xref: /openbmc/linux/net/ipv4/udp.c (revision 67fb4330)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122 
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125 
126 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
129 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
130 
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133 
134 static struct udp_table *udp_get_table_prot(struct sock *sk)
135 {
136 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
137 }
138 
139 static int udp_lib_lport_inuse(struct net *net, __u16 num,
140 			       const struct udp_hslot *hslot,
141 			       unsigned long *bitmap,
142 			       struct sock *sk, unsigned int log)
143 {
144 	struct sock *sk2;
145 	kuid_t uid = sock_i_uid(sk);
146 
147 	sk_for_each(sk2, &hslot->head) {
148 		if (net_eq(sock_net(sk2), net) &&
149 		    sk2 != sk &&
150 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
152 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 		    inet_rcv_saddr_equal(sk, sk2, true)) {
155 			if (sk2->sk_reuseport && sk->sk_reuseport &&
156 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
157 			    uid_eq(uid, sock_i_uid(sk2))) {
158 				if (!bitmap)
159 					return 0;
160 			} else {
161 				if (!bitmap)
162 					return 1;
163 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
164 					  bitmap);
165 			}
166 		}
167 	}
168 	return 0;
169 }
170 
171 /*
172  * Note: we still hold spinlock of primary hash chain, so no other writer
173  * can insert/delete a socket with local_port == num
174  */
175 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
176 				struct udp_hslot *hslot2,
177 				struct sock *sk)
178 {
179 	struct sock *sk2;
180 	kuid_t uid = sock_i_uid(sk);
181 	int res = 0;
182 
183 	spin_lock(&hslot2->lock);
184 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 		if (net_eq(sock_net(sk2), net) &&
186 		    sk2 != sk &&
187 		    (udp_sk(sk2)->udp_port_hash == num) &&
188 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
189 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 		    inet_rcv_saddr_equal(sk, sk2, true)) {
192 			if (sk2->sk_reuseport && sk->sk_reuseport &&
193 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
194 			    uid_eq(uid, sock_i_uid(sk2))) {
195 				res = 0;
196 			} else {
197 				res = 1;
198 			}
199 			break;
200 		}
201 	}
202 	spin_unlock(&hslot2->lock);
203 	return res;
204 }
205 
206 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
207 {
208 	struct net *net = sock_net(sk);
209 	kuid_t uid = sock_i_uid(sk);
210 	struct sock *sk2;
211 
212 	sk_for_each(sk2, &hslot->head) {
213 		if (net_eq(sock_net(sk2), net) &&
214 		    sk2 != sk &&
215 		    sk2->sk_family == sk->sk_family &&
216 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 		    inet_rcv_saddr_equal(sk, sk2, false)) {
221 			return reuseport_add_sock(sk, sk2,
222 						  inet_rcv_saddr_any(sk));
223 		}
224 	}
225 
226 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
227 }
228 
229 /**
230  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
231  *
232  *  @sk:          socket struct in question
233  *  @snum:        port number to look up
234  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
235  *                   with NULL address
236  */
237 int udp_lib_get_port(struct sock *sk, unsigned short snum,
238 		     unsigned int hash2_nulladdr)
239 {
240 	struct udp_table *udptable = udp_get_table_prot(sk);
241 	struct udp_hslot *hslot, *hslot2;
242 	struct net *net = sock_net(sk);
243 	int error = 1;
244 
245 	if (!snum) {
246 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
247 		unsigned short first, last;
248 		int low, high, remaining;
249 		unsigned int rand;
250 
251 		inet_get_local_port_range(net, &low, &high);
252 		remaining = (high - low) + 1;
253 
254 		rand = get_random_u32();
255 		first = reciprocal_scale(rand, remaining) + low;
256 		/*
257 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
258 		 */
259 		rand = (rand | 1) * (udptable->mask + 1);
260 		last = first + udptable->mask + 1;
261 		do {
262 			hslot = udp_hashslot(udptable, net, first);
263 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
264 			spin_lock_bh(&hslot->lock);
265 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
266 					    udptable->log);
267 
268 			snum = first;
269 			/*
270 			 * Iterate on all possible values of snum for this hash.
271 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
272 			 * give us randomization and full range coverage.
273 			 */
274 			do {
275 				if (low <= snum && snum <= high &&
276 				    !test_bit(snum >> udptable->log, bitmap) &&
277 				    !inet_is_local_reserved_port(net, snum))
278 					goto found;
279 				snum += rand;
280 			} while (snum != first);
281 			spin_unlock_bh(&hslot->lock);
282 			cond_resched();
283 		} while (++first != last);
284 		goto fail;
285 	} else {
286 		hslot = udp_hashslot(udptable, net, snum);
287 		spin_lock_bh(&hslot->lock);
288 		if (hslot->count > 10) {
289 			int exist;
290 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
291 
292 			slot2          &= udptable->mask;
293 			hash2_nulladdr &= udptable->mask;
294 
295 			hslot2 = udp_hashslot2(udptable, slot2);
296 			if (hslot->count < hslot2->count)
297 				goto scan_primary_hash;
298 
299 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
300 			if (!exist && (hash2_nulladdr != slot2)) {
301 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
302 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
303 							     sk);
304 			}
305 			if (exist)
306 				goto fail_unlock;
307 			else
308 				goto found;
309 		}
310 scan_primary_hash:
311 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
312 			goto fail_unlock;
313 	}
314 found:
315 	inet_sk(sk)->inet_num = snum;
316 	udp_sk(sk)->udp_port_hash = snum;
317 	udp_sk(sk)->udp_portaddr_hash ^= snum;
318 	if (sk_unhashed(sk)) {
319 		if (sk->sk_reuseport &&
320 		    udp_reuseport_add_sock(sk, hslot)) {
321 			inet_sk(sk)->inet_num = 0;
322 			udp_sk(sk)->udp_port_hash = 0;
323 			udp_sk(sk)->udp_portaddr_hash ^= snum;
324 			goto fail_unlock;
325 		}
326 
327 		sk_add_node_rcu(sk, &hslot->head);
328 		hslot->count++;
329 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
330 
331 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
332 		spin_lock(&hslot2->lock);
333 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
334 		    sk->sk_family == AF_INET6)
335 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
336 					   &hslot2->head);
337 		else
338 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
339 					   &hslot2->head);
340 		hslot2->count++;
341 		spin_unlock(&hslot2->lock);
342 	}
343 	sock_set_flag(sk, SOCK_RCU_FREE);
344 	error = 0;
345 fail_unlock:
346 	spin_unlock_bh(&hslot->lock);
347 fail:
348 	return error;
349 }
350 EXPORT_SYMBOL(udp_lib_get_port);
351 
352 int udp_v4_get_port(struct sock *sk, unsigned short snum)
353 {
354 	unsigned int hash2_nulladdr =
355 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
356 	unsigned int hash2_partial =
357 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
358 
359 	/* precompute partial secondary hash */
360 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
361 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
362 }
363 
364 static int compute_score(struct sock *sk, struct net *net,
365 			 __be32 saddr, __be16 sport,
366 			 __be32 daddr, unsigned short hnum,
367 			 int dif, int sdif)
368 {
369 	int score;
370 	struct inet_sock *inet;
371 	bool dev_match;
372 
373 	if (!net_eq(sock_net(sk), net) ||
374 	    udp_sk(sk)->udp_port_hash != hnum ||
375 	    ipv6_only_sock(sk))
376 		return -1;
377 
378 	if (sk->sk_rcv_saddr != daddr)
379 		return -1;
380 
381 	score = (sk->sk_family == PF_INET) ? 2 : 1;
382 
383 	inet = inet_sk(sk);
384 	if (inet->inet_daddr) {
385 		if (inet->inet_daddr != saddr)
386 			return -1;
387 		score += 4;
388 	}
389 
390 	if (inet->inet_dport) {
391 		if (inet->inet_dport != sport)
392 			return -1;
393 		score += 4;
394 	}
395 
396 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
397 					dif, sdif);
398 	if (!dev_match)
399 		return -1;
400 	if (sk->sk_bound_dev_if)
401 		score += 4;
402 
403 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
404 		score++;
405 	return score;
406 }
407 
408 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
409 		       const __u16 lport, const __be32 faddr,
410 		       const __be16 fport)
411 {
412 	static u32 udp_ehash_secret __read_mostly;
413 
414 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
415 
416 	return __inet_ehashfn(laddr, lport, faddr, fport,
417 			      udp_ehash_secret + net_hash_mix(net));
418 }
419 
420 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
421 				     struct sk_buff *skb,
422 				     __be32 saddr, __be16 sport,
423 				     __be32 daddr, unsigned short hnum)
424 {
425 	struct sock *reuse_sk = NULL;
426 	u32 hash;
427 
428 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
429 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
430 		reuse_sk = reuseport_select_sock(sk, hash, skb,
431 						 sizeof(struct udphdr));
432 	}
433 	return reuse_sk;
434 }
435 
436 /* called with rcu_read_lock() */
437 static struct sock *udp4_lib_lookup2(struct net *net,
438 				     __be32 saddr, __be16 sport,
439 				     __be32 daddr, unsigned int hnum,
440 				     int dif, int sdif,
441 				     struct udp_hslot *hslot2,
442 				     struct sk_buff *skb)
443 {
444 	struct sock *sk, *result;
445 	int score, badness;
446 
447 	result = NULL;
448 	badness = 0;
449 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
450 		score = compute_score(sk, net, saddr, sport,
451 				      daddr, hnum, dif, sdif);
452 		if (score > badness) {
453 			result = lookup_reuseport(net, sk, skb,
454 						  saddr, sport, daddr, hnum);
455 			/* Fall back to scoring if group has connections */
456 			if (result && !reuseport_has_conns(sk))
457 				return result;
458 
459 			result = result ? : sk;
460 			badness = score;
461 		}
462 	}
463 	return result;
464 }
465 
466 static struct sock *udp4_lookup_run_bpf(struct net *net,
467 					struct udp_table *udptable,
468 					struct sk_buff *skb,
469 					__be32 saddr, __be16 sport,
470 					__be32 daddr, u16 hnum, const int dif)
471 {
472 	struct sock *sk, *reuse_sk;
473 	bool no_reuseport;
474 
475 	if (udptable != &udp_table)
476 		return NULL; /* only UDP is supported */
477 
478 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
479 					    daddr, hnum, dif, &sk);
480 	if (no_reuseport || IS_ERR_OR_NULL(sk))
481 		return sk;
482 
483 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
484 	if (reuse_sk)
485 		sk = reuse_sk;
486 	return sk;
487 }
488 
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490  * harder than this. -DaveM
491  */
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 		__be16 sport, __be32 daddr, __be16 dport, int dif,
494 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
495 {
496 	unsigned short hnum = ntohs(dport);
497 	unsigned int hash2, slot2;
498 	struct udp_hslot *hslot2;
499 	struct sock *result, *sk;
500 
501 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
502 	slot2 = hash2 & udptable->mask;
503 	hslot2 = &udptable->hash2[slot2];
504 
505 	/* Lookup connected or non-wildcard socket */
506 	result = udp4_lib_lookup2(net, saddr, sport,
507 				  daddr, hnum, dif, sdif,
508 				  hslot2, skb);
509 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
510 		goto done;
511 
512 	/* Lookup redirect from BPF */
513 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
514 		sk = udp4_lookup_run_bpf(net, udptable, skb,
515 					 saddr, sport, daddr, hnum, dif);
516 		if (sk) {
517 			result = sk;
518 			goto done;
519 		}
520 	}
521 
522 	/* Got non-wildcard socket or error on first lookup */
523 	if (result)
524 		goto done;
525 
526 	/* Lookup wildcard sockets */
527 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
528 	slot2 = hash2 & udptable->mask;
529 	hslot2 = &udptable->hash2[slot2];
530 
531 	result = udp4_lib_lookup2(net, saddr, sport,
532 				  htonl(INADDR_ANY), hnum, dif, sdif,
533 				  hslot2, skb);
534 done:
535 	if (IS_ERR(result))
536 		return NULL;
537 	return result;
538 }
539 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
540 
541 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
542 						 __be16 sport, __be16 dport,
543 						 struct udp_table *udptable)
544 {
545 	const struct iphdr *iph = ip_hdr(skb);
546 
547 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
548 				 iph->daddr, dport, inet_iif(skb),
549 				 inet_sdif(skb), udptable, skb);
550 }
551 
552 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
553 				 __be16 sport, __be16 dport)
554 {
555 	const struct iphdr *iph = ip_hdr(skb);
556 
557 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
558 				 iph->daddr, dport, inet_iif(skb),
559 				 inet_sdif(skb), &udp_table, NULL);
560 }
561 
562 /* Must be called under rcu_read_lock().
563  * Does increment socket refcount.
564  */
565 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
566 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
567 			     __be32 daddr, __be16 dport, int dif)
568 {
569 	struct sock *sk;
570 
571 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
572 			       dif, 0, &udp_table, NULL);
573 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
574 		sk = NULL;
575 	return sk;
576 }
577 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
578 #endif
579 
580 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
581 				       __be16 loc_port, __be32 loc_addr,
582 				       __be16 rmt_port, __be32 rmt_addr,
583 				       int dif, int sdif, unsigned short hnum)
584 {
585 	struct inet_sock *inet = inet_sk(sk);
586 
587 	if (!net_eq(sock_net(sk), net) ||
588 	    udp_sk(sk)->udp_port_hash != hnum ||
589 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
590 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
591 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
592 	    ipv6_only_sock(sk) ||
593 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
594 		return false;
595 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
596 		return false;
597 	return true;
598 }
599 
600 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
601 void udp_encap_enable(void)
602 {
603 	static_branch_inc(&udp_encap_needed_key);
604 }
605 EXPORT_SYMBOL(udp_encap_enable);
606 
607 void udp_encap_disable(void)
608 {
609 	static_branch_dec(&udp_encap_needed_key);
610 }
611 EXPORT_SYMBOL(udp_encap_disable);
612 
613 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
614  * through error handlers in encapsulations looking for a match.
615  */
616 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
617 {
618 	int i;
619 
620 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
621 		int (*handler)(struct sk_buff *skb, u32 info);
622 		const struct ip_tunnel_encap_ops *encap;
623 
624 		encap = rcu_dereference(iptun_encaps[i]);
625 		if (!encap)
626 			continue;
627 		handler = encap->err_handler;
628 		if (handler && !handler(skb, info))
629 			return 0;
630 	}
631 
632 	return -ENOENT;
633 }
634 
635 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
636  * reversing source and destination port: this will match tunnels that force the
637  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
638  * lwtunnels might actually break this assumption by being configured with
639  * different destination ports on endpoints, in this case we won't be able to
640  * trace ICMP messages back to them.
641  *
642  * If this doesn't match any socket, probe tunnels with arbitrary destination
643  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
644  * we've sent packets to won't necessarily match the local destination port.
645  *
646  * Then ask the tunnel implementation to match the error against a valid
647  * association.
648  *
649  * Return an error if we can't find a match, the socket if we need further
650  * processing, zero otherwise.
651  */
652 static struct sock *__udp4_lib_err_encap(struct net *net,
653 					 const struct iphdr *iph,
654 					 struct udphdr *uh,
655 					 struct udp_table *udptable,
656 					 struct sock *sk,
657 					 struct sk_buff *skb, u32 info)
658 {
659 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
660 	int network_offset, transport_offset;
661 	struct udp_sock *up;
662 
663 	network_offset = skb_network_offset(skb);
664 	transport_offset = skb_transport_offset(skb);
665 
666 	/* Network header needs to point to the outer IPv4 header inside ICMP */
667 	skb_reset_network_header(skb);
668 
669 	/* Transport header needs to point to the UDP header */
670 	skb_set_transport_header(skb, iph->ihl << 2);
671 
672 	if (sk) {
673 		up = udp_sk(sk);
674 
675 		lookup = READ_ONCE(up->encap_err_lookup);
676 		if (lookup && lookup(sk, skb))
677 			sk = NULL;
678 
679 		goto out;
680 	}
681 
682 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
683 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
684 			       udptable, NULL);
685 	if (sk) {
686 		up = udp_sk(sk);
687 
688 		lookup = READ_ONCE(up->encap_err_lookup);
689 		if (!lookup || lookup(sk, skb))
690 			sk = NULL;
691 	}
692 
693 out:
694 	if (!sk)
695 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
696 
697 	skb_set_transport_header(skb, transport_offset);
698 	skb_set_network_header(skb, network_offset);
699 
700 	return sk;
701 }
702 
703 /*
704  * This routine is called by the ICMP module when it gets some
705  * sort of error condition.  If err < 0 then the socket should
706  * be closed and the error returned to the user.  If err > 0
707  * it's just the icmp type << 8 | icmp code.
708  * Header points to the ip header of the error packet. We move
709  * on past this. Then (as it used to claim before adjustment)
710  * header points to the first 8 bytes of the udp header.  We need
711  * to find the appropriate port.
712  */
713 
714 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
715 {
716 	struct inet_sock *inet;
717 	const struct iphdr *iph = (const struct iphdr *)skb->data;
718 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
719 	const int type = icmp_hdr(skb)->type;
720 	const int code = icmp_hdr(skb)->code;
721 	bool tunnel = false;
722 	struct sock *sk;
723 	int harderr;
724 	int err;
725 	struct net *net = dev_net(skb->dev);
726 
727 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
728 			       iph->saddr, uh->source, skb->dev->ifindex,
729 			       inet_sdif(skb), udptable, NULL);
730 
731 	if (!sk || udp_sk(sk)->encap_type) {
732 		/* No socket for error: try tunnels before discarding */
733 		if (static_branch_unlikely(&udp_encap_needed_key)) {
734 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
735 						  info);
736 			if (!sk)
737 				return 0;
738 		} else
739 			sk = ERR_PTR(-ENOENT);
740 
741 		if (IS_ERR(sk)) {
742 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
743 			return PTR_ERR(sk);
744 		}
745 
746 		tunnel = true;
747 	}
748 
749 	err = 0;
750 	harderr = 0;
751 	inet = inet_sk(sk);
752 
753 	switch (type) {
754 	default:
755 	case ICMP_TIME_EXCEEDED:
756 		err = EHOSTUNREACH;
757 		break;
758 	case ICMP_SOURCE_QUENCH:
759 		goto out;
760 	case ICMP_PARAMETERPROB:
761 		err = EPROTO;
762 		harderr = 1;
763 		break;
764 	case ICMP_DEST_UNREACH:
765 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
766 			ipv4_sk_update_pmtu(skb, sk, info);
767 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
768 				err = EMSGSIZE;
769 				harderr = 1;
770 				break;
771 			}
772 			goto out;
773 		}
774 		err = EHOSTUNREACH;
775 		if (code <= NR_ICMP_UNREACH) {
776 			harderr = icmp_err_convert[code].fatal;
777 			err = icmp_err_convert[code].errno;
778 		}
779 		break;
780 	case ICMP_REDIRECT:
781 		ipv4_sk_redirect(skb, sk);
782 		goto out;
783 	}
784 
785 	/*
786 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
787 	 *	4.1.3.3.
788 	 */
789 	if (tunnel) {
790 		/* ...not for tunnels though: we don't have a sending socket */
791 		if (udp_sk(sk)->encap_err_rcv)
792 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
793 						  (u8 *)(uh+1));
794 		goto out;
795 	}
796 	if (!inet->recverr) {
797 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
798 			goto out;
799 	} else
800 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
801 
802 	sk->sk_err = err;
803 	sk_error_report(sk);
804 out:
805 	return 0;
806 }
807 
808 int udp_err(struct sk_buff *skb, u32 info)
809 {
810 	return __udp4_lib_err(skb, info, &udp_table);
811 }
812 
813 /*
814  * Throw away all pending data and cancel the corking. Socket is locked.
815  */
816 void udp_flush_pending_frames(struct sock *sk)
817 {
818 	struct udp_sock *up = udp_sk(sk);
819 
820 	if (up->pending) {
821 		up->len = 0;
822 		up->pending = 0;
823 		ip_flush_pending_frames(sk);
824 	}
825 }
826 EXPORT_SYMBOL(udp_flush_pending_frames);
827 
828 /**
829  * 	udp4_hwcsum  -  handle outgoing HW checksumming
830  * 	@skb: 	sk_buff containing the filled-in UDP header
831  * 	        (checksum field must be zeroed out)
832  *	@src:	source IP address
833  *	@dst:	destination IP address
834  */
835 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
836 {
837 	struct udphdr *uh = udp_hdr(skb);
838 	int offset = skb_transport_offset(skb);
839 	int len = skb->len - offset;
840 	int hlen = len;
841 	__wsum csum = 0;
842 
843 	if (!skb_has_frag_list(skb)) {
844 		/*
845 		 * Only one fragment on the socket.
846 		 */
847 		skb->csum_start = skb_transport_header(skb) - skb->head;
848 		skb->csum_offset = offsetof(struct udphdr, check);
849 		uh->check = ~csum_tcpudp_magic(src, dst, len,
850 					       IPPROTO_UDP, 0);
851 	} else {
852 		struct sk_buff *frags;
853 
854 		/*
855 		 * HW-checksum won't work as there are two or more
856 		 * fragments on the socket so that all csums of sk_buffs
857 		 * should be together
858 		 */
859 		skb_walk_frags(skb, frags) {
860 			csum = csum_add(csum, frags->csum);
861 			hlen -= frags->len;
862 		}
863 
864 		csum = skb_checksum(skb, offset, hlen, csum);
865 		skb->ip_summed = CHECKSUM_NONE;
866 
867 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
868 		if (uh->check == 0)
869 			uh->check = CSUM_MANGLED_0;
870 	}
871 }
872 EXPORT_SYMBOL_GPL(udp4_hwcsum);
873 
874 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
875  * for the simple case like when setting the checksum for a UDP tunnel.
876  */
877 void udp_set_csum(bool nocheck, struct sk_buff *skb,
878 		  __be32 saddr, __be32 daddr, int len)
879 {
880 	struct udphdr *uh = udp_hdr(skb);
881 
882 	if (nocheck) {
883 		uh->check = 0;
884 	} else if (skb_is_gso(skb)) {
885 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
886 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
887 		uh->check = 0;
888 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
889 		if (uh->check == 0)
890 			uh->check = CSUM_MANGLED_0;
891 	} else {
892 		skb->ip_summed = CHECKSUM_PARTIAL;
893 		skb->csum_start = skb_transport_header(skb) - skb->head;
894 		skb->csum_offset = offsetof(struct udphdr, check);
895 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
896 	}
897 }
898 EXPORT_SYMBOL(udp_set_csum);
899 
900 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
901 			struct inet_cork *cork)
902 {
903 	struct sock *sk = skb->sk;
904 	struct inet_sock *inet = inet_sk(sk);
905 	struct udphdr *uh;
906 	int err;
907 	int is_udplite = IS_UDPLITE(sk);
908 	int offset = skb_transport_offset(skb);
909 	int len = skb->len - offset;
910 	int datalen = len - sizeof(*uh);
911 	__wsum csum = 0;
912 
913 	/*
914 	 * Create a UDP header
915 	 */
916 	uh = udp_hdr(skb);
917 	uh->source = inet->inet_sport;
918 	uh->dest = fl4->fl4_dport;
919 	uh->len = htons(len);
920 	uh->check = 0;
921 
922 	if (cork->gso_size) {
923 		const int hlen = skb_network_header_len(skb) +
924 				 sizeof(struct udphdr);
925 
926 		if (hlen + cork->gso_size > cork->fragsize) {
927 			kfree_skb(skb);
928 			return -EINVAL;
929 		}
930 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
931 			kfree_skb(skb);
932 			return -EINVAL;
933 		}
934 		if (sk->sk_no_check_tx) {
935 			kfree_skb(skb);
936 			return -EINVAL;
937 		}
938 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
939 		    dst_xfrm(skb_dst(skb))) {
940 			kfree_skb(skb);
941 			return -EIO;
942 		}
943 
944 		if (datalen > cork->gso_size) {
945 			skb_shinfo(skb)->gso_size = cork->gso_size;
946 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
947 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
948 								 cork->gso_size);
949 		}
950 		goto csum_partial;
951 	}
952 
953 	if (is_udplite)  				 /*     UDP-Lite      */
954 		csum = udplite_csum(skb);
955 
956 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
957 
958 		skb->ip_summed = CHECKSUM_NONE;
959 		goto send;
960 
961 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
962 csum_partial:
963 
964 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
965 		goto send;
966 
967 	} else
968 		csum = udp_csum(skb);
969 
970 	/* add protocol-dependent pseudo-header */
971 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
972 				      sk->sk_protocol, csum);
973 	if (uh->check == 0)
974 		uh->check = CSUM_MANGLED_0;
975 
976 send:
977 	err = ip_send_skb(sock_net(sk), skb);
978 	if (err) {
979 		if (err == -ENOBUFS && !inet->recverr) {
980 			UDP_INC_STATS(sock_net(sk),
981 				      UDP_MIB_SNDBUFERRORS, is_udplite);
982 			err = 0;
983 		}
984 	} else
985 		UDP_INC_STATS(sock_net(sk),
986 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
987 	return err;
988 }
989 
990 /*
991  * Push out all pending data as one UDP datagram. Socket is locked.
992  */
993 int udp_push_pending_frames(struct sock *sk)
994 {
995 	struct udp_sock  *up = udp_sk(sk);
996 	struct inet_sock *inet = inet_sk(sk);
997 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
998 	struct sk_buff *skb;
999 	int err = 0;
1000 
1001 	skb = ip_finish_skb(sk, fl4);
1002 	if (!skb)
1003 		goto out;
1004 
1005 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1006 
1007 out:
1008 	up->len = 0;
1009 	up->pending = 0;
1010 	return err;
1011 }
1012 EXPORT_SYMBOL(udp_push_pending_frames);
1013 
1014 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1015 {
1016 	switch (cmsg->cmsg_type) {
1017 	case UDP_SEGMENT:
1018 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1019 			return -EINVAL;
1020 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1021 		return 0;
1022 	default:
1023 		return -EINVAL;
1024 	}
1025 }
1026 
1027 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1028 {
1029 	struct cmsghdr *cmsg;
1030 	bool need_ip = false;
1031 	int err;
1032 
1033 	for_each_cmsghdr(cmsg, msg) {
1034 		if (!CMSG_OK(msg, cmsg))
1035 			return -EINVAL;
1036 
1037 		if (cmsg->cmsg_level != SOL_UDP) {
1038 			need_ip = true;
1039 			continue;
1040 		}
1041 
1042 		err = __udp_cmsg_send(cmsg, gso_size);
1043 		if (err)
1044 			return err;
1045 	}
1046 
1047 	return need_ip;
1048 }
1049 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1050 
1051 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1052 {
1053 	struct inet_sock *inet = inet_sk(sk);
1054 	struct udp_sock *up = udp_sk(sk);
1055 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1056 	struct flowi4 fl4_stack;
1057 	struct flowi4 *fl4;
1058 	int ulen = len;
1059 	struct ipcm_cookie ipc;
1060 	struct rtable *rt = NULL;
1061 	int free = 0;
1062 	int connected = 0;
1063 	__be32 daddr, faddr, saddr;
1064 	__be16 dport;
1065 	u8  tos;
1066 	int err, is_udplite = IS_UDPLITE(sk);
1067 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1068 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1069 	struct sk_buff *skb;
1070 	struct ip_options_data opt_copy;
1071 
1072 	if (len > 0xFFFF)
1073 		return -EMSGSIZE;
1074 
1075 	/*
1076 	 *	Check the flags.
1077 	 */
1078 
1079 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1080 		return -EOPNOTSUPP;
1081 
1082 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1083 
1084 	fl4 = &inet->cork.fl.u.ip4;
1085 	if (up->pending) {
1086 		/*
1087 		 * There are pending frames.
1088 		 * The socket lock must be held while it's corked.
1089 		 */
1090 		lock_sock(sk);
1091 		if (likely(up->pending)) {
1092 			if (unlikely(up->pending != AF_INET)) {
1093 				release_sock(sk);
1094 				return -EINVAL;
1095 			}
1096 			goto do_append_data;
1097 		}
1098 		release_sock(sk);
1099 	}
1100 	ulen += sizeof(struct udphdr);
1101 
1102 	/*
1103 	 *	Get and verify the address.
1104 	 */
1105 	if (usin) {
1106 		if (msg->msg_namelen < sizeof(*usin))
1107 			return -EINVAL;
1108 		if (usin->sin_family != AF_INET) {
1109 			if (usin->sin_family != AF_UNSPEC)
1110 				return -EAFNOSUPPORT;
1111 		}
1112 
1113 		daddr = usin->sin_addr.s_addr;
1114 		dport = usin->sin_port;
1115 		if (dport == 0)
1116 			return -EINVAL;
1117 	} else {
1118 		if (sk->sk_state != TCP_ESTABLISHED)
1119 			return -EDESTADDRREQ;
1120 		daddr = inet->inet_daddr;
1121 		dport = inet->inet_dport;
1122 		/* Open fast path for connected socket.
1123 		   Route will not be used, if at least one option is set.
1124 		 */
1125 		connected = 1;
1126 	}
1127 
1128 	ipcm_init_sk(&ipc, inet);
1129 	ipc.gso_size = READ_ONCE(up->gso_size);
1130 
1131 	if (msg->msg_controllen) {
1132 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1133 		if (err > 0)
1134 			err = ip_cmsg_send(sk, msg, &ipc,
1135 					   sk->sk_family == AF_INET6);
1136 		if (unlikely(err < 0)) {
1137 			kfree(ipc.opt);
1138 			return err;
1139 		}
1140 		if (ipc.opt)
1141 			free = 1;
1142 		connected = 0;
1143 	}
1144 	if (!ipc.opt) {
1145 		struct ip_options_rcu *inet_opt;
1146 
1147 		rcu_read_lock();
1148 		inet_opt = rcu_dereference(inet->inet_opt);
1149 		if (inet_opt) {
1150 			memcpy(&opt_copy, inet_opt,
1151 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1152 			ipc.opt = &opt_copy.opt;
1153 		}
1154 		rcu_read_unlock();
1155 	}
1156 
1157 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1158 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1159 					    (struct sockaddr *)usin, &ipc.addr);
1160 		if (err)
1161 			goto out_free;
1162 		if (usin) {
1163 			if (usin->sin_port == 0) {
1164 				/* BPF program set invalid port. Reject it. */
1165 				err = -EINVAL;
1166 				goto out_free;
1167 			}
1168 			daddr = usin->sin_addr.s_addr;
1169 			dport = usin->sin_port;
1170 		}
1171 	}
1172 
1173 	saddr = ipc.addr;
1174 	ipc.addr = faddr = daddr;
1175 
1176 	if (ipc.opt && ipc.opt->opt.srr) {
1177 		if (!daddr) {
1178 			err = -EINVAL;
1179 			goto out_free;
1180 		}
1181 		faddr = ipc.opt->opt.faddr;
1182 		connected = 0;
1183 	}
1184 	tos = get_rttos(&ipc, inet);
1185 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1186 	    (msg->msg_flags & MSG_DONTROUTE) ||
1187 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1188 		tos |= RTO_ONLINK;
1189 		connected = 0;
1190 	}
1191 
1192 	if (ipv4_is_multicast(daddr)) {
1193 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1194 			ipc.oif = inet->mc_index;
1195 		if (!saddr)
1196 			saddr = inet->mc_addr;
1197 		connected = 0;
1198 	} else if (!ipc.oif) {
1199 		ipc.oif = inet->uc_index;
1200 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1201 		/* oif is set, packet is to local broadcast and
1202 		 * uc_index is set. oif is most likely set
1203 		 * by sk_bound_dev_if. If uc_index != oif check if the
1204 		 * oif is an L3 master and uc_index is an L3 slave.
1205 		 * If so, we want to allow the send using the uc_index.
1206 		 */
1207 		if (ipc.oif != inet->uc_index &&
1208 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1209 							      inet->uc_index)) {
1210 			ipc.oif = inet->uc_index;
1211 		}
1212 	}
1213 
1214 	if (connected)
1215 		rt = (struct rtable *)sk_dst_check(sk, 0);
1216 
1217 	if (!rt) {
1218 		struct net *net = sock_net(sk);
1219 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1220 
1221 		fl4 = &fl4_stack;
1222 
1223 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1224 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1225 				   flow_flags,
1226 				   faddr, saddr, dport, inet->inet_sport,
1227 				   sk->sk_uid);
1228 
1229 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1230 		rt = ip_route_output_flow(net, fl4, sk);
1231 		if (IS_ERR(rt)) {
1232 			err = PTR_ERR(rt);
1233 			rt = NULL;
1234 			if (err == -ENETUNREACH)
1235 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1236 			goto out;
1237 		}
1238 
1239 		err = -EACCES;
1240 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1241 		    !sock_flag(sk, SOCK_BROADCAST))
1242 			goto out;
1243 		if (connected)
1244 			sk_dst_set(sk, dst_clone(&rt->dst));
1245 	}
1246 
1247 	if (msg->msg_flags&MSG_CONFIRM)
1248 		goto do_confirm;
1249 back_from_confirm:
1250 
1251 	saddr = fl4->saddr;
1252 	if (!ipc.addr)
1253 		daddr = ipc.addr = fl4->daddr;
1254 
1255 	/* Lockless fast path for the non-corking case. */
1256 	if (!corkreq) {
1257 		struct inet_cork cork;
1258 
1259 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1260 				  sizeof(struct udphdr), &ipc, &rt,
1261 				  &cork, msg->msg_flags);
1262 		err = PTR_ERR(skb);
1263 		if (!IS_ERR_OR_NULL(skb))
1264 			err = udp_send_skb(skb, fl4, &cork);
1265 		goto out;
1266 	}
1267 
1268 	lock_sock(sk);
1269 	if (unlikely(up->pending)) {
1270 		/* The socket is already corked while preparing it. */
1271 		/* ... which is an evident application bug. --ANK */
1272 		release_sock(sk);
1273 
1274 		net_dbg_ratelimited("socket already corked\n");
1275 		err = -EINVAL;
1276 		goto out;
1277 	}
1278 	/*
1279 	 *	Now cork the socket to pend data.
1280 	 */
1281 	fl4 = &inet->cork.fl.u.ip4;
1282 	fl4->daddr = daddr;
1283 	fl4->saddr = saddr;
1284 	fl4->fl4_dport = dport;
1285 	fl4->fl4_sport = inet->inet_sport;
1286 	up->pending = AF_INET;
1287 
1288 do_append_data:
1289 	up->len += ulen;
1290 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1291 			     sizeof(struct udphdr), &ipc, &rt,
1292 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1293 	if (err)
1294 		udp_flush_pending_frames(sk);
1295 	else if (!corkreq)
1296 		err = udp_push_pending_frames(sk);
1297 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1298 		up->pending = 0;
1299 	release_sock(sk);
1300 
1301 out:
1302 	ip_rt_put(rt);
1303 out_free:
1304 	if (free)
1305 		kfree(ipc.opt);
1306 	if (!err)
1307 		return len;
1308 	/*
1309 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1310 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1311 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1312 	 * things).  We could add another new stat but at least for now that
1313 	 * seems like overkill.
1314 	 */
1315 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1316 		UDP_INC_STATS(sock_net(sk),
1317 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1318 	}
1319 	return err;
1320 
1321 do_confirm:
1322 	if (msg->msg_flags & MSG_PROBE)
1323 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1324 	if (!(msg->msg_flags&MSG_PROBE) || len)
1325 		goto back_from_confirm;
1326 	err = 0;
1327 	goto out;
1328 }
1329 EXPORT_SYMBOL(udp_sendmsg);
1330 
1331 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1332 		 size_t size, int flags)
1333 {
1334 	struct inet_sock *inet = inet_sk(sk);
1335 	struct udp_sock *up = udp_sk(sk);
1336 	int ret;
1337 
1338 	if (flags & MSG_SENDPAGE_NOTLAST)
1339 		flags |= MSG_MORE;
1340 
1341 	if (!up->pending) {
1342 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1343 
1344 		/* Call udp_sendmsg to specify destination address which
1345 		 * sendpage interface can't pass.
1346 		 * This will succeed only when the socket is connected.
1347 		 */
1348 		ret = udp_sendmsg(sk, &msg, 0);
1349 		if (ret < 0)
1350 			return ret;
1351 	}
1352 
1353 	lock_sock(sk);
1354 
1355 	if (unlikely(!up->pending)) {
1356 		release_sock(sk);
1357 
1358 		net_dbg_ratelimited("cork failed\n");
1359 		return -EINVAL;
1360 	}
1361 
1362 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1363 			     page, offset, size, flags);
1364 	if (ret == -EOPNOTSUPP) {
1365 		release_sock(sk);
1366 		return sock_no_sendpage(sk->sk_socket, page, offset,
1367 					size, flags);
1368 	}
1369 	if (ret < 0) {
1370 		udp_flush_pending_frames(sk);
1371 		goto out;
1372 	}
1373 
1374 	up->len += size;
1375 	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1376 		ret = udp_push_pending_frames(sk);
1377 	if (!ret)
1378 		ret = size;
1379 out:
1380 	release_sock(sk);
1381 	return ret;
1382 }
1383 
1384 #define UDP_SKB_IS_STATELESS 0x80000000
1385 
1386 /* all head states (dst, sk, nf conntrack) except skb extensions are
1387  * cleared by udp_rcv().
1388  *
1389  * We need to preserve secpath, if present, to eventually process
1390  * IP_CMSG_PASSSEC at recvmsg() time.
1391  *
1392  * Other extensions can be cleared.
1393  */
1394 static bool udp_try_make_stateless(struct sk_buff *skb)
1395 {
1396 	if (!skb_has_extensions(skb))
1397 		return true;
1398 
1399 	if (!secpath_exists(skb)) {
1400 		skb_ext_reset(skb);
1401 		return true;
1402 	}
1403 
1404 	return false;
1405 }
1406 
1407 static void udp_set_dev_scratch(struct sk_buff *skb)
1408 {
1409 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1410 
1411 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1412 	scratch->_tsize_state = skb->truesize;
1413 #if BITS_PER_LONG == 64
1414 	scratch->len = skb->len;
1415 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1416 	scratch->is_linear = !skb_is_nonlinear(skb);
1417 #endif
1418 	if (udp_try_make_stateless(skb))
1419 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1420 }
1421 
1422 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1423 {
1424 	/* We come here after udp_lib_checksum_complete() returned 0.
1425 	 * This means that __skb_checksum_complete() might have
1426 	 * set skb->csum_valid to 1.
1427 	 * On 64bit platforms, we can set csum_unnecessary
1428 	 * to true, but only if the skb is not shared.
1429 	 */
1430 #if BITS_PER_LONG == 64
1431 	if (!skb_shared(skb))
1432 		udp_skb_scratch(skb)->csum_unnecessary = true;
1433 #endif
1434 }
1435 
1436 static int udp_skb_truesize(struct sk_buff *skb)
1437 {
1438 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1439 }
1440 
1441 static bool udp_skb_has_head_state(struct sk_buff *skb)
1442 {
1443 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1444 }
1445 
1446 /* fully reclaim rmem/fwd memory allocated for skb */
1447 static void udp_rmem_release(struct sock *sk, int size, int partial,
1448 			     bool rx_queue_lock_held)
1449 {
1450 	struct udp_sock *up = udp_sk(sk);
1451 	struct sk_buff_head *sk_queue;
1452 	int amt;
1453 
1454 	if (likely(partial)) {
1455 		up->forward_deficit += size;
1456 		size = up->forward_deficit;
1457 		if (size < READ_ONCE(up->forward_threshold) &&
1458 		    !skb_queue_empty(&up->reader_queue))
1459 			return;
1460 	} else {
1461 		size += up->forward_deficit;
1462 	}
1463 	up->forward_deficit = 0;
1464 
1465 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1466 	 * if the called don't held it already
1467 	 */
1468 	sk_queue = &sk->sk_receive_queue;
1469 	if (!rx_queue_lock_held)
1470 		spin_lock(&sk_queue->lock);
1471 
1472 
1473 	sk->sk_forward_alloc += size;
1474 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1475 	sk->sk_forward_alloc -= amt;
1476 
1477 	if (amt)
1478 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1479 
1480 	atomic_sub(size, &sk->sk_rmem_alloc);
1481 
1482 	/* this can save us from acquiring the rx queue lock on next receive */
1483 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1484 
1485 	if (!rx_queue_lock_held)
1486 		spin_unlock(&sk_queue->lock);
1487 }
1488 
1489 /* Note: called with reader_queue.lock held.
1490  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1491  * This avoids a cache line miss while receive_queue lock is held.
1492  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1493  */
1494 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1495 {
1496 	prefetch(&skb->data);
1497 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1498 }
1499 EXPORT_SYMBOL(udp_skb_destructor);
1500 
1501 /* as above, but the caller held the rx queue lock, too */
1502 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1503 {
1504 	prefetch(&skb->data);
1505 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1506 }
1507 
1508 /* Idea of busylocks is to let producers grab an extra spinlock
1509  * to relieve pressure on the receive_queue spinlock shared by consumer.
1510  * Under flood, this means that only one producer can be in line
1511  * trying to acquire the receive_queue spinlock.
1512  * These busylock can be allocated on a per cpu manner, instead of a
1513  * per socket one (that would consume a cache line per socket)
1514  */
1515 static int udp_busylocks_log __read_mostly;
1516 static spinlock_t *udp_busylocks __read_mostly;
1517 
1518 static spinlock_t *busylock_acquire(void *ptr)
1519 {
1520 	spinlock_t *busy;
1521 
1522 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1523 	spin_lock(busy);
1524 	return busy;
1525 }
1526 
1527 static void busylock_release(spinlock_t *busy)
1528 {
1529 	if (busy)
1530 		spin_unlock(busy);
1531 }
1532 
1533 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1534 {
1535 	struct sk_buff_head *list = &sk->sk_receive_queue;
1536 	int rmem, delta, amt, err = -ENOMEM;
1537 	spinlock_t *busy = NULL;
1538 	int size;
1539 
1540 	/* try to avoid the costly atomic add/sub pair when the receive
1541 	 * queue is full; always allow at least a packet
1542 	 */
1543 	rmem = atomic_read(&sk->sk_rmem_alloc);
1544 	if (rmem > sk->sk_rcvbuf)
1545 		goto drop;
1546 
1547 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1548 	 * having linear skbs :
1549 	 * - Reduce memory overhead and thus increase receive queue capacity
1550 	 * - Less cache line misses at copyout() time
1551 	 * - Less work at consume_skb() (less alien page frag freeing)
1552 	 */
1553 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1554 		skb_condense(skb);
1555 
1556 		busy = busylock_acquire(sk);
1557 	}
1558 	size = skb->truesize;
1559 	udp_set_dev_scratch(skb);
1560 
1561 	/* we drop only if the receive buf is full and the receive
1562 	 * queue contains some other skb
1563 	 */
1564 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1565 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1566 		goto uncharge_drop;
1567 
1568 	spin_lock(&list->lock);
1569 	if (size >= sk->sk_forward_alloc) {
1570 		amt = sk_mem_pages(size);
1571 		delta = amt << PAGE_SHIFT;
1572 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1573 			err = -ENOBUFS;
1574 			spin_unlock(&list->lock);
1575 			goto uncharge_drop;
1576 		}
1577 
1578 		sk->sk_forward_alloc += delta;
1579 	}
1580 
1581 	sk->sk_forward_alloc -= size;
1582 
1583 	/* no need to setup a destructor, we will explicitly release the
1584 	 * forward allocated memory on dequeue
1585 	 */
1586 	sock_skb_set_dropcount(sk, skb);
1587 
1588 	__skb_queue_tail(list, skb);
1589 	spin_unlock(&list->lock);
1590 
1591 	if (!sock_flag(sk, SOCK_DEAD))
1592 		sk->sk_data_ready(sk);
1593 
1594 	busylock_release(busy);
1595 	return 0;
1596 
1597 uncharge_drop:
1598 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1599 
1600 drop:
1601 	atomic_inc(&sk->sk_drops);
1602 	busylock_release(busy);
1603 	return err;
1604 }
1605 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1606 
1607 void udp_destruct_common(struct sock *sk)
1608 {
1609 	/* reclaim completely the forward allocated memory */
1610 	struct udp_sock *up = udp_sk(sk);
1611 	unsigned int total = 0;
1612 	struct sk_buff *skb;
1613 
1614 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1615 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1616 		total += skb->truesize;
1617 		kfree_skb(skb);
1618 	}
1619 	udp_rmem_release(sk, total, 0, true);
1620 }
1621 EXPORT_SYMBOL_GPL(udp_destruct_common);
1622 
1623 static void udp_destruct_sock(struct sock *sk)
1624 {
1625 	udp_destruct_common(sk);
1626 	inet_sock_destruct(sk);
1627 }
1628 
1629 int udp_init_sock(struct sock *sk)
1630 {
1631 	udp_lib_init_sock(sk);
1632 	sk->sk_destruct = udp_destruct_sock;
1633 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1634 	return 0;
1635 }
1636 
1637 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1638 {
1639 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1640 		bool slow = lock_sock_fast(sk);
1641 
1642 		sk_peek_offset_bwd(sk, len);
1643 		unlock_sock_fast(sk, slow);
1644 	}
1645 
1646 	if (!skb_unref(skb))
1647 		return;
1648 
1649 	/* In the more common cases we cleared the head states previously,
1650 	 * see __udp_queue_rcv_skb().
1651 	 */
1652 	if (unlikely(udp_skb_has_head_state(skb)))
1653 		skb_release_head_state(skb);
1654 	__consume_stateless_skb(skb);
1655 }
1656 EXPORT_SYMBOL_GPL(skb_consume_udp);
1657 
1658 static struct sk_buff *__first_packet_length(struct sock *sk,
1659 					     struct sk_buff_head *rcvq,
1660 					     int *total)
1661 {
1662 	struct sk_buff *skb;
1663 
1664 	while ((skb = skb_peek(rcvq)) != NULL) {
1665 		if (udp_lib_checksum_complete(skb)) {
1666 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1667 					IS_UDPLITE(sk));
1668 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1669 					IS_UDPLITE(sk));
1670 			atomic_inc(&sk->sk_drops);
1671 			__skb_unlink(skb, rcvq);
1672 			*total += skb->truesize;
1673 			kfree_skb(skb);
1674 		} else {
1675 			udp_skb_csum_unnecessary_set(skb);
1676 			break;
1677 		}
1678 	}
1679 	return skb;
1680 }
1681 
1682 /**
1683  *	first_packet_length	- return length of first packet in receive queue
1684  *	@sk: socket
1685  *
1686  *	Drops all bad checksum frames, until a valid one is found.
1687  *	Returns the length of found skb, or -1 if none is found.
1688  */
1689 static int first_packet_length(struct sock *sk)
1690 {
1691 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1692 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1693 	struct sk_buff *skb;
1694 	int total = 0;
1695 	int res;
1696 
1697 	spin_lock_bh(&rcvq->lock);
1698 	skb = __first_packet_length(sk, rcvq, &total);
1699 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1700 		spin_lock(&sk_queue->lock);
1701 		skb_queue_splice_tail_init(sk_queue, rcvq);
1702 		spin_unlock(&sk_queue->lock);
1703 
1704 		skb = __first_packet_length(sk, rcvq, &total);
1705 	}
1706 	res = skb ? skb->len : -1;
1707 	if (total)
1708 		udp_rmem_release(sk, total, 1, false);
1709 	spin_unlock_bh(&rcvq->lock);
1710 	return res;
1711 }
1712 
1713 /*
1714  *	IOCTL requests applicable to the UDP protocol
1715  */
1716 
1717 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1718 {
1719 	switch (cmd) {
1720 	case SIOCOUTQ:
1721 	{
1722 		int amount = sk_wmem_alloc_get(sk);
1723 
1724 		return put_user(amount, (int __user *)arg);
1725 	}
1726 
1727 	case SIOCINQ:
1728 	{
1729 		int amount = max_t(int, 0, first_packet_length(sk));
1730 
1731 		return put_user(amount, (int __user *)arg);
1732 	}
1733 
1734 	default:
1735 		return -ENOIOCTLCMD;
1736 	}
1737 
1738 	return 0;
1739 }
1740 EXPORT_SYMBOL(udp_ioctl);
1741 
1742 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1743 			       int *off, int *err)
1744 {
1745 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1746 	struct sk_buff_head *queue;
1747 	struct sk_buff *last;
1748 	long timeo;
1749 	int error;
1750 
1751 	queue = &udp_sk(sk)->reader_queue;
1752 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1753 	do {
1754 		struct sk_buff *skb;
1755 
1756 		error = sock_error(sk);
1757 		if (error)
1758 			break;
1759 
1760 		error = -EAGAIN;
1761 		do {
1762 			spin_lock_bh(&queue->lock);
1763 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1764 							err, &last);
1765 			if (skb) {
1766 				if (!(flags & MSG_PEEK))
1767 					udp_skb_destructor(sk, skb);
1768 				spin_unlock_bh(&queue->lock);
1769 				return skb;
1770 			}
1771 
1772 			if (skb_queue_empty_lockless(sk_queue)) {
1773 				spin_unlock_bh(&queue->lock);
1774 				goto busy_check;
1775 			}
1776 
1777 			/* refill the reader queue and walk it again
1778 			 * keep both queues locked to avoid re-acquiring
1779 			 * the sk_receive_queue lock if fwd memory scheduling
1780 			 * is needed.
1781 			 */
1782 			spin_lock(&sk_queue->lock);
1783 			skb_queue_splice_tail_init(sk_queue, queue);
1784 
1785 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1786 							err, &last);
1787 			if (skb && !(flags & MSG_PEEK))
1788 				udp_skb_dtor_locked(sk, skb);
1789 			spin_unlock(&sk_queue->lock);
1790 			spin_unlock_bh(&queue->lock);
1791 			if (skb)
1792 				return skb;
1793 
1794 busy_check:
1795 			if (!sk_can_busy_loop(sk))
1796 				break;
1797 
1798 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1799 		} while (!skb_queue_empty_lockless(sk_queue));
1800 
1801 		/* sk_queue is empty, reader_queue may contain peeked packets */
1802 	} while (timeo &&
1803 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1804 					      &error, &timeo,
1805 					      (struct sk_buff *)sk_queue));
1806 
1807 	*err = error;
1808 	return NULL;
1809 }
1810 EXPORT_SYMBOL(__skb_recv_udp);
1811 
1812 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1813 {
1814 	struct sk_buff *skb;
1815 	int err, copied;
1816 
1817 try_again:
1818 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1819 	if (!skb)
1820 		return err;
1821 
1822 	if (udp_lib_checksum_complete(skb)) {
1823 		int is_udplite = IS_UDPLITE(sk);
1824 		struct net *net = sock_net(sk);
1825 
1826 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1827 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1828 		atomic_inc(&sk->sk_drops);
1829 		kfree_skb(skb);
1830 		goto try_again;
1831 	}
1832 
1833 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1834 	copied = recv_actor(sk, skb);
1835 	kfree_skb(skb);
1836 
1837 	return copied;
1838 }
1839 EXPORT_SYMBOL(udp_read_skb);
1840 
1841 /*
1842  * 	This should be easy, if there is something there we
1843  * 	return it, otherwise we block.
1844  */
1845 
1846 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1847 		int *addr_len)
1848 {
1849 	struct inet_sock *inet = inet_sk(sk);
1850 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1851 	struct sk_buff *skb;
1852 	unsigned int ulen, copied;
1853 	int off, err, peeking = flags & MSG_PEEK;
1854 	int is_udplite = IS_UDPLITE(sk);
1855 	bool checksum_valid = false;
1856 
1857 	if (flags & MSG_ERRQUEUE)
1858 		return ip_recv_error(sk, msg, len, addr_len);
1859 
1860 try_again:
1861 	off = sk_peek_offset(sk, flags);
1862 	skb = __skb_recv_udp(sk, flags, &off, &err);
1863 	if (!skb)
1864 		return err;
1865 
1866 	ulen = udp_skb_len(skb);
1867 	copied = len;
1868 	if (copied > ulen - off)
1869 		copied = ulen - off;
1870 	else if (copied < ulen)
1871 		msg->msg_flags |= MSG_TRUNC;
1872 
1873 	/*
1874 	 * If checksum is needed at all, try to do it while copying the
1875 	 * data.  If the data is truncated, or if we only want a partial
1876 	 * coverage checksum (UDP-Lite), do it before the copy.
1877 	 */
1878 
1879 	if (copied < ulen || peeking ||
1880 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1881 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1882 				!__udp_lib_checksum_complete(skb);
1883 		if (!checksum_valid)
1884 			goto csum_copy_err;
1885 	}
1886 
1887 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1888 		if (udp_skb_is_linear(skb))
1889 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1890 		else
1891 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1892 	} else {
1893 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1894 
1895 		if (err == -EINVAL)
1896 			goto csum_copy_err;
1897 	}
1898 
1899 	if (unlikely(err)) {
1900 		if (!peeking) {
1901 			atomic_inc(&sk->sk_drops);
1902 			UDP_INC_STATS(sock_net(sk),
1903 				      UDP_MIB_INERRORS, is_udplite);
1904 		}
1905 		kfree_skb(skb);
1906 		return err;
1907 	}
1908 
1909 	if (!peeking)
1910 		UDP_INC_STATS(sock_net(sk),
1911 			      UDP_MIB_INDATAGRAMS, is_udplite);
1912 
1913 	sock_recv_cmsgs(msg, sk, skb);
1914 
1915 	/* Copy the address. */
1916 	if (sin) {
1917 		sin->sin_family = AF_INET;
1918 		sin->sin_port = udp_hdr(skb)->source;
1919 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1920 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1921 		*addr_len = sizeof(*sin);
1922 
1923 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1924 						      (struct sockaddr *)sin);
1925 	}
1926 
1927 	if (udp_sk(sk)->gro_enabled)
1928 		udp_cmsg_recv(msg, sk, skb);
1929 
1930 	if (inet->cmsg_flags)
1931 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1932 
1933 	err = copied;
1934 	if (flags & MSG_TRUNC)
1935 		err = ulen;
1936 
1937 	skb_consume_udp(sk, skb, peeking ? -err : err);
1938 	return err;
1939 
1940 csum_copy_err:
1941 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1942 				 udp_skb_destructor)) {
1943 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1944 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1945 	}
1946 	kfree_skb(skb);
1947 
1948 	/* starting over for a new packet, but check if we need to yield */
1949 	cond_resched();
1950 	msg->msg_flags &= ~MSG_TRUNC;
1951 	goto try_again;
1952 }
1953 
1954 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1955 {
1956 	/* This check is replicated from __ip4_datagram_connect() and
1957 	 * intended to prevent BPF program called below from accessing bytes
1958 	 * that are out of the bound specified by user in addr_len.
1959 	 */
1960 	if (addr_len < sizeof(struct sockaddr_in))
1961 		return -EINVAL;
1962 
1963 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1964 }
1965 EXPORT_SYMBOL(udp_pre_connect);
1966 
1967 int __udp_disconnect(struct sock *sk, int flags)
1968 {
1969 	struct inet_sock *inet = inet_sk(sk);
1970 	/*
1971 	 *	1003.1g - break association.
1972 	 */
1973 
1974 	sk->sk_state = TCP_CLOSE;
1975 	inet->inet_daddr = 0;
1976 	inet->inet_dport = 0;
1977 	sock_rps_reset_rxhash(sk);
1978 	sk->sk_bound_dev_if = 0;
1979 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1980 		inet_reset_saddr(sk);
1981 		if (sk->sk_prot->rehash &&
1982 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1983 			sk->sk_prot->rehash(sk);
1984 	}
1985 
1986 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1987 		sk->sk_prot->unhash(sk);
1988 		inet->inet_sport = 0;
1989 	}
1990 	sk_dst_reset(sk);
1991 	return 0;
1992 }
1993 EXPORT_SYMBOL(__udp_disconnect);
1994 
1995 int udp_disconnect(struct sock *sk, int flags)
1996 {
1997 	lock_sock(sk);
1998 	__udp_disconnect(sk, flags);
1999 	release_sock(sk);
2000 	return 0;
2001 }
2002 EXPORT_SYMBOL(udp_disconnect);
2003 
2004 void udp_lib_unhash(struct sock *sk)
2005 {
2006 	if (sk_hashed(sk)) {
2007 		struct udp_table *udptable = udp_get_table_prot(sk);
2008 		struct udp_hslot *hslot, *hslot2;
2009 
2010 		hslot  = udp_hashslot(udptable, sock_net(sk),
2011 				      udp_sk(sk)->udp_port_hash);
2012 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2013 
2014 		spin_lock_bh(&hslot->lock);
2015 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2016 			reuseport_detach_sock(sk);
2017 		if (sk_del_node_init_rcu(sk)) {
2018 			hslot->count--;
2019 			inet_sk(sk)->inet_num = 0;
2020 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2021 
2022 			spin_lock(&hslot2->lock);
2023 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2024 			hslot2->count--;
2025 			spin_unlock(&hslot2->lock);
2026 		}
2027 		spin_unlock_bh(&hslot->lock);
2028 	}
2029 }
2030 EXPORT_SYMBOL(udp_lib_unhash);
2031 
2032 /*
2033  * inet_rcv_saddr was changed, we must rehash secondary hash
2034  */
2035 void udp_lib_rehash(struct sock *sk, u16 newhash)
2036 {
2037 	if (sk_hashed(sk)) {
2038 		struct udp_table *udptable = udp_get_table_prot(sk);
2039 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2040 
2041 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2042 		nhslot2 = udp_hashslot2(udptable, newhash);
2043 		udp_sk(sk)->udp_portaddr_hash = newhash;
2044 
2045 		if (hslot2 != nhslot2 ||
2046 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2047 			hslot = udp_hashslot(udptable, sock_net(sk),
2048 					     udp_sk(sk)->udp_port_hash);
2049 			/* we must lock primary chain too */
2050 			spin_lock_bh(&hslot->lock);
2051 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2052 				reuseport_detach_sock(sk);
2053 
2054 			if (hslot2 != nhslot2) {
2055 				spin_lock(&hslot2->lock);
2056 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2057 				hslot2->count--;
2058 				spin_unlock(&hslot2->lock);
2059 
2060 				spin_lock(&nhslot2->lock);
2061 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2062 							 &nhslot2->head);
2063 				nhslot2->count++;
2064 				spin_unlock(&nhslot2->lock);
2065 			}
2066 
2067 			spin_unlock_bh(&hslot->lock);
2068 		}
2069 	}
2070 }
2071 EXPORT_SYMBOL(udp_lib_rehash);
2072 
2073 void udp_v4_rehash(struct sock *sk)
2074 {
2075 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2076 					  inet_sk(sk)->inet_rcv_saddr,
2077 					  inet_sk(sk)->inet_num);
2078 	udp_lib_rehash(sk, new_hash);
2079 }
2080 
2081 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2082 {
2083 	int rc;
2084 
2085 	if (inet_sk(sk)->inet_daddr) {
2086 		sock_rps_save_rxhash(sk, skb);
2087 		sk_mark_napi_id(sk, skb);
2088 		sk_incoming_cpu_update(sk);
2089 	} else {
2090 		sk_mark_napi_id_once(sk, skb);
2091 	}
2092 
2093 	rc = __udp_enqueue_schedule_skb(sk, skb);
2094 	if (rc < 0) {
2095 		int is_udplite = IS_UDPLITE(sk);
2096 		int drop_reason;
2097 
2098 		/* Note that an ENOMEM error is charged twice */
2099 		if (rc == -ENOMEM) {
2100 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2101 					is_udplite);
2102 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2103 		} else {
2104 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2105 				      is_udplite);
2106 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2107 		}
2108 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2109 		kfree_skb_reason(skb, drop_reason);
2110 		trace_udp_fail_queue_rcv_skb(rc, sk);
2111 		return -1;
2112 	}
2113 
2114 	return 0;
2115 }
2116 
2117 /* returns:
2118  *  -1: error
2119  *   0: success
2120  *  >0: "udp encap" protocol resubmission
2121  *
2122  * Note that in the success and error cases, the skb is assumed to
2123  * have either been requeued or freed.
2124  */
2125 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2126 {
2127 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2128 	struct udp_sock *up = udp_sk(sk);
2129 	int is_udplite = IS_UDPLITE(sk);
2130 
2131 	/*
2132 	 *	Charge it to the socket, dropping if the queue is full.
2133 	 */
2134 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2135 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2136 		goto drop;
2137 	}
2138 	nf_reset_ct(skb);
2139 
2140 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2141 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2142 
2143 		/*
2144 		 * This is an encapsulation socket so pass the skb to
2145 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2146 		 * fall through and pass this up the UDP socket.
2147 		 * up->encap_rcv() returns the following value:
2148 		 * =0 if skb was successfully passed to the encap
2149 		 *    handler or was discarded by it.
2150 		 * >0 if skb should be passed on to UDP.
2151 		 * <0 if skb should be resubmitted as proto -N
2152 		 */
2153 
2154 		/* if we're overly short, let UDP handle it */
2155 		encap_rcv = READ_ONCE(up->encap_rcv);
2156 		if (encap_rcv) {
2157 			int ret;
2158 
2159 			/* Verify checksum before giving to encap */
2160 			if (udp_lib_checksum_complete(skb))
2161 				goto csum_error;
2162 
2163 			ret = encap_rcv(sk, skb);
2164 			if (ret <= 0) {
2165 				__UDP_INC_STATS(sock_net(sk),
2166 						UDP_MIB_INDATAGRAMS,
2167 						is_udplite);
2168 				return -ret;
2169 			}
2170 		}
2171 
2172 		/* FALLTHROUGH -- it's a UDP Packet */
2173 	}
2174 
2175 	/*
2176 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2177 	 */
2178 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2179 
2180 		/*
2181 		 * MIB statistics other than incrementing the error count are
2182 		 * disabled for the following two types of errors: these depend
2183 		 * on the application settings, not on the functioning of the
2184 		 * protocol stack as such.
2185 		 *
2186 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2187 		 * way ... to ... at least let the receiving application block
2188 		 * delivery of packets with coverage values less than a value
2189 		 * provided by the application."
2190 		 */
2191 		if (up->pcrlen == 0) {          /* full coverage was set  */
2192 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2193 					    UDP_SKB_CB(skb)->cscov, skb->len);
2194 			goto drop;
2195 		}
2196 		/* The next case involves violating the min. coverage requested
2197 		 * by the receiver. This is subtle: if receiver wants x and x is
2198 		 * greater than the buffersize/MTU then receiver will complain
2199 		 * that it wants x while sender emits packets of smaller size y.
2200 		 * Therefore the above ...()->partial_cov statement is essential.
2201 		 */
2202 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2203 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2204 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2205 			goto drop;
2206 		}
2207 	}
2208 
2209 	prefetch(&sk->sk_rmem_alloc);
2210 	if (rcu_access_pointer(sk->sk_filter) &&
2211 	    udp_lib_checksum_complete(skb))
2212 			goto csum_error;
2213 
2214 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2215 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2216 		goto drop;
2217 	}
2218 
2219 	udp_csum_pull_header(skb);
2220 
2221 	ipv4_pktinfo_prepare(sk, skb);
2222 	return __udp_queue_rcv_skb(sk, skb);
2223 
2224 csum_error:
2225 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2226 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2227 drop:
2228 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2229 	atomic_inc(&sk->sk_drops);
2230 	kfree_skb_reason(skb, drop_reason);
2231 	return -1;
2232 }
2233 
2234 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2235 {
2236 	struct sk_buff *next, *segs;
2237 	int ret;
2238 
2239 	if (likely(!udp_unexpected_gso(sk, skb)))
2240 		return udp_queue_rcv_one_skb(sk, skb);
2241 
2242 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2243 	__skb_push(skb, -skb_mac_offset(skb));
2244 	segs = udp_rcv_segment(sk, skb, true);
2245 	skb_list_walk_safe(segs, skb, next) {
2246 		__skb_pull(skb, skb_transport_offset(skb));
2247 
2248 		udp_post_segment_fix_csum(skb);
2249 		ret = udp_queue_rcv_one_skb(sk, skb);
2250 		if (ret > 0)
2251 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2252 	}
2253 	return 0;
2254 }
2255 
2256 /* For TCP sockets, sk_rx_dst is protected by socket lock
2257  * For UDP, we use xchg() to guard against concurrent changes.
2258  */
2259 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2260 {
2261 	struct dst_entry *old;
2262 
2263 	if (dst_hold_safe(dst)) {
2264 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2265 		dst_release(old);
2266 		return old != dst;
2267 	}
2268 	return false;
2269 }
2270 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2271 
2272 /*
2273  *	Multicasts and broadcasts go to each listener.
2274  *
2275  *	Note: called only from the BH handler context.
2276  */
2277 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2278 				    struct udphdr  *uh,
2279 				    __be32 saddr, __be32 daddr,
2280 				    struct udp_table *udptable,
2281 				    int proto)
2282 {
2283 	struct sock *sk, *first = NULL;
2284 	unsigned short hnum = ntohs(uh->dest);
2285 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2286 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2287 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2288 	int dif = skb->dev->ifindex;
2289 	int sdif = inet_sdif(skb);
2290 	struct hlist_node *node;
2291 	struct sk_buff *nskb;
2292 
2293 	if (use_hash2) {
2294 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2295 			    udptable->mask;
2296 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2297 start_lookup:
2298 		hslot = &udptable->hash2[hash2];
2299 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2300 	}
2301 
2302 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2303 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2304 					 uh->source, saddr, dif, sdif, hnum))
2305 			continue;
2306 
2307 		if (!first) {
2308 			first = sk;
2309 			continue;
2310 		}
2311 		nskb = skb_clone(skb, GFP_ATOMIC);
2312 
2313 		if (unlikely(!nskb)) {
2314 			atomic_inc(&sk->sk_drops);
2315 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2316 					IS_UDPLITE(sk));
2317 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2318 					IS_UDPLITE(sk));
2319 			continue;
2320 		}
2321 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2322 			consume_skb(nskb);
2323 	}
2324 
2325 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2326 	if (use_hash2 && hash2 != hash2_any) {
2327 		hash2 = hash2_any;
2328 		goto start_lookup;
2329 	}
2330 
2331 	if (first) {
2332 		if (udp_queue_rcv_skb(first, skb) > 0)
2333 			consume_skb(skb);
2334 	} else {
2335 		kfree_skb(skb);
2336 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2337 				proto == IPPROTO_UDPLITE);
2338 	}
2339 	return 0;
2340 }
2341 
2342 /* Initialize UDP checksum. If exited with zero value (success),
2343  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2344  * Otherwise, csum completion requires checksumming packet body,
2345  * including udp header and folding it to skb->csum.
2346  */
2347 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2348 				 int proto)
2349 {
2350 	int err;
2351 
2352 	UDP_SKB_CB(skb)->partial_cov = 0;
2353 	UDP_SKB_CB(skb)->cscov = skb->len;
2354 
2355 	if (proto == IPPROTO_UDPLITE) {
2356 		err = udplite_checksum_init(skb, uh);
2357 		if (err)
2358 			return err;
2359 
2360 		if (UDP_SKB_CB(skb)->partial_cov) {
2361 			skb->csum = inet_compute_pseudo(skb, proto);
2362 			return 0;
2363 		}
2364 	}
2365 
2366 	/* Note, we are only interested in != 0 or == 0, thus the
2367 	 * force to int.
2368 	 */
2369 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2370 							inet_compute_pseudo);
2371 	if (err)
2372 		return err;
2373 
2374 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2375 		/* If SW calculated the value, we know it's bad */
2376 		if (skb->csum_complete_sw)
2377 			return 1;
2378 
2379 		/* HW says the value is bad. Let's validate that.
2380 		 * skb->csum is no longer the full packet checksum,
2381 		 * so don't treat it as such.
2382 		 */
2383 		skb_checksum_complete_unset(skb);
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2390  * return code conversion for ip layer consumption
2391  */
2392 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2393 			       struct udphdr *uh)
2394 {
2395 	int ret;
2396 
2397 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2398 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2399 
2400 	ret = udp_queue_rcv_skb(sk, skb);
2401 
2402 	/* a return value > 0 means to resubmit the input, but
2403 	 * it wants the return to be -protocol, or 0
2404 	 */
2405 	if (ret > 0)
2406 		return -ret;
2407 	return 0;
2408 }
2409 
2410 /*
2411  *	All we need to do is get the socket, and then do a checksum.
2412  */
2413 
2414 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2415 		   int proto)
2416 {
2417 	struct sock *sk;
2418 	struct udphdr *uh;
2419 	unsigned short ulen;
2420 	struct rtable *rt = skb_rtable(skb);
2421 	__be32 saddr, daddr;
2422 	struct net *net = dev_net(skb->dev);
2423 	bool refcounted;
2424 	int drop_reason;
2425 
2426 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2427 
2428 	/*
2429 	 *  Validate the packet.
2430 	 */
2431 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2432 		goto drop;		/* No space for header. */
2433 
2434 	uh   = udp_hdr(skb);
2435 	ulen = ntohs(uh->len);
2436 	saddr = ip_hdr(skb)->saddr;
2437 	daddr = ip_hdr(skb)->daddr;
2438 
2439 	if (ulen > skb->len)
2440 		goto short_packet;
2441 
2442 	if (proto == IPPROTO_UDP) {
2443 		/* UDP validates ulen. */
2444 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2445 			goto short_packet;
2446 		uh = udp_hdr(skb);
2447 	}
2448 
2449 	if (udp4_csum_init(skb, uh, proto))
2450 		goto csum_error;
2451 
2452 	sk = skb_steal_sock(skb, &refcounted);
2453 	if (sk) {
2454 		struct dst_entry *dst = skb_dst(skb);
2455 		int ret;
2456 
2457 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2458 			udp_sk_rx_dst_set(sk, dst);
2459 
2460 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2461 		if (refcounted)
2462 			sock_put(sk);
2463 		return ret;
2464 	}
2465 
2466 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2467 		return __udp4_lib_mcast_deliver(net, skb, uh,
2468 						saddr, daddr, udptable, proto);
2469 
2470 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2471 	if (sk)
2472 		return udp_unicast_rcv_skb(sk, skb, uh);
2473 
2474 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2475 		goto drop;
2476 	nf_reset_ct(skb);
2477 
2478 	/* No socket. Drop packet silently, if checksum is wrong */
2479 	if (udp_lib_checksum_complete(skb))
2480 		goto csum_error;
2481 
2482 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2483 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2484 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2485 
2486 	/*
2487 	 * Hmm.  We got an UDP packet to a port to which we
2488 	 * don't wanna listen.  Ignore it.
2489 	 */
2490 	kfree_skb_reason(skb, drop_reason);
2491 	return 0;
2492 
2493 short_packet:
2494 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2495 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2496 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2497 			    &saddr, ntohs(uh->source),
2498 			    ulen, skb->len,
2499 			    &daddr, ntohs(uh->dest));
2500 	goto drop;
2501 
2502 csum_error:
2503 	/*
2504 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2505 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2506 	 */
2507 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2508 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2509 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2510 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2511 			    ulen);
2512 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2513 drop:
2514 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2515 	kfree_skb_reason(skb, drop_reason);
2516 	return 0;
2517 }
2518 
2519 /* We can only early demux multicast if there is a single matching socket.
2520  * If more than one socket found returns NULL
2521  */
2522 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2523 						  __be16 loc_port, __be32 loc_addr,
2524 						  __be16 rmt_port, __be32 rmt_addr,
2525 						  int dif, int sdif)
2526 {
2527 	unsigned short hnum = ntohs(loc_port);
2528 	struct sock *sk, *result;
2529 	struct udp_hslot *hslot;
2530 	unsigned int slot;
2531 
2532 	slot = udp_hashfn(net, hnum, udp_table.mask);
2533 	hslot = &udp_table.hash[slot];
2534 
2535 	/* Do not bother scanning a too big list */
2536 	if (hslot->count > 10)
2537 		return NULL;
2538 
2539 	result = NULL;
2540 	sk_for_each_rcu(sk, &hslot->head) {
2541 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2542 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2543 			if (result)
2544 				return NULL;
2545 			result = sk;
2546 		}
2547 	}
2548 
2549 	return result;
2550 }
2551 
2552 /* For unicast we should only early demux connected sockets or we can
2553  * break forwarding setups.  The chains here can be long so only check
2554  * if the first socket is an exact match and if not move on.
2555  */
2556 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2557 					    __be16 loc_port, __be32 loc_addr,
2558 					    __be16 rmt_port, __be32 rmt_addr,
2559 					    int dif, int sdif)
2560 {
2561 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2562 	unsigned short hnum = ntohs(loc_port);
2563 	unsigned int hash2, slot2;
2564 	struct udp_hslot *hslot2;
2565 	__portpair ports;
2566 	struct sock *sk;
2567 
2568 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2569 	slot2 = hash2 & udp_table.mask;
2570 	hslot2 = &udp_table.hash2[slot2];
2571 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2572 
2573 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2574 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2575 			return sk;
2576 		/* Only check first socket in chain */
2577 		break;
2578 	}
2579 	return NULL;
2580 }
2581 
2582 int udp_v4_early_demux(struct sk_buff *skb)
2583 {
2584 	struct net *net = dev_net(skb->dev);
2585 	struct in_device *in_dev = NULL;
2586 	const struct iphdr *iph;
2587 	const struct udphdr *uh;
2588 	struct sock *sk = NULL;
2589 	struct dst_entry *dst;
2590 	int dif = skb->dev->ifindex;
2591 	int sdif = inet_sdif(skb);
2592 	int ours;
2593 
2594 	/* validate the packet */
2595 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2596 		return 0;
2597 
2598 	iph = ip_hdr(skb);
2599 	uh = udp_hdr(skb);
2600 
2601 	if (skb->pkt_type == PACKET_MULTICAST) {
2602 		in_dev = __in_dev_get_rcu(skb->dev);
2603 
2604 		if (!in_dev)
2605 			return 0;
2606 
2607 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2608 				       iph->protocol);
2609 		if (!ours)
2610 			return 0;
2611 
2612 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2613 						   uh->source, iph->saddr,
2614 						   dif, sdif);
2615 	} else if (skb->pkt_type == PACKET_HOST) {
2616 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2617 					     uh->source, iph->saddr, dif, sdif);
2618 	}
2619 
2620 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2621 		return 0;
2622 
2623 	skb->sk = sk;
2624 	skb->destructor = sock_efree;
2625 	dst = rcu_dereference(sk->sk_rx_dst);
2626 
2627 	if (dst)
2628 		dst = dst_check(dst, 0);
2629 	if (dst) {
2630 		u32 itag = 0;
2631 
2632 		/* set noref for now.
2633 		 * any place which wants to hold dst has to call
2634 		 * dst_hold_safe()
2635 		 */
2636 		skb_dst_set_noref(skb, dst);
2637 
2638 		/* for unconnected multicast sockets we need to validate
2639 		 * the source on each packet
2640 		 */
2641 		if (!inet_sk(sk)->inet_daddr && in_dev)
2642 			return ip_mc_validate_source(skb, iph->daddr,
2643 						     iph->saddr,
2644 						     iph->tos & IPTOS_RT_MASK,
2645 						     skb->dev, in_dev, &itag);
2646 	}
2647 	return 0;
2648 }
2649 
2650 int udp_rcv(struct sk_buff *skb)
2651 {
2652 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2653 }
2654 
2655 void udp_destroy_sock(struct sock *sk)
2656 {
2657 	struct udp_sock *up = udp_sk(sk);
2658 	bool slow = lock_sock_fast(sk);
2659 
2660 	/* protects from races with udp_abort() */
2661 	sock_set_flag(sk, SOCK_DEAD);
2662 	udp_flush_pending_frames(sk);
2663 	unlock_sock_fast(sk, slow);
2664 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2665 		if (up->encap_type) {
2666 			void (*encap_destroy)(struct sock *sk);
2667 			encap_destroy = READ_ONCE(up->encap_destroy);
2668 			if (encap_destroy)
2669 				encap_destroy(sk);
2670 		}
2671 		if (up->encap_enabled)
2672 			static_branch_dec(&udp_encap_needed_key);
2673 	}
2674 }
2675 
2676 /*
2677  *	Socket option code for UDP
2678  */
2679 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2680 		       sockptr_t optval, unsigned int optlen,
2681 		       int (*push_pending_frames)(struct sock *))
2682 {
2683 	struct udp_sock *up = udp_sk(sk);
2684 	int val, valbool;
2685 	int err = 0;
2686 	int is_udplite = IS_UDPLITE(sk);
2687 
2688 	if (level == SOL_SOCKET) {
2689 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2690 
2691 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2692 			sockopt_lock_sock(sk);
2693 			/* paired with READ_ONCE in udp_rmem_release() */
2694 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2695 			sockopt_release_sock(sk);
2696 		}
2697 		return err;
2698 	}
2699 
2700 	if (optlen < sizeof(int))
2701 		return -EINVAL;
2702 
2703 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2704 		return -EFAULT;
2705 
2706 	valbool = val ? 1 : 0;
2707 
2708 	switch (optname) {
2709 	case UDP_CORK:
2710 		if (val != 0) {
2711 			WRITE_ONCE(up->corkflag, 1);
2712 		} else {
2713 			WRITE_ONCE(up->corkflag, 0);
2714 			lock_sock(sk);
2715 			push_pending_frames(sk);
2716 			release_sock(sk);
2717 		}
2718 		break;
2719 
2720 	case UDP_ENCAP:
2721 		switch (val) {
2722 		case 0:
2723 #ifdef CONFIG_XFRM
2724 		case UDP_ENCAP_ESPINUDP:
2725 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2726 #if IS_ENABLED(CONFIG_IPV6)
2727 			if (sk->sk_family == AF_INET6)
2728 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2729 			else
2730 #endif
2731 				up->encap_rcv = xfrm4_udp_encap_rcv;
2732 #endif
2733 			fallthrough;
2734 		case UDP_ENCAP_L2TPINUDP:
2735 			up->encap_type = val;
2736 			lock_sock(sk);
2737 			udp_tunnel_encap_enable(sk->sk_socket);
2738 			release_sock(sk);
2739 			break;
2740 		default:
2741 			err = -ENOPROTOOPT;
2742 			break;
2743 		}
2744 		break;
2745 
2746 	case UDP_NO_CHECK6_TX:
2747 		up->no_check6_tx = valbool;
2748 		break;
2749 
2750 	case UDP_NO_CHECK6_RX:
2751 		up->no_check6_rx = valbool;
2752 		break;
2753 
2754 	case UDP_SEGMENT:
2755 		if (val < 0 || val > USHRT_MAX)
2756 			return -EINVAL;
2757 		WRITE_ONCE(up->gso_size, val);
2758 		break;
2759 
2760 	case UDP_GRO:
2761 		lock_sock(sk);
2762 
2763 		/* when enabling GRO, accept the related GSO packet type */
2764 		if (valbool)
2765 			udp_tunnel_encap_enable(sk->sk_socket);
2766 		up->gro_enabled = valbool;
2767 		up->accept_udp_l4 = valbool;
2768 		release_sock(sk);
2769 		break;
2770 
2771 	/*
2772 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2773 	 */
2774 	/* The sender sets actual checksum coverage length via this option.
2775 	 * The case coverage > packet length is handled by send module. */
2776 	case UDPLITE_SEND_CSCOV:
2777 		if (!is_udplite)         /* Disable the option on UDP sockets */
2778 			return -ENOPROTOOPT;
2779 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2780 			val = 8;
2781 		else if (val > USHRT_MAX)
2782 			val = USHRT_MAX;
2783 		up->pcslen = val;
2784 		up->pcflag |= UDPLITE_SEND_CC;
2785 		break;
2786 
2787 	/* The receiver specifies a minimum checksum coverage value. To make
2788 	 * sense, this should be set to at least 8 (as done below). If zero is
2789 	 * used, this again means full checksum coverage.                     */
2790 	case UDPLITE_RECV_CSCOV:
2791 		if (!is_udplite)         /* Disable the option on UDP sockets */
2792 			return -ENOPROTOOPT;
2793 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2794 			val = 8;
2795 		else if (val > USHRT_MAX)
2796 			val = USHRT_MAX;
2797 		up->pcrlen = val;
2798 		up->pcflag |= UDPLITE_RECV_CC;
2799 		break;
2800 
2801 	default:
2802 		err = -ENOPROTOOPT;
2803 		break;
2804 	}
2805 
2806 	return err;
2807 }
2808 EXPORT_SYMBOL(udp_lib_setsockopt);
2809 
2810 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2811 		   unsigned int optlen)
2812 {
2813 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2814 		return udp_lib_setsockopt(sk, level, optname,
2815 					  optval, optlen,
2816 					  udp_push_pending_frames);
2817 	return ip_setsockopt(sk, level, optname, optval, optlen);
2818 }
2819 
2820 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2821 		       char __user *optval, int __user *optlen)
2822 {
2823 	struct udp_sock *up = udp_sk(sk);
2824 	int val, len;
2825 
2826 	if (get_user(len, optlen))
2827 		return -EFAULT;
2828 
2829 	len = min_t(unsigned int, len, sizeof(int));
2830 
2831 	if (len < 0)
2832 		return -EINVAL;
2833 
2834 	switch (optname) {
2835 	case UDP_CORK:
2836 		val = READ_ONCE(up->corkflag);
2837 		break;
2838 
2839 	case UDP_ENCAP:
2840 		val = up->encap_type;
2841 		break;
2842 
2843 	case UDP_NO_CHECK6_TX:
2844 		val = up->no_check6_tx;
2845 		break;
2846 
2847 	case UDP_NO_CHECK6_RX:
2848 		val = up->no_check6_rx;
2849 		break;
2850 
2851 	case UDP_SEGMENT:
2852 		val = READ_ONCE(up->gso_size);
2853 		break;
2854 
2855 	case UDP_GRO:
2856 		val = up->gro_enabled;
2857 		break;
2858 
2859 	/* The following two cannot be changed on UDP sockets, the return is
2860 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2861 	case UDPLITE_SEND_CSCOV:
2862 		val = up->pcslen;
2863 		break;
2864 
2865 	case UDPLITE_RECV_CSCOV:
2866 		val = up->pcrlen;
2867 		break;
2868 
2869 	default:
2870 		return -ENOPROTOOPT;
2871 	}
2872 
2873 	if (put_user(len, optlen))
2874 		return -EFAULT;
2875 	if (copy_to_user(optval, &val, len))
2876 		return -EFAULT;
2877 	return 0;
2878 }
2879 EXPORT_SYMBOL(udp_lib_getsockopt);
2880 
2881 int udp_getsockopt(struct sock *sk, int level, int optname,
2882 		   char __user *optval, int __user *optlen)
2883 {
2884 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2885 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2886 	return ip_getsockopt(sk, level, optname, optval, optlen);
2887 }
2888 
2889 /**
2890  * 	udp_poll - wait for a UDP event.
2891  *	@file: - file struct
2892  *	@sock: - socket
2893  *	@wait: - poll table
2894  *
2895  *	This is same as datagram poll, except for the special case of
2896  *	blocking sockets. If application is using a blocking fd
2897  *	and a packet with checksum error is in the queue;
2898  *	then it could get return from select indicating data available
2899  *	but then block when reading it. Add special case code
2900  *	to work around these arguably broken applications.
2901  */
2902 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2903 {
2904 	__poll_t mask = datagram_poll(file, sock, wait);
2905 	struct sock *sk = sock->sk;
2906 
2907 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2908 		mask |= EPOLLIN | EPOLLRDNORM;
2909 
2910 	/* Check for false positives due to checksum errors */
2911 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2912 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2913 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2914 
2915 	/* psock ingress_msg queue should not contain any bad checksum frames */
2916 	if (sk_is_readable(sk))
2917 		mask |= EPOLLIN | EPOLLRDNORM;
2918 	return mask;
2919 
2920 }
2921 EXPORT_SYMBOL(udp_poll);
2922 
2923 int udp_abort(struct sock *sk, int err)
2924 {
2925 	lock_sock(sk);
2926 
2927 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2928 	 * with close()
2929 	 */
2930 	if (sock_flag(sk, SOCK_DEAD))
2931 		goto out;
2932 
2933 	sk->sk_err = err;
2934 	sk_error_report(sk);
2935 	__udp_disconnect(sk, 0);
2936 
2937 out:
2938 	release_sock(sk);
2939 
2940 	return 0;
2941 }
2942 EXPORT_SYMBOL_GPL(udp_abort);
2943 
2944 struct proto udp_prot = {
2945 	.name			= "UDP",
2946 	.owner			= THIS_MODULE,
2947 	.close			= udp_lib_close,
2948 	.pre_connect		= udp_pre_connect,
2949 	.connect		= ip4_datagram_connect,
2950 	.disconnect		= udp_disconnect,
2951 	.ioctl			= udp_ioctl,
2952 	.init			= udp_init_sock,
2953 	.destroy		= udp_destroy_sock,
2954 	.setsockopt		= udp_setsockopt,
2955 	.getsockopt		= udp_getsockopt,
2956 	.sendmsg		= udp_sendmsg,
2957 	.recvmsg		= udp_recvmsg,
2958 	.sendpage		= udp_sendpage,
2959 	.release_cb		= ip4_datagram_release_cb,
2960 	.hash			= udp_lib_hash,
2961 	.unhash			= udp_lib_unhash,
2962 	.rehash			= udp_v4_rehash,
2963 	.get_port		= udp_v4_get_port,
2964 	.put_port		= udp_lib_unhash,
2965 #ifdef CONFIG_BPF_SYSCALL
2966 	.psock_update_sk_prot	= udp_bpf_update_proto,
2967 #endif
2968 	.memory_allocated	= &udp_memory_allocated,
2969 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2970 
2971 	.sysctl_mem		= sysctl_udp_mem,
2972 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2973 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2974 	.obj_size		= sizeof(struct udp_sock),
2975 	.h.udp_table		= NULL,
2976 	.diag_destroy		= udp_abort,
2977 };
2978 EXPORT_SYMBOL(udp_prot);
2979 
2980 /* ------------------------------------------------------------------------ */
2981 #ifdef CONFIG_PROC_FS
2982 
2983 static struct sock *udp_get_first(struct seq_file *seq, int start)
2984 {
2985 	struct udp_iter_state *state = seq->private;
2986 	struct net *net = seq_file_net(seq);
2987 	struct udp_seq_afinfo *afinfo;
2988 	struct sock *sk;
2989 
2990 	if (state->bpf_seq_afinfo)
2991 		afinfo = state->bpf_seq_afinfo;
2992 	else
2993 		afinfo = pde_data(file_inode(seq->file));
2994 
2995 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2996 	     ++state->bucket) {
2997 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2998 
2999 		if (hlist_empty(&hslot->head))
3000 			continue;
3001 
3002 		spin_lock_bh(&hslot->lock);
3003 		sk_for_each(sk, &hslot->head) {
3004 			if (!net_eq(sock_net(sk), net))
3005 				continue;
3006 			if (afinfo->family == AF_UNSPEC ||
3007 			    sk->sk_family == afinfo->family)
3008 				goto found;
3009 		}
3010 		spin_unlock_bh(&hslot->lock);
3011 	}
3012 	sk = NULL;
3013 found:
3014 	return sk;
3015 }
3016 
3017 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3018 {
3019 	struct udp_iter_state *state = seq->private;
3020 	struct net *net = seq_file_net(seq);
3021 	struct udp_seq_afinfo *afinfo;
3022 
3023 	if (state->bpf_seq_afinfo)
3024 		afinfo = state->bpf_seq_afinfo;
3025 	else
3026 		afinfo = pde_data(file_inode(seq->file));
3027 
3028 	do {
3029 		sk = sk_next(sk);
3030 	} while (sk && (!net_eq(sock_net(sk), net) ||
3031 			(afinfo->family != AF_UNSPEC &&
3032 			 sk->sk_family != afinfo->family)));
3033 
3034 	if (!sk) {
3035 		if (state->bucket <= afinfo->udp_table->mask)
3036 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3037 		return udp_get_first(seq, state->bucket + 1);
3038 	}
3039 	return sk;
3040 }
3041 
3042 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3043 {
3044 	struct sock *sk = udp_get_first(seq, 0);
3045 
3046 	if (sk)
3047 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3048 			--pos;
3049 	return pos ? NULL : sk;
3050 }
3051 
3052 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3053 {
3054 	struct udp_iter_state *state = seq->private;
3055 	state->bucket = MAX_UDP_PORTS;
3056 
3057 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3058 }
3059 EXPORT_SYMBOL(udp_seq_start);
3060 
3061 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3062 {
3063 	struct sock *sk;
3064 
3065 	if (v == SEQ_START_TOKEN)
3066 		sk = udp_get_idx(seq, 0);
3067 	else
3068 		sk = udp_get_next(seq, v);
3069 
3070 	++*pos;
3071 	return sk;
3072 }
3073 EXPORT_SYMBOL(udp_seq_next);
3074 
3075 void udp_seq_stop(struct seq_file *seq, void *v)
3076 {
3077 	struct udp_iter_state *state = seq->private;
3078 	struct udp_seq_afinfo *afinfo;
3079 
3080 	if (state->bpf_seq_afinfo)
3081 		afinfo = state->bpf_seq_afinfo;
3082 	else
3083 		afinfo = pde_data(file_inode(seq->file));
3084 
3085 	if (state->bucket <= afinfo->udp_table->mask)
3086 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3087 }
3088 EXPORT_SYMBOL(udp_seq_stop);
3089 
3090 /* ------------------------------------------------------------------------ */
3091 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3092 		int bucket)
3093 {
3094 	struct inet_sock *inet = inet_sk(sp);
3095 	__be32 dest = inet->inet_daddr;
3096 	__be32 src  = inet->inet_rcv_saddr;
3097 	__u16 destp	  = ntohs(inet->inet_dport);
3098 	__u16 srcp	  = ntohs(inet->inet_sport);
3099 
3100 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3101 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3102 		bucket, src, srcp, dest, destp, sp->sk_state,
3103 		sk_wmem_alloc_get(sp),
3104 		udp_rqueue_get(sp),
3105 		0, 0L, 0,
3106 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3107 		0, sock_i_ino(sp),
3108 		refcount_read(&sp->sk_refcnt), sp,
3109 		atomic_read(&sp->sk_drops));
3110 }
3111 
3112 int udp4_seq_show(struct seq_file *seq, void *v)
3113 {
3114 	seq_setwidth(seq, 127);
3115 	if (v == SEQ_START_TOKEN)
3116 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3117 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3118 			   "inode ref pointer drops");
3119 	else {
3120 		struct udp_iter_state *state = seq->private;
3121 
3122 		udp4_format_sock(v, seq, state->bucket);
3123 	}
3124 	seq_pad(seq, '\n');
3125 	return 0;
3126 }
3127 
3128 #ifdef CONFIG_BPF_SYSCALL
3129 struct bpf_iter__udp {
3130 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3131 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3132 	uid_t uid __aligned(8);
3133 	int bucket __aligned(8);
3134 };
3135 
3136 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3137 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3138 {
3139 	struct bpf_iter__udp ctx;
3140 
3141 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3142 	ctx.meta = meta;
3143 	ctx.udp_sk = udp_sk;
3144 	ctx.uid = uid;
3145 	ctx.bucket = bucket;
3146 	return bpf_iter_run_prog(prog, &ctx);
3147 }
3148 
3149 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3150 {
3151 	struct udp_iter_state *state = seq->private;
3152 	struct bpf_iter_meta meta;
3153 	struct bpf_prog *prog;
3154 	struct sock *sk = v;
3155 	uid_t uid;
3156 
3157 	if (v == SEQ_START_TOKEN)
3158 		return 0;
3159 
3160 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3161 	meta.seq = seq;
3162 	prog = bpf_iter_get_info(&meta, false);
3163 	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3164 }
3165 
3166 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3167 {
3168 	struct bpf_iter_meta meta;
3169 	struct bpf_prog *prog;
3170 
3171 	if (!v) {
3172 		meta.seq = seq;
3173 		prog = bpf_iter_get_info(&meta, true);
3174 		if (prog)
3175 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3176 	}
3177 
3178 	udp_seq_stop(seq, v);
3179 }
3180 
3181 static const struct seq_operations bpf_iter_udp_seq_ops = {
3182 	.start		= udp_seq_start,
3183 	.next		= udp_seq_next,
3184 	.stop		= bpf_iter_udp_seq_stop,
3185 	.show		= bpf_iter_udp_seq_show,
3186 };
3187 #endif
3188 
3189 const struct seq_operations udp_seq_ops = {
3190 	.start		= udp_seq_start,
3191 	.next		= udp_seq_next,
3192 	.stop		= udp_seq_stop,
3193 	.show		= udp4_seq_show,
3194 };
3195 EXPORT_SYMBOL(udp_seq_ops);
3196 
3197 static struct udp_seq_afinfo udp4_seq_afinfo = {
3198 	.family		= AF_INET,
3199 	.udp_table	= &udp_table,
3200 };
3201 
3202 static int __net_init udp4_proc_init_net(struct net *net)
3203 {
3204 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3205 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3206 		return -ENOMEM;
3207 	return 0;
3208 }
3209 
3210 static void __net_exit udp4_proc_exit_net(struct net *net)
3211 {
3212 	remove_proc_entry("udp", net->proc_net);
3213 }
3214 
3215 static struct pernet_operations udp4_net_ops = {
3216 	.init = udp4_proc_init_net,
3217 	.exit = udp4_proc_exit_net,
3218 };
3219 
3220 int __init udp4_proc_init(void)
3221 {
3222 	return register_pernet_subsys(&udp4_net_ops);
3223 }
3224 
3225 void udp4_proc_exit(void)
3226 {
3227 	unregister_pernet_subsys(&udp4_net_ops);
3228 }
3229 #endif /* CONFIG_PROC_FS */
3230 
3231 static __initdata unsigned long uhash_entries;
3232 static int __init set_uhash_entries(char *str)
3233 {
3234 	ssize_t ret;
3235 
3236 	if (!str)
3237 		return 0;
3238 
3239 	ret = kstrtoul(str, 0, &uhash_entries);
3240 	if (ret)
3241 		return 0;
3242 
3243 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3244 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3245 	return 1;
3246 }
3247 __setup("uhash_entries=", set_uhash_entries);
3248 
3249 void __init udp_table_init(struct udp_table *table, const char *name)
3250 {
3251 	unsigned int i;
3252 
3253 	table->hash = alloc_large_system_hash(name,
3254 					      2 * sizeof(struct udp_hslot),
3255 					      uhash_entries,
3256 					      21, /* one slot per 2 MB */
3257 					      0,
3258 					      &table->log,
3259 					      &table->mask,
3260 					      UDP_HTABLE_SIZE_MIN,
3261 					      64 * 1024);
3262 
3263 	table->hash2 = table->hash + (table->mask + 1);
3264 	for (i = 0; i <= table->mask; i++) {
3265 		INIT_HLIST_HEAD(&table->hash[i].head);
3266 		table->hash[i].count = 0;
3267 		spin_lock_init(&table->hash[i].lock);
3268 	}
3269 	for (i = 0; i <= table->mask; i++) {
3270 		INIT_HLIST_HEAD(&table->hash2[i].head);
3271 		table->hash2[i].count = 0;
3272 		spin_lock_init(&table->hash2[i].lock);
3273 	}
3274 }
3275 
3276 u32 udp_flow_hashrnd(void)
3277 {
3278 	static u32 hashrnd __read_mostly;
3279 
3280 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3281 
3282 	return hashrnd;
3283 }
3284 EXPORT_SYMBOL(udp_flow_hashrnd);
3285 
3286 static int __net_init udp_sysctl_init(struct net *net)
3287 {
3288 	net->ipv4.udp_table = &udp_table;
3289 
3290 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3291 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3292 
3293 #ifdef CONFIG_NET_L3_MASTER_DEV
3294 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3295 #endif
3296 
3297 	return 0;
3298 }
3299 
3300 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3301 	.init	= udp_sysctl_init,
3302 };
3303 
3304 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3305 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3306 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3307 
3308 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3309 {
3310 	struct udp_iter_state *st = priv_data;
3311 	struct udp_seq_afinfo *afinfo;
3312 	int ret;
3313 
3314 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3315 	if (!afinfo)
3316 		return -ENOMEM;
3317 
3318 	afinfo->family = AF_UNSPEC;
3319 	afinfo->udp_table = &udp_table;
3320 	st->bpf_seq_afinfo = afinfo;
3321 	ret = bpf_iter_init_seq_net(priv_data, aux);
3322 	if (ret)
3323 		kfree(afinfo);
3324 	return ret;
3325 }
3326 
3327 static void bpf_iter_fini_udp(void *priv_data)
3328 {
3329 	struct udp_iter_state *st = priv_data;
3330 
3331 	kfree(st->bpf_seq_afinfo);
3332 	bpf_iter_fini_seq_net(priv_data);
3333 }
3334 
3335 static const struct bpf_iter_seq_info udp_seq_info = {
3336 	.seq_ops		= &bpf_iter_udp_seq_ops,
3337 	.init_seq_private	= bpf_iter_init_udp,
3338 	.fini_seq_private	= bpf_iter_fini_udp,
3339 	.seq_priv_size		= sizeof(struct udp_iter_state),
3340 };
3341 
3342 static struct bpf_iter_reg udp_reg_info = {
3343 	.target			= "udp",
3344 	.ctx_arg_info_size	= 1,
3345 	.ctx_arg_info		= {
3346 		{ offsetof(struct bpf_iter__udp, udp_sk),
3347 		  PTR_TO_BTF_ID_OR_NULL },
3348 	},
3349 	.seq_info		= &udp_seq_info,
3350 };
3351 
3352 static void __init bpf_iter_register(void)
3353 {
3354 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3355 	if (bpf_iter_reg_target(&udp_reg_info))
3356 		pr_warn("Warning: could not register bpf iterator udp\n");
3357 }
3358 #endif
3359 
3360 void __init udp_init(void)
3361 {
3362 	unsigned long limit;
3363 	unsigned int i;
3364 
3365 	udp_table_init(&udp_table, "UDP");
3366 	limit = nr_free_buffer_pages() / 8;
3367 	limit = max(limit, 128UL);
3368 	sysctl_udp_mem[0] = limit / 4 * 3;
3369 	sysctl_udp_mem[1] = limit;
3370 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3371 
3372 	/* 16 spinlocks per cpu */
3373 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3374 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3375 				GFP_KERNEL);
3376 	if (!udp_busylocks)
3377 		panic("UDP: failed to alloc udp_busylocks\n");
3378 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3379 		spin_lock_init(udp_busylocks + i);
3380 
3381 	if (register_pernet_subsys(&udp_sysctl_ops))
3382 		panic("UDP: failed to init sysctl parameters.\n");
3383 
3384 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3385 	bpf_iter_register();
3386 #endif
3387 }
3388