1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 int sysctl_udp_rmem_min __read_mostly; 126 EXPORT_SYMBOL(sysctl_udp_rmem_min); 127 128 int sysctl_udp_wmem_min __read_mostly; 129 EXPORT_SYMBOL(sysctl_udp_wmem_min); 130 131 atomic_long_t udp_memory_allocated; 132 EXPORT_SYMBOL(udp_memory_allocated); 133 134 #define MAX_UDP_PORTS 65536 135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 136 137 /* IPCB reference means this can not be used from early demux */ 138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 139 { 140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 141 if (!net->ipv4.sysctl_udp_l3mdev_accept && 142 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 143 return true; 144 #endif 145 return false; 146 } 147 148 static int udp_lib_lport_inuse(struct net *net, __u16 num, 149 const struct udp_hslot *hslot, 150 unsigned long *bitmap, 151 struct sock *sk, unsigned int log) 152 { 153 struct sock *sk2; 154 kuid_t uid = sock_i_uid(sk); 155 156 sk_for_each(sk2, &hslot->head) { 157 if (net_eq(sock_net(sk2), net) && 158 sk2 != sk && 159 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 160 (!sk2->sk_reuse || !sk->sk_reuse) && 161 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 162 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 163 inet_rcv_saddr_equal(sk, sk2, true)) { 164 if (sk2->sk_reuseport && sk->sk_reuseport && 165 !rcu_access_pointer(sk->sk_reuseport_cb) && 166 uid_eq(uid, sock_i_uid(sk2))) { 167 if (!bitmap) 168 return 0; 169 } else { 170 if (!bitmap) 171 return 1; 172 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 173 bitmap); 174 } 175 } 176 } 177 return 0; 178 } 179 180 /* 181 * Note: we still hold spinlock of primary hash chain, so no other writer 182 * can insert/delete a socket with local_port == num 183 */ 184 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 185 struct udp_hslot *hslot2, 186 struct sock *sk) 187 { 188 struct sock *sk2; 189 kuid_t uid = sock_i_uid(sk); 190 int res = 0; 191 192 spin_lock(&hslot2->lock); 193 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 194 if (net_eq(sock_net(sk2), net) && 195 sk2 != sk && 196 (udp_sk(sk2)->udp_port_hash == num) && 197 (!sk2->sk_reuse || !sk->sk_reuse) && 198 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 199 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 200 inet_rcv_saddr_equal(sk, sk2, true)) { 201 if (sk2->sk_reuseport && sk->sk_reuseport && 202 !rcu_access_pointer(sk->sk_reuseport_cb) && 203 uid_eq(uid, sock_i_uid(sk2))) { 204 res = 0; 205 } else { 206 res = 1; 207 } 208 break; 209 } 210 } 211 spin_unlock(&hslot2->lock); 212 return res; 213 } 214 215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 216 { 217 struct net *net = sock_net(sk); 218 kuid_t uid = sock_i_uid(sk); 219 struct sock *sk2; 220 221 sk_for_each(sk2, &hslot->head) { 222 if (net_eq(sock_net(sk2), net) && 223 sk2 != sk && 224 sk2->sk_family == sk->sk_family && 225 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 226 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 227 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 228 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 229 inet_rcv_saddr_equal(sk, sk2, false)) { 230 return reuseport_add_sock(sk, sk2); 231 } 232 } 233 234 /* Initial allocation may have already happened via setsockopt */ 235 if (!rcu_access_pointer(sk->sk_reuseport_cb)) 236 return reuseport_alloc(sk); 237 return 0; 238 } 239 240 /** 241 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 242 * 243 * @sk: socket struct in question 244 * @snum: port number to look up 245 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 246 * with NULL address 247 */ 248 int udp_lib_get_port(struct sock *sk, unsigned short snum, 249 unsigned int hash2_nulladdr) 250 { 251 struct udp_hslot *hslot, *hslot2; 252 struct udp_table *udptable = sk->sk_prot->h.udp_table; 253 int error = 1; 254 struct net *net = sock_net(sk); 255 256 if (!snum) { 257 int low, high, remaining; 258 unsigned int rand; 259 unsigned short first, last; 260 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 261 262 inet_get_local_port_range(net, &low, &high); 263 remaining = (high - low) + 1; 264 265 rand = prandom_u32(); 266 first = reciprocal_scale(rand, remaining) + low; 267 /* 268 * force rand to be an odd multiple of UDP_HTABLE_SIZE 269 */ 270 rand = (rand | 1) * (udptable->mask + 1); 271 last = first + udptable->mask + 1; 272 do { 273 hslot = udp_hashslot(udptable, net, first); 274 bitmap_zero(bitmap, PORTS_PER_CHAIN); 275 spin_lock_bh(&hslot->lock); 276 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 277 udptable->log); 278 279 snum = first; 280 /* 281 * Iterate on all possible values of snum for this hash. 282 * Using steps of an odd multiple of UDP_HTABLE_SIZE 283 * give us randomization and full range coverage. 284 */ 285 do { 286 if (low <= snum && snum <= high && 287 !test_bit(snum >> udptable->log, bitmap) && 288 !inet_is_local_reserved_port(net, snum)) 289 goto found; 290 snum += rand; 291 } while (snum != first); 292 spin_unlock_bh(&hslot->lock); 293 cond_resched(); 294 } while (++first != last); 295 goto fail; 296 } else { 297 hslot = udp_hashslot(udptable, net, snum); 298 spin_lock_bh(&hslot->lock); 299 if (hslot->count > 10) { 300 int exist; 301 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 302 303 slot2 &= udptable->mask; 304 hash2_nulladdr &= udptable->mask; 305 306 hslot2 = udp_hashslot2(udptable, slot2); 307 if (hslot->count < hslot2->count) 308 goto scan_primary_hash; 309 310 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 311 if (!exist && (hash2_nulladdr != slot2)) { 312 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 313 exist = udp_lib_lport_inuse2(net, snum, hslot2, 314 sk); 315 } 316 if (exist) 317 goto fail_unlock; 318 else 319 goto found; 320 } 321 scan_primary_hash: 322 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 323 goto fail_unlock; 324 } 325 found: 326 inet_sk(sk)->inet_num = snum; 327 udp_sk(sk)->udp_port_hash = snum; 328 udp_sk(sk)->udp_portaddr_hash ^= snum; 329 if (sk_unhashed(sk)) { 330 if (sk->sk_reuseport && 331 udp_reuseport_add_sock(sk, hslot)) { 332 inet_sk(sk)->inet_num = 0; 333 udp_sk(sk)->udp_port_hash = 0; 334 udp_sk(sk)->udp_portaddr_hash ^= snum; 335 goto fail_unlock; 336 } 337 338 sk_add_node_rcu(sk, &hslot->head); 339 hslot->count++; 340 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 341 342 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 343 spin_lock(&hslot2->lock); 344 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 345 sk->sk_family == AF_INET6) 346 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 347 &hslot2->head); 348 else 349 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 350 &hslot2->head); 351 hslot2->count++; 352 spin_unlock(&hslot2->lock); 353 } 354 sock_set_flag(sk, SOCK_RCU_FREE); 355 error = 0; 356 fail_unlock: 357 spin_unlock_bh(&hslot->lock); 358 fail: 359 return error; 360 } 361 EXPORT_SYMBOL(udp_lib_get_port); 362 363 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr, 364 unsigned int port) 365 { 366 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; 367 } 368 369 int udp_v4_get_port(struct sock *sk, unsigned short snum) 370 { 371 unsigned int hash2_nulladdr = 372 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 373 unsigned int hash2_partial = 374 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 375 376 /* precompute partial secondary hash */ 377 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 378 return udp_lib_get_port(sk, snum, hash2_nulladdr); 379 } 380 381 static int compute_score(struct sock *sk, struct net *net, 382 __be32 saddr, __be16 sport, 383 __be32 daddr, unsigned short hnum, 384 int dif, int sdif, bool exact_dif) 385 { 386 int score; 387 struct inet_sock *inet; 388 389 if (!net_eq(sock_net(sk), net) || 390 udp_sk(sk)->udp_port_hash != hnum || 391 ipv6_only_sock(sk)) 392 return -1; 393 394 score = (sk->sk_family == PF_INET) ? 2 : 1; 395 inet = inet_sk(sk); 396 397 if (inet->inet_rcv_saddr) { 398 if (inet->inet_rcv_saddr != daddr) 399 return -1; 400 score += 4; 401 } 402 403 if (inet->inet_daddr) { 404 if (inet->inet_daddr != saddr) 405 return -1; 406 score += 4; 407 } 408 409 if (inet->inet_dport) { 410 if (inet->inet_dport != sport) 411 return -1; 412 score += 4; 413 } 414 415 if (sk->sk_bound_dev_if || exact_dif) { 416 bool dev_match = (sk->sk_bound_dev_if == dif || 417 sk->sk_bound_dev_if == sdif); 418 419 if (exact_dif && !dev_match) 420 return -1; 421 if (sk->sk_bound_dev_if && dev_match) 422 score += 4; 423 } 424 425 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 426 score++; 427 return score; 428 } 429 430 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 431 const __u16 lport, const __be32 faddr, 432 const __be16 fport) 433 { 434 static u32 udp_ehash_secret __read_mostly; 435 436 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 437 438 return __inet_ehashfn(laddr, lport, faddr, fport, 439 udp_ehash_secret + net_hash_mix(net)); 440 } 441 442 /* called with rcu_read_lock() */ 443 static struct sock *udp4_lib_lookup2(struct net *net, 444 __be32 saddr, __be16 sport, 445 __be32 daddr, unsigned int hnum, 446 int dif, int sdif, bool exact_dif, 447 struct udp_hslot *hslot2, 448 struct sk_buff *skb) 449 { 450 struct sock *sk, *result; 451 int score, badness, matches = 0, reuseport = 0; 452 u32 hash = 0; 453 454 result = NULL; 455 badness = 0; 456 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 457 score = compute_score(sk, net, saddr, sport, 458 daddr, hnum, dif, sdif, exact_dif); 459 if (score > badness) { 460 reuseport = sk->sk_reuseport; 461 if (reuseport) { 462 hash = udp_ehashfn(net, daddr, hnum, 463 saddr, sport); 464 result = reuseport_select_sock(sk, hash, skb, 465 sizeof(struct udphdr)); 466 if (result) 467 return result; 468 matches = 1; 469 } 470 badness = score; 471 result = sk; 472 } else if (score == badness && reuseport) { 473 matches++; 474 if (reciprocal_scale(hash, matches) == 0) 475 result = sk; 476 hash = next_pseudo_random32(hash); 477 } 478 } 479 return result; 480 } 481 482 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 483 * harder than this. -DaveM 484 */ 485 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 486 __be16 sport, __be32 daddr, __be16 dport, int dif, 487 int sdif, struct udp_table *udptable, struct sk_buff *skb) 488 { 489 struct sock *sk, *result; 490 unsigned short hnum = ntohs(dport); 491 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 492 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 493 bool exact_dif = udp_lib_exact_dif_match(net, skb); 494 int score, badness, matches = 0, reuseport = 0; 495 u32 hash = 0; 496 497 if (hslot->count > 10) { 498 hash2 = udp4_portaddr_hash(net, daddr, hnum); 499 slot2 = hash2 & udptable->mask; 500 hslot2 = &udptable->hash2[slot2]; 501 if (hslot->count < hslot2->count) 502 goto begin; 503 504 result = udp4_lib_lookup2(net, saddr, sport, 505 daddr, hnum, dif, sdif, 506 exact_dif, hslot2, skb); 507 if (!result) { 508 unsigned int old_slot2 = slot2; 509 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 510 slot2 = hash2 & udptable->mask; 511 /* avoid searching the same slot again. */ 512 if (unlikely(slot2 == old_slot2)) 513 return result; 514 515 hslot2 = &udptable->hash2[slot2]; 516 if (hslot->count < hslot2->count) 517 goto begin; 518 519 result = udp4_lib_lookup2(net, saddr, sport, 520 daddr, hnum, dif, sdif, 521 exact_dif, hslot2, skb); 522 } 523 return result; 524 } 525 begin: 526 result = NULL; 527 badness = 0; 528 sk_for_each_rcu(sk, &hslot->head) { 529 score = compute_score(sk, net, saddr, sport, 530 daddr, hnum, dif, sdif, exact_dif); 531 if (score > badness) { 532 reuseport = sk->sk_reuseport; 533 if (reuseport) { 534 hash = udp_ehashfn(net, daddr, hnum, 535 saddr, sport); 536 result = reuseport_select_sock(sk, hash, skb, 537 sizeof(struct udphdr)); 538 if (result) 539 return result; 540 matches = 1; 541 } 542 result = sk; 543 badness = score; 544 } else if (score == badness && reuseport) { 545 matches++; 546 if (reciprocal_scale(hash, matches) == 0) 547 result = sk; 548 hash = next_pseudo_random32(hash); 549 } 550 } 551 return result; 552 } 553 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 554 555 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 556 __be16 sport, __be16 dport, 557 struct udp_table *udptable) 558 { 559 const struct iphdr *iph = ip_hdr(skb); 560 561 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 562 iph->daddr, dport, inet_iif(skb), 563 inet_sdif(skb), udptable, skb); 564 } 565 566 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 567 __be16 sport, __be16 dport) 568 { 569 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 570 } 571 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 572 573 /* Must be called under rcu_read_lock(). 574 * Does increment socket refcount. 575 */ 576 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \ 577 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \ 578 IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 579 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 580 __be32 daddr, __be16 dport, int dif) 581 { 582 struct sock *sk; 583 584 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 585 dif, 0, &udp_table, NULL); 586 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 587 sk = NULL; 588 return sk; 589 } 590 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 591 #endif 592 593 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 594 __be16 loc_port, __be32 loc_addr, 595 __be16 rmt_port, __be32 rmt_addr, 596 int dif, int sdif, unsigned short hnum) 597 { 598 struct inet_sock *inet = inet_sk(sk); 599 600 if (!net_eq(sock_net(sk), net) || 601 udp_sk(sk)->udp_port_hash != hnum || 602 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 603 (inet->inet_dport != rmt_port && inet->inet_dport) || 604 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 605 ipv6_only_sock(sk) || 606 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 607 sk->sk_bound_dev_if != sdif)) 608 return false; 609 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 610 return false; 611 return true; 612 } 613 614 /* 615 * This routine is called by the ICMP module when it gets some 616 * sort of error condition. If err < 0 then the socket should 617 * be closed and the error returned to the user. If err > 0 618 * it's just the icmp type << 8 | icmp code. 619 * Header points to the ip header of the error packet. We move 620 * on past this. Then (as it used to claim before adjustment) 621 * header points to the first 8 bytes of the udp header. We need 622 * to find the appropriate port. 623 */ 624 625 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 626 { 627 struct inet_sock *inet; 628 const struct iphdr *iph = (const struct iphdr *)skb->data; 629 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 630 const int type = icmp_hdr(skb)->type; 631 const int code = icmp_hdr(skb)->code; 632 struct sock *sk; 633 int harderr; 634 int err; 635 struct net *net = dev_net(skb->dev); 636 637 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 638 iph->saddr, uh->source, skb->dev->ifindex, 0, 639 udptable, NULL); 640 if (!sk) { 641 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 642 return; /* No socket for error */ 643 } 644 645 err = 0; 646 harderr = 0; 647 inet = inet_sk(sk); 648 649 switch (type) { 650 default: 651 case ICMP_TIME_EXCEEDED: 652 err = EHOSTUNREACH; 653 break; 654 case ICMP_SOURCE_QUENCH: 655 goto out; 656 case ICMP_PARAMETERPROB: 657 err = EPROTO; 658 harderr = 1; 659 break; 660 case ICMP_DEST_UNREACH: 661 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 662 ipv4_sk_update_pmtu(skb, sk, info); 663 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 664 err = EMSGSIZE; 665 harderr = 1; 666 break; 667 } 668 goto out; 669 } 670 err = EHOSTUNREACH; 671 if (code <= NR_ICMP_UNREACH) { 672 harderr = icmp_err_convert[code].fatal; 673 err = icmp_err_convert[code].errno; 674 } 675 break; 676 case ICMP_REDIRECT: 677 ipv4_sk_redirect(skb, sk); 678 goto out; 679 } 680 681 /* 682 * RFC1122: OK. Passes ICMP errors back to application, as per 683 * 4.1.3.3. 684 */ 685 if (!inet->recverr) { 686 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 687 goto out; 688 } else 689 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 690 691 sk->sk_err = err; 692 sk->sk_error_report(sk); 693 out: 694 return; 695 } 696 697 void udp_err(struct sk_buff *skb, u32 info) 698 { 699 __udp4_lib_err(skb, info, &udp_table); 700 } 701 702 /* 703 * Throw away all pending data and cancel the corking. Socket is locked. 704 */ 705 void udp_flush_pending_frames(struct sock *sk) 706 { 707 struct udp_sock *up = udp_sk(sk); 708 709 if (up->pending) { 710 up->len = 0; 711 up->pending = 0; 712 ip_flush_pending_frames(sk); 713 } 714 } 715 EXPORT_SYMBOL(udp_flush_pending_frames); 716 717 /** 718 * udp4_hwcsum - handle outgoing HW checksumming 719 * @skb: sk_buff containing the filled-in UDP header 720 * (checksum field must be zeroed out) 721 * @src: source IP address 722 * @dst: destination IP address 723 */ 724 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 725 { 726 struct udphdr *uh = udp_hdr(skb); 727 int offset = skb_transport_offset(skb); 728 int len = skb->len - offset; 729 int hlen = len; 730 __wsum csum = 0; 731 732 if (!skb_has_frag_list(skb)) { 733 /* 734 * Only one fragment on the socket. 735 */ 736 skb->csum_start = skb_transport_header(skb) - skb->head; 737 skb->csum_offset = offsetof(struct udphdr, check); 738 uh->check = ~csum_tcpudp_magic(src, dst, len, 739 IPPROTO_UDP, 0); 740 } else { 741 struct sk_buff *frags; 742 743 /* 744 * HW-checksum won't work as there are two or more 745 * fragments on the socket so that all csums of sk_buffs 746 * should be together 747 */ 748 skb_walk_frags(skb, frags) { 749 csum = csum_add(csum, frags->csum); 750 hlen -= frags->len; 751 } 752 753 csum = skb_checksum(skb, offset, hlen, csum); 754 skb->ip_summed = CHECKSUM_NONE; 755 756 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 757 if (uh->check == 0) 758 uh->check = CSUM_MANGLED_0; 759 } 760 } 761 EXPORT_SYMBOL_GPL(udp4_hwcsum); 762 763 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 764 * for the simple case like when setting the checksum for a UDP tunnel. 765 */ 766 void udp_set_csum(bool nocheck, struct sk_buff *skb, 767 __be32 saddr, __be32 daddr, int len) 768 { 769 struct udphdr *uh = udp_hdr(skb); 770 771 if (nocheck) { 772 uh->check = 0; 773 } else if (skb_is_gso(skb)) { 774 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 775 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 776 uh->check = 0; 777 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 778 if (uh->check == 0) 779 uh->check = CSUM_MANGLED_0; 780 } else { 781 skb->ip_summed = CHECKSUM_PARTIAL; 782 skb->csum_start = skb_transport_header(skb) - skb->head; 783 skb->csum_offset = offsetof(struct udphdr, check); 784 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 785 } 786 } 787 EXPORT_SYMBOL(udp_set_csum); 788 789 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 790 { 791 struct sock *sk = skb->sk; 792 struct inet_sock *inet = inet_sk(sk); 793 struct udphdr *uh; 794 int err = 0; 795 int is_udplite = IS_UDPLITE(sk); 796 int offset = skb_transport_offset(skb); 797 int len = skb->len - offset; 798 __wsum csum = 0; 799 800 /* 801 * Create a UDP header 802 */ 803 uh = udp_hdr(skb); 804 uh->source = inet->inet_sport; 805 uh->dest = fl4->fl4_dport; 806 uh->len = htons(len); 807 uh->check = 0; 808 809 if (is_udplite) /* UDP-Lite */ 810 csum = udplite_csum(skb); 811 812 else if (sk->sk_no_check_tx) { /* UDP csum off */ 813 814 skb->ip_summed = CHECKSUM_NONE; 815 goto send; 816 817 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 818 819 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 820 goto send; 821 822 } else 823 csum = udp_csum(skb); 824 825 /* add protocol-dependent pseudo-header */ 826 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 827 sk->sk_protocol, csum); 828 if (uh->check == 0) 829 uh->check = CSUM_MANGLED_0; 830 831 send: 832 err = ip_send_skb(sock_net(sk), skb); 833 if (err) { 834 if (err == -ENOBUFS && !inet->recverr) { 835 UDP_INC_STATS(sock_net(sk), 836 UDP_MIB_SNDBUFERRORS, is_udplite); 837 err = 0; 838 } 839 } else 840 UDP_INC_STATS(sock_net(sk), 841 UDP_MIB_OUTDATAGRAMS, is_udplite); 842 return err; 843 } 844 845 /* 846 * Push out all pending data as one UDP datagram. Socket is locked. 847 */ 848 int udp_push_pending_frames(struct sock *sk) 849 { 850 struct udp_sock *up = udp_sk(sk); 851 struct inet_sock *inet = inet_sk(sk); 852 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 853 struct sk_buff *skb; 854 int err = 0; 855 856 skb = ip_finish_skb(sk, fl4); 857 if (!skb) 858 goto out; 859 860 err = udp_send_skb(skb, fl4); 861 862 out: 863 up->len = 0; 864 up->pending = 0; 865 return err; 866 } 867 EXPORT_SYMBOL(udp_push_pending_frames); 868 869 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 870 { 871 struct inet_sock *inet = inet_sk(sk); 872 struct udp_sock *up = udp_sk(sk); 873 struct flowi4 fl4_stack; 874 struct flowi4 *fl4; 875 int ulen = len; 876 struct ipcm_cookie ipc; 877 struct rtable *rt = NULL; 878 int free = 0; 879 int connected = 0; 880 __be32 daddr, faddr, saddr; 881 __be16 dport; 882 u8 tos; 883 int err, is_udplite = IS_UDPLITE(sk); 884 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 885 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 886 struct sk_buff *skb; 887 struct ip_options_data opt_copy; 888 889 if (len > 0xFFFF) 890 return -EMSGSIZE; 891 892 /* 893 * Check the flags. 894 */ 895 896 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 897 return -EOPNOTSUPP; 898 899 ipc.opt = NULL; 900 ipc.tx_flags = 0; 901 ipc.ttl = 0; 902 ipc.tos = -1; 903 904 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 905 906 fl4 = &inet->cork.fl.u.ip4; 907 if (up->pending) { 908 /* 909 * There are pending frames. 910 * The socket lock must be held while it's corked. 911 */ 912 lock_sock(sk); 913 if (likely(up->pending)) { 914 if (unlikely(up->pending != AF_INET)) { 915 release_sock(sk); 916 return -EINVAL; 917 } 918 goto do_append_data; 919 } 920 release_sock(sk); 921 } 922 ulen += sizeof(struct udphdr); 923 924 /* 925 * Get and verify the address. 926 */ 927 if (msg->msg_name) { 928 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 929 if (msg->msg_namelen < sizeof(*usin)) 930 return -EINVAL; 931 if (usin->sin_family != AF_INET) { 932 if (usin->sin_family != AF_UNSPEC) 933 return -EAFNOSUPPORT; 934 } 935 936 daddr = usin->sin_addr.s_addr; 937 dport = usin->sin_port; 938 if (dport == 0) 939 return -EINVAL; 940 } else { 941 if (sk->sk_state != TCP_ESTABLISHED) 942 return -EDESTADDRREQ; 943 daddr = inet->inet_daddr; 944 dport = inet->inet_dport; 945 /* Open fast path for connected socket. 946 Route will not be used, if at least one option is set. 947 */ 948 connected = 1; 949 } 950 951 ipc.sockc.tsflags = sk->sk_tsflags; 952 ipc.addr = inet->inet_saddr; 953 ipc.oif = sk->sk_bound_dev_if; 954 955 if (msg->msg_controllen) { 956 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6); 957 if (unlikely(err)) { 958 kfree(ipc.opt); 959 return err; 960 } 961 if (ipc.opt) 962 free = 1; 963 connected = 0; 964 } 965 if (!ipc.opt) { 966 struct ip_options_rcu *inet_opt; 967 968 rcu_read_lock(); 969 inet_opt = rcu_dereference(inet->inet_opt); 970 if (inet_opt) { 971 memcpy(&opt_copy, inet_opt, 972 sizeof(*inet_opt) + inet_opt->opt.optlen); 973 ipc.opt = &opt_copy.opt; 974 } 975 rcu_read_unlock(); 976 } 977 978 saddr = ipc.addr; 979 ipc.addr = faddr = daddr; 980 981 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 982 983 if (ipc.opt && ipc.opt->opt.srr) { 984 if (!daddr) 985 return -EINVAL; 986 faddr = ipc.opt->opt.faddr; 987 connected = 0; 988 } 989 tos = get_rttos(&ipc, inet); 990 if (sock_flag(sk, SOCK_LOCALROUTE) || 991 (msg->msg_flags & MSG_DONTROUTE) || 992 (ipc.opt && ipc.opt->opt.is_strictroute)) { 993 tos |= RTO_ONLINK; 994 connected = 0; 995 } 996 997 if (ipv4_is_multicast(daddr)) { 998 if (!ipc.oif) 999 ipc.oif = inet->mc_index; 1000 if (!saddr) 1001 saddr = inet->mc_addr; 1002 connected = 0; 1003 } else if (!ipc.oif) 1004 ipc.oif = inet->uc_index; 1005 1006 if (connected) 1007 rt = (struct rtable *)sk_dst_check(sk, 0); 1008 1009 if (!rt) { 1010 struct net *net = sock_net(sk); 1011 __u8 flow_flags = inet_sk_flowi_flags(sk); 1012 1013 fl4 = &fl4_stack; 1014 1015 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1016 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1017 flow_flags, 1018 faddr, saddr, dport, inet->inet_sport, 1019 sk->sk_uid); 1020 1021 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1022 rt = ip_route_output_flow(net, fl4, sk); 1023 if (IS_ERR(rt)) { 1024 err = PTR_ERR(rt); 1025 rt = NULL; 1026 if (err == -ENETUNREACH) 1027 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1028 goto out; 1029 } 1030 1031 err = -EACCES; 1032 if ((rt->rt_flags & RTCF_BROADCAST) && 1033 !sock_flag(sk, SOCK_BROADCAST)) 1034 goto out; 1035 if (connected) 1036 sk_dst_set(sk, dst_clone(&rt->dst)); 1037 } 1038 1039 if (msg->msg_flags&MSG_CONFIRM) 1040 goto do_confirm; 1041 back_from_confirm: 1042 1043 saddr = fl4->saddr; 1044 if (!ipc.addr) 1045 daddr = ipc.addr = fl4->daddr; 1046 1047 /* Lockless fast path for the non-corking case. */ 1048 if (!corkreq) { 1049 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1050 sizeof(struct udphdr), &ipc, &rt, 1051 msg->msg_flags); 1052 err = PTR_ERR(skb); 1053 if (!IS_ERR_OR_NULL(skb)) 1054 err = udp_send_skb(skb, fl4); 1055 goto out; 1056 } 1057 1058 lock_sock(sk); 1059 if (unlikely(up->pending)) { 1060 /* The socket is already corked while preparing it. */ 1061 /* ... which is an evident application bug. --ANK */ 1062 release_sock(sk); 1063 1064 net_dbg_ratelimited("cork app bug 2\n"); 1065 err = -EINVAL; 1066 goto out; 1067 } 1068 /* 1069 * Now cork the socket to pend data. 1070 */ 1071 fl4 = &inet->cork.fl.u.ip4; 1072 fl4->daddr = daddr; 1073 fl4->saddr = saddr; 1074 fl4->fl4_dport = dport; 1075 fl4->fl4_sport = inet->inet_sport; 1076 up->pending = AF_INET; 1077 1078 do_append_data: 1079 up->len += ulen; 1080 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1081 sizeof(struct udphdr), &ipc, &rt, 1082 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1083 if (err) 1084 udp_flush_pending_frames(sk); 1085 else if (!corkreq) 1086 err = udp_push_pending_frames(sk); 1087 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1088 up->pending = 0; 1089 release_sock(sk); 1090 1091 out: 1092 ip_rt_put(rt); 1093 if (free) 1094 kfree(ipc.opt); 1095 if (!err) 1096 return len; 1097 /* 1098 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1099 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1100 * we don't have a good statistic (IpOutDiscards but it can be too many 1101 * things). We could add another new stat but at least for now that 1102 * seems like overkill. 1103 */ 1104 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1105 UDP_INC_STATS(sock_net(sk), 1106 UDP_MIB_SNDBUFERRORS, is_udplite); 1107 } 1108 return err; 1109 1110 do_confirm: 1111 if (msg->msg_flags & MSG_PROBE) 1112 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1113 if (!(msg->msg_flags&MSG_PROBE) || len) 1114 goto back_from_confirm; 1115 err = 0; 1116 goto out; 1117 } 1118 EXPORT_SYMBOL(udp_sendmsg); 1119 1120 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1121 size_t size, int flags) 1122 { 1123 struct inet_sock *inet = inet_sk(sk); 1124 struct udp_sock *up = udp_sk(sk); 1125 int ret; 1126 1127 if (flags & MSG_SENDPAGE_NOTLAST) 1128 flags |= MSG_MORE; 1129 1130 if (!up->pending) { 1131 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1132 1133 /* Call udp_sendmsg to specify destination address which 1134 * sendpage interface can't pass. 1135 * This will succeed only when the socket is connected. 1136 */ 1137 ret = udp_sendmsg(sk, &msg, 0); 1138 if (ret < 0) 1139 return ret; 1140 } 1141 1142 lock_sock(sk); 1143 1144 if (unlikely(!up->pending)) { 1145 release_sock(sk); 1146 1147 net_dbg_ratelimited("udp cork app bug 3\n"); 1148 return -EINVAL; 1149 } 1150 1151 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1152 page, offset, size, flags); 1153 if (ret == -EOPNOTSUPP) { 1154 release_sock(sk); 1155 return sock_no_sendpage(sk->sk_socket, page, offset, 1156 size, flags); 1157 } 1158 if (ret < 0) { 1159 udp_flush_pending_frames(sk); 1160 goto out; 1161 } 1162 1163 up->len += size; 1164 if (!(up->corkflag || (flags&MSG_MORE))) 1165 ret = udp_push_pending_frames(sk); 1166 if (!ret) 1167 ret = size; 1168 out: 1169 release_sock(sk); 1170 return ret; 1171 } 1172 1173 #define UDP_SKB_IS_STATELESS 0x80000000 1174 1175 static void udp_set_dev_scratch(struct sk_buff *skb) 1176 { 1177 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1178 1179 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1180 scratch->_tsize_state = skb->truesize; 1181 #if BITS_PER_LONG == 64 1182 scratch->len = skb->len; 1183 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1184 scratch->is_linear = !skb_is_nonlinear(skb); 1185 #endif 1186 /* all head states execept sp (dst, sk, nf) are always cleared by 1187 * udp_rcv() and we need to preserve secpath, if present, to eventually 1188 * process IP_CMSG_PASSSEC at recvmsg() time 1189 */ 1190 if (likely(!skb_sec_path(skb))) 1191 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1192 } 1193 1194 static int udp_skb_truesize(struct sk_buff *skb) 1195 { 1196 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1197 } 1198 1199 static bool udp_skb_has_head_state(struct sk_buff *skb) 1200 { 1201 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1202 } 1203 1204 /* fully reclaim rmem/fwd memory allocated for skb */ 1205 static void udp_rmem_release(struct sock *sk, int size, int partial, 1206 bool rx_queue_lock_held) 1207 { 1208 struct udp_sock *up = udp_sk(sk); 1209 struct sk_buff_head *sk_queue; 1210 int amt; 1211 1212 if (likely(partial)) { 1213 up->forward_deficit += size; 1214 size = up->forward_deficit; 1215 if (size < (sk->sk_rcvbuf >> 2) && 1216 !skb_queue_empty(&up->reader_queue)) 1217 return; 1218 } else { 1219 size += up->forward_deficit; 1220 } 1221 up->forward_deficit = 0; 1222 1223 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1224 * if the called don't held it already 1225 */ 1226 sk_queue = &sk->sk_receive_queue; 1227 if (!rx_queue_lock_held) 1228 spin_lock(&sk_queue->lock); 1229 1230 1231 sk->sk_forward_alloc += size; 1232 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1233 sk->sk_forward_alloc -= amt; 1234 1235 if (amt) 1236 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1237 1238 atomic_sub(size, &sk->sk_rmem_alloc); 1239 1240 /* this can save us from acquiring the rx queue lock on next receive */ 1241 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1242 1243 if (!rx_queue_lock_held) 1244 spin_unlock(&sk_queue->lock); 1245 } 1246 1247 /* Note: called with reader_queue.lock held. 1248 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1249 * This avoids a cache line miss while receive_queue lock is held. 1250 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1251 */ 1252 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1253 { 1254 prefetch(&skb->data); 1255 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1256 } 1257 EXPORT_SYMBOL(udp_skb_destructor); 1258 1259 /* as above, but the caller held the rx queue lock, too */ 1260 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1261 { 1262 prefetch(&skb->data); 1263 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1264 } 1265 1266 /* Idea of busylocks is to let producers grab an extra spinlock 1267 * to relieve pressure on the receive_queue spinlock shared by consumer. 1268 * Under flood, this means that only one producer can be in line 1269 * trying to acquire the receive_queue spinlock. 1270 * These busylock can be allocated on a per cpu manner, instead of a 1271 * per socket one (that would consume a cache line per socket) 1272 */ 1273 static int udp_busylocks_log __read_mostly; 1274 static spinlock_t *udp_busylocks __read_mostly; 1275 1276 static spinlock_t *busylock_acquire(void *ptr) 1277 { 1278 spinlock_t *busy; 1279 1280 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1281 spin_lock(busy); 1282 return busy; 1283 } 1284 1285 static void busylock_release(spinlock_t *busy) 1286 { 1287 if (busy) 1288 spin_unlock(busy); 1289 } 1290 1291 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1292 { 1293 struct sk_buff_head *list = &sk->sk_receive_queue; 1294 int rmem, delta, amt, err = -ENOMEM; 1295 spinlock_t *busy = NULL; 1296 int size; 1297 1298 /* try to avoid the costly atomic add/sub pair when the receive 1299 * queue is full; always allow at least a packet 1300 */ 1301 rmem = atomic_read(&sk->sk_rmem_alloc); 1302 if (rmem > sk->sk_rcvbuf) 1303 goto drop; 1304 1305 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1306 * having linear skbs : 1307 * - Reduce memory overhead and thus increase receive queue capacity 1308 * - Less cache line misses at copyout() time 1309 * - Less work at consume_skb() (less alien page frag freeing) 1310 */ 1311 if (rmem > (sk->sk_rcvbuf >> 1)) { 1312 skb_condense(skb); 1313 1314 busy = busylock_acquire(sk); 1315 } 1316 size = skb->truesize; 1317 udp_set_dev_scratch(skb); 1318 1319 /* we drop only if the receive buf is full and the receive 1320 * queue contains some other skb 1321 */ 1322 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1323 if (rmem > (size + sk->sk_rcvbuf)) 1324 goto uncharge_drop; 1325 1326 spin_lock(&list->lock); 1327 if (size >= sk->sk_forward_alloc) { 1328 amt = sk_mem_pages(size); 1329 delta = amt << SK_MEM_QUANTUM_SHIFT; 1330 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1331 err = -ENOBUFS; 1332 spin_unlock(&list->lock); 1333 goto uncharge_drop; 1334 } 1335 1336 sk->sk_forward_alloc += delta; 1337 } 1338 1339 sk->sk_forward_alloc -= size; 1340 1341 /* no need to setup a destructor, we will explicitly release the 1342 * forward allocated memory on dequeue 1343 */ 1344 sock_skb_set_dropcount(sk, skb); 1345 1346 __skb_queue_tail(list, skb); 1347 spin_unlock(&list->lock); 1348 1349 if (!sock_flag(sk, SOCK_DEAD)) 1350 sk->sk_data_ready(sk); 1351 1352 busylock_release(busy); 1353 return 0; 1354 1355 uncharge_drop: 1356 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1357 1358 drop: 1359 atomic_inc(&sk->sk_drops); 1360 busylock_release(busy); 1361 return err; 1362 } 1363 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1364 1365 void udp_destruct_sock(struct sock *sk) 1366 { 1367 /* reclaim completely the forward allocated memory */ 1368 struct udp_sock *up = udp_sk(sk); 1369 unsigned int total = 0; 1370 struct sk_buff *skb; 1371 1372 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1373 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1374 total += skb->truesize; 1375 kfree_skb(skb); 1376 } 1377 udp_rmem_release(sk, total, 0, true); 1378 1379 inet_sock_destruct(sk); 1380 } 1381 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1382 1383 int udp_init_sock(struct sock *sk) 1384 { 1385 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1386 sk->sk_destruct = udp_destruct_sock; 1387 return 0; 1388 } 1389 EXPORT_SYMBOL_GPL(udp_init_sock); 1390 1391 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1392 { 1393 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1394 bool slow = lock_sock_fast(sk); 1395 1396 sk_peek_offset_bwd(sk, len); 1397 unlock_sock_fast(sk, slow); 1398 } 1399 1400 if (!skb_unref(skb)) 1401 return; 1402 1403 /* In the more common cases we cleared the head states previously, 1404 * see __udp_queue_rcv_skb(). 1405 */ 1406 if (unlikely(udp_skb_has_head_state(skb))) 1407 skb_release_head_state(skb); 1408 __consume_stateless_skb(skb); 1409 } 1410 EXPORT_SYMBOL_GPL(skb_consume_udp); 1411 1412 static struct sk_buff *__first_packet_length(struct sock *sk, 1413 struct sk_buff_head *rcvq, 1414 int *total) 1415 { 1416 struct sk_buff *skb; 1417 1418 while ((skb = skb_peek(rcvq)) != NULL) { 1419 if (udp_lib_checksum_complete(skb)) { 1420 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1421 IS_UDPLITE(sk)); 1422 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1423 IS_UDPLITE(sk)); 1424 atomic_inc(&sk->sk_drops); 1425 __skb_unlink(skb, rcvq); 1426 *total += skb->truesize; 1427 kfree_skb(skb); 1428 } else { 1429 /* the csum related bits could be changed, refresh 1430 * the scratch area 1431 */ 1432 udp_set_dev_scratch(skb); 1433 break; 1434 } 1435 } 1436 return skb; 1437 } 1438 1439 /** 1440 * first_packet_length - return length of first packet in receive queue 1441 * @sk: socket 1442 * 1443 * Drops all bad checksum frames, until a valid one is found. 1444 * Returns the length of found skb, or -1 if none is found. 1445 */ 1446 static int first_packet_length(struct sock *sk) 1447 { 1448 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1449 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1450 struct sk_buff *skb; 1451 int total = 0; 1452 int res; 1453 1454 spin_lock_bh(&rcvq->lock); 1455 skb = __first_packet_length(sk, rcvq, &total); 1456 if (!skb && !skb_queue_empty(sk_queue)) { 1457 spin_lock(&sk_queue->lock); 1458 skb_queue_splice_tail_init(sk_queue, rcvq); 1459 spin_unlock(&sk_queue->lock); 1460 1461 skb = __first_packet_length(sk, rcvq, &total); 1462 } 1463 res = skb ? skb->len : -1; 1464 if (total) 1465 udp_rmem_release(sk, total, 1, false); 1466 spin_unlock_bh(&rcvq->lock); 1467 return res; 1468 } 1469 1470 /* 1471 * IOCTL requests applicable to the UDP protocol 1472 */ 1473 1474 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1475 { 1476 switch (cmd) { 1477 case SIOCOUTQ: 1478 { 1479 int amount = sk_wmem_alloc_get(sk); 1480 1481 return put_user(amount, (int __user *)arg); 1482 } 1483 1484 case SIOCINQ: 1485 { 1486 int amount = max_t(int, 0, first_packet_length(sk)); 1487 1488 return put_user(amount, (int __user *)arg); 1489 } 1490 1491 default: 1492 return -ENOIOCTLCMD; 1493 } 1494 1495 return 0; 1496 } 1497 EXPORT_SYMBOL(udp_ioctl); 1498 1499 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1500 int noblock, int *peeked, int *off, int *err) 1501 { 1502 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1503 struct sk_buff_head *queue; 1504 struct sk_buff *last; 1505 long timeo; 1506 int error; 1507 1508 queue = &udp_sk(sk)->reader_queue; 1509 flags |= noblock ? MSG_DONTWAIT : 0; 1510 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1511 do { 1512 struct sk_buff *skb; 1513 1514 error = sock_error(sk); 1515 if (error) 1516 break; 1517 1518 error = -EAGAIN; 1519 *peeked = 0; 1520 do { 1521 spin_lock_bh(&queue->lock); 1522 skb = __skb_try_recv_from_queue(sk, queue, flags, 1523 udp_skb_destructor, 1524 peeked, off, err, 1525 &last); 1526 if (skb) { 1527 spin_unlock_bh(&queue->lock); 1528 return skb; 1529 } 1530 1531 if (skb_queue_empty(sk_queue)) { 1532 spin_unlock_bh(&queue->lock); 1533 goto busy_check; 1534 } 1535 1536 /* refill the reader queue and walk it again 1537 * keep both queues locked to avoid re-acquiring 1538 * the sk_receive_queue lock if fwd memory scheduling 1539 * is needed. 1540 */ 1541 spin_lock(&sk_queue->lock); 1542 skb_queue_splice_tail_init(sk_queue, queue); 1543 1544 skb = __skb_try_recv_from_queue(sk, queue, flags, 1545 udp_skb_dtor_locked, 1546 peeked, off, err, 1547 &last); 1548 spin_unlock(&sk_queue->lock); 1549 spin_unlock_bh(&queue->lock); 1550 if (skb) 1551 return skb; 1552 1553 busy_check: 1554 if (!sk_can_busy_loop(sk)) 1555 break; 1556 1557 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1558 } while (!skb_queue_empty(sk_queue)); 1559 1560 /* sk_queue is empty, reader_queue may contain peeked packets */ 1561 } while (timeo && 1562 !__skb_wait_for_more_packets(sk, &error, &timeo, 1563 (struct sk_buff *)sk_queue)); 1564 1565 *err = error; 1566 return NULL; 1567 } 1568 EXPORT_SYMBOL_GPL(__skb_recv_udp); 1569 1570 /* 1571 * This should be easy, if there is something there we 1572 * return it, otherwise we block. 1573 */ 1574 1575 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1576 int flags, int *addr_len) 1577 { 1578 struct inet_sock *inet = inet_sk(sk); 1579 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1580 struct sk_buff *skb; 1581 unsigned int ulen, copied; 1582 int peeked, peeking, off; 1583 int err; 1584 int is_udplite = IS_UDPLITE(sk); 1585 bool checksum_valid = false; 1586 1587 if (flags & MSG_ERRQUEUE) 1588 return ip_recv_error(sk, msg, len, addr_len); 1589 1590 try_again: 1591 peeking = flags & MSG_PEEK; 1592 off = sk_peek_offset(sk, flags); 1593 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1594 if (!skb) 1595 return err; 1596 1597 ulen = udp_skb_len(skb); 1598 copied = len; 1599 if (copied > ulen - off) 1600 copied = ulen - off; 1601 else if (copied < ulen) 1602 msg->msg_flags |= MSG_TRUNC; 1603 1604 /* 1605 * If checksum is needed at all, try to do it while copying the 1606 * data. If the data is truncated, or if we only want a partial 1607 * coverage checksum (UDP-Lite), do it before the copy. 1608 */ 1609 1610 if (copied < ulen || peeking || 1611 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1612 checksum_valid = udp_skb_csum_unnecessary(skb) || 1613 !__udp_lib_checksum_complete(skb); 1614 if (!checksum_valid) 1615 goto csum_copy_err; 1616 } 1617 1618 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1619 if (udp_skb_is_linear(skb)) 1620 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1621 else 1622 err = skb_copy_datagram_msg(skb, off, msg, copied); 1623 } else { 1624 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1625 1626 if (err == -EINVAL) 1627 goto csum_copy_err; 1628 } 1629 1630 if (unlikely(err)) { 1631 if (!peeked) { 1632 atomic_inc(&sk->sk_drops); 1633 UDP_INC_STATS(sock_net(sk), 1634 UDP_MIB_INERRORS, is_udplite); 1635 } 1636 kfree_skb(skb); 1637 return err; 1638 } 1639 1640 if (!peeked) 1641 UDP_INC_STATS(sock_net(sk), 1642 UDP_MIB_INDATAGRAMS, is_udplite); 1643 1644 sock_recv_ts_and_drops(msg, sk, skb); 1645 1646 /* Copy the address. */ 1647 if (sin) { 1648 sin->sin_family = AF_INET; 1649 sin->sin_port = udp_hdr(skb)->source; 1650 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1651 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1652 *addr_len = sizeof(*sin); 1653 } 1654 if (inet->cmsg_flags) 1655 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1656 1657 err = copied; 1658 if (flags & MSG_TRUNC) 1659 err = ulen; 1660 1661 skb_consume_udp(sk, skb, peeking ? -err : err); 1662 return err; 1663 1664 csum_copy_err: 1665 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1666 udp_skb_destructor)) { 1667 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1668 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1669 } 1670 kfree_skb(skb); 1671 1672 /* starting over for a new packet, but check if we need to yield */ 1673 cond_resched(); 1674 msg->msg_flags &= ~MSG_TRUNC; 1675 goto try_again; 1676 } 1677 1678 int __udp_disconnect(struct sock *sk, int flags) 1679 { 1680 struct inet_sock *inet = inet_sk(sk); 1681 /* 1682 * 1003.1g - break association. 1683 */ 1684 1685 sk->sk_state = TCP_CLOSE; 1686 inet->inet_daddr = 0; 1687 inet->inet_dport = 0; 1688 sock_rps_reset_rxhash(sk); 1689 sk->sk_bound_dev_if = 0; 1690 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1691 inet_reset_saddr(sk); 1692 1693 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1694 sk->sk_prot->unhash(sk); 1695 inet->inet_sport = 0; 1696 } 1697 sk_dst_reset(sk); 1698 return 0; 1699 } 1700 EXPORT_SYMBOL(__udp_disconnect); 1701 1702 int udp_disconnect(struct sock *sk, int flags) 1703 { 1704 lock_sock(sk); 1705 __udp_disconnect(sk, flags); 1706 release_sock(sk); 1707 return 0; 1708 } 1709 EXPORT_SYMBOL(udp_disconnect); 1710 1711 void udp_lib_unhash(struct sock *sk) 1712 { 1713 if (sk_hashed(sk)) { 1714 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1715 struct udp_hslot *hslot, *hslot2; 1716 1717 hslot = udp_hashslot(udptable, sock_net(sk), 1718 udp_sk(sk)->udp_port_hash); 1719 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1720 1721 spin_lock_bh(&hslot->lock); 1722 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1723 reuseport_detach_sock(sk); 1724 if (sk_del_node_init_rcu(sk)) { 1725 hslot->count--; 1726 inet_sk(sk)->inet_num = 0; 1727 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1728 1729 spin_lock(&hslot2->lock); 1730 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1731 hslot2->count--; 1732 spin_unlock(&hslot2->lock); 1733 } 1734 spin_unlock_bh(&hslot->lock); 1735 } 1736 } 1737 EXPORT_SYMBOL(udp_lib_unhash); 1738 1739 /* 1740 * inet_rcv_saddr was changed, we must rehash secondary hash 1741 */ 1742 void udp_lib_rehash(struct sock *sk, u16 newhash) 1743 { 1744 if (sk_hashed(sk)) { 1745 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1746 struct udp_hslot *hslot, *hslot2, *nhslot2; 1747 1748 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1749 nhslot2 = udp_hashslot2(udptable, newhash); 1750 udp_sk(sk)->udp_portaddr_hash = newhash; 1751 1752 if (hslot2 != nhslot2 || 1753 rcu_access_pointer(sk->sk_reuseport_cb)) { 1754 hslot = udp_hashslot(udptable, sock_net(sk), 1755 udp_sk(sk)->udp_port_hash); 1756 /* we must lock primary chain too */ 1757 spin_lock_bh(&hslot->lock); 1758 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1759 reuseport_detach_sock(sk); 1760 1761 if (hslot2 != nhslot2) { 1762 spin_lock(&hslot2->lock); 1763 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1764 hslot2->count--; 1765 spin_unlock(&hslot2->lock); 1766 1767 spin_lock(&nhslot2->lock); 1768 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1769 &nhslot2->head); 1770 nhslot2->count++; 1771 spin_unlock(&nhslot2->lock); 1772 } 1773 1774 spin_unlock_bh(&hslot->lock); 1775 } 1776 } 1777 } 1778 EXPORT_SYMBOL(udp_lib_rehash); 1779 1780 static void udp_v4_rehash(struct sock *sk) 1781 { 1782 u16 new_hash = udp4_portaddr_hash(sock_net(sk), 1783 inet_sk(sk)->inet_rcv_saddr, 1784 inet_sk(sk)->inet_num); 1785 udp_lib_rehash(sk, new_hash); 1786 } 1787 1788 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1789 { 1790 int rc; 1791 1792 if (inet_sk(sk)->inet_daddr) { 1793 sock_rps_save_rxhash(sk, skb); 1794 sk_mark_napi_id(sk, skb); 1795 sk_incoming_cpu_update(sk); 1796 } else { 1797 sk_mark_napi_id_once(sk, skb); 1798 } 1799 1800 rc = __udp_enqueue_schedule_skb(sk, skb); 1801 if (rc < 0) { 1802 int is_udplite = IS_UDPLITE(sk); 1803 1804 /* Note that an ENOMEM error is charged twice */ 1805 if (rc == -ENOMEM) 1806 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1807 is_udplite); 1808 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1809 kfree_skb(skb); 1810 trace_udp_fail_queue_rcv_skb(rc, sk); 1811 return -1; 1812 } 1813 1814 return 0; 1815 } 1816 1817 static struct static_key udp_encap_needed __read_mostly; 1818 void udp_encap_enable(void) 1819 { 1820 static_key_enable(&udp_encap_needed); 1821 } 1822 EXPORT_SYMBOL(udp_encap_enable); 1823 1824 /* returns: 1825 * -1: error 1826 * 0: success 1827 * >0: "udp encap" protocol resubmission 1828 * 1829 * Note that in the success and error cases, the skb is assumed to 1830 * have either been requeued or freed. 1831 */ 1832 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1833 { 1834 struct udp_sock *up = udp_sk(sk); 1835 int is_udplite = IS_UDPLITE(sk); 1836 1837 /* 1838 * Charge it to the socket, dropping if the queue is full. 1839 */ 1840 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1841 goto drop; 1842 nf_reset(skb); 1843 1844 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1845 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1846 1847 /* 1848 * This is an encapsulation socket so pass the skb to 1849 * the socket's udp_encap_rcv() hook. Otherwise, just 1850 * fall through and pass this up the UDP socket. 1851 * up->encap_rcv() returns the following value: 1852 * =0 if skb was successfully passed to the encap 1853 * handler or was discarded by it. 1854 * >0 if skb should be passed on to UDP. 1855 * <0 if skb should be resubmitted as proto -N 1856 */ 1857 1858 /* if we're overly short, let UDP handle it */ 1859 encap_rcv = ACCESS_ONCE(up->encap_rcv); 1860 if (encap_rcv) { 1861 int ret; 1862 1863 /* Verify checksum before giving to encap */ 1864 if (udp_lib_checksum_complete(skb)) 1865 goto csum_error; 1866 1867 ret = encap_rcv(sk, skb); 1868 if (ret <= 0) { 1869 __UDP_INC_STATS(sock_net(sk), 1870 UDP_MIB_INDATAGRAMS, 1871 is_udplite); 1872 return -ret; 1873 } 1874 } 1875 1876 /* FALLTHROUGH -- it's a UDP Packet */ 1877 } 1878 1879 /* 1880 * UDP-Lite specific tests, ignored on UDP sockets 1881 */ 1882 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1883 1884 /* 1885 * MIB statistics other than incrementing the error count are 1886 * disabled for the following two types of errors: these depend 1887 * on the application settings, not on the functioning of the 1888 * protocol stack as such. 1889 * 1890 * RFC 3828 here recommends (sec 3.3): "There should also be a 1891 * way ... to ... at least let the receiving application block 1892 * delivery of packets with coverage values less than a value 1893 * provided by the application." 1894 */ 1895 if (up->pcrlen == 0) { /* full coverage was set */ 1896 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1897 UDP_SKB_CB(skb)->cscov, skb->len); 1898 goto drop; 1899 } 1900 /* The next case involves violating the min. coverage requested 1901 * by the receiver. This is subtle: if receiver wants x and x is 1902 * greater than the buffersize/MTU then receiver will complain 1903 * that it wants x while sender emits packets of smaller size y. 1904 * Therefore the above ...()->partial_cov statement is essential. 1905 */ 1906 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1907 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1908 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1909 goto drop; 1910 } 1911 } 1912 1913 prefetch(&sk->sk_rmem_alloc); 1914 if (rcu_access_pointer(sk->sk_filter) && 1915 udp_lib_checksum_complete(skb)) 1916 goto csum_error; 1917 1918 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1919 goto drop; 1920 1921 udp_csum_pull_header(skb); 1922 1923 ipv4_pktinfo_prepare(sk, skb); 1924 return __udp_queue_rcv_skb(sk, skb); 1925 1926 csum_error: 1927 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1928 drop: 1929 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1930 atomic_inc(&sk->sk_drops); 1931 kfree_skb(skb); 1932 return -1; 1933 } 1934 1935 /* For TCP sockets, sk_rx_dst is protected by socket lock 1936 * For UDP, we use xchg() to guard against concurrent changes. 1937 */ 1938 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 1939 { 1940 struct dst_entry *old; 1941 1942 if (dst_hold_safe(dst)) { 1943 old = xchg(&sk->sk_rx_dst, dst); 1944 dst_release(old); 1945 return old != dst; 1946 } 1947 return false; 1948 } 1949 EXPORT_SYMBOL(udp_sk_rx_dst_set); 1950 1951 /* 1952 * Multicasts and broadcasts go to each listener. 1953 * 1954 * Note: called only from the BH handler context. 1955 */ 1956 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1957 struct udphdr *uh, 1958 __be32 saddr, __be32 daddr, 1959 struct udp_table *udptable, 1960 int proto) 1961 { 1962 struct sock *sk, *first = NULL; 1963 unsigned short hnum = ntohs(uh->dest); 1964 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 1965 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 1966 unsigned int offset = offsetof(typeof(*sk), sk_node); 1967 int dif = skb->dev->ifindex; 1968 int sdif = inet_sdif(skb); 1969 struct hlist_node *node; 1970 struct sk_buff *nskb; 1971 1972 if (use_hash2) { 1973 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 1974 udptable->mask; 1975 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask; 1976 start_lookup: 1977 hslot = &udptable->hash2[hash2]; 1978 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 1979 } 1980 1981 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 1982 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 1983 uh->source, saddr, dif, sdif, hnum)) 1984 continue; 1985 1986 if (!first) { 1987 first = sk; 1988 continue; 1989 } 1990 nskb = skb_clone(skb, GFP_ATOMIC); 1991 1992 if (unlikely(!nskb)) { 1993 atomic_inc(&sk->sk_drops); 1994 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 1995 IS_UDPLITE(sk)); 1996 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 1997 IS_UDPLITE(sk)); 1998 continue; 1999 } 2000 if (udp_queue_rcv_skb(sk, nskb) > 0) 2001 consume_skb(nskb); 2002 } 2003 2004 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2005 if (use_hash2 && hash2 != hash2_any) { 2006 hash2 = hash2_any; 2007 goto start_lookup; 2008 } 2009 2010 if (first) { 2011 if (udp_queue_rcv_skb(first, skb) > 0) 2012 consume_skb(skb); 2013 } else { 2014 kfree_skb(skb); 2015 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2016 proto == IPPROTO_UDPLITE); 2017 } 2018 return 0; 2019 } 2020 2021 /* Initialize UDP checksum. If exited with zero value (success), 2022 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2023 * Otherwise, csum completion requires chacksumming packet body, 2024 * including udp header and folding it to skb->csum. 2025 */ 2026 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2027 int proto) 2028 { 2029 int err; 2030 2031 UDP_SKB_CB(skb)->partial_cov = 0; 2032 UDP_SKB_CB(skb)->cscov = skb->len; 2033 2034 if (proto == IPPROTO_UDPLITE) { 2035 err = udplite_checksum_init(skb, uh); 2036 if (err) 2037 return err; 2038 } 2039 2040 /* Note, we are only interested in != 0 or == 0, thus the 2041 * force to int. 2042 */ 2043 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2044 inet_compute_pseudo); 2045 } 2046 2047 /* 2048 * All we need to do is get the socket, and then do a checksum. 2049 */ 2050 2051 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2052 int proto) 2053 { 2054 struct sock *sk; 2055 struct udphdr *uh; 2056 unsigned short ulen; 2057 struct rtable *rt = skb_rtable(skb); 2058 __be32 saddr, daddr; 2059 struct net *net = dev_net(skb->dev); 2060 2061 /* 2062 * Validate the packet. 2063 */ 2064 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2065 goto drop; /* No space for header. */ 2066 2067 uh = udp_hdr(skb); 2068 ulen = ntohs(uh->len); 2069 saddr = ip_hdr(skb)->saddr; 2070 daddr = ip_hdr(skb)->daddr; 2071 2072 if (ulen > skb->len) 2073 goto short_packet; 2074 2075 if (proto == IPPROTO_UDP) { 2076 /* UDP validates ulen. */ 2077 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2078 goto short_packet; 2079 uh = udp_hdr(skb); 2080 } 2081 2082 if (udp4_csum_init(skb, uh, proto)) 2083 goto csum_error; 2084 2085 sk = skb_steal_sock(skb); 2086 if (sk) { 2087 struct dst_entry *dst = skb_dst(skb); 2088 int ret; 2089 2090 if (unlikely(sk->sk_rx_dst != dst)) 2091 udp_sk_rx_dst_set(sk, dst); 2092 2093 ret = udp_queue_rcv_skb(sk, skb); 2094 sock_put(sk); 2095 /* a return value > 0 means to resubmit the input, but 2096 * it wants the return to be -protocol, or 0 2097 */ 2098 if (ret > 0) 2099 return -ret; 2100 return 0; 2101 } 2102 2103 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2104 return __udp4_lib_mcast_deliver(net, skb, uh, 2105 saddr, daddr, udptable, proto); 2106 2107 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2108 if (sk) { 2109 int ret; 2110 2111 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2112 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2113 inet_compute_pseudo); 2114 2115 ret = udp_queue_rcv_skb(sk, skb); 2116 2117 /* a return value > 0 means to resubmit the input, but 2118 * it wants the return to be -protocol, or 0 2119 */ 2120 if (ret > 0) 2121 return -ret; 2122 return 0; 2123 } 2124 2125 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2126 goto drop; 2127 nf_reset(skb); 2128 2129 /* No socket. Drop packet silently, if checksum is wrong */ 2130 if (udp_lib_checksum_complete(skb)) 2131 goto csum_error; 2132 2133 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2134 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2135 2136 /* 2137 * Hmm. We got an UDP packet to a port to which we 2138 * don't wanna listen. Ignore it. 2139 */ 2140 kfree_skb(skb); 2141 return 0; 2142 2143 short_packet: 2144 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2145 proto == IPPROTO_UDPLITE ? "Lite" : "", 2146 &saddr, ntohs(uh->source), 2147 ulen, skb->len, 2148 &daddr, ntohs(uh->dest)); 2149 goto drop; 2150 2151 csum_error: 2152 /* 2153 * RFC1122: OK. Discards the bad packet silently (as far as 2154 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2155 */ 2156 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2157 proto == IPPROTO_UDPLITE ? "Lite" : "", 2158 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2159 ulen); 2160 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2161 drop: 2162 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2163 kfree_skb(skb); 2164 return 0; 2165 } 2166 2167 /* We can only early demux multicast if there is a single matching socket. 2168 * If more than one socket found returns NULL 2169 */ 2170 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2171 __be16 loc_port, __be32 loc_addr, 2172 __be16 rmt_port, __be32 rmt_addr, 2173 int dif, int sdif) 2174 { 2175 struct sock *sk, *result; 2176 unsigned short hnum = ntohs(loc_port); 2177 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2178 struct udp_hslot *hslot = &udp_table.hash[slot]; 2179 2180 /* Do not bother scanning a too big list */ 2181 if (hslot->count > 10) 2182 return NULL; 2183 2184 result = NULL; 2185 sk_for_each_rcu(sk, &hslot->head) { 2186 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2187 rmt_port, rmt_addr, dif, sdif, hnum)) { 2188 if (result) 2189 return NULL; 2190 result = sk; 2191 } 2192 } 2193 2194 return result; 2195 } 2196 2197 /* For unicast we should only early demux connected sockets or we can 2198 * break forwarding setups. The chains here can be long so only check 2199 * if the first socket is an exact match and if not move on. 2200 */ 2201 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2202 __be16 loc_port, __be32 loc_addr, 2203 __be16 rmt_port, __be32 rmt_addr, 2204 int dif, int sdif) 2205 { 2206 unsigned short hnum = ntohs(loc_port); 2207 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum); 2208 unsigned int slot2 = hash2 & udp_table.mask; 2209 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2210 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2211 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2212 struct sock *sk; 2213 2214 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2215 if (INET_MATCH(sk, net, acookie, rmt_addr, 2216 loc_addr, ports, dif, sdif)) 2217 return sk; 2218 /* Only check first socket in chain */ 2219 break; 2220 } 2221 return NULL; 2222 } 2223 2224 int udp_v4_early_demux(struct sk_buff *skb) 2225 { 2226 struct net *net = dev_net(skb->dev); 2227 struct in_device *in_dev = NULL; 2228 const struct iphdr *iph; 2229 const struct udphdr *uh; 2230 struct sock *sk = NULL; 2231 struct dst_entry *dst; 2232 int dif = skb->dev->ifindex; 2233 int sdif = inet_sdif(skb); 2234 int ours; 2235 2236 /* validate the packet */ 2237 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2238 return 0; 2239 2240 iph = ip_hdr(skb); 2241 uh = udp_hdr(skb); 2242 2243 if (skb->pkt_type == PACKET_BROADCAST || 2244 skb->pkt_type == PACKET_MULTICAST) { 2245 in_dev = __in_dev_get_rcu(skb->dev); 2246 2247 if (!in_dev) 2248 return 0; 2249 2250 /* we are supposed to accept bcast packets */ 2251 if (skb->pkt_type == PACKET_MULTICAST) { 2252 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2253 iph->protocol); 2254 if (!ours) 2255 return 0; 2256 } 2257 2258 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2259 uh->source, iph->saddr, 2260 dif, sdif); 2261 } else if (skb->pkt_type == PACKET_HOST) { 2262 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2263 uh->source, iph->saddr, dif, sdif); 2264 } 2265 2266 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2267 return 0; 2268 2269 skb->sk = sk; 2270 skb->destructor = sock_efree; 2271 dst = READ_ONCE(sk->sk_rx_dst); 2272 2273 if (dst) 2274 dst = dst_check(dst, 0); 2275 if (dst) { 2276 u32 itag = 0; 2277 2278 /* set noref for now. 2279 * any place which wants to hold dst has to call 2280 * dst_hold_safe() 2281 */ 2282 skb_dst_set_noref(skb, dst); 2283 2284 /* for unconnected multicast sockets we need to validate 2285 * the source on each packet 2286 */ 2287 if (!inet_sk(sk)->inet_daddr && in_dev) 2288 return ip_mc_validate_source(skb, iph->daddr, 2289 iph->saddr, iph->tos, 2290 skb->dev, in_dev, &itag); 2291 } 2292 return 0; 2293 } 2294 2295 int udp_rcv(struct sk_buff *skb) 2296 { 2297 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2298 } 2299 2300 void udp_destroy_sock(struct sock *sk) 2301 { 2302 struct udp_sock *up = udp_sk(sk); 2303 bool slow = lock_sock_fast(sk); 2304 udp_flush_pending_frames(sk); 2305 unlock_sock_fast(sk, slow); 2306 if (static_key_false(&udp_encap_needed) && up->encap_type) { 2307 void (*encap_destroy)(struct sock *sk); 2308 encap_destroy = ACCESS_ONCE(up->encap_destroy); 2309 if (encap_destroy) 2310 encap_destroy(sk); 2311 } 2312 } 2313 2314 /* 2315 * Socket option code for UDP 2316 */ 2317 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2318 char __user *optval, unsigned int optlen, 2319 int (*push_pending_frames)(struct sock *)) 2320 { 2321 struct udp_sock *up = udp_sk(sk); 2322 int val, valbool; 2323 int err = 0; 2324 int is_udplite = IS_UDPLITE(sk); 2325 2326 if (optlen < sizeof(int)) 2327 return -EINVAL; 2328 2329 if (get_user(val, (int __user *)optval)) 2330 return -EFAULT; 2331 2332 valbool = val ? 1 : 0; 2333 2334 switch (optname) { 2335 case UDP_CORK: 2336 if (val != 0) { 2337 up->corkflag = 1; 2338 } else { 2339 up->corkflag = 0; 2340 lock_sock(sk); 2341 push_pending_frames(sk); 2342 release_sock(sk); 2343 } 2344 break; 2345 2346 case UDP_ENCAP: 2347 switch (val) { 2348 case 0: 2349 case UDP_ENCAP_ESPINUDP: 2350 case UDP_ENCAP_ESPINUDP_NON_IKE: 2351 up->encap_rcv = xfrm4_udp_encap_rcv; 2352 /* FALLTHROUGH */ 2353 case UDP_ENCAP_L2TPINUDP: 2354 up->encap_type = val; 2355 udp_encap_enable(); 2356 break; 2357 default: 2358 err = -ENOPROTOOPT; 2359 break; 2360 } 2361 break; 2362 2363 case UDP_NO_CHECK6_TX: 2364 up->no_check6_tx = valbool; 2365 break; 2366 2367 case UDP_NO_CHECK6_RX: 2368 up->no_check6_rx = valbool; 2369 break; 2370 2371 /* 2372 * UDP-Lite's partial checksum coverage (RFC 3828). 2373 */ 2374 /* The sender sets actual checksum coverage length via this option. 2375 * The case coverage > packet length is handled by send module. */ 2376 case UDPLITE_SEND_CSCOV: 2377 if (!is_udplite) /* Disable the option on UDP sockets */ 2378 return -ENOPROTOOPT; 2379 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2380 val = 8; 2381 else if (val > USHRT_MAX) 2382 val = USHRT_MAX; 2383 up->pcslen = val; 2384 up->pcflag |= UDPLITE_SEND_CC; 2385 break; 2386 2387 /* The receiver specifies a minimum checksum coverage value. To make 2388 * sense, this should be set to at least 8 (as done below). If zero is 2389 * used, this again means full checksum coverage. */ 2390 case UDPLITE_RECV_CSCOV: 2391 if (!is_udplite) /* Disable the option on UDP sockets */ 2392 return -ENOPROTOOPT; 2393 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2394 val = 8; 2395 else if (val > USHRT_MAX) 2396 val = USHRT_MAX; 2397 up->pcrlen = val; 2398 up->pcflag |= UDPLITE_RECV_CC; 2399 break; 2400 2401 default: 2402 err = -ENOPROTOOPT; 2403 break; 2404 } 2405 2406 return err; 2407 } 2408 EXPORT_SYMBOL(udp_lib_setsockopt); 2409 2410 int udp_setsockopt(struct sock *sk, int level, int optname, 2411 char __user *optval, unsigned int optlen) 2412 { 2413 if (level == SOL_UDP || level == SOL_UDPLITE) 2414 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2415 udp_push_pending_frames); 2416 return ip_setsockopt(sk, level, optname, optval, optlen); 2417 } 2418 2419 #ifdef CONFIG_COMPAT 2420 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2421 char __user *optval, unsigned int optlen) 2422 { 2423 if (level == SOL_UDP || level == SOL_UDPLITE) 2424 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2425 udp_push_pending_frames); 2426 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2427 } 2428 #endif 2429 2430 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2431 char __user *optval, int __user *optlen) 2432 { 2433 struct udp_sock *up = udp_sk(sk); 2434 int val, len; 2435 2436 if (get_user(len, optlen)) 2437 return -EFAULT; 2438 2439 len = min_t(unsigned int, len, sizeof(int)); 2440 2441 if (len < 0) 2442 return -EINVAL; 2443 2444 switch (optname) { 2445 case UDP_CORK: 2446 val = up->corkflag; 2447 break; 2448 2449 case UDP_ENCAP: 2450 val = up->encap_type; 2451 break; 2452 2453 case UDP_NO_CHECK6_TX: 2454 val = up->no_check6_tx; 2455 break; 2456 2457 case UDP_NO_CHECK6_RX: 2458 val = up->no_check6_rx; 2459 break; 2460 2461 /* The following two cannot be changed on UDP sockets, the return is 2462 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2463 case UDPLITE_SEND_CSCOV: 2464 val = up->pcslen; 2465 break; 2466 2467 case UDPLITE_RECV_CSCOV: 2468 val = up->pcrlen; 2469 break; 2470 2471 default: 2472 return -ENOPROTOOPT; 2473 } 2474 2475 if (put_user(len, optlen)) 2476 return -EFAULT; 2477 if (copy_to_user(optval, &val, len)) 2478 return -EFAULT; 2479 return 0; 2480 } 2481 EXPORT_SYMBOL(udp_lib_getsockopt); 2482 2483 int udp_getsockopt(struct sock *sk, int level, int optname, 2484 char __user *optval, int __user *optlen) 2485 { 2486 if (level == SOL_UDP || level == SOL_UDPLITE) 2487 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2488 return ip_getsockopt(sk, level, optname, optval, optlen); 2489 } 2490 2491 #ifdef CONFIG_COMPAT 2492 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2493 char __user *optval, int __user *optlen) 2494 { 2495 if (level == SOL_UDP || level == SOL_UDPLITE) 2496 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2497 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2498 } 2499 #endif 2500 /** 2501 * udp_poll - wait for a UDP event. 2502 * @file - file struct 2503 * @sock - socket 2504 * @wait - poll table 2505 * 2506 * This is same as datagram poll, except for the special case of 2507 * blocking sockets. If application is using a blocking fd 2508 * and a packet with checksum error is in the queue; 2509 * then it could get return from select indicating data available 2510 * but then block when reading it. Add special case code 2511 * to work around these arguably broken applications. 2512 */ 2513 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2514 { 2515 unsigned int mask = datagram_poll(file, sock, wait); 2516 struct sock *sk = sock->sk; 2517 2518 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2519 mask |= POLLIN | POLLRDNORM; 2520 2521 sock_rps_record_flow(sk); 2522 2523 /* Check for false positives due to checksum errors */ 2524 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2525 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2526 mask &= ~(POLLIN | POLLRDNORM); 2527 2528 return mask; 2529 2530 } 2531 EXPORT_SYMBOL(udp_poll); 2532 2533 int udp_abort(struct sock *sk, int err) 2534 { 2535 lock_sock(sk); 2536 2537 sk->sk_err = err; 2538 sk->sk_error_report(sk); 2539 __udp_disconnect(sk, 0); 2540 2541 release_sock(sk); 2542 2543 return 0; 2544 } 2545 EXPORT_SYMBOL_GPL(udp_abort); 2546 2547 struct proto udp_prot = { 2548 .name = "UDP", 2549 .owner = THIS_MODULE, 2550 .close = udp_lib_close, 2551 .connect = ip4_datagram_connect, 2552 .disconnect = udp_disconnect, 2553 .ioctl = udp_ioctl, 2554 .init = udp_init_sock, 2555 .destroy = udp_destroy_sock, 2556 .setsockopt = udp_setsockopt, 2557 .getsockopt = udp_getsockopt, 2558 .sendmsg = udp_sendmsg, 2559 .recvmsg = udp_recvmsg, 2560 .sendpage = udp_sendpage, 2561 .release_cb = ip4_datagram_release_cb, 2562 .hash = udp_lib_hash, 2563 .unhash = udp_lib_unhash, 2564 .rehash = udp_v4_rehash, 2565 .get_port = udp_v4_get_port, 2566 .memory_allocated = &udp_memory_allocated, 2567 .sysctl_mem = sysctl_udp_mem, 2568 .sysctl_wmem = &sysctl_udp_wmem_min, 2569 .sysctl_rmem = &sysctl_udp_rmem_min, 2570 .obj_size = sizeof(struct udp_sock), 2571 .h.udp_table = &udp_table, 2572 #ifdef CONFIG_COMPAT 2573 .compat_setsockopt = compat_udp_setsockopt, 2574 .compat_getsockopt = compat_udp_getsockopt, 2575 #endif 2576 .diag_destroy = udp_abort, 2577 }; 2578 EXPORT_SYMBOL(udp_prot); 2579 2580 /* ------------------------------------------------------------------------ */ 2581 #ifdef CONFIG_PROC_FS 2582 2583 static struct sock *udp_get_first(struct seq_file *seq, int start) 2584 { 2585 struct sock *sk; 2586 struct udp_iter_state *state = seq->private; 2587 struct net *net = seq_file_net(seq); 2588 2589 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2590 ++state->bucket) { 2591 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2592 2593 if (hlist_empty(&hslot->head)) 2594 continue; 2595 2596 spin_lock_bh(&hslot->lock); 2597 sk_for_each(sk, &hslot->head) { 2598 if (!net_eq(sock_net(sk), net)) 2599 continue; 2600 if (sk->sk_family == state->family) 2601 goto found; 2602 } 2603 spin_unlock_bh(&hslot->lock); 2604 } 2605 sk = NULL; 2606 found: 2607 return sk; 2608 } 2609 2610 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2611 { 2612 struct udp_iter_state *state = seq->private; 2613 struct net *net = seq_file_net(seq); 2614 2615 do { 2616 sk = sk_next(sk); 2617 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2618 2619 if (!sk) { 2620 if (state->bucket <= state->udp_table->mask) 2621 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2622 return udp_get_first(seq, state->bucket + 1); 2623 } 2624 return sk; 2625 } 2626 2627 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2628 { 2629 struct sock *sk = udp_get_first(seq, 0); 2630 2631 if (sk) 2632 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2633 --pos; 2634 return pos ? NULL : sk; 2635 } 2636 2637 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2638 { 2639 struct udp_iter_state *state = seq->private; 2640 state->bucket = MAX_UDP_PORTS; 2641 2642 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2643 } 2644 2645 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2646 { 2647 struct sock *sk; 2648 2649 if (v == SEQ_START_TOKEN) 2650 sk = udp_get_idx(seq, 0); 2651 else 2652 sk = udp_get_next(seq, v); 2653 2654 ++*pos; 2655 return sk; 2656 } 2657 2658 static void udp_seq_stop(struct seq_file *seq, void *v) 2659 { 2660 struct udp_iter_state *state = seq->private; 2661 2662 if (state->bucket <= state->udp_table->mask) 2663 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2664 } 2665 2666 int udp_seq_open(struct inode *inode, struct file *file) 2667 { 2668 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2669 struct udp_iter_state *s; 2670 int err; 2671 2672 err = seq_open_net(inode, file, &afinfo->seq_ops, 2673 sizeof(struct udp_iter_state)); 2674 if (err < 0) 2675 return err; 2676 2677 s = ((struct seq_file *)file->private_data)->private; 2678 s->family = afinfo->family; 2679 s->udp_table = afinfo->udp_table; 2680 return err; 2681 } 2682 EXPORT_SYMBOL(udp_seq_open); 2683 2684 /* ------------------------------------------------------------------------ */ 2685 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2686 { 2687 struct proc_dir_entry *p; 2688 int rc = 0; 2689 2690 afinfo->seq_ops.start = udp_seq_start; 2691 afinfo->seq_ops.next = udp_seq_next; 2692 afinfo->seq_ops.stop = udp_seq_stop; 2693 2694 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2695 afinfo->seq_fops, afinfo); 2696 if (!p) 2697 rc = -ENOMEM; 2698 return rc; 2699 } 2700 EXPORT_SYMBOL(udp_proc_register); 2701 2702 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2703 { 2704 remove_proc_entry(afinfo->name, net->proc_net); 2705 } 2706 EXPORT_SYMBOL(udp_proc_unregister); 2707 2708 /* ------------------------------------------------------------------------ */ 2709 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2710 int bucket) 2711 { 2712 struct inet_sock *inet = inet_sk(sp); 2713 __be32 dest = inet->inet_daddr; 2714 __be32 src = inet->inet_rcv_saddr; 2715 __u16 destp = ntohs(inet->inet_dport); 2716 __u16 srcp = ntohs(inet->inet_sport); 2717 2718 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2719 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2720 bucket, src, srcp, dest, destp, sp->sk_state, 2721 sk_wmem_alloc_get(sp), 2722 sk_rmem_alloc_get(sp), 2723 0, 0L, 0, 2724 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2725 0, sock_i_ino(sp), 2726 refcount_read(&sp->sk_refcnt), sp, 2727 atomic_read(&sp->sk_drops)); 2728 } 2729 2730 int udp4_seq_show(struct seq_file *seq, void *v) 2731 { 2732 seq_setwidth(seq, 127); 2733 if (v == SEQ_START_TOKEN) 2734 seq_puts(seq, " sl local_address rem_address st tx_queue " 2735 "rx_queue tr tm->when retrnsmt uid timeout " 2736 "inode ref pointer drops"); 2737 else { 2738 struct udp_iter_state *state = seq->private; 2739 2740 udp4_format_sock(v, seq, state->bucket); 2741 } 2742 seq_pad(seq, '\n'); 2743 return 0; 2744 } 2745 2746 static const struct file_operations udp_afinfo_seq_fops = { 2747 .owner = THIS_MODULE, 2748 .open = udp_seq_open, 2749 .read = seq_read, 2750 .llseek = seq_lseek, 2751 .release = seq_release_net 2752 }; 2753 2754 /* ------------------------------------------------------------------------ */ 2755 static struct udp_seq_afinfo udp4_seq_afinfo = { 2756 .name = "udp", 2757 .family = AF_INET, 2758 .udp_table = &udp_table, 2759 .seq_fops = &udp_afinfo_seq_fops, 2760 .seq_ops = { 2761 .show = udp4_seq_show, 2762 }, 2763 }; 2764 2765 static int __net_init udp4_proc_init_net(struct net *net) 2766 { 2767 return udp_proc_register(net, &udp4_seq_afinfo); 2768 } 2769 2770 static void __net_exit udp4_proc_exit_net(struct net *net) 2771 { 2772 udp_proc_unregister(net, &udp4_seq_afinfo); 2773 } 2774 2775 static struct pernet_operations udp4_net_ops = { 2776 .init = udp4_proc_init_net, 2777 .exit = udp4_proc_exit_net, 2778 }; 2779 2780 int __init udp4_proc_init(void) 2781 { 2782 return register_pernet_subsys(&udp4_net_ops); 2783 } 2784 2785 void udp4_proc_exit(void) 2786 { 2787 unregister_pernet_subsys(&udp4_net_ops); 2788 } 2789 #endif /* CONFIG_PROC_FS */ 2790 2791 static __initdata unsigned long uhash_entries; 2792 static int __init set_uhash_entries(char *str) 2793 { 2794 ssize_t ret; 2795 2796 if (!str) 2797 return 0; 2798 2799 ret = kstrtoul(str, 0, &uhash_entries); 2800 if (ret) 2801 return 0; 2802 2803 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2804 uhash_entries = UDP_HTABLE_SIZE_MIN; 2805 return 1; 2806 } 2807 __setup("uhash_entries=", set_uhash_entries); 2808 2809 void __init udp_table_init(struct udp_table *table, const char *name) 2810 { 2811 unsigned int i; 2812 2813 table->hash = alloc_large_system_hash(name, 2814 2 * sizeof(struct udp_hslot), 2815 uhash_entries, 2816 21, /* one slot per 2 MB */ 2817 0, 2818 &table->log, 2819 &table->mask, 2820 UDP_HTABLE_SIZE_MIN, 2821 64 * 1024); 2822 2823 table->hash2 = table->hash + (table->mask + 1); 2824 for (i = 0; i <= table->mask; i++) { 2825 INIT_HLIST_HEAD(&table->hash[i].head); 2826 table->hash[i].count = 0; 2827 spin_lock_init(&table->hash[i].lock); 2828 } 2829 for (i = 0; i <= table->mask; i++) { 2830 INIT_HLIST_HEAD(&table->hash2[i].head); 2831 table->hash2[i].count = 0; 2832 spin_lock_init(&table->hash2[i].lock); 2833 } 2834 } 2835 2836 u32 udp_flow_hashrnd(void) 2837 { 2838 static u32 hashrnd __read_mostly; 2839 2840 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2841 2842 return hashrnd; 2843 } 2844 EXPORT_SYMBOL(udp_flow_hashrnd); 2845 2846 void __init udp_init(void) 2847 { 2848 unsigned long limit; 2849 unsigned int i; 2850 2851 udp_table_init(&udp_table, "UDP"); 2852 limit = nr_free_buffer_pages() / 8; 2853 limit = max(limit, 128UL); 2854 sysctl_udp_mem[0] = limit / 4 * 3; 2855 sysctl_udp_mem[1] = limit; 2856 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2857 2858 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2859 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2860 2861 /* 16 spinlocks per cpu */ 2862 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2863 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2864 GFP_KERNEL); 2865 if (!udp_busylocks) 2866 panic("UDP: failed to alloc udp_busylocks\n"); 2867 for (i = 0; i < (1U << udp_busylocks_log); i++) 2868 spin_lock_init(udp_busylocks + i); 2869 } 2870