1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <trace/events/udp.h> 108 #include <linux/static_key.h> 109 #include <linux/btf_ids.h> 110 #include <trace/events/skb.h> 111 #include <net/busy_poll.h> 112 #include "udp_impl.h" 113 #include <net/sock_reuseport.h> 114 #include <net/addrconf.h> 115 #include <net/udp_tunnel.h> 116 #if IS_ENABLED(CONFIG_IPV6) 117 #include <net/ipv6_stubs.h> 118 #endif 119 120 struct udp_table udp_table __read_mostly; 121 EXPORT_SYMBOL(udp_table); 122 123 long sysctl_udp_mem[3] __read_mostly; 124 EXPORT_SYMBOL(sysctl_udp_mem); 125 126 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 127 EXPORT_SYMBOL(udp_memory_allocated); 128 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 129 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 130 131 #define MAX_UDP_PORTS 65536 132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 133 134 static struct udp_table *udp_get_table_prot(struct sock *sk) 135 { 136 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 137 } 138 139 static int udp_lib_lport_inuse(struct net *net, __u16 num, 140 const struct udp_hslot *hslot, 141 unsigned long *bitmap, 142 struct sock *sk, unsigned int log) 143 { 144 struct sock *sk2; 145 kuid_t uid = sock_i_uid(sk); 146 147 sk_for_each(sk2, &hslot->head) { 148 if (net_eq(sock_net(sk2), net) && 149 sk2 != sk && 150 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 151 (!sk2->sk_reuse || !sk->sk_reuse) && 152 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 153 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 154 inet_rcv_saddr_equal(sk, sk2, true)) { 155 if (sk2->sk_reuseport && sk->sk_reuseport && 156 !rcu_access_pointer(sk->sk_reuseport_cb) && 157 uid_eq(uid, sock_i_uid(sk2))) { 158 if (!bitmap) 159 return 0; 160 } else { 161 if (!bitmap) 162 return 1; 163 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 164 bitmap); 165 } 166 } 167 } 168 return 0; 169 } 170 171 /* 172 * Note: we still hold spinlock of primary hash chain, so no other writer 173 * can insert/delete a socket with local_port == num 174 */ 175 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 176 struct udp_hslot *hslot2, 177 struct sock *sk) 178 { 179 struct sock *sk2; 180 kuid_t uid = sock_i_uid(sk); 181 int res = 0; 182 183 spin_lock(&hslot2->lock); 184 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 185 if (net_eq(sock_net(sk2), net) && 186 sk2 != sk && 187 (udp_sk(sk2)->udp_port_hash == num) && 188 (!sk2->sk_reuse || !sk->sk_reuse) && 189 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 190 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 191 inet_rcv_saddr_equal(sk, sk2, true)) { 192 if (sk2->sk_reuseport && sk->sk_reuseport && 193 !rcu_access_pointer(sk->sk_reuseport_cb) && 194 uid_eq(uid, sock_i_uid(sk2))) { 195 res = 0; 196 } else { 197 res = 1; 198 } 199 break; 200 } 201 } 202 spin_unlock(&hslot2->lock); 203 return res; 204 } 205 206 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 207 { 208 struct net *net = sock_net(sk); 209 kuid_t uid = sock_i_uid(sk); 210 struct sock *sk2; 211 212 sk_for_each(sk2, &hslot->head) { 213 if (net_eq(sock_net(sk2), net) && 214 sk2 != sk && 215 sk2->sk_family == sk->sk_family && 216 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 217 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 218 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 219 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 220 inet_rcv_saddr_equal(sk, sk2, false)) { 221 return reuseport_add_sock(sk, sk2, 222 inet_rcv_saddr_any(sk)); 223 } 224 } 225 226 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 227 } 228 229 /** 230 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 231 * 232 * @sk: socket struct in question 233 * @snum: port number to look up 234 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 235 * with NULL address 236 */ 237 int udp_lib_get_port(struct sock *sk, unsigned short snum, 238 unsigned int hash2_nulladdr) 239 { 240 struct udp_table *udptable = udp_get_table_prot(sk); 241 struct udp_hslot *hslot, *hslot2; 242 struct net *net = sock_net(sk); 243 int error = -EADDRINUSE; 244 245 if (!snum) { 246 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 247 unsigned short first, last; 248 int low, high, remaining; 249 unsigned int rand; 250 251 inet_sk_get_local_port_range(sk, &low, &high); 252 remaining = (high - low) + 1; 253 254 rand = get_random_u32(); 255 first = reciprocal_scale(rand, remaining) + low; 256 /* 257 * force rand to be an odd multiple of UDP_HTABLE_SIZE 258 */ 259 rand = (rand | 1) * (udptable->mask + 1); 260 last = first + udptable->mask + 1; 261 do { 262 hslot = udp_hashslot(udptable, net, first); 263 bitmap_zero(bitmap, PORTS_PER_CHAIN); 264 spin_lock_bh(&hslot->lock); 265 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 266 udptable->log); 267 268 snum = first; 269 /* 270 * Iterate on all possible values of snum for this hash. 271 * Using steps of an odd multiple of UDP_HTABLE_SIZE 272 * give us randomization and full range coverage. 273 */ 274 do { 275 if (low <= snum && snum <= high && 276 !test_bit(snum >> udptable->log, bitmap) && 277 !inet_is_local_reserved_port(net, snum)) 278 goto found; 279 snum += rand; 280 } while (snum != first); 281 spin_unlock_bh(&hslot->lock); 282 cond_resched(); 283 } while (++first != last); 284 goto fail; 285 } else { 286 hslot = udp_hashslot(udptable, net, snum); 287 spin_lock_bh(&hslot->lock); 288 if (hslot->count > 10) { 289 int exist; 290 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 291 292 slot2 &= udptable->mask; 293 hash2_nulladdr &= udptable->mask; 294 295 hslot2 = udp_hashslot2(udptable, slot2); 296 if (hslot->count < hslot2->count) 297 goto scan_primary_hash; 298 299 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 300 if (!exist && (hash2_nulladdr != slot2)) { 301 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 302 exist = udp_lib_lport_inuse2(net, snum, hslot2, 303 sk); 304 } 305 if (exist) 306 goto fail_unlock; 307 else 308 goto found; 309 } 310 scan_primary_hash: 311 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 312 goto fail_unlock; 313 } 314 found: 315 inet_sk(sk)->inet_num = snum; 316 udp_sk(sk)->udp_port_hash = snum; 317 udp_sk(sk)->udp_portaddr_hash ^= snum; 318 if (sk_unhashed(sk)) { 319 if (sk->sk_reuseport && 320 udp_reuseport_add_sock(sk, hslot)) { 321 inet_sk(sk)->inet_num = 0; 322 udp_sk(sk)->udp_port_hash = 0; 323 udp_sk(sk)->udp_portaddr_hash ^= snum; 324 goto fail_unlock; 325 } 326 327 sk_add_node_rcu(sk, &hslot->head); 328 hslot->count++; 329 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 330 331 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 332 spin_lock(&hslot2->lock); 333 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 334 sk->sk_family == AF_INET6) 335 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 336 &hslot2->head); 337 else 338 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 339 &hslot2->head); 340 hslot2->count++; 341 spin_unlock(&hslot2->lock); 342 } 343 sock_set_flag(sk, SOCK_RCU_FREE); 344 error = 0; 345 fail_unlock: 346 spin_unlock_bh(&hslot->lock); 347 fail: 348 return error; 349 } 350 EXPORT_SYMBOL(udp_lib_get_port); 351 352 int udp_v4_get_port(struct sock *sk, unsigned short snum) 353 { 354 unsigned int hash2_nulladdr = 355 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 356 unsigned int hash2_partial = 357 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 358 359 /* precompute partial secondary hash */ 360 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 361 return udp_lib_get_port(sk, snum, hash2_nulladdr); 362 } 363 364 static int compute_score(struct sock *sk, struct net *net, 365 __be32 saddr, __be16 sport, 366 __be32 daddr, unsigned short hnum, 367 int dif, int sdif) 368 { 369 int score; 370 struct inet_sock *inet; 371 bool dev_match; 372 373 if (!net_eq(sock_net(sk), net) || 374 udp_sk(sk)->udp_port_hash != hnum || 375 ipv6_only_sock(sk)) 376 return -1; 377 378 if (sk->sk_rcv_saddr != daddr) 379 return -1; 380 381 score = (sk->sk_family == PF_INET) ? 2 : 1; 382 383 inet = inet_sk(sk); 384 if (inet->inet_daddr) { 385 if (inet->inet_daddr != saddr) 386 return -1; 387 score += 4; 388 } 389 390 if (inet->inet_dport) { 391 if (inet->inet_dport != sport) 392 return -1; 393 score += 4; 394 } 395 396 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 397 dif, sdif); 398 if (!dev_match) 399 return -1; 400 if (sk->sk_bound_dev_if) 401 score += 4; 402 403 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 404 score++; 405 return score; 406 } 407 408 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 409 const __u16 lport, const __be32 faddr, 410 const __be16 fport) 411 { 412 static u32 udp_ehash_secret __read_mostly; 413 414 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 415 416 return __inet_ehashfn(laddr, lport, faddr, fport, 417 udp_ehash_secret + net_hash_mix(net)); 418 } 419 420 static struct sock *lookup_reuseport(struct net *net, struct sock *sk, 421 struct sk_buff *skb, 422 __be32 saddr, __be16 sport, 423 __be32 daddr, unsigned short hnum) 424 { 425 struct sock *reuse_sk = NULL; 426 u32 hash; 427 428 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) { 429 hash = udp_ehashfn(net, daddr, hnum, saddr, sport); 430 reuse_sk = reuseport_select_sock(sk, hash, skb, 431 sizeof(struct udphdr)); 432 } 433 return reuse_sk; 434 } 435 436 /* called with rcu_read_lock() */ 437 static struct sock *udp4_lib_lookup2(struct net *net, 438 __be32 saddr, __be16 sport, 439 __be32 daddr, unsigned int hnum, 440 int dif, int sdif, 441 struct udp_hslot *hslot2, 442 struct sk_buff *skb) 443 { 444 struct sock *sk, *result; 445 int score, badness; 446 447 result = NULL; 448 badness = 0; 449 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 450 score = compute_score(sk, net, saddr, sport, 451 daddr, hnum, dif, sdif); 452 if (score > badness) { 453 result = lookup_reuseport(net, sk, skb, 454 saddr, sport, daddr, hnum); 455 /* Fall back to scoring if group has connections */ 456 if (result && !reuseport_has_conns(sk)) 457 return result; 458 459 result = result ? : sk; 460 badness = score; 461 } 462 } 463 return result; 464 } 465 466 static struct sock *udp4_lookup_run_bpf(struct net *net, 467 struct udp_table *udptable, 468 struct sk_buff *skb, 469 __be32 saddr, __be16 sport, 470 __be32 daddr, u16 hnum, const int dif) 471 { 472 struct sock *sk, *reuse_sk; 473 bool no_reuseport; 474 475 if (udptable != net->ipv4.udp_table) 476 return NULL; /* only UDP is supported */ 477 478 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport, 479 daddr, hnum, dif, &sk); 480 if (no_reuseport || IS_ERR_OR_NULL(sk)) 481 return sk; 482 483 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum); 484 if (reuse_sk) 485 sk = reuse_sk; 486 return sk; 487 } 488 489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 490 * harder than this. -DaveM 491 */ 492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 493 __be16 sport, __be32 daddr, __be16 dport, int dif, 494 int sdif, struct udp_table *udptable, struct sk_buff *skb) 495 { 496 unsigned short hnum = ntohs(dport); 497 unsigned int hash2, slot2; 498 struct udp_hslot *hslot2; 499 struct sock *result, *sk; 500 501 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 502 slot2 = hash2 & udptable->mask; 503 hslot2 = &udptable->hash2[slot2]; 504 505 /* Lookup connected or non-wildcard socket */ 506 result = udp4_lib_lookup2(net, saddr, sport, 507 daddr, hnum, dif, sdif, 508 hslot2, skb); 509 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 510 goto done; 511 512 /* Lookup redirect from BPF */ 513 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) { 514 sk = udp4_lookup_run_bpf(net, udptable, skb, 515 saddr, sport, daddr, hnum, dif); 516 if (sk) { 517 result = sk; 518 goto done; 519 } 520 } 521 522 /* Got non-wildcard socket or error on first lookup */ 523 if (result) 524 goto done; 525 526 /* Lookup wildcard sockets */ 527 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 528 slot2 = hash2 & udptable->mask; 529 hslot2 = &udptable->hash2[slot2]; 530 531 result = udp4_lib_lookup2(net, saddr, sport, 532 htonl(INADDR_ANY), hnum, dif, sdif, 533 hslot2, skb); 534 done: 535 if (IS_ERR(result)) 536 return NULL; 537 return result; 538 } 539 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 540 541 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 542 __be16 sport, __be16 dport, 543 struct udp_table *udptable) 544 { 545 const struct iphdr *iph = ip_hdr(skb); 546 547 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 548 iph->daddr, dport, inet_iif(skb), 549 inet_sdif(skb), udptable, skb); 550 } 551 552 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 553 __be16 sport, __be16 dport) 554 { 555 const struct iphdr *iph = ip_hdr(skb); 556 struct net *net = dev_net(skb->dev); 557 558 return __udp4_lib_lookup(net, iph->saddr, sport, 559 iph->daddr, dport, inet_iif(skb), 560 inet_sdif(skb), net->ipv4.udp_table, NULL); 561 } 562 563 /* Must be called under rcu_read_lock(). 564 * Does increment socket refcount. 565 */ 566 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 567 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 568 __be32 daddr, __be16 dport, int dif) 569 { 570 struct sock *sk; 571 572 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 573 dif, 0, net->ipv4.udp_table, NULL); 574 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 575 sk = NULL; 576 return sk; 577 } 578 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 579 #endif 580 581 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 582 __be16 loc_port, __be32 loc_addr, 583 __be16 rmt_port, __be32 rmt_addr, 584 int dif, int sdif, unsigned short hnum) 585 { 586 const struct inet_sock *inet = inet_sk(sk); 587 588 if (!net_eq(sock_net(sk), net) || 589 udp_sk(sk)->udp_port_hash != hnum || 590 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 591 (inet->inet_dport != rmt_port && inet->inet_dport) || 592 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 593 ipv6_only_sock(sk) || 594 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 595 return false; 596 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 597 return false; 598 return true; 599 } 600 601 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 602 void udp_encap_enable(void) 603 { 604 static_branch_inc(&udp_encap_needed_key); 605 } 606 EXPORT_SYMBOL(udp_encap_enable); 607 608 void udp_encap_disable(void) 609 { 610 static_branch_dec(&udp_encap_needed_key); 611 } 612 EXPORT_SYMBOL(udp_encap_disable); 613 614 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 615 * through error handlers in encapsulations looking for a match. 616 */ 617 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 618 { 619 int i; 620 621 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 622 int (*handler)(struct sk_buff *skb, u32 info); 623 const struct ip_tunnel_encap_ops *encap; 624 625 encap = rcu_dereference(iptun_encaps[i]); 626 if (!encap) 627 continue; 628 handler = encap->err_handler; 629 if (handler && !handler(skb, info)) 630 return 0; 631 } 632 633 return -ENOENT; 634 } 635 636 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 637 * reversing source and destination port: this will match tunnels that force the 638 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 639 * lwtunnels might actually break this assumption by being configured with 640 * different destination ports on endpoints, in this case we won't be able to 641 * trace ICMP messages back to them. 642 * 643 * If this doesn't match any socket, probe tunnels with arbitrary destination 644 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 645 * we've sent packets to won't necessarily match the local destination port. 646 * 647 * Then ask the tunnel implementation to match the error against a valid 648 * association. 649 * 650 * Return an error if we can't find a match, the socket if we need further 651 * processing, zero otherwise. 652 */ 653 static struct sock *__udp4_lib_err_encap(struct net *net, 654 const struct iphdr *iph, 655 struct udphdr *uh, 656 struct udp_table *udptable, 657 struct sock *sk, 658 struct sk_buff *skb, u32 info) 659 { 660 int (*lookup)(struct sock *sk, struct sk_buff *skb); 661 int network_offset, transport_offset; 662 struct udp_sock *up; 663 664 network_offset = skb_network_offset(skb); 665 transport_offset = skb_transport_offset(skb); 666 667 /* Network header needs to point to the outer IPv4 header inside ICMP */ 668 skb_reset_network_header(skb); 669 670 /* Transport header needs to point to the UDP header */ 671 skb_set_transport_header(skb, iph->ihl << 2); 672 673 if (sk) { 674 up = udp_sk(sk); 675 676 lookup = READ_ONCE(up->encap_err_lookup); 677 if (lookup && lookup(sk, skb)) 678 sk = NULL; 679 680 goto out; 681 } 682 683 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 684 iph->saddr, uh->dest, skb->dev->ifindex, 0, 685 udptable, NULL); 686 if (sk) { 687 up = udp_sk(sk); 688 689 lookup = READ_ONCE(up->encap_err_lookup); 690 if (!lookup || lookup(sk, skb)) 691 sk = NULL; 692 } 693 694 out: 695 if (!sk) 696 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 697 698 skb_set_transport_header(skb, transport_offset); 699 skb_set_network_header(skb, network_offset); 700 701 return sk; 702 } 703 704 /* 705 * This routine is called by the ICMP module when it gets some 706 * sort of error condition. If err < 0 then the socket should 707 * be closed and the error returned to the user. If err > 0 708 * it's just the icmp type << 8 | icmp code. 709 * Header points to the ip header of the error packet. We move 710 * on past this. Then (as it used to claim before adjustment) 711 * header points to the first 8 bytes of the udp header. We need 712 * to find the appropriate port. 713 */ 714 715 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 716 { 717 struct inet_sock *inet; 718 const struct iphdr *iph = (const struct iphdr *)skb->data; 719 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 720 const int type = icmp_hdr(skb)->type; 721 const int code = icmp_hdr(skb)->code; 722 bool tunnel = false; 723 struct sock *sk; 724 int harderr; 725 int err; 726 struct net *net = dev_net(skb->dev); 727 728 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 729 iph->saddr, uh->source, skb->dev->ifindex, 730 inet_sdif(skb), udptable, NULL); 731 732 if (!sk || udp_sk(sk)->encap_type) { 733 /* No socket for error: try tunnels before discarding */ 734 if (static_branch_unlikely(&udp_encap_needed_key)) { 735 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 736 info); 737 if (!sk) 738 return 0; 739 } else 740 sk = ERR_PTR(-ENOENT); 741 742 if (IS_ERR(sk)) { 743 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 744 return PTR_ERR(sk); 745 } 746 747 tunnel = true; 748 } 749 750 err = 0; 751 harderr = 0; 752 inet = inet_sk(sk); 753 754 switch (type) { 755 default: 756 case ICMP_TIME_EXCEEDED: 757 err = EHOSTUNREACH; 758 break; 759 case ICMP_SOURCE_QUENCH: 760 goto out; 761 case ICMP_PARAMETERPROB: 762 err = EPROTO; 763 harderr = 1; 764 break; 765 case ICMP_DEST_UNREACH: 766 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 767 ipv4_sk_update_pmtu(skb, sk, info); 768 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 769 err = EMSGSIZE; 770 harderr = 1; 771 break; 772 } 773 goto out; 774 } 775 err = EHOSTUNREACH; 776 if (code <= NR_ICMP_UNREACH) { 777 harderr = icmp_err_convert[code].fatal; 778 err = icmp_err_convert[code].errno; 779 } 780 break; 781 case ICMP_REDIRECT: 782 ipv4_sk_redirect(skb, sk); 783 goto out; 784 } 785 786 /* 787 * RFC1122: OK. Passes ICMP errors back to application, as per 788 * 4.1.3.3. 789 */ 790 if (tunnel) { 791 /* ...not for tunnels though: we don't have a sending socket */ 792 if (udp_sk(sk)->encap_err_rcv) 793 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 794 (u8 *)(uh+1)); 795 goto out; 796 } 797 if (!inet->recverr) { 798 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 799 goto out; 800 } else 801 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 802 803 sk->sk_err = err; 804 sk_error_report(sk); 805 out: 806 return 0; 807 } 808 809 int udp_err(struct sk_buff *skb, u32 info) 810 { 811 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 812 } 813 814 /* 815 * Throw away all pending data and cancel the corking. Socket is locked. 816 */ 817 void udp_flush_pending_frames(struct sock *sk) 818 { 819 struct udp_sock *up = udp_sk(sk); 820 821 if (up->pending) { 822 up->len = 0; 823 up->pending = 0; 824 ip_flush_pending_frames(sk); 825 } 826 } 827 EXPORT_SYMBOL(udp_flush_pending_frames); 828 829 /** 830 * udp4_hwcsum - handle outgoing HW checksumming 831 * @skb: sk_buff containing the filled-in UDP header 832 * (checksum field must be zeroed out) 833 * @src: source IP address 834 * @dst: destination IP address 835 */ 836 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 837 { 838 struct udphdr *uh = udp_hdr(skb); 839 int offset = skb_transport_offset(skb); 840 int len = skb->len - offset; 841 int hlen = len; 842 __wsum csum = 0; 843 844 if (!skb_has_frag_list(skb)) { 845 /* 846 * Only one fragment on the socket. 847 */ 848 skb->csum_start = skb_transport_header(skb) - skb->head; 849 skb->csum_offset = offsetof(struct udphdr, check); 850 uh->check = ~csum_tcpudp_magic(src, dst, len, 851 IPPROTO_UDP, 0); 852 } else { 853 struct sk_buff *frags; 854 855 /* 856 * HW-checksum won't work as there are two or more 857 * fragments on the socket so that all csums of sk_buffs 858 * should be together 859 */ 860 skb_walk_frags(skb, frags) { 861 csum = csum_add(csum, frags->csum); 862 hlen -= frags->len; 863 } 864 865 csum = skb_checksum(skb, offset, hlen, csum); 866 skb->ip_summed = CHECKSUM_NONE; 867 868 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 869 if (uh->check == 0) 870 uh->check = CSUM_MANGLED_0; 871 } 872 } 873 EXPORT_SYMBOL_GPL(udp4_hwcsum); 874 875 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 876 * for the simple case like when setting the checksum for a UDP tunnel. 877 */ 878 void udp_set_csum(bool nocheck, struct sk_buff *skb, 879 __be32 saddr, __be32 daddr, int len) 880 { 881 struct udphdr *uh = udp_hdr(skb); 882 883 if (nocheck) { 884 uh->check = 0; 885 } else if (skb_is_gso(skb)) { 886 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 887 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 888 uh->check = 0; 889 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 890 if (uh->check == 0) 891 uh->check = CSUM_MANGLED_0; 892 } else { 893 skb->ip_summed = CHECKSUM_PARTIAL; 894 skb->csum_start = skb_transport_header(skb) - skb->head; 895 skb->csum_offset = offsetof(struct udphdr, check); 896 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 897 } 898 } 899 EXPORT_SYMBOL(udp_set_csum); 900 901 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 902 struct inet_cork *cork) 903 { 904 struct sock *sk = skb->sk; 905 struct inet_sock *inet = inet_sk(sk); 906 struct udphdr *uh; 907 int err; 908 int is_udplite = IS_UDPLITE(sk); 909 int offset = skb_transport_offset(skb); 910 int len = skb->len - offset; 911 int datalen = len - sizeof(*uh); 912 __wsum csum = 0; 913 914 /* 915 * Create a UDP header 916 */ 917 uh = udp_hdr(skb); 918 uh->source = inet->inet_sport; 919 uh->dest = fl4->fl4_dport; 920 uh->len = htons(len); 921 uh->check = 0; 922 923 if (cork->gso_size) { 924 const int hlen = skb_network_header_len(skb) + 925 sizeof(struct udphdr); 926 927 if (hlen + cork->gso_size > cork->fragsize) { 928 kfree_skb(skb); 929 return -EINVAL; 930 } 931 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 932 kfree_skb(skb); 933 return -EINVAL; 934 } 935 if (sk->sk_no_check_tx) { 936 kfree_skb(skb); 937 return -EINVAL; 938 } 939 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 940 dst_xfrm(skb_dst(skb))) { 941 kfree_skb(skb); 942 return -EIO; 943 } 944 945 if (datalen > cork->gso_size) { 946 skb_shinfo(skb)->gso_size = cork->gso_size; 947 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 948 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 949 cork->gso_size); 950 } 951 goto csum_partial; 952 } 953 954 if (is_udplite) /* UDP-Lite */ 955 csum = udplite_csum(skb); 956 957 else if (sk->sk_no_check_tx) { /* UDP csum off */ 958 959 skb->ip_summed = CHECKSUM_NONE; 960 goto send; 961 962 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 963 csum_partial: 964 965 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 966 goto send; 967 968 } else 969 csum = udp_csum(skb); 970 971 /* add protocol-dependent pseudo-header */ 972 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 973 sk->sk_protocol, csum); 974 if (uh->check == 0) 975 uh->check = CSUM_MANGLED_0; 976 977 send: 978 err = ip_send_skb(sock_net(sk), skb); 979 if (err) { 980 if (err == -ENOBUFS && !inet->recverr) { 981 UDP_INC_STATS(sock_net(sk), 982 UDP_MIB_SNDBUFERRORS, is_udplite); 983 err = 0; 984 } 985 } else 986 UDP_INC_STATS(sock_net(sk), 987 UDP_MIB_OUTDATAGRAMS, is_udplite); 988 return err; 989 } 990 991 /* 992 * Push out all pending data as one UDP datagram. Socket is locked. 993 */ 994 int udp_push_pending_frames(struct sock *sk) 995 { 996 struct udp_sock *up = udp_sk(sk); 997 struct inet_sock *inet = inet_sk(sk); 998 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 999 struct sk_buff *skb; 1000 int err = 0; 1001 1002 skb = ip_finish_skb(sk, fl4); 1003 if (!skb) 1004 goto out; 1005 1006 err = udp_send_skb(skb, fl4, &inet->cork.base); 1007 1008 out: 1009 up->len = 0; 1010 up->pending = 0; 1011 return err; 1012 } 1013 EXPORT_SYMBOL(udp_push_pending_frames); 1014 1015 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1016 { 1017 switch (cmsg->cmsg_type) { 1018 case UDP_SEGMENT: 1019 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1020 return -EINVAL; 1021 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1022 return 0; 1023 default: 1024 return -EINVAL; 1025 } 1026 } 1027 1028 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1029 { 1030 struct cmsghdr *cmsg; 1031 bool need_ip = false; 1032 int err; 1033 1034 for_each_cmsghdr(cmsg, msg) { 1035 if (!CMSG_OK(msg, cmsg)) 1036 return -EINVAL; 1037 1038 if (cmsg->cmsg_level != SOL_UDP) { 1039 need_ip = true; 1040 continue; 1041 } 1042 1043 err = __udp_cmsg_send(cmsg, gso_size); 1044 if (err) 1045 return err; 1046 } 1047 1048 return need_ip; 1049 } 1050 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1051 1052 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1053 { 1054 struct inet_sock *inet = inet_sk(sk); 1055 struct udp_sock *up = udp_sk(sk); 1056 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1057 struct flowi4 fl4_stack; 1058 struct flowi4 *fl4; 1059 int ulen = len; 1060 struct ipcm_cookie ipc; 1061 struct rtable *rt = NULL; 1062 int free = 0; 1063 int connected = 0; 1064 __be32 daddr, faddr, saddr; 1065 __be16 dport; 1066 u8 tos; 1067 int err, is_udplite = IS_UDPLITE(sk); 1068 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE; 1069 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1070 struct sk_buff *skb; 1071 struct ip_options_data opt_copy; 1072 1073 if (len > 0xFFFF) 1074 return -EMSGSIZE; 1075 1076 /* 1077 * Check the flags. 1078 */ 1079 1080 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1081 return -EOPNOTSUPP; 1082 1083 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1084 1085 fl4 = &inet->cork.fl.u.ip4; 1086 if (up->pending) { 1087 /* 1088 * There are pending frames. 1089 * The socket lock must be held while it's corked. 1090 */ 1091 lock_sock(sk); 1092 if (likely(up->pending)) { 1093 if (unlikely(up->pending != AF_INET)) { 1094 release_sock(sk); 1095 return -EINVAL; 1096 } 1097 goto do_append_data; 1098 } 1099 release_sock(sk); 1100 } 1101 ulen += sizeof(struct udphdr); 1102 1103 /* 1104 * Get and verify the address. 1105 */ 1106 if (usin) { 1107 if (msg->msg_namelen < sizeof(*usin)) 1108 return -EINVAL; 1109 if (usin->sin_family != AF_INET) { 1110 if (usin->sin_family != AF_UNSPEC) 1111 return -EAFNOSUPPORT; 1112 } 1113 1114 daddr = usin->sin_addr.s_addr; 1115 dport = usin->sin_port; 1116 if (dport == 0) 1117 return -EINVAL; 1118 } else { 1119 if (sk->sk_state != TCP_ESTABLISHED) 1120 return -EDESTADDRREQ; 1121 daddr = inet->inet_daddr; 1122 dport = inet->inet_dport; 1123 /* Open fast path for connected socket. 1124 Route will not be used, if at least one option is set. 1125 */ 1126 connected = 1; 1127 } 1128 1129 ipcm_init_sk(&ipc, inet); 1130 ipc.gso_size = READ_ONCE(up->gso_size); 1131 1132 if (msg->msg_controllen) { 1133 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1134 if (err > 0) 1135 err = ip_cmsg_send(sk, msg, &ipc, 1136 sk->sk_family == AF_INET6); 1137 if (unlikely(err < 0)) { 1138 kfree(ipc.opt); 1139 return err; 1140 } 1141 if (ipc.opt) 1142 free = 1; 1143 connected = 0; 1144 } 1145 if (!ipc.opt) { 1146 struct ip_options_rcu *inet_opt; 1147 1148 rcu_read_lock(); 1149 inet_opt = rcu_dereference(inet->inet_opt); 1150 if (inet_opt) { 1151 memcpy(&opt_copy, inet_opt, 1152 sizeof(*inet_opt) + inet_opt->opt.optlen); 1153 ipc.opt = &opt_copy.opt; 1154 } 1155 rcu_read_unlock(); 1156 } 1157 1158 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1159 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1160 (struct sockaddr *)usin, &ipc.addr); 1161 if (err) 1162 goto out_free; 1163 if (usin) { 1164 if (usin->sin_port == 0) { 1165 /* BPF program set invalid port. Reject it. */ 1166 err = -EINVAL; 1167 goto out_free; 1168 } 1169 daddr = usin->sin_addr.s_addr; 1170 dport = usin->sin_port; 1171 } 1172 } 1173 1174 saddr = ipc.addr; 1175 ipc.addr = faddr = daddr; 1176 1177 if (ipc.opt && ipc.opt->opt.srr) { 1178 if (!daddr) { 1179 err = -EINVAL; 1180 goto out_free; 1181 } 1182 faddr = ipc.opt->opt.faddr; 1183 connected = 0; 1184 } 1185 tos = get_rttos(&ipc, inet); 1186 if (sock_flag(sk, SOCK_LOCALROUTE) || 1187 (msg->msg_flags & MSG_DONTROUTE) || 1188 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1189 tos |= RTO_ONLINK; 1190 connected = 0; 1191 } 1192 1193 if (ipv4_is_multicast(daddr)) { 1194 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1195 ipc.oif = inet->mc_index; 1196 if (!saddr) 1197 saddr = inet->mc_addr; 1198 connected = 0; 1199 } else if (!ipc.oif) { 1200 ipc.oif = inet->uc_index; 1201 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1202 /* oif is set, packet is to local broadcast and 1203 * uc_index is set. oif is most likely set 1204 * by sk_bound_dev_if. If uc_index != oif check if the 1205 * oif is an L3 master and uc_index is an L3 slave. 1206 * If so, we want to allow the send using the uc_index. 1207 */ 1208 if (ipc.oif != inet->uc_index && 1209 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1210 inet->uc_index)) { 1211 ipc.oif = inet->uc_index; 1212 } 1213 } 1214 1215 if (connected) 1216 rt = (struct rtable *)sk_dst_check(sk, 0); 1217 1218 if (!rt) { 1219 struct net *net = sock_net(sk); 1220 __u8 flow_flags = inet_sk_flowi_flags(sk); 1221 1222 fl4 = &fl4_stack; 1223 1224 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, 1225 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1226 flow_flags, 1227 faddr, saddr, dport, inet->inet_sport, 1228 sk->sk_uid); 1229 1230 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1231 rt = ip_route_output_flow(net, fl4, sk); 1232 if (IS_ERR(rt)) { 1233 err = PTR_ERR(rt); 1234 rt = NULL; 1235 if (err == -ENETUNREACH) 1236 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1237 goto out; 1238 } 1239 1240 err = -EACCES; 1241 if ((rt->rt_flags & RTCF_BROADCAST) && 1242 !sock_flag(sk, SOCK_BROADCAST)) 1243 goto out; 1244 if (connected) 1245 sk_dst_set(sk, dst_clone(&rt->dst)); 1246 } 1247 1248 if (msg->msg_flags&MSG_CONFIRM) 1249 goto do_confirm; 1250 back_from_confirm: 1251 1252 saddr = fl4->saddr; 1253 if (!ipc.addr) 1254 daddr = ipc.addr = fl4->daddr; 1255 1256 /* Lockless fast path for the non-corking case. */ 1257 if (!corkreq) { 1258 struct inet_cork cork; 1259 1260 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1261 sizeof(struct udphdr), &ipc, &rt, 1262 &cork, msg->msg_flags); 1263 err = PTR_ERR(skb); 1264 if (!IS_ERR_OR_NULL(skb)) 1265 err = udp_send_skb(skb, fl4, &cork); 1266 goto out; 1267 } 1268 1269 lock_sock(sk); 1270 if (unlikely(up->pending)) { 1271 /* The socket is already corked while preparing it. */ 1272 /* ... which is an evident application bug. --ANK */ 1273 release_sock(sk); 1274 1275 net_dbg_ratelimited("socket already corked\n"); 1276 err = -EINVAL; 1277 goto out; 1278 } 1279 /* 1280 * Now cork the socket to pend data. 1281 */ 1282 fl4 = &inet->cork.fl.u.ip4; 1283 fl4->daddr = daddr; 1284 fl4->saddr = saddr; 1285 fl4->fl4_dport = dport; 1286 fl4->fl4_sport = inet->inet_sport; 1287 up->pending = AF_INET; 1288 1289 do_append_data: 1290 up->len += ulen; 1291 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1292 sizeof(struct udphdr), &ipc, &rt, 1293 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1294 if (err) 1295 udp_flush_pending_frames(sk); 1296 else if (!corkreq) 1297 err = udp_push_pending_frames(sk); 1298 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1299 up->pending = 0; 1300 release_sock(sk); 1301 1302 out: 1303 ip_rt_put(rt); 1304 out_free: 1305 if (free) 1306 kfree(ipc.opt); 1307 if (!err) 1308 return len; 1309 /* 1310 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1311 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1312 * we don't have a good statistic (IpOutDiscards but it can be too many 1313 * things). We could add another new stat but at least for now that 1314 * seems like overkill. 1315 */ 1316 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1317 UDP_INC_STATS(sock_net(sk), 1318 UDP_MIB_SNDBUFERRORS, is_udplite); 1319 } 1320 return err; 1321 1322 do_confirm: 1323 if (msg->msg_flags & MSG_PROBE) 1324 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1325 if (!(msg->msg_flags&MSG_PROBE) || len) 1326 goto back_from_confirm; 1327 err = 0; 1328 goto out; 1329 } 1330 EXPORT_SYMBOL(udp_sendmsg); 1331 1332 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1333 size_t size, int flags) 1334 { 1335 struct inet_sock *inet = inet_sk(sk); 1336 struct udp_sock *up = udp_sk(sk); 1337 int ret; 1338 1339 if (flags & MSG_SENDPAGE_NOTLAST) 1340 flags |= MSG_MORE; 1341 1342 if (!up->pending) { 1343 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1344 1345 /* Call udp_sendmsg to specify destination address which 1346 * sendpage interface can't pass. 1347 * This will succeed only when the socket is connected. 1348 */ 1349 ret = udp_sendmsg(sk, &msg, 0); 1350 if (ret < 0) 1351 return ret; 1352 } 1353 1354 lock_sock(sk); 1355 1356 if (unlikely(!up->pending)) { 1357 release_sock(sk); 1358 1359 net_dbg_ratelimited("cork failed\n"); 1360 return -EINVAL; 1361 } 1362 1363 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1364 page, offset, size, flags); 1365 if (ret == -EOPNOTSUPP) { 1366 release_sock(sk); 1367 return sock_no_sendpage(sk->sk_socket, page, offset, 1368 size, flags); 1369 } 1370 if (ret < 0) { 1371 udp_flush_pending_frames(sk); 1372 goto out; 1373 } 1374 1375 up->len += size; 1376 if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE))) 1377 ret = udp_push_pending_frames(sk); 1378 if (!ret) 1379 ret = size; 1380 out: 1381 release_sock(sk); 1382 return ret; 1383 } 1384 1385 #define UDP_SKB_IS_STATELESS 0x80000000 1386 1387 /* all head states (dst, sk, nf conntrack) except skb extensions are 1388 * cleared by udp_rcv(). 1389 * 1390 * We need to preserve secpath, if present, to eventually process 1391 * IP_CMSG_PASSSEC at recvmsg() time. 1392 * 1393 * Other extensions can be cleared. 1394 */ 1395 static bool udp_try_make_stateless(struct sk_buff *skb) 1396 { 1397 if (!skb_has_extensions(skb)) 1398 return true; 1399 1400 if (!secpath_exists(skb)) { 1401 skb_ext_reset(skb); 1402 return true; 1403 } 1404 1405 return false; 1406 } 1407 1408 static void udp_set_dev_scratch(struct sk_buff *skb) 1409 { 1410 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1411 1412 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1413 scratch->_tsize_state = skb->truesize; 1414 #if BITS_PER_LONG == 64 1415 scratch->len = skb->len; 1416 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1417 scratch->is_linear = !skb_is_nonlinear(skb); 1418 #endif 1419 if (udp_try_make_stateless(skb)) 1420 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1421 } 1422 1423 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1424 { 1425 /* We come here after udp_lib_checksum_complete() returned 0. 1426 * This means that __skb_checksum_complete() might have 1427 * set skb->csum_valid to 1. 1428 * On 64bit platforms, we can set csum_unnecessary 1429 * to true, but only if the skb is not shared. 1430 */ 1431 #if BITS_PER_LONG == 64 1432 if (!skb_shared(skb)) 1433 udp_skb_scratch(skb)->csum_unnecessary = true; 1434 #endif 1435 } 1436 1437 static int udp_skb_truesize(struct sk_buff *skb) 1438 { 1439 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1440 } 1441 1442 static bool udp_skb_has_head_state(struct sk_buff *skb) 1443 { 1444 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1445 } 1446 1447 /* fully reclaim rmem/fwd memory allocated for skb */ 1448 static void udp_rmem_release(struct sock *sk, int size, int partial, 1449 bool rx_queue_lock_held) 1450 { 1451 struct udp_sock *up = udp_sk(sk); 1452 struct sk_buff_head *sk_queue; 1453 int amt; 1454 1455 if (likely(partial)) { 1456 up->forward_deficit += size; 1457 size = up->forward_deficit; 1458 if (size < READ_ONCE(up->forward_threshold) && 1459 !skb_queue_empty(&up->reader_queue)) 1460 return; 1461 } else { 1462 size += up->forward_deficit; 1463 } 1464 up->forward_deficit = 0; 1465 1466 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1467 * if the called don't held it already 1468 */ 1469 sk_queue = &sk->sk_receive_queue; 1470 if (!rx_queue_lock_held) 1471 spin_lock(&sk_queue->lock); 1472 1473 1474 sk->sk_forward_alloc += size; 1475 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1476 sk->sk_forward_alloc -= amt; 1477 1478 if (amt) 1479 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1480 1481 atomic_sub(size, &sk->sk_rmem_alloc); 1482 1483 /* this can save us from acquiring the rx queue lock on next receive */ 1484 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1485 1486 if (!rx_queue_lock_held) 1487 spin_unlock(&sk_queue->lock); 1488 } 1489 1490 /* Note: called with reader_queue.lock held. 1491 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1492 * This avoids a cache line miss while receive_queue lock is held. 1493 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1494 */ 1495 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1496 { 1497 prefetch(&skb->data); 1498 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1499 } 1500 EXPORT_SYMBOL(udp_skb_destructor); 1501 1502 /* as above, but the caller held the rx queue lock, too */ 1503 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1504 { 1505 prefetch(&skb->data); 1506 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1507 } 1508 1509 /* Idea of busylocks is to let producers grab an extra spinlock 1510 * to relieve pressure on the receive_queue spinlock shared by consumer. 1511 * Under flood, this means that only one producer can be in line 1512 * trying to acquire the receive_queue spinlock. 1513 * These busylock can be allocated on a per cpu manner, instead of a 1514 * per socket one (that would consume a cache line per socket) 1515 */ 1516 static int udp_busylocks_log __read_mostly; 1517 static spinlock_t *udp_busylocks __read_mostly; 1518 1519 static spinlock_t *busylock_acquire(void *ptr) 1520 { 1521 spinlock_t *busy; 1522 1523 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1524 spin_lock(busy); 1525 return busy; 1526 } 1527 1528 static void busylock_release(spinlock_t *busy) 1529 { 1530 if (busy) 1531 spin_unlock(busy); 1532 } 1533 1534 static int udp_rmem_schedule(struct sock *sk, int size) 1535 { 1536 int delta; 1537 1538 delta = size - sk->sk_forward_alloc; 1539 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1540 return -ENOBUFS; 1541 1542 return 0; 1543 } 1544 1545 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1546 { 1547 struct sk_buff_head *list = &sk->sk_receive_queue; 1548 int rmem, err = -ENOMEM; 1549 spinlock_t *busy = NULL; 1550 int size; 1551 1552 /* try to avoid the costly atomic add/sub pair when the receive 1553 * queue is full; always allow at least a packet 1554 */ 1555 rmem = atomic_read(&sk->sk_rmem_alloc); 1556 if (rmem > sk->sk_rcvbuf) 1557 goto drop; 1558 1559 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1560 * having linear skbs : 1561 * - Reduce memory overhead and thus increase receive queue capacity 1562 * - Less cache line misses at copyout() time 1563 * - Less work at consume_skb() (less alien page frag freeing) 1564 */ 1565 if (rmem > (sk->sk_rcvbuf >> 1)) { 1566 skb_condense(skb); 1567 1568 busy = busylock_acquire(sk); 1569 } 1570 size = skb->truesize; 1571 udp_set_dev_scratch(skb); 1572 1573 /* we drop only if the receive buf is full and the receive 1574 * queue contains some other skb 1575 */ 1576 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1577 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1578 goto uncharge_drop; 1579 1580 spin_lock(&list->lock); 1581 err = udp_rmem_schedule(sk, size); 1582 if (err) { 1583 spin_unlock(&list->lock); 1584 goto uncharge_drop; 1585 } 1586 1587 sk->sk_forward_alloc -= size; 1588 1589 /* no need to setup a destructor, we will explicitly release the 1590 * forward allocated memory on dequeue 1591 */ 1592 sock_skb_set_dropcount(sk, skb); 1593 1594 __skb_queue_tail(list, skb); 1595 spin_unlock(&list->lock); 1596 1597 if (!sock_flag(sk, SOCK_DEAD)) 1598 sk->sk_data_ready(sk); 1599 1600 busylock_release(busy); 1601 return 0; 1602 1603 uncharge_drop: 1604 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1605 1606 drop: 1607 atomic_inc(&sk->sk_drops); 1608 busylock_release(busy); 1609 return err; 1610 } 1611 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1612 1613 void udp_destruct_common(struct sock *sk) 1614 { 1615 /* reclaim completely the forward allocated memory */ 1616 struct udp_sock *up = udp_sk(sk); 1617 unsigned int total = 0; 1618 struct sk_buff *skb; 1619 1620 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1621 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1622 total += skb->truesize; 1623 kfree_skb(skb); 1624 } 1625 udp_rmem_release(sk, total, 0, true); 1626 } 1627 EXPORT_SYMBOL_GPL(udp_destruct_common); 1628 1629 static void udp_destruct_sock(struct sock *sk) 1630 { 1631 udp_destruct_common(sk); 1632 inet_sock_destruct(sk); 1633 } 1634 1635 int udp_init_sock(struct sock *sk) 1636 { 1637 udp_lib_init_sock(sk); 1638 sk->sk_destruct = udp_destruct_sock; 1639 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1640 return 0; 1641 } 1642 1643 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1644 { 1645 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1646 bool slow = lock_sock_fast(sk); 1647 1648 sk_peek_offset_bwd(sk, len); 1649 unlock_sock_fast(sk, slow); 1650 } 1651 1652 if (!skb_unref(skb)) 1653 return; 1654 1655 /* In the more common cases we cleared the head states previously, 1656 * see __udp_queue_rcv_skb(). 1657 */ 1658 if (unlikely(udp_skb_has_head_state(skb))) 1659 skb_release_head_state(skb); 1660 __consume_stateless_skb(skb); 1661 } 1662 EXPORT_SYMBOL_GPL(skb_consume_udp); 1663 1664 static struct sk_buff *__first_packet_length(struct sock *sk, 1665 struct sk_buff_head *rcvq, 1666 int *total) 1667 { 1668 struct sk_buff *skb; 1669 1670 while ((skb = skb_peek(rcvq)) != NULL) { 1671 if (udp_lib_checksum_complete(skb)) { 1672 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1673 IS_UDPLITE(sk)); 1674 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1675 IS_UDPLITE(sk)); 1676 atomic_inc(&sk->sk_drops); 1677 __skb_unlink(skb, rcvq); 1678 *total += skb->truesize; 1679 kfree_skb(skb); 1680 } else { 1681 udp_skb_csum_unnecessary_set(skb); 1682 break; 1683 } 1684 } 1685 return skb; 1686 } 1687 1688 /** 1689 * first_packet_length - return length of first packet in receive queue 1690 * @sk: socket 1691 * 1692 * Drops all bad checksum frames, until a valid one is found. 1693 * Returns the length of found skb, or -1 if none is found. 1694 */ 1695 static int first_packet_length(struct sock *sk) 1696 { 1697 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1698 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1699 struct sk_buff *skb; 1700 int total = 0; 1701 int res; 1702 1703 spin_lock_bh(&rcvq->lock); 1704 skb = __first_packet_length(sk, rcvq, &total); 1705 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1706 spin_lock(&sk_queue->lock); 1707 skb_queue_splice_tail_init(sk_queue, rcvq); 1708 spin_unlock(&sk_queue->lock); 1709 1710 skb = __first_packet_length(sk, rcvq, &total); 1711 } 1712 res = skb ? skb->len : -1; 1713 if (total) 1714 udp_rmem_release(sk, total, 1, false); 1715 spin_unlock_bh(&rcvq->lock); 1716 return res; 1717 } 1718 1719 /* 1720 * IOCTL requests applicable to the UDP protocol 1721 */ 1722 1723 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1724 { 1725 switch (cmd) { 1726 case SIOCOUTQ: 1727 { 1728 int amount = sk_wmem_alloc_get(sk); 1729 1730 return put_user(amount, (int __user *)arg); 1731 } 1732 1733 case SIOCINQ: 1734 { 1735 int amount = max_t(int, 0, first_packet_length(sk)); 1736 1737 return put_user(amount, (int __user *)arg); 1738 } 1739 1740 default: 1741 return -ENOIOCTLCMD; 1742 } 1743 1744 return 0; 1745 } 1746 EXPORT_SYMBOL(udp_ioctl); 1747 1748 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1749 int *off, int *err) 1750 { 1751 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1752 struct sk_buff_head *queue; 1753 struct sk_buff *last; 1754 long timeo; 1755 int error; 1756 1757 queue = &udp_sk(sk)->reader_queue; 1758 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1759 do { 1760 struct sk_buff *skb; 1761 1762 error = sock_error(sk); 1763 if (error) 1764 break; 1765 1766 error = -EAGAIN; 1767 do { 1768 spin_lock_bh(&queue->lock); 1769 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1770 err, &last); 1771 if (skb) { 1772 if (!(flags & MSG_PEEK)) 1773 udp_skb_destructor(sk, skb); 1774 spin_unlock_bh(&queue->lock); 1775 return skb; 1776 } 1777 1778 if (skb_queue_empty_lockless(sk_queue)) { 1779 spin_unlock_bh(&queue->lock); 1780 goto busy_check; 1781 } 1782 1783 /* refill the reader queue and walk it again 1784 * keep both queues locked to avoid re-acquiring 1785 * the sk_receive_queue lock if fwd memory scheduling 1786 * is needed. 1787 */ 1788 spin_lock(&sk_queue->lock); 1789 skb_queue_splice_tail_init(sk_queue, queue); 1790 1791 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1792 err, &last); 1793 if (skb && !(flags & MSG_PEEK)) 1794 udp_skb_dtor_locked(sk, skb); 1795 spin_unlock(&sk_queue->lock); 1796 spin_unlock_bh(&queue->lock); 1797 if (skb) 1798 return skb; 1799 1800 busy_check: 1801 if (!sk_can_busy_loop(sk)) 1802 break; 1803 1804 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1805 } while (!skb_queue_empty_lockless(sk_queue)); 1806 1807 /* sk_queue is empty, reader_queue may contain peeked packets */ 1808 } while (timeo && 1809 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1810 &error, &timeo, 1811 (struct sk_buff *)sk_queue)); 1812 1813 *err = error; 1814 return NULL; 1815 } 1816 EXPORT_SYMBOL(__skb_recv_udp); 1817 1818 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1819 { 1820 struct sk_buff *skb; 1821 int err; 1822 1823 try_again: 1824 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1825 if (!skb) 1826 return err; 1827 1828 if (udp_lib_checksum_complete(skb)) { 1829 int is_udplite = IS_UDPLITE(sk); 1830 struct net *net = sock_net(sk); 1831 1832 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1833 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1834 atomic_inc(&sk->sk_drops); 1835 kfree_skb(skb); 1836 goto try_again; 1837 } 1838 1839 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1840 return recv_actor(sk, skb); 1841 } 1842 EXPORT_SYMBOL(udp_read_skb); 1843 1844 /* 1845 * This should be easy, if there is something there we 1846 * return it, otherwise we block. 1847 */ 1848 1849 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1850 int *addr_len) 1851 { 1852 struct inet_sock *inet = inet_sk(sk); 1853 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1854 struct sk_buff *skb; 1855 unsigned int ulen, copied; 1856 int off, err, peeking = flags & MSG_PEEK; 1857 int is_udplite = IS_UDPLITE(sk); 1858 bool checksum_valid = false; 1859 1860 if (flags & MSG_ERRQUEUE) 1861 return ip_recv_error(sk, msg, len, addr_len); 1862 1863 try_again: 1864 off = sk_peek_offset(sk, flags); 1865 skb = __skb_recv_udp(sk, flags, &off, &err); 1866 if (!skb) 1867 return err; 1868 1869 ulen = udp_skb_len(skb); 1870 copied = len; 1871 if (copied > ulen - off) 1872 copied = ulen - off; 1873 else if (copied < ulen) 1874 msg->msg_flags |= MSG_TRUNC; 1875 1876 /* 1877 * If checksum is needed at all, try to do it while copying the 1878 * data. If the data is truncated, or if we only want a partial 1879 * coverage checksum (UDP-Lite), do it before the copy. 1880 */ 1881 1882 if (copied < ulen || peeking || 1883 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1884 checksum_valid = udp_skb_csum_unnecessary(skb) || 1885 !__udp_lib_checksum_complete(skb); 1886 if (!checksum_valid) 1887 goto csum_copy_err; 1888 } 1889 1890 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1891 if (udp_skb_is_linear(skb)) 1892 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1893 else 1894 err = skb_copy_datagram_msg(skb, off, msg, copied); 1895 } else { 1896 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1897 1898 if (err == -EINVAL) 1899 goto csum_copy_err; 1900 } 1901 1902 if (unlikely(err)) { 1903 if (!peeking) { 1904 atomic_inc(&sk->sk_drops); 1905 UDP_INC_STATS(sock_net(sk), 1906 UDP_MIB_INERRORS, is_udplite); 1907 } 1908 kfree_skb(skb); 1909 return err; 1910 } 1911 1912 if (!peeking) 1913 UDP_INC_STATS(sock_net(sk), 1914 UDP_MIB_INDATAGRAMS, is_udplite); 1915 1916 sock_recv_cmsgs(msg, sk, skb); 1917 1918 /* Copy the address. */ 1919 if (sin) { 1920 sin->sin_family = AF_INET; 1921 sin->sin_port = udp_hdr(skb)->source; 1922 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1923 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1924 *addr_len = sizeof(*sin); 1925 1926 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1927 (struct sockaddr *)sin); 1928 } 1929 1930 if (udp_sk(sk)->gro_enabled) 1931 udp_cmsg_recv(msg, sk, skb); 1932 1933 if (inet->cmsg_flags) 1934 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1935 1936 err = copied; 1937 if (flags & MSG_TRUNC) 1938 err = ulen; 1939 1940 skb_consume_udp(sk, skb, peeking ? -err : err); 1941 return err; 1942 1943 csum_copy_err: 1944 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1945 udp_skb_destructor)) { 1946 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1947 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1948 } 1949 kfree_skb(skb); 1950 1951 /* starting over for a new packet, but check if we need to yield */ 1952 cond_resched(); 1953 msg->msg_flags &= ~MSG_TRUNC; 1954 goto try_again; 1955 } 1956 1957 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1958 { 1959 /* This check is replicated from __ip4_datagram_connect() and 1960 * intended to prevent BPF program called below from accessing bytes 1961 * that are out of the bound specified by user in addr_len. 1962 */ 1963 if (addr_len < sizeof(struct sockaddr_in)) 1964 return -EINVAL; 1965 1966 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1967 } 1968 EXPORT_SYMBOL(udp_pre_connect); 1969 1970 int __udp_disconnect(struct sock *sk, int flags) 1971 { 1972 struct inet_sock *inet = inet_sk(sk); 1973 /* 1974 * 1003.1g - break association. 1975 */ 1976 1977 sk->sk_state = TCP_CLOSE; 1978 inet->inet_daddr = 0; 1979 inet->inet_dport = 0; 1980 sock_rps_reset_rxhash(sk); 1981 sk->sk_bound_dev_if = 0; 1982 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1983 inet_reset_saddr(sk); 1984 if (sk->sk_prot->rehash && 1985 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1986 sk->sk_prot->rehash(sk); 1987 } 1988 1989 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1990 sk->sk_prot->unhash(sk); 1991 inet->inet_sport = 0; 1992 } 1993 sk_dst_reset(sk); 1994 return 0; 1995 } 1996 EXPORT_SYMBOL(__udp_disconnect); 1997 1998 int udp_disconnect(struct sock *sk, int flags) 1999 { 2000 lock_sock(sk); 2001 __udp_disconnect(sk, flags); 2002 release_sock(sk); 2003 return 0; 2004 } 2005 EXPORT_SYMBOL(udp_disconnect); 2006 2007 void udp_lib_unhash(struct sock *sk) 2008 { 2009 if (sk_hashed(sk)) { 2010 struct udp_table *udptable = udp_get_table_prot(sk); 2011 struct udp_hslot *hslot, *hslot2; 2012 2013 hslot = udp_hashslot(udptable, sock_net(sk), 2014 udp_sk(sk)->udp_port_hash); 2015 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2016 2017 spin_lock_bh(&hslot->lock); 2018 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2019 reuseport_detach_sock(sk); 2020 if (sk_del_node_init_rcu(sk)) { 2021 hslot->count--; 2022 inet_sk(sk)->inet_num = 0; 2023 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2024 2025 spin_lock(&hslot2->lock); 2026 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2027 hslot2->count--; 2028 spin_unlock(&hslot2->lock); 2029 } 2030 spin_unlock_bh(&hslot->lock); 2031 } 2032 } 2033 EXPORT_SYMBOL(udp_lib_unhash); 2034 2035 /* 2036 * inet_rcv_saddr was changed, we must rehash secondary hash 2037 */ 2038 void udp_lib_rehash(struct sock *sk, u16 newhash) 2039 { 2040 if (sk_hashed(sk)) { 2041 struct udp_table *udptable = udp_get_table_prot(sk); 2042 struct udp_hslot *hslot, *hslot2, *nhslot2; 2043 2044 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2045 nhslot2 = udp_hashslot2(udptable, newhash); 2046 udp_sk(sk)->udp_portaddr_hash = newhash; 2047 2048 if (hslot2 != nhslot2 || 2049 rcu_access_pointer(sk->sk_reuseport_cb)) { 2050 hslot = udp_hashslot(udptable, sock_net(sk), 2051 udp_sk(sk)->udp_port_hash); 2052 /* we must lock primary chain too */ 2053 spin_lock_bh(&hslot->lock); 2054 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2055 reuseport_detach_sock(sk); 2056 2057 if (hslot2 != nhslot2) { 2058 spin_lock(&hslot2->lock); 2059 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2060 hslot2->count--; 2061 spin_unlock(&hslot2->lock); 2062 2063 spin_lock(&nhslot2->lock); 2064 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2065 &nhslot2->head); 2066 nhslot2->count++; 2067 spin_unlock(&nhslot2->lock); 2068 } 2069 2070 spin_unlock_bh(&hslot->lock); 2071 } 2072 } 2073 } 2074 EXPORT_SYMBOL(udp_lib_rehash); 2075 2076 void udp_v4_rehash(struct sock *sk) 2077 { 2078 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2079 inet_sk(sk)->inet_rcv_saddr, 2080 inet_sk(sk)->inet_num); 2081 udp_lib_rehash(sk, new_hash); 2082 } 2083 2084 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2085 { 2086 int rc; 2087 2088 if (inet_sk(sk)->inet_daddr) { 2089 sock_rps_save_rxhash(sk, skb); 2090 sk_mark_napi_id(sk, skb); 2091 sk_incoming_cpu_update(sk); 2092 } else { 2093 sk_mark_napi_id_once(sk, skb); 2094 } 2095 2096 rc = __udp_enqueue_schedule_skb(sk, skb); 2097 if (rc < 0) { 2098 int is_udplite = IS_UDPLITE(sk); 2099 int drop_reason; 2100 2101 /* Note that an ENOMEM error is charged twice */ 2102 if (rc == -ENOMEM) { 2103 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2104 is_udplite); 2105 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2106 } else { 2107 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2108 is_udplite); 2109 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2110 } 2111 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2112 kfree_skb_reason(skb, drop_reason); 2113 trace_udp_fail_queue_rcv_skb(rc, sk); 2114 return -1; 2115 } 2116 2117 return 0; 2118 } 2119 2120 /* returns: 2121 * -1: error 2122 * 0: success 2123 * >0: "udp encap" protocol resubmission 2124 * 2125 * Note that in the success and error cases, the skb is assumed to 2126 * have either been requeued or freed. 2127 */ 2128 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2129 { 2130 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2131 struct udp_sock *up = udp_sk(sk); 2132 int is_udplite = IS_UDPLITE(sk); 2133 2134 /* 2135 * Charge it to the socket, dropping if the queue is full. 2136 */ 2137 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2138 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2139 goto drop; 2140 } 2141 nf_reset_ct(skb); 2142 2143 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2144 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2145 2146 /* 2147 * This is an encapsulation socket so pass the skb to 2148 * the socket's udp_encap_rcv() hook. Otherwise, just 2149 * fall through and pass this up the UDP socket. 2150 * up->encap_rcv() returns the following value: 2151 * =0 if skb was successfully passed to the encap 2152 * handler or was discarded by it. 2153 * >0 if skb should be passed on to UDP. 2154 * <0 if skb should be resubmitted as proto -N 2155 */ 2156 2157 /* if we're overly short, let UDP handle it */ 2158 encap_rcv = READ_ONCE(up->encap_rcv); 2159 if (encap_rcv) { 2160 int ret; 2161 2162 /* Verify checksum before giving to encap */ 2163 if (udp_lib_checksum_complete(skb)) 2164 goto csum_error; 2165 2166 ret = encap_rcv(sk, skb); 2167 if (ret <= 0) { 2168 __UDP_INC_STATS(sock_net(sk), 2169 UDP_MIB_INDATAGRAMS, 2170 is_udplite); 2171 return -ret; 2172 } 2173 } 2174 2175 /* FALLTHROUGH -- it's a UDP Packet */ 2176 } 2177 2178 /* 2179 * UDP-Lite specific tests, ignored on UDP sockets 2180 */ 2181 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2182 2183 /* 2184 * MIB statistics other than incrementing the error count are 2185 * disabled for the following two types of errors: these depend 2186 * on the application settings, not on the functioning of the 2187 * protocol stack as such. 2188 * 2189 * RFC 3828 here recommends (sec 3.3): "There should also be a 2190 * way ... to ... at least let the receiving application block 2191 * delivery of packets with coverage values less than a value 2192 * provided by the application." 2193 */ 2194 if (up->pcrlen == 0) { /* full coverage was set */ 2195 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2196 UDP_SKB_CB(skb)->cscov, skb->len); 2197 goto drop; 2198 } 2199 /* The next case involves violating the min. coverage requested 2200 * by the receiver. This is subtle: if receiver wants x and x is 2201 * greater than the buffersize/MTU then receiver will complain 2202 * that it wants x while sender emits packets of smaller size y. 2203 * Therefore the above ...()->partial_cov statement is essential. 2204 */ 2205 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2206 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2207 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2208 goto drop; 2209 } 2210 } 2211 2212 prefetch(&sk->sk_rmem_alloc); 2213 if (rcu_access_pointer(sk->sk_filter) && 2214 udp_lib_checksum_complete(skb)) 2215 goto csum_error; 2216 2217 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2218 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2219 goto drop; 2220 } 2221 2222 udp_csum_pull_header(skb); 2223 2224 ipv4_pktinfo_prepare(sk, skb); 2225 return __udp_queue_rcv_skb(sk, skb); 2226 2227 csum_error: 2228 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2229 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2230 drop: 2231 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2232 atomic_inc(&sk->sk_drops); 2233 kfree_skb_reason(skb, drop_reason); 2234 return -1; 2235 } 2236 2237 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2238 { 2239 struct sk_buff *next, *segs; 2240 int ret; 2241 2242 if (likely(!udp_unexpected_gso(sk, skb))) 2243 return udp_queue_rcv_one_skb(sk, skb); 2244 2245 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2246 __skb_push(skb, -skb_mac_offset(skb)); 2247 segs = udp_rcv_segment(sk, skb, true); 2248 skb_list_walk_safe(segs, skb, next) { 2249 __skb_pull(skb, skb_transport_offset(skb)); 2250 2251 udp_post_segment_fix_csum(skb); 2252 ret = udp_queue_rcv_one_skb(sk, skb); 2253 if (ret > 0) 2254 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2255 } 2256 return 0; 2257 } 2258 2259 /* For TCP sockets, sk_rx_dst is protected by socket lock 2260 * For UDP, we use xchg() to guard against concurrent changes. 2261 */ 2262 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2263 { 2264 struct dst_entry *old; 2265 2266 if (dst_hold_safe(dst)) { 2267 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst); 2268 dst_release(old); 2269 return old != dst; 2270 } 2271 return false; 2272 } 2273 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2274 2275 /* 2276 * Multicasts and broadcasts go to each listener. 2277 * 2278 * Note: called only from the BH handler context. 2279 */ 2280 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2281 struct udphdr *uh, 2282 __be32 saddr, __be32 daddr, 2283 struct udp_table *udptable, 2284 int proto) 2285 { 2286 struct sock *sk, *first = NULL; 2287 unsigned short hnum = ntohs(uh->dest); 2288 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2289 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2290 unsigned int offset = offsetof(typeof(*sk), sk_node); 2291 int dif = skb->dev->ifindex; 2292 int sdif = inet_sdif(skb); 2293 struct hlist_node *node; 2294 struct sk_buff *nskb; 2295 2296 if (use_hash2) { 2297 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2298 udptable->mask; 2299 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2300 start_lookup: 2301 hslot = &udptable->hash2[hash2]; 2302 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2303 } 2304 2305 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2306 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2307 uh->source, saddr, dif, sdif, hnum)) 2308 continue; 2309 2310 if (!first) { 2311 first = sk; 2312 continue; 2313 } 2314 nskb = skb_clone(skb, GFP_ATOMIC); 2315 2316 if (unlikely(!nskb)) { 2317 atomic_inc(&sk->sk_drops); 2318 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2319 IS_UDPLITE(sk)); 2320 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2321 IS_UDPLITE(sk)); 2322 continue; 2323 } 2324 if (udp_queue_rcv_skb(sk, nskb) > 0) 2325 consume_skb(nskb); 2326 } 2327 2328 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2329 if (use_hash2 && hash2 != hash2_any) { 2330 hash2 = hash2_any; 2331 goto start_lookup; 2332 } 2333 2334 if (first) { 2335 if (udp_queue_rcv_skb(first, skb) > 0) 2336 consume_skb(skb); 2337 } else { 2338 kfree_skb(skb); 2339 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2340 proto == IPPROTO_UDPLITE); 2341 } 2342 return 0; 2343 } 2344 2345 /* Initialize UDP checksum. If exited with zero value (success), 2346 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2347 * Otherwise, csum completion requires checksumming packet body, 2348 * including udp header and folding it to skb->csum. 2349 */ 2350 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2351 int proto) 2352 { 2353 int err; 2354 2355 UDP_SKB_CB(skb)->partial_cov = 0; 2356 UDP_SKB_CB(skb)->cscov = skb->len; 2357 2358 if (proto == IPPROTO_UDPLITE) { 2359 err = udplite_checksum_init(skb, uh); 2360 if (err) 2361 return err; 2362 2363 if (UDP_SKB_CB(skb)->partial_cov) { 2364 skb->csum = inet_compute_pseudo(skb, proto); 2365 return 0; 2366 } 2367 } 2368 2369 /* Note, we are only interested in != 0 or == 0, thus the 2370 * force to int. 2371 */ 2372 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2373 inet_compute_pseudo); 2374 if (err) 2375 return err; 2376 2377 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2378 /* If SW calculated the value, we know it's bad */ 2379 if (skb->csum_complete_sw) 2380 return 1; 2381 2382 /* HW says the value is bad. Let's validate that. 2383 * skb->csum is no longer the full packet checksum, 2384 * so don't treat it as such. 2385 */ 2386 skb_checksum_complete_unset(skb); 2387 } 2388 2389 return 0; 2390 } 2391 2392 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2393 * return code conversion for ip layer consumption 2394 */ 2395 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2396 struct udphdr *uh) 2397 { 2398 int ret; 2399 2400 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2401 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2402 2403 ret = udp_queue_rcv_skb(sk, skb); 2404 2405 /* a return value > 0 means to resubmit the input, but 2406 * it wants the return to be -protocol, or 0 2407 */ 2408 if (ret > 0) 2409 return -ret; 2410 return 0; 2411 } 2412 2413 /* 2414 * All we need to do is get the socket, and then do a checksum. 2415 */ 2416 2417 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2418 int proto) 2419 { 2420 struct sock *sk; 2421 struct udphdr *uh; 2422 unsigned short ulen; 2423 struct rtable *rt = skb_rtable(skb); 2424 __be32 saddr, daddr; 2425 struct net *net = dev_net(skb->dev); 2426 bool refcounted; 2427 int drop_reason; 2428 2429 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2430 2431 /* 2432 * Validate the packet. 2433 */ 2434 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2435 goto drop; /* No space for header. */ 2436 2437 uh = udp_hdr(skb); 2438 ulen = ntohs(uh->len); 2439 saddr = ip_hdr(skb)->saddr; 2440 daddr = ip_hdr(skb)->daddr; 2441 2442 if (ulen > skb->len) 2443 goto short_packet; 2444 2445 if (proto == IPPROTO_UDP) { 2446 /* UDP validates ulen. */ 2447 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2448 goto short_packet; 2449 uh = udp_hdr(skb); 2450 } 2451 2452 if (udp4_csum_init(skb, uh, proto)) 2453 goto csum_error; 2454 2455 sk = skb_steal_sock(skb, &refcounted); 2456 if (sk) { 2457 struct dst_entry *dst = skb_dst(skb); 2458 int ret; 2459 2460 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2461 udp_sk_rx_dst_set(sk, dst); 2462 2463 ret = udp_unicast_rcv_skb(sk, skb, uh); 2464 if (refcounted) 2465 sock_put(sk); 2466 return ret; 2467 } 2468 2469 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2470 return __udp4_lib_mcast_deliver(net, skb, uh, 2471 saddr, daddr, udptable, proto); 2472 2473 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2474 if (sk) 2475 return udp_unicast_rcv_skb(sk, skb, uh); 2476 2477 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2478 goto drop; 2479 nf_reset_ct(skb); 2480 2481 /* No socket. Drop packet silently, if checksum is wrong */ 2482 if (udp_lib_checksum_complete(skb)) 2483 goto csum_error; 2484 2485 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2486 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2487 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2488 2489 /* 2490 * Hmm. We got an UDP packet to a port to which we 2491 * don't wanna listen. Ignore it. 2492 */ 2493 kfree_skb_reason(skb, drop_reason); 2494 return 0; 2495 2496 short_packet: 2497 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2498 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2499 proto == IPPROTO_UDPLITE ? "Lite" : "", 2500 &saddr, ntohs(uh->source), 2501 ulen, skb->len, 2502 &daddr, ntohs(uh->dest)); 2503 goto drop; 2504 2505 csum_error: 2506 /* 2507 * RFC1122: OK. Discards the bad packet silently (as far as 2508 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2509 */ 2510 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2511 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2512 proto == IPPROTO_UDPLITE ? "Lite" : "", 2513 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2514 ulen); 2515 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2516 drop: 2517 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2518 kfree_skb_reason(skb, drop_reason); 2519 return 0; 2520 } 2521 2522 /* We can only early demux multicast if there is a single matching socket. 2523 * If more than one socket found returns NULL 2524 */ 2525 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2526 __be16 loc_port, __be32 loc_addr, 2527 __be16 rmt_port, __be32 rmt_addr, 2528 int dif, int sdif) 2529 { 2530 struct udp_table *udptable = net->ipv4.udp_table; 2531 unsigned short hnum = ntohs(loc_port); 2532 struct sock *sk, *result; 2533 struct udp_hslot *hslot; 2534 unsigned int slot; 2535 2536 slot = udp_hashfn(net, hnum, udptable->mask); 2537 hslot = &udptable->hash[slot]; 2538 2539 /* Do not bother scanning a too big list */ 2540 if (hslot->count > 10) 2541 return NULL; 2542 2543 result = NULL; 2544 sk_for_each_rcu(sk, &hslot->head) { 2545 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2546 rmt_port, rmt_addr, dif, sdif, hnum)) { 2547 if (result) 2548 return NULL; 2549 result = sk; 2550 } 2551 } 2552 2553 return result; 2554 } 2555 2556 /* For unicast we should only early demux connected sockets or we can 2557 * break forwarding setups. The chains here can be long so only check 2558 * if the first socket is an exact match and if not move on. 2559 */ 2560 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2561 __be16 loc_port, __be32 loc_addr, 2562 __be16 rmt_port, __be32 rmt_addr, 2563 int dif, int sdif) 2564 { 2565 struct udp_table *udptable = net->ipv4.udp_table; 2566 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2567 unsigned short hnum = ntohs(loc_port); 2568 unsigned int hash2, slot2; 2569 struct udp_hslot *hslot2; 2570 __portpair ports; 2571 struct sock *sk; 2572 2573 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2574 slot2 = hash2 & udptable->mask; 2575 hslot2 = &udptable->hash2[slot2]; 2576 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2577 2578 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2579 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2580 return sk; 2581 /* Only check first socket in chain */ 2582 break; 2583 } 2584 return NULL; 2585 } 2586 2587 int udp_v4_early_demux(struct sk_buff *skb) 2588 { 2589 struct net *net = dev_net(skb->dev); 2590 struct in_device *in_dev = NULL; 2591 const struct iphdr *iph; 2592 const struct udphdr *uh; 2593 struct sock *sk = NULL; 2594 struct dst_entry *dst; 2595 int dif = skb->dev->ifindex; 2596 int sdif = inet_sdif(skb); 2597 int ours; 2598 2599 /* validate the packet */ 2600 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2601 return 0; 2602 2603 iph = ip_hdr(skb); 2604 uh = udp_hdr(skb); 2605 2606 if (skb->pkt_type == PACKET_MULTICAST) { 2607 in_dev = __in_dev_get_rcu(skb->dev); 2608 2609 if (!in_dev) 2610 return 0; 2611 2612 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2613 iph->protocol); 2614 if (!ours) 2615 return 0; 2616 2617 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2618 uh->source, iph->saddr, 2619 dif, sdif); 2620 } else if (skb->pkt_type == PACKET_HOST) { 2621 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2622 uh->source, iph->saddr, dif, sdif); 2623 } 2624 2625 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2626 return 0; 2627 2628 skb->sk = sk; 2629 skb->destructor = sock_efree; 2630 dst = rcu_dereference(sk->sk_rx_dst); 2631 2632 if (dst) 2633 dst = dst_check(dst, 0); 2634 if (dst) { 2635 u32 itag = 0; 2636 2637 /* set noref for now. 2638 * any place which wants to hold dst has to call 2639 * dst_hold_safe() 2640 */ 2641 skb_dst_set_noref(skb, dst); 2642 2643 /* for unconnected multicast sockets we need to validate 2644 * the source on each packet 2645 */ 2646 if (!inet_sk(sk)->inet_daddr && in_dev) 2647 return ip_mc_validate_source(skb, iph->daddr, 2648 iph->saddr, 2649 iph->tos & IPTOS_RT_MASK, 2650 skb->dev, in_dev, &itag); 2651 } 2652 return 0; 2653 } 2654 2655 int udp_rcv(struct sk_buff *skb) 2656 { 2657 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2658 } 2659 2660 void udp_destroy_sock(struct sock *sk) 2661 { 2662 struct udp_sock *up = udp_sk(sk); 2663 bool slow = lock_sock_fast(sk); 2664 2665 /* protects from races with udp_abort() */ 2666 sock_set_flag(sk, SOCK_DEAD); 2667 udp_flush_pending_frames(sk); 2668 unlock_sock_fast(sk, slow); 2669 if (static_branch_unlikely(&udp_encap_needed_key)) { 2670 if (up->encap_type) { 2671 void (*encap_destroy)(struct sock *sk); 2672 encap_destroy = READ_ONCE(up->encap_destroy); 2673 if (encap_destroy) 2674 encap_destroy(sk); 2675 } 2676 if (up->encap_enabled) 2677 static_branch_dec(&udp_encap_needed_key); 2678 } 2679 } 2680 2681 /* 2682 * Socket option code for UDP 2683 */ 2684 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2685 sockptr_t optval, unsigned int optlen, 2686 int (*push_pending_frames)(struct sock *)) 2687 { 2688 struct udp_sock *up = udp_sk(sk); 2689 int val, valbool; 2690 int err = 0; 2691 int is_udplite = IS_UDPLITE(sk); 2692 2693 if (level == SOL_SOCKET) { 2694 err = sk_setsockopt(sk, level, optname, optval, optlen); 2695 2696 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2697 sockopt_lock_sock(sk); 2698 /* paired with READ_ONCE in udp_rmem_release() */ 2699 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2700 sockopt_release_sock(sk); 2701 } 2702 return err; 2703 } 2704 2705 if (optlen < sizeof(int)) 2706 return -EINVAL; 2707 2708 if (copy_from_sockptr(&val, optval, sizeof(val))) 2709 return -EFAULT; 2710 2711 valbool = val ? 1 : 0; 2712 2713 switch (optname) { 2714 case UDP_CORK: 2715 if (val != 0) { 2716 WRITE_ONCE(up->corkflag, 1); 2717 } else { 2718 WRITE_ONCE(up->corkflag, 0); 2719 lock_sock(sk); 2720 push_pending_frames(sk); 2721 release_sock(sk); 2722 } 2723 break; 2724 2725 case UDP_ENCAP: 2726 switch (val) { 2727 case 0: 2728 #ifdef CONFIG_XFRM 2729 case UDP_ENCAP_ESPINUDP: 2730 case UDP_ENCAP_ESPINUDP_NON_IKE: 2731 #if IS_ENABLED(CONFIG_IPV6) 2732 if (sk->sk_family == AF_INET6) 2733 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv; 2734 else 2735 #endif 2736 up->encap_rcv = xfrm4_udp_encap_rcv; 2737 #endif 2738 fallthrough; 2739 case UDP_ENCAP_L2TPINUDP: 2740 up->encap_type = val; 2741 lock_sock(sk); 2742 udp_tunnel_encap_enable(sk->sk_socket); 2743 release_sock(sk); 2744 break; 2745 default: 2746 err = -ENOPROTOOPT; 2747 break; 2748 } 2749 break; 2750 2751 case UDP_NO_CHECK6_TX: 2752 up->no_check6_tx = valbool; 2753 break; 2754 2755 case UDP_NO_CHECK6_RX: 2756 up->no_check6_rx = valbool; 2757 break; 2758 2759 case UDP_SEGMENT: 2760 if (val < 0 || val > USHRT_MAX) 2761 return -EINVAL; 2762 WRITE_ONCE(up->gso_size, val); 2763 break; 2764 2765 case UDP_GRO: 2766 lock_sock(sk); 2767 2768 /* when enabling GRO, accept the related GSO packet type */ 2769 if (valbool) 2770 udp_tunnel_encap_enable(sk->sk_socket); 2771 up->gro_enabled = valbool; 2772 up->accept_udp_l4 = valbool; 2773 release_sock(sk); 2774 break; 2775 2776 /* 2777 * UDP-Lite's partial checksum coverage (RFC 3828). 2778 */ 2779 /* The sender sets actual checksum coverage length via this option. 2780 * The case coverage > packet length is handled by send module. */ 2781 case UDPLITE_SEND_CSCOV: 2782 if (!is_udplite) /* Disable the option on UDP sockets */ 2783 return -ENOPROTOOPT; 2784 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2785 val = 8; 2786 else if (val > USHRT_MAX) 2787 val = USHRT_MAX; 2788 up->pcslen = val; 2789 up->pcflag |= UDPLITE_SEND_CC; 2790 break; 2791 2792 /* The receiver specifies a minimum checksum coverage value. To make 2793 * sense, this should be set to at least 8 (as done below). If zero is 2794 * used, this again means full checksum coverage. */ 2795 case UDPLITE_RECV_CSCOV: 2796 if (!is_udplite) /* Disable the option on UDP sockets */ 2797 return -ENOPROTOOPT; 2798 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2799 val = 8; 2800 else if (val > USHRT_MAX) 2801 val = USHRT_MAX; 2802 up->pcrlen = val; 2803 up->pcflag |= UDPLITE_RECV_CC; 2804 break; 2805 2806 default: 2807 err = -ENOPROTOOPT; 2808 break; 2809 } 2810 2811 return err; 2812 } 2813 EXPORT_SYMBOL(udp_lib_setsockopt); 2814 2815 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2816 unsigned int optlen) 2817 { 2818 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2819 return udp_lib_setsockopt(sk, level, optname, 2820 optval, optlen, 2821 udp_push_pending_frames); 2822 return ip_setsockopt(sk, level, optname, optval, optlen); 2823 } 2824 2825 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2826 char __user *optval, int __user *optlen) 2827 { 2828 struct udp_sock *up = udp_sk(sk); 2829 int val, len; 2830 2831 if (get_user(len, optlen)) 2832 return -EFAULT; 2833 2834 len = min_t(unsigned int, len, sizeof(int)); 2835 2836 if (len < 0) 2837 return -EINVAL; 2838 2839 switch (optname) { 2840 case UDP_CORK: 2841 val = READ_ONCE(up->corkflag); 2842 break; 2843 2844 case UDP_ENCAP: 2845 val = up->encap_type; 2846 break; 2847 2848 case UDP_NO_CHECK6_TX: 2849 val = up->no_check6_tx; 2850 break; 2851 2852 case UDP_NO_CHECK6_RX: 2853 val = up->no_check6_rx; 2854 break; 2855 2856 case UDP_SEGMENT: 2857 val = READ_ONCE(up->gso_size); 2858 break; 2859 2860 case UDP_GRO: 2861 val = up->gro_enabled; 2862 break; 2863 2864 /* The following two cannot be changed on UDP sockets, the return is 2865 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2866 case UDPLITE_SEND_CSCOV: 2867 val = up->pcslen; 2868 break; 2869 2870 case UDPLITE_RECV_CSCOV: 2871 val = up->pcrlen; 2872 break; 2873 2874 default: 2875 return -ENOPROTOOPT; 2876 } 2877 2878 if (put_user(len, optlen)) 2879 return -EFAULT; 2880 if (copy_to_user(optval, &val, len)) 2881 return -EFAULT; 2882 return 0; 2883 } 2884 EXPORT_SYMBOL(udp_lib_getsockopt); 2885 2886 int udp_getsockopt(struct sock *sk, int level, int optname, 2887 char __user *optval, int __user *optlen) 2888 { 2889 if (level == SOL_UDP || level == SOL_UDPLITE) 2890 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2891 return ip_getsockopt(sk, level, optname, optval, optlen); 2892 } 2893 2894 /** 2895 * udp_poll - wait for a UDP event. 2896 * @file: - file struct 2897 * @sock: - socket 2898 * @wait: - poll table 2899 * 2900 * This is same as datagram poll, except for the special case of 2901 * blocking sockets. If application is using a blocking fd 2902 * and a packet with checksum error is in the queue; 2903 * then it could get return from select indicating data available 2904 * but then block when reading it. Add special case code 2905 * to work around these arguably broken applications. 2906 */ 2907 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2908 { 2909 __poll_t mask = datagram_poll(file, sock, wait); 2910 struct sock *sk = sock->sk; 2911 2912 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2913 mask |= EPOLLIN | EPOLLRDNORM; 2914 2915 /* Check for false positives due to checksum errors */ 2916 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2917 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2918 mask &= ~(EPOLLIN | EPOLLRDNORM); 2919 2920 /* psock ingress_msg queue should not contain any bad checksum frames */ 2921 if (sk_is_readable(sk)) 2922 mask |= EPOLLIN | EPOLLRDNORM; 2923 return mask; 2924 2925 } 2926 EXPORT_SYMBOL(udp_poll); 2927 2928 int udp_abort(struct sock *sk, int err) 2929 { 2930 lock_sock(sk); 2931 2932 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2933 * with close() 2934 */ 2935 if (sock_flag(sk, SOCK_DEAD)) 2936 goto out; 2937 2938 sk->sk_err = err; 2939 sk_error_report(sk); 2940 __udp_disconnect(sk, 0); 2941 2942 out: 2943 release_sock(sk); 2944 2945 return 0; 2946 } 2947 EXPORT_SYMBOL_GPL(udp_abort); 2948 2949 struct proto udp_prot = { 2950 .name = "UDP", 2951 .owner = THIS_MODULE, 2952 .close = udp_lib_close, 2953 .pre_connect = udp_pre_connect, 2954 .connect = ip4_datagram_connect, 2955 .disconnect = udp_disconnect, 2956 .ioctl = udp_ioctl, 2957 .init = udp_init_sock, 2958 .destroy = udp_destroy_sock, 2959 .setsockopt = udp_setsockopt, 2960 .getsockopt = udp_getsockopt, 2961 .sendmsg = udp_sendmsg, 2962 .recvmsg = udp_recvmsg, 2963 .sendpage = udp_sendpage, 2964 .release_cb = ip4_datagram_release_cb, 2965 .hash = udp_lib_hash, 2966 .unhash = udp_lib_unhash, 2967 .rehash = udp_v4_rehash, 2968 .get_port = udp_v4_get_port, 2969 .put_port = udp_lib_unhash, 2970 #ifdef CONFIG_BPF_SYSCALL 2971 .psock_update_sk_prot = udp_bpf_update_proto, 2972 #endif 2973 .memory_allocated = &udp_memory_allocated, 2974 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 2975 2976 .sysctl_mem = sysctl_udp_mem, 2977 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2978 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2979 .obj_size = sizeof(struct udp_sock), 2980 .h.udp_table = NULL, 2981 .diag_destroy = udp_abort, 2982 }; 2983 EXPORT_SYMBOL(udp_prot); 2984 2985 /* ------------------------------------------------------------------------ */ 2986 #ifdef CONFIG_PROC_FS 2987 2988 static struct udp_table *udp_get_table_afinfo(struct udp_seq_afinfo *afinfo, 2989 struct net *net) 2990 { 2991 return afinfo->udp_table ? : net->ipv4.udp_table; 2992 } 2993 2994 static struct sock *udp_get_first(struct seq_file *seq, int start) 2995 { 2996 struct udp_iter_state *state = seq->private; 2997 struct net *net = seq_file_net(seq); 2998 struct udp_seq_afinfo *afinfo; 2999 struct udp_table *udptable; 3000 struct sock *sk; 3001 3002 if (state->bpf_seq_afinfo) 3003 afinfo = state->bpf_seq_afinfo; 3004 else 3005 afinfo = pde_data(file_inode(seq->file)); 3006 3007 udptable = udp_get_table_afinfo(afinfo, net); 3008 3009 for (state->bucket = start; state->bucket <= udptable->mask; 3010 ++state->bucket) { 3011 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 3012 3013 if (hlist_empty(&hslot->head)) 3014 continue; 3015 3016 spin_lock_bh(&hslot->lock); 3017 sk_for_each(sk, &hslot->head) { 3018 if (!net_eq(sock_net(sk), net)) 3019 continue; 3020 if (afinfo->family == AF_UNSPEC || 3021 sk->sk_family == afinfo->family) 3022 goto found; 3023 } 3024 spin_unlock_bh(&hslot->lock); 3025 } 3026 sk = NULL; 3027 found: 3028 return sk; 3029 } 3030 3031 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3032 { 3033 struct udp_iter_state *state = seq->private; 3034 struct net *net = seq_file_net(seq); 3035 struct udp_seq_afinfo *afinfo; 3036 struct udp_table *udptable; 3037 3038 if (state->bpf_seq_afinfo) 3039 afinfo = state->bpf_seq_afinfo; 3040 else 3041 afinfo = pde_data(file_inode(seq->file)); 3042 3043 do { 3044 sk = sk_next(sk); 3045 } while (sk && (!net_eq(sock_net(sk), net) || 3046 (afinfo->family != AF_UNSPEC && 3047 sk->sk_family != afinfo->family))); 3048 3049 if (!sk) { 3050 udptable = udp_get_table_afinfo(afinfo, net); 3051 3052 if (state->bucket <= udptable->mask) 3053 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3054 3055 return udp_get_first(seq, state->bucket + 1); 3056 } 3057 return sk; 3058 } 3059 3060 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3061 { 3062 struct sock *sk = udp_get_first(seq, 0); 3063 3064 if (sk) 3065 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3066 --pos; 3067 return pos ? NULL : sk; 3068 } 3069 3070 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3071 { 3072 struct udp_iter_state *state = seq->private; 3073 state->bucket = MAX_UDP_PORTS; 3074 3075 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3076 } 3077 EXPORT_SYMBOL(udp_seq_start); 3078 3079 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3080 { 3081 struct sock *sk; 3082 3083 if (v == SEQ_START_TOKEN) 3084 sk = udp_get_idx(seq, 0); 3085 else 3086 sk = udp_get_next(seq, v); 3087 3088 ++*pos; 3089 return sk; 3090 } 3091 EXPORT_SYMBOL(udp_seq_next); 3092 3093 void udp_seq_stop(struct seq_file *seq, void *v) 3094 { 3095 struct udp_iter_state *state = seq->private; 3096 struct udp_seq_afinfo *afinfo; 3097 struct udp_table *udptable; 3098 3099 if (state->bpf_seq_afinfo) 3100 afinfo = state->bpf_seq_afinfo; 3101 else 3102 afinfo = pde_data(file_inode(seq->file)); 3103 3104 udptable = udp_get_table_afinfo(afinfo, seq_file_net(seq)); 3105 3106 if (state->bucket <= udptable->mask) 3107 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3108 } 3109 EXPORT_SYMBOL(udp_seq_stop); 3110 3111 /* ------------------------------------------------------------------------ */ 3112 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3113 int bucket) 3114 { 3115 struct inet_sock *inet = inet_sk(sp); 3116 __be32 dest = inet->inet_daddr; 3117 __be32 src = inet->inet_rcv_saddr; 3118 __u16 destp = ntohs(inet->inet_dport); 3119 __u16 srcp = ntohs(inet->inet_sport); 3120 3121 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3122 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3123 bucket, src, srcp, dest, destp, sp->sk_state, 3124 sk_wmem_alloc_get(sp), 3125 udp_rqueue_get(sp), 3126 0, 0L, 0, 3127 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3128 0, sock_i_ino(sp), 3129 refcount_read(&sp->sk_refcnt), sp, 3130 atomic_read(&sp->sk_drops)); 3131 } 3132 3133 int udp4_seq_show(struct seq_file *seq, void *v) 3134 { 3135 seq_setwidth(seq, 127); 3136 if (v == SEQ_START_TOKEN) 3137 seq_puts(seq, " sl local_address rem_address st tx_queue " 3138 "rx_queue tr tm->when retrnsmt uid timeout " 3139 "inode ref pointer drops"); 3140 else { 3141 struct udp_iter_state *state = seq->private; 3142 3143 udp4_format_sock(v, seq, state->bucket); 3144 } 3145 seq_pad(seq, '\n'); 3146 return 0; 3147 } 3148 3149 #ifdef CONFIG_BPF_SYSCALL 3150 struct bpf_iter__udp { 3151 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3152 __bpf_md_ptr(struct udp_sock *, udp_sk); 3153 uid_t uid __aligned(8); 3154 int bucket __aligned(8); 3155 }; 3156 3157 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3158 struct udp_sock *udp_sk, uid_t uid, int bucket) 3159 { 3160 struct bpf_iter__udp ctx; 3161 3162 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3163 ctx.meta = meta; 3164 ctx.udp_sk = udp_sk; 3165 ctx.uid = uid; 3166 ctx.bucket = bucket; 3167 return bpf_iter_run_prog(prog, &ctx); 3168 } 3169 3170 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3171 { 3172 struct udp_iter_state *state = seq->private; 3173 struct bpf_iter_meta meta; 3174 struct bpf_prog *prog; 3175 struct sock *sk = v; 3176 uid_t uid; 3177 3178 if (v == SEQ_START_TOKEN) 3179 return 0; 3180 3181 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3182 meta.seq = seq; 3183 prog = bpf_iter_get_info(&meta, false); 3184 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3185 } 3186 3187 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3188 { 3189 struct bpf_iter_meta meta; 3190 struct bpf_prog *prog; 3191 3192 if (!v) { 3193 meta.seq = seq; 3194 prog = bpf_iter_get_info(&meta, true); 3195 if (prog) 3196 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3197 } 3198 3199 udp_seq_stop(seq, v); 3200 } 3201 3202 static const struct seq_operations bpf_iter_udp_seq_ops = { 3203 .start = udp_seq_start, 3204 .next = udp_seq_next, 3205 .stop = bpf_iter_udp_seq_stop, 3206 .show = bpf_iter_udp_seq_show, 3207 }; 3208 #endif 3209 3210 const struct seq_operations udp_seq_ops = { 3211 .start = udp_seq_start, 3212 .next = udp_seq_next, 3213 .stop = udp_seq_stop, 3214 .show = udp4_seq_show, 3215 }; 3216 EXPORT_SYMBOL(udp_seq_ops); 3217 3218 static struct udp_seq_afinfo udp4_seq_afinfo = { 3219 .family = AF_INET, 3220 .udp_table = NULL, 3221 }; 3222 3223 static int __net_init udp4_proc_init_net(struct net *net) 3224 { 3225 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3226 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3227 return -ENOMEM; 3228 return 0; 3229 } 3230 3231 static void __net_exit udp4_proc_exit_net(struct net *net) 3232 { 3233 remove_proc_entry("udp", net->proc_net); 3234 } 3235 3236 static struct pernet_operations udp4_net_ops = { 3237 .init = udp4_proc_init_net, 3238 .exit = udp4_proc_exit_net, 3239 }; 3240 3241 int __init udp4_proc_init(void) 3242 { 3243 return register_pernet_subsys(&udp4_net_ops); 3244 } 3245 3246 void udp4_proc_exit(void) 3247 { 3248 unregister_pernet_subsys(&udp4_net_ops); 3249 } 3250 #endif /* CONFIG_PROC_FS */ 3251 3252 static __initdata unsigned long uhash_entries; 3253 static int __init set_uhash_entries(char *str) 3254 { 3255 ssize_t ret; 3256 3257 if (!str) 3258 return 0; 3259 3260 ret = kstrtoul(str, 0, &uhash_entries); 3261 if (ret) 3262 return 0; 3263 3264 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3265 uhash_entries = UDP_HTABLE_SIZE_MIN; 3266 return 1; 3267 } 3268 __setup("uhash_entries=", set_uhash_entries); 3269 3270 void __init udp_table_init(struct udp_table *table, const char *name) 3271 { 3272 unsigned int i; 3273 3274 table->hash = alloc_large_system_hash(name, 3275 2 * sizeof(struct udp_hslot), 3276 uhash_entries, 3277 21, /* one slot per 2 MB */ 3278 0, 3279 &table->log, 3280 &table->mask, 3281 UDP_HTABLE_SIZE_MIN, 3282 UDP_HTABLE_SIZE_MAX); 3283 3284 table->hash2 = table->hash + (table->mask + 1); 3285 for (i = 0; i <= table->mask; i++) { 3286 INIT_HLIST_HEAD(&table->hash[i].head); 3287 table->hash[i].count = 0; 3288 spin_lock_init(&table->hash[i].lock); 3289 } 3290 for (i = 0; i <= table->mask; i++) { 3291 INIT_HLIST_HEAD(&table->hash2[i].head); 3292 table->hash2[i].count = 0; 3293 spin_lock_init(&table->hash2[i].lock); 3294 } 3295 } 3296 3297 u32 udp_flow_hashrnd(void) 3298 { 3299 static u32 hashrnd __read_mostly; 3300 3301 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3302 3303 return hashrnd; 3304 } 3305 EXPORT_SYMBOL(udp_flow_hashrnd); 3306 3307 static void __net_init udp_sysctl_init(struct net *net) 3308 { 3309 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3310 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3311 3312 #ifdef CONFIG_NET_L3_MASTER_DEV 3313 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3314 #endif 3315 } 3316 3317 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3318 { 3319 struct udp_table *udptable; 3320 int i; 3321 3322 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3323 if (!udptable) 3324 goto out; 3325 3326 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot), 3327 GFP_KERNEL_ACCOUNT); 3328 if (!udptable->hash) 3329 goto free_table; 3330 3331 udptable->hash2 = udptable->hash + hash_entries; 3332 udptable->mask = hash_entries - 1; 3333 udptable->log = ilog2(hash_entries); 3334 3335 for (i = 0; i < hash_entries; i++) { 3336 INIT_HLIST_HEAD(&udptable->hash[i].head); 3337 udptable->hash[i].count = 0; 3338 spin_lock_init(&udptable->hash[i].lock); 3339 3340 INIT_HLIST_HEAD(&udptable->hash2[i].head); 3341 udptable->hash2[i].count = 0; 3342 spin_lock_init(&udptable->hash2[i].lock); 3343 } 3344 3345 return udptable; 3346 3347 free_table: 3348 kfree(udptable); 3349 out: 3350 return NULL; 3351 } 3352 3353 static void __net_exit udp_pernet_table_free(struct net *net) 3354 { 3355 struct udp_table *udptable = net->ipv4.udp_table; 3356 3357 if (udptable == &udp_table) 3358 return; 3359 3360 kvfree(udptable->hash); 3361 kfree(udptable); 3362 } 3363 3364 static void __net_init udp_set_table(struct net *net) 3365 { 3366 struct udp_table *udptable; 3367 unsigned int hash_entries; 3368 struct net *old_net; 3369 3370 if (net_eq(net, &init_net)) 3371 goto fallback; 3372 3373 old_net = current->nsproxy->net_ns; 3374 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3375 if (!hash_entries) 3376 goto fallback; 3377 3378 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3379 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3380 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3381 else 3382 hash_entries = roundup_pow_of_two(hash_entries); 3383 3384 udptable = udp_pernet_table_alloc(hash_entries); 3385 if (udptable) { 3386 net->ipv4.udp_table = udptable; 3387 } else { 3388 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3389 "for a netns, fallback to the global one\n", 3390 hash_entries); 3391 fallback: 3392 net->ipv4.udp_table = &udp_table; 3393 } 3394 } 3395 3396 static int __net_init udp_pernet_init(struct net *net) 3397 { 3398 udp_sysctl_init(net); 3399 udp_set_table(net); 3400 3401 return 0; 3402 } 3403 3404 static void __net_exit udp_pernet_exit(struct net *net) 3405 { 3406 udp_pernet_table_free(net); 3407 } 3408 3409 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3410 .init = udp_pernet_init, 3411 .exit = udp_pernet_exit, 3412 }; 3413 3414 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3415 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3416 struct udp_sock *udp_sk, uid_t uid, int bucket) 3417 3418 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3419 { 3420 struct udp_iter_state *st = priv_data; 3421 struct udp_seq_afinfo *afinfo; 3422 int ret; 3423 3424 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN); 3425 if (!afinfo) 3426 return -ENOMEM; 3427 3428 afinfo->family = AF_UNSPEC; 3429 afinfo->udp_table = NULL; 3430 st->bpf_seq_afinfo = afinfo; 3431 ret = bpf_iter_init_seq_net(priv_data, aux); 3432 if (ret) 3433 kfree(afinfo); 3434 return ret; 3435 } 3436 3437 static void bpf_iter_fini_udp(void *priv_data) 3438 { 3439 struct udp_iter_state *st = priv_data; 3440 3441 kfree(st->bpf_seq_afinfo); 3442 bpf_iter_fini_seq_net(priv_data); 3443 } 3444 3445 static const struct bpf_iter_seq_info udp_seq_info = { 3446 .seq_ops = &bpf_iter_udp_seq_ops, 3447 .init_seq_private = bpf_iter_init_udp, 3448 .fini_seq_private = bpf_iter_fini_udp, 3449 .seq_priv_size = sizeof(struct udp_iter_state), 3450 }; 3451 3452 static struct bpf_iter_reg udp_reg_info = { 3453 .target = "udp", 3454 .ctx_arg_info_size = 1, 3455 .ctx_arg_info = { 3456 { offsetof(struct bpf_iter__udp, udp_sk), 3457 PTR_TO_BTF_ID_OR_NULL }, 3458 }, 3459 .seq_info = &udp_seq_info, 3460 }; 3461 3462 static void __init bpf_iter_register(void) 3463 { 3464 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3465 if (bpf_iter_reg_target(&udp_reg_info)) 3466 pr_warn("Warning: could not register bpf iterator udp\n"); 3467 } 3468 #endif 3469 3470 void __init udp_init(void) 3471 { 3472 unsigned long limit; 3473 unsigned int i; 3474 3475 udp_table_init(&udp_table, "UDP"); 3476 limit = nr_free_buffer_pages() / 8; 3477 limit = max(limit, 128UL); 3478 sysctl_udp_mem[0] = limit / 4 * 3; 3479 sysctl_udp_mem[1] = limit; 3480 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3481 3482 /* 16 spinlocks per cpu */ 3483 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3484 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3485 GFP_KERNEL); 3486 if (!udp_busylocks) 3487 panic("UDP: failed to alloc udp_busylocks\n"); 3488 for (i = 0; i < (1U << udp_busylocks_log); i++) 3489 spin_lock_init(udp_busylocks + i); 3490 3491 if (register_pernet_subsys(&udp_sysctl_ops)) 3492 panic("UDP: failed to init sysctl parameters.\n"); 3493 3494 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3495 bpf_iter_register(); 3496 #endif 3497 } 3498