xref: /openbmc/linux/net/ipv4/udp.c (revision 6a613ac6)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 
117 struct udp_table udp_table __read_mostly;
118 EXPORT_SYMBOL(udp_table);
119 
120 long sysctl_udp_mem[3] __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_mem);
122 
123 int sysctl_udp_rmem_min __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_rmem_min);
125 
126 int sysctl_udp_wmem_min __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_wmem_min);
128 
129 atomic_long_t udp_memory_allocated;
130 EXPORT_SYMBOL(udp_memory_allocated);
131 
132 #define MAX_UDP_PORTS 65536
133 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
134 
135 static int udp_lib_lport_inuse(struct net *net, __u16 num,
136 			       const struct udp_hslot *hslot,
137 			       unsigned long *bitmap,
138 			       struct sock *sk,
139 			       int (*saddr_comp)(const struct sock *sk1,
140 						 const struct sock *sk2),
141 			       unsigned int log)
142 {
143 	struct sock *sk2;
144 	struct hlist_nulls_node *node;
145 	kuid_t uid = sock_i_uid(sk);
146 
147 	sk_nulls_for_each(sk2, node, &hslot->head) {
148 		if (net_eq(sock_net(sk2), net) &&
149 		    sk2 != sk &&
150 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
152 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
155 		     !uid_eq(uid, sock_i_uid(sk2))) &&
156 		    saddr_comp(sk, sk2)) {
157 			if (!bitmap)
158 				return 1;
159 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
160 		}
161 	}
162 	return 0;
163 }
164 
165 /*
166  * Note: we still hold spinlock of primary hash chain, so no other writer
167  * can insert/delete a socket with local_port == num
168  */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 				struct udp_hslot *hslot2,
171 				struct sock *sk,
172 				int (*saddr_comp)(const struct sock *sk1,
173 						  const struct sock *sk2))
174 {
175 	struct sock *sk2;
176 	struct hlist_nulls_node *node;
177 	kuid_t uid = sock_i_uid(sk);
178 	int res = 0;
179 
180 	spin_lock(&hslot2->lock);
181 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
182 		if (net_eq(sock_net(sk2), net) &&
183 		    sk2 != sk &&
184 		    (udp_sk(sk2)->udp_port_hash == num) &&
185 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
186 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 		     !uid_eq(uid, sock_i_uid(sk2))) &&
190 		    saddr_comp(sk, sk2)) {
191 			res = 1;
192 			break;
193 		}
194 	}
195 	spin_unlock(&hslot2->lock);
196 	return res;
197 }
198 
199 /**
200  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
201  *
202  *  @sk:          socket struct in question
203  *  @snum:        port number to look up
204  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
205  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
206  *                   with NULL address
207  */
208 int udp_lib_get_port(struct sock *sk, unsigned short snum,
209 		     int (*saddr_comp)(const struct sock *sk1,
210 				       const struct sock *sk2),
211 		     unsigned int hash2_nulladdr)
212 {
213 	struct udp_hslot *hslot, *hslot2;
214 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
215 	int    error = 1;
216 	struct net *net = sock_net(sk);
217 
218 	if (!snum) {
219 		int low, high, remaining;
220 		unsigned int rand;
221 		unsigned short first, last;
222 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
223 
224 		inet_get_local_port_range(net, &low, &high);
225 		remaining = (high - low) + 1;
226 
227 		rand = prandom_u32();
228 		first = reciprocal_scale(rand, remaining) + low;
229 		/*
230 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
231 		 */
232 		rand = (rand | 1) * (udptable->mask + 1);
233 		last = first + udptable->mask + 1;
234 		do {
235 			hslot = udp_hashslot(udptable, net, first);
236 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
237 			spin_lock_bh(&hslot->lock);
238 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
239 					    saddr_comp, udptable->log);
240 
241 			snum = first;
242 			/*
243 			 * Iterate on all possible values of snum for this hash.
244 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
245 			 * give us randomization and full range coverage.
246 			 */
247 			do {
248 				if (low <= snum && snum <= high &&
249 				    !test_bit(snum >> udptable->log, bitmap) &&
250 				    !inet_is_local_reserved_port(net, snum))
251 					goto found;
252 				snum += rand;
253 			} while (snum != first);
254 			spin_unlock_bh(&hslot->lock);
255 		} while (++first != last);
256 		goto fail;
257 	} else {
258 		hslot = udp_hashslot(udptable, net, snum);
259 		spin_lock_bh(&hslot->lock);
260 		if (hslot->count > 10) {
261 			int exist;
262 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
263 
264 			slot2          &= udptable->mask;
265 			hash2_nulladdr &= udptable->mask;
266 
267 			hslot2 = udp_hashslot2(udptable, slot2);
268 			if (hslot->count < hslot2->count)
269 				goto scan_primary_hash;
270 
271 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
272 						     sk, saddr_comp);
273 			if (!exist && (hash2_nulladdr != slot2)) {
274 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
275 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
276 							     sk, saddr_comp);
277 			}
278 			if (exist)
279 				goto fail_unlock;
280 			else
281 				goto found;
282 		}
283 scan_primary_hash:
284 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
285 					saddr_comp, 0))
286 			goto fail_unlock;
287 	}
288 found:
289 	inet_sk(sk)->inet_num = snum;
290 	udp_sk(sk)->udp_port_hash = snum;
291 	udp_sk(sk)->udp_portaddr_hash ^= snum;
292 	if (sk_unhashed(sk)) {
293 		sk_nulls_add_node_rcu(sk, &hslot->head);
294 		hslot->count++;
295 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
296 
297 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
298 		spin_lock(&hslot2->lock);
299 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
300 					 &hslot2->head);
301 		hslot2->count++;
302 		spin_unlock(&hslot2->lock);
303 	}
304 	error = 0;
305 fail_unlock:
306 	spin_unlock_bh(&hslot->lock);
307 fail:
308 	return error;
309 }
310 EXPORT_SYMBOL(udp_lib_get_port);
311 
312 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
313 {
314 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
315 
316 	return 	(!ipv6_only_sock(sk2)  &&
317 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
318 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
319 }
320 
321 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
322 			      unsigned int port)
323 {
324 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
325 }
326 
327 int udp_v4_get_port(struct sock *sk, unsigned short snum)
328 {
329 	unsigned int hash2_nulladdr =
330 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
331 	unsigned int hash2_partial =
332 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
333 
334 	/* precompute partial secondary hash */
335 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
336 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
337 }
338 
339 static inline int compute_score(struct sock *sk, struct net *net,
340 				__be32 saddr, unsigned short hnum, __be16 sport,
341 				__be32 daddr, __be16 dport, int dif)
342 {
343 	int score;
344 	struct inet_sock *inet;
345 
346 	if (!net_eq(sock_net(sk), net) ||
347 	    udp_sk(sk)->udp_port_hash != hnum ||
348 	    ipv6_only_sock(sk))
349 		return -1;
350 
351 	score = (sk->sk_family == PF_INET) ? 2 : 1;
352 	inet = inet_sk(sk);
353 
354 	if (inet->inet_rcv_saddr) {
355 		if (inet->inet_rcv_saddr != daddr)
356 			return -1;
357 		score += 4;
358 	}
359 
360 	if (inet->inet_daddr) {
361 		if (inet->inet_daddr != saddr)
362 			return -1;
363 		score += 4;
364 	}
365 
366 	if (inet->inet_dport) {
367 		if (inet->inet_dport != sport)
368 			return -1;
369 		score += 4;
370 	}
371 
372 	if (sk->sk_bound_dev_if) {
373 		if (sk->sk_bound_dev_if != dif)
374 			return -1;
375 		score += 4;
376 	}
377 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
378 		score++;
379 	return score;
380 }
381 
382 /*
383  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
384  */
385 static inline int compute_score2(struct sock *sk, struct net *net,
386 				 __be32 saddr, __be16 sport,
387 				 __be32 daddr, unsigned int hnum, int dif)
388 {
389 	int score;
390 	struct inet_sock *inet;
391 
392 	if (!net_eq(sock_net(sk), net) ||
393 	    ipv6_only_sock(sk))
394 		return -1;
395 
396 	inet = inet_sk(sk);
397 
398 	if (inet->inet_rcv_saddr != daddr ||
399 	    inet->inet_num != hnum)
400 		return -1;
401 
402 	score = (sk->sk_family == PF_INET) ? 2 : 1;
403 
404 	if (inet->inet_daddr) {
405 		if (inet->inet_daddr != saddr)
406 			return -1;
407 		score += 4;
408 	}
409 
410 	if (inet->inet_dport) {
411 		if (inet->inet_dport != sport)
412 			return -1;
413 		score += 4;
414 	}
415 
416 	if (sk->sk_bound_dev_if) {
417 		if (sk->sk_bound_dev_if != dif)
418 			return -1;
419 		score += 4;
420 	}
421 
422 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
423 		score++;
424 
425 	return score;
426 }
427 
428 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
429 		       const __u16 lport, const __be32 faddr,
430 		       const __be16 fport)
431 {
432 	static u32 udp_ehash_secret __read_mostly;
433 
434 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
435 
436 	return __inet_ehashfn(laddr, lport, faddr, fport,
437 			      udp_ehash_secret + net_hash_mix(net));
438 }
439 
440 /* called with read_rcu_lock() */
441 static struct sock *udp4_lib_lookup2(struct net *net,
442 		__be32 saddr, __be16 sport,
443 		__be32 daddr, unsigned int hnum, int dif,
444 		struct udp_hslot *hslot2, unsigned int slot2)
445 {
446 	struct sock *sk, *result;
447 	struct hlist_nulls_node *node;
448 	int score, badness, matches = 0, reuseport = 0;
449 	u32 hash = 0;
450 
451 begin:
452 	result = NULL;
453 	badness = 0;
454 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
455 		score = compute_score2(sk, net, saddr, sport,
456 				      daddr, hnum, dif);
457 		if (score > badness) {
458 			result = sk;
459 			badness = score;
460 			reuseport = sk->sk_reuseport;
461 			if (reuseport) {
462 				hash = udp_ehashfn(net, daddr, hnum,
463 						   saddr, sport);
464 				matches = 1;
465 			}
466 		} else if (score == badness && reuseport) {
467 			matches++;
468 			if (reciprocal_scale(hash, matches) == 0)
469 				result = sk;
470 			hash = next_pseudo_random32(hash);
471 		}
472 	}
473 	/*
474 	 * if the nulls value we got at the end of this lookup is
475 	 * not the expected one, we must restart lookup.
476 	 * We probably met an item that was moved to another chain.
477 	 */
478 	if (get_nulls_value(node) != slot2)
479 		goto begin;
480 	if (result) {
481 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
482 			result = NULL;
483 		else if (unlikely(compute_score2(result, net, saddr, sport,
484 				  daddr, hnum, dif) < badness)) {
485 			sock_put(result);
486 			goto begin;
487 		}
488 	}
489 	return result;
490 }
491 
492 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
493  * harder than this. -DaveM
494  */
495 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
496 		__be16 sport, __be32 daddr, __be16 dport,
497 		int dif, struct udp_table *udptable)
498 {
499 	struct sock *sk, *result;
500 	struct hlist_nulls_node *node;
501 	unsigned short hnum = ntohs(dport);
502 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
503 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
504 	int score, badness, matches = 0, reuseport = 0;
505 	u32 hash = 0;
506 
507 	rcu_read_lock();
508 	if (hslot->count > 10) {
509 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
510 		slot2 = hash2 & udptable->mask;
511 		hslot2 = &udptable->hash2[slot2];
512 		if (hslot->count < hslot2->count)
513 			goto begin;
514 
515 		result = udp4_lib_lookup2(net, saddr, sport,
516 					  daddr, hnum, dif,
517 					  hslot2, slot2);
518 		if (!result) {
519 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
520 			slot2 = hash2 & udptable->mask;
521 			hslot2 = &udptable->hash2[slot2];
522 			if (hslot->count < hslot2->count)
523 				goto begin;
524 
525 			result = udp4_lib_lookup2(net, saddr, sport,
526 						  htonl(INADDR_ANY), hnum, dif,
527 						  hslot2, slot2);
528 		}
529 		rcu_read_unlock();
530 		return result;
531 	}
532 begin:
533 	result = NULL;
534 	badness = 0;
535 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
536 		score = compute_score(sk, net, saddr, hnum, sport,
537 				      daddr, dport, dif);
538 		if (score > badness) {
539 			result = sk;
540 			badness = score;
541 			reuseport = sk->sk_reuseport;
542 			if (reuseport) {
543 				hash = udp_ehashfn(net, daddr, hnum,
544 						   saddr, sport);
545 				matches = 1;
546 			}
547 		} else if (score == badness && reuseport) {
548 			matches++;
549 			if (reciprocal_scale(hash, matches) == 0)
550 				result = sk;
551 			hash = next_pseudo_random32(hash);
552 		}
553 	}
554 	/*
555 	 * if the nulls value we got at the end of this lookup is
556 	 * not the expected one, we must restart lookup.
557 	 * We probably met an item that was moved to another chain.
558 	 */
559 	if (get_nulls_value(node) != slot)
560 		goto begin;
561 
562 	if (result) {
563 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
564 			result = NULL;
565 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
566 				  daddr, dport, dif) < badness)) {
567 			sock_put(result);
568 			goto begin;
569 		}
570 	}
571 	rcu_read_unlock();
572 	return result;
573 }
574 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
575 
576 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
577 						 __be16 sport, __be16 dport,
578 						 struct udp_table *udptable)
579 {
580 	const struct iphdr *iph = ip_hdr(skb);
581 
582 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
583 				 iph->daddr, dport, inet_iif(skb),
584 				 udptable);
585 }
586 
587 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
588 			     __be32 daddr, __be16 dport, int dif)
589 {
590 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
591 }
592 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
593 
594 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
595 				       __be16 loc_port, __be32 loc_addr,
596 				       __be16 rmt_port, __be32 rmt_addr,
597 				       int dif, unsigned short hnum)
598 {
599 	struct inet_sock *inet = inet_sk(sk);
600 
601 	if (!net_eq(sock_net(sk), net) ||
602 	    udp_sk(sk)->udp_port_hash != hnum ||
603 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
604 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
605 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
606 	    ipv6_only_sock(sk) ||
607 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
608 		return false;
609 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
610 		return false;
611 	return true;
612 }
613 
614 /*
615  * This routine is called by the ICMP module when it gets some
616  * sort of error condition.  If err < 0 then the socket should
617  * be closed and the error returned to the user.  If err > 0
618  * it's just the icmp type << 8 | icmp code.
619  * Header points to the ip header of the error packet. We move
620  * on past this. Then (as it used to claim before adjustment)
621  * header points to the first 8 bytes of the udp header.  We need
622  * to find the appropriate port.
623  */
624 
625 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
626 {
627 	struct inet_sock *inet;
628 	const struct iphdr *iph = (const struct iphdr *)skb->data;
629 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
630 	const int type = icmp_hdr(skb)->type;
631 	const int code = icmp_hdr(skb)->code;
632 	struct sock *sk;
633 	int harderr;
634 	int err;
635 	struct net *net = dev_net(skb->dev);
636 
637 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
638 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
639 	if (!sk) {
640 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
641 		return;	/* No socket for error */
642 	}
643 
644 	err = 0;
645 	harderr = 0;
646 	inet = inet_sk(sk);
647 
648 	switch (type) {
649 	default:
650 	case ICMP_TIME_EXCEEDED:
651 		err = EHOSTUNREACH;
652 		break;
653 	case ICMP_SOURCE_QUENCH:
654 		goto out;
655 	case ICMP_PARAMETERPROB:
656 		err = EPROTO;
657 		harderr = 1;
658 		break;
659 	case ICMP_DEST_UNREACH:
660 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
661 			ipv4_sk_update_pmtu(skb, sk, info);
662 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
663 				err = EMSGSIZE;
664 				harderr = 1;
665 				break;
666 			}
667 			goto out;
668 		}
669 		err = EHOSTUNREACH;
670 		if (code <= NR_ICMP_UNREACH) {
671 			harderr = icmp_err_convert[code].fatal;
672 			err = icmp_err_convert[code].errno;
673 		}
674 		break;
675 	case ICMP_REDIRECT:
676 		ipv4_sk_redirect(skb, sk);
677 		goto out;
678 	}
679 
680 	/*
681 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
682 	 *	4.1.3.3.
683 	 */
684 	if (!inet->recverr) {
685 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
686 			goto out;
687 	} else
688 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
689 
690 	sk->sk_err = err;
691 	sk->sk_error_report(sk);
692 out:
693 	sock_put(sk);
694 }
695 
696 void udp_err(struct sk_buff *skb, u32 info)
697 {
698 	__udp4_lib_err(skb, info, &udp_table);
699 }
700 
701 /*
702  * Throw away all pending data and cancel the corking. Socket is locked.
703  */
704 void udp_flush_pending_frames(struct sock *sk)
705 {
706 	struct udp_sock *up = udp_sk(sk);
707 
708 	if (up->pending) {
709 		up->len = 0;
710 		up->pending = 0;
711 		ip_flush_pending_frames(sk);
712 	}
713 }
714 EXPORT_SYMBOL(udp_flush_pending_frames);
715 
716 /**
717  * 	udp4_hwcsum  -  handle outgoing HW checksumming
718  * 	@skb: 	sk_buff containing the filled-in UDP header
719  * 	        (checksum field must be zeroed out)
720  *	@src:	source IP address
721  *	@dst:	destination IP address
722  */
723 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
724 {
725 	struct udphdr *uh = udp_hdr(skb);
726 	int offset = skb_transport_offset(skb);
727 	int len = skb->len - offset;
728 	int hlen = len;
729 	__wsum csum = 0;
730 
731 	if (!skb_has_frag_list(skb)) {
732 		/*
733 		 * Only one fragment on the socket.
734 		 */
735 		skb->csum_start = skb_transport_header(skb) - skb->head;
736 		skb->csum_offset = offsetof(struct udphdr, check);
737 		uh->check = ~csum_tcpudp_magic(src, dst, len,
738 					       IPPROTO_UDP, 0);
739 	} else {
740 		struct sk_buff *frags;
741 
742 		/*
743 		 * HW-checksum won't work as there are two or more
744 		 * fragments on the socket so that all csums of sk_buffs
745 		 * should be together
746 		 */
747 		skb_walk_frags(skb, frags) {
748 			csum = csum_add(csum, frags->csum);
749 			hlen -= frags->len;
750 		}
751 
752 		csum = skb_checksum(skb, offset, hlen, csum);
753 		skb->ip_summed = CHECKSUM_NONE;
754 
755 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
756 		if (uh->check == 0)
757 			uh->check = CSUM_MANGLED_0;
758 	}
759 }
760 EXPORT_SYMBOL_GPL(udp4_hwcsum);
761 
762 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
763  * for the simple case like when setting the checksum for a UDP tunnel.
764  */
765 void udp_set_csum(bool nocheck, struct sk_buff *skb,
766 		  __be32 saddr, __be32 daddr, int len)
767 {
768 	struct udphdr *uh = udp_hdr(skb);
769 
770 	if (nocheck)
771 		uh->check = 0;
772 	else if (skb_is_gso(skb))
773 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
774 	else if (skb_dst(skb) && skb_dst(skb)->dev &&
775 		 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
776 
777 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
778 
779 		skb->ip_summed = CHECKSUM_PARTIAL;
780 		skb->csum_start = skb_transport_header(skb) - skb->head;
781 		skb->csum_offset = offsetof(struct udphdr, check);
782 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
783 	} else {
784 		__wsum csum;
785 
786 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
787 
788 		uh->check = 0;
789 		csum = skb_checksum(skb, 0, len, 0);
790 		uh->check = udp_v4_check(len, saddr, daddr, csum);
791 		if (uh->check == 0)
792 			uh->check = CSUM_MANGLED_0;
793 
794 		skb->ip_summed = CHECKSUM_UNNECESSARY;
795 	}
796 }
797 EXPORT_SYMBOL(udp_set_csum);
798 
799 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
800 {
801 	struct sock *sk = skb->sk;
802 	struct inet_sock *inet = inet_sk(sk);
803 	struct udphdr *uh;
804 	int err = 0;
805 	int is_udplite = IS_UDPLITE(sk);
806 	int offset = skb_transport_offset(skb);
807 	int len = skb->len - offset;
808 	__wsum csum = 0;
809 
810 	/*
811 	 * Create a UDP header
812 	 */
813 	uh = udp_hdr(skb);
814 	uh->source = inet->inet_sport;
815 	uh->dest = fl4->fl4_dport;
816 	uh->len = htons(len);
817 	uh->check = 0;
818 
819 	if (is_udplite)  				 /*     UDP-Lite      */
820 		csum = udplite_csum(skb);
821 
822 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
823 
824 		skb->ip_summed = CHECKSUM_NONE;
825 		goto send;
826 
827 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
828 
829 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
830 		goto send;
831 
832 	} else
833 		csum = udp_csum(skb);
834 
835 	/* add protocol-dependent pseudo-header */
836 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
837 				      sk->sk_protocol, csum);
838 	if (uh->check == 0)
839 		uh->check = CSUM_MANGLED_0;
840 
841 send:
842 	err = ip_send_skb(sock_net(sk), skb);
843 	if (err) {
844 		if (err == -ENOBUFS && !inet->recverr) {
845 			UDP_INC_STATS_USER(sock_net(sk),
846 					   UDP_MIB_SNDBUFERRORS, is_udplite);
847 			err = 0;
848 		}
849 	} else
850 		UDP_INC_STATS_USER(sock_net(sk),
851 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
852 	return err;
853 }
854 
855 /*
856  * Push out all pending data as one UDP datagram. Socket is locked.
857  */
858 int udp_push_pending_frames(struct sock *sk)
859 {
860 	struct udp_sock  *up = udp_sk(sk);
861 	struct inet_sock *inet = inet_sk(sk);
862 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
863 	struct sk_buff *skb;
864 	int err = 0;
865 
866 	skb = ip_finish_skb(sk, fl4);
867 	if (!skb)
868 		goto out;
869 
870 	err = udp_send_skb(skb, fl4);
871 
872 out:
873 	up->len = 0;
874 	up->pending = 0;
875 	return err;
876 }
877 EXPORT_SYMBOL(udp_push_pending_frames);
878 
879 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
880 {
881 	struct inet_sock *inet = inet_sk(sk);
882 	struct udp_sock *up = udp_sk(sk);
883 	struct flowi4 fl4_stack;
884 	struct flowi4 *fl4;
885 	int ulen = len;
886 	struct ipcm_cookie ipc;
887 	struct rtable *rt = NULL;
888 	int free = 0;
889 	int connected = 0;
890 	__be32 daddr, faddr, saddr;
891 	__be16 dport;
892 	u8  tos;
893 	int err, is_udplite = IS_UDPLITE(sk);
894 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
895 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
896 	struct sk_buff *skb;
897 	struct ip_options_data opt_copy;
898 
899 	if (len > 0xFFFF)
900 		return -EMSGSIZE;
901 
902 	/*
903 	 *	Check the flags.
904 	 */
905 
906 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
907 		return -EOPNOTSUPP;
908 
909 	ipc.opt = NULL;
910 	ipc.tx_flags = 0;
911 	ipc.ttl = 0;
912 	ipc.tos = -1;
913 
914 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
915 
916 	fl4 = &inet->cork.fl.u.ip4;
917 	if (up->pending) {
918 		/*
919 		 * There are pending frames.
920 		 * The socket lock must be held while it's corked.
921 		 */
922 		lock_sock(sk);
923 		if (likely(up->pending)) {
924 			if (unlikely(up->pending != AF_INET)) {
925 				release_sock(sk);
926 				return -EINVAL;
927 			}
928 			goto do_append_data;
929 		}
930 		release_sock(sk);
931 	}
932 	ulen += sizeof(struct udphdr);
933 
934 	/*
935 	 *	Get and verify the address.
936 	 */
937 	if (msg->msg_name) {
938 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
939 		if (msg->msg_namelen < sizeof(*usin))
940 			return -EINVAL;
941 		if (usin->sin_family != AF_INET) {
942 			if (usin->sin_family != AF_UNSPEC)
943 				return -EAFNOSUPPORT;
944 		}
945 
946 		daddr = usin->sin_addr.s_addr;
947 		dport = usin->sin_port;
948 		if (dport == 0)
949 			return -EINVAL;
950 	} else {
951 		if (sk->sk_state != TCP_ESTABLISHED)
952 			return -EDESTADDRREQ;
953 		daddr = inet->inet_daddr;
954 		dport = inet->inet_dport;
955 		/* Open fast path for connected socket.
956 		   Route will not be used, if at least one option is set.
957 		 */
958 		connected = 1;
959 	}
960 	ipc.addr = inet->inet_saddr;
961 
962 	ipc.oif = sk->sk_bound_dev_if;
963 
964 	sock_tx_timestamp(sk, &ipc.tx_flags);
965 
966 	if (msg->msg_controllen) {
967 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
968 				   sk->sk_family == AF_INET6);
969 		if (err)
970 			return err;
971 		if (ipc.opt)
972 			free = 1;
973 		connected = 0;
974 	}
975 	if (!ipc.opt) {
976 		struct ip_options_rcu *inet_opt;
977 
978 		rcu_read_lock();
979 		inet_opt = rcu_dereference(inet->inet_opt);
980 		if (inet_opt) {
981 			memcpy(&opt_copy, inet_opt,
982 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
983 			ipc.opt = &opt_copy.opt;
984 		}
985 		rcu_read_unlock();
986 	}
987 
988 	saddr = ipc.addr;
989 	ipc.addr = faddr = daddr;
990 
991 	if (ipc.opt && ipc.opt->opt.srr) {
992 		if (!daddr)
993 			return -EINVAL;
994 		faddr = ipc.opt->opt.faddr;
995 		connected = 0;
996 	}
997 	tos = get_rttos(&ipc, inet);
998 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
999 	    (msg->msg_flags & MSG_DONTROUTE) ||
1000 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1001 		tos |= RTO_ONLINK;
1002 		connected = 0;
1003 	}
1004 
1005 	if (ipv4_is_multicast(daddr)) {
1006 		if (!ipc.oif)
1007 			ipc.oif = inet->mc_index;
1008 		if (!saddr)
1009 			saddr = inet->mc_addr;
1010 		connected = 0;
1011 	} else if (!ipc.oif)
1012 		ipc.oif = inet->uc_index;
1013 
1014 	if (connected)
1015 		rt = (struct rtable *)sk_dst_check(sk, 0);
1016 
1017 	if (!rt) {
1018 		struct net *net = sock_net(sk);
1019 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1020 
1021 		fl4 = &fl4_stack;
1022 
1023 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1024 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1025 				   flow_flags,
1026 				   faddr, saddr, dport, inet->inet_sport);
1027 
1028 		if (!saddr && ipc.oif)
1029 			l3mdev_get_saddr(net, ipc.oif, fl4);
1030 
1031 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1032 		rt = ip_route_output_flow(net, fl4, sk);
1033 		if (IS_ERR(rt)) {
1034 			err = PTR_ERR(rt);
1035 			rt = NULL;
1036 			if (err == -ENETUNREACH)
1037 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1038 			goto out;
1039 		}
1040 
1041 		err = -EACCES;
1042 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1043 		    !sock_flag(sk, SOCK_BROADCAST))
1044 			goto out;
1045 		if (connected)
1046 			sk_dst_set(sk, dst_clone(&rt->dst));
1047 	}
1048 
1049 	if (msg->msg_flags&MSG_CONFIRM)
1050 		goto do_confirm;
1051 back_from_confirm:
1052 
1053 	saddr = fl4->saddr;
1054 	if (!ipc.addr)
1055 		daddr = ipc.addr = fl4->daddr;
1056 
1057 	/* Lockless fast path for the non-corking case. */
1058 	if (!corkreq) {
1059 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1060 				  sizeof(struct udphdr), &ipc, &rt,
1061 				  msg->msg_flags);
1062 		err = PTR_ERR(skb);
1063 		if (!IS_ERR_OR_NULL(skb))
1064 			err = udp_send_skb(skb, fl4);
1065 		goto out;
1066 	}
1067 
1068 	lock_sock(sk);
1069 	if (unlikely(up->pending)) {
1070 		/* The socket is already corked while preparing it. */
1071 		/* ... which is an evident application bug. --ANK */
1072 		release_sock(sk);
1073 
1074 		net_dbg_ratelimited("cork app bug 2\n");
1075 		err = -EINVAL;
1076 		goto out;
1077 	}
1078 	/*
1079 	 *	Now cork the socket to pend data.
1080 	 */
1081 	fl4 = &inet->cork.fl.u.ip4;
1082 	fl4->daddr = daddr;
1083 	fl4->saddr = saddr;
1084 	fl4->fl4_dport = dport;
1085 	fl4->fl4_sport = inet->inet_sport;
1086 	up->pending = AF_INET;
1087 
1088 do_append_data:
1089 	up->len += ulen;
1090 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1091 			     sizeof(struct udphdr), &ipc, &rt,
1092 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1093 	if (err)
1094 		udp_flush_pending_frames(sk);
1095 	else if (!corkreq)
1096 		err = udp_push_pending_frames(sk);
1097 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1098 		up->pending = 0;
1099 	release_sock(sk);
1100 
1101 out:
1102 	ip_rt_put(rt);
1103 	if (free)
1104 		kfree(ipc.opt);
1105 	if (!err)
1106 		return len;
1107 	/*
1108 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1109 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1110 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1111 	 * things).  We could add another new stat but at least for now that
1112 	 * seems like overkill.
1113 	 */
1114 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1115 		UDP_INC_STATS_USER(sock_net(sk),
1116 				UDP_MIB_SNDBUFERRORS, is_udplite);
1117 	}
1118 	return err;
1119 
1120 do_confirm:
1121 	dst_confirm(&rt->dst);
1122 	if (!(msg->msg_flags&MSG_PROBE) || len)
1123 		goto back_from_confirm;
1124 	err = 0;
1125 	goto out;
1126 }
1127 EXPORT_SYMBOL(udp_sendmsg);
1128 
1129 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1130 		 size_t size, int flags)
1131 {
1132 	struct inet_sock *inet = inet_sk(sk);
1133 	struct udp_sock *up = udp_sk(sk);
1134 	int ret;
1135 
1136 	if (flags & MSG_SENDPAGE_NOTLAST)
1137 		flags |= MSG_MORE;
1138 
1139 	if (!up->pending) {
1140 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1141 
1142 		/* Call udp_sendmsg to specify destination address which
1143 		 * sendpage interface can't pass.
1144 		 * This will succeed only when the socket is connected.
1145 		 */
1146 		ret = udp_sendmsg(sk, &msg, 0);
1147 		if (ret < 0)
1148 			return ret;
1149 	}
1150 
1151 	lock_sock(sk);
1152 
1153 	if (unlikely(!up->pending)) {
1154 		release_sock(sk);
1155 
1156 		net_dbg_ratelimited("udp cork app bug 3\n");
1157 		return -EINVAL;
1158 	}
1159 
1160 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1161 			     page, offset, size, flags);
1162 	if (ret == -EOPNOTSUPP) {
1163 		release_sock(sk);
1164 		return sock_no_sendpage(sk->sk_socket, page, offset,
1165 					size, flags);
1166 	}
1167 	if (ret < 0) {
1168 		udp_flush_pending_frames(sk);
1169 		goto out;
1170 	}
1171 
1172 	up->len += size;
1173 	if (!(up->corkflag || (flags&MSG_MORE)))
1174 		ret = udp_push_pending_frames(sk);
1175 	if (!ret)
1176 		ret = size;
1177 out:
1178 	release_sock(sk);
1179 	return ret;
1180 }
1181 
1182 /**
1183  *	first_packet_length	- return length of first packet in receive queue
1184  *	@sk: socket
1185  *
1186  *	Drops all bad checksum frames, until a valid one is found.
1187  *	Returns the length of found skb, or 0 if none is found.
1188  */
1189 static unsigned int first_packet_length(struct sock *sk)
1190 {
1191 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1192 	struct sk_buff *skb;
1193 	unsigned int res;
1194 
1195 	__skb_queue_head_init(&list_kill);
1196 
1197 	spin_lock_bh(&rcvq->lock);
1198 	while ((skb = skb_peek(rcvq)) != NULL &&
1199 		udp_lib_checksum_complete(skb)) {
1200 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1201 				 IS_UDPLITE(sk));
1202 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1203 				 IS_UDPLITE(sk));
1204 		atomic_inc(&sk->sk_drops);
1205 		__skb_unlink(skb, rcvq);
1206 		__skb_queue_tail(&list_kill, skb);
1207 	}
1208 	res = skb ? skb->len : 0;
1209 	spin_unlock_bh(&rcvq->lock);
1210 
1211 	if (!skb_queue_empty(&list_kill)) {
1212 		bool slow = lock_sock_fast(sk);
1213 
1214 		__skb_queue_purge(&list_kill);
1215 		sk_mem_reclaim_partial(sk);
1216 		unlock_sock_fast(sk, slow);
1217 	}
1218 	return res;
1219 }
1220 
1221 /*
1222  *	IOCTL requests applicable to the UDP protocol
1223  */
1224 
1225 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1226 {
1227 	switch (cmd) {
1228 	case SIOCOUTQ:
1229 	{
1230 		int amount = sk_wmem_alloc_get(sk);
1231 
1232 		return put_user(amount, (int __user *)arg);
1233 	}
1234 
1235 	case SIOCINQ:
1236 	{
1237 		unsigned int amount = first_packet_length(sk);
1238 
1239 		if (amount)
1240 			/*
1241 			 * We will only return the amount
1242 			 * of this packet since that is all
1243 			 * that will be read.
1244 			 */
1245 			amount -= sizeof(struct udphdr);
1246 
1247 		return put_user(amount, (int __user *)arg);
1248 	}
1249 
1250 	default:
1251 		return -ENOIOCTLCMD;
1252 	}
1253 
1254 	return 0;
1255 }
1256 EXPORT_SYMBOL(udp_ioctl);
1257 
1258 /*
1259  * 	This should be easy, if there is something there we
1260  * 	return it, otherwise we block.
1261  */
1262 
1263 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1264 		int flags, int *addr_len)
1265 {
1266 	struct inet_sock *inet = inet_sk(sk);
1267 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1268 	struct sk_buff *skb;
1269 	unsigned int ulen, copied;
1270 	int peeked, off = 0;
1271 	int err;
1272 	int is_udplite = IS_UDPLITE(sk);
1273 	bool slow;
1274 
1275 	if (flags & MSG_ERRQUEUE)
1276 		return ip_recv_error(sk, msg, len, addr_len);
1277 
1278 try_again:
1279 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1280 				  &peeked, &off, &err);
1281 	if (!skb)
1282 		goto out;
1283 
1284 	ulen = skb->len - sizeof(struct udphdr);
1285 	copied = len;
1286 	if (copied > ulen)
1287 		copied = ulen;
1288 	else if (copied < ulen)
1289 		msg->msg_flags |= MSG_TRUNC;
1290 
1291 	/*
1292 	 * If checksum is needed at all, try to do it while copying the
1293 	 * data.  If the data is truncated, or if we only want a partial
1294 	 * coverage checksum (UDP-Lite), do it before the copy.
1295 	 */
1296 
1297 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1298 		if (udp_lib_checksum_complete(skb))
1299 			goto csum_copy_err;
1300 	}
1301 
1302 	if (skb_csum_unnecessary(skb))
1303 		err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1304 					    msg, copied);
1305 	else {
1306 		err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1307 						     msg);
1308 
1309 		if (err == -EINVAL)
1310 			goto csum_copy_err;
1311 	}
1312 
1313 	if (unlikely(err)) {
1314 		trace_kfree_skb(skb, udp_recvmsg);
1315 		if (!peeked) {
1316 			atomic_inc(&sk->sk_drops);
1317 			UDP_INC_STATS_USER(sock_net(sk),
1318 					   UDP_MIB_INERRORS, is_udplite);
1319 		}
1320 		goto out_free;
1321 	}
1322 
1323 	if (!peeked)
1324 		UDP_INC_STATS_USER(sock_net(sk),
1325 				UDP_MIB_INDATAGRAMS, is_udplite);
1326 
1327 	sock_recv_ts_and_drops(msg, sk, skb);
1328 
1329 	/* Copy the address. */
1330 	if (sin) {
1331 		sin->sin_family = AF_INET;
1332 		sin->sin_port = udp_hdr(skb)->source;
1333 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1334 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1335 		*addr_len = sizeof(*sin);
1336 	}
1337 	if (inet->cmsg_flags)
1338 		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1339 
1340 	err = copied;
1341 	if (flags & MSG_TRUNC)
1342 		err = ulen;
1343 
1344 out_free:
1345 	skb_free_datagram_locked(sk, skb);
1346 out:
1347 	return err;
1348 
1349 csum_copy_err:
1350 	slow = lock_sock_fast(sk);
1351 	if (!skb_kill_datagram(sk, skb, flags)) {
1352 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1353 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1354 	}
1355 	unlock_sock_fast(sk, slow);
1356 
1357 	/* starting over for a new packet, but check if we need to yield */
1358 	cond_resched();
1359 	msg->msg_flags &= ~MSG_TRUNC;
1360 	goto try_again;
1361 }
1362 
1363 int udp_disconnect(struct sock *sk, int flags)
1364 {
1365 	struct inet_sock *inet = inet_sk(sk);
1366 	/*
1367 	 *	1003.1g - break association.
1368 	 */
1369 
1370 	sk->sk_state = TCP_CLOSE;
1371 	inet->inet_daddr = 0;
1372 	inet->inet_dport = 0;
1373 	sock_rps_reset_rxhash(sk);
1374 	sk->sk_bound_dev_if = 0;
1375 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1376 		inet_reset_saddr(sk);
1377 
1378 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1379 		sk->sk_prot->unhash(sk);
1380 		inet->inet_sport = 0;
1381 	}
1382 	sk_dst_reset(sk);
1383 	return 0;
1384 }
1385 EXPORT_SYMBOL(udp_disconnect);
1386 
1387 void udp_lib_unhash(struct sock *sk)
1388 {
1389 	if (sk_hashed(sk)) {
1390 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1391 		struct udp_hslot *hslot, *hslot2;
1392 
1393 		hslot  = udp_hashslot(udptable, sock_net(sk),
1394 				      udp_sk(sk)->udp_port_hash);
1395 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1396 
1397 		spin_lock_bh(&hslot->lock);
1398 		if (sk_nulls_del_node_init_rcu(sk)) {
1399 			hslot->count--;
1400 			inet_sk(sk)->inet_num = 0;
1401 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1402 
1403 			spin_lock(&hslot2->lock);
1404 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1405 			hslot2->count--;
1406 			spin_unlock(&hslot2->lock);
1407 		}
1408 		spin_unlock_bh(&hslot->lock);
1409 	}
1410 }
1411 EXPORT_SYMBOL(udp_lib_unhash);
1412 
1413 /*
1414  * inet_rcv_saddr was changed, we must rehash secondary hash
1415  */
1416 void udp_lib_rehash(struct sock *sk, u16 newhash)
1417 {
1418 	if (sk_hashed(sk)) {
1419 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1420 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1421 
1422 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1423 		nhslot2 = udp_hashslot2(udptable, newhash);
1424 		udp_sk(sk)->udp_portaddr_hash = newhash;
1425 		if (hslot2 != nhslot2) {
1426 			hslot = udp_hashslot(udptable, sock_net(sk),
1427 					     udp_sk(sk)->udp_port_hash);
1428 			/* we must lock primary chain too */
1429 			spin_lock_bh(&hslot->lock);
1430 
1431 			spin_lock(&hslot2->lock);
1432 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1433 			hslot2->count--;
1434 			spin_unlock(&hslot2->lock);
1435 
1436 			spin_lock(&nhslot2->lock);
1437 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1438 						 &nhslot2->head);
1439 			nhslot2->count++;
1440 			spin_unlock(&nhslot2->lock);
1441 
1442 			spin_unlock_bh(&hslot->lock);
1443 		}
1444 	}
1445 }
1446 EXPORT_SYMBOL(udp_lib_rehash);
1447 
1448 static void udp_v4_rehash(struct sock *sk)
1449 {
1450 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1451 					  inet_sk(sk)->inet_rcv_saddr,
1452 					  inet_sk(sk)->inet_num);
1453 	udp_lib_rehash(sk, new_hash);
1454 }
1455 
1456 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1457 {
1458 	int rc;
1459 
1460 	if (inet_sk(sk)->inet_daddr) {
1461 		sock_rps_save_rxhash(sk, skb);
1462 		sk_mark_napi_id(sk, skb);
1463 		sk_incoming_cpu_update(sk);
1464 	}
1465 
1466 	rc = sock_queue_rcv_skb(sk, skb);
1467 	if (rc < 0) {
1468 		int is_udplite = IS_UDPLITE(sk);
1469 
1470 		/* Note that an ENOMEM error is charged twice */
1471 		if (rc == -ENOMEM)
1472 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1473 					 is_udplite);
1474 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1475 		kfree_skb(skb);
1476 		trace_udp_fail_queue_rcv_skb(rc, sk);
1477 		return -1;
1478 	}
1479 
1480 	return 0;
1481 
1482 }
1483 
1484 static struct static_key udp_encap_needed __read_mostly;
1485 void udp_encap_enable(void)
1486 {
1487 	if (!static_key_enabled(&udp_encap_needed))
1488 		static_key_slow_inc(&udp_encap_needed);
1489 }
1490 EXPORT_SYMBOL(udp_encap_enable);
1491 
1492 /* returns:
1493  *  -1: error
1494  *   0: success
1495  *  >0: "udp encap" protocol resubmission
1496  *
1497  * Note that in the success and error cases, the skb is assumed to
1498  * have either been requeued or freed.
1499  */
1500 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1501 {
1502 	struct udp_sock *up = udp_sk(sk);
1503 	int rc;
1504 	int is_udplite = IS_UDPLITE(sk);
1505 
1506 	/*
1507 	 *	Charge it to the socket, dropping if the queue is full.
1508 	 */
1509 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1510 		goto drop;
1511 	nf_reset(skb);
1512 
1513 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1514 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1515 
1516 		/*
1517 		 * This is an encapsulation socket so pass the skb to
1518 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1519 		 * fall through and pass this up the UDP socket.
1520 		 * up->encap_rcv() returns the following value:
1521 		 * =0 if skb was successfully passed to the encap
1522 		 *    handler or was discarded by it.
1523 		 * >0 if skb should be passed on to UDP.
1524 		 * <0 if skb should be resubmitted as proto -N
1525 		 */
1526 
1527 		/* if we're overly short, let UDP handle it */
1528 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1529 		if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1530 			int ret;
1531 
1532 			/* Verify checksum before giving to encap */
1533 			if (udp_lib_checksum_complete(skb))
1534 				goto csum_error;
1535 
1536 			ret = encap_rcv(sk, skb);
1537 			if (ret <= 0) {
1538 				UDP_INC_STATS_BH(sock_net(sk),
1539 						 UDP_MIB_INDATAGRAMS,
1540 						 is_udplite);
1541 				return -ret;
1542 			}
1543 		}
1544 
1545 		/* FALLTHROUGH -- it's a UDP Packet */
1546 	}
1547 
1548 	/*
1549 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1550 	 */
1551 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1552 
1553 		/*
1554 		 * MIB statistics other than incrementing the error count are
1555 		 * disabled for the following two types of errors: these depend
1556 		 * on the application settings, not on the functioning of the
1557 		 * protocol stack as such.
1558 		 *
1559 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1560 		 * way ... to ... at least let the receiving application block
1561 		 * delivery of packets with coverage values less than a value
1562 		 * provided by the application."
1563 		 */
1564 		if (up->pcrlen == 0) {          /* full coverage was set  */
1565 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1566 					    UDP_SKB_CB(skb)->cscov, skb->len);
1567 			goto drop;
1568 		}
1569 		/* The next case involves violating the min. coverage requested
1570 		 * by the receiver. This is subtle: if receiver wants x and x is
1571 		 * greater than the buffersize/MTU then receiver will complain
1572 		 * that it wants x while sender emits packets of smaller size y.
1573 		 * Therefore the above ...()->partial_cov statement is essential.
1574 		 */
1575 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1576 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1577 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1578 			goto drop;
1579 		}
1580 	}
1581 
1582 	if (rcu_access_pointer(sk->sk_filter) &&
1583 	    udp_lib_checksum_complete(skb))
1584 		goto csum_error;
1585 
1586 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1587 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1588 				 is_udplite);
1589 		goto drop;
1590 	}
1591 
1592 	rc = 0;
1593 
1594 	ipv4_pktinfo_prepare(sk, skb);
1595 	bh_lock_sock(sk);
1596 	if (!sock_owned_by_user(sk))
1597 		rc = __udp_queue_rcv_skb(sk, skb);
1598 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1599 		bh_unlock_sock(sk);
1600 		goto drop;
1601 	}
1602 	bh_unlock_sock(sk);
1603 
1604 	return rc;
1605 
1606 csum_error:
1607 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1608 drop:
1609 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1610 	atomic_inc(&sk->sk_drops);
1611 	kfree_skb(skb);
1612 	return -1;
1613 }
1614 
1615 static void flush_stack(struct sock **stack, unsigned int count,
1616 			struct sk_buff *skb, unsigned int final)
1617 {
1618 	unsigned int i;
1619 	struct sk_buff *skb1 = NULL;
1620 	struct sock *sk;
1621 
1622 	for (i = 0; i < count; i++) {
1623 		sk = stack[i];
1624 		if (likely(!skb1))
1625 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1626 
1627 		if (!skb1) {
1628 			atomic_inc(&sk->sk_drops);
1629 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1630 					 IS_UDPLITE(sk));
1631 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1632 					 IS_UDPLITE(sk));
1633 		}
1634 
1635 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1636 			skb1 = NULL;
1637 
1638 		sock_put(sk);
1639 	}
1640 	if (unlikely(skb1))
1641 		kfree_skb(skb1);
1642 }
1643 
1644 /* For TCP sockets, sk_rx_dst is protected by socket lock
1645  * For UDP, we use xchg() to guard against concurrent changes.
1646  */
1647 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1648 {
1649 	struct dst_entry *old;
1650 
1651 	dst_hold(dst);
1652 	old = xchg(&sk->sk_rx_dst, dst);
1653 	dst_release(old);
1654 }
1655 
1656 /*
1657  *	Multicasts and broadcasts go to each listener.
1658  *
1659  *	Note: called only from the BH handler context.
1660  */
1661 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1662 				    struct udphdr  *uh,
1663 				    __be32 saddr, __be32 daddr,
1664 				    struct udp_table *udptable,
1665 				    int proto)
1666 {
1667 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1668 	struct hlist_nulls_node *node;
1669 	unsigned short hnum = ntohs(uh->dest);
1670 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1671 	int dif = skb->dev->ifindex;
1672 	unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1673 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1674 	bool inner_flushed = false;
1675 
1676 	if (use_hash2) {
1677 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1678 			    udp_table.mask;
1679 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1680 start_lookup:
1681 		hslot = &udp_table.hash2[hash2];
1682 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1683 	}
1684 
1685 	spin_lock(&hslot->lock);
1686 	sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1687 		if (__udp_is_mcast_sock(net, sk,
1688 					uh->dest, daddr,
1689 					uh->source, saddr,
1690 					dif, hnum)) {
1691 			if (unlikely(count == ARRAY_SIZE(stack))) {
1692 				flush_stack(stack, count, skb, ~0);
1693 				inner_flushed = true;
1694 				count = 0;
1695 			}
1696 			stack[count++] = sk;
1697 			sock_hold(sk);
1698 		}
1699 	}
1700 
1701 	spin_unlock(&hslot->lock);
1702 
1703 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1704 	if (use_hash2 && hash2 != hash2_any) {
1705 		hash2 = hash2_any;
1706 		goto start_lookup;
1707 	}
1708 
1709 	/*
1710 	 * do the slow work with no lock held
1711 	 */
1712 	if (count) {
1713 		flush_stack(stack, count, skb, count - 1);
1714 	} else {
1715 		if (!inner_flushed)
1716 			UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1717 					 proto == IPPROTO_UDPLITE);
1718 		consume_skb(skb);
1719 	}
1720 	return 0;
1721 }
1722 
1723 /* Initialize UDP checksum. If exited with zero value (success),
1724  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1725  * Otherwise, csum completion requires chacksumming packet body,
1726  * including udp header and folding it to skb->csum.
1727  */
1728 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1729 				 int proto)
1730 {
1731 	int err;
1732 
1733 	UDP_SKB_CB(skb)->partial_cov = 0;
1734 	UDP_SKB_CB(skb)->cscov = skb->len;
1735 
1736 	if (proto == IPPROTO_UDPLITE) {
1737 		err = udplite_checksum_init(skb, uh);
1738 		if (err)
1739 			return err;
1740 	}
1741 
1742 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1743 					    inet_compute_pseudo);
1744 }
1745 
1746 /*
1747  *	All we need to do is get the socket, and then do a checksum.
1748  */
1749 
1750 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1751 		   int proto)
1752 {
1753 	struct sock *sk;
1754 	struct udphdr *uh;
1755 	unsigned short ulen;
1756 	struct rtable *rt = skb_rtable(skb);
1757 	__be32 saddr, daddr;
1758 	struct net *net = dev_net(skb->dev);
1759 
1760 	/*
1761 	 *  Validate the packet.
1762 	 */
1763 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1764 		goto drop;		/* No space for header. */
1765 
1766 	uh   = udp_hdr(skb);
1767 	ulen = ntohs(uh->len);
1768 	saddr = ip_hdr(skb)->saddr;
1769 	daddr = ip_hdr(skb)->daddr;
1770 
1771 	if (ulen > skb->len)
1772 		goto short_packet;
1773 
1774 	if (proto == IPPROTO_UDP) {
1775 		/* UDP validates ulen. */
1776 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1777 			goto short_packet;
1778 		uh = udp_hdr(skb);
1779 	}
1780 
1781 	if (udp4_csum_init(skb, uh, proto))
1782 		goto csum_error;
1783 
1784 	sk = skb_steal_sock(skb);
1785 	if (sk) {
1786 		struct dst_entry *dst = skb_dst(skb);
1787 		int ret;
1788 
1789 		if (unlikely(sk->sk_rx_dst != dst))
1790 			udp_sk_rx_dst_set(sk, dst);
1791 
1792 		ret = udp_queue_rcv_skb(sk, skb);
1793 		sock_put(sk);
1794 		/* a return value > 0 means to resubmit the input, but
1795 		 * it wants the return to be -protocol, or 0
1796 		 */
1797 		if (ret > 0)
1798 			return -ret;
1799 		return 0;
1800 	}
1801 
1802 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1803 		return __udp4_lib_mcast_deliver(net, skb, uh,
1804 						saddr, daddr, udptable, proto);
1805 
1806 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1807 	if (sk) {
1808 		int ret;
1809 
1810 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1811 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1812 						 inet_compute_pseudo);
1813 
1814 		ret = udp_queue_rcv_skb(sk, skb);
1815 		sock_put(sk);
1816 
1817 		/* a return value > 0 means to resubmit the input, but
1818 		 * it wants the return to be -protocol, or 0
1819 		 */
1820 		if (ret > 0)
1821 			return -ret;
1822 		return 0;
1823 	}
1824 
1825 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1826 		goto drop;
1827 	nf_reset(skb);
1828 
1829 	/* No socket. Drop packet silently, if checksum is wrong */
1830 	if (udp_lib_checksum_complete(skb))
1831 		goto csum_error;
1832 
1833 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1834 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1835 
1836 	/*
1837 	 * Hmm.  We got an UDP packet to a port to which we
1838 	 * don't wanna listen.  Ignore it.
1839 	 */
1840 	kfree_skb(skb);
1841 	return 0;
1842 
1843 short_packet:
1844 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1845 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1846 			    &saddr, ntohs(uh->source),
1847 			    ulen, skb->len,
1848 			    &daddr, ntohs(uh->dest));
1849 	goto drop;
1850 
1851 csum_error:
1852 	/*
1853 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1854 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1855 	 */
1856 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1857 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1858 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1859 			    ulen);
1860 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1861 drop:
1862 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1863 	kfree_skb(skb);
1864 	return 0;
1865 }
1866 
1867 /* We can only early demux multicast if there is a single matching socket.
1868  * If more than one socket found returns NULL
1869  */
1870 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1871 						  __be16 loc_port, __be32 loc_addr,
1872 						  __be16 rmt_port, __be32 rmt_addr,
1873 						  int dif)
1874 {
1875 	struct sock *sk, *result;
1876 	struct hlist_nulls_node *node;
1877 	unsigned short hnum = ntohs(loc_port);
1878 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1879 	struct udp_hslot *hslot = &udp_table.hash[slot];
1880 
1881 	/* Do not bother scanning a too big list */
1882 	if (hslot->count > 10)
1883 		return NULL;
1884 
1885 	rcu_read_lock();
1886 begin:
1887 	count = 0;
1888 	result = NULL;
1889 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1890 		if (__udp_is_mcast_sock(net, sk,
1891 					loc_port, loc_addr,
1892 					rmt_port, rmt_addr,
1893 					dif, hnum)) {
1894 			result = sk;
1895 			++count;
1896 		}
1897 	}
1898 	/*
1899 	 * if the nulls value we got at the end of this lookup is
1900 	 * not the expected one, we must restart lookup.
1901 	 * We probably met an item that was moved to another chain.
1902 	 */
1903 	if (get_nulls_value(node) != slot)
1904 		goto begin;
1905 
1906 	if (result) {
1907 		if (count != 1 ||
1908 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1909 			result = NULL;
1910 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1911 						       loc_port, loc_addr,
1912 						       rmt_port, rmt_addr,
1913 						       dif, hnum))) {
1914 			sock_put(result);
1915 			result = NULL;
1916 		}
1917 	}
1918 	rcu_read_unlock();
1919 	return result;
1920 }
1921 
1922 /* For unicast we should only early demux connected sockets or we can
1923  * break forwarding setups.  The chains here can be long so only check
1924  * if the first socket is an exact match and if not move on.
1925  */
1926 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1927 					    __be16 loc_port, __be32 loc_addr,
1928 					    __be16 rmt_port, __be32 rmt_addr,
1929 					    int dif)
1930 {
1931 	struct sock *sk, *result;
1932 	struct hlist_nulls_node *node;
1933 	unsigned short hnum = ntohs(loc_port);
1934 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1935 	unsigned int slot2 = hash2 & udp_table.mask;
1936 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1937 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1938 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1939 
1940 	rcu_read_lock();
1941 	result = NULL;
1942 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1943 		if (INET_MATCH(sk, net, acookie,
1944 			       rmt_addr, loc_addr, ports, dif))
1945 			result = sk;
1946 		/* Only check first socket in chain */
1947 		break;
1948 	}
1949 
1950 	if (result) {
1951 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1952 			result = NULL;
1953 		else if (unlikely(!INET_MATCH(sk, net, acookie,
1954 					      rmt_addr, loc_addr,
1955 					      ports, dif))) {
1956 			sock_put(result);
1957 			result = NULL;
1958 		}
1959 	}
1960 	rcu_read_unlock();
1961 	return result;
1962 }
1963 
1964 void udp_v4_early_demux(struct sk_buff *skb)
1965 {
1966 	struct net *net = dev_net(skb->dev);
1967 	const struct iphdr *iph;
1968 	const struct udphdr *uh;
1969 	struct sock *sk;
1970 	struct dst_entry *dst;
1971 	int dif = skb->dev->ifindex;
1972 	int ours;
1973 
1974 	/* validate the packet */
1975 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1976 		return;
1977 
1978 	iph = ip_hdr(skb);
1979 	uh = udp_hdr(skb);
1980 
1981 	if (skb->pkt_type == PACKET_BROADCAST ||
1982 	    skb->pkt_type == PACKET_MULTICAST) {
1983 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1984 
1985 		if (!in_dev)
1986 			return;
1987 
1988 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1989 				       iph->protocol);
1990 		if (!ours)
1991 			return;
1992 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1993 						   uh->source, iph->saddr, dif);
1994 	} else if (skb->pkt_type == PACKET_HOST) {
1995 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1996 					     uh->source, iph->saddr, dif);
1997 	} else {
1998 		return;
1999 	}
2000 
2001 	if (!sk)
2002 		return;
2003 
2004 	skb->sk = sk;
2005 	skb->destructor = sock_efree;
2006 	dst = READ_ONCE(sk->sk_rx_dst);
2007 
2008 	if (dst)
2009 		dst = dst_check(dst, 0);
2010 	if (dst) {
2011 		/* DST_NOCACHE can not be used without taking a reference */
2012 		if (dst->flags & DST_NOCACHE) {
2013 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2014 				skb_dst_set(skb, dst);
2015 		} else {
2016 			skb_dst_set_noref(skb, dst);
2017 		}
2018 	}
2019 }
2020 
2021 int udp_rcv(struct sk_buff *skb)
2022 {
2023 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2024 }
2025 
2026 void udp_destroy_sock(struct sock *sk)
2027 {
2028 	struct udp_sock *up = udp_sk(sk);
2029 	bool slow = lock_sock_fast(sk);
2030 	udp_flush_pending_frames(sk);
2031 	unlock_sock_fast(sk, slow);
2032 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2033 		void (*encap_destroy)(struct sock *sk);
2034 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2035 		if (encap_destroy)
2036 			encap_destroy(sk);
2037 	}
2038 }
2039 
2040 /*
2041  *	Socket option code for UDP
2042  */
2043 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2044 		       char __user *optval, unsigned int optlen,
2045 		       int (*push_pending_frames)(struct sock *))
2046 {
2047 	struct udp_sock *up = udp_sk(sk);
2048 	int val, valbool;
2049 	int err = 0;
2050 	int is_udplite = IS_UDPLITE(sk);
2051 
2052 	if (optlen < sizeof(int))
2053 		return -EINVAL;
2054 
2055 	if (get_user(val, (int __user *)optval))
2056 		return -EFAULT;
2057 
2058 	valbool = val ? 1 : 0;
2059 
2060 	switch (optname) {
2061 	case UDP_CORK:
2062 		if (val != 0) {
2063 			up->corkflag = 1;
2064 		} else {
2065 			up->corkflag = 0;
2066 			lock_sock(sk);
2067 			push_pending_frames(sk);
2068 			release_sock(sk);
2069 		}
2070 		break;
2071 
2072 	case UDP_ENCAP:
2073 		switch (val) {
2074 		case 0:
2075 		case UDP_ENCAP_ESPINUDP:
2076 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2077 			up->encap_rcv = xfrm4_udp_encap_rcv;
2078 			/* FALLTHROUGH */
2079 		case UDP_ENCAP_L2TPINUDP:
2080 			up->encap_type = val;
2081 			udp_encap_enable();
2082 			break;
2083 		default:
2084 			err = -ENOPROTOOPT;
2085 			break;
2086 		}
2087 		break;
2088 
2089 	case UDP_NO_CHECK6_TX:
2090 		up->no_check6_tx = valbool;
2091 		break;
2092 
2093 	case UDP_NO_CHECK6_RX:
2094 		up->no_check6_rx = valbool;
2095 		break;
2096 
2097 	/*
2098 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2099 	 */
2100 	/* The sender sets actual checksum coverage length via this option.
2101 	 * The case coverage > packet length is handled by send module. */
2102 	case UDPLITE_SEND_CSCOV:
2103 		if (!is_udplite)         /* Disable the option on UDP sockets */
2104 			return -ENOPROTOOPT;
2105 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2106 			val = 8;
2107 		else if (val > USHRT_MAX)
2108 			val = USHRT_MAX;
2109 		up->pcslen = val;
2110 		up->pcflag |= UDPLITE_SEND_CC;
2111 		break;
2112 
2113 	/* The receiver specifies a minimum checksum coverage value. To make
2114 	 * sense, this should be set to at least 8 (as done below). If zero is
2115 	 * used, this again means full checksum coverage.                     */
2116 	case UDPLITE_RECV_CSCOV:
2117 		if (!is_udplite)         /* Disable the option on UDP sockets */
2118 			return -ENOPROTOOPT;
2119 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2120 			val = 8;
2121 		else if (val > USHRT_MAX)
2122 			val = USHRT_MAX;
2123 		up->pcrlen = val;
2124 		up->pcflag |= UDPLITE_RECV_CC;
2125 		break;
2126 
2127 	default:
2128 		err = -ENOPROTOOPT;
2129 		break;
2130 	}
2131 
2132 	return err;
2133 }
2134 EXPORT_SYMBOL(udp_lib_setsockopt);
2135 
2136 int udp_setsockopt(struct sock *sk, int level, int optname,
2137 		   char __user *optval, unsigned int optlen)
2138 {
2139 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2140 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2141 					  udp_push_pending_frames);
2142 	return ip_setsockopt(sk, level, optname, optval, optlen);
2143 }
2144 
2145 #ifdef CONFIG_COMPAT
2146 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2147 			  char __user *optval, unsigned int optlen)
2148 {
2149 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2150 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2151 					  udp_push_pending_frames);
2152 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2153 }
2154 #endif
2155 
2156 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2157 		       char __user *optval, int __user *optlen)
2158 {
2159 	struct udp_sock *up = udp_sk(sk);
2160 	int val, len;
2161 
2162 	if (get_user(len, optlen))
2163 		return -EFAULT;
2164 
2165 	len = min_t(unsigned int, len, sizeof(int));
2166 
2167 	if (len < 0)
2168 		return -EINVAL;
2169 
2170 	switch (optname) {
2171 	case UDP_CORK:
2172 		val = up->corkflag;
2173 		break;
2174 
2175 	case UDP_ENCAP:
2176 		val = up->encap_type;
2177 		break;
2178 
2179 	case UDP_NO_CHECK6_TX:
2180 		val = up->no_check6_tx;
2181 		break;
2182 
2183 	case UDP_NO_CHECK6_RX:
2184 		val = up->no_check6_rx;
2185 		break;
2186 
2187 	/* The following two cannot be changed on UDP sockets, the return is
2188 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2189 	case UDPLITE_SEND_CSCOV:
2190 		val = up->pcslen;
2191 		break;
2192 
2193 	case UDPLITE_RECV_CSCOV:
2194 		val = up->pcrlen;
2195 		break;
2196 
2197 	default:
2198 		return -ENOPROTOOPT;
2199 	}
2200 
2201 	if (put_user(len, optlen))
2202 		return -EFAULT;
2203 	if (copy_to_user(optval, &val, len))
2204 		return -EFAULT;
2205 	return 0;
2206 }
2207 EXPORT_SYMBOL(udp_lib_getsockopt);
2208 
2209 int udp_getsockopt(struct sock *sk, int level, int optname,
2210 		   char __user *optval, int __user *optlen)
2211 {
2212 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2213 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2214 	return ip_getsockopt(sk, level, optname, optval, optlen);
2215 }
2216 
2217 #ifdef CONFIG_COMPAT
2218 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2219 				 char __user *optval, int __user *optlen)
2220 {
2221 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2222 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2223 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2224 }
2225 #endif
2226 /**
2227  * 	udp_poll - wait for a UDP event.
2228  *	@file - file struct
2229  *	@sock - socket
2230  *	@wait - poll table
2231  *
2232  *	This is same as datagram poll, except for the special case of
2233  *	blocking sockets. If application is using a blocking fd
2234  *	and a packet with checksum error is in the queue;
2235  *	then it could get return from select indicating data available
2236  *	but then block when reading it. Add special case code
2237  *	to work around these arguably broken applications.
2238  */
2239 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2240 {
2241 	unsigned int mask = datagram_poll(file, sock, wait);
2242 	struct sock *sk = sock->sk;
2243 
2244 	sock_rps_record_flow(sk);
2245 
2246 	/* Check for false positives due to checksum errors */
2247 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2248 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2249 		mask &= ~(POLLIN | POLLRDNORM);
2250 
2251 	return mask;
2252 
2253 }
2254 EXPORT_SYMBOL(udp_poll);
2255 
2256 struct proto udp_prot = {
2257 	.name		   = "UDP",
2258 	.owner		   = THIS_MODULE,
2259 	.close		   = udp_lib_close,
2260 	.connect	   = ip4_datagram_connect,
2261 	.disconnect	   = udp_disconnect,
2262 	.ioctl		   = udp_ioctl,
2263 	.destroy	   = udp_destroy_sock,
2264 	.setsockopt	   = udp_setsockopt,
2265 	.getsockopt	   = udp_getsockopt,
2266 	.sendmsg	   = udp_sendmsg,
2267 	.recvmsg	   = udp_recvmsg,
2268 	.sendpage	   = udp_sendpage,
2269 	.backlog_rcv	   = __udp_queue_rcv_skb,
2270 	.release_cb	   = ip4_datagram_release_cb,
2271 	.hash		   = udp_lib_hash,
2272 	.unhash		   = udp_lib_unhash,
2273 	.rehash		   = udp_v4_rehash,
2274 	.get_port	   = udp_v4_get_port,
2275 	.memory_allocated  = &udp_memory_allocated,
2276 	.sysctl_mem	   = sysctl_udp_mem,
2277 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2278 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2279 	.obj_size	   = sizeof(struct udp_sock),
2280 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2281 	.h.udp_table	   = &udp_table,
2282 #ifdef CONFIG_COMPAT
2283 	.compat_setsockopt = compat_udp_setsockopt,
2284 	.compat_getsockopt = compat_udp_getsockopt,
2285 #endif
2286 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2287 };
2288 EXPORT_SYMBOL(udp_prot);
2289 
2290 /* ------------------------------------------------------------------------ */
2291 #ifdef CONFIG_PROC_FS
2292 
2293 static struct sock *udp_get_first(struct seq_file *seq, int start)
2294 {
2295 	struct sock *sk;
2296 	struct udp_iter_state *state = seq->private;
2297 	struct net *net = seq_file_net(seq);
2298 
2299 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2300 	     ++state->bucket) {
2301 		struct hlist_nulls_node *node;
2302 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2303 
2304 		if (hlist_nulls_empty(&hslot->head))
2305 			continue;
2306 
2307 		spin_lock_bh(&hslot->lock);
2308 		sk_nulls_for_each(sk, node, &hslot->head) {
2309 			if (!net_eq(sock_net(sk), net))
2310 				continue;
2311 			if (sk->sk_family == state->family)
2312 				goto found;
2313 		}
2314 		spin_unlock_bh(&hslot->lock);
2315 	}
2316 	sk = NULL;
2317 found:
2318 	return sk;
2319 }
2320 
2321 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2322 {
2323 	struct udp_iter_state *state = seq->private;
2324 	struct net *net = seq_file_net(seq);
2325 
2326 	do {
2327 		sk = sk_nulls_next(sk);
2328 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2329 
2330 	if (!sk) {
2331 		if (state->bucket <= state->udp_table->mask)
2332 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2333 		return udp_get_first(seq, state->bucket + 1);
2334 	}
2335 	return sk;
2336 }
2337 
2338 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2339 {
2340 	struct sock *sk = udp_get_first(seq, 0);
2341 
2342 	if (sk)
2343 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2344 			--pos;
2345 	return pos ? NULL : sk;
2346 }
2347 
2348 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2349 {
2350 	struct udp_iter_state *state = seq->private;
2351 	state->bucket = MAX_UDP_PORTS;
2352 
2353 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2354 }
2355 
2356 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2357 {
2358 	struct sock *sk;
2359 
2360 	if (v == SEQ_START_TOKEN)
2361 		sk = udp_get_idx(seq, 0);
2362 	else
2363 		sk = udp_get_next(seq, v);
2364 
2365 	++*pos;
2366 	return sk;
2367 }
2368 
2369 static void udp_seq_stop(struct seq_file *seq, void *v)
2370 {
2371 	struct udp_iter_state *state = seq->private;
2372 
2373 	if (state->bucket <= state->udp_table->mask)
2374 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2375 }
2376 
2377 int udp_seq_open(struct inode *inode, struct file *file)
2378 {
2379 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2380 	struct udp_iter_state *s;
2381 	int err;
2382 
2383 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2384 			   sizeof(struct udp_iter_state));
2385 	if (err < 0)
2386 		return err;
2387 
2388 	s = ((struct seq_file *)file->private_data)->private;
2389 	s->family		= afinfo->family;
2390 	s->udp_table		= afinfo->udp_table;
2391 	return err;
2392 }
2393 EXPORT_SYMBOL(udp_seq_open);
2394 
2395 /* ------------------------------------------------------------------------ */
2396 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2397 {
2398 	struct proc_dir_entry *p;
2399 	int rc = 0;
2400 
2401 	afinfo->seq_ops.start		= udp_seq_start;
2402 	afinfo->seq_ops.next		= udp_seq_next;
2403 	afinfo->seq_ops.stop		= udp_seq_stop;
2404 
2405 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2406 			     afinfo->seq_fops, afinfo);
2407 	if (!p)
2408 		rc = -ENOMEM;
2409 	return rc;
2410 }
2411 EXPORT_SYMBOL(udp_proc_register);
2412 
2413 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2414 {
2415 	remove_proc_entry(afinfo->name, net->proc_net);
2416 }
2417 EXPORT_SYMBOL(udp_proc_unregister);
2418 
2419 /* ------------------------------------------------------------------------ */
2420 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2421 		int bucket)
2422 {
2423 	struct inet_sock *inet = inet_sk(sp);
2424 	__be32 dest = inet->inet_daddr;
2425 	__be32 src  = inet->inet_rcv_saddr;
2426 	__u16 destp	  = ntohs(inet->inet_dport);
2427 	__u16 srcp	  = ntohs(inet->inet_sport);
2428 
2429 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2430 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2431 		bucket, src, srcp, dest, destp, sp->sk_state,
2432 		sk_wmem_alloc_get(sp),
2433 		sk_rmem_alloc_get(sp),
2434 		0, 0L, 0,
2435 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2436 		0, sock_i_ino(sp),
2437 		atomic_read(&sp->sk_refcnt), sp,
2438 		atomic_read(&sp->sk_drops));
2439 }
2440 
2441 int udp4_seq_show(struct seq_file *seq, void *v)
2442 {
2443 	seq_setwidth(seq, 127);
2444 	if (v == SEQ_START_TOKEN)
2445 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2446 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2447 			   "inode ref pointer drops");
2448 	else {
2449 		struct udp_iter_state *state = seq->private;
2450 
2451 		udp4_format_sock(v, seq, state->bucket);
2452 	}
2453 	seq_pad(seq, '\n');
2454 	return 0;
2455 }
2456 
2457 static const struct file_operations udp_afinfo_seq_fops = {
2458 	.owner    = THIS_MODULE,
2459 	.open     = udp_seq_open,
2460 	.read     = seq_read,
2461 	.llseek   = seq_lseek,
2462 	.release  = seq_release_net
2463 };
2464 
2465 /* ------------------------------------------------------------------------ */
2466 static struct udp_seq_afinfo udp4_seq_afinfo = {
2467 	.name		= "udp",
2468 	.family		= AF_INET,
2469 	.udp_table	= &udp_table,
2470 	.seq_fops	= &udp_afinfo_seq_fops,
2471 	.seq_ops	= {
2472 		.show		= udp4_seq_show,
2473 	},
2474 };
2475 
2476 static int __net_init udp4_proc_init_net(struct net *net)
2477 {
2478 	return udp_proc_register(net, &udp4_seq_afinfo);
2479 }
2480 
2481 static void __net_exit udp4_proc_exit_net(struct net *net)
2482 {
2483 	udp_proc_unregister(net, &udp4_seq_afinfo);
2484 }
2485 
2486 static struct pernet_operations udp4_net_ops = {
2487 	.init = udp4_proc_init_net,
2488 	.exit = udp4_proc_exit_net,
2489 };
2490 
2491 int __init udp4_proc_init(void)
2492 {
2493 	return register_pernet_subsys(&udp4_net_ops);
2494 }
2495 
2496 void udp4_proc_exit(void)
2497 {
2498 	unregister_pernet_subsys(&udp4_net_ops);
2499 }
2500 #endif /* CONFIG_PROC_FS */
2501 
2502 static __initdata unsigned long uhash_entries;
2503 static int __init set_uhash_entries(char *str)
2504 {
2505 	ssize_t ret;
2506 
2507 	if (!str)
2508 		return 0;
2509 
2510 	ret = kstrtoul(str, 0, &uhash_entries);
2511 	if (ret)
2512 		return 0;
2513 
2514 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2515 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2516 	return 1;
2517 }
2518 __setup("uhash_entries=", set_uhash_entries);
2519 
2520 void __init udp_table_init(struct udp_table *table, const char *name)
2521 {
2522 	unsigned int i;
2523 
2524 	table->hash = alloc_large_system_hash(name,
2525 					      2 * sizeof(struct udp_hslot),
2526 					      uhash_entries,
2527 					      21, /* one slot per 2 MB */
2528 					      0,
2529 					      &table->log,
2530 					      &table->mask,
2531 					      UDP_HTABLE_SIZE_MIN,
2532 					      64 * 1024);
2533 
2534 	table->hash2 = table->hash + (table->mask + 1);
2535 	for (i = 0; i <= table->mask; i++) {
2536 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2537 		table->hash[i].count = 0;
2538 		spin_lock_init(&table->hash[i].lock);
2539 	}
2540 	for (i = 0; i <= table->mask; i++) {
2541 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2542 		table->hash2[i].count = 0;
2543 		spin_lock_init(&table->hash2[i].lock);
2544 	}
2545 }
2546 
2547 u32 udp_flow_hashrnd(void)
2548 {
2549 	static u32 hashrnd __read_mostly;
2550 
2551 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2552 
2553 	return hashrnd;
2554 }
2555 EXPORT_SYMBOL(udp_flow_hashrnd);
2556 
2557 void __init udp_init(void)
2558 {
2559 	unsigned long limit;
2560 
2561 	udp_table_init(&udp_table, "UDP");
2562 	limit = nr_free_buffer_pages() / 8;
2563 	limit = max(limit, 128UL);
2564 	sysctl_udp_mem[0] = limit / 4 * 3;
2565 	sysctl_udp_mem[1] = limit;
2566 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2567 
2568 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2569 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2570 }
2571