1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <asm/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 int sysctl_udp_rmem_min __read_mostly; 126 EXPORT_SYMBOL(sysctl_udp_rmem_min); 127 128 int sysctl_udp_wmem_min __read_mostly; 129 EXPORT_SYMBOL(sysctl_udp_wmem_min); 130 131 atomic_long_t udp_memory_allocated; 132 EXPORT_SYMBOL(udp_memory_allocated); 133 134 #define MAX_UDP_PORTS 65536 135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 136 137 static int udp_lib_lport_inuse(struct net *net, __u16 num, 138 const struct udp_hslot *hslot, 139 unsigned long *bitmap, 140 struct sock *sk, 141 int (*saddr_comp)(const struct sock *sk1, 142 const struct sock *sk2, 143 bool match_wildcard), 144 unsigned int log) 145 { 146 struct sock *sk2; 147 kuid_t uid = sock_i_uid(sk); 148 149 sk_for_each(sk2, &hslot->head) { 150 if (net_eq(sock_net(sk2), net) && 151 sk2 != sk && 152 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 153 (!sk2->sk_reuse || !sk->sk_reuse) && 154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 156 (!sk2->sk_reuseport || !sk->sk_reuseport || 157 rcu_access_pointer(sk->sk_reuseport_cb) || 158 !uid_eq(uid, sock_i_uid(sk2))) && 159 saddr_comp(sk, sk2, true)) { 160 if (!bitmap) 161 return 1; 162 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap); 163 } 164 } 165 return 0; 166 } 167 168 /* 169 * Note: we still hold spinlock of primary hash chain, so no other writer 170 * can insert/delete a socket with local_port == num 171 */ 172 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 173 struct udp_hslot *hslot2, 174 struct sock *sk, 175 int (*saddr_comp)(const struct sock *sk1, 176 const struct sock *sk2, 177 bool match_wildcard)) 178 { 179 struct sock *sk2; 180 kuid_t uid = sock_i_uid(sk); 181 int res = 0; 182 183 spin_lock(&hslot2->lock); 184 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 185 if (net_eq(sock_net(sk2), net) && 186 sk2 != sk && 187 (udp_sk(sk2)->udp_port_hash == num) && 188 (!sk2->sk_reuse || !sk->sk_reuse) && 189 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 190 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 191 (!sk2->sk_reuseport || !sk->sk_reuseport || 192 rcu_access_pointer(sk->sk_reuseport_cb) || 193 !uid_eq(uid, sock_i_uid(sk2))) && 194 saddr_comp(sk, sk2, true)) { 195 res = 1; 196 break; 197 } 198 } 199 spin_unlock(&hslot2->lock); 200 return res; 201 } 202 203 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot, 204 int (*saddr_same)(const struct sock *sk1, 205 const struct sock *sk2, 206 bool match_wildcard)) 207 { 208 struct net *net = sock_net(sk); 209 kuid_t uid = sock_i_uid(sk); 210 struct sock *sk2; 211 212 sk_for_each(sk2, &hslot->head) { 213 if (net_eq(sock_net(sk2), net) && 214 sk2 != sk && 215 sk2->sk_family == sk->sk_family && 216 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 217 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 218 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 219 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 220 (*saddr_same)(sk, sk2, false)) { 221 return reuseport_add_sock(sk, sk2); 222 } 223 } 224 225 /* Initial allocation may have already happened via setsockopt */ 226 if (!rcu_access_pointer(sk->sk_reuseport_cb)) 227 return reuseport_alloc(sk); 228 return 0; 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @saddr_comp: AF-dependent comparison of bound local IP addresses 237 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 238 * with NULL address 239 */ 240 int udp_lib_get_port(struct sock *sk, unsigned short snum, 241 int (*saddr_comp)(const struct sock *sk1, 242 const struct sock *sk2, 243 bool match_wildcard), 244 unsigned int hash2_nulladdr) 245 { 246 struct udp_hslot *hslot, *hslot2; 247 struct udp_table *udptable = sk->sk_prot->h.udp_table; 248 int error = 1; 249 struct net *net = sock_net(sk); 250 251 if (!snum) { 252 int low, high, remaining; 253 unsigned int rand; 254 unsigned short first, last; 255 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 256 257 inet_get_local_port_range(net, &low, &high); 258 remaining = (high - low) + 1; 259 260 rand = prandom_u32(); 261 first = reciprocal_scale(rand, remaining) + low; 262 /* 263 * force rand to be an odd multiple of UDP_HTABLE_SIZE 264 */ 265 rand = (rand | 1) * (udptable->mask + 1); 266 last = first + udptable->mask + 1; 267 do { 268 hslot = udp_hashslot(udptable, net, first); 269 bitmap_zero(bitmap, PORTS_PER_CHAIN); 270 spin_lock_bh(&hslot->lock); 271 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 272 saddr_comp, udptable->log); 273 274 snum = first; 275 /* 276 * Iterate on all possible values of snum for this hash. 277 * Using steps of an odd multiple of UDP_HTABLE_SIZE 278 * give us randomization and full range coverage. 279 */ 280 do { 281 if (low <= snum && snum <= high && 282 !test_bit(snum >> udptable->log, bitmap) && 283 !inet_is_local_reserved_port(net, snum)) 284 goto found; 285 snum += rand; 286 } while (snum != first); 287 spin_unlock_bh(&hslot->lock); 288 } while (++first != last); 289 goto fail; 290 } else { 291 hslot = udp_hashslot(udptable, net, snum); 292 spin_lock_bh(&hslot->lock); 293 if (hslot->count > 10) { 294 int exist; 295 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 296 297 slot2 &= udptable->mask; 298 hash2_nulladdr &= udptable->mask; 299 300 hslot2 = udp_hashslot2(udptable, slot2); 301 if (hslot->count < hslot2->count) 302 goto scan_primary_hash; 303 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk, saddr_comp); 306 if (!exist && (hash2_nulladdr != slot2)) { 307 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 308 exist = udp_lib_lport_inuse2(net, snum, hslot2, 309 sk, saddr_comp); 310 } 311 if (exist) 312 goto fail_unlock; 313 else 314 goto found; 315 } 316 scan_primary_hash: 317 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 318 saddr_comp, 0)) 319 goto fail_unlock; 320 } 321 found: 322 inet_sk(sk)->inet_num = snum; 323 udp_sk(sk)->udp_port_hash = snum; 324 udp_sk(sk)->udp_portaddr_hash ^= snum; 325 if (sk_unhashed(sk)) { 326 if (sk->sk_reuseport && 327 udp_reuseport_add_sock(sk, hslot, saddr_comp)) { 328 inet_sk(sk)->inet_num = 0; 329 udp_sk(sk)->udp_port_hash = 0; 330 udp_sk(sk)->udp_portaddr_hash ^= snum; 331 goto fail_unlock; 332 } 333 334 sk_add_node_rcu(sk, &hslot->head); 335 hslot->count++; 336 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 337 338 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 339 spin_lock(&hslot2->lock); 340 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 341 sk->sk_family == AF_INET6) 342 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 343 &hslot2->head); 344 else 345 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 346 &hslot2->head); 347 hslot2->count++; 348 spin_unlock(&hslot2->lock); 349 } 350 sock_set_flag(sk, SOCK_RCU_FREE); 351 error = 0; 352 fail_unlock: 353 spin_unlock_bh(&hslot->lock); 354 fail: 355 return error; 356 } 357 EXPORT_SYMBOL(udp_lib_get_port); 358 359 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 360 * match_wildcard == false: addresses must be exactly the same, i.e. 361 * 0.0.0.0 only equals to 0.0.0.0 362 */ 363 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2, 364 bool match_wildcard) 365 { 366 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2); 367 368 if (!ipv6_only_sock(sk2)) { 369 if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr) 370 return 1; 371 if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr) 372 return match_wildcard; 373 } 374 return 0; 375 } 376 377 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr, 378 unsigned int port) 379 { 380 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; 381 } 382 383 int udp_v4_get_port(struct sock *sk, unsigned short snum) 384 { 385 unsigned int hash2_nulladdr = 386 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 387 unsigned int hash2_partial = 388 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 389 390 /* precompute partial secondary hash */ 391 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 392 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr); 393 } 394 395 static int compute_score(struct sock *sk, struct net *net, 396 __be32 saddr, __be16 sport, 397 __be32 daddr, unsigned short hnum, int dif) 398 { 399 int score; 400 struct inet_sock *inet; 401 402 if (!net_eq(sock_net(sk), net) || 403 udp_sk(sk)->udp_port_hash != hnum || 404 ipv6_only_sock(sk)) 405 return -1; 406 407 score = (sk->sk_family == PF_INET) ? 2 : 1; 408 inet = inet_sk(sk); 409 410 if (inet->inet_rcv_saddr) { 411 if (inet->inet_rcv_saddr != daddr) 412 return -1; 413 score += 4; 414 } 415 416 if (inet->inet_daddr) { 417 if (inet->inet_daddr != saddr) 418 return -1; 419 score += 4; 420 } 421 422 if (inet->inet_dport) { 423 if (inet->inet_dport != sport) 424 return -1; 425 score += 4; 426 } 427 428 if (sk->sk_bound_dev_if) { 429 if (sk->sk_bound_dev_if != dif) 430 return -1; 431 score += 4; 432 } 433 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 434 score++; 435 return score; 436 } 437 438 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 439 const __u16 lport, const __be32 faddr, 440 const __be16 fport) 441 { 442 static u32 udp_ehash_secret __read_mostly; 443 444 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 445 446 return __inet_ehashfn(laddr, lport, faddr, fport, 447 udp_ehash_secret + net_hash_mix(net)); 448 } 449 450 /* called with rcu_read_lock() */ 451 static struct sock *udp4_lib_lookup2(struct net *net, 452 __be32 saddr, __be16 sport, 453 __be32 daddr, unsigned int hnum, int dif, 454 struct udp_hslot *hslot2, 455 struct sk_buff *skb) 456 { 457 struct sock *sk, *result; 458 int score, badness, matches = 0, reuseport = 0; 459 u32 hash = 0; 460 461 result = NULL; 462 badness = 0; 463 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 464 score = compute_score(sk, net, saddr, sport, 465 daddr, hnum, dif); 466 if (score > badness) { 467 reuseport = sk->sk_reuseport; 468 if (reuseport) { 469 hash = udp_ehashfn(net, daddr, hnum, 470 saddr, sport); 471 result = reuseport_select_sock(sk, hash, skb, 472 sizeof(struct udphdr)); 473 if (result) 474 return result; 475 matches = 1; 476 } 477 badness = score; 478 result = sk; 479 } else if (score == badness && reuseport) { 480 matches++; 481 if (reciprocal_scale(hash, matches) == 0) 482 result = sk; 483 hash = next_pseudo_random32(hash); 484 } 485 } 486 return result; 487 } 488 489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 490 * harder than this. -DaveM 491 */ 492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 493 __be16 sport, __be32 daddr, __be16 dport, 494 int dif, struct udp_table *udptable, struct sk_buff *skb) 495 { 496 struct sock *sk, *result; 497 unsigned short hnum = ntohs(dport); 498 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 499 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 500 int score, badness, matches = 0, reuseport = 0; 501 u32 hash = 0; 502 503 if (hslot->count > 10) { 504 hash2 = udp4_portaddr_hash(net, daddr, hnum); 505 slot2 = hash2 & udptable->mask; 506 hslot2 = &udptable->hash2[slot2]; 507 if (hslot->count < hslot2->count) 508 goto begin; 509 510 result = udp4_lib_lookup2(net, saddr, sport, 511 daddr, hnum, dif, 512 hslot2, skb); 513 if (!result) { 514 unsigned int old_slot2 = slot2; 515 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 516 slot2 = hash2 & udptable->mask; 517 /* avoid searching the same slot again. */ 518 if (unlikely(slot2 == old_slot2)) 519 return result; 520 521 hslot2 = &udptable->hash2[slot2]; 522 if (hslot->count < hslot2->count) 523 goto begin; 524 525 result = udp4_lib_lookup2(net, saddr, sport, 526 daddr, hnum, dif, 527 hslot2, skb); 528 } 529 return result; 530 } 531 begin: 532 result = NULL; 533 badness = 0; 534 sk_for_each_rcu(sk, &hslot->head) { 535 score = compute_score(sk, net, saddr, sport, 536 daddr, hnum, dif); 537 if (score > badness) { 538 reuseport = sk->sk_reuseport; 539 if (reuseport) { 540 hash = udp_ehashfn(net, daddr, hnum, 541 saddr, sport); 542 result = reuseport_select_sock(sk, hash, skb, 543 sizeof(struct udphdr)); 544 if (result) 545 return result; 546 matches = 1; 547 } 548 result = sk; 549 badness = score; 550 } else if (score == badness && reuseport) { 551 matches++; 552 if (reciprocal_scale(hash, matches) == 0) 553 result = sk; 554 hash = next_pseudo_random32(hash); 555 } 556 } 557 return result; 558 } 559 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 560 561 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 562 __be16 sport, __be16 dport, 563 struct udp_table *udptable) 564 { 565 const struct iphdr *iph = ip_hdr(skb); 566 567 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 568 iph->daddr, dport, inet_iif(skb), 569 udptable, skb); 570 } 571 572 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 573 __be16 sport, __be16 dport) 574 { 575 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 576 } 577 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 578 579 /* Must be called under rcu_read_lock(). 580 * Does increment socket refcount. 581 */ 582 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \ 583 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) 584 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 585 __be32 daddr, __be16 dport, int dif) 586 { 587 struct sock *sk; 588 589 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 590 dif, &udp_table, NULL); 591 if (sk && !atomic_inc_not_zero(&sk->sk_refcnt)) 592 sk = NULL; 593 return sk; 594 } 595 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 596 #endif 597 598 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 599 __be16 loc_port, __be32 loc_addr, 600 __be16 rmt_port, __be32 rmt_addr, 601 int dif, unsigned short hnum) 602 { 603 struct inet_sock *inet = inet_sk(sk); 604 605 if (!net_eq(sock_net(sk), net) || 606 udp_sk(sk)->udp_port_hash != hnum || 607 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 608 (inet->inet_dport != rmt_port && inet->inet_dport) || 609 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 610 ipv6_only_sock(sk) || 611 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif)) 612 return false; 613 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif)) 614 return false; 615 return true; 616 } 617 618 /* 619 * This routine is called by the ICMP module when it gets some 620 * sort of error condition. If err < 0 then the socket should 621 * be closed and the error returned to the user. If err > 0 622 * it's just the icmp type << 8 | icmp code. 623 * Header points to the ip header of the error packet. We move 624 * on past this. Then (as it used to claim before adjustment) 625 * header points to the first 8 bytes of the udp header. We need 626 * to find the appropriate port. 627 */ 628 629 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 630 { 631 struct inet_sock *inet; 632 const struct iphdr *iph = (const struct iphdr *)skb->data; 633 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 634 const int type = icmp_hdr(skb)->type; 635 const int code = icmp_hdr(skb)->code; 636 struct sock *sk; 637 int harderr; 638 int err; 639 struct net *net = dev_net(skb->dev); 640 641 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 642 iph->saddr, uh->source, skb->dev->ifindex, udptable, 643 NULL); 644 if (!sk) { 645 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 646 return; /* No socket for error */ 647 } 648 649 err = 0; 650 harderr = 0; 651 inet = inet_sk(sk); 652 653 switch (type) { 654 default: 655 case ICMP_TIME_EXCEEDED: 656 err = EHOSTUNREACH; 657 break; 658 case ICMP_SOURCE_QUENCH: 659 goto out; 660 case ICMP_PARAMETERPROB: 661 err = EPROTO; 662 harderr = 1; 663 break; 664 case ICMP_DEST_UNREACH: 665 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 666 ipv4_sk_update_pmtu(skb, sk, info); 667 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 668 err = EMSGSIZE; 669 harderr = 1; 670 break; 671 } 672 goto out; 673 } 674 err = EHOSTUNREACH; 675 if (code <= NR_ICMP_UNREACH) { 676 harderr = icmp_err_convert[code].fatal; 677 err = icmp_err_convert[code].errno; 678 } 679 break; 680 case ICMP_REDIRECT: 681 ipv4_sk_redirect(skb, sk); 682 goto out; 683 } 684 685 /* 686 * RFC1122: OK. Passes ICMP errors back to application, as per 687 * 4.1.3.3. 688 */ 689 if (!inet->recverr) { 690 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 691 goto out; 692 } else 693 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 694 695 sk->sk_err = err; 696 sk->sk_error_report(sk); 697 out: 698 return; 699 } 700 701 void udp_err(struct sk_buff *skb, u32 info) 702 { 703 __udp4_lib_err(skb, info, &udp_table); 704 } 705 706 /* 707 * Throw away all pending data and cancel the corking. Socket is locked. 708 */ 709 void udp_flush_pending_frames(struct sock *sk) 710 { 711 struct udp_sock *up = udp_sk(sk); 712 713 if (up->pending) { 714 up->len = 0; 715 up->pending = 0; 716 ip_flush_pending_frames(sk); 717 } 718 } 719 EXPORT_SYMBOL(udp_flush_pending_frames); 720 721 /** 722 * udp4_hwcsum - handle outgoing HW checksumming 723 * @skb: sk_buff containing the filled-in UDP header 724 * (checksum field must be zeroed out) 725 * @src: source IP address 726 * @dst: destination IP address 727 */ 728 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 729 { 730 struct udphdr *uh = udp_hdr(skb); 731 int offset = skb_transport_offset(skb); 732 int len = skb->len - offset; 733 int hlen = len; 734 __wsum csum = 0; 735 736 if (!skb_has_frag_list(skb)) { 737 /* 738 * Only one fragment on the socket. 739 */ 740 skb->csum_start = skb_transport_header(skb) - skb->head; 741 skb->csum_offset = offsetof(struct udphdr, check); 742 uh->check = ~csum_tcpudp_magic(src, dst, len, 743 IPPROTO_UDP, 0); 744 } else { 745 struct sk_buff *frags; 746 747 /* 748 * HW-checksum won't work as there are two or more 749 * fragments on the socket so that all csums of sk_buffs 750 * should be together 751 */ 752 skb_walk_frags(skb, frags) { 753 csum = csum_add(csum, frags->csum); 754 hlen -= frags->len; 755 } 756 757 csum = skb_checksum(skb, offset, hlen, csum); 758 skb->ip_summed = CHECKSUM_NONE; 759 760 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 761 if (uh->check == 0) 762 uh->check = CSUM_MANGLED_0; 763 } 764 } 765 EXPORT_SYMBOL_GPL(udp4_hwcsum); 766 767 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 768 * for the simple case like when setting the checksum for a UDP tunnel. 769 */ 770 void udp_set_csum(bool nocheck, struct sk_buff *skb, 771 __be32 saddr, __be32 daddr, int len) 772 { 773 struct udphdr *uh = udp_hdr(skb); 774 775 if (nocheck) { 776 uh->check = 0; 777 } else if (skb_is_gso(skb)) { 778 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 779 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 780 uh->check = 0; 781 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 782 if (uh->check == 0) 783 uh->check = CSUM_MANGLED_0; 784 } else { 785 skb->ip_summed = CHECKSUM_PARTIAL; 786 skb->csum_start = skb_transport_header(skb) - skb->head; 787 skb->csum_offset = offsetof(struct udphdr, check); 788 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 789 } 790 } 791 EXPORT_SYMBOL(udp_set_csum); 792 793 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 794 { 795 struct sock *sk = skb->sk; 796 struct inet_sock *inet = inet_sk(sk); 797 struct udphdr *uh; 798 int err = 0; 799 int is_udplite = IS_UDPLITE(sk); 800 int offset = skb_transport_offset(skb); 801 int len = skb->len - offset; 802 __wsum csum = 0; 803 804 /* 805 * Create a UDP header 806 */ 807 uh = udp_hdr(skb); 808 uh->source = inet->inet_sport; 809 uh->dest = fl4->fl4_dport; 810 uh->len = htons(len); 811 uh->check = 0; 812 813 if (is_udplite) /* UDP-Lite */ 814 csum = udplite_csum(skb); 815 816 else if (sk->sk_no_check_tx) { /* UDP csum disabled */ 817 818 skb->ip_summed = CHECKSUM_NONE; 819 goto send; 820 821 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 822 823 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 824 goto send; 825 826 } else 827 csum = udp_csum(skb); 828 829 /* add protocol-dependent pseudo-header */ 830 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 831 sk->sk_protocol, csum); 832 if (uh->check == 0) 833 uh->check = CSUM_MANGLED_0; 834 835 send: 836 err = ip_send_skb(sock_net(sk), skb); 837 if (err) { 838 if (err == -ENOBUFS && !inet->recverr) { 839 UDP_INC_STATS(sock_net(sk), 840 UDP_MIB_SNDBUFERRORS, is_udplite); 841 err = 0; 842 } 843 } else 844 UDP_INC_STATS(sock_net(sk), 845 UDP_MIB_OUTDATAGRAMS, is_udplite); 846 return err; 847 } 848 849 /* 850 * Push out all pending data as one UDP datagram. Socket is locked. 851 */ 852 int udp_push_pending_frames(struct sock *sk) 853 { 854 struct udp_sock *up = udp_sk(sk); 855 struct inet_sock *inet = inet_sk(sk); 856 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 857 struct sk_buff *skb; 858 int err = 0; 859 860 skb = ip_finish_skb(sk, fl4); 861 if (!skb) 862 goto out; 863 864 err = udp_send_skb(skb, fl4); 865 866 out: 867 up->len = 0; 868 up->pending = 0; 869 return err; 870 } 871 EXPORT_SYMBOL(udp_push_pending_frames); 872 873 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 874 { 875 struct inet_sock *inet = inet_sk(sk); 876 struct udp_sock *up = udp_sk(sk); 877 struct flowi4 fl4_stack; 878 struct flowi4 *fl4; 879 int ulen = len; 880 struct ipcm_cookie ipc; 881 struct rtable *rt = NULL; 882 int free = 0; 883 int connected = 0; 884 __be32 daddr, faddr, saddr; 885 __be16 dport; 886 u8 tos; 887 int err, is_udplite = IS_UDPLITE(sk); 888 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 889 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 890 struct sk_buff *skb; 891 struct ip_options_data opt_copy; 892 893 if (len > 0xFFFF) 894 return -EMSGSIZE; 895 896 /* 897 * Check the flags. 898 */ 899 900 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 901 return -EOPNOTSUPP; 902 903 ipc.opt = NULL; 904 ipc.tx_flags = 0; 905 ipc.ttl = 0; 906 ipc.tos = -1; 907 908 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 909 910 fl4 = &inet->cork.fl.u.ip4; 911 if (up->pending) { 912 /* 913 * There are pending frames. 914 * The socket lock must be held while it's corked. 915 */ 916 lock_sock(sk); 917 if (likely(up->pending)) { 918 if (unlikely(up->pending != AF_INET)) { 919 release_sock(sk); 920 return -EINVAL; 921 } 922 goto do_append_data; 923 } 924 release_sock(sk); 925 } 926 ulen += sizeof(struct udphdr); 927 928 /* 929 * Get and verify the address. 930 */ 931 if (msg->msg_name) { 932 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 933 if (msg->msg_namelen < sizeof(*usin)) 934 return -EINVAL; 935 if (usin->sin_family != AF_INET) { 936 if (usin->sin_family != AF_UNSPEC) 937 return -EAFNOSUPPORT; 938 } 939 940 daddr = usin->sin_addr.s_addr; 941 dport = usin->sin_port; 942 if (dport == 0) 943 return -EINVAL; 944 } else { 945 if (sk->sk_state != TCP_ESTABLISHED) 946 return -EDESTADDRREQ; 947 daddr = inet->inet_daddr; 948 dport = inet->inet_dport; 949 /* Open fast path for connected socket. 950 Route will not be used, if at least one option is set. 951 */ 952 connected = 1; 953 } 954 955 ipc.sockc.tsflags = sk->sk_tsflags; 956 ipc.addr = inet->inet_saddr; 957 ipc.oif = sk->sk_bound_dev_if; 958 959 if (msg->msg_controllen) { 960 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6); 961 if (unlikely(err)) { 962 kfree(ipc.opt); 963 return err; 964 } 965 if (ipc.opt) 966 free = 1; 967 connected = 0; 968 } 969 if (!ipc.opt) { 970 struct ip_options_rcu *inet_opt; 971 972 rcu_read_lock(); 973 inet_opt = rcu_dereference(inet->inet_opt); 974 if (inet_opt) { 975 memcpy(&opt_copy, inet_opt, 976 sizeof(*inet_opt) + inet_opt->opt.optlen); 977 ipc.opt = &opt_copy.opt; 978 } 979 rcu_read_unlock(); 980 } 981 982 saddr = ipc.addr; 983 ipc.addr = faddr = daddr; 984 985 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 986 987 if (ipc.opt && ipc.opt->opt.srr) { 988 if (!daddr) 989 return -EINVAL; 990 faddr = ipc.opt->opt.faddr; 991 connected = 0; 992 } 993 tos = get_rttos(&ipc, inet); 994 if (sock_flag(sk, SOCK_LOCALROUTE) || 995 (msg->msg_flags & MSG_DONTROUTE) || 996 (ipc.opt && ipc.opt->opt.is_strictroute)) { 997 tos |= RTO_ONLINK; 998 connected = 0; 999 } 1000 1001 if (ipv4_is_multicast(daddr)) { 1002 if (!ipc.oif) 1003 ipc.oif = inet->mc_index; 1004 if (!saddr) 1005 saddr = inet->mc_addr; 1006 connected = 0; 1007 } else if (!ipc.oif) 1008 ipc.oif = inet->uc_index; 1009 1010 if (connected) 1011 rt = (struct rtable *)sk_dst_check(sk, 0); 1012 1013 if (!rt) { 1014 struct net *net = sock_net(sk); 1015 __u8 flow_flags = inet_sk_flowi_flags(sk); 1016 1017 fl4 = &fl4_stack; 1018 1019 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1020 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1021 flow_flags, 1022 faddr, saddr, dport, inet->inet_sport); 1023 1024 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1025 rt = ip_route_output_flow(net, fl4, sk); 1026 if (IS_ERR(rt)) { 1027 err = PTR_ERR(rt); 1028 rt = NULL; 1029 if (err == -ENETUNREACH) 1030 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1031 goto out; 1032 } 1033 1034 err = -EACCES; 1035 if ((rt->rt_flags & RTCF_BROADCAST) && 1036 !sock_flag(sk, SOCK_BROADCAST)) 1037 goto out; 1038 if (connected) 1039 sk_dst_set(sk, dst_clone(&rt->dst)); 1040 } 1041 1042 if (msg->msg_flags&MSG_CONFIRM) 1043 goto do_confirm; 1044 back_from_confirm: 1045 1046 saddr = fl4->saddr; 1047 if (!ipc.addr) 1048 daddr = ipc.addr = fl4->daddr; 1049 1050 /* Lockless fast path for the non-corking case. */ 1051 if (!corkreq) { 1052 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1053 sizeof(struct udphdr), &ipc, &rt, 1054 msg->msg_flags); 1055 err = PTR_ERR(skb); 1056 if (!IS_ERR_OR_NULL(skb)) 1057 err = udp_send_skb(skb, fl4); 1058 goto out; 1059 } 1060 1061 lock_sock(sk); 1062 if (unlikely(up->pending)) { 1063 /* The socket is already corked while preparing it. */ 1064 /* ... which is an evident application bug. --ANK */ 1065 release_sock(sk); 1066 1067 net_dbg_ratelimited("cork app bug 2\n"); 1068 err = -EINVAL; 1069 goto out; 1070 } 1071 /* 1072 * Now cork the socket to pend data. 1073 */ 1074 fl4 = &inet->cork.fl.u.ip4; 1075 fl4->daddr = daddr; 1076 fl4->saddr = saddr; 1077 fl4->fl4_dport = dport; 1078 fl4->fl4_sport = inet->inet_sport; 1079 up->pending = AF_INET; 1080 1081 do_append_data: 1082 up->len += ulen; 1083 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1084 sizeof(struct udphdr), &ipc, &rt, 1085 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1086 if (err) 1087 udp_flush_pending_frames(sk); 1088 else if (!corkreq) 1089 err = udp_push_pending_frames(sk); 1090 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1091 up->pending = 0; 1092 release_sock(sk); 1093 1094 out: 1095 ip_rt_put(rt); 1096 if (free) 1097 kfree(ipc.opt); 1098 if (!err) 1099 return len; 1100 /* 1101 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1102 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1103 * we don't have a good statistic (IpOutDiscards but it can be too many 1104 * things). We could add another new stat but at least for now that 1105 * seems like overkill. 1106 */ 1107 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1108 UDP_INC_STATS(sock_net(sk), 1109 UDP_MIB_SNDBUFERRORS, is_udplite); 1110 } 1111 return err; 1112 1113 do_confirm: 1114 dst_confirm(&rt->dst); 1115 if (!(msg->msg_flags&MSG_PROBE) || len) 1116 goto back_from_confirm; 1117 err = 0; 1118 goto out; 1119 } 1120 EXPORT_SYMBOL(udp_sendmsg); 1121 1122 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1123 size_t size, int flags) 1124 { 1125 struct inet_sock *inet = inet_sk(sk); 1126 struct udp_sock *up = udp_sk(sk); 1127 int ret; 1128 1129 if (flags & MSG_SENDPAGE_NOTLAST) 1130 flags |= MSG_MORE; 1131 1132 if (!up->pending) { 1133 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1134 1135 /* Call udp_sendmsg to specify destination address which 1136 * sendpage interface can't pass. 1137 * This will succeed only when the socket is connected. 1138 */ 1139 ret = udp_sendmsg(sk, &msg, 0); 1140 if (ret < 0) 1141 return ret; 1142 } 1143 1144 lock_sock(sk); 1145 1146 if (unlikely(!up->pending)) { 1147 release_sock(sk); 1148 1149 net_dbg_ratelimited("udp cork app bug 3\n"); 1150 return -EINVAL; 1151 } 1152 1153 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1154 page, offset, size, flags); 1155 if (ret == -EOPNOTSUPP) { 1156 release_sock(sk); 1157 return sock_no_sendpage(sk->sk_socket, page, offset, 1158 size, flags); 1159 } 1160 if (ret < 0) { 1161 udp_flush_pending_frames(sk); 1162 goto out; 1163 } 1164 1165 up->len += size; 1166 if (!(up->corkflag || (flags&MSG_MORE))) 1167 ret = udp_push_pending_frames(sk); 1168 if (!ret) 1169 ret = size; 1170 out: 1171 release_sock(sk); 1172 return ret; 1173 } 1174 1175 /** 1176 * first_packet_length - return length of first packet in receive queue 1177 * @sk: socket 1178 * 1179 * Drops all bad checksum frames, until a valid one is found. 1180 * Returns the length of found skb, or -1 if none is found. 1181 */ 1182 static int first_packet_length(struct sock *sk) 1183 { 1184 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue; 1185 struct sk_buff *skb; 1186 int res; 1187 1188 __skb_queue_head_init(&list_kill); 1189 1190 spin_lock_bh(&rcvq->lock); 1191 while ((skb = skb_peek(rcvq)) != NULL && 1192 udp_lib_checksum_complete(skb)) { 1193 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1194 IS_UDPLITE(sk)); 1195 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1196 IS_UDPLITE(sk)); 1197 atomic_inc(&sk->sk_drops); 1198 __skb_unlink(skb, rcvq); 1199 __skb_queue_tail(&list_kill, skb); 1200 } 1201 res = skb ? skb->len : -1; 1202 spin_unlock_bh(&rcvq->lock); 1203 1204 if (!skb_queue_empty(&list_kill)) { 1205 bool slow = lock_sock_fast(sk); 1206 1207 __skb_queue_purge(&list_kill); 1208 sk_mem_reclaim_partial(sk); 1209 unlock_sock_fast(sk, slow); 1210 } 1211 return res; 1212 } 1213 1214 /* 1215 * IOCTL requests applicable to the UDP protocol 1216 */ 1217 1218 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1219 { 1220 switch (cmd) { 1221 case SIOCOUTQ: 1222 { 1223 int amount = sk_wmem_alloc_get(sk); 1224 1225 return put_user(amount, (int __user *)arg); 1226 } 1227 1228 case SIOCINQ: 1229 { 1230 int amount = max_t(int, 0, first_packet_length(sk)); 1231 1232 return put_user(amount, (int __user *)arg); 1233 } 1234 1235 default: 1236 return -ENOIOCTLCMD; 1237 } 1238 1239 return 0; 1240 } 1241 EXPORT_SYMBOL(udp_ioctl); 1242 1243 /* 1244 * This should be easy, if there is something there we 1245 * return it, otherwise we block. 1246 */ 1247 1248 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1249 int flags, int *addr_len) 1250 { 1251 struct inet_sock *inet = inet_sk(sk); 1252 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1253 struct sk_buff *skb; 1254 unsigned int ulen, copied; 1255 int peeked, peeking, off; 1256 int err; 1257 int is_udplite = IS_UDPLITE(sk); 1258 bool checksum_valid = false; 1259 bool slow; 1260 1261 if (flags & MSG_ERRQUEUE) 1262 return ip_recv_error(sk, msg, len, addr_len); 1263 1264 try_again: 1265 peeking = off = sk_peek_offset(sk, flags); 1266 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0), 1267 &peeked, &off, &err); 1268 if (!skb) 1269 return err; 1270 1271 ulen = skb->len; 1272 copied = len; 1273 if (copied > ulen - off) 1274 copied = ulen - off; 1275 else if (copied < ulen) 1276 msg->msg_flags |= MSG_TRUNC; 1277 1278 /* 1279 * If checksum is needed at all, try to do it while copying the 1280 * data. If the data is truncated, or if we only want a partial 1281 * coverage checksum (UDP-Lite), do it before the copy. 1282 */ 1283 1284 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov || peeking) { 1285 checksum_valid = !udp_lib_checksum_complete(skb); 1286 if (!checksum_valid) 1287 goto csum_copy_err; 1288 } 1289 1290 if (checksum_valid || skb_csum_unnecessary(skb)) 1291 err = skb_copy_datagram_msg(skb, off, msg, copied); 1292 else { 1293 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1294 1295 if (err == -EINVAL) 1296 goto csum_copy_err; 1297 } 1298 1299 if (unlikely(err)) { 1300 trace_kfree_skb(skb, udp_recvmsg); 1301 if (!peeked) { 1302 atomic_inc(&sk->sk_drops); 1303 UDP_INC_STATS(sock_net(sk), 1304 UDP_MIB_INERRORS, is_udplite); 1305 } 1306 skb_free_datagram_locked(sk, skb); 1307 return err; 1308 } 1309 1310 if (!peeked) 1311 UDP_INC_STATS(sock_net(sk), 1312 UDP_MIB_INDATAGRAMS, is_udplite); 1313 1314 sock_recv_ts_and_drops(msg, sk, skb); 1315 1316 /* Copy the address. */ 1317 if (sin) { 1318 sin->sin_family = AF_INET; 1319 sin->sin_port = udp_hdr(skb)->source; 1320 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1321 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1322 *addr_len = sizeof(*sin); 1323 } 1324 if (inet->cmsg_flags) 1325 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr) + off); 1326 1327 err = copied; 1328 if (flags & MSG_TRUNC) 1329 err = ulen; 1330 1331 __skb_free_datagram_locked(sk, skb, peeking ? -err : err); 1332 return err; 1333 1334 csum_copy_err: 1335 slow = lock_sock_fast(sk); 1336 if (!skb_kill_datagram(sk, skb, flags)) { 1337 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1338 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1339 } 1340 unlock_sock_fast(sk, slow); 1341 1342 /* starting over for a new packet, but check if we need to yield */ 1343 cond_resched(); 1344 msg->msg_flags &= ~MSG_TRUNC; 1345 goto try_again; 1346 } 1347 1348 int udp_disconnect(struct sock *sk, int flags) 1349 { 1350 struct inet_sock *inet = inet_sk(sk); 1351 /* 1352 * 1003.1g - break association. 1353 */ 1354 1355 sk->sk_state = TCP_CLOSE; 1356 inet->inet_daddr = 0; 1357 inet->inet_dport = 0; 1358 sock_rps_reset_rxhash(sk); 1359 sk->sk_bound_dev_if = 0; 1360 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1361 inet_reset_saddr(sk); 1362 1363 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1364 sk->sk_prot->unhash(sk); 1365 inet->inet_sport = 0; 1366 } 1367 sk_dst_reset(sk); 1368 return 0; 1369 } 1370 EXPORT_SYMBOL(udp_disconnect); 1371 1372 void udp_lib_unhash(struct sock *sk) 1373 { 1374 if (sk_hashed(sk)) { 1375 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1376 struct udp_hslot *hslot, *hslot2; 1377 1378 hslot = udp_hashslot(udptable, sock_net(sk), 1379 udp_sk(sk)->udp_port_hash); 1380 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1381 1382 spin_lock_bh(&hslot->lock); 1383 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1384 reuseport_detach_sock(sk); 1385 if (sk_del_node_init_rcu(sk)) { 1386 hslot->count--; 1387 inet_sk(sk)->inet_num = 0; 1388 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1389 1390 spin_lock(&hslot2->lock); 1391 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1392 hslot2->count--; 1393 spin_unlock(&hslot2->lock); 1394 } 1395 spin_unlock_bh(&hslot->lock); 1396 } 1397 } 1398 EXPORT_SYMBOL(udp_lib_unhash); 1399 1400 /* 1401 * inet_rcv_saddr was changed, we must rehash secondary hash 1402 */ 1403 void udp_lib_rehash(struct sock *sk, u16 newhash) 1404 { 1405 if (sk_hashed(sk)) { 1406 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1407 struct udp_hslot *hslot, *hslot2, *nhslot2; 1408 1409 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1410 nhslot2 = udp_hashslot2(udptable, newhash); 1411 udp_sk(sk)->udp_portaddr_hash = newhash; 1412 1413 if (hslot2 != nhslot2 || 1414 rcu_access_pointer(sk->sk_reuseport_cb)) { 1415 hslot = udp_hashslot(udptable, sock_net(sk), 1416 udp_sk(sk)->udp_port_hash); 1417 /* we must lock primary chain too */ 1418 spin_lock_bh(&hslot->lock); 1419 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1420 reuseport_detach_sock(sk); 1421 1422 if (hslot2 != nhslot2) { 1423 spin_lock(&hslot2->lock); 1424 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1425 hslot2->count--; 1426 spin_unlock(&hslot2->lock); 1427 1428 spin_lock(&nhslot2->lock); 1429 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1430 &nhslot2->head); 1431 nhslot2->count++; 1432 spin_unlock(&nhslot2->lock); 1433 } 1434 1435 spin_unlock_bh(&hslot->lock); 1436 } 1437 } 1438 } 1439 EXPORT_SYMBOL(udp_lib_rehash); 1440 1441 static void udp_v4_rehash(struct sock *sk) 1442 { 1443 u16 new_hash = udp4_portaddr_hash(sock_net(sk), 1444 inet_sk(sk)->inet_rcv_saddr, 1445 inet_sk(sk)->inet_num); 1446 udp_lib_rehash(sk, new_hash); 1447 } 1448 1449 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1450 { 1451 int rc; 1452 1453 if (inet_sk(sk)->inet_daddr) { 1454 sock_rps_save_rxhash(sk, skb); 1455 sk_mark_napi_id(sk, skb); 1456 sk_incoming_cpu_update(sk); 1457 } 1458 1459 rc = __sock_queue_rcv_skb(sk, skb); 1460 if (rc < 0) { 1461 int is_udplite = IS_UDPLITE(sk); 1462 1463 /* Note that an ENOMEM error is charged twice */ 1464 if (rc == -ENOMEM) 1465 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1466 is_udplite); 1467 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1468 kfree_skb(skb); 1469 trace_udp_fail_queue_rcv_skb(rc, sk); 1470 return -1; 1471 } 1472 1473 return 0; 1474 1475 } 1476 1477 static struct static_key udp_encap_needed __read_mostly; 1478 void udp_encap_enable(void) 1479 { 1480 if (!static_key_enabled(&udp_encap_needed)) 1481 static_key_slow_inc(&udp_encap_needed); 1482 } 1483 EXPORT_SYMBOL(udp_encap_enable); 1484 1485 /* returns: 1486 * -1: error 1487 * 0: success 1488 * >0: "udp encap" protocol resubmission 1489 * 1490 * Note that in the success and error cases, the skb is assumed to 1491 * have either been requeued or freed. 1492 */ 1493 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1494 { 1495 struct udp_sock *up = udp_sk(sk); 1496 int rc; 1497 int is_udplite = IS_UDPLITE(sk); 1498 1499 /* 1500 * Charge it to the socket, dropping if the queue is full. 1501 */ 1502 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1503 goto drop; 1504 nf_reset(skb); 1505 1506 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1507 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1508 1509 /* 1510 * This is an encapsulation socket so pass the skb to 1511 * the socket's udp_encap_rcv() hook. Otherwise, just 1512 * fall through and pass this up the UDP socket. 1513 * up->encap_rcv() returns the following value: 1514 * =0 if skb was successfully passed to the encap 1515 * handler or was discarded by it. 1516 * >0 if skb should be passed on to UDP. 1517 * <0 if skb should be resubmitted as proto -N 1518 */ 1519 1520 /* if we're overly short, let UDP handle it */ 1521 encap_rcv = ACCESS_ONCE(up->encap_rcv); 1522 if (encap_rcv) { 1523 int ret; 1524 1525 /* Verify checksum before giving to encap */ 1526 if (udp_lib_checksum_complete(skb)) 1527 goto csum_error; 1528 1529 ret = encap_rcv(sk, skb); 1530 if (ret <= 0) { 1531 __UDP_INC_STATS(sock_net(sk), 1532 UDP_MIB_INDATAGRAMS, 1533 is_udplite); 1534 return -ret; 1535 } 1536 } 1537 1538 /* FALLTHROUGH -- it's a UDP Packet */ 1539 } 1540 1541 /* 1542 * UDP-Lite specific tests, ignored on UDP sockets 1543 */ 1544 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1545 1546 /* 1547 * MIB statistics other than incrementing the error count are 1548 * disabled for the following two types of errors: these depend 1549 * on the application settings, not on the functioning of the 1550 * protocol stack as such. 1551 * 1552 * RFC 3828 here recommends (sec 3.3): "There should also be a 1553 * way ... to ... at least let the receiving application block 1554 * delivery of packets with coverage values less than a value 1555 * provided by the application." 1556 */ 1557 if (up->pcrlen == 0) { /* full coverage was set */ 1558 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1559 UDP_SKB_CB(skb)->cscov, skb->len); 1560 goto drop; 1561 } 1562 /* The next case involves violating the min. coverage requested 1563 * by the receiver. This is subtle: if receiver wants x and x is 1564 * greater than the buffersize/MTU then receiver will complain 1565 * that it wants x while sender emits packets of smaller size y. 1566 * Therefore the above ...()->partial_cov statement is essential. 1567 */ 1568 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1569 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1570 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1571 goto drop; 1572 } 1573 } 1574 1575 if (rcu_access_pointer(sk->sk_filter) && 1576 udp_lib_checksum_complete(skb)) 1577 goto csum_error; 1578 1579 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1580 goto drop; 1581 1582 udp_csum_pull_header(skb); 1583 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 1584 __UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1585 is_udplite); 1586 goto drop; 1587 } 1588 1589 rc = 0; 1590 1591 ipv4_pktinfo_prepare(sk, skb); 1592 bh_lock_sock(sk); 1593 if (!sock_owned_by_user(sk)) 1594 rc = __udp_queue_rcv_skb(sk, skb); 1595 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 1596 bh_unlock_sock(sk); 1597 goto drop; 1598 } 1599 bh_unlock_sock(sk); 1600 1601 return rc; 1602 1603 csum_error: 1604 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1605 drop: 1606 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1607 atomic_inc(&sk->sk_drops); 1608 kfree_skb(skb); 1609 return -1; 1610 } 1611 1612 /* For TCP sockets, sk_rx_dst is protected by socket lock 1613 * For UDP, we use xchg() to guard against concurrent changes. 1614 */ 1615 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 1616 { 1617 struct dst_entry *old; 1618 1619 dst_hold(dst); 1620 old = xchg(&sk->sk_rx_dst, dst); 1621 dst_release(old); 1622 } 1623 1624 /* 1625 * Multicasts and broadcasts go to each listener. 1626 * 1627 * Note: called only from the BH handler context. 1628 */ 1629 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1630 struct udphdr *uh, 1631 __be32 saddr, __be32 daddr, 1632 struct udp_table *udptable, 1633 int proto) 1634 { 1635 struct sock *sk, *first = NULL; 1636 unsigned short hnum = ntohs(uh->dest); 1637 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 1638 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 1639 unsigned int offset = offsetof(typeof(*sk), sk_node); 1640 int dif = skb->dev->ifindex; 1641 struct hlist_node *node; 1642 struct sk_buff *nskb; 1643 1644 if (use_hash2) { 1645 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 1646 udp_table.mask; 1647 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask; 1648 start_lookup: 1649 hslot = &udp_table.hash2[hash2]; 1650 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 1651 } 1652 1653 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 1654 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 1655 uh->source, saddr, dif, hnum)) 1656 continue; 1657 1658 if (!first) { 1659 first = sk; 1660 continue; 1661 } 1662 nskb = skb_clone(skb, GFP_ATOMIC); 1663 1664 if (unlikely(!nskb)) { 1665 atomic_inc(&sk->sk_drops); 1666 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 1667 IS_UDPLITE(sk)); 1668 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 1669 IS_UDPLITE(sk)); 1670 continue; 1671 } 1672 if (udp_queue_rcv_skb(sk, nskb) > 0) 1673 consume_skb(nskb); 1674 } 1675 1676 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 1677 if (use_hash2 && hash2 != hash2_any) { 1678 hash2 = hash2_any; 1679 goto start_lookup; 1680 } 1681 1682 if (first) { 1683 if (udp_queue_rcv_skb(first, skb) > 0) 1684 consume_skb(skb); 1685 } else { 1686 kfree_skb(skb); 1687 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 1688 proto == IPPROTO_UDPLITE); 1689 } 1690 return 0; 1691 } 1692 1693 /* Initialize UDP checksum. If exited with zero value (success), 1694 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1695 * Otherwise, csum completion requires chacksumming packet body, 1696 * including udp header and folding it to skb->csum. 1697 */ 1698 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 1699 int proto) 1700 { 1701 int err; 1702 1703 UDP_SKB_CB(skb)->partial_cov = 0; 1704 UDP_SKB_CB(skb)->cscov = skb->len; 1705 1706 if (proto == IPPROTO_UDPLITE) { 1707 err = udplite_checksum_init(skb, uh); 1708 if (err) 1709 return err; 1710 } 1711 1712 /* Note, we are only interested in != 0 or == 0, thus the 1713 * force to int. 1714 */ 1715 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 1716 inet_compute_pseudo); 1717 } 1718 1719 /* 1720 * All we need to do is get the socket, and then do a checksum. 1721 */ 1722 1723 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 1724 int proto) 1725 { 1726 struct sock *sk; 1727 struct udphdr *uh; 1728 unsigned short ulen; 1729 struct rtable *rt = skb_rtable(skb); 1730 __be32 saddr, daddr; 1731 struct net *net = dev_net(skb->dev); 1732 1733 /* 1734 * Validate the packet. 1735 */ 1736 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1737 goto drop; /* No space for header. */ 1738 1739 uh = udp_hdr(skb); 1740 ulen = ntohs(uh->len); 1741 saddr = ip_hdr(skb)->saddr; 1742 daddr = ip_hdr(skb)->daddr; 1743 1744 if (ulen > skb->len) 1745 goto short_packet; 1746 1747 if (proto == IPPROTO_UDP) { 1748 /* UDP validates ulen. */ 1749 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 1750 goto short_packet; 1751 uh = udp_hdr(skb); 1752 } 1753 1754 if (udp4_csum_init(skb, uh, proto)) 1755 goto csum_error; 1756 1757 sk = skb_steal_sock(skb); 1758 if (sk) { 1759 struct dst_entry *dst = skb_dst(skb); 1760 int ret; 1761 1762 if (unlikely(sk->sk_rx_dst != dst)) 1763 udp_sk_rx_dst_set(sk, dst); 1764 1765 ret = udp_queue_rcv_skb(sk, skb); 1766 sock_put(sk); 1767 /* a return value > 0 means to resubmit the input, but 1768 * it wants the return to be -protocol, or 0 1769 */ 1770 if (ret > 0) 1771 return -ret; 1772 return 0; 1773 } 1774 1775 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1776 return __udp4_lib_mcast_deliver(net, skb, uh, 1777 saddr, daddr, udptable, proto); 1778 1779 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 1780 if (sk) { 1781 int ret; 1782 1783 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 1784 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 1785 inet_compute_pseudo); 1786 1787 ret = udp_queue_rcv_skb(sk, skb); 1788 1789 /* a return value > 0 means to resubmit the input, but 1790 * it wants the return to be -protocol, or 0 1791 */ 1792 if (ret > 0) 1793 return -ret; 1794 return 0; 1795 } 1796 1797 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1798 goto drop; 1799 nf_reset(skb); 1800 1801 /* No socket. Drop packet silently, if checksum is wrong */ 1802 if (udp_lib_checksum_complete(skb)) 1803 goto csum_error; 1804 1805 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 1806 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1807 1808 /* 1809 * Hmm. We got an UDP packet to a port to which we 1810 * don't wanna listen. Ignore it. 1811 */ 1812 kfree_skb(skb); 1813 return 0; 1814 1815 short_packet: 1816 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 1817 proto == IPPROTO_UDPLITE ? "Lite" : "", 1818 &saddr, ntohs(uh->source), 1819 ulen, skb->len, 1820 &daddr, ntohs(uh->dest)); 1821 goto drop; 1822 1823 csum_error: 1824 /* 1825 * RFC1122: OK. Discards the bad packet silently (as far as 1826 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1827 */ 1828 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 1829 proto == IPPROTO_UDPLITE ? "Lite" : "", 1830 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 1831 ulen); 1832 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 1833 drop: 1834 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 1835 kfree_skb(skb); 1836 return 0; 1837 } 1838 1839 /* We can only early demux multicast if there is a single matching socket. 1840 * If more than one socket found returns NULL 1841 */ 1842 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 1843 __be16 loc_port, __be32 loc_addr, 1844 __be16 rmt_port, __be32 rmt_addr, 1845 int dif) 1846 { 1847 struct sock *sk, *result; 1848 unsigned short hnum = ntohs(loc_port); 1849 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 1850 struct udp_hslot *hslot = &udp_table.hash[slot]; 1851 1852 /* Do not bother scanning a too big list */ 1853 if (hslot->count > 10) 1854 return NULL; 1855 1856 result = NULL; 1857 sk_for_each_rcu(sk, &hslot->head) { 1858 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 1859 rmt_port, rmt_addr, dif, hnum)) { 1860 if (result) 1861 return NULL; 1862 result = sk; 1863 } 1864 } 1865 1866 return result; 1867 } 1868 1869 /* For unicast we should only early demux connected sockets or we can 1870 * break forwarding setups. The chains here can be long so only check 1871 * if the first socket is an exact match and if not move on. 1872 */ 1873 static struct sock *__udp4_lib_demux_lookup(struct net *net, 1874 __be16 loc_port, __be32 loc_addr, 1875 __be16 rmt_port, __be32 rmt_addr, 1876 int dif) 1877 { 1878 unsigned short hnum = ntohs(loc_port); 1879 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum); 1880 unsigned int slot2 = hash2 & udp_table.mask; 1881 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 1882 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 1883 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 1884 struct sock *sk; 1885 1886 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 1887 if (INET_MATCH(sk, net, acookie, rmt_addr, 1888 loc_addr, ports, dif)) 1889 return sk; 1890 /* Only check first socket in chain */ 1891 break; 1892 } 1893 return NULL; 1894 } 1895 1896 void udp_v4_early_demux(struct sk_buff *skb) 1897 { 1898 struct net *net = dev_net(skb->dev); 1899 const struct iphdr *iph; 1900 const struct udphdr *uh; 1901 struct sock *sk = NULL; 1902 struct dst_entry *dst; 1903 int dif = skb->dev->ifindex; 1904 int ours; 1905 1906 /* validate the packet */ 1907 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 1908 return; 1909 1910 iph = ip_hdr(skb); 1911 uh = udp_hdr(skb); 1912 1913 if (skb->pkt_type == PACKET_BROADCAST || 1914 skb->pkt_type == PACKET_MULTICAST) { 1915 struct in_device *in_dev = __in_dev_get_rcu(skb->dev); 1916 1917 if (!in_dev) 1918 return; 1919 1920 /* we are supposed to accept bcast packets */ 1921 if (skb->pkt_type == PACKET_MULTICAST) { 1922 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 1923 iph->protocol); 1924 if (!ours) 1925 return; 1926 } 1927 1928 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 1929 uh->source, iph->saddr, dif); 1930 } else if (skb->pkt_type == PACKET_HOST) { 1931 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 1932 uh->source, iph->saddr, dif); 1933 } 1934 1935 if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2)) 1936 return; 1937 1938 skb->sk = sk; 1939 skb->destructor = sock_efree; 1940 dst = READ_ONCE(sk->sk_rx_dst); 1941 1942 if (dst) 1943 dst = dst_check(dst, 0); 1944 if (dst) { 1945 /* DST_NOCACHE can not be used without taking a reference */ 1946 if (dst->flags & DST_NOCACHE) { 1947 if (likely(atomic_inc_not_zero(&dst->__refcnt))) 1948 skb_dst_set(skb, dst); 1949 } else { 1950 skb_dst_set_noref(skb, dst); 1951 } 1952 } 1953 } 1954 1955 int udp_rcv(struct sk_buff *skb) 1956 { 1957 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 1958 } 1959 1960 void udp_destroy_sock(struct sock *sk) 1961 { 1962 struct udp_sock *up = udp_sk(sk); 1963 bool slow = lock_sock_fast(sk); 1964 udp_flush_pending_frames(sk); 1965 unlock_sock_fast(sk, slow); 1966 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1967 void (*encap_destroy)(struct sock *sk); 1968 encap_destroy = ACCESS_ONCE(up->encap_destroy); 1969 if (encap_destroy) 1970 encap_destroy(sk); 1971 } 1972 } 1973 1974 /* 1975 * Socket option code for UDP 1976 */ 1977 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 1978 char __user *optval, unsigned int optlen, 1979 int (*push_pending_frames)(struct sock *)) 1980 { 1981 struct udp_sock *up = udp_sk(sk); 1982 int val, valbool; 1983 int err = 0; 1984 int is_udplite = IS_UDPLITE(sk); 1985 1986 if (optlen < sizeof(int)) 1987 return -EINVAL; 1988 1989 if (get_user(val, (int __user *)optval)) 1990 return -EFAULT; 1991 1992 valbool = val ? 1 : 0; 1993 1994 switch (optname) { 1995 case UDP_CORK: 1996 if (val != 0) { 1997 up->corkflag = 1; 1998 } else { 1999 up->corkflag = 0; 2000 lock_sock(sk); 2001 push_pending_frames(sk); 2002 release_sock(sk); 2003 } 2004 break; 2005 2006 case UDP_ENCAP: 2007 switch (val) { 2008 case 0: 2009 case UDP_ENCAP_ESPINUDP: 2010 case UDP_ENCAP_ESPINUDP_NON_IKE: 2011 up->encap_rcv = xfrm4_udp_encap_rcv; 2012 /* FALLTHROUGH */ 2013 case UDP_ENCAP_L2TPINUDP: 2014 up->encap_type = val; 2015 udp_encap_enable(); 2016 break; 2017 default: 2018 err = -ENOPROTOOPT; 2019 break; 2020 } 2021 break; 2022 2023 case UDP_NO_CHECK6_TX: 2024 up->no_check6_tx = valbool; 2025 break; 2026 2027 case UDP_NO_CHECK6_RX: 2028 up->no_check6_rx = valbool; 2029 break; 2030 2031 /* 2032 * UDP-Lite's partial checksum coverage (RFC 3828). 2033 */ 2034 /* The sender sets actual checksum coverage length via this option. 2035 * The case coverage > packet length is handled by send module. */ 2036 case UDPLITE_SEND_CSCOV: 2037 if (!is_udplite) /* Disable the option on UDP sockets */ 2038 return -ENOPROTOOPT; 2039 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2040 val = 8; 2041 else if (val > USHRT_MAX) 2042 val = USHRT_MAX; 2043 up->pcslen = val; 2044 up->pcflag |= UDPLITE_SEND_CC; 2045 break; 2046 2047 /* The receiver specifies a minimum checksum coverage value. To make 2048 * sense, this should be set to at least 8 (as done below). If zero is 2049 * used, this again means full checksum coverage. */ 2050 case UDPLITE_RECV_CSCOV: 2051 if (!is_udplite) /* Disable the option on UDP sockets */ 2052 return -ENOPROTOOPT; 2053 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2054 val = 8; 2055 else if (val > USHRT_MAX) 2056 val = USHRT_MAX; 2057 up->pcrlen = val; 2058 up->pcflag |= UDPLITE_RECV_CC; 2059 break; 2060 2061 default: 2062 err = -ENOPROTOOPT; 2063 break; 2064 } 2065 2066 return err; 2067 } 2068 EXPORT_SYMBOL(udp_lib_setsockopt); 2069 2070 int udp_setsockopt(struct sock *sk, int level, int optname, 2071 char __user *optval, unsigned int optlen) 2072 { 2073 if (level == SOL_UDP || level == SOL_UDPLITE) 2074 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2075 udp_push_pending_frames); 2076 return ip_setsockopt(sk, level, optname, optval, optlen); 2077 } 2078 2079 #ifdef CONFIG_COMPAT 2080 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2081 char __user *optval, unsigned int optlen) 2082 { 2083 if (level == SOL_UDP || level == SOL_UDPLITE) 2084 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2085 udp_push_pending_frames); 2086 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2087 } 2088 #endif 2089 2090 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2091 char __user *optval, int __user *optlen) 2092 { 2093 struct udp_sock *up = udp_sk(sk); 2094 int val, len; 2095 2096 if (get_user(len, optlen)) 2097 return -EFAULT; 2098 2099 len = min_t(unsigned int, len, sizeof(int)); 2100 2101 if (len < 0) 2102 return -EINVAL; 2103 2104 switch (optname) { 2105 case UDP_CORK: 2106 val = up->corkflag; 2107 break; 2108 2109 case UDP_ENCAP: 2110 val = up->encap_type; 2111 break; 2112 2113 case UDP_NO_CHECK6_TX: 2114 val = up->no_check6_tx; 2115 break; 2116 2117 case UDP_NO_CHECK6_RX: 2118 val = up->no_check6_rx; 2119 break; 2120 2121 /* The following two cannot be changed on UDP sockets, the return is 2122 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2123 case UDPLITE_SEND_CSCOV: 2124 val = up->pcslen; 2125 break; 2126 2127 case UDPLITE_RECV_CSCOV: 2128 val = up->pcrlen; 2129 break; 2130 2131 default: 2132 return -ENOPROTOOPT; 2133 } 2134 2135 if (put_user(len, optlen)) 2136 return -EFAULT; 2137 if (copy_to_user(optval, &val, len)) 2138 return -EFAULT; 2139 return 0; 2140 } 2141 EXPORT_SYMBOL(udp_lib_getsockopt); 2142 2143 int udp_getsockopt(struct sock *sk, int level, int optname, 2144 char __user *optval, int __user *optlen) 2145 { 2146 if (level == SOL_UDP || level == SOL_UDPLITE) 2147 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2148 return ip_getsockopt(sk, level, optname, optval, optlen); 2149 } 2150 2151 #ifdef CONFIG_COMPAT 2152 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2153 char __user *optval, int __user *optlen) 2154 { 2155 if (level == SOL_UDP || level == SOL_UDPLITE) 2156 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2157 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2158 } 2159 #endif 2160 /** 2161 * udp_poll - wait for a UDP event. 2162 * @file - file struct 2163 * @sock - socket 2164 * @wait - poll table 2165 * 2166 * This is same as datagram poll, except for the special case of 2167 * blocking sockets. If application is using a blocking fd 2168 * and a packet with checksum error is in the queue; 2169 * then it could get return from select indicating data available 2170 * but then block when reading it. Add special case code 2171 * to work around these arguably broken applications. 2172 */ 2173 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2174 { 2175 unsigned int mask = datagram_poll(file, sock, wait); 2176 struct sock *sk = sock->sk; 2177 2178 sock_rps_record_flow(sk); 2179 2180 /* Check for false positives due to checksum errors */ 2181 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2182 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2183 mask &= ~(POLLIN | POLLRDNORM); 2184 2185 return mask; 2186 2187 } 2188 EXPORT_SYMBOL(udp_poll); 2189 2190 int udp_abort(struct sock *sk, int err) 2191 { 2192 lock_sock(sk); 2193 2194 sk->sk_err = err; 2195 sk->sk_error_report(sk); 2196 udp_disconnect(sk, 0); 2197 2198 release_sock(sk); 2199 2200 return 0; 2201 } 2202 EXPORT_SYMBOL_GPL(udp_abort); 2203 2204 struct proto udp_prot = { 2205 .name = "UDP", 2206 .owner = THIS_MODULE, 2207 .close = udp_lib_close, 2208 .connect = ip4_datagram_connect, 2209 .disconnect = udp_disconnect, 2210 .ioctl = udp_ioctl, 2211 .destroy = udp_destroy_sock, 2212 .setsockopt = udp_setsockopt, 2213 .getsockopt = udp_getsockopt, 2214 .sendmsg = udp_sendmsg, 2215 .recvmsg = udp_recvmsg, 2216 .sendpage = udp_sendpage, 2217 .backlog_rcv = __udp_queue_rcv_skb, 2218 .release_cb = ip4_datagram_release_cb, 2219 .hash = udp_lib_hash, 2220 .unhash = udp_lib_unhash, 2221 .rehash = udp_v4_rehash, 2222 .get_port = udp_v4_get_port, 2223 .memory_allocated = &udp_memory_allocated, 2224 .sysctl_mem = sysctl_udp_mem, 2225 .sysctl_wmem = &sysctl_udp_wmem_min, 2226 .sysctl_rmem = &sysctl_udp_rmem_min, 2227 .obj_size = sizeof(struct udp_sock), 2228 .h.udp_table = &udp_table, 2229 #ifdef CONFIG_COMPAT 2230 .compat_setsockopt = compat_udp_setsockopt, 2231 .compat_getsockopt = compat_udp_getsockopt, 2232 #endif 2233 .diag_destroy = udp_abort, 2234 }; 2235 EXPORT_SYMBOL(udp_prot); 2236 2237 /* ------------------------------------------------------------------------ */ 2238 #ifdef CONFIG_PROC_FS 2239 2240 static struct sock *udp_get_first(struct seq_file *seq, int start) 2241 { 2242 struct sock *sk; 2243 struct udp_iter_state *state = seq->private; 2244 struct net *net = seq_file_net(seq); 2245 2246 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2247 ++state->bucket) { 2248 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2249 2250 if (hlist_empty(&hslot->head)) 2251 continue; 2252 2253 spin_lock_bh(&hslot->lock); 2254 sk_for_each(sk, &hslot->head) { 2255 if (!net_eq(sock_net(sk), net)) 2256 continue; 2257 if (sk->sk_family == state->family) 2258 goto found; 2259 } 2260 spin_unlock_bh(&hslot->lock); 2261 } 2262 sk = NULL; 2263 found: 2264 return sk; 2265 } 2266 2267 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2268 { 2269 struct udp_iter_state *state = seq->private; 2270 struct net *net = seq_file_net(seq); 2271 2272 do { 2273 sk = sk_next(sk); 2274 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2275 2276 if (!sk) { 2277 if (state->bucket <= state->udp_table->mask) 2278 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2279 return udp_get_first(seq, state->bucket + 1); 2280 } 2281 return sk; 2282 } 2283 2284 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2285 { 2286 struct sock *sk = udp_get_first(seq, 0); 2287 2288 if (sk) 2289 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2290 --pos; 2291 return pos ? NULL : sk; 2292 } 2293 2294 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2295 { 2296 struct udp_iter_state *state = seq->private; 2297 state->bucket = MAX_UDP_PORTS; 2298 2299 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2300 } 2301 2302 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2303 { 2304 struct sock *sk; 2305 2306 if (v == SEQ_START_TOKEN) 2307 sk = udp_get_idx(seq, 0); 2308 else 2309 sk = udp_get_next(seq, v); 2310 2311 ++*pos; 2312 return sk; 2313 } 2314 2315 static void udp_seq_stop(struct seq_file *seq, void *v) 2316 { 2317 struct udp_iter_state *state = seq->private; 2318 2319 if (state->bucket <= state->udp_table->mask) 2320 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2321 } 2322 2323 int udp_seq_open(struct inode *inode, struct file *file) 2324 { 2325 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2326 struct udp_iter_state *s; 2327 int err; 2328 2329 err = seq_open_net(inode, file, &afinfo->seq_ops, 2330 sizeof(struct udp_iter_state)); 2331 if (err < 0) 2332 return err; 2333 2334 s = ((struct seq_file *)file->private_data)->private; 2335 s->family = afinfo->family; 2336 s->udp_table = afinfo->udp_table; 2337 return err; 2338 } 2339 EXPORT_SYMBOL(udp_seq_open); 2340 2341 /* ------------------------------------------------------------------------ */ 2342 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2343 { 2344 struct proc_dir_entry *p; 2345 int rc = 0; 2346 2347 afinfo->seq_ops.start = udp_seq_start; 2348 afinfo->seq_ops.next = udp_seq_next; 2349 afinfo->seq_ops.stop = udp_seq_stop; 2350 2351 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2352 afinfo->seq_fops, afinfo); 2353 if (!p) 2354 rc = -ENOMEM; 2355 return rc; 2356 } 2357 EXPORT_SYMBOL(udp_proc_register); 2358 2359 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2360 { 2361 remove_proc_entry(afinfo->name, net->proc_net); 2362 } 2363 EXPORT_SYMBOL(udp_proc_unregister); 2364 2365 /* ------------------------------------------------------------------------ */ 2366 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2367 int bucket) 2368 { 2369 struct inet_sock *inet = inet_sk(sp); 2370 __be32 dest = inet->inet_daddr; 2371 __be32 src = inet->inet_rcv_saddr; 2372 __u16 destp = ntohs(inet->inet_dport); 2373 __u16 srcp = ntohs(inet->inet_sport); 2374 2375 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2376 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2377 bucket, src, srcp, dest, destp, sp->sk_state, 2378 sk_wmem_alloc_get(sp), 2379 sk_rmem_alloc_get(sp), 2380 0, 0L, 0, 2381 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2382 0, sock_i_ino(sp), 2383 atomic_read(&sp->sk_refcnt), sp, 2384 atomic_read(&sp->sk_drops)); 2385 } 2386 2387 int udp4_seq_show(struct seq_file *seq, void *v) 2388 { 2389 seq_setwidth(seq, 127); 2390 if (v == SEQ_START_TOKEN) 2391 seq_puts(seq, " sl local_address rem_address st tx_queue " 2392 "rx_queue tr tm->when retrnsmt uid timeout " 2393 "inode ref pointer drops"); 2394 else { 2395 struct udp_iter_state *state = seq->private; 2396 2397 udp4_format_sock(v, seq, state->bucket); 2398 } 2399 seq_pad(seq, '\n'); 2400 return 0; 2401 } 2402 2403 static const struct file_operations udp_afinfo_seq_fops = { 2404 .owner = THIS_MODULE, 2405 .open = udp_seq_open, 2406 .read = seq_read, 2407 .llseek = seq_lseek, 2408 .release = seq_release_net 2409 }; 2410 2411 /* ------------------------------------------------------------------------ */ 2412 static struct udp_seq_afinfo udp4_seq_afinfo = { 2413 .name = "udp", 2414 .family = AF_INET, 2415 .udp_table = &udp_table, 2416 .seq_fops = &udp_afinfo_seq_fops, 2417 .seq_ops = { 2418 .show = udp4_seq_show, 2419 }, 2420 }; 2421 2422 static int __net_init udp4_proc_init_net(struct net *net) 2423 { 2424 return udp_proc_register(net, &udp4_seq_afinfo); 2425 } 2426 2427 static void __net_exit udp4_proc_exit_net(struct net *net) 2428 { 2429 udp_proc_unregister(net, &udp4_seq_afinfo); 2430 } 2431 2432 static struct pernet_operations udp4_net_ops = { 2433 .init = udp4_proc_init_net, 2434 .exit = udp4_proc_exit_net, 2435 }; 2436 2437 int __init udp4_proc_init(void) 2438 { 2439 return register_pernet_subsys(&udp4_net_ops); 2440 } 2441 2442 void udp4_proc_exit(void) 2443 { 2444 unregister_pernet_subsys(&udp4_net_ops); 2445 } 2446 #endif /* CONFIG_PROC_FS */ 2447 2448 static __initdata unsigned long uhash_entries; 2449 static int __init set_uhash_entries(char *str) 2450 { 2451 ssize_t ret; 2452 2453 if (!str) 2454 return 0; 2455 2456 ret = kstrtoul(str, 0, &uhash_entries); 2457 if (ret) 2458 return 0; 2459 2460 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2461 uhash_entries = UDP_HTABLE_SIZE_MIN; 2462 return 1; 2463 } 2464 __setup("uhash_entries=", set_uhash_entries); 2465 2466 void __init udp_table_init(struct udp_table *table, const char *name) 2467 { 2468 unsigned int i; 2469 2470 table->hash = alloc_large_system_hash(name, 2471 2 * sizeof(struct udp_hslot), 2472 uhash_entries, 2473 21, /* one slot per 2 MB */ 2474 0, 2475 &table->log, 2476 &table->mask, 2477 UDP_HTABLE_SIZE_MIN, 2478 64 * 1024); 2479 2480 table->hash2 = table->hash + (table->mask + 1); 2481 for (i = 0; i <= table->mask; i++) { 2482 INIT_HLIST_HEAD(&table->hash[i].head); 2483 table->hash[i].count = 0; 2484 spin_lock_init(&table->hash[i].lock); 2485 } 2486 for (i = 0; i <= table->mask; i++) { 2487 INIT_HLIST_HEAD(&table->hash2[i].head); 2488 table->hash2[i].count = 0; 2489 spin_lock_init(&table->hash2[i].lock); 2490 } 2491 } 2492 2493 u32 udp_flow_hashrnd(void) 2494 { 2495 static u32 hashrnd __read_mostly; 2496 2497 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2498 2499 return hashrnd; 2500 } 2501 EXPORT_SYMBOL(udp_flow_hashrnd); 2502 2503 void __init udp_init(void) 2504 { 2505 unsigned long limit; 2506 2507 udp_table_init(&udp_table, "UDP"); 2508 limit = nr_free_buffer_pages() / 8; 2509 limit = max(limit, 128UL); 2510 sysctl_udp_mem[0] = limit / 4 * 3; 2511 sysctl_udp_mem[1] = limit; 2512 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2513 2514 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2515 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2516 } 2517