xref: /openbmc/linux/net/ipv4/udp.c (revision 732a675a)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Version:	$Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Hirokazu Takahashi, <taka@valinux.co.jp>
15  *
16  * Fixes:
17  *		Alan Cox	:	verify_area() calls
18  *		Alan Cox	: 	stopped close while in use off icmp
19  *					messages. Not a fix but a botch that
20  *					for udp at least is 'valid'.
21  *		Alan Cox	:	Fixed icmp handling properly
22  *		Alan Cox	: 	Correct error for oversized datagrams
23  *		Alan Cox	:	Tidied select() semantics.
24  *		Alan Cox	:	udp_err() fixed properly, also now
25  *					select and read wake correctly on errors
26  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
27  *		Alan Cox	:	UDP can count its memory
28  *		Alan Cox	:	send to an unknown connection causes
29  *					an ECONNREFUSED off the icmp, but
30  *					does NOT close.
31  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
32  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
33  *					bug no longer crashes it.
34  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
35  *		Alan Cox	:	Uses skb_free_datagram
36  *		Alan Cox	:	Added get/set sockopt support.
37  *		Alan Cox	:	Broadcasting without option set returns EACCES.
38  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
39  *		Alan Cox	:	Use ip_tos and ip_ttl
40  *		Alan Cox	:	SNMP Mibs
41  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
42  *		Matt Dillon	:	UDP length checks.
43  *		Alan Cox	:	Smarter af_inet used properly.
44  *		Alan Cox	:	Use new kernel side addressing.
45  *		Alan Cox	:	Incorrect return on truncated datagram receive.
46  *	Arnt Gulbrandsen 	:	New udp_send and stuff
47  *		Alan Cox	:	Cache last socket
48  *		Alan Cox	:	Route cache
49  *		Jon Peatfield	:	Minor efficiency fix to sendto().
50  *		Mike Shaver	:	RFC1122 checks.
51  *		Alan Cox	:	Nonblocking error fix.
52  *	Willy Konynenberg	:	Transparent proxying support.
53  *		Mike McLagan	:	Routing by source
54  *		David S. Miller	:	New socket lookup architecture.
55  *					Last socket cache retained as it
56  *					does have a high hit rate.
57  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
58  *		Andi Kleen	:	Some cleanups, cache destination entry
59  *					for connect.
60  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
61  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
62  *					return ENOTCONN for unconnected sockets (POSIX)
63  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
64  *					bound-to-device socket
65  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
66  *					datagrams.
67  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
68  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
69  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
70  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
71  *					a single port at the same time.
72  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
73  *	James Chapman		:	Add L2TP encapsulation type.
74  *
75  *
76  *		This program is free software; you can redistribute it and/or
77  *		modify it under the terms of the GNU General Public License
78  *		as published by the Free Software Foundation; either version
79  *		2 of the License, or (at your option) any later version.
80  */
81 
82 #include <asm/system.h>
83 #include <asm/uaccess.h>
84 #include <asm/ioctls.h>
85 #include <linux/bootmem.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <net/tcp_states.h>
99 #include <linux/skbuff.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <net/net_namespace.h>
103 #include <net/icmp.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include "udp_impl.h"
108 
109 /*
110  *	Snmp MIB for the UDP layer
111  */
112 
113 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly;
114 EXPORT_SYMBOL(udp_statistics);
115 
116 DEFINE_SNMP_STAT(struct udp_mib, udp_stats_in6) __read_mostly;
117 EXPORT_SYMBOL(udp_stats_in6);
118 
119 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
120 DEFINE_RWLOCK(udp_hash_lock);
121 
122 int sysctl_udp_mem[3] __read_mostly;
123 int sysctl_udp_rmem_min __read_mostly;
124 int sysctl_udp_wmem_min __read_mostly;
125 
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 EXPORT_SYMBOL(sysctl_udp_rmem_min);
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129 
130 atomic_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132 
133 static inline int __udp_lib_lport_inuse(struct net *net, __u16 num,
134 					const struct hlist_head udptable[])
135 {
136 	struct sock *sk;
137 	struct hlist_node *node;
138 
139 	sk_for_each(sk, node, &udptable[num & (UDP_HTABLE_SIZE - 1)])
140 		if (net_eq(sock_net(sk), net) && sk->sk_hash == num)
141 			return 1;
142 	return 0;
143 }
144 
145 /**
146  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
147  *
148  *  @sk:          socket struct in question
149  *  @snum:        port number to look up
150  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
151  */
152 int udp_lib_get_port(struct sock *sk, unsigned short snum,
153 		       int (*saddr_comp)(const struct sock *sk1,
154 					 const struct sock *sk2 )    )
155 {
156 	struct hlist_head *udptable = sk->sk_prot->h.udp_hash;
157 	struct hlist_node *node;
158 	struct hlist_head *head;
159 	struct sock *sk2;
160 	int    error = 1;
161 	struct net *net = sock_net(sk);
162 
163 	write_lock_bh(&udp_hash_lock);
164 
165 	if (!snum) {
166 		int i, low, high, remaining;
167 		unsigned rover, best, best_size_so_far;
168 
169 		inet_get_local_port_range(&low, &high);
170 		remaining = (high - low) + 1;
171 
172 		best_size_so_far = UINT_MAX;
173 		best = rover = net_random() % remaining + low;
174 
175 		/* 1st pass: look for empty (or shortest) hash chain */
176 		for (i = 0; i < UDP_HTABLE_SIZE; i++) {
177 			int size = 0;
178 
179 			head = &udptable[rover & (UDP_HTABLE_SIZE - 1)];
180 			if (hlist_empty(head))
181 				goto gotit;
182 
183 			sk_for_each(sk2, node, head) {
184 				if (++size >= best_size_so_far)
185 					goto next;
186 			}
187 			best_size_so_far = size;
188 			best = rover;
189 		next:
190 			/* fold back if end of range */
191 			if (++rover > high)
192 				rover = low + ((rover - low)
193 					       & (UDP_HTABLE_SIZE - 1));
194 
195 
196 		}
197 
198 		/* 2nd pass: find hole in shortest hash chain */
199 		rover = best;
200 		for (i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++) {
201 			if (! __udp_lib_lport_inuse(net, rover, udptable))
202 				goto gotit;
203 			rover += UDP_HTABLE_SIZE;
204 			if (rover > high)
205 				rover = low + ((rover - low)
206 					       & (UDP_HTABLE_SIZE - 1));
207 		}
208 
209 
210 		/* All ports in use! */
211 		goto fail;
212 
213 gotit:
214 		snum = rover;
215 	} else {
216 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
217 
218 		sk_for_each(sk2, node, head)
219 			if (sk2->sk_hash == snum                             &&
220 			    sk2 != sk                                        &&
221 			    net_eq(sock_net(sk2), net)			     &&
222 			    (!sk2->sk_reuse        || !sk->sk_reuse)         &&
223 			    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
224 			     || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
225 			    (*saddr_comp)(sk, sk2)                             )
226 				goto fail;
227 	}
228 
229 	inet_sk(sk)->num = snum;
230 	sk->sk_hash = snum;
231 	if (sk_unhashed(sk)) {
232 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
233 		sk_add_node(sk, head);
234 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
235 	}
236 	error = 0;
237 fail:
238 	write_unlock_bh(&udp_hash_lock);
239 	return error;
240 }
241 
242 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
243 {
244 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
245 
246 	return 	( !ipv6_only_sock(sk2)  &&
247 		  (!inet1->rcv_saddr || !inet2->rcv_saddr ||
248 		   inet1->rcv_saddr == inet2->rcv_saddr      ));
249 }
250 
251 int udp_v4_get_port(struct sock *sk, unsigned short snum)
252 {
253 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal);
254 }
255 
256 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
257  * harder than this. -DaveM
258  */
259 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
260 		__be16 sport, __be32 daddr, __be16 dport,
261 		int dif, struct hlist_head udptable[])
262 {
263 	struct sock *sk, *result = NULL;
264 	struct hlist_node *node;
265 	unsigned short hnum = ntohs(dport);
266 	int badness = -1;
267 
268 	read_lock(&udp_hash_lock);
269 	sk_for_each(sk, node, &udptable[hnum & (UDP_HTABLE_SIZE - 1)]) {
270 		struct inet_sock *inet = inet_sk(sk);
271 
272 		if (net_eq(sock_net(sk), net) && sk->sk_hash == hnum &&
273 				!ipv6_only_sock(sk)) {
274 			int score = (sk->sk_family == PF_INET ? 1 : 0);
275 			if (inet->rcv_saddr) {
276 				if (inet->rcv_saddr != daddr)
277 					continue;
278 				score+=2;
279 			}
280 			if (inet->daddr) {
281 				if (inet->daddr != saddr)
282 					continue;
283 				score+=2;
284 			}
285 			if (inet->dport) {
286 				if (inet->dport != sport)
287 					continue;
288 				score+=2;
289 			}
290 			if (sk->sk_bound_dev_if) {
291 				if (sk->sk_bound_dev_if != dif)
292 					continue;
293 				score+=2;
294 			}
295 			if (score == 9) {
296 				result = sk;
297 				break;
298 			} else if (score > badness) {
299 				result = sk;
300 				badness = score;
301 			}
302 		}
303 	}
304 	if (result)
305 		sock_hold(result);
306 	read_unlock(&udp_hash_lock);
307 	return result;
308 }
309 
310 static inline struct sock *udp_v4_mcast_next(struct sock *sk,
311 					     __be16 loc_port, __be32 loc_addr,
312 					     __be16 rmt_port, __be32 rmt_addr,
313 					     int dif)
314 {
315 	struct hlist_node *node;
316 	struct sock *s = sk;
317 	unsigned short hnum = ntohs(loc_port);
318 
319 	sk_for_each_from(s, node) {
320 		struct inet_sock *inet = inet_sk(s);
321 
322 		if (s->sk_hash != hnum					||
323 		    (inet->daddr && inet->daddr != rmt_addr)		||
324 		    (inet->dport != rmt_port && inet->dport)		||
325 		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
326 		    ipv6_only_sock(s)					||
327 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
328 			continue;
329 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
330 			continue;
331 		goto found;
332 	}
333 	s = NULL;
334 found:
335 	return s;
336 }
337 
338 /*
339  * This routine is called by the ICMP module when it gets some
340  * sort of error condition.  If err < 0 then the socket should
341  * be closed and the error returned to the user.  If err > 0
342  * it's just the icmp type << 8 | icmp code.
343  * Header points to the ip header of the error packet. We move
344  * on past this. Then (as it used to claim before adjustment)
345  * header points to the first 8 bytes of the udp header.  We need
346  * to find the appropriate port.
347  */
348 
349 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
350 {
351 	struct inet_sock *inet;
352 	struct iphdr *iph = (struct iphdr*)skb->data;
353 	struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
354 	const int type = icmp_hdr(skb)->type;
355 	const int code = icmp_hdr(skb)->code;
356 	struct sock *sk;
357 	int harderr;
358 	int err;
359 
360 	sk = __udp4_lib_lookup(dev_net(skb->dev), iph->daddr, uh->dest,
361 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
362 	if (sk == NULL) {
363 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
364 		return;	/* No socket for error */
365 	}
366 
367 	err = 0;
368 	harderr = 0;
369 	inet = inet_sk(sk);
370 
371 	switch (type) {
372 	default:
373 	case ICMP_TIME_EXCEEDED:
374 		err = EHOSTUNREACH;
375 		break;
376 	case ICMP_SOURCE_QUENCH:
377 		goto out;
378 	case ICMP_PARAMETERPROB:
379 		err = EPROTO;
380 		harderr = 1;
381 		break;
382 	case ICMP_DEST_UNREACH:
383 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
384 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
385 				err = EMSGSIZE;
386 				harderr = 1;
387 				break;
388 			}
389 			goto out;
390 		}
391 		err = EHOSTUNREACH;
392 		if (code <= NR_ICMP_UNREACH) {
393 			harderr = icmp_err_convert[code].fatal;
394 			err = icmp_err_convert[code].errno;
395 		}
396 		break;
397 	}
398 
399 	/*
400 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
401 	 *	4.1.3.3.
402 	 */
403 	if (!inet->recverr) {
404 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
405 			goto out;
406 	} else {
407 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
408 	}
409 	sk->sk_err = err;
410 	sk->sk_error_report(sk);
411 out:
412 	sock_put(sk);
413 }
414 
415 void udp_err(struct sk_buff *skb, u32 info)
416 {
417 	__udp4_lib_err(skb, info, udp_hash);
418 }
419 
420 /*
421  * Throw away all pending data and cancel the corking. Socket is locked.
422  */
423 void udp_flush_pending_frames(struct sock *sk)
424 {
425 	struct udp_sock *up = udp_sk(sk);
426 
427 	if (up->pending) {
428 		up->len = 0;
429 		up->pending = 0;
430 		ip_flush_pending_frames(sk);
431 	}
432 }
433 EXPORT_SYMBOL(udp_flush_pending_frames);
434 
435 /**
436  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
437  * 	@sk: 	socket we are sending on
438  * 	@skb: 	sk_buff containing the filled-in UDP header
439  * 	        (checksum field must be zeroed out)
440  */
441 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
442 				 __be32 src, __be32 dst, int len      )
443 {
444 	unsigned int offset;
445 	struct udphdr *uh = udp_hdr(skb);
446 	__wsum csum = 0;
447 
448 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
449 		/*
450 		 * Only one fragment on the socket.
451 		 */
452 		skb->csum_start = skb_transport_header(skb) - skb->head;
453 		skb->csum_offset = offsetof(struct udphdr, check);
454 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
455 	} else {
456 		/*
457 		 * HW-checksum won't work as there are two or more
458 		 * fragments on the socket so that all csums of sk_buffs
459 		 * should be together
460 		 */
461 		offset = skb_transport_offset(skb);
462 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
463 
464 		skb->ip_summed = CHECKSUM_NONE;
465 
466 		skb_queue_walk(&sk->sk_write_queue, skb) {
467 			csum = csum_add(csum, skb->csum);
468 		}
469 
470 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
471 		if (uh->check == 0)
472 			uh->check = CSUM_MANGLED_0;
473 	}
474 }
475 
476 /*
477  * Push out all pending data as one UDP datagram. Socket is locked.
478  */
479 static int udp_push_pending_frames(struct sock *sk)
480 {
481 	struct udp_sock  *up = udp_sk(sk);
482 	struct inet_sock *inet = inet_sk(sk);
483 	struct flowi *fl = &inet->cork.fl;
484 	struct sk_buff *skb;
485 	struct udphdr *uh;
486 	int err = 0;
487 	int is_udplite = IS_UDPLITE(sk);
488 	__wsum csum = 0;
489 
490 	/* Grab the skbuff where UDP header space exists. */
491 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
492 		goto out;
493 
494 	/*
495 	 * Create a UDP header
496 	 */
497 	uh = udp_hdr(skb);
498 	uh->source = fl->fl_ip_sport;
499 	uh->dest = fl->fl_ip_dport;
500 	uh->len = htons(up->len);
501 	uh->check = 0;
502 
503 	if (is_udplite)  				 /*     UDP-Lite      */
504 		csum  = udplite_csum_outgoing(sk, skb);
505 
506 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
507 
508 		skb->ip_summed = CHECKSUM_NONE;
509 		goto send;
510 
511 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
512 
513 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
514 		goto send;
515 
516 	} else						 /*   `normal' UDP    */
517 		csum = udp_csum_outgoing(sk, skb);
518 
519 	/* add protocol-dependent pseudo-header */
520 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
521 				      sk->sk_protocol, csum             );
522 	if (uh->check == 0)
523 		uh->check = CSUM_MANGLED_0;
524 
525 send:
526 	err = ip_push_pending_frames(sk);
527 out:
528 	up->len = 0;
529 	up->pending = 0;
530 	if (!err)
531 		UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS, is_udplite);
532 	return err;
533 }
534 
535 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
536 		size_t len)
537 {
538 	struct inet_sock *inet = inet_sk(sk);
539 	struct udp_sock *up = udp_sk(sk);
540 	int ulen = len;
541 	struct ipcm_cookie ipc;
542 	struct rtable *rt = NULL;
543 	int free = 0;
544 	int connected = 0;
545 	__be32 daddr, faddr, saddr;
546 	__be16 dport;
547 	u8  tos;
548 	int err, is_udplite = IS_UDPLITE(sk);
549 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
550 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
551 
552 	if (len > 0xFFFF)
553 		return -EMSGSIZE;
554 
555 	/*
556 	 *	Check the flags.
557 	 */
558 
559 	if (msg->msg_flags&MSG_OOB)	/* Mirror BSD error message compatibility */
560 		return -EOPNOTSUPP;
561 
562 	ipc.opt = NULL;
563 
564 	if (up->pending) {
565 		/*
566 		 * There are pending frames.
567 		 * The socket lock must be held while it's corked.
568 		 */
569 		lock_sock(sk);
570 		if (likely(up->pending)) {
571 			if (unlikely(up->pending != AF_INET)) {
572 				release_sock(sk);
573 				return -EINVAL;
574 			}
575 			goto do_append_data;
576 		}
577 		release_sock(sk);
578 	}
579 	ulen += sizeof(struct udphdr);
580 
581 	/*
582 	 *	Get and verify the address.
583 	 */
584 	if (msg->msg_name) {
585 		struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
586 		if (msg->msg_namelen < sizeof(*usin))
587 			return -EINVAL;
588 		if (usin->sin_family != AF_INET) {
589 			if (usin->sin_family != AF_UNSPEC)
590 				return -EAFNOSUPPORT;
591 		}
592 
593 		daddr = usin->sin_addr.s_addr;
594 		dport = usin->sin_port;
595 		if (dport == 0)
596 			return -EINVAL;
597 	} else {
598 		if (sk->sk_state != TCP_ESTABLISHED)
599 			return -EDESTADDRREQ;
600 		daddr = inet->daddr;
601 		dport = inet->dport;
602 		/* Open fast path for connected socket.
603 		   Route will not be used, if at least one option is set.
604 		 */
605 		connected = 1;
606 	}
607 	ipc.addr = inet->saddr;
608 
609 	ipc.oif = sk->sk_bound_dev_if;
610 	if (msg->msg_controllen) {
611 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
612 		if (err)
613 			return err;
614 		if (ipc.opt)
615 			free = 1;
616 		connected = 0;
617 	}
618 	if (!ipc.opt)
619 		ipc.opt = inet->opt;
620 
621 	saddr = ipc.addr;
622 	ipc.addr = faddr = daddr;
623 
624 	if (ipc.opt && ipc.opt->srr) {
625 		if (!daddr)
626 			return -EINVAL;
627 		faddr = ipc.opt->faddr;
628 		connected = 0;
629 	}
630 	tos = RT_TOS(inet->tos);
631 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
632 	    (msg->msg_flags & MSG_DONTROUTE) ||
633 	    (ipc.opt && ipc.opt->is_strictroute)) {
634 		tos |= RTO_ONLINK;
635 		connected = 0;
636 	}
637 
638 	if (ipv4_is_multicast(daddr)) {
639 		if (!ipc.oif)
640 			ipc.oif = inet->mc_index;
641 		if (!saddr)
642 			saddr = inet->mc_addr;
643 		connected = 0;
644 	}
645 
646 	if (connected)
647 		rt = (struct rtable*)sk_dst_check(sk, 0);
648 
649 	if (rt == NULL) {
650 		struct flowi fl = { .oif = ipc.oif,
651 				    .nl_u = { .ip4_u =
652 					      { .daddr = faddr,
653 						.saddr = saddr,
654 						.tos = tos } },
655 				    .proto = sk->sk_protocol,
656 				    .uli_u = { .ports =
657 					       { .sport = inet->sport,
658 						 .dport = dport } } };
659 		security_sk_classify_flow(sk, &fl);
660 		err = ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 1);
661 		if (err) {
662 			if (err == -ENETUNREACH)
663 				IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
664 			goto out;
665 		}
666 
667 		err = -EACCES;
668 		if ((rt->rt_flags & RTCF_BROADCAST) &&
669 		    !sock_flag(sk, SOCK_BROADCAST))
670 			goto out;
671 		if (connected)
672 			sk_dst_set(sk, dst_clone(&rt->u.dst));
673 	}
674 
675 	if (msg->msg_flags&MSG_CONFIRM)
676 		goto do_confirm;
677 back_from_confirm:
678 
679 	saddr = rt->rt_src;
680 	if (!ipc.addr)
681 		daddr = ipc.addr = rt->rt_dst;
682 
683 	lock_sock(sk);
684 	if (unlikely(up->pending)) {
685 		/* The socket is already corked while preparing it. */
686 		/* ... which is an evident application bug. --ANK */
687 		release_sock(sk);
688 
689 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
690 		err = -EINVAL;
691 		goto out;
692 	}
693 	/*
694 	 *	Now cork the socket to pend data.
695 	 */
696 	inet->cork.fl.fl4_dst = daddr;
697 	inet->cork.fl.fl_ip_dport = dport;
698 	inet->cork.fl.fl4_src = saddr;
699 	inet->cork.fl.fl_ip_sport = inet->sport;
700 	up->pending = AF_INET;
701 
702 do_append_data:
703 	up->len += ulen;
704 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
705 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
706 			sizeof(struct udphdr), &ipc, rt,
707 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
708 	if (err)
709 		udp_flush_pending_frames(sk);
710 	else if (!corkreq)
711 		err = udp_push_pending_frames(sk);
712 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
713 		up->pending = 0;
714 	release_sock(sk);
715 
716 out:
717 	ip_rt_put(rt);
718 	if (free)
719 		kfree(ipc.opt);
720 	if (!err)
721 		return len;
722 	/*
723 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
724 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
725 	 * we don't have a good statistic (IpOutDiscards but it can be too many
726 	 * things).  We could add another new stat but at least for now that
727 	 * seems like overkill.
728 	 */
729 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
730 		UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite);
731 	}
732 	return err;
733 
734 do_confirm:
735 	dst_confirm(&rt->u.dst);
736 	if (!(msg->msg_flags&MSG_PROBE) || len)
737 		goto back_from_confirm;
738 	err = 0;
739 	goto out;
740 }
741 
742 int udp_sendpage(struct sock *sk, struct page *page, int offset,
743 		 size_t size, int flags)
744 {
745 	struct udp_sock *up = udp_sk(sk);
746 	int ret;
747 
748 	if (!up->pending) {
749 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
750 
751 		/* Call udp_sendmsg to specify destination address which
752 		 * sendpage interface can't pass.
753 		 * This will succeed only when the socket is connected.
754 		 */
755 		ret = udp_sendmsg(NULL, sk, &msg, 0);
756 		if (ret < 0)
757 			return ret;
758 	}
759 
760 	lock_sock(sk);
761 
762 	if (unlikely(!up->pending)) {
763 		release_sock(sk);
764 
765 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
766 		return -EINVAL;
767 	}
768 
769 	ret = ip_append_page(sk, page, offset, size, flags);
770 	if (ret == -EOPNOTSUPP) {
771 		release_sock(sk);
772 		return sock_no_sendpage(sk->sk_socket, page, offset,
773 					size, flags);
774 	}
775 	if (ret < 0) {
776 		udp_flush_pending_frames(sk);
777 		goto out;
778 	}
779 
780 	up->len += size;
781 	if (!(up->corkflag || (flags&MSG_MORE)))
782 		ret = udp_push_pending_frames(sk);
783 	if (!ret)
784 		ret = size;
785 out:
786 	release_sock(sk);
787 	return ret;
788 }
789 
790 /*
791  *	IOCTL requests applicable to the UDP protocol
792  */
793 
794 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
795 {
796 	switch (cmd) {
797 	case SIOCOUTQ:
798 	{
799 		int amount = atomic_read(&sk->sk_wmem_alloc);
800 		return put_user(amount, (int __user *)arg);
801 	}
802 
803 	case SIOCINQ:
804 	{
805 		struct sk_buff *skb;
806 		unsigned long amount;
807 
808 		amount = 0;
809 		spin_lock_bh(&sk->sk_receive_queue.lock);
810 		skb = skb_peek(&sk->sk_receive_queue);
811 		if (skb != NULL) {
812 			/*
813 			 * We will only return the amount
814 			 * of this packet since that is all
815 			 * that will be read.
816 			 */
817 			amount = skb->len - sizeof(struct udphdr);
818 		}
819 		spin_unlock_bh(&sk->sk_receive_queue.lock);
820 		return put_user(amount, (int __user *)arg);
821 	}
822 
823 	default:
824 		return -ENOIOCTLCMD;
825 	}
826 
827 	return 0;
828 }
829 
830 /*
831  * 	This should be easy, if there is something there we
832  * 	return it, otherwise we block.
833  */
834 
835 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
836 		size_t len, int noblock, int flags, int *addr_len)
837 {
838 	struct inet_sock *inet = inet_sk(sk);
839 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
840 	struct sk_buff *skb;
841 	unsigned int ulen, copied;
842 	int peeked;
843 	int err;
844 	int is_udplite = IS_UDPLITE(sk);
845 
846 	/*
847 	 *	Check any passed addresses
848 	 */
849 	if (addr_len)
850 		*addr_len=sizeof(*sin);
851 
852 	if (flags & MSG_ERRQUEUE)
853 		return ip_recv_error(sk, msg, len);
854 
855 try_again:
856 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
857 				  &peeked, &err);
858 	if (!skb)
859 		goto out;
860 
861 	ulen = skb->len - sizeof(struct udphdr);
862 	copied = len;
863 	if (copied > ulen)
864 		copied = ulen;
865 	else if (copied < ulen)
866 		msg->msg_flags |= MSG_TRUNC;
867 
868 	/*
869 	 * If checksum is needed at all, try to do it while copying the
870 	 * data.  If the data is truncated, or if we only want a partial
871 	 * coverage checksum (UDP-Lite), do it before the copy.
872 	 */
873 
874 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
875 		if (udp_lib_checksum_complete(skb))
876 			goto csum_copy_err;
877 	}
878 
879 	if (skb_csum_unnecessary(skb))
880 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
881 					      msg->msg_iov, copied       );
882 	else {
883 		err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
884 
885 		if (err == -EINVAL)
886 			goto csum_copy_err;
887 	}
888 
889 	if (err)
890 		goto out_free;
891 
892 	if (!peeked)
893 		UDP_INC_STATS_USER(UDP_MIB_INDATAGRAMS, is_udplite);
894 
895 	sock_recv_timestamp(msg, sk, skb);
896 
897 	/* Copy the address. */
898 	if (sin)
899 	{
900 		sin->sin_family = AF_INET;
901 		sin->sin_port = udp_hdr(skb)->source;
902 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
903 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
904 	}
905 	if (inet->cmsg_flags)
906 		ip_cmsg_recv(msg, skb);
907 
908 	err = copied;
909 	if (flags & MSG_TRUNC)
910 		err = ulen;
911 
912 out_free:
913 	lock_sock(sk);
914 	skb_free_datagram(sk, skb);
915 	release_sock(sk);
916 out:
917 	return err;
918 
919 csum_copy_err:
920 	lock_sock(sk);
921 	if (!skb_kill_datagram(sk, skb, flags))
922 		UDP_INC_STATS_USER(UDP_MIB_INERRORS, is_udplite);
923 	release_sock(sk);
924 
925 	if (noblock)
926 		return -EAGAIN;
927 	goto try_again;
928 }
929 
930 
931 int udp_disconnect(struct sock *sk, int flags)
932 {
933 	struct inet_sock *inet = inet_sk(sk);
934 	/*
935 	 *	1003.1g - break association.
936 	 */
937 
938 	sk->sk_state = TCP_CLOSE;
939 	inet->daddr = 0;
940 	inet->dport = 0;
941 	sk->sk_bound_dev_if = 0;
942 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
943 		inet_reset_saddr(sk);
944 
945 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
946 		sk->sk_prot->unhash(sk);
947 		inet->sport = 0;
948 	}
949 	sk_dst_reset(sk);
950 	return 0;
951 }
952 
953 /* returns:
954  *  -1: error
955  *   0: success
956  *  >0: "udp encap" protocol resubmission
957  *
958  * Note that in the success and error cases, the skb is assumed to
959  * have either been requeued or freed.
960  */
961 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
962 {
963 	struct udp_sock *up = udp_sk(sk);
964 	int rc;
965 	int is_udplite = IS_UDPLITE(sk);
966 
967 	/*
968 	 *	Charge it to the socket, dropping if the queue is full.
969 	 */
970 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
971 		goto drop;
972 	nf_reset(skb);
973 
974 	if (up->encap_type) {
975 		/*
976 		 * This is an encapsulation socket so pass the skb to
977 		 * the socket's udp_encap_rcv() hook. Otherwise, just
978 		 * fall through and pass this up the UDP socket.
979 		 * up->encap_rcv() returns the following value:
980 		 * =0 if skb was successfully passed to the encap
981 		 *    handler or was discarded by it.
982 		 * >0 if skb should be passed on to UDP.
983 		 * <0 if skb should be resubmitted as proto -N
984 		 */
985 
986 		/* if we're overly short, let UDP handle it */
987 		if (skb->len > sizeof(struct udphdr) &&
988 		    up->encap_rcv != NULL) {
989 			int ret;
990 
991 			ret = (*up->encap_rcv)(sk, skb);
992 			if (ret <= 0) {
993 				UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS,
994 						 is_udplite);
995 				return -ret;
996 			}
997 		}
998 
999 		/* FALLTHROUGH -- it's a UDP Packet */
1000 	}
1001 
1002 	/*
1003 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1004 	 */
1005 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1006 
1007 		/*
1008 		 * MIB statistics other than incrementing the error count are
1009 		 * disabled for the following two types of errors: these depend
1010 		 * on the application settings, not on the functioning of the
1011 		 * protocol stack as such.
1012 		 *
1013 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1014 		 * way ... to ... at least let the receiving application block
1015 		 * delivery of packets with coverage values less than a value
1016 		 * provided by the application."
1017 		 */
1018 		if (up->pcrlen == 0) {          /* full coverage was set  */
1019 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1020 				"%d while full coverage %d requested\n",
1021 				UDP_SKB_CB(skb)->cscov, skb->len);
1022 			goto drop;
1023 		}
1024 		/* The next case involves violating the min. coverage requested
1025 		 * by the receiver. This is subtle: if receiver wants x and x is
1026 		 * greater than the buffersize/MTU then receiver will complain
1027 		 * that it wants x while sender emits packets of smaller size y.
1028 		 * Therefore the above ...()->partial_cov statement is essential.
1029 		 */
1030 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1031 			LIMIT_NETDEBUG(KERN_WARNING
1032 				"UDPLITE: coverage %d too small, need min %d\n",
1033 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1034 			goto drop;
1035 		}
1036 	}
1037 
1038 	if (sk->sk_filter) {
1039 		if (udp_lib_checksum_complete(skb))
1040 			goto drop;
1041 	}
1042 
1043 	if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
1044 		/* Note that an ENOMEM error is charged twice */
1045 		if (rc == -ENOMEM)
1046 			UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, is_udplite);
1047 		goto drop;
1048 	}
1049 
1050 	return 0;
1051 
1052 drop:
1053 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
1054 	kfree_skb(skb);
1055 	return -1;
1056 }
1057 
1058 /*
1059  *	Multicasts and broadcasts go to each listener.
1060  *
1061  *	Note: called only from the BH handler context,
1062  *	so we don't need to lock the hashes.
1063  */
1064 static int __udp4_lib_mcast_deliver(struct sk_buff *skb,
1065 				    struct udphdr  *uh,
1066 				    __be32 saddr, __be32 daddr,
1067 				    struct hlist_head udptable[])
1068 {
1069 	struct sock *sk;
1070 	int dif;
1071 
1072 	read_lock(&udp_hash_lock);
1073 	sk = sk_head(&udptable[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]);
1074 	dif = skb->dev->ifindex;
1075 	sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1076 	if (sk) {
1077 		struct sock *sknext = NULL;
1078 
1079 		do {
1080 			struct sk_buff *skb1 = skb;
1081 
1082 			sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1083 						   uh->source, saddr, dif);
1084 			if (sknext)
1085 				skb1 = skb_clone(skb, GFP_ATOMIC);
1086 
1087 			if (skb1) {
1088 				int ret = 0;
1089 
1090 				bh_lock_sock_nested(sk);
1091 				if (!sock_owned_by_user(sk))
1092 					ret = udp_queue_rcv_skb(sk, skb1);
1093 				else
1094 					sk_add_backlog(sk, skb1);
1095 				bh_unlock_sock(sk);
1096 
1097 				if (ret > 0)
1098 					/* we should probably re-process instead
1099 					 * of dropping packets here. */
1100 					kfree_skb(skb1);
1101 			}
1102 			sk = sknext;
1103 		} while (sknext);
1104 	} else
1105 		kfree_skb(skb);
1106 	read_unlock(&udp_hash_lock);
1107 	return 0;
1108 }
1109 
1110 /* Initialize UDP checksum. If exited with zero value (success),
1111  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1112  * Otherwise, csum completion requires chacksumming packet body,
1113  * including udp header and folding it to skb->csum.
1114  */
1115 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1116 				 int proto)
1117 {
1118 	const struct iphdr *iph;
1119 	int err;
1120 
1121 	UDP_SKB_CB(skb)->partial_cov = 0;
1122 	UDP_SKB_CB(skb)->cscov = skb->len;
1123 
1124 	if (proto == IPPROTO_UDPLITE) {
1125 		err = udplite_checksum_init(skb, uh);
1126 		if (err)
1127 			return err;
1128 	}
1129 
1130 	iph = ip_hdr(skb);
1131 	if (uh->check == 0) {
1132 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1133 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1134 	       if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1135 				      proto, skb->csum))
1136 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1137 	}
1138 	if (!skb_csum_unnecessary(skb))
1139 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1140 					       skb->len, proto, 0);
1141 	/* Probably, we should checksum udp header (it should be in cache
1142 	 * in any case) and data in tiny packets (< rx copybreak).
1143 	 */
1144 
1145 	return 0;
1146 }
1147 
1148 /*
1149  *	All we need to do is get the socket, and then do a checksum.
1150  */
1151 
1152 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1153 		   int proto)
1154 {
1155 	struct sock *sk;
1156 	struct udphdr *uh = udp_hdr(skb);
1157 	unsigned short ulen;
1158 	struct rtable *rt = (struct rtable*)skb->dst;
1159 	__be32 saddr = ip_hdr(skb)->saddr;
1160 	__be32 daddr = ip_hdr(skb)->daddr;
1161 
1162 	/*
1163 	 *  Validate the packet.
1164 	 */
1165 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1166 		goto drop;		/* No space for header. */
1167 
1168 	ulen = ntohs(uh->len);
1169 	if (ulen > skb->len)
1170 		goto short_packet;
1171 
1172 	if (proto == IPPROTO_UDP) {
1173 		/* UDP validates ulen. */
1174 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1175 			goto short_packet;
1176 		uh = udp_hdr(skb);
1177 	}
1178 
1179 	if (udp4_csum_init(skb, uh, proto))
1180 		goto csum_error;
1181 
1182 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1183 		return __udp4_lib_mcast_deliver(skb, uh, saddr, daddr, udptable);
1184 
1185 	sk = __udp4_lib_lookup(dev_net(skb->dev), saddr, uh->source, daddr,
1186 			uh->dest, inet_iif(skb), udptable);
1187 
1188 	if (sk != NULL) {
1189 		int ret = 0;
1190 		bh_lock_sock_nested(sk);
1191 		if (!sock_owned_by_user(sk))
1192 			ret = udp_queue_rcv_skb(sk, skb);
1193 		else
1194 			sk_add_backlog(sk, skb);
1195 		bh_unlock_sock(sk);
1196 		sock_put(sk);
1197 
1198 		/* a return value > 0 means to resubmit the input, but
1199 		 * it wants the return to be -protocol, or 0
1200 		 */
1201 		if (ret > 0)
1202 			return -ret;
1203 		return 0;
1204 	}
1205 
1206 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1207 		goto drop;
1208 	nf_reset(skb);
1209 
1210 	/* No socket. Drop packet silently, if checksum is wrong */
1211 	if (udp_lib_checksum_complete(skb))
1212 		goto csum_error;
1213 
1214 	UDP_INC_STATS_BH(UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1215 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1216 
1217 	/*
1218 	 * Hmm.  We got an UDP packet to a port to which we
1219 	 * don't wanna listen.  Ignore it.
1220 	 */
1221 	kfree_skb(skb);
1222 	return 0;
1223 
1224 short_packet:
1225 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From " NIPQUAD_FMT ":%u %d/%d to " NIPQUAD_FMT ":%u\n",
1226 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1227 		       NIPQUAD(saddr),
1228 		       ntohs(uh->source),
1229 		       ulen,
1230 		       skb->len,
1231 		       NIPQUAD(daddr),
1232 		       ntohs(uh->dest));
1233 	goto drop;
1234 
1235 csum_error:
1236 	/*
1237 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1238 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1239 	 */
1240 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From " NIPQUAD_FMT ":%u to " NIPQUAD_FMT ":%u ulen %d\n",
1241 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1242 		       NIPQUAD(saddr),
1243 		       ntohs(uh->source),
1244 		       NIPQUAD(daddr),
1245 		       ntohs(uh->dest),
1246 		       ulen);
1247 drop:
1248 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1249 	kfree_skb(skb);
1250 	return 0;
1251 }
1252 
1253 int udp_rcv(struct sk_buff *skb)
1254 {
1255 	return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP);
1256 }
1257 
1258 int udp_destroy_sock(struct sock *sk)
1259 {
1260 	lock_sock(sk);
1261 	udp_flush_pending_frames(sk);
1262 	release_sock(sk);
1263 	return 0;
1264 }
1265 
1266 /*
1267  *	Socket option code for UDP
1268  */
1269 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1270 		       char __user *optval, int optlen,
1271 		       int (*push_pending_frames)(struct sock *))
1272 {
1273 	struct udp_sock *up = udp_sk(sk);
1274 	int val;
1275 	int err = 0;
1276 	int is_udplite = IS_UDPLITE(sk);
1277 
1278 	if (optlen<sizeof(int))
1279 		return -EINVAL;
1280 
1281 	if (get_user(val, (int __user *)optval))
1282 		return -EFAULT;
1283 
1284 	switch (optname) {
1285 	case UDP_CORK:
1286 		if (val != 0) {
1287 			up->corkflag = 1;
1288 		} else {
1289 			up->corkflag = 0;
1290 			lock_sock(sk);
1291 			(*push_pending_frames)(sk);
1292 			release_sock(sk);
1293 		}
1294 		break;
1295 
1296 	case UDP_ENCAP:
1297 		switch (val) {
1298 		case 0:
1299 		case UDP_ENCAP_ESPINUDP:
1300 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1301 			up->encap_rcv = xfrm4_udp_encap_rcv;
1302 			/* FALLTHROUGH */
1303 		case UDP_ENCAP_L2TPINUDP:
1304 			up->encap_type = val;
1305 			break;
1306 		default:
1307 			err = -ENOPROTOOPT;
1308 			break;
1309 		}
1310 		break;
1311 
1312 	/*
1313 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1314 	 */
1315 	/* The sender sets actual checksum coverage length via this option.
1316 	 * The case coverage > packet length is handled by send module. */
1317 	case UDPLITE_SEND_CSCOV:
1318 		if (!is_udplite)         /* Disable the option on UDP sockets */
1319 			return -ENOPROTOOPT;
1320 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1321 			val = 8;
1322 		up->pcslen = val;
1323 		up->pcflag |= UDPLITE_SEND_CC;
1324 		break;
1325 
1326 	/* The receiver specifies a minimum checksum coverage value. To make
1327 	 * sense, this should be set to at least 8 (as done below). If zero is
1328 	 * used, this again means full checksum coverage.                     */
1329 	case UDPLITE_RECV_CSCOV:
1330 		if (!is_udplite)         /* Disable the option on UDP sockets */
1331 			return -ENOPROTOOPT;
1332 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1333 			val = 8;
1334 		up->pcrlen = val;
1335 		up->pcflag |= UDPLITE_RECV_CC;
1336 		break;
1337 
1338 	default:
1339 		err = -ENOPROTOOPT;
1340 		break;
1341 	}
1342 
1343 	return err;
1344 }
1345 
1346 int udp_setsockopt(struct sock *sk, int level, int optname,
1347 		   char __user *optval, int optlen)
1348 {
1349 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1350 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1351 					  udp_push_pending_frames);
1352 	return ip_setsockopt(sk, level, optname, optval, optlen);
1353 }
1354 
1355 #ifdef CONFIG_COMPAT
1356 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1357 			  char __user *optval, int optlen)
1358 {
1359 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1360 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1361 					  udp_push_pending_frames);
1362 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1363 }
1364 #endif
1365 
1366 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1367 		       char __user *optval, int __user *optlen)
1368 {
1369 	struct udp_sock *up = udp_sk(sk);
1370 	int val, len;
1371 
1372 	if (get_user(len,optlen))
1373 		return -EFAULT;
1374 
1375 	len = min_t(unsigned int, len, sizeof(int));
1376 
1377 	if (len < 0)
1378 		return -EINVAL;
1379 
1380 	switch (optname) {
1381 	case UDP_CORK:
1382 		val = up->corkflag;
1383 		break;
1384 
1385 	case UDP_ENCAP:
1386 		val = up->encap_type;
1387 		break;
1388 
1389 	/* The following two cannot be changed on UDP sockets, the return is
1390 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1391 	case UDPLITE_SEND_CSCOV:
1392 		val = up->pcslen;
1393 		break;
1394 
1395 	case UDPLITE_RECV_CSCOV:
1396 		val = up->pcrlen;
1397 		break;
1398 
1399 	default:
1400 		return -ENOPROTOOPT;
1401 	}
1402 
1403 	if (put_user(len, optlen))
1404 		return -EFAULT;
1405 	if (copy_to_user(optval, &val,len))
1406 		return -EFAULT;
1407 	return 0;
1408 }
1409 
1410 int udp_getsockopt(struct sock *sk, int level, int optname,
1411 		   char __user *optval, int __user *optlen)
1412 {
1413 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1414 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1415 	return ip_getsockopt(sk, level, optname, optval, optlen);
1416 }
1417 
1418 #ifdef CONFIG_COMPAT
1419 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1420 				 char __user *optval, int __user *optlen)
1421 {
1422 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1423 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1424 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1425 }
1426 #endif
1427 /**
1428  * 	udp_poll - wait for a UDP event.
1429  *	@file - file struct
1430  *	@sock - socket
1431  *	@wait - poll table
1432  *
1433  *	This is same as datagram poll, except for the special case of
1434  *	blocking sockets. If application is using a blocking fd
1435  *	and a packet with checksum error is in the queue;
1436  *	then it could get return from select indicating data available
1437  *	but then block when reading it. Add special case code
1438  *	to work around these arguably broken applications.
1439  */
1440 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1441 {
1442 	unsigned int mask = datagram_poll(file, sock, wait);
1443 	struct sock *sk = sock->sk;
1444 	int 	is_lite = IS_UDPLITE(sk);
1445 
1446 	/* Check for false positives due to checksum errors */
1447 	if ( (mask & POLLRDNORM) &&
1448 	     !(file->f_flags & O_NONBLOCK) &&
1449 	     !(sk->sk_shutdown & RCV_SHUTDOWN)){
1450 		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1451 		struct sk_buff *skb;
1452 
1453 		spin_lock_bh(&rcvq->lock);
1454 		while ((skb = skb_peek(rcvq)) != NULL &&
1455 		       udp_lib_checksum_complete(skb)) {
1456 			UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_lite);
1457 			__skb_unlink(skb, rcvq);
1458 			kfree_skb(skb);
1459 		}
1460 		spin_unlock_bh(&rcvq->lock);
1461 
1462 		/* nothing to see, move along */
1463 		if (skb == NULL)
1464 			mask &= ~(POLLIN | POLLRDNORM);
1465 	}
1466 
1467 	return mask;
1468 
1469 }
1470 
1471 struct proto udp_prot = {
1472 	.name		   = "UDP",
1473 	.owner		   = THIS_MODULE,
1474 	.close		   = udp_lib_close,
1475 	.connect	   = ip4_datagram_connect,
1476 	.disconnect	   = udp_disconnect,
1477 	.ioctl		   = udp_ioctl,
1478 	.destroy	   = udp_destroy_sock,
1479 	.setsockopt	   = udp_setsockopt,
1480 	.getsockopt	   = udp_getsockopt,
1481 	.sendmsg	   = udp_sendmsg,
1482 	.recvmsg	   = udp_recvmsg,
1483 	.sendpage	   = udp_sendpage,
1484 	.backlog_rcv	   = udp_queue_rcv_skb,
1485 	.hash		   = udp_lib_hash,
1486 	.unhash		   = udp_lib_unhash,
1487 	.get_port	   = udp_v4_get_port,
1488 	.memory_allocated  = &udp_memory_allocated,
1489 	.sysctl_mem	   = sysctl_udp_mem,
1490 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1491 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1492 	.obj_size	   = sizeof(struct udp_sock),
1493 	.h.udp_hash	   = udp_hash,
1494 #ifdef CONFIG_COMPAT
1495 	.compat_setsockopt = compat_udp_setsockopt,
1496 	.compat_getsockopt = compat_udp_getsockopt,
1497 #endif
1498 };
1499 
1500 /* ------------------------------------------------------------------------ */
1501 #ifdef CONFIG_PROC_FS
1502 
1503 static struct sock *udp_get_first(struct seq_file *seq)
1504 {
1505 	struct sock *sk;
1506 	struct udp_iter_state *state = seq->private;
1507 	struct net *net = seq_file_net(seq);
1508 
1509 	for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1510 		struct hlist_node *node;
1511 		sk_for_each(sk, node, state->hashtable + state->bucket) {
1512 			if (!net_eq(sock_net(sk), net))
1513 				continue;
1514 			if (sk->sk_family == state->family)
1515 				goto found;
1516 		}
1517 	}
1518 	sk = NULL;
1519 found:
1520 	return sk;
1521 }
1522 
1523 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1524 {
1525 	struct udp_iter_state *state = seq->private;
1526 	struct net *net = seq_file_net(seq);
1527 
1528 	do {
1529 		sk = sk_next(sk);
1530 try_again:
1531 		;
1532 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1533 
1534 	if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1535 		sk = sk_head(state->hashtable + state->bucket);
1536 		goto try_again;
1537 	}
1538 	return sk;
1539 }
1540 
1541 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1542 {
1543 	struct sock *sk = udp_get_first(seq);
1544 
1545 	if (sk)
1546 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1547 			--pos;
1548 	return pos ? NULL : sk;
1549 }
1550 
1551 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1552 	__acquires(udp_hash_lock)
1553 {
1554 	read_lock(&udp_hash_lock);
1555 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1556 }
1557 
1558 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1559 {
1560 	struct sock *sk;
1561 
1562 	if (v == SEQ_START_TOKEN)
1563 		sk = udp_get_idx(seq, 0);
1564 	else
1565 		sk = udp_get_next(seq, v);
1566 
1567 	++*pos;
1568 	return sk;
1569 }
1570 
1571 static void udp_seq_stop(struct seq_file *seq, void *v)
1572 	__releases(udp_hash_lock)
1573 {
1574 	read_unlock(&udp_hash_lock);
1575 }
1576 
1577 static int udp_seq_open(struct inode *inode, struct file *file)
1578 {
1579 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1580 	struct udp_iter_state *s;
1581 	int err;
1582 
1583 	err = seq_open_net(inode, file, &afinfo->seq_ops,
1584 			   sizeof(struct udp_iter_state));
1585 	if (err < 0)
1586 		return err;
1587 
1588 	s = ((struct seq_file *)file->private_data)->private;
1589 	s->family		= afinfo->family;
1590 	s->hashtable		= afinfo->hashtable;
1591 	return err;
1592 }
1593 
1594 /* ------------------------------------------------------------------------ */
1595 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1596 {
1597 	struct proc_dir_entry *p;
1598 	int rc = 0;
1599 
1600 	afinfo->seq_fops.open		= udp_seq_open;
1601 	afinfo->seq_fops.read		= seq_read;
1602 	afinfo->seq_fops.llseek		= seq_lseek;
1603 	afinfo->seq_fops.release	= seq_release_net;
1604 
1605 	afinfo->seq_ops.start		= udp_seq_start;
1606 	afinfo->seq_ops.next		= udp_seq_next;
1607 	afinfo->seq_ops.stop		= udp_seq_stop;
1608 
1609 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1610 			     &afinfo->seq_fops, afinfo);
1611 	if (!p)
1612 		rc = -ENOMEM;
1613 	return rc;
1614 }
1615 
1616 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1617 {
1618 	proc_net_remove(net, afinfo->name);
1619 }
1620 
1621 /* ------------------------------------------------------------------------ */
1622 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1623 		int bucket, int *len)
1624 {
1625 	struct inet_sock *inet = inet_sk(sp);
1626 	__be32 dest = inet->daddr;
1627 	__be32 src  = inet->rcv_saddr;
1628 	__u16 destp	  = ntohs(inet->dport);
1629 	__u16 srcp	  = ntohs(inet->sport);
1630 
1631 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
1632 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p%n",
1633 		bucket, src, srcp, dest, destp, sp->sk_state,
1634 		atomic_read(&sp->sk_wmem_alloc),
1635 		atomic_read(&sp->sk_rmem_alloc),
1636 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1637 		atomic_read(&sp->sk_refcnt), sp, len);
1638 }
1639 
1640 int udp4_seq_show(struct seq_file *seq, void *v)
1641 {
1642 	if (v == SEQ_START_TOKEN)
1643 		seq_printf(seq, "%-127s\n",
1644 			   "  sl  local_address rem_address   st tx_queue "
1645 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1646 			   "inode");
1647 	else {
1648 		struct udp_iter_state *state = seq->private;
1649 		int len;
1650 
1651 		udp4_format_sock(v, seq, state->bucket, &len);
1652 		seq_printf(seq, "%*s\n", 127 - len ,"");
1653 	}
1654 	return 0;
1655 }
1656 
1657 /* ------------------------------------------------------------------------ */
1658 static struct udp_seq_afinfo udp4_seq_afinfo = {
1659 	.name		= "udp",
1660 	.family		= AF_INET,
1661 	.hashtable	= udp_hash,
1662 	.seq_fops	= {
1663 		.owner	=	THIS_MODULE,
1664 	},
1665 	.seq_ops	= {
1666 		.show		= udp4_seq_show,
1667 	},
1668 };
1669 
1670 static int udp4_proc_init_net(struct net *net)
1671 {
1672 	return udp_proc_register(net, &udp4_seq_afinfo);
1673 }
1674 
1675 static void udp4_proc_exit_net(struct net *net)
1676 {
1677 	udp_proc_unregister(net, &udp4_seq_afinfo);
1678 }
1679 
1680 static struct pernet_operations udp4_net_ops = {
1681 	.init = udp4_proc_init_net,
1682 	.exit = udp4_proc_exit_net,
1683 };
1684 
1685 int __init udp4_proc_init(void)
1686 {
1687 	return register_pernet_subsys(&udp4_net_ops);
1688 }
1689 
1690 void udp4_proc_exit(void)
1691 {
1692 	unregister_pernet_subsys(&udp4_net_ops);
1693 }
1694 #endif /* CONFIG_PROC_FS */
1695 
1696 void __init udp_init(void)
1697 {
1698 	unsigned long limit;
1699 
1700 	/* Set the pressure threshold up by the same strategy of TCP. It is a
1701 	 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
1702 	 * toward zero with the amount of memory, with a floor of 128 pages.
1703 	 */
1704 	limit = min(nr_all_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
1705 	limit = (limit * (nr_all_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
1706 	limit = max(limit, 128UL);
1707 	sysctl_udp_mem[0] = limit / 4 * 3;
1708 	sysctl_udp_mem[1] = limit;
1709 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
1710 
1711 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
1712 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
1713 }
1714 
1715 EXPORT_SYMBOL(udp_disconnect);
1716 EXPORT_SYMBOL(udp_hash);
1717 EXPORT_SYMBOL(udp_hash_lock);
1718 EXPORT_SYMBOL(udp_ioctl);
1719 EXPORT_SYMBOL(udp_prot);
1720 EXPORT_SYMBOL(udp_sendmsg);
1721 EXPORT_SYMBOL(udp_lib_getsockopt);
1722 EXPORT_SYMBOL(udp_lib_setsockopt);
1723 EXPORT_SYMBOL(udp_poll);
1724 EXPORT_SYMBOL(udp_lib_get_port);
1725 
1726 #ifdef CONFIG_PROC_FS
1727 EXPORT_SYMBOL(udp_proc_register);
1728 EXPORT_SYMBOL(udp_proc_unregister);
1729 #endif
1730