy_err;
1680 	}
1681 
1682 	if (unlikely(err)) {
1683 		if (!peeked) {
1684 			atomic_inc(&sk->sk_drops);
1685 			UDP_INC_STATS(sock_net(sk),
1686 				      UDP_MIB_INERRORS, is_udplite);
1687 		}
1688 		kfree_skb(skb);
1689 		return err;
1690 	}
1691 
1692 	if (!peeked)
1693 		UDP_INC_STATS(sock_net(sk),
1694 			      UDP_MIB_INDATAGRAMS, is_udplite);
1695 
1696 	sock_recv_ts_and_drops(msg, sk, skb);
1697 
1698 	/* Copy the address. */
1699 	if (sin) {
1700 		sin->sin_family = AF_INET;
1701 		sin->sin_port = udp_hdr(skb)->source;
1702 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1703 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1704 		*addr_len = sizeof(*sin);
1705 	}
1706 	if (inet->cmsg_flags)
1707 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1708 
1709 	err = copied;
1710 	if (flags & MSG_TRUNC)
1711 		err = ulen;
1712 
1713 	skb_consume_udp(sk, skb, peeking ? -err : err);
1714 	return err;
1715 
1716 csum_copy_err:
1717 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1718 				 udp_skb_destructor)) {
1719 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1720 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1721 	}
1722 	kfree_skb(skb);
1723 
1724 	/* starting over for a new packet, but check if we need to yield */
1725 	cond_resched();
1726 	msg->msg_flags &= ~MSG_TRUNC;
1727 	goto try_again;
1728 }
1729 
1730 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1731 {
1732 	/* This check is replicated from __ip4_datagram_connect() and
1733 	 * intended to prevent BPF program called below from accessing bytes
1734 	 * that are out of the bound specified by user in addr_len.
1735 	 */
1736 	if (addr_len < sizeof(struct sockaddr_in))
1737 		return -EINVAL;
1738 
1739 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1740 }
1741 EXPORT_SYMBOL(udp_pre_connect);
1742 
1743 int __udp_disconnect(struct sock *sk, int flags)
1744 {
1745 	struct inet_sock *inet = inet_sk(sk);
1746 	/*
1747 	 *	1003.1g - break association.
1748 	 */
1749 
1750 	sk->sk_state = TCP_CLOSE;
1751 	inet->inet_daddr = 0;
1752 	inet->inet_dport = 0;
1753 	sock_rps_reset_rxhash(sk);
1754 	sk->sk_bound_dev_if = 0;
1755 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1756 		inet_reset_saddr(sk);
1757 
1758 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1759 		sk->sk_prot->unhash(sk);
1760 		inet->inet_sport = 0;
1761 	}
1762 	sk_dst_reset(sk);
1763 	return 0;
1764 }
1765 EXPORT_SYMBOL(__udp_disconnect);
1766 
1767 int udp_disconnect(struct sock *sk, int flags)
1768 {
1769 	lock_sock(sk);
1770 	__udp_disconnect(sk, flags);
1771 	release_sock(sk);
1772 	return 0;
1773 }
1774 EXPORT_SYMBOL(udp_disconnect);
1775 
1776 void udp_lib_unhash(struct sock *sk)
1777 {
1778 	if (sk_hashed(sk)) {
1779 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1780 		struct udp_hslot *hslot, *hslot2;
1781 
1782 		hslot  = udp_hashslot(udptable, sock_net(sk),
1783 				      udp_sk(sk)->udp_port_hash);
1784 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1785 
1786 		spin_lock_bh(&hslot->lock);
1787 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1788 			reuseport_detach_sock(sk);
1789 		if (sk_del_node_init_rcu(sk)) {
1790 			hslot->count--;
1791 			inet_sk(sk)->inet_num = 0;
1792 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1793 
1794 			spin_lock(&hslot2->lock);
1795 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1796 			hslot2->count--;
1797 			spin_unlock(&hslot2->lock);
1798 		}
1799 		spin_unlock_bh(&hslot->lock);
1800 	}
1801 }
1802 EXPORT_SYMBOL(udp_lib_unhash);
1803 
1804 /*
1805  * inet_rcv_saddr was changed, we must rehash secondary hash
1806  */
1807 void udp_lib_rehash(struct sock *sk, u16 newhash)
1808 {
1809 	if (sk_hashed(sk)) {
1810 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1811 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1812 
1813 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1814 		nhslot2 = udp_hashslot2(udptable, newhash);
1815 		udp_sk(sk)->udp_portaddr_hash = newhash;
1816 
1817 		if (hslot2 != nhslot2 ||
1818 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1819 			hslot = udp_hashslot(udptable, sock_net(sk),
1820 					     udp_sk(sk)->udp_port_hash);
1821 			/* we must lock primary chain too */
1822 			spin_lock_bh(&hslot->lock);
1823 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1824 				reuseport_detach_sock(sk);
1825 
1826 			if (hslot2 != nhslot2) {
1827 				spin_lock(&hslot2->lock);
1828 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1829 				hslot2->count--;
1830 				spin_unlock(&hslot2->lock);
1831 
1832 				spin_lock(&nhslot2->lock);
1833 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1834 							 &nhslot2->head);
1835 				nhslot2->count++;
1836 				spin_unlock(&nhslot2->lock);
1837 			}
1838 
1839 			spin_unlock_bh(&hslot->lock);
1840 		}
1841 	}
1842 }
1843 EXPORT_SYMBOL(udp_lib_rehash);
1844 
1845 static void udp_v4_rehash(struct sock *sk)
1846 {
1847 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1848 					  inet_sk(sk)->inet_rcv_saddr,
1849 					  inet_sk(sk)->inet_num);
1850 	udp_lib_rehash(sk, new_hash);
1851 }
1852 
1853 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1854 {
1855 	int rc;
1856 
1857 	if (inet_sk(sk)->inet_daddr) {
1858 		sock_rps_save_rxhash(sk, skb);
1859 		sk_mark_napi_id(sk, skb);
1860 		sk_incoming_cpu_update(sk);
1861 	} else {
1862 		sk_mark_napi_id_once(sk, skb);
1863 	}
1864 
1865 	rc = __udp_enqueue_schedule_skb(sk, skb);
1866 	if (rc < 0) {
1867 		int is_udplite = IS_UDPLITE(sk);
1868 
1869 		/* Note that an ENOMEM error is charged twice */
1870 		if (rc == -ENOMEM)
1871 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1872 					is_udplite);
1873 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1874 		kfree_skb(skb);
1875 		trace_udp_fail_queue_rcv_skb(rc, sk);
1876 		return -1;
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 static DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
1883 void udp_encap_enable(void)
1884 {
1885 	static_branch_enable(&udp_encap_needed_key);
1886 }
1887 EXPORT_SYMBOL(udp_encap_enable);
1888 
1889 /* returns:
1890  *  -1: error
1891  *   0: success
1892  *  >0: "udp encap" protocol resubmission
1893  *
1894  * Note that in the success and error cases, the skb is assumed to
1895  * have either been requeued or freed.
1896  */
1897 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1898 {
1899 	struct udp_sock *up = udp_sk(sk);
1900 	int is_udplite = IS_UDPLITE(sk);
1901 
1902 	/*
1903 	 *	Charge it to the socket, dropping if the queue is full.
1904 	 */
1905 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1906 		goto drop;
1907 	nf_reset(skb);
1908 
1909 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1910 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1911 
1912 		/*
1913 		 * This is an encapsulation socket so pass the skb to
1914 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1915 		 * fall through and pass this up the UDP socket.
1916 		 * up->encap_rcv() returns the following value:
1917 		 * =0 if skb was successfully passed to the encap
1918 		 *    handler or was discarded by it.
1919 		 * >0 if skb should be passed on to UDP.
1920 		 * <0 if skb should be resubmitted as proto -N
1921 		 */
1922 
1923 		/* if we're overly short, let UDP handle it */
1924 		encap_rcv = READ_ONCE(up->encap_rcv);
1925 		if (encap_rcv) {
1926 			int ret;
1927 
1928 			/* Verify checksum before giving to encap */
1929 			if (udp_lib_checksum_complete(skb))
1930 				goto csum_error;
1931 
1932 			ret = encap_rcv(sk, skb);
1933 			if (ret <= 0) {
1934 				__UDP_INC_STATS(sock_net(sk),
1935 						UDP_MIB_INDATAGRAMS,
1936 						is_udplite);
1937 				return -ret;
1938 			}
1939 		}
1940 
1941 		/* FALLTHROUGH -- it's a UDP Packet */
1942 	}
1943 
1944 	/*
1945 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1946 	 */
1947 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1948 
1949 		/*
1950 		 * MIB statistics other than incrementing the error count are
1951 		 * disabled for the following two types of errors: these depend
1952 		 * on the application settings, not on the functioning of the
1953 		 * protocol stack as such.
1954 		 *
1955 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1956 		 * way ... to ... at least let the receiving application block
1957 		 * delivery of packets with coverage values less than a value
1958 		 * provided by the application."
1959 		 */
1960 		if (up->pcrlen == 0) {          /* full coverage was set  */
1961 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1962 					    UDP_SKB_CB(skb)->cscov, skb->len);
1963 			goto drop;
1964 		}
1965 		/* The next case involves violating the min. coverage requested
1966 		 * by the receiver. This is subtle: if receiver wants x and x is
1967 		 * greater than the buffersize/MTU then receiver will complain
1968 		 * that it wants x while sender emits packets of smaller size y.
1969 		 * Therefore the above ...()->partial_cov statement is essential.
1970 		 */
1971 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1972 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1973 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1974 			goto drop;
1975 		}
1976 	}
1977 
1978 	prefetch(&sk->sk_rmem_alloc);
1979 	if (rcu_access_pointer(sk->sk_filter) &&
1980 	    udp_lib_checksum_complete(skb))
1981 			goto csum_error;
1982 
1983 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1984 		goto drop;
1985 
1986 	udp_csum_pull_header(skb);
1987 
1988 	ipv4_pktinfo_prepare(sk, skb);
1989 	return __udp_queue_rcv_skb(sk, skb);
1990 
1991 csum_error:
1992 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1993 drop:
1994 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1995 	atomic_inc(&sk->sk_drops);
1996 	kfree_skb(skb);
1997 	return -1;
1998 }
1999 
2000 /* For TCP sockets, sk_rx_dst is protected by socket lock
2001  * For UDP, we use xchg() to guard against concurrent changes.
2002  */
2003 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2004 {
2005 	struct dst_entry *old;
2006 
2007 	if (dst_hold_safe(dst)) {
2008 		old = xchg(&sk->sk_rx_dst, dst);
2009 		dst_release(old);
2010 		return old != dst;
2011 	}
2012 	return false;
2013 }
2014 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2015 
2016 /*
2017  *	Multicasts and broadcasts go to each listener.
2018  *
2019  *	Note: called only from the BH handler context.
2020  */
2021 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2022 				    struct udphdr  *uh,
2023 				    __be32 saddr, __be32 daddr,
2024 				    struct udp_table *udptable,
2025 				    int proto)
2026 {
2027 	struct sock *sk, *first = NULL;
2028 	unsigned short hnum = ntohs(uh->dest);
2029 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2030 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2031 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2032 	int dif = skb->dev->ifindex;
2033 	int sdif = inet_sdif(skb);
2034 	struct hlist_node *node;
2035 	struct sk_buff *nskb;
2036 
2037 	if (use_hash2) {
2038 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2039 			    udptable->mask;
2040 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2041 start_lookup:
2042 		hslot = &udptable->hash2[hash2];
2043 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2044 	}
2045 
2046 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2047 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2048 					 uh->source, saddr, dif, sdif, hnum))
2049 			continue;
2050 
2051 		if (!first) {
2052 			first = sk;
2053 			continue;
2054 		}
2055 		nskb = skb_clone(skb, GFP_ATOMIC);
2056 
2057 		if (unlikely(!nskb)) {
2058 			atomic_inc(&sk->sk_drops);
2059 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2060 					IS_UDPLITE(sk));
2061 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2062 					IS_UDPLITE(sk));
2063 			continue;
2064 		}
2065 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2066 			consume_skb(nskb);
2067 	}
2068 
2069 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2070 	if (use_hash2 && hash2 != hash2_any) {
2071 		hash2 = hash2_any;
2072 		goto start_lookup;
2073 	}
2074 
2075 	if (first) {
2076 		if (udp_queue_rcv_skb(first, skb) > 0)
2077 			consume_skb(skb);
2078 	} else {
2079 		kfree_skb(skb);
2080 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2081 				proto == IPPROTO_UDPLITE);
2082 	}
2083 	return 0;
2084 }
2085 
2086 /* Initialize UDP checksum. If exited with zero value (success),
2087  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2088  * Otherwise, csum completion requires chacksumming packet body,
2089  * including udp header and folding it to skb->csum.
2090  */
2091 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2092 				 int proto)
2093 {
2094 	int err;
2095 
2096 	UDP_SKB_CB(skb)->partial_cov = 0;
2097 	UDP_SKB_CB(skb)->cscov = skb->len;
2098 
2099 	if (proto == IPPROTO_UDPLITE) {
2100 		err = udplite_checksum_init(skb, uh);
2101 		if (err)
2102 			return err;
2103 
2104 		if (UDP_SKB_CB(skb)->partial_cov) {
2105 			skb->csum = inet_compute_pseudo(skb, proto);
2106 			return 0;
2107 		}
2108 	}
2109 
2110 	/* Note, we are only interested in != 0 or == 0, thus the
2111 	 * force to int.
2112 	 */
2113 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2114 							 inet_compute_pseudo);
2115 }
2116 
2117 /*
2118  *	All we need to do is get the socket, and then do a checksum.
2119  */
2120 
2121 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2122 		   int proto)
2123 {
2124 	struct sock *sk;
2125 	struct udphdr *uh;
2126 	unsigned short ulen;
2127 	struct rtable *rt = skb_rtable(skb);
2128 	__be32 saddr, daddr;
2129 	struct net *net = dev_net(skb->dev);
2130 
2131 	/*
2132 	 *  Validate the packet.
2133 	 */
2134 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2135 		goto drop;		/* No space for header. */
2136 
2137 	uh   = udp_hdr(skb);
2138 	ulen = ntohs(uh->len);
2139 	saddr = ip_hdr(skb)->saddr;
2140 	daddr = ip_hdr(skb)->daddr;
2141 
2142 	if (ulen > skb->len)
2143 		goto short_packet;
2144 
2145 	if (proto == IPPROTO_UDP) {
2146 		/* UDP validates ulen. */
2147 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2148 			goto short_packet;
2149 		uh = udp_hdr(skb);
2150 	}
2151 
2152 	if (udp4_csum_init(skb, uh, proto))
2153 		goto csum_error;
2154 
2155 	sk = skb_steal_sock(skb);
2156 	if (sk) {
2157 		struct dst_entry *dst = skb_dst(skb);
2158 		int ret;
2159 
2160 		if (unlikely(sk->sk_rx_dst != dst))
2161 			udp_sk_rx_dst_set(sk, dst);
2162 
2163 		ret = udp_queue_rcv_skb(sk, skb);
2164 		sock_put(sk);
2165 		/* a return value > 0 means to resubmit the input, but
2166 		 * it wants the return to be -protocol, or 0
2167 		 */
2168 		if (ret > 0)
2169 			return -ret;
2170 		return 0;
2171 	}
2172 
2173 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2174 		return __udp4_lib_mcast_deliver(net, skb, uh,
2175 						saddr, daddr, udptable, proto);
2176 
2177 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2178 	if (sk) {
2179 		int ret;
2180 
2181 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2182 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2183 						 inet_compute_pseudo);
2184 
2185 		ret = udp_queue_rcv_skb(sk, skb);
2186 
2187 		/* a return value > 0 means to resubmit the input, but
2188 		 * it wants the return to be -protocol, or 0
2189 		 */
2190 		if (ret > 0)
2191 			return -ret;
2192 		return 0;
2193 	}
2194 
2195 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2196 		goto drop;
2197 	nf_reset(skb);
2198 
2199 	/* No socket. Drop packet silently, if checksum is wrong */
2200 	if (udp_lib_checksum_complete(skb))
2201 		goto csum_error;
2202 
2203 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2204 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2205 
2206 	/*
2207 	 * Hmm.  We got an UDP packet to a port to which we
2208 	 * don't wanna listen.  Ignore it.
2209 	 */
2210 	kfree_skb(skb);
2211 	return 0;
2212 
2213 short_packet:
2214 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2215 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2216 			    &saddr, ntohs(uh->source),
2217 			    ulen, skb->len,
2218 			    &daddr, ntohs(uh->dest));
2219 	goto drop;
2220 
2221 csum_error:
2222 	/*
2223 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2224 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2225 	 */
2226 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2227 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2228 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2229 			    ulen);
2230 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2231 drop:
2232 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2233 	kfree_skb(skb);
2234 	return 0;
2235 }
2236 
2237 /* We can only early demux multicast if there is a single matching socket.
2238  * If more than one socket found returns NULL
2239  */
2240 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2241 						  __be16 loc_port, __be32 loc_addr,
2242 						  __be16 rmt_port, __be32 rmt_addr,
2243 						  int dif, int sdif)
2244 {
2245 	struct sock *sk, *result;
2246 	unsigned short hnum = ntohs(loc_port);
2247 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2248 	struct udp_hslot *hslot = &udp_table.hash[slot];
2249 
2250 	/* Do not bother scanning a too big list */
2251 	if (hslot->count > 10)
2252 		return NULL;
2253 
2254 	result = NULL;
2255 	sk_for_each_rcu(sk, &hslot->head) {
2256 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2257 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2258 			if (result)
2259 				return NULL;
2260 			result = sk;
2261 		}
2262 	}
2263 
2264 	return result;
2265 }
2266 
2267 /* For unicast we should only early demux connected sockets or we can
2268  * break forwarding setups.  The chains here can be long so only check
2269  * if the first socket is an exact match and if not move on.
2270  */
2271 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2272 					    __be16 loc_port, __be32 loc_addr,
2273 					    __be16 rmt_port, __be32 rmt_addr,
2274 					    int dif, int sdif)
2275 {
2276 	unsigned short hnum = ntohs(loc_port);
2277 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2278 	unsigned int slot2 = hash2 & udp_table.mask;
2279 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2280 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2281 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2282 	struct sock *sk;
2283 
2284 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2285 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2286 			       loc_addr, ports, dif, sdif))
2287 			return sk;
2288 		/* Only check first socket in chain */
2289 		break;
2290 	}
2291 	return NULL;
2292 }
2293 
2294 int udp_v4_early_demux(struct sk_buff *skb)
2295 {
2296 	struct net *net = dev_net(skb->dev);
2297 	struct in_device *in_dev = NULL;
2298 	const struct iphdr *iph;
2299 	const struct udphdr *uh;
2300 	struct sock *sk = NULL;
2301 	struct dst_entry *dst;
2302 	int dif = skb->dev->ifindex;
2303 	int sdif = inet_sdif(skb);
2304 	int ours;
2305 
2306 	/* validate the packet */
2307 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2308 		return 0;
2309 
2310 	iph = ip_hdr(skb);
2311 	uh = udp_hdr(skb);
2312 
2313 	if (skb->pkt_type == PACKET_MULTICAST) {
2314 		in_dev = __in_dev_get_rcu(skb->dev);
2315 
2316 		if (!in_dev)
2317 			return 0;
2318 
2319 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2320 				       iph->protocol);
2321 		if (!ours)
2322 			return 0;
2323 
2324 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2325 						   uh->source, iph->saddr,
2326 						   dif, sdif);
2327 	} else if (skb->pkt_type == PACKET_HOST) {
2328 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2329 					     uh->source, iph->saddr, dif, sdif);
2330 	}
2331 
2332 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2333 		return 0;
2334 
2335 	skb->sk = sk;
2336 	skb->destructor = sock_efree;
2337 	dst = READ_ONCE(sk->sk_rx_dst);
2338 
2339 	if (dst)
2340 		dst = dst_check(dst, 0);
2341 	if (dst) {
2342 		u32 itag = 0;
2343 
2344 		/* set noref for now.
2345 		 * any place which wants to hold dst has to call
2346 		 * dst_hold_safe()
2347 		 */
2348 		skb_dst_set_noref(skb, dst);
2349 
2350 		/* for unconnected multicast sockets we need to validate
2351 		 * the source on each packet
2352 		 */
2353 		if (!inet_sk(sk)->inet_daddr && in_dev)
2354 			return ip_mc_validate_source(skb, iph->daddr,
2355 						     iph->saddr, iph->tos,
2356 						     skb->dev, in_dev, &itag);
2357 	}
2358 	return 0;
2359 }
2360 
2361 int udp_rcv(struct sk_buff *skb)
2362 {
2363 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2364 }
2365 
2366 void udp_destroy_sock(struct sock *sk)
2367 {
2368 	struct udp_sock *up = udp_sk(sk);
2369 	bool slow = lock_sock_fast(sk);
2370 	udp_flush_pending_frames(sk);
2371 	unlock_sock_fast(sk, slow);
2372 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2373 		void (*encap_destroy)(struct sock *sk);
2374 		encap_destroy = READ_ONCE(up->encap_destroy);
2375 		if (encap_destroy)
2376 			encap_destroy(sk);
2377 	}
2378 }
2379 
2380 /*
2381  *	Socket option code for UDP
2382  */
2383 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2384 		       char __user *optval, unsigned int optlen,
2385 		       int (*push_pending_frames)(struct sock *))
2386 {
2387 	struct udp_sock *up = udp_sk(sk);
2388 	int val, valbool;
2389 	int err = 0;
2390 	int is_udplite = IS_UDPLITE(sk);
2391 
2392 	if (optlen < sizeof(int))
2393 		return -EINVAL;
2394 
2395 	if (get_user(val, (int __user *)optval))
2396 		return -EFAULT;
2397 
2398 	valbool = val ? 1 : 0;
2399 
2400 	switch (optname) {
2401 	case UDP_CORK:
2402 		if (val != 0) {
2403 			up->corkflag = 1;
2404 		} else {
2405 			up->corkflag = 0;
2406 			lock_sock(sk);
2407 			push_pending_frames(sk);
2408 			release_sock(sk);
2409 		}
2410 		break;
2411 
2412 	case UDP_ENCAP:
2413 		switch (val) {
2414 		case 0:
2415 		case UDP_ENCAP_ESPINUDP:
2416 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2417 			up->encap_rcv = xfrm4_udp_encap_rcv;
2418 			/* FALLTHROUGH */
2419 		case UDP_ENCAP_L2TPINUDP:
2420 			up->encap_type = val;
2421 			udp_encap_enable();
2422 			break;
2423 		default:
2424 			err = -ENOPROTOOPT;
2425 			break;
2426 		}
2427 		break;
2428 
2429 	case UDP_NO_CHECK6_TX:
2430 		up->no_check6_tx = valbool;
2431 		break;
2432 
2433 	case UDP_NO_CHECK6_RX:
2434 		up->no_check6_rx = valbool;
2435 		break;
2436 
2437 	case UDP_SEGMENT:
2438 		if (val < 0 || val > USHRT_MAX)
2439 			return -EINVAL;
2440 		up->gso_size = val;
2441 		break;
2442 
2443 	/*
2444 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2445 	 */
2446 	/* The sender sets actual checksum coverage length via this option.
2447 	 * The case coverage > packet length is handled by send module. */
2448 	case UDPLITE_SEND_CSCOV:
2449 		if (!is_udplite)         /* Disable the option on UDP sockets */
2450 			return -ENOPROTOOPT;
2451 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2452 			val = 8;
2453 		else if (val > USHRT_MAX)
2454 			val = USHRT_MAX;
2455 		up->pcslen = val;
2456 		up->pcflag |= UDPLITE_SEND_CC;
2457 		break;
2458 
2459 	/* The receiver specifies a minimum checksum coverage value. To make
2460 	 * sense, this should be set to at least 8 (as done below). If zero is
2461 	 * used, this again means full checksum coverage.                     */
2462 	case UDPLITE_RECV_CSCOV:
2463 		if (!is_udplite)         /* Disable the option on UDP sockets */
2464 			return -ENOPROTOOPT;
2465 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2466 			val = 8;
2467 		else if (val > USHRT_MAX)
2468 			val = USHRT_MAX;
2469 		up->pcrlen = val;
2470 		up->pcflag |= UDPLITE_RECV_CC;
2471 		break;
2472 
2473 	default:
2474 		err = -ENOPROTOOPT;
2475 		break;
2476 	}
2477 
2478 	return err;
2479 }
2480 EXPORT_SYMBOL(udp_lib_setsockopt);
2481 
2482 int udp_setsockopt(struct sock *sk, int level, int optname,
2483 		   char __user *optval, unsigned int optlen)
2484 {
2485 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2486 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2487 					  udp_push_pending_frames);
2488 	return ip_setsockopt(sk, level, optname, optval, optlen);
2489 }
2490 
2491 #ifdef CONFIG_COMPAT
2492 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2493 			  char __user *optval, unsigned int optlen)
2494 {
2495 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2496 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2497 					  udp_push_pending_frames);
2498 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2499 }
2500 #endif
2501 
2502 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2503 		       char __user *optval, int __user *optlen)
2504 {
2505 	struct udp_sock *up = udp_sk(sk);
2506 	int val, len;
2507 
2508 	if (get_user(len, optlen))
2509 		return -EFAULT;
2510 
2511 	len = min_t(unsigned int, len, sizeof(int));
2512 
2513 	if (len < 0)
2514 		return -EINVAL;
2515 
2516 	switch (optname) {
2517 	case UDP_CORK:
2518 		val = up->corkflag;
2519 		break;
2520 
2521 	case UDP_ENCAP:
2522 		val = up->encap_type;
2523 		break;
2524 
2525 	case UDP_NO_CHECK6_TX:
2526 		val = up->no_check6_tx;
2527 		break;
2528 
2529 	case UDP_NO_CHECK6_RX:
2530 		val = up->no_check6_rx;
2531 		break;
2532 
2533 	case UDP_SEGMENT:
2534 		val = up->gso_size;
2535 		break;
2536 
2537 	/* The following two cannot be changed on UDP sockets, the return is
2538 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2539 	case UDPLITE_SEND_CSCOV:
2540 		val = up->pcslen;
2541 		break;
2542 
2543 	case UDPLITE_RECV_CSCOV:
2544 		val = up->pcrlen;
2545 		break;
2546 
2547 	default:
2548 		return -ENOPROTOOPT;
2549 	}
2550 
2551 	if (put_user(len, optlen))
2552 		return -EFAULT;
2553 	if (copy_to_user(optval, &val, len))
2554 		return -EFAULT;
2555 	return 0;
2556 }
2557 EXPORT_SYMBOL(udp_lib_getsockopt);
2558 
2559 int udp_getsockopt(struct sock *sk, int level, int optname,
2560 		   char __user *optval, int __user *optlen)
2561 {
2562 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2563 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2564 	return ip_getsockopt(sk, level, optname, optval, optlen);
2565 }
2566 
2567 #ifdef CONFIG_COMPAT
2568 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2569 				 char __user *optval, int __user *optlen)
2570 {
2571 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2572 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2573 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2574 }
2575 #endif
2576 /**
2577  * 	udp_poll - wait for a UDP event.
2578  *	@file - file struct
2579  *	@sock - socket
2580  *	@wait - poll table
2581  *
2582  *	This is same as datagram poll, except for the special case of
2583  *	blocking sockets. If application is using a blocking fd
2584  *	and a packet with checksum error is in the queue;
2585  *	then it could get return from select indicating data available
2586  *	but then block when reading it. Add special case code
2587  *	to work around these arguably broken applications.
2588  */
2589 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2590 {
2591 	__poll_t mask = datagram_poll(file, sock, wait);
2592 	struct sock *sk = sock->sk;
2593 
2594 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2595 		mask |= EPOLLIN | EPOLLRDNORM;
2596 
2597 	/* Check for false positives due to checksum errors */
2598 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2599 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2600 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2601 
2602 	return mask;
2603 
2604 }
2605 EXPORT_SYMBOL(udp_poll);
2606 
2607 int udp_abort(struct sock *sk, int err)
2608 {
2609 	lock_sock(sk);
2610 
2611 	sk->sk_err = err;
2612 	sk->sk_error_report(sk);
2613 	__udp_disconnect(sk, 0);
2614 
2615 	release_sock(sk);
2616 
2617 	return 0;
2618 }
2619 EXPORT_SYMBOL_GPL(udp_abort);
2620 
2621 struct proto udp_prot = {
2622 	.name			= "UDP",
2623 	.owner			= THIS_MODULE,
2624 	.close			= udp_lib_close,
2625 	.pre_connect		= udp_pre_connect,
2626 	.connect		= ip4_datagram_connect,
2627 	.disconnect		= udp_disconnect,
2628 	.ioctl			= udp_ioctl,
2629 	.init			= udp_init_sock,
2630 	.destroy		= udp_destroy_sock,
2631 	.setsockopt		= udp_setsockopt,
2632 	.getsockopt		= udp_getsockopt,
2633 	.sendmsg		= udp_sendmsg,
2634 	.recvmsg		= udp_recvmsg,
2635 	.sendpage		= udp_sendpage,
2636 	.release_cb		= ip4_datagram_release_cb,
2637 	.hash			= udp_lib_hash,
2638 	.unhash			= udp_lib_unhash,
2639 	.rehash			= udp_v4_rehash,
2640 	.get_port		= udp_v4_get_port,
2641 	.memory_allocated	= &udp_memory_allocated,
2642 	.sysctl_mem		= sysctl_udp_mem,
2643 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2644 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2645 	.obj_size		= sizeof(struct udp_sock),
2646 	.h.udp_table		= &udp_table,
2647 #ifdef CONFIG_COMPAT
2648 	.compat_setsockopt	= compat_udp_setsockopt,
2649 	.compat_getsockopt	= compat_udp_getsockopt,
2650 #endif
2651 	.diag_destroy		= udp_abort,
2652 };
2653 EXPORT_SYMBOL(udp_prot);
2654 
2655 /* ------------------------------------------------------------------------ */
2656 #ifdef CONFIG_PROC_FS
2657 
2658 static struct sock *udp_get_first(struct seq_file *seq, int start)
2659 {
2660 	struct sock *sk;
2661 	struct udp_iter_state *state = seq->private;
2662 	struct net *net = seq_file_net(seq);
2663 
2664 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2665 	     ++state->bucket) {
2666 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2667 
2668 		if (hlist_empty(&hslot->head))
2669 			continue;
2670 
2671 		spin_lock_bh(&hslot->lock);
2672 		sk_for_each(sk, &hslot->head) {
2673 			if (!net_eq(sock_net(sk), net))
2674 				continue;
2675 			if (sk->sk_family == state->family)
2676 				goto found;
2677 		}
2678 		spin_unlock_bh(&hslot->lock);
2679 	}
2680 	sk = NULL;
2681 found:
2682 	return sk;
2683 }
2684 
2685 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2686 {
2687 	struct udp_iter_state *state = seq->private;
2688 	struct net *net = seq_file_net(seq);
2689 
2690 	do {
2691 		sk = sk_next(sk);
2692 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2693 
2694 	if (!sk) {
2695 		if (state->bucket <= state->udp_table->mask)
2696 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2697 		return udp_get_first(seq, state->bucket + 1);
2698 	}
2699 	return sk;
2700 }
2701 
2702 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2703 {
2704 	struct sock *sk = udp_get_first(seq, 0);
2705 
2706 	if (sk)
2707 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2708 			--pos;
2709 	return pos ? NULL : sk;
2710 }
2711 
2712 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2713 {
2714 	struct udp_iter_state *state = seq->private;
2715 	state->bucket = MAX_UDP_PORTS;
2716 
2717 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2718 }
2719 
2720 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2721 {
2722 	struct sock *sk;
2723 
2724 	if (v == SEQ_START_TOKEN)
2725 		sk = udp_get_idx(seq, 0);
2726 	else
2727 		sk = udp_get_next(seq, v);
2728 
2729 	++*pos;
2730 	return sk;
2731 }
2732 
2733 static void udp_seq_stop(struct seq_file *seq, void *v)
2734 {
2735 	struct udp_iter_state *state = seq->private;
2736 
2737 	if (state->bucket <= state->udp_table->mask)
2738 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2739 }
2740 
2741 int udp_seq_open(struct inode *inode, struct file *file)
2742 {
2743 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2744 	struct udp_iter_state *s;
2745 	int err;
2746 
2747 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2748 			   sizeof(struct udp_iter_state));
2749 	if (err < 0)
2750 		return err;
2751 
2752 	s = ((struct seq_file *)file->private_data)->private;
2753 	s->family		= afinfo->family;
2754 	s->udp_table		= afinfo->udp_table;
2755 	return err;
2756 }
2757 EXPORT_SYMBOL(udp_seq_open);
2758 
2759 /* ------------------------------------------------------------------------ */
2760 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2761 {
2762 	struct proc_dir_entry *p;
2763 	int rc = 0;
2764 
2765 	afinfo->seq_ops.start		= udp_seq_start;
2766 	afinfo->seq_ops.next		= udp_seq_next;
2767 	afinfo->seq_ops.stop		= udp_seq_stop;
2768 
2769 	p = proc_create_data(afinfo->name, 0444, net->proc_net,
2770 			     afinfo->seq_fops, afinfo);
2771 	if (!p)
2772 		rc = -ENOMEM;
2773 	return rc;
2774 }
2775 EXPORT_SYMBOL(udp_proc_register);
2776 
2777 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2778 {
2779 	remove_proc_entry(afinfo->name, net->proc_net);
2780 }
2781 EXPORT_SYMBOL(udp_proc_unregister);
2782 
2783 /* ------------------------------------------------------------------------ */
2784 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2785 		int bucket)
2786 {
2787 	struct inet_sock *inet = inet_sk(sp);
2788 	__be32 dest = inet->inet_daddr;
2789 	__be32 src  = inet->inet_rcv_saddr;
2790 	__u16 destp	  = ntohs(inet->inet_dport);
2791 	__u16 srcp	  = ntohs(inet->inet_sport);
2792 
2793 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2794 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2795 		bucket, src, srcp, dest, destp, sp->sk_state,
2796 		sk_wmem_alloc_get(sp),
2797 		sk_rmem_alloc_get(sp),
2798 		0, 0L, 0,
2799 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2800 		0, sock_i_ino(sp),
2801 		refcount_read(&sp->sk_refcnt), sp,
2802 		atomic_read(&sp->sk_drops));
2803 }
2804 
2805 int udp4_seq_show(struct seq_file *seq, void *v)
2806 {
2807 	seq_setwidth(seq, 127);
2808 	if (v == SEQ_START_TOKEN)
2809 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2810 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2811 			   "inode ref pointer drops");
2812 	else {
2813 		struct udp_iter_state *state = seq->private;
2814 
2815 		udp4_format_sock(v, seq, state->bucket);
2816 	}
2817 	seq_pad(seq, '\n');
2818 	return 0;
2819 }
2820 
2821 static const struct file_operations udp_afinfo_seq_fops = {
2822 	.open     = udp_seq_open,
2823 	.read     = seq_read,
2824 	.llseek   = seq_lseek,
2825 	.release  = seq_release_net
2826 };
2827 
2828 /* ------------------------------------------------------------------------ */
2829 static struct udp_seq_afinfo udp4_seq_afinfo = {
2830 	.name		= "udp",
2831 	.family		= AF_INET,
2832 	.udp_table	= &udp_table,
2833 	.seq_fops	= &udp_afinfo_seq_fops,
2834 	.seq_ops	= {
2835 		.show		= udp4_seq_show,
2836 	},
2837 };
2838 
2839 static int __net_init udp4_proc_init_net(struct net *net)
2840 {
2841 	return udp_proc_register(net, &udp4_seq_afinfo);
2842 }
2843 
2844 static void __net_exit udp4_proc_exit_net(struct net *net)
2845 {
2846 	udp_proc_unregister(net, &udp4_seq_afinfo);
2847 }
2848 
2849 static struct pernet_operations udp4_net_ops = {
2850 	.init = udp4_proc_init_net,
2851 	.exit = udp4_proc_exit_net,
2852 };
2853 
2854 int __init udp4_proc_init(void)
2855 {
2856 	return register_pernet_subsys(&udp4_net_ops);
2857 }
2858 
2859 void udp4_proc_exit(void)
2860 {
2861 	unregister_pernet_subsys(&udp4_net_ops);
2862 }
2863 #endif /* CONFIG_PROC_FS */
2864 
2865 static __initdata unsigned long uhash_entries;
2866 static int __init set_uhash_entries(char *str)
2867 {
2868 	ssize_t ret;
2869 
2870 	if (!str)
2871 		return 0;
2872 
2873 	ret = kstrtoul(str, 0, &uhash_entries);
2874 	if (ret)
2875 		return 0;
2876 
2877 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2878 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2879 	return 1;
2880 }
2881 __setup("uhash_entries=", set_uhash_entries);
2882 
2883 void __init udp_table_init(struct udp_table *table, const char *name)
2884 {
2885 	unsigned int i;
2886 
2887 	table->hash = alloc_large_system_hash(name,
2888 					      2 * sizeof(struct udp_hslot),
2889 					      uhash_entries,
2890 					      21, /* one slot per 2 MB */
2891 					      0,
2892 					      &table->log,
2893 					      &table->mask,
2894 					      UDP_HTABLE_SIZE_MIN,
2895 					      64 * 1024);
2896 
2897 	table->hash2 = table->hash + (table->mask + 1);
2898 	for (i = 0; i <= table->mask; i++) {
2899 		INIT_HLIST_HEAD(&table->hash[i].head);
2900 		table->hash[i].count = 0;
2901 		spin_lock_init(&table->hash[i].lock);
2902 	}
2903 	for (i = 0; i <= table->mask; i++) {
2904 		INIT_HLIST_HEAD(&table->hash2[i].head);
2905 		table->hash2[i].count = 0;
2906 		spin_lock_init(&table->hash2[i].lock);
2907 	}
2908 }
2909 
2910 u32 udp_flow_hashrnd(void)
2911 {
2912 	static u32 hashrnd __read_mostly;
2913 
2914 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2915 
2916 	return hashrnd;
2917 }
2918 EXPORT_SYMBOL(udp_flow_hashrnd);
2919 
2920 static void __udp_sysctl_init(struct net *net)
2921 {
2922 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2923 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2924 
2925 #ifdef CONFIG_NET_L3_MASTER_DEV
2926 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
2927 #endif
2928 }
2929 
2930 static int __net_init udp_sysctl_init(struct net *net)
2931 {
2932 	__udp_sysctl_init(net);
2933 	return 0;
2934 }
2935 
2936 static struct pernet_operations __net_initdata udp_sysctl_ops = {
2937 	.init	= udp_sysctl_init,
2938 };
2939 
2940 void __init udp_init(void)
2941 {
2942 	unsigned long limit;
2943 	unsigned int i;
2944 
2945 	udp_table_init(&udp_table, "UDP");
2946 	limit = nr_free_buffer_pages() / 8;
2947 	limit = max(limit, 128UL);
2948 	sysctl_udp_mem[0] = limit / 4 * 3;
2949 	sysctl_udp_mem[1] = limit;
2950 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2951 
2952 	__udp_sysctl_init(&init_net);
2953 
2954 	/* 16 spinlocks per cpu */
2955 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2956 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2957 				GFP_KERNEL);
2958 	if (!udp_busylocks)
2959 		panic("UDP: failed to alloc udp_busylocks\n");
2960 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2961 		spin_lock_init(udp_busylocks + i);
2962 
2963 	if (register_pernet_subsys(&udp_sysctl_ops))
2964 		panic("UDP: failed to init sysctl parameters.\n");
2965 }
2966