1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 atomic_long_t udp_memory_allocated; 126 EXPORT_SYMBOL(udp_memory_allocated); 127 128 #define MAX_UDP_PORTS 65536 129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 130 131 /* IPCB reference means this can not be used from early demux */ 132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 133 { 134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 135 if (!net->ipv4.sysctl_udp_l3mdev_accept && 136 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 137 return true; 138 #endif 139 return false; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2); 225 } 226 } 227 228 return reuseport_alloc(sk); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_hslot *hslot, *hslot2; 243 struct udp_table *udptable = sk->sk_prot->h.udp_table; 244 int error = 1; 245 struct net *net = sock_net(sk); 246 247 if (!snum) { 248 int low, high, remaining; 249 unsigned int rand; 250 unsigned short first, last; 251 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 252 253 inet_get_local_port_range(net, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = prandom_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif, bool exact_dif) 370 { 371 int score; 372 struct inet_sock *inet; 373 374 if (!net_eq(sock_net(sk), net) || 375 udp_sk(sk)->udp_port_hash != hnum || 376 ipv6_only_sock(sk)) 377 return -1; 378 379 score = (sk->sk_family == PF_INET) ? 2 : 1; 380 inet = inet_sk(sk); 381 382 if (inet->inet_rcv_saddr) { 383 if (inet->inet_rcv_saddr != daddr) 384 return -1; 385 score += 4; 386 } 387 388 if (inet->inet_daddr) { 389 if (inet->inet_daddr != saddr) 390 return -1; 391 score += 4; 392 } 393 394 if (inet->inet_dport) { 395 if (inet->inet_dport != sport) 396 return -1; 397 score += 4; 398 } 399 400 if (sk->sk_bound_dev_if || exact_dif) { 401 bool dev_match = (sk->sk_bound_dev_if == dif || 402 sk->sk_bound_dev_if == sdif); 403 404 if (!dev_match) 405 return -1; 406 if (sk->sk_bound_dev_if) 407 score += 4; 408 } 409 410 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 411 score++; 412 return score; 413 } 414 415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 416 const __u16 lport, const __be32 faddr, 417 const __be16 fport) 418 { 419 static u32 udp_ehash_secret __read_mostly; 420 421 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 422 423 return __inet_ehashfn(laddr, lport, faddr, fport, 424 udp_ehash_secret + net_hash_mix(net)); 425 } 426 427 /* called with rcu_read_lock() */ 428 static struct sock *udp4_lib_lookup2(struct net *net, 429 __be32 saddr, __be16 sport, 430 __be32 daddr, unsigned int hnum, 431 int dif, int sdif, bool exact_dif, 432 struct udp_hslot *hslot2, 433 struct sk_buff *skb) 434 { 435 struct sock *sk, *result; 436 int score, badness; 437 u32 hash = 0; 438 439 result = NULL; 440 badness = 0; 441 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 442 score = compute_score(sk, net, saddr, sport, 443 daddr, hnum, dif, sdif, exact_dif); 444 if (score > badness) { 445 if (sk->sk_reuseport) { 446 hash = udp_ehashfn(net, daddr, hnum, 447 saddr, sport); 448 result = reuseport_select_sock(sk, hash, skb, 449 sizeof(struct udphdr)); 450 if (result) 451 return result; 452 } 453 badness = score; 454 result = sk; 455 } 456 } 457 return result; 458 } 459 460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 461 * harder than this. -DaveM 462 */ 463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 464 __be16 sport, __be32 daddr, __be16 dport, int dif, 465 int sdif, struct udp_table *udptable, struct sk_buff *skb) 466 { 467 struct sock *sk, *result; 468 unsigned short hnum = ntohs(dport); 469 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 470 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 471 bool exact_dif = udp_lib_exact_dif_match(net, skb); 472 int score, badness; 473 u32 hash = 0; 474 475 if (hslot->count > 10) { 476 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 477 slot2 = hash2 & udptable->mask; 478 hslot2 = &udptable->hash2[slot2]; 479 if (hslot->count < hslot2->count) 480 goto begin; 481 482 result = udp4_lib_lookup2(net, saddr, sport, 483 daddr, hnum, dif, sdif, 484 exact_dif, hslot2, skb); 485 if (!result) { 486 unsigned int old_slot2 = slot2; 487 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 488 slot2 = hash2 & udptable->mask; 489 /* avoid searching the same slot again. */ 490 if (unlikely(slot2 == old_slot2)) 491 return result; 492 493 hslot2 = &udptable->hash2[slot2]; 494 if (hslot->count < hslot2->count) 495 goto begin; 496 497 result = udp4_lib_lookup2(net, saddr, sport, 498 daddr, hnum, dif, sdif, 499 exact_dif, hslot2, skb); 500 } 501 return result; 502 } 503 begin: 504 result = NULL; 505 badness = 0; 506 sk_for_each_rcu(sk, &hslot->head) { 507 score = compute_score(sk, net, saddr, sport, 508 daddr, hnum, dif, sdif, exact_dif); 509 if (score > badness) { 510 if (sk->sk_reuseport) { 511 hash = udp_ehashfn(net, daddr, hnum, 512 saddr, sport); 513 result = reuseport_select_sock(sk, hash, skb, 514 sizeof(struct udphdr)); 515 if (result) 516 return result; 517 } 518 result = sk; 519 badness = score; 520 } 521 } 522 return result; 523 } 524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 525 526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 527 __be16 sport, __be16 dport, 528 struct udp_table *udptable) 529 { 530 const struct iphdr *iph = ip_hdr(skb); 531 532 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 533 iph->daddr, dport, inet_iif(skb), 534 inet_sdif(skb), udptable, skb); 535 } 536 537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 538 __be16 sport, __be16 dport) 539 { 540 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 541 } 542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 543 544 /* Must be called under rcu_read_lock(). 545 * Does increment socket refcount. 546 */ 547 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \ 548 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \ 549 IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 550 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 551 __be32 daddr, __be16 dport, int dif) 552 { 553 struct sock *sk; 554 555 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 556 dif, 0, &udp_table, NULL); 557 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 558 sk = NULL; 559 return sk; 560 } 561 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 562 #endif 563 564 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 565 __be16 loc_port, __be32 loc_addr, 566 __be16 rmt_port, __be32 rmt_addr, 567 int dif, int sdif, unsigned short hnum) 568 { 569 struct inet_sock *inet = inet_sk(sk); 570 571 if (!net_eq(sock_net(sk), net) || 572 udp_sk(sk)->udp_port_hash != hnum || 573 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 574 (inet->inet_dport != rmt_port && inet->inet_dport) || 575 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 576 ipv6_only_sock(sk) || 577 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 578 sk->sk_bound_dev_if != sdif)) 579 return false; 580 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 581 return false; 582 return true; 583 } 584 585 /* 586 * This routine is called by the ICMP module when it gets some 587 * sort of error condition. If err < 0 then the socket should 588 * be closed and the error returned to the user. If err > 0 589 * it's just the icmp type << 8 | icmp code. 590 * Header points to the ip header of the error packet. We move 591 * on past this. Then (as it used to claim before adjustment) 592 * header points to the first 8 bytes of the udp header. We need 593 * to find the appropriate port. 594 */ 595 596 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 597 { 598 struct inet_sock *inet; 599 const struct iphdr *iph = (const struct iphdr *)skb->data; 600 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 601 const int type = icmp_hdr(skb)->type; 602 const int code = icmp_hdr(skb)->code; 603 struct sock *sk; 604 int harderr; 605 int err; 606 struct net *net = dev_net(skb->dev); 607 608 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 609 iph->saddr, uh->source, skb->dev->ifindex, 0, 610 udptable, NULL); 611 if (!sk) { 612 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 613 return; /* No socket for error */ 614 } 615 616 err = 0; 617 harderr = 0; 618 inet = inet_sk(sk); 619 620 switch (type) { 621 default: 622 case ICMP_TIME_EXCEEDED: 623 err = EHOSTUNREACH; 624 break; 625 case ICMP_SOURCE_QUENCH: 626 goto out; 627 case ICMP_PARAMETERPROB: 628 err = EPROTO; 629 harderr = 1; 630 break; 631 case ICMP_DEST_UNREACH: 632 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 633 ipv4_sk_update_pmtu(skb, sk, info); 634 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 635 err = EMSGSIZE; 636 harderr = 1; 637 break; 638 } 639 goto out; 640 } 641 err = EHOSTUNREACH; 642 if (code <= NR_ICMP_UNREACH) { 643 harderr = icmp_err_convert[code].fatal; 644 err = icmp_err_convert[code].errno; 645 } 646 break; 647 case ICMP_REDIRECT: 648 ipv4_sk_redirect(skb, sk); 649 goto out; 650 } 651 652 /* 653 * RFC1122: OK. Passes ICMP errors back to application, as per 654 * 4.1.3.3. 655 */ 656 if (!inet->recverr) { 657 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 658 goto out; 659 } else 660 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 661 662 sk->sk_err = err; 663 sk->sk_error_report(sk); 664 out: 665 return; 666 } 667 668 void udp_err(struct sk_buff *skb, u32 info) 669 { 670 __udp4_lib_err(skb, info, &udp_table); 671 } 672 673 /* 674 * Throw away all pending data and cancel the corking. Socket is locked. 675 */ 676 void udp_flush_pending_frames(struct sock *sk) 677 { 678 struct udp_sock *up = udp_sk(sk); 679 680 if (up->pending) { 681 up->len = 0; 682 up->pending = 0; 683 ip_flush_pending_frames(sk); 684 } 685 } 686 EXPORT_SYMBOL(udp_flush_pending_frames); 687 688 /** 689 * udp4_hwcsum - handle outgoing HW checksumming 690 * @skb: sk_buff containing the filled-in UDP header 691 * (checksum field must be zeroed out) 692 * @src: source IP address 693 * @dst: destination IP address 694 */ 695 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 696 { 697 struct udphdr *uh = udp_hdr(skb); 698 int offset = skb_transport_offset(skb); 699 int len = skb->len - offset; 700 int hlen = len; 701 __wsum csum = 0; 702 703 if (!skb_has_frag_list(skb)) { 704 /* 705 * Only one fragment on the socket. 706 */ 707 skb->csum_start = skb_transport_header(skb) - skb->head; 708 skb->csum_offset = offsetof(struct udphdr, check); 709 uh->check = ~csum_tcpudp_magic(src, dst, len, 710 IPPROTO_UDP, 0); 711 } else { 712 struct sk_buff *frags; 713 714 /* 715 * HW-checksum won't work as there are two or more 716 * fragments on the socket so that all csums of sk_buffs 717 * should be together 718 */ 719 skb_walk_frags(skb, frags) { 720 csum = csum_add(csum, frags->csum); 721 hlen -= frags->len; 722 } 723 724 csum = skb_checksum(skb, offset, hlen, csum); 725 skb->ip_summed = CHECKSUM_NONE; 726 727 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 728 if (uh->check == 0) 729 uh->check = CSUM_MANGLED_0; 730 } 731 } 732 EXPORT_SYMBOL_GPL(udp4_hwcsum); 733 734 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 735 * for the simple case like when setting the checksum for a UDP tunnel. 736 */ 737 void udp_set_csum(bool nocheck, struct sk_buff *skb, 738 __be32 saddr, __be32 daddr, int len) 739 { 740 struct udphdr *uh = udp_hdr(skb); 741 742 if (nocheck) { 743 uh->check = 0; 744 } else if (skb_is_gso(skb)) { 745 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 746 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 747 uh->check = 0; 748 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 749 if (uh->check == 0) 750 uh->check = CSUM_MANGLED_0; 751 } else { 752 skb->ip_summed = CHECKSUM_PARTIAL; 753 skb->csum_start = skb_transport_header(skb) - skb->head; 754 skb->csum_offset = offsetof(struct udphdr, check); 755 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 756 } 757 } 758 EXPORT_SYMBOL(udp_set_csum); 759 760 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 761 struct inet_cork *cork) 762 { 763 struct sock *sk = skb->sk; 764 struct inet_sock *inet = inet_sk(sk); 765 struct udphdr *uh; 766 int err = 0; 767 int is_udplite = IS_UDPLITE(sk); 768 int offset = skb_transport_offset(skb); 769 int len = skb->len - offset; 770 __wsum csum = 0; 771 772 /* 773 * Create a UDP header 774 */ 775 uh = udp_hdr(skb); 776 uh->source = inet->inet_sport; 777 uh->dest = fl4->fl4_dport; 778 uh->len = htons(len); 779 uh->check = 0; 780 781 if (cork->gso_size) { 782 const int hlen = skb_network_header_len(skb) + 783 sizeof(struct udphdr); 784 785 if (hlen + cork->gso_size > cork->fragsize) 786 return -EINVAL; 787 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) 788 return -EINVAL; 789 if (sk->sk_no_check_tx) 790 return -EINVAL; 791 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 792 dst_xfrm(skb_dst(skb))) 793 return -EIO; 794 795 skb_shinfo(skb)->gso_size = cork->gso_size; 796 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 797 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh), 798 cork->gso_size); 799 goto csum_partial; 800 } 801 802 if (is_udplite) /* UDP-Lite */ 803 csum = udplite_csum(skb); 804 805 else if (sk->sk_no_check_tx) { /* UDP csum off */ 806 807 skb->ip_summed = CHECKSUM_NONE; 808 goto send; 809 810 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 811 csum_partial: 812 813 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 814 goto send; 815 816 } else 817 csum = udp_csum(skb); 818 819 /* add protocol-dependent pseudo-header */ 820 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 821 sk->sk_protocol, csum); 822 if (uh->check == 0) 823 uh->check = CSUM_MANGLED_0; 824 825 send: 826 err = ip_send_skb(sock_net(sk), skb); 827 if (err) { 828 if (err == -ENOBUFS && !inet->recverr) { 829 UDP_INC_STATS(sock_net(sk), 830 UDP_MIB_SNDBUFERRORS, is_udplite); 831 err = 0; 832 } 833 } else 834 UDP_INC_STATS(sock_net(sk), 835 UDP_MIB_OUTDATAGRAMS, is_udplite); 836 return err; 837 } 838 839 /* 840 * Push out all pending data as one UDP datagram. Socket is locked. 841 */ 842 int udp_push_pending_frames(struct sock *sk) 843 { 844 struct udp_sock *up = udp_sk(sk); 845 struct inet_sock *inet = inet_sk(sk); 846 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 847 struct sk_buff *skb; 848 int err = 0; 849 850 skb = ip_finish_skb(sk, fl4); 851 if (!skb) 852 goto out; 853 854 err = udp_send_skb(skb, fl4, &inet->cork.base); 855 856 out: 857 up->len = 0; 858 up->pending = 0; 859 return err; 860 } 861 EXPORT_SYMBOL(udp_push_pending_frames); 862 863 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 864 { 865 switch (cmsg->cmsg_type) { 866 case UDP_SEGMENT: 867 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 868 return -EINVAL; 869 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 870 return 0; 871 default: 872 return -EINVAL; 873 } 874 } 875 876 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 877 { 878 struct cmsghdr *cmsg; 879 bool need_ip = false; 880 int err; 881 882 for_each_cmsghdr(cmsg, msg) { 883 if (!CMSG_OK(msg, cmsg)) 884 return -EINVAL; 885 886 if (cmsg->cmsg_level != SOL_UDP) { 887 need_ip = true; 888 continue; 889 } 890 891 err = __udp_cmsg_send(cmsg, gso_size); 892 if (err) 893 return err; 894 } 895 896 return need_ip; 897 } 898 EXPORT_SYMBOL_GPL(udp_cmsg_send); 899 900 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 901 { 902 struct inet_sock *inet = inet_sk(sk); 903 struct udp_sock *up = udp_sk(sk); 904 struct flowi4 fl4_stack; 905 struct flowi4 *fl4; 906 int ulen = len; 907 struct ipcm_cookie ipc; 908 struct rtable *rt = NULL; 909 int free = 0; 910 int connected = 0; 911 __be32 daddr, faddr, saddr; 912 __be16 dport; 913 u8 tos; 914 int err, is_udplite = IS_UDPLITE(sk); 915 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 916 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 917 struct sk_buff *skb; 918 struct ip_options_data opt_copy; 919 920 if (len > 0xFFFF) 921 return -EMSGSIZE; 922 923 /* 924 * Check the flags. 925 */ 926 927 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 928 return -EOPNOTSUPP; 929 930 ipc.opt = NULL; 931 ipc.tx_flags = 0; 932 ipc.ttl = 0; 933 ipc.tos = -1; 934 935 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 936 937 fl4 = &inet->cork.fl.u.ip4; 938 if (up->pending) { 939 /* 940 * There are pending frames. 941 * The socket lock must be held while it's corked. 942 */ 943 lock_sock(sk); 944 if (likely(up->pending)) { 945 if (unlikely(up->pending != AF_INET)) { 946 release_sock(sk); 947 return -EINVAL; 948 } 949 goto do_append_data; 950 } 951 release_sock(sk); 952 } 953 ulen += sizeof(struct udphdr); 954 955 /* 956 * Get and verify the address. 957 */ 958 if (msg->msg_name) { 959 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 960 if (msg->msg_namelen < sizeof(*usin)) 961 return -EINVAL; 962 if (usin->sin_family != AF_INET) { 963 if (usin->sin_family != AF_UNSPEC) 964 return -EAFNOSUPPORT; 965 } 966 967 daddr = usin->sin_addr.s_addr; 968 dport = usin->sin_port; 969 if (dport == 0) 970 return -EINVAL; 971 } else { 972 if (sk->sk_state != TCP_ESTABLISHED) 973 return -EDESTADDRREQ; 974 daddr = inet->inet_daddr; 975 dport = inet->inet_dport; 976 /* Open fast path for connected socket. 977 Route will not be used, if at least one option is set. 978 */ 979 connected = 1; 980 } 981 982 ipc.sockc.tsflags = sk->sk_tsflags; 983 ipc.addr = inet->inet_saddr; 984 ipc.oif = sk->sk_bound_dev_if; 985 ipc.gso_size = up->gso_size; 986 987 if (msg->msg_controllen) { 988 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 989 if (err > 0) 990 err = ip_cmsg_send(sk, msg, &ipc, 991 sk->sk_family == AF_INET6); 992 if (unlikely(err < 0)) { 993 kfree(ipc.opt); 994 return err; 995 } 996 if (ipc.opt) 997 free = 1; 998 connected = 0; 999 } 1000 if (!ipc.opt) { 1001 struct ip_options_rcu *inet_opt; 1002 1003 rcu_read_lock(); 1004 inet_opt = rcu_dereference(inet->inet_opt); 1005 if (inet_opt) { 1006 memcpy(&opt_copy, inet_opt, 1007 sizeof(*inet_opt) + inet_opt->opt.optlen); 1008 ipc.opt = &opt_copy.opt; 1009 } 1010 rcu_read_unlock(); 1011 } 1012 1013 saddr = ipc.addr; 1014 ipc.addr = faddr = daddr; 1015 1016 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 1017 1018 if (ipc.opt && ipc.opt->opt.srr) { 1019 if (!daddr) { 1020 err = -EINVAL; 1021 goto out_free; 1022 } 1023 faddr = ipc.opt->opt.faddr; 1024 connected = 0; 1025 } 1026 tos = get_rttos(&ipc, inet); 1027 if (sock_flag(sk, SOCK_LOCALROUTE) || 1028 (msg->msg_flags & MSG_DONTROUTE) || 1029 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1030 tos |= RTO_ONLINK; 1031 connected = 0; 1032 } 1033 1034 if (ipv4_is_multicast(daddr)) { 1035 if (!ipc.oif) 1036 ipc.oif = inet->mc_index; 1037 if (!saddr) 1038 saddr = inet->mc_addr; 1039 connected = 0; 1040 } else if (!ipc.oif) { 1041 ipc.oif = inet->uc_index; 1042 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1043 /* oif is set, packet is to local broadcast and 1044 * and uc_index is set. oif is most likely set 1045 * by sk_bound_dev_if. If uc_index != oif check if the 1046 * oif is an L3 master and uc_index is an L3 slave. 1047 * If so, we want to allow the send using the uc_index. 1048 */ 1049 if (ipc.oif != inet->uc_index && 1050 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1051 inet->uc_index)) { 1052 ipc.oif = inet->uc_index; 1053 } 1054 } 1055 1056 if (connected) 1057 rt = (struct rtable *)sk_dst_check(sk, 0); 1058 1059 if (!rt) { 1060 struct net *net = sock_net(sk); 1061 __u8 flow_flags = inet_sk_flowi_flags(sk); 1062 1063 fl4 = &fl4_stack; 1064 1065 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1066 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1067 flow_flags, 1068 faddr, saddr, dport, inet->inet_sport, 1069 sk->sk_uid); 1070 1071 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1072 rt = ip_route_output_flow(net, fl4, sk); 1073 if (IS_ERR(rt)) { 1074 err = PTR_ERR(rt); 1075 rt = NULL; 1076 if (err == -ENETUNREACH) 1077 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1078 goto out; 1079 } 1080 1081 err = -EACCES; 1082 if ((rt->rt_flags & RTCF_BROADCAST) && 1083 !sock_flag(sk, SOCK_BROADCAST)) 1084 goto out; 1085 if (connected) 1086 sk_dst_set(sk, dst_clone(&rt->dst)); 1087 } 1088 1089 if (msg->msg_flags&MSG_CONFIRM) 1090 goto do_confirm; 1091 back_from_confirm: 1092 1093 saddr = fl4->saddr; 1094 if (!ipc.addr) 1095 daddr = ipc.addr = fl4->daddr; 1096 1097 /* Lockless fast path for the non-corking case. */ 1098 if (!corkreq) { 1099 struct inet_cork cork; 1100 1101 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1102 sizeof(struct udphdr), &ipc, &rt, 1103 &cork, msg->msg_flags); 1104 err = PTR_ERR(skb); 1105 if (!IS_ERR_OR_NULL(skb)) 1106 err = udp_send_skb(skb, fl4, &cork); 1107 goto out; 1108 } 1109 1110 lock_sock(sk); 1111 if (unlikely(up->pending)) { 1112 /* The socket is already corked while preparing it. */ 1113 /* ... which is an evident application bug. --ANK */ 1114 release_sock(sk); 1115 1116 net_dbg_ratelimited("socket already corked\n"); 1117 err = -EINVAL; 1118 goto out; 1119 } 1120 /* 1121 * Now cork the socket to pend data. 1122 */ 1123 fl4 = &inet->cork.fl.u.ip4; 1124 fl4->daddr = daddr; 1125 fl4->saddr = saddr; 1126 fl4->fl4_dport = dport; 1127 fl4->fl4_sport = inet->inet_sport; 1128 up->pending = AF_INET; 1129 1130 do_append_data: 1131 up->len += ulen; 1132 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1133 sizeof(struct udphdr), &ipc, &rt, 1134 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1135 if (err) 1136 udp_flush_pending_frames(sk); 1137 else if (!corkreq) 1138 err = udp_push_pending_frames(sk); 1139 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1140 up->pending = 0; 1141 release_sock(sk); 1142 1143 out: 1144 ip_rt_put(rt); 1145 out_free: 1146 if (free) 1147 kfree(ipc.opt); 1148 if (!err) 1149 return len; 1150 /* 1151 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1152 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1153 * we don't have a good statistic (IpOutDiscards but it can be too many 1154 * things). We could add another new stat but at least for now that 1155 * seems like overkill. 1156 */ 1157 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1158 UDP_INC_STATS(sock_net(sk), 1159 UDP_MIB_SNDBUFERRORS, is_udplite); 1160 } 1161 return err; 1162 1163 do_confirm: 1164 if (msg->msg_flags & MSG_PROBE) 1165 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1166 if (!(msg->msg_flags&MSG_PROBE) || len) 1167 goto back_from_confirm; 1168 err = 0; 1169 goto out; 1170 } 1171 EXPORT_SYMBOL(udp_sendmsg); 1172 1173 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1174 size_t size, int flags) 1175 { 1176 struct inet_sock *inet = inet_sk(sk); 1177 struct udp_sock *up = udp_sk(sk); 1178 int ret; 1179 1180 if (flags & MSG_SENDPAGE_NOTLAST) 1181 flags |= MSG_MORE; 1182 1183 if (!up->pending) { 1184 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1185 1186 /* Call udp_sendmsg to specify destination address which 1187 * sendpage interface can't pass. 1188 * This will succeed only when the socket is connected. 1189 */ 1190 ret = udp_sendmsg(sk, &msg, 0); 1191 if (ret < 0) 1192 return ret; 1193 } 1194 1195 lock_sock(sk); 1196 1197 if (unlikely(!up->pending)) { 1198 release_sock(sk); 1199 1200 net_dbg_ratelimited("cork failed\n"); 1201 return -EINVAL; 1202 } 1203 1204 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1205 page, offset, size, flags); 1206 if (ret == -EOPNOTSUPP) { 1207 release_sock(sk); 1208 return sock_no_sendpage(sk->sk_socket, page, offset, 1209 size, flags); 1210 } 1211 if (ret < 0) { 1212 udp_flush_pending_frames(sk); 1213 goto out; 1214 } 1215 1216 up->len += size; 1217 if (!(up->corkflag || (flags&MSG_MORE))) 1218 ret = udp_push_pending_frames(sk); 1219 if (!ret) 1220 ret = size; 1221 out: 1222 release_sock(sk); 1223 return ret; 1224 } 1225 1226 #define UDP_SKB_IS_STATELESS 0x80000000 1227 1228 static void udp_set_dev_scratch(struct sk_buff *skb) 1229 { 1230 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1231 1232 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1233 scratch->_tsize_state = skb->truesize; 1234 #if BITS_PER_LONG == 64 1235 scratch->len = skb->len; 1236 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1237 scratch->is_linear = !skb_is_nonlinear(skb); 1238 #endif 1239 /* all head states execept sp (dst, sk, nf) are always cleared by 1240 * udp_rcv() and we need to preserve secpath, if present, to eventually 1241 * process IP_CMSG_PASSSEC at recvmsg() time 1242 */ 1243 if (likely(!skb_sec_path(skb))) 1244 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1245 } 1246 1247 static int udp_skb_truesize(struct sk_buff *skb) 1248 { 1249 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1250 } 1251 1252 static bool udp_skb_has_head_state(struct sk_buff *skb) 1253 { 1254 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1255 } 1256 1257 /* fully reclaim rmem/fwd memory allocated for skb */ 1258 static void udp_rmem_release(struct sock *sk, int size, int partial, 1259 bool rx_queue_lock_held) 1260 { 1261 struct udp_sock *up = udp_sk(sk); 1262 struct sk_buff_head *sk_queue; 1263 int amt; 1264 1265 if (likely(partial)) { 1266 up->forward_deficit += size; 1267 size = up->forward_deficit; 1268 if (size < (sk->sk_rcvbuf >> 2)) 1269 return; 1270 } else { 1271 size += up->forward_deficit; 1272 } 1273 up->forward_deficit = 0; 1274 1275 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1276 * if the called don't held it already 1277 */ 1278 sk_queue = &sk->sk_receive_queue; 1279 if (!rx_queue_lock_held) 1280 spin_lock(&sk_queue->lock); 1281 1282 1283 sk->sk_forward_alloc += size; 1284 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1285 sk->sk_forward_alloc -= amt; 1286 1287 if (amt) 1288 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1289 1290 atomic_sub(size, &sk->sk_rmem_alloc); 1291 1292 /* this can save us from acquiring the rx queue lock on next receive */ 1293 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1294 1295 if (!rx_queue_lock_held) 1296 spin_unlock(&sk_queue->lock); 1297 } 1298 1299 /* Note: called with reader_queue.lock held. 1300 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1301 * This avoids a cache line miss while receive_queue lock is held. 1302 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1303 */ 1304 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1305 { 1306 prefetch(&skb->data); 1307 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1308 } 1309 EXPORT_SYMBOL(udp_skb_destructor); 1310 1311 /* as above, but the caller held the rx queue lock, too */ 1312 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1313 { 1314 prefetch(&skb->data); 1315 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1316 } 1317 1318 /* Idea of busylocks is to let producers grab an extra spinlock 1319 * to relieve pressure on the receive_queue spinlock shared by consumer. 1320 * Under flood, this means that only one producer can be in line 1321 * trying to acquire the receive_queue spinlock. 1322 * These busylock can be allocated on a per cpu manner, instead of a 1323 * per socket one (that would consume a cache line per socket) 1324 */ 1325 static int udp_busylocks_log __read_mostly; 1326 static spinlock_t *udp_busylocks __read_mostly; 1327 1328 static spinlock_t *busylock_acquire(void *ptr) 1329 { 1330 spinlock_t *busy; 1331 1332 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1333 spin_lock(busy); 1334 return busy; 1335 } 1336 1337 static void busylock_release(spinlock_t *busy) 1338 { 1339 if (busy) 1340 spin_unlock(busy); 1341 } 1342 1343 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1344 { 1345 struct sk_buff_head *list = &sk->sk_receive_queue; 1346 int rmem, delta, amt, err = -ENOMEM; 1347 spinlock_t *busy = NULL; 1348 int size; 1349 1350 /* try to avoid the costly atomic add/sub pair when the receive 1351 * queue is full; always allow at least a packet 1352 */ 1353 rmem = atomic_read(&sk->sk_rmem_alloc); 1354 if (rmem > sk->sk_rcvbuf) 1355 goto drop; 1356 1357 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1358 * having linear skbs : 1359 * - Reduce memory overhead and thus increase receive queue capacity 1360 * - Less cache line misses at copyout() time 1361 * - Less work at consume_skb() (less alien page frag freeing) 1362 */ 1363 if (rmem > (sk->sk_rcvbuf >> 1)) { 1364 skb_condense(skb); 1365 1366 busy = busylock_acquire(sk); 1367 } 1368 size = skb->truesize; 1369 udp_set_dev_scratch(skb); 1370 1371 /* we drop only if the receive buf is full and the receive 1372 * queue contains some other skb 1373 */ 1374 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1375 if (rmem > (size + sk->sk_rcvbuf)) 1376 goto uncharge_drop; 1377 1378 spin_lock(&list->lock); 1379 if (size >= sk->sk_forward_alloc) { 1380 amt = sk_mem_pages(size); 1381 delta = amt << SK_MEM_QUANTUM_SHIFT; 1382 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1383 err = -ENOBUFS; 1384 spin_unlock(&list->lock); 1385 goto uncharge_drop; 1386 } 1387 1388 sk->sk_forward_alloc += delta; 1389 } 1390 1391 sk->sk_forward_alloc -= size; 1392 1393 /* no need to setup a destructor, we will explicitly release the 1394 * forward allocated memory on dequeue 1395 */ 1396 sock_skb_set_dropcount(sk, skb); 1397 1398 __skb_queue_tail(list, skb); 1399 spin_unlock(&list->lock); 1400 1401 if (!sock_flag(sk, SOCK_DEAD)) 1402 sk->sk_data_ready(sk); 1403 1404 busylock_release(busy); 1405 return 0; 1406 1407 uncharge_drop: 1408 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1409 1410 drop: 1411 atomic_inc(&sk->sk_drops); 1412 busylock_release(busy); 1413 return err; 1414 } 1415 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1416 1417 void udp_destruct_sock(struct sock *sk) 1418 { 1419 /* reclaim completely the forward allocated memory */ 1420 struct udp_sock *up = udp_sk(sk); 1421 unsigned int total = 0; 1422 struct sk_buff *skb; 1423 1424 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1425 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1426 total += skb->truesize; 1427 kfree_skb(skb); 1428 } 1429 udp_rmem_release(sk, total, 0, true); 1430 1431 inet_sock_destruct(sk); 1432 } 1433 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1434 1435 int udp_init_sock(struct sock *sk) 1436 { 1437 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1438 sk->sk_destruct = udp_destruct_sock; 1439 return 0; 1440 } 1441 EXPORT_SYMBOL_GPL(udp_init_sock); 1442 1443 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1444 { 1445 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1446 bool slow = lock_sock_fast(sk); 1447 1448 sk_peek_offset_bwd(sk, len); 1449 unlock_sock_fast(sk, slow); 1450 } 1451 1452 if (!skb_unref(skb)) 1453 return; 1454 1455 /* In the more common cases we cleared the head states previously, 1456 * see __udp_queue_rcv_skb(). 1457 */ 1458 if (unlikely(udp_skb_has_head_state(skb))) 1459 skb_release_head_state(skb); 1460 __consume_stateless_skb(skb); 1461 } 1462 EXPORT_SYMBOL_GPL(skb_consume_udp); 1463 1464 static struct sk_buff *__first_packet_length(struct sock *sk, 1465 struct sk_buff_head *rcvq, 1466 int *total) 1467 { 1468 struct sk_buff *skb; 1469 1470 while ((skb = skb_peek(rcvq)) != NULL) { 1471 if (udp_lib_checksum_complete(skb)) { 1472 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1473 IS_UDPLITE(sk)); 1474 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1475 IS_UDPLITE(sk)); 1476 atomic_inc(&sk->sk_drops); 1477 __skb_unlink(skb, rcvq); 1478 *total += skb->truesize; 1479 kfree_skb(skb); 1480 } else { 1481 /* the csum related bits could be changed, refresh 1482 * the scratch area 1483 */ 1484 udp_set_dev_scratch(skb); 1485 break; 1486 } 1487 } 1488 return skb; 1489 } 1490 1491 /** 1492 * first_packet_length - return length of first packet in receive queue 1493 * @sk: socket 1494 * 1495 * Drops all bad checksum frames, until a valid one is found. 1496 * Returns the length of found skb, or -1 if none is found. 1497 */ 1498 static int first_packet_length(struct sock *sk) 1499 { 1500 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1501 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1502 struct sk_buff *skb; 1503 int total = 0; 1504 int res; 1505 1506 spin_lock_bh(&rcvq->lock); 1507 skb = __first_packet_length(sk, rcvq, &total); 1508 if (!skb && !skb_queue_empty(sk_queue)) { 1509 spin_lock(&sk_queue->lock); 1510 skb_queue_splice_tail_init(sk_queue, rcvq); 1511 spin_unlock(&sk_queue->lock); 1512 1513 skb = __first_packet_length(sk, rcvq, &total); 1514 } 1515 res = skb ? skb->len : -1; 1516 if (total) 1517 udp_rmem_release(sk, total, 1, false); 1518 spin_unlock_bh(&rcvq->lock); 1519 return res; 1520 } 1521 1522 /* 1523 * IOCTL requests applicable to the UDP protocol 1524 */ 1525 1526 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1527 { 1528 switch (cmd) { 1529 case SIOCOUTQ: 1530 { 1531 int amount = sk_wmem_alloc_get(sk); 1532 1533 return put_user(amount, (int __user *)arg); 1534 } 1535 1536 case SIOCINQ: 1537 { 1538 int amount = max_t(int, 0, first_packet_length(sk)); 1539 1540 return put_user(amount, (int __user *)arg); 1541 } 1542 1543 default: 1544 return -ENOIOCTLCMD; 1545 } 1546 1547 return 0; 1548 } 1549 EXPORT_SYMBOL(udp_ioctl); 1550 1551 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1552 int noblock, int *peeked, int *off, int *err) 1553 { 1554 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1555 struct sk_buff_head *queue; 1556 struct sk_buff *last; 1557 long timeo; 1558 int error; 1559 1560 queue = &udp_sk(sk)->reader_queue; 1561 flags |= noblock ? MSG_DONTWAIT : 0; 1562 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1563 do { 1564 struct sk_buff *skb; 1565 1566 error = sock_error(sk); 1567 if (error) 1568 break; 1569 1570 error = -EAGAIN; 1571 *peeked = 0; 1572 do { 1573 spin_lock_bh(&queue->lock); 1574 skb = __skb_try_recv_from_queue(sk, queue, flags, 1575 udp_skb_destructor, 1576 peeked, off, err, 1577 &last); 1578 if (skb) { 1579 spin_unlock_bh(&queue->lock); 1580 return skb; 1581 } 1582 1583 if (skb_queue_empty(sk_queue)) { 1584 spin_unlock_bh(&queue->lock); 1585 goto busy_check; 1586 } 1587 1588 /* refill the reader queue and walk it again 1589 * keep both queues locked to avoid re-acquiring 1590 * the sk_receive_queue lock if fwd memory scheduling 1591 * is needed. 1592 */ 1593 spin_lock(&sk_queue->lock); 1594 skb_queue_splice_tail_init(sk_queue, queue); 1595 1596 skb = __skb_try_recv_from_queue(sk, queue, flags, 1597 udp_skb_dtor_locked, 1598 peeked, off, err, 1599 &last); 1600 spin_unlock(&sk_queue->lock); 1601 spin_unlock_bh(&queue->lock); 1602 if (skb) 1603 return skb; 1604 1605 busy_check: 1606 if (!sk_can_busy_loop(sk)) 1607 break; 1608 1609 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1610 } while (!skb_queue_empty(sk_queue)); 1611 1612 /* sk_queue is empty, reader_queue may contain peeked packets */ 1613 } while (timeo && 1614 !__skb_wait_for_more_packets(sk, &error, &timeo, 1615 (struct sk_buff *)sk_queue)); 1616 1617 *err = error; 1618 return NULL; 1619 } 1620 EXPORT_SYMBOL_GPL(__skb_recv_udp); 1621 1622 /* 1623 * This should be easy, if there is something there we 1624 * return it, otherwise we block. 1625 */ 1626 1627 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1628 int flags, int *addr_len) 1629 { 1630 struct inet_sock *inet = inet_sk(sk); 1631 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1632 struct sk_buff *skb; 1633 unsigned int ulen, copied; 1634 int peeked, peeking, off; 1635 int err; 1636 int is_udplite = IS_UDPLITE(sk); 1637 bool checksum_valid = false; 1638 1639 if (flags & MSG_ERRQUEUE) 1640 return ip_recv_error(sk, msg, len, addr_len); 1641 1642 try_again: 1643 peeking = flags & MSG_PEEK; 1644 off = sk_peek_offset(sk, flags); 1645 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1646 if (!skb) 1647 return err; 1648 1649 ulen = udp_skb_len(skb); 1650 copied = len; 1651 if (copied > ulen - off) 1652 copied = ulen - off; 1653 else if (copied < ulen) 1654 msg->msg_flags |= MSG_TRUNC; 1655 1656 /* 1657 * If checksum is needed at all, try to do it while copying the 1658 * data. If the data is truncated, or if we only want a partial 1659 * coverage checksum (UDP-Lite), do it before the copy. 1660 */ 1661 1662 if (copied < ulen || peeking || 1663 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1664 checksum_valid = udp_skb_csum_unnecessary(skb) || 1665 !__udp_lib_checksum_complete(skb); 1666 if (!checksum_valid) 1667 goto csum_copy_err; 1668 } 1669 1670 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1671 if (udp_skb_is_linear(skb)) 1672 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1673 else 1674 err = skb_copy_datagram_msg(skb, off, msg, copied); 1675 } else { 1676 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1677 1678 if (err == -EINVAL) 1679 goto csum_copy_err; 1680 } 1681 1682 if (unlikely(err)) { 1683 if (!peeked) { 1684 atomic_inc(&sk->sk_drops); 1685 UDP_INC_STATS(sock_net(sk), 1686 UDP_MIB_INERRORS, is_udplite); 1687 } 1688 kfree_skb(skb); 1689 return err; 1690 } 1691 1692 if (!peeked) 1693 UDP_INC_STATS(sock_net(sk), 1694 UDP_MIB_INDATAGRAMS, is_udplite); 1695 1696 sock_recv_ts_and_drops(msg, sk, skb); 1697 1698 /* Copy the address. */ 1699 if (sin) { 1700 sin->sin_family = AF_INET; 1701 sin->sin_port = udp_hdr(skb)->source; 1702 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1703 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1704 *addr_len = sizeof(*sin); 1705 } 1706 if (inet->cmsg_flags) 1707 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1708 1709 err = copied; 1710 if (flags & MSG_TRUNC) 1711 err = ulen; 1712 1713 skb_consume_udp(sk, skb, peeking ? -err : err); 1714 return err; 1715 1716 csum_copy_err: 1717 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1718 udp_skb_destructor)) { 1719 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1720 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1721 } 1722 kfree_skb(skb); 1723 1724 /* starting over for a new packet, but check if we need to yield */ 1725 cond_resched(); 1726 msg->msg_flags &= ~MSG_TRUNC; 1727 goto try_again; 1728 } 1729 1730 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1731 { 1732 /* This check is replicated from __ip4_datagram_connect() and 1733 * intended to prevent BPF program called below from accessing bytes 1734 * that are out of the bound specified by user in addr_len. 1735 */ 1736 if (addr_len < sizeof(struct sockaddr_in)) 1737 return -EINVAL; 1738 1739 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1740 } 1741 EXPORT_SYMBOL(udp_pre_connect); 1742 1743 int __udp_disconnect(struct sock *sk, int flags) 1744 { 1745 struct inet_sock *inet = inet_sk(sk); 1746 /* 1747 * 1003.1g - break association. 1748 */ 1749 1750 sk->sk_state = TCP_CLOSE; 1751 inet->inet_daddr = 0; 1752 inet->inet_dport = 0; 1753 sock_rps_reset_rxhash(sk); 1754 sk->sk_bound_dev_if = 0; 1755 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1756 inet_reset_saddr(sk); 1757 1758 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1759 sk->sk_prot->unhash(sk); 1760 inet->inet_sport = 0; 1761 } 1762 sk_dst_reset(sk); 1763 return 0; 1764 } 1765 EXPORT_SYMBOL(__udp_disconnect); 1766 1767 int udp_disconnect(struct sock *sk, int flags) 1768 { 1769 lock_sock(sk); 1770 __udp_disconnect(sk, flags); 1771 release_sock(sk); 1772 return 0; 1773 } 1774 EXPORT_SYMBOL(udp_disconnect); 1775 1776 void udp_lib_unhash(struct sock *sk) 1777 { 1778 if (sk_hashed(sk)) { 1779 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1780 struct udp_hslot *hslot, *hslot2; 1781 1782 hslot = udp_hashslot(udptable, sock_net(sk), 1783 udp_sk(sk)->udp_port_hash); 1784 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1785 1786 spin_lock_bh(&hslot->lock); 1787 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1788 reuseport_detach_sock(sk); 1789 if (sk_del_node_init_rcu(sk)) { 1790 hslot->count--; 1791 inet_sk(sk)->inet_num = 0; 1792 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1793 1794 spin_lock(&hslot2->lock); 1795 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1796 hslot2->count--; 1797 spin_unlock(&hslot2->lock); 1798 } 1799 spin_unlock_bh(&hslot->lock); 1800 } 1801 } 1802 EXPORT_SYMBOL(udp_lib_unhash); 1803 1804 /* 1805 * inet_rcv_saddr was changed, we must rehash secondary hash 1806 */ 1807 void udp_lib_rehash(struct sock *sk, u16 newhash) 1808 { 1809 if (sk_hashed(sk)) { 1810 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1811 struct udp_hslot *hslot, *hslot2, *nhslot2; 1812 1813 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1814 nhslot2 = udp_hashslot2(udptable, newhash); 1815 udp_sk(sk)->udp_portaddr_hash = newhash; 1816 1817 if (hslot2 != nhslot2 || 1818 rcu_access_pointer(sk->sk_reuseport_cb)) { 1819 hslot = udp_hashslot(udptable, sock_net(sk), 1820 udp_sk(sk)->udp_port_hash); 1821 /* we must lock primary chain too */ 1822 spin_lock_bh(&hslot->lock); 1823 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1824 reuseport_detach_sock(sk); 1825 1826 if (hslot2 != nhslot2) { 1827 spin_lock(&hslot2->lock); 1828 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1829 hslot2->count--; 1830 spin_unlock(&hslot2->lock); 1831 1832 spin_lock(&nhslot2->lock); 1833 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1834 &nhslot2->head); 1835 nhslot2->count++; 1836 spin_unlock(&nhslot2->lock); 1837 } 1838 1839 spin_unlock_bh(&hslot->lock); 1840 } 1841 } 1842 } 1843 EXPORT_SYMBOL(udp_lib_rehash); 1844 1845 static void udp_v4_rehash(struct sock *sk) 1846 { 1847 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1848 inet_sk(sk)->inet_rcv_saddr, 1849 inet_sk(sk)->inet_num); 1850 udp_lib_rehash(sk, new_hash); 1851 } 1852 1853 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1854 { 1855 int rc; 1856 1857 if (inet_sk(sk)->inet_daddr) { 1858 sock_rps_save_rxhash(sk, skb); 1859 sk_mark_napi_id(sk, skb); 1860 sk_incoming_cpu_update(sk); 1861 } else { 1862 sk_mark_napi_id_once(sk, skb); 1863 } 1864 1865 rc = __udp_enqueue_schedule_skb(sk, skb); 1866 if (rc < 0) { 1867 int is_udplite = IS_UDPLITE(sk); 1868 1869 /* Note that an ENOMEM error is charged twice */ 1870 if (rc == -ENOMEM) 1871 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1872 is_udplite); 1873 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1874 kfree_skb(skb); 1875 trace_udp_fail_queue_rcv_skb(rc, sk); 1876 return -1; 1877 } 1878 1879 return 0; 1880 } 1881 1882 static DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 1883 void udp_encap_enable(void) 1884 { 1885 static_branch_enable(&udp_encap_needed_key); 1886 } 1887 EXPORT_SYMBOL(udp_encap_enable); 1888 1889 /* returns: 1890 * -1: error 1891 * 0: success 1892 * >0: "udp encap" protocol resubmission 1893 * 1894 * Note that in the success and error cases, the skb is assumed to 1895 * have either been requeued or freed. 1896 */ 1897 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1898 { 1899 struct udp_sock *up = udp_sk(sk); 1900 int is_udplite = IS_UDPLITE(sk); 1901 1902 /* 1903 * Charge it to the socket, dropping if the queue is full. 1904 */ 1905 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1906 goto drop; 1907 nf_reset(skb); 1908 1909 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1910 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1911 1912 /* 1913 * This is an encapsulation socket so pass the skb to 1914 * the socket's udp_encap_rcv() hook. Otherwise, just 1915 * fall through and pass this up the UDP socket. 1916 * up->encap_rcv() returns the following value: 1917 * =0 if skb was successfully passed to the encap 1918 * handler or was discarded by it. 1919 * >0 if skb should be passed on to UDP. 1920 * <0 if skb should be resubmitted as proto -N 1921 */ 1922 1923 /* if we're overly short, let UDP handle it */ 1924 encap_rcv = READ_ONCE(up->encap_rcv); 1925 if (encap_rcv) { 1926 int ret; 1927 1928 /* Verify checksum before giving to encap */ 1929 if (udp_lib_checksum_complete(skb)) 1930 goto csum_error; 1931 1932 ret = encap_rcv(sk, skb); 1933 if (ret <= 0) { 1934 __UDP_INC_STATS(sock_net(sk), 1935 UDP_MIB_INDATAGRAMS, 1936 is_udplite); 1937 return -ret; 1938 } 1939 } 1940 1941 /* FALLTHROUGH -- it's a UDP Packet */ 1942 } 1943 1944 /* 1945 * UDP-Lite specific tests, ignored on UDP sockets 1946 */ 1947 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1948 1949 /* 1950 * MIB statistics other than incrementing the error count are 1951 * disabled for the following two types of errors: these depend 1952 * on the application settings, not on the functioning of the 1953 * protocol stack as such. 1954 * 1955 * RFC 3828 here recommends (sec 3.3): "There should also be a 1956 * way ... to ... at least let the receiving application block 1957 * delivery of packets with coverage values less than a value 1958 * provided by the application." 1959 */ 1960 if (up->pcrlen == 0) { /* full coverage was set */ 1961 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1962 UDP_SKB_CB(skb)->cscov, skb->len); 1963 goto drop; 1964 } 1965 /* The next case involves violating the min. coverage requested 1966 * by the receiver. This is subtle: if receiver wants x and x is 1967 * greater than the buffersize/MTU then receiver will complain 1968 * that it wants x while sender emits packets of smaller size y. 1969 * Therefore the above ...()->partial_cov statement is essential. 1970 */ 1971 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1972 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1973 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1974 goto drop; 1975 } 1976 } 1977 1978 prefetch(&sk->sk_rmem_alloc); 1979 if (rcu_access_pointer(sk->sk_filter) && 1980 udp_lib_checksum_complete(skb)) 1981 goto csum_error; 1982 1983 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1984 goto drop; 1985 1986 udp_csum_pull_header(skb); 1987 1988 ipv4_pktinfo_prepare(sk, skb); 1989 return __udp_queue_rcv_skb(sk, skb); 1990 1991 csum_error: 1992 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1993 drop: 1994 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1995 atomic_inc(&sk->sk_drops); 1996 kfree_skb(skb); 1997 return -1; 1998 } 1999 2000 /* For TCP sockets, sk_rx_dst is protected by socket lock 2001 * For UDP, we use xchg() to guard against concurrent changes. 2002 */ 2003 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2004 { 2005 struct dst_entry *old; 2006 2007 if (dst_hold_safe(dst)) { 2008 old = xchg(&sk->sk_rx_dst, dst); 2009 dst_release(old); 2010 return old != dst; 2011 } 2012 return false; 2013 } 2014 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2015 2016 /* 2017 * Multicasts and broadcasts go to each listener. 2018 * 2019 * Note: called only from the BH handler context. 2020 */ 2021 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2022 struct udphdr *uh, 2023 __be32 saddr, __be32 daddr, 2024 struct udp_table *udptable, 2025 int proto) 2026 { 2027 struct sock *sk, *first = NULL; 2028 unsigned short hnum = ntohs(uh->dest); 2029 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2030 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2031 unsigned int offset = offsetof(typeof(*sk), sk_node); 2032 int dif = skb->dev->ifindex; 2033 int sdif = inet_sdif(skb); 2034 struct hlist_node *node; 2035 struct sk_buff *nskb; 2036 2037 if (use_hash2) { 2038 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2039 udptable->mask; 2040 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2041 start_lookup: 2042 hslot = &udptable->hash2[hash2]; 2043 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2044 } 2045 2046 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2047 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2048 uh->source, saddr, dif, sdif, hnum)) 2049 continue; 2050 2051 if (!first) { 2052 first = sk; 2053 continue; 2054 } 2055 nskb = skb_clone(skb, GFP_ATOMIC); 2056 2057 if (unlikely(!nskb)) { 2058 atomic_inc(&sk->sk_drops); 2059 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2060 IS_UDPLITE(sk)); 2061 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2062 IS_UDPLITE(sk)); 2063 continue; 2064 } 2065 if (udp_queue_rcv_skb(sk, nskb) > 0) 2066 consume_skb(nskb); 2067 } 2068 2069 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2070 if (use_hash2 && hash2 != hash2_any) { 2071 hash2 = hash2_any; 2072 goto start_lookup; 2073 } 2074 2075 if (first) { 2076 if (udp_queue_rcv_skb(first, skb) > 0) 2077 consume_skb(skb); 2078 } else { 2079 kfree_skb(skb); 2080 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2081 proto == IPPROTO_UDPLITE); 2082 } 2083 return 0; 2084 } 2085 2086 /* Initialize UDP checksum. If exited with zero value (success), 2087 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2088 * Otherwise, csum completion requires chacksumming packet body, 2089 * including udp header and folding it to skb->csum. 2090 */ 2091 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2092 int proto) 2093 { 2094 int err; 2095 2096 UDP_SKB_CB(skb)->partial_cov = 0; 2097 UDP_SKB_CB(skb)->cscov = skb->len; 2098 2099 if (proto == IPPROTO_UDPLITE) { 2100 err = udplite_checksum_init(skb, uh); 2101 if (err) 2102 return err; 2103 2104 if (UDP_SKB_CB(skb)->partial_cov) { 2105 skb->csum = inet_compute_pseudo(skb, proto); 2106 return 0; 2107 } 2108 } 2109 2110 /* Note, we are only interested in != 0 or == 0, thus the 2111 * force to int. 2112 */ 2113 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2114 inet_compute_pseudo); 2115 } 2116 2117 /* 2118 * All we need to do is get the socket, and then do a checksum. 2119 */ 2120 2121 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2122 int proto) 2123 { 2124 struct sock *sk; 2125 struct udphdr *uh; 2126 unsigned short ulen; 2127 struct rtable *rt = skb_rtable(skb); 2128 __be32 saddr, daddr; 2129 struct net *net = dev_net(skb->dev); 2130 2131 /* 2132 * Validate the packet. 2133 */ 2134 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2135 goto drop; /* No space for header. */ 2136 2137 uh = udp_hdr(skb); 2138 ulen = ntohs(uh->len); 2139 saddr = ip_hdr(skb)->saddr; 2140 daddr = ip_hdr(skb)->daddr; 2141 2142 if (ulen > skb->len) 2143 goto short_packet; 2144 2145 if (proto == IPPROTO_UDP) { 2146 /* UDP validates ulen. */ 2147 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2148 goto short_packet; 2149 uh = udp_hdr(skb); 2150 } 2151 2152 if (udp4_csum_init(skb, uh, proto)) 2153 goto csum_error; 2154 2155 sk = skb_steal_sock(skb); 2156 if (sk) { 2157 struct dst_entry *dst = skb_dst(skb); 2158 int ret; 2159 2160 if (unlikely(sk->sk_rx_dst != dst)) 2161 udp_sk_rx_dst_set(sk, dst); 2162 2163 ret = udp_queue_rcv_skb(sk, skb); 2164 sock_put(sk); 2165 /* a return value > 0 means to resubmit the input, but 2166 * it wants the return to be -protocol, or 0 2167 */ 2168 if (ret > 0) 2169 return -ret; 2170 return 0; 2171 } 2172 2173 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2174 return __udp4_lib_mcast_deliver(net, skb, uh, 2175 saddr, daddr, udptable, proto); 2176 2177 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2178 if (sk) { 2179 int ret; 2180 2181 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2182 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2183 inet_compute_pseudo); 2184 2185 ret = udp_queue_rcv_skb(sk, skb); 2186 2187 /* a return value > 0 means to resubmit the input, but 2188 * it wants the return to be -protocol, or 0 2189 */ 2190 if (ret > 0) 2191 return -ret; 2192 return 0; 2193 } 2194 2195 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2196 goto drop; 2197 nf_reset(skb); 2198 2199 /* No socket. Drop packet silently, if checksum is wrong */ 2200 if (udp_lib_checksum_complete(skb)) 2201 goto csum_error; 2202 2203 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2204 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2205 2206 /* 2207 * Hmm. We got an UDP packet to a port to which we 2208 * don't wanna listen. Ignore it. 2209 */ 2210 kfree_skb(skb); 2211 return 0; 2212 2213 short_packet: 2214 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2215 proto == IPPROTO_UDPLITE ? "Lite" : "", 2216 &saddr, ntohs(uh->source), 2217 ulen, skb->len, 2218 &daddr, ntohs(uh->dest)); 2219 goto drop; 2220 2221 csum_error: 2222 /* 2223 * RFC1122: OK. Discards the bad packet silently (as far as 2224 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2225 */ 2226 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2227 proto == IPPROTO_UDPLITE ? "Lite" : "", 2228 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2229 ulen); 2230 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2231 drop: 2232 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2233 kfree_skb(skb); 2234 return 0; 2235 } 2236 2237 /* We can only early demux multicast if there is a single matching socket. 2238 * If more than one socket found returns NULL 2239 */ 2240 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2241 __be16 loc_port, __be32 loc_addr, 2242 __be16 rmt_port, __be32 rmt_addr, 2243 int dif, int sdif) 2244 { 2245 struct sock *sk, *result; 2246 unsigned short hnum = ntohs(loc_port); 2247 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2248 struct udp_hslot *hslot = &udp_table.hash[slot]; 2249 2250 /* Do not bother scanning a too big list */ 2251 if (hslot->count > 10) 2252 return NULL; 2253 2254 result = NULL; 2255 sk_for_each_rcu(sk, &hslot->head) { 2256 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2257 rmt_port, rmt_addr, dif, sdif, hnum)) { 2258 if (result) 2259 return NULL; 2260 result = sk; 2261 } 2262 } 2263 2264 return result; 2265 } 2266 2267 /* For unicast we should only early demux connected sockets or we can 2268 * break forwarding setups. The chains here can be long so only check 2269 * if the first socket is an exact match and if not move on. 2270 */ 2271 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2272 __be16 loc_port, __be32 loc_addr, 2273 __be16 rmt_port, __be32 rmt_addr, 2274 int dif, int sdif) 2275 { 2276 unsigned short hnum = ntohs(loc_port); 2277 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2278 unsigned int slot2 = hash2 & udp_table.mask; 2279 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2280 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2281 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2282 struct sock *sk; 2283 2284 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2285 if (INET_MATCH(sk, net, acookie, rmt_addr, 2286 loc_addr, ports, dif, sdif)) 2287 return sk; 2288 /* Only check first socket in chain */ 2289 break; 2290 } 2291 return NULL; 2292 } 2293 2294 int udp_v4_early_demux(struct sk_buff *skb) 2295 { 2296 struct net *net = dev_net(skb->dev); 2297 struct in_device *in_dev = NULL; 2298 const struct iphdr *iph; 2299 const struct udphdr *uh; 2300 struct sock *sk = NULL; 2301 struct dst_entry *dst; 2302 int dif = skb->dev->ifindex; 2303 int sdif = inet_sdif(skb); 2304 int ours; 2305 2306 /* validate the packet */ 2307 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2308 return 0; 2309 2310 iph = ip_hdr(skb); 2311 uh = udp_hdr(skb); 2312 2313 if (skb->pkt_type == PACKET_MULTICAST) { 2314 in_dev = __in_dev_get_rcu(skb->dev); 2315 2316 if (!in_dev) 2317 return 0; 2318 2319 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2320 iph->protocol); 2321 if (!ours) 2322 return 0; 2323 2324 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2325 uh->source, iph->saddr, 2326 dif, sdif); 2327 } else if (skb->pkt_type == PACKET_HOST) { 2328 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2329 uh->source, iph->saddr, dif, sdif); 2330 } 2331 2332 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2333 return 0; 2334 2335 skb->sk = sk; 2336 skb->destructor = sock_efree; 2337 dst = READ_ONCE(sk->sk_rx_dst); 2338 2339 if (dst) 2340 dst = dst_check(dst, 0); 2341 if (dst) { 2342 u32 itag = 0; 2343 2344 /* set noref for now. 2345 * any place which wants to hold dst has to call 2346 * dst_hold_safe() 2347 */ 2348 skb_dst_set_noref(skb, dst); 2349 2350 /* for unconnected multicast sockets we need to validate 2351 * the source on each packet 2352 */ 2353 if (!inet_sk(sk)->inet_daddr && in_dev) 2354 return ip_mc_validate_source(skb, iph->daddr, 2355 iph->saddr, iph->tos, 2356 skb->dev, in_dev, &itag); 2357 } 2358 return 0; 2359 } 2360 2361 int udp_rcv(struct sk_buff *skb) 2362 { 2363 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2364 } 2365 2366 void udp_destroy_sock(struct sock *sk) 2367 { 2368 struct udp_sock *up = udp_sk(sk); 2369 bool slow = lock_sock_fast(sk); 2370 udp_flush_pending_frames(sk); 2371 unlock_sock_fast(sk, slow); 2372 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2373 void (*encap_destroy)(struct sock *sk); 2374 encap_destroy = READ_ONCE(up->encap_destroy); 2375 if (encap_destroy) 2376 encap_destroy(sk); 2377 } 2378 } 2379 2380 /* 2381 * Socket option code for UDP 2382 */ 2383 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2384 char __user *optval, unsigned int optlen, 2385 int (*push_pending_frames)(struct sock *)) 2386 { 2387 struct udp_sock *up = udp_sk(sk); 2388 int val, valbool; 2389 int err = 0; 2390 int is_udplite = IS_UDPLITE(sk); 2391 2392 if (optlen < sizeof(int)) 2393 return -EINVAL; 2394 2395 if (get_user(val, (int __user *)optval)) 2396 return -EFAULT; 2397 2398 valbool = val ? 1 : 0; 2399 2400 switch (optname) { 2401 case UDP_CORK: 2402 if (val != 0) { 2403 up->corkflag = 1; 2404 } else { 2405 up->corkflag = 0; 2406 lock_sock(sk); 2407 push_pending_frames(sk); 2408 release_sock(sk); 2409 } 2410 break; 2411 2412 case UDP_ENCAP: 2413 switch (val) { 2414 case 0: 2415 case UDP_ENCAP_ESPINUDP: 2416 case UDP_ENCAP_ESPINUDP_NON_IKE: 2417 up->encap_rcv = xfrm4_udp_encap_rcv; 2418 /* FALLTHROUGH */ 2419 case UDP_ENCAP_L2TPINUDP: 2420 up->encap_type = val; 2421 udp_encap_enable(); 2422 break; 2423 default: 2424 err = -ENOPROTOOPT; 2425 break; 2426 } 2427 break; 2428 2429 case UDP_NO_CHECK6_TX: 2430 up->no_check6_tx = valbool; 2431 break; 2432 2433 case UDP_NO_CHECK6_RX: 2434 up->no_check6_rx = valbool; 2435 break; 2436 2437 case UDP_SEGMENT: 2438 if (val < 0 || val > USHRT_MAX) 2439 return -EINVAL; 2440 up->gso_size = val; 2441 break; 2442 2443 /* 2444 * UDP-Lite's partial checksum coverage (RFC 3828). 2445 */ 2446 /* The sender sets actual checksum coverage length via this option. 2447 * The case coverage > packet length is handled by send module. */ 2448 case UDPLITE_SEND_CSCOV: 2449 if (!is_udplite) /* Disable the option on UDP sockets */ 2450 return -ENOPROTOOPT; 2451 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2452 val = 8; 2453 else if (val > USHRT_MAX) 2454 val = USHRT_MAX; 2455 up->pcslen = val; 2456 up->pcflag |= UDPLITE_SEND_CC; 2457 break; 2458 2459 /* The receiver specifies a minimum checksum coverage value. To make 2460 * sense, this should be set to at least 8 (as done below). If zero is 2461 * used, this again means full checksum coverage. */ 2462 case UDPLITE_RECV_CSCOV: 2463 if (!is_udplite) /* Disable the option on UDP sockets */ 2464 return -ENOPROTOOPT; 2465 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2466 val = 8; 2467 else if (val > USHRT_MAX) 2468 val = USHRT_MAX; 2469 up->pcrlen = val; 2470 up->pcflag |= UDPLITE_RECV_CC; 2471 break; 2472 2473 default: 2474 err = -ENOPROTOOPT; 2475 break; 2476 } 2477 2478 return err; 2479 } 2480 EXPORT_SYMBOL(udp_lib_setsockopt); 2481 2482 int udp_setsockopt(struct sock *sk, int level, int optname, 2483 char __user *optval, unsigned int optlen) 2484 { 2485 if (level == SOL_UDP || level == SOL_UDPLITE) 2486 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2487 udp_push_pending_frames); 2488 return ip_setsockopt(sk, level, optname, optval, optlen); 2489 } 2490 2491 #ifdef CONFIG_COMPAT 2492 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2493 char __user *optval, unsigned int optlen) 2494 { 2495 if (level == SOL_UDP || level == SOL_UDPLITE) 2496 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2497 udp_push_pending_frames); 2498 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2499 } 2500 #endif 2501 2502 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2503 char __user *optval, int __user *optlen) 2504 { 2505 struct udp_sock *up = udp_sk(sk); 2506 int val, len; 2507 2508 if (get_user(len, optlen)) 2509 return -EFAULT; 2510 2511 len = min_t(unsigned int, len, sizeof(int)); 2512 2513 if (len < 0) 2514 return -EINVAL; 2515 2516 switch (optname) { 2517 case UDP_CORK: 2518 val = up->corkflag; 2519 break; 2520 2521 case UDP_ENCAP: 2522 val = up->encap_type; 2523 break; 2524 2525 case UDP_NO_CHECK6_TX: 2526 val = up->no_check6_tx; 2527 break; 2528 2529 case UDP_NO_CHECK6_RX: 2530 val = up->no_check6_rx; 2531 break; 2532 2533 case UDP_SEGMENT: 2534 val = up->gso_size; 2535 break; 2536 2537 /* The following two cannot be changed on UDP sockets, the return is 2538 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2539 case UDPLITE_SEND_CSCOV: 2540 val = up->pcslen; 2541 break; 2542 2543 case UDPLITE_RECV_CSCOV: 2544 val = up->pcrlen; 2545 break; 2546 2547 default: 2548 return -ENOPROTOOPT; 2549 } 2550 2551 if (put_user(len, optlen)) 2552 return -EFAULT; 2553 if (copy_to_user(optval, &val, len)) 2554 return -EFAULT; 2555 return 0; 2556 } 2557 EXPORT_SYMBOL(udp_lib_getsockopt); 2558 2559 int udp_getsockopt(struct sock *sk, int level, int optname, 2560 char __user *optval, int __user *optlen) 2561 { 2562 if (level == SOL_UDP || level == SOL_UDPLITE) 2563 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2564 return ip_getsockopt(sk, level, optname, optval, optlen); 2565 } 2566 2567 #ifdef CONFIG_COMPAT 2568 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2569 char __user *optval, int __user *optlen) 2570 { 2571 if (level == SOL_UDP || level == SOL_UDPLITE) 2572 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2573 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2574 } 2575 #endif 2576 /** 2577 * udp_poll - wait for a UDP event. 2578 * @file - file struct 2579 * @sock - socket 2580 * @wait - poll table 2581 * 2582 * This is same as datagram poll, except for the special case of 2583 * blocking sockets. If application is using a blocking fd 2584 * and a packet with checksum error is in the queue; 2585 * then it could get return from select indicating data available 2586 * but then block when reading it. Add special case code 2587 * to work around these arguably broken applications. 2588 */ 2589 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2590 { 2591 __poll_t mask = datagram_poll(file, sock, wait); 2592 struct sock *sk = sock->sk; 2593 2594 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2595 mask |= EPOLLIN | EPOLLRDNORM; 2596 2597 /* Check for false positives due to checksum errors */ 2598 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2599 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2600 mask &= ~(EPOLLIN | EPOLLRDNORM); 2601 2602 return mask; 2603 2604 } 2605 EXPORT_SYMBOL(udp_poll); 2606 2607 int udp_abort(struct sock *sk, int err) 2608 { 2609 lock_sock(sk); 2610 2611 sk->sk_err = err; 2612 sk->sk_error_report(sk); 2613 __udp_disconnect(sk, 0); 2614 2615 release_sock(sk); 2616 2617 return 0; 2618 } 2619 EXPORT_SYMBOL_GPL(udp_abort); 2620 2621 struct proto udp_prot = { 2622 .name = "UDP", 2623 .owner = THIS_MODULE, 2624 .close = udp_lib_close, 2625 .pre_connect = udp_pre_connect, 2626 .connect = ip4_datagram_connect, 2627 .disconnect = udp_disconnect, 2628 .ioctl = udp_ioctl, 2629 .init = udp_init_sock, 2630 .destroy = udp_destroy_sock, 2631 .setsockopt = udp_setsockopt, 2632 .getsockopt = udp_getsockopt, 2633 .sendmsg = udp_sendmsg, 2634 .recvmsg = udp_recvmsg, 2635 .sendpage = udp_sendpage, 2636 .release_cb = ip4_datagram_release_cb, 2637 .hash = udp_lib_hash, 2638 .unhash = udp_lib_unhash, 2639 .rehash = udp_v4_rehash, 2640 .get_port = udp_v4_get_port, 2641 .memory_allocated = &udp_memory_allocated, 2642 .sysctl_mem = sysctl_udp_mem, 2643 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2644 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2645 .obj_size = sizeof(struct udp_sock), 2646 .h.udp_table = &udp_table, 2647 #ifdef CONFIG_COMPAT 2648 .compat_setsockopt = compat_udp_setsockopt, 2649 .compat_getsockopt = compat_udp_getsockopt, 2650 #endif 2651 .diag_destroy = udp_abort, 2652 }; 2653 EXPORT_SYMBOL(udp_prot); 2654 2655 /* ------------------------------------------------------------------------ */ 2656 #ifdef CONFIG_PROC_FS 2657 2658 static struct sock *udp_get_first(struct seq_file *seq, int start) 2659 { 2660 struct sock *sk; 2661 struct udp_iter_state *state = seq->private; 2662 struct net *net = seq_file_net(seq); 2663 2664 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2665 ++state->bucket) { 2666 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2667 2668 if (hlist_empty(&hslot->head)) 2669 continue; 2670 2671 spin_lock_bh(&hslot->lock); 2672 sk_for_each(sk, &hslot->head) { 2673 if (!net_eq(sock_net(sk), net)) 2674 continue; 2675 if (sk->sk_family == state->family) 2676 goto found; 2677 } 2678 spin_unlock_bh(&hslot->lock); 2679 } 2680 sk = NULL; 2681 found: 2682 return sk; 2683 } 2684 2685 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2686 { 2687 struct udp_iter_state *state = seq->private; 2688 struct net *net = seq_file_net(seq); 2689 2690 do { 2691 sk = sk_next(sk); 2692 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2693 2694 if (!sk) { 2695 if (state->bucket <= state->udp_table->mask) 2696 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2697 return udp_get_first(seq, state->bucket + 1); 2698 } 2699 return sk; 2700 } 2701 2702 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2703 { 2704 struct sock *sk = udp_get_first(seq, 0); 2705 2706 if (sk) 2707 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2708 --pos; 2709 return pos ? NULL : sk; 2710 } 2711 2712 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2713 { 2714 struct udp_iter_state *state = seq->private; 2715 state->bucket = MAX_UDP_PORTS; 2716 2717 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2718 } 2719 2720 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2721 { 2722 struct sock *sk; 2723 2724 if (v == SEQ_START_TOKEN) 2725 sk = udp_get_idx(seq, 0); 2726 else 2727 sk = udp_get_next(seq, v); 2728 2729 ++*pos; 2730 return sk; 2731 } 2732 2733 static void udp_seq_stop(struct seq_file *seq, void *v) 2734 { 2735 struct udp_iter_state *state = seq->private; 2736 2737 if (state->bucket <= state->udp_table->mask) 2738 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2739 } 2740 2741 int udp_seq_open(struct inode *inode, struct file *file) 2742 { 2743 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2744 struct udp_iter_state *s; 2745 int err; 2746 2747 err = seq_open_net(inode, file, &afinfo->seq_ops, 2748 sizeof(struct udp_iter_state)); 2749 if (err < 0) 2750 return err; 2751 2752 s = ((struct seq_file *)file->private_data)->private; 2753 s->family = afinfo->family; 2754 s->udp_table = afinfo->udp_table; 2755 return err; 2756 } 2757 EXPORT_SYMBOL(udp_seq_open); 2758 2759 /* ------------------------------------------------------------------------ */ 2760 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2761 { 2762 struct proc_dir_entry *p; 2763 int rc = 0; 2764 2765 afinfo->seq_ops.start = udp_seq_start; 2766 afinfo->seq_ops.next = udp_seq_next; 2767 afinfo->seq_ops.stop = udp_seq_stop; 2768 2769 p = proc_create_data(afinfo->name, 0444, net->proc_net, 2770 afinfo->seq_fops, afinfo); 2771 if (!p) 2772 rc = -ENOMEM; 2773 return rc; 2774 } 2775 EXPORT_SYMBOL(udp_proc_register); 2776 2777 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2778 { 2779 remove_proc_entry(afinfo->name, net->proc_net); 2780 } 2781 EXPORT_SYMBOL(udp_proc_unregister); 2782 2783 /* ------------------------------------------------------------------------ */ 2784 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2785 int bucket) 2786 { 2787 struct inet_sock *inet = inet_sk(sp); 2788 __be32 dest = inet->inet_daddr; 2789 __be32 src = inet->inet_rcv_saddr; 2790 __u16 destp = ntohs(inet->inet_dport); 2791 __u16 srcp = ntohs(inet->inet_sport); 2792 2793 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2794 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2795 bucket, src, srcp, dest, destp, sp->sk_state, 2796 sk_wmem_alloc_get(sp), 2797 sk_rmem_alloc_get(sp), 2798 0, 0L, 0, 2799 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2800 0, sock_i_ino(sp), 2801 refcount_read(&sp->sk_refcnt), sp, 2802 atomic_read(&sp->sk_drops)); 2803 } 2804 2805 int udp4_seq_show(struct seq_file *seq, void *v) 2806 { 2807 seq_setwidth(seq, 127); 2808 if (v == SEQ_START_TOKEN) 2809 seq_puts(seq, " sl local_address rem_address st tx_queue " 2810 "rx_queue tr tm->when retrnsmt uid timeout " 2811 "inode ref pointer drops"); 2812 else { 2813 struct udp_iter_state *state = seq->private; 2814 2815 udp4_format_sock(v, seq, state->bucket); 2816 } 2817 seq_pad(seq, '\n'); 2818 return 0; 2819 } 2820 2821 static const struct file_operations udp_afinfo_seq_fops = { 2822 .open = udp_seq_open, 2823 .read = seq_read, 2824 .llseek = seq_lseek, 2825 .release = seq_release_net 2826 }; 2827 2828 /* ------------------------------------------------------------------------ */ 2829 static struct udp_seq_afinfo udp4_seq_afinfo = { 2830 .name = "udp", 2831 .family = AF_INET, 2832 .udp_table = &udp_table, 2833 .seq_fops = &udp_afinfo_seq_fops, 2834 .seq_ops = { 2835 .show = udp4_seq_show, 2836 }, 2837 }; 2838 2839 static int __net_init udp4_proc_init_net(struct net *net) 2840 { 2841 return udp_proc_register(net, &udp4_seq_afinfo); 2842 } 2843 2844 static void __net_exit udp4_proc_exit_net(struct net *net) 2845 { 2846 udp_proc_unregister(net, &udp4_seq_afinfo); 2847 } 2848 2849 static struct pernet_operations udp4_net_ops = { 2850 .init = udp4_proc_init_net, 2851 .exit = udp4_proc_exit_net, 2852 }; 2853 2854 int __init udp4_proc_init(void) 2855 { 2856 return register_pernet_subsys(&udp4_net_ops); 2857 } 2858 2859 void udp4_proc_exit(void) 2860 { 2861 unregister_pernet_subsys(&udp4_net_ops); 2862 } 2863 #endif /* CONFIG_PROC_FS */ 2864 2865 static __initdata unsigned long uhash_entries; 2866 static int __init set_uhash_entries(char *str) 2867 { 2868 ssize_t ret; 2869 2870 if (!str) 2871 return 0; 2872 2873 ret = kstrtoul(str, 0, &uhash_entries); 2874 if (ret) 2875 return 0; 2876 2877 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2878 uhash_entries = UDP_HTABLE_SIZE_MIN; 2879 return 1; 2880 } 2881 __setup("uhash_entries=", set_uhash_entries); 2882 2883 void __init udp_table_init(struct udp_table *table, const char *name) 2884 { 2885 unsigned int i; 2886 2887 table->hash = alloc_large_system_hash(name, 2888 2 * sizeof(struct udp_hslot), 2889 uhash_entries, 2890 21, /* one slot per 2 MB */ 2891 0, 2892 &table->log, 2893 &table->mask, 2894 UDP_HTABLE_SIZE_MIN, 2895 64 * 1024); 2896 2897 table->hash2 = table->hash + (table->mask + 1); 2898 for (i = 0; i <= table->mask; i++) { 2899 INIT_HLIST_HEAD(&table->hash[i].head); 2900 table->hash[i].count = 0; 2901 spin_lock_init(&table->hash[i].lock); 2902 } 2903 for (i = 0; i <= table->mask; i++) { 2904 INIT_HLIST_HEAD(&table->hash2[i].head); 2905 table->hash2[i].count = 0; 2906 spin_lock_init(&table->hash2[i].lock); 2907 } 2908 } 2909 2910 u32 udp_flow_hashrnd(void) 2911 { 2912 static u32 hashrnd __read_mostly; 2913 2914 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2915 2916 return hashrnd; 2917 } 2918 EXPORT_SYMBOL(udp_flow_hashrnd); 2919 2920 static void __udp_sysctl_init(struct net *net) 2921 { 2922 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2923 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2924 2925 #ifdef CONFIG_NET_L3_MASTER_DEV 2926 net->ipv4.sysctl_udp_l3mdev_accept = 0; 2927 #endif 2928 } 2929 2930 static int __net_init udp_sysctl_init(struct net *net) 2931 { 2932 __udp_sysctl_init(net); 2933 return 0; 2934 } 2935 2936 static struct pernet_operations __net_initdata udp_sysctl_ops = { 2937 .init = udp_sysctl_init, 2938 }; 2939 2940 void __init udp_init(void) 2941 { 2942 unsigned long limit; 2943 unsigned int i; 2944 2945 udp_table_init(&udp_table, "UDP"); 2946 limit = nr_free_buffer_pages() / 8; 2947 limit = max(limit, 128UL); 2948 sysctl_udp_mem[0] = limit / 4 * 3; 2949 sysctl_udp_mem[1] = limit; 2950 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2951 2952 __udp_sysctl_init(&init_net); 2953 2954 /* 16 spinlocks per cpu */ 2955 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2956 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2957 GFP_KERNEL); 2958 if (!udp_busylocks) 2959 panic("UDP: failed to alloc udp_busylocks\n"); 2960 for (i = 0; i < (1U << udp_busylocks_log); i++) 2961 spin_lock_init(udp_busylocks + i); 2962 2963 if (register_pernet_subsys(&udp_sysctl_ops)) 2964 panic("UDP: failed to init sysctl parameters.\n"); 2965 } 2966