1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <trace/events/udp.h> 108 #include <linux/static_key.h> 109 #include <linux/btf_ids.h> 110 #include <trace/events/skb.h> 111 #include <net/busy_poll.h> 112 #include "udp_impl.h" 113 #include <net/sock_reuseport.h> 114 #include <net/addrconf.h> 115 #include <net/udp_tunnel.h> 116 #if IS_ENABLED(CONFIG_IPV6) 117 #include <net/ipv6_stubs.h> 118 #endif 119 120 struct udp_table udp_table __read_mostly; 121 EXPORT_SYMBOL(udp_table); 122 123 long sysctl_udp_mem[3] __read_mostly; 124 EXPORT_SYMBOL(sysctl_udp_mem); 125 126 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 127 EXPORT_SYMBOL(udp_memory_allocated); 128 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 129 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 130 131 #define MAX_UDP_PORTS 65536 132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 133 134 static struct udp_table *udp_get_table_prot(struct sock *sk) 135 { 136 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 137 } 138 139 static int udp_lib_lport_inuse(struct net *net, __u16 num, 140 const struct udp_hslot *hslot, 141 unsigned long *bitmap, 142 struct sock *sk, unsigned int log) 143 { 144 struct sock *sk2; 145 kuid_t uid = sock_i_uid(sk); 146 147 sk_for_each(sk2, &hslot->head) { 148 if (net_eq(sock_net(sk2), net) && 149 sk2 != sk && 150 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 151 (!sk2->sk_reuse || !sk->sk_reuse) && 152 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 153 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 154 inet_rcv_saddr_equal(sk, sk2, true)) { 155 if (sk2->sk_reuseport && sk->sk_reuseport && 156 !rcu_access_pointer(sk->sk_reuseport_cb) && 157 uid_eq(uid, sock_i_uid(sk2))) { 158 if (!bitmap) 159 return 0; 160 } else { 161 if (!bitmap) 162 return 1; 163 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 164 bitmap); 165 } 166 } 167 } 168 return 0; 169 } 170 171 /* 172 * Note: we still hold spinlock of primary hash chain, so no other writer 173 * can insert/delete a socket with local_port == num 174 */ 175 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 176 struct udp_hslot *hslot2, 177 struct sock *sk) 178 { 179 struct sock *sk2; 180 kuid_t uid = sock_i_uid(sk); 181 int res = 0; 182 183 spin_lock(&hslot2->lock); 184 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 185 if (net_eq(sock_net(sk2), net) && 186 sk2 != sk && 187 (udp_sk(sk2)->udp_port_hash == num) && 188 (!sk2->sk_reuse || !sk->sk_reuse) && 189 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 190 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 191 inet_rcv_saddr_equal(sk, sk2, true)) { 192 if (sk2->sk_reuseport && sk->sk_reuseport && 193 !rcu_access_pointer(sk->sk_reuseport_cb) && 194 uid_eq(uid, sock_i_uid(sk2))) { 195 res = 0; 196 } else { 197 res = 1; 198 } 199 break; 200 } 201 } 202 spin_unlock(&hslot2->lock); 203 return res; 204 } 205 206 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 207 { 208 struct net *net = sock_net(sk); 209 kuid_t uid = sock_i_uid(sk); 210 struct sock *sk2; 211 212 sk_for_each(sk2, &hslot->head) { 213 if (net_eq(sock_net(sk2), net) && 214 sk2 != sk && 215 sk2->sk_family == sk->sk_family && 216 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 217 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 218 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 219 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 220 inet_rcv_saddr_equal(sk, sk2, false)) { 221 return reuseport_add_sock(sk, sk2, 222 inet_rcv_saddr_any(sk)); 223 } 224 } 225 226 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 227 } 228 229 /** 230 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 231 * 232 * @sk: socket struct in question 233 * @snum: port number to look up 234 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 235 * with NULL address 236 */ 237 int udp_lib_get_port(struct sock *sk, unsigned short snum, 238 unsigned int hash2_nulladdr) 239 { 240 struct udp_table *udptable = udp_get_table_prot(sk); 241 struct udp_hslot *hslot, *hslot2; 242 struct net *net = sock_net(sk); 243 int error = 1; 244 245 if (!snum) { 246 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 247 unsigned short first, last; 248 int low, high, remaining; 249 unsigned int rand; 250 251 inet_get_local_port_range(net, &low, &high); 252 remaining = (high - low) + 1; 253 254 rand = get_random_u32(); 255 first = reciprocal_scale(rand, remaining) + low; 256 /* 257 * force rand to be an odd multiple of UDP_HTABLE_SIZE 258 */ 259 rand = (rand | 1) * (udptable->mask + 1); 260 last = first + udptable->mask + 1; 261 do { 262 hslot = udp_hashslot(udptable, net, first); 263 bitmap_zero(bitmap, PORTS_PER_CHAIN); 264 spin_lock_bh(&hslot->lock); 265 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 266 udptable->log); 267 268 snum = first; 269 /* 270 * Iterate on all possible values of snum for this hash. 271 * Using steps of an odd multiple of UDP_HTABLE_SIZE 272 * give us randomization and full range coverage. 273 */ 274 do { 275 if (low <= snum && snum <= high && 276 !test_bit(snum >> udptable->log, bitmap) && 277 !inet_is_local_reserved_port(net, snum)) 278 goto found; 279 snum += rand; 280 } while (snum != first); 281 spin_unlock_bh(&hslot->lock); 282 cond_resched(); 283 } while (++first != last); 284 goto fail; 285 } else { 286 hslot = udp_hashslot(udptable, net, snum); 287 spin_lock_bh(&hslot->lock); 288 if (hslot->count > 10) { 289 int exist; 290 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 291 292 slot2 &= udptable->mask; 293 hash2_nulladdr &= udptable->mask; 294 295 hslot2 = udp_hashslot2(udptable, slot2); 296 if (hslot->count < hslot2->count) 297 goto scan_primary_hash; 298 299 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 300 if (!exist && (hash2_nulladdr != slot2)) { 301 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 302 exist = udp_lib_lport_inuse2(net, snum, hslot2, 303 sk); 304 } 305 if (exist) 306 goto fail_unlock; 307 else 308 goto found; 309 } 310 scan_primary_hash: 311 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 312 goto fail_unlock; 313 } 314 found: 315 inet_sk(sk)->inet_num = snum; 316 udp_sk(sk)->udp_port_hash = snum; 317 udp_sk(sk)->udp_portaddr_hash ^= snum; 318 if (sk_unhashed(sk)) { 319 if (sk->sk_reuseport && 320 udp_reuseport_add_sock(sk, hslot)) { 321 inet_sk(sk)->inet_num = 0; 322 udp_sk(sk)->udp_port_hash = 0; 323 udp_sk(sk)->udp_portaddr_hash ^= snum; 324 goto fail_unlock; 325 } 326 327 sk_add_node_rcu(sk, &hslot->head); 328 hslot->count++; 329 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 330 331 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 332 spin_lock(&hslot2->lock); 333 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 334 sk->sk_family == AF_INET6) 335 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 336 &hslot2->head); 337 else 338 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 339 &hslot2->head); 340 hslot2->count++; 341 spin_unlock(&hslot2->lock); 342 } 343 sock_set_flag(sk, SOCK_RCU_FREE); 344 error = 0; 345 fail_unlock: 346 spin_unlock_bh(&hslot->lock); 347 fail: 348 return error; 349 } 350 EXPORT_SYMBOL(udp_lib_get_port); 351 352 int udp_v4_get_port(struct sock *sk, unsigned short snum) 353 { 354 unsigned int hash2_nulladdr = 355 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 356 unsigned int hash2_partial = 357 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 358 359 /* precompute partial secondary hash */ 360 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 361 return udp_lib_get_port(sk, snum, hash2_nulladdr); 362 } 363 364 static int compute_score(struct sock *sk, struct net *net, 365 __be32 saddr, __be16 sport, 366 __be32 daddr, unsigned short hnum, 367 int dif, int sdif) 368 { 369 int score; 370 struct inet_sock *inet; 371 bool dev_match; 372 373 if (!net_eq(sock_net(sk), net) || 374 udp_sk(sk)->udp_port_hash != hnum || 375 ipv6_only_sock(sk)) 376 return -1; 377 378 if (sk->sk_rcv_saddr != daddr) 379 return -1; 380 381 score = (sk->sk_family == PF_INET) ? 2 : 1; 382 383 inet = inet_sk(sk); 384 if (inet->inet_daddr) { 385 if (inet->inet_daddr != saddr) 386 return -1; 387 score += 4; 388 } 389 390 if (inet->inet_dport) { 391 if (inet->inet_dport != sport) 392 return -1; 393 score += 4; 394 } 395 396 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 397 dif, sdif); 398 if (!dev_match) 399 return -1; 400 if (sk->sk_bound_dev_if) 401 score += 4; 402 403 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 404 score++; 405 return score; 406 } 407 408 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 409 const __u16 lport, const __be32 faddr, 410 const __be16 fport) 411 { 412 static u32 udp_ehash_secret __read_mostly; 413 414 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 415 416 return __inet_ehashfn(laddr, lport, faddr, fport, 417 udp_ehash_secret + net_hash_mix(net)); 418 } 419 420 static struct sock *lookup_reuseport(struct net *net, struct sock *sk, 421 struct sk_buff *skb, 422 __be32 saddr, __be16 sport, 423 __be32 daddr, unsigned short hnum) 424 { 425 struct sock *reuse_sk = NULL; 426 u32 hash; 427 428 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) { 429 hash = udp_ehashfn(net, daddr, hnum, saddr, sport); 430 reuse_sk = reuseport_select_sock(sk, hash, skb, 431 sizeof(struct udphdr)); 432 } 433 return reuse_sk; 434 } 435 436 /* called with rcu_read_lock() */ 437 static struct sock *udp4_lib_lookup2(struct net *net, 438 __be32 saddr, __be16 sport, 439 __be32 daddr, unsigned int hnum, 440 int dif, int sdif, 441 struct udp_hslot *hslot2, 442 struct sk_buff *skb) 443 { 444 struct sock *sk, *result; 445 int score, badness; 446 447 result = NULL; 448 badness = 0; 449 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 450 score = compute_score(sk, net, saddr, sport, 451 daddr, hnum, dif, sdif); 452 if (score > badness) { 453 result = lookup_reuseport(net, sk, skb, 454 saddr, sport, daddr, hnum); 455 /* Fall back to scoring if group has connections */ 456 if (result && !reuseport_has_conns(sk)) 457 return result; 458 459 result = result ? : sk; 460 badness = score; 461 } 462 } 463 return result; 464 } 465 466 static struct sock *udp4_lookup_run_bpf(struct net *net, 467 struct udp_table *udptable, 468 struct sk_buff *skb, 469 __be32 saddr, __be16 sport, 470 __be32 daddr, u16 hnum, const int dif) 471 { 472 struct sock *sk, *reuse_sk; 473 bool no_reuseport; 474 475 if (udptable != &udp_table) 476 return NULL; /* only UDP is supported */ 477 478 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport, 479 daddr, hnum, dif, &sk); 480 if (no_reuseport || IS_ERR_OR_NULL(sk)) 481 return sk; 482 483 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum); 484 if (reuse_sk) 485 sk = reuse_sk; 486 return sk; 487 } 488 489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 490 * harder than this. -DaveM 491 */ 492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 493 __be16 sport, __be32 daddr, __be16 dport, int dif, 494 int sdif, struct udp_table *udptable, struct sk_buff *skb) 495 { 496 unsigned short hnum = ntohs(dport); 497 unsigned int hash2, slot2; 498 struct udp_hslot *hslot2; 499 struct sock *result, *sk; 500 501 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 502 slot2 = hash2 & udptable->mask; 503 hslot2 = &udptable->hash2[slot2]; 504 505 /* Lookup connected or non-wildcard socket */ 506 result = udp4_lib_lookup2(net, saddr, sport, 507 daddr, hnum, dif, sdif, 508 hslot2, skb); 509 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 510 goto done; 511 512 /* Lookup redirect from BPF */ 513 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) { 514 sk = udp4_lookup_run_bpf(net, udptable, skb, 515 saddr, sport, daddr, hnum, dif); 516 if (sk) { 517 result = sk; 518 goto done; 519 } 520 } 521 522 /* Got non-wildcard socket or error on first lookup */ 523 if (result) 524 goto done; 525 526 /* Lookup wildcard sockets */ 527 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 528 slot2 = hash2 & udptable->mask; 529 hslot2 = &udptable->hash2[slot2]; 530 531 result = udp4_lib_lookup2(net, saddr, sport, 532 htonl(INADDR_ANY), hnum, dif, sdif, 533 hslot2, skb); 534 done: 535 if (IS_ERR(result)) 536 return NULL; 537 return result; 538 } 539 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 540 541 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 542 __be16 sport, __be16 dport, 543 struct udp_table *udptable) 544 { 545 const struct iphdr *iph = ip_hdr(skb); 546 547 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 548 iph->daddr, dport, inet_iif(skb), 549 inet_sdif(skb), udptable, skb); 550 } 551 552 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 553 __be16 sport, __be16 dport) 554 { 555 const struct iphdr *iph = ip_hdr(skb); 556 557 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 558 iph->daddr, dport, inet_iif(skb), 559 inet_sdif(skb), &udp_table, NULL); 560 } 561 562 /* Must be called under rcu_read_lock(). 563 * Does increment socket refcount. 564 */ 565 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 566 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 567 __be32 daddr, __be16 dport, int dif) 568 { 569 struct sock *sk; 570 571 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 572 dif, 0, &udp_table, NULL); 573 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 574 sk = NULL; 575 return sk; 576 } 577 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 578 #endif 579 580 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 581 __be16 loc_port, __be32 loc_addr, 582 __be16 rmt_port, __be32 rmt_addr, 583 int dif, int sdif, unsigned short hnum) 584 { 585 struct inet_sock *inet = inet_sk(sk); 586 587 if (!net_eq(sock_net(sk), net) || 588 udp_sk(sk)->udp_port_hash != hnum || 589 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 590 (inet->inet_dport != rmt_port && inet->inet_dport) || 591 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 592 ipv6_only_sock(sk) || 593 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 594 return false; 595 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 596 return false; 597 return true; 598 } 599 600 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 601 void udp_encap_enable(void) 602 { 603 static_branch_inc(&udp_encap_needed_key); 604 } 605 EXPORT_SYMBOL(udp_encap_enable); 606 607 void udp_encap_disable(void) 608 { 609 static_branch_dec(&udp_encap_needed_key); 610 } 611 EXPORT_SYMBOL(udp_encap_disable); 612 613 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 614 * through error handlers in encapsulations looking for a match. 615 */ 616 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 617 { 618 int i; 619 620 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 621 int (*handler)(struct sk_buff *skb, u32 info); 622 const struct ip_tunnel_encap_ops *encap; 623 624 encap = rcu_dereference(iptun_encaps[i]); 625 if (!encap) 626 continue; 627 handler = encap->err_handler; 628 if (handler && !handler(skb, info)) 629 return 0; 630 } 631 632 return -ENOENT; 633 } 634 635 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 636 * reversing source and destination port: this will match tunnels that force the 637 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 638 * lwtunnels might actually break this assumption by being configured with 639 * different destination ports on endpoints, in this case we won't be able to 640 * trace ICMP messages back to them. 641 * 642 * If this doesn't match any socket, probe tunnels with arbitrary destination 643 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 644 * we've sent packets to won't necessarily match the local destination port. 645 * 646 * Then ask the tunnel implementation to match the error against a valid 647 * association. 648 * 649 * Return an error if we can't find a match, the socket if we need further 650 * processing, zero otherwise. 651 */ 652 static struct sock *__udp4_lib_err_encap(struct net *net, 653 const struct iphdr *iph, 654 struct udphdr *uh, 655 struct udp_table *udptable, 656 struct sock *sk, 657 struct sk_buff *skb, u32 info) 658 { 659 int (*lookup)(struct sock *sk, struct sk_buff *skb); 660 int network_offset, transport_offset; 661 struct udp_sock *up; 662 663 network_offset = skb_network_offset(skb); 664 transport_offset = skb_transport_offset(skb); 665 666 /* Network header needs to point to the outer IPv4 header inside ICMP */ 667 skb_reset_network_header(skb); 668 669 /* Transport header needs to point to the UDP header */ 670 skb_set_transport_header(skb, iph->ihl << 2); 671 672 if (sk) { 673 up = udp_sk(sk); 674 675 lookup = READ_ONCE(up->encap_err_lookup); 676 if (lookup && lookup(sk, skb)) 677 sk = NULL; 678 679 goto out; 680 } 681 682 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 683 iph->saddr, uh->dest, skb->dev->ifindex, 0, 684 udptable, NULL); 685 if (sk) { 686 up = udp_sk(sk); 687 688 lookup = READ_ONCE(up->encap_err_lookup); 689 if (!lookup || lookup(sk, skb)) 690 sk = NULL; 691 } 692 693 out: 694 if (!sk) 695 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 696 697 skb_set_transport_header(skb, transport_offset); 698 skb_set_network_header(skb, network_offset); 699 700 return sk; 701 } 702 703 /* 704 * This routine is called by the ICMP module when it gets some 705 * sort of error condition. If err < 0 then the socket should 706 * be closed and the error returned to the user. If err > 0 707 * it's just the icmp type << 8 | icmp code. 708 * Header points to the ip header of the error packet. We move 709 * on past this. Then (as it used to claim before adjustment) 710 * header points to the first 8 bytes of the udp header. We need 711 * to find the appropriate port. 712 */ 713 714 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 715 { 716 struct inet_sock *inet; 717 const struct iphdr *iph = (const struct iphdr *)skb->data; 718 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 719 const int type = icmp_hdr(skb)->type; 720 const int code = icmp_hdr(skb)->code; 721 bool tunnel = false; 722 struct sock *sk; 723 int harderr; 724 int err; 725 struct net *net = dev_net(skb->dev); 726 727 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 728 iph->saddr, uh->source, skb->dev->ifindex, 729 inet_sdif(skb), udptable, NULL); 730 731 if (!sk || udp_sk(sk)->encap_type) { 732 /* No socket for error: try tunnels before discarding */ 733 if (static_branch_unlikely(&udp_encap_needed_key)) { 734 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 735 info); 736 if (!sk) 737 return 0; 738 } else 739 sk = ERR_PTR(-ENOENT); 740 741 if (IS_ERR(sk)) { 742 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 743 return PTR_ERR(sk); 744 } 745 746 tunnel = true; 747 } 748 749 err = 0; 750 harderr = 0; 751 inet = inet_sk(sk); 752 753 switch (type) { 754 default: 755 case ICMP_TIME_EXCEEDED: 756 err = EHOSTUNREACH; 757 break; 758 case ICMP_SOURCE_QUENCH: 759 goto out; 760 case ICMP_PARAMETERPROB: 761 err = EPROTO; 762 harderr = 1; 763 break; 764 case ICMP_DEST_UNREACH: 765 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 766 ipv4_sk_update_pmtu(skb, sk, info); 767 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 768 err = EMSGSIZE; 769 harderr = 1; 770 break; 771 } 772 goto out; 773 } 774 err = EHOSTUNREACH; 775 if (code <= NR_ICMP_UNREACH) { 776 harderr = icmp_err_convert[code].fatal; 777 err = icmp_err_convert[code].errno; 778 } 779 break; 780 case ICMP_REDIRECT: 781 ipv4_sk_redirect(skb, sk); 782 goto out; 783 } 784 785 /* 786 * RFC1122: OK. Passes ICMP errors back to application, as per 787 * 4.1.3.3. 788 */ 789 if (tunnel) { 790 /* ...not for tunnels though: we don't have a sending socket */ 791 if (udp_sk(sk)->encap_err_rcv) 792 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 793 (u8 *)(uh+1)); 794 goto out; 795 } 796 if (!inet->recverr) { 797 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 798 goto out; 799 } else 800 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 801 802 sk->sk_err = err; 803 sk_error_report(sk); 804 out: 805 return 0; 806 } 807 808 int udp_err(struct sk_buff *skb, u32 info) 809 { 810 return __udp4_lib_err(skb, info, &udp_table); 811 } 812 813 /* 814 * Throw away all pending data and cancel the corking. Socket is locked. 815 */ 816 void udp_flush_pending_frames(struct sock *sk) 817 { 818 struct udp_sock *up = udp_sk(sk); 819 820 if (up->pending) { 821 up->len = 0; 822 up->pending = 0; 823 ip_flush_pending_frames(sk); 824 } 825 } 826 EXPORT_SYMBOL(udp_flush_pending_frames); 827 828 /** 829 * udp4_hwcsum - handle outgoing HW checksumming 830 * @skb: sk_buff containing the filled-in UDP header 831 * (checksum field must be zeroed out) 832 * @src: source IP address 833 * @dst: destination IP address 834 */ 835 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 836 { 837 struct udphdr *uh = udp_hdr(skb); 838 int offset = skb_transport_offset(skb); 839 int len = skb->len - offset; 840 int hlen = len; 841 __wsum csum = 0; 842 843 if (!skb_has_frag_list(skb)) { 844 /* 845 * Only one fragment on the socket. 846 */ 847 skb->csum_start = skb_transport_header(skb) - skb->head; 848 skb->csum_offset = offsetof(struct udphdr, check); 849 uh->check = ~csum_tcpudp_magic(src, dst, len, 850 IPPROTO_UDP, 0); 851 } else { 852 struct sk_buff *frags; 853 854 /* 855 * HW-checksum won't work as there are two or more 856 * fragments on the socket so that all csums of sk_buffs 857 * should be together 858 */ 859 skb_walk_frags(skb, frags) { 860 csum = csum_add(csum, frags->csum); 861 hlen -= frags->len; 862 } 863 864 csum = skb_checksum(skb, offset, hlen, csum); 865 skb->ip_summed = CHECKSUM_NONE; 866 867 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 868 if (uh->check == 0) 869 uh->check = CSUM_MANGLED_0; 870 } 871 } 872 EXPORT_SYMBOL_GPL(udp4_hwcsum); 873 874 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 875 * for the simple case like when setting the checksum for a UDP tunnel. 876 */ 877 void udp_set_csum(bool nocheck, struct sk_buff *skb, 878 __be32 saddr, __be32 daddr, int len) 879 { 880 struct udphdr *uh = udp_hdr(skb); 881 882 if (nocheck) { 883 uh->check = 0; 884 } else if (skb_is_gso(skb)) { 885 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 886 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 887 uh->check = 0; 888 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 889 if (uh->check == 0) 890 uh->check = CSUM_MANGLED_0; 891 } else { 892 skb->ip_summed = CHECKSUM_PARTIAL; 893 skb->csum_start = skb_transport_header(skb) - skb->head; 894 skb->csum_offset = offsetof(struct udphdr, check); 895 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 896 } 897 } 898 EXPORT_SYMBOL(udp_set_csum); 899 900 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 901 struct inet_cork *cork) 902 { 903 struct sock *sk = skb->sk; 904 struct inet_sock *inet = inet_sk(sk); 905 struct udphdr *uh; 906 int err; 907 int is_udplite = IS_UDPLITE(sk); 908 int offset = skb_transport_offset(skb); 909 int len = skb->len - offset; 910 int datalen = len - sizeof(*uh); 911 __wsum csum = 0; 912 913 /* 914 * Create a UDP header 915 */ 916 uh = udp_hdr(skb); 917 uh->source = inet->inet_sport; 918 uh->dest = fl4->fl4_dport; 919 uh->len = htons(len); 920 uh->check = 0; 921 922 if (cork->gso_size) { 923 const int hlen = skb_network_header_len(skb) + 924 sizeof(struct udphdr); 925 926 if (hlen + cork->gso_size > cork->fragsize) { 927 kfree_skb(skb); 928 return -EINVAL; 929 } 930 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 931 kfree_skb(skb); 932 return -EINVAL; 933 } 934 if (sk->sk_no_check_tx) { 935 kfree_skb(skb); 936 return -EINVAL; 937 } 938 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 939 dst_xfrm(skb_dst(skb))) { 940 kfree_skb(skb); 941 return -EIO; 942 } 943 944 if (datalen > cork->gso_size) { 945 skb_shinfo(skb)->gso_size = cork->gso_size; 946 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 947 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 948 cork->gso_size); 949 } 950 goto csum_partial; 951 } 952 953 if (is_udplite) /* UDP-Lite */ 954 csum = udplite_csum(skb); 955 956 else if (sk->sk_no_check_tx) { /* UDP csum off */ 957 958 skb->ip_summed = CHECKSUM_NONE; 959 goto send; 960 961 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 962 csum_partial: 963 964 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 965 goto send; 966 967 } else 968 csum = udp_csum(skb); 969 970 /* add protocol-dependent pseudo-header */ 971 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 972 sk->sk_protocol, csum); 973 if (uh->check == 0) 974 uh->check = CSUM_MANGLED_0; 975 976 send: 977 err = ip_send_skb(sock_net(sk), skb); 978 if (err) { 979 if (err == -ENOBUFS && !inet->recverr) { 980 UDP_INC_STATS(sock_net(sk), 981 UDP_MIB_SNDBUFERRORS, is_udplite); 982 err = 0; 983 } 984 } else 985 UDP_INC_STATS(sock_net(sk), 986 UDP_MIB_OUTDATAGRAMS, is_udplite); 987 return err; 988 } 989 990 /* 991 * Push out all pending data as one UDP datagram. Socket is locked. 992 */ 993 int udp_push_pending_frames(struct sock *sk) 994 { 995 struct udp_sock *up = udp_sk(sk); 996 struct inet_sock *inet = inet_sk(sk); 997 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 998 struct sk_buff *skb; 999 int err = 0; 1000 1001 skb = ip_finish_skb(sk, fl4); 1002 if (!skb) 1003 goto out; 1004 1005 err = udp_send_skb(skb, fl4, &inet->cork.base); 1006 1007 out: 1008 up->len = 0; 1009 up->pending = 0; 1010 return err; 1011 } 1012 EXPORT_SYMBOL(udp_push_pending_frames); 1013 1014 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1015 { 1016 switch (cmsg->cmsg_type) { 1017 case UDP_SEGMENT: 1018 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1019 return -EINVAL; 1020 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1021 return 0; 1022 default: 1023 return -EINVAL; 1024 } 1025 } 1026 1027 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1028 { 1029 struct cmsghdr *cmsg; 1030 bool need_ip = false; 1031 int err; 1032 1033 for_each_cmsghdr(cmsg, msg) { 1034 if (!CMSG_OK(msg, cmsg)) 1035 return -EINVAL; 1036 1037 if (cmsg->cmsg_level != SOL_UDP) { 1038 need_ip = true; 1039 continue; 1040 } 1041 1042 err = __udp_cmsg_send(cmsg, gso_size); 1043 if (err) 1044 return err; 1045 } 1046 1047 return need_ip; 1048 } 1049 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1050 1051 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1052 { 1053 struct inet_sock *inet = inet_sk(sk); 1054 struct udp_sock *up = udp_sk(sk); 1055 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1056 struct flowi4 fl4_stack; 1057 struct flowi4 *fl4; 1058 int ulen = len; 1059 struct ipcm_cookie ipc; 1060 struct rtable *rt = NULL; 1061 int free = 0; 1062 int connected = 0; 1063 __be32 daddr, faddr, saddr; 1064 __be16 dport; 1065 u8 tos; 1066 int err, is_udplite = IS_UDPLITE(sk); 1067 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE; 1068 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1069 struct sk_buff *skb; 1070 struct ip_options_data opt_copy; 1071 1072 if (len > 0xFFFF) 1073 return -EMSGSIZE; 1074 1075 /* 1076 * Check the flags. 1077 */ 1078 1079 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1080 return -EOPNOTSUPP; 1081 1082 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1083 1084 fl4 = &inet->cork.fl.u.ip4; 1085 if (up->pending) { 1086 /* 1087 * There are pending frames. 1088 * The socket lock must be held while it's corked. 1089 */ 1090 lock_sock(sk); 1091 if (likely(up->pending)) { 1092 if (unlikely(up->pending != AF_INET)) { 1093 release_sock(sk); 1094 return -EINVAL; 1095 } 1096 goto do_append_data; 1097 } 1098 release_sock(sk); 1099 } 1100 ulen += sizeof(struct udphdr); 1101 1102 /* 1103 * Get and verify the address. 1104 */ 1105 if (usin) { 1106 if (msg->msg_namelen < sizeof(*usin)) 1107 return -EINVAL; 1108 if (usin->sin_family != AF_INET) { 1109 if (usin->sin_family != AF_UNSPEC) 1110 return -EAFNOSUPPORT; 1111 } 1112 1113 daddr = usin->sin_addr.s_addr; 1114 dport = usin->sin_port; 1115 if (dport == 0) 1116 return -EINVAL; 1117 } else { 1118 if (sk->sk_state != TCP_ESTABLISHED) 1119 return -EDESTADDRREQ; 1120 daddr = inet->inet_daddr; 1121 dport = inet->inet_dport; 1122 /* Open fast path for connected socket. 1123 Route will not be used, if at least one option is set. 1124 */ 1125 connected = 1; 1126 } 1127 1128 ipcm_init_sk(&ipc, inet); 1129 ipc.gso_size = READ_ONCE(up->gso_size); 1130 1131 if (msg->msg_controllen) { 1132 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1133 if (err > 0) 1134 err = ip_cmsg_send(sk, msg, &ipc, 1135 sk->sk_family == AF_INET6); 1136 if (unlikely(err < 0)) { 1137 kfree(ipc.opt); 1138 return err; 1139 } 1140 if (ipc.opt) 1141 free = 1; 1142 connected = 0; 1143 } 1144 if (!ipc.opt) { 1145 struct ip_options_rcu *inet_opt; 1146 1147 rcu_read_lock(); 1148 inet_opt = rcu_dereference(inet->inet_opt); 1149 if (inet_opt) { 1150 memcpy(&opt_copy, inet_opt, 1151 sizeof(*inet_opt) + inet_opt->opt.optlen); 1152 ipc.opt = &opt_copy.opt; 1153 } 1154 rcu_read_unlock(); 1155 } 1156 1157 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1158 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1159 (struct sockaddr *)usin, &ipc.addr); 1160 if (err) 1161 goto out_free; 1162 if (usin) { 1163 if (usin->sin_port == 0) { 1164 /* BPF program set invalid port. Reject it. */ 1165 err = -EINVAL; 1166 goto out_free; 1167 } 1168 daddr = usin->sin_addr.s_addr; 1169 dport = usin->sin_port; 1170 } 1171 } 1172 1173 saddr = ipc.addr; 1174 ipc.addr = faddr = daddr; 1175 1176 if (ipc.opt && ipc.opt->opt.srr) { 1177 if (!daddr) { 1178 err = -EINVAL; 1179 goto out_free; 1180 } 1181 faddr = ipc.opt->opt.faddr; 1182 connected = 0; 1183 } 1184 tos = get_rttos(&ipc, inet); 1185 if (sock_flag(sk, SOCK_LOCALROUTE) || 1186 (msg->msg_flags & MSG_DONTROUTE) || 1187 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1188 tos |= RTO_ONLINK; 1189 connected = 0; 1190 } 1191 1192 if (ipv4_is_multicast(daddr)) { 1193 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1194 ipc.oif = inet->mc_index; 1195 if (!saddr) 1196 saddr = inet->mc_addr; 1197 connected = 0; 1198 } else if (!ipc.oif) { 1199 ipc.oif = inet->uc_index; 1200 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1201 /* oif is set, packet is to local broadcast and 1202 * uc_index is set. oif is most likely set 1203 * by sk_bound_dev_if. If uc_index != oif check if the 1204 * oif is an L3 master and uc_index is an L3 slave. 1205 * If so, we want to allow the send using the uc_index. 1206 */ 1207 if (ipc.oif != inet->uc_index && 1208 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1209 inet->uc_index)) { 1210 ipc.oif = inet->uc_index; 1211 } 1212 } 1213 1214 if (connected) 1215 rt = (struct rtable *)sk_dst_check(sk, 0); 1216 1217 if (!rt) { 1218 struct net *net = sock_net(sk); 1219 __u8 flow_flags = inet_sk_flowi_flags(sk); 1220 1221 fl4 = &fl4_stack; 1222 1223 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, 1224 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1225 flow_flags, 1226 faddr, saddr, dport, inet->inet_sport, 1227 sk->sk_uid); 1228 1229 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1230 rt = ip_route_output_flow(net, fl4, sk); 1231 if (IS_ERR(rt)) { 1232 err = PTR_ERR(rt); 1233 rt = NULL; 1234 if (err == -ENETUNREACH) 1235 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1236 goto out; 1237 } 1238 1239 err = -EACCES; 1240 if ((rt->rt_flags & RTCF_BROADCAST) && 1241 !sock_flag(sk, SOCK_BROADCAST)) 1242 goto out; 1243 if (connected) 1244 sk_dst_set(sk, dst_clone(&rt->dst)); 1245 } 1246 1247 if (msg->msg_flags&MSG_CONFIRM) 1248 goto do_confirm; 1249 back_from_confirm: 1250 1251 saddr = fl4->saddr; 1252 if (!ipc.addr) 1253 daddr = ipc.addr = fl4->daddr; 1254 1255 /* Lockless fast path for the non-corking case. */ 1256 if (!corkreq) { 1257 struct inet_cork cork; 1258 1259 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1260 sizeof(struct udphdr), &ipc, &rt, 1261 &cork, msg->msg_flags); 1262 err = PTR_ERR(skb); 1263 if (!IS_ERR_OR_NULL(skb)) 1264 err = udp_send_skb(skb, fl4, &cork); 1265 goto out; 1266 } 1267 1268 lock_sock(sk); 1269 if (unlikely(up->pending)) { 1270 /* The socket is already corked while preparing it. */ 1271 /* ... which is an evident application bug. --ANK */ 1272 release_sock(sk); 1273 1274 net_dbg_ratelimited("socket already corked\n"); 1275 err = -EINVAL; 1276 goto out; 1277 } 1278 /* 1279 * Now cork the socket to pend data. 1280 */ 1281 fl4 = &inet->cork.fl.u.ip4; 1282 fl4->daddr = daddr; 1283 fl4->saddr = saddr; 1284 fl4->fl4_dport = dport; 1285 fl4->fl4_sport = inet->inet_sport; 1286 up->pending = AF_INET; 1287 1288 do_append_data: 1289 up->len += ulen; 1290 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1291 sizeof(struct udphdr), &ipc, &rt, 1292 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1293 if (err) 1294 udp_flush_pending_frames(sk); 1295 else if (!corkreq) 1296 err = udp_push_pending_frames(sk); 1297 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1298 up->pending = 0; 1299 release_sock(sk); 1300 1301 out: 1302 ip_rt_put(rt); 1303 out_free: 1304 if (free) 1305 kfree(ipc.opt); 1306 if (!err) 1307 return len; 1308 /* 1309 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1310 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1311 * we don't have a good statistic (IpOutDiscards but it can be too many 1312 * things). We could add another new stat but at least for now that 1313 * seems like overkill. 1314 */ 1315 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1316 UDP_INC_STATS(sock_net(sk), 1317 UDP_MIB_SNDBUFERRORS, is_udplite); 1318 } 1319 return err; 1320 1321 do_confirm: 1322 if (msg->msg_flags & MSG_PROBE) 1323 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1324 if (!(msg->msg_flags&MSG_PROBE) || len) 1325 goto back_from_confirm; 1326 err = 0; 1327 goto out; 1328 } 1329 EXPORT_SYMBOL(udp_sendmsg); 1330 1331 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1332 size_t size, int flags) 1333 { 1334 struct inet_sock *inet = inet_sk(sk); 1335 struct udp_sock *up = udp_sk(sk); 1336 int ret; 1337 1338 if (flags & MSG_SENDPAGE_NOTLAST) 1339 flags |= MSG_MORE; 1340 1341 if (!up->pending) { 1342 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1343 1344 /* Call udp_sendmsg to specify destination address which 1345 * sendpage interface can't pass. 1346 * This will succeed only when the socket is connected. 1347 */ 1348 ret = udp_sendmsg(sk, &msg, 0); 1349 if (ret < 0) 1350 return ret; 1351 } 1352 1353 lock_sock(sk); 1354 1355 if (unlikely(!up->pending)) { 1356 release_sock(sk); 1357 1358 net_dbg_ratelimited("cork failed\n"); 1359 return -EINVAL; 1360 } 1361 1362 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1363 page, offset, size, flags); 1364 if (ret == -EOPNOTSUPP) { 1365 release_sock(sk); 1366 return sock_no_sendpage(sk->sk_socket, page, offset, 1367 size, flags); 1368 } 1369 if (ret < 0) { 1370 udp_flush_pending_frames(sk); 1371 goto out; 1372 } 1373 1374 up->len += size; 1375 if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE))) 1376 ret = udp_push_pending_frames(sk); 1377 if (!ret) 1378 ret = size; 1379 out: 1380 release_sock(sk); 1381 return ret; 1382 } 1383 1384 #define UDP_SKB_IS_STATELESS 0x80000000 1385 1386 /* all head states (dst, sk, nf conntrack) except skb extensions are 1387 * cleared by udp_rcv(). 1388 * 1389 * We need to preserve secpath, if present, to eventually process 1390 * IP_CMSG_PASSSEC at recvmsg() time. 1391 * 1392 * Other extensions can be cleared. 1393 */ 1394 static bool udp_try_make_stateless(struct sk_buff *skb) 1395 { 1396 if (!skb_has_extensions(skb)) 1397 return true; 1398 1399 if (!secpath_exists(skb)) { 1400 skb_ext_reset(skb); 1401 return true; 1402 } 1403 1404 return false; 1405 } 1406 1407 static void udp_set_dev_scratch(struct sk_buff *skb) 1408 { 1409 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1410 1411 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1412 scratch->_tsize_state = skb->truesize; 1413 #if BITS_PER_LONG == 64 1414 scratch->len = skb->len; 1415 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1416 scratch->is_linear = !skb_is_nonlinear(skb); 1417 #endif 1418 if (udp_try_make_stateless(skb)) 1419 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1420 } 1421 1422 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1423 { 1424 /* We come here after udp_lib_checksum_complete() returned 0. 1425 * This means that __skb_checksum_complete() might have 1426 * set skb->csum_valid to 1. 1427 * On 64bit platforms, we can set csum_unnecessary 1428 * to true, but only if the skb is not shared. 1429 */ 1430 #if BITS_PER_LONG == 64 1431 if (!skb_shared(skb)) 1432 udp_skb_scratch(skb)->csum_unnecessary = true; 1433 #endif 1434 } 1435 1436 static int udp_skb_truesize(struct sk_buff *skb) 1437 { 1438 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1439 } 1440 1441 static bool udp_skb_has_head_state(struct sk_buff *skb) 1442 { 1443 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1444 } 1445 1446 /* fully reclaim rmem/fwd memory allocated for skb */ 1447 static void udp_rmem_release(struct sock *sk, int size, int partial, 1448 bool rx_queue_lock_held) 1449 { 1450 struct udp_sock *up = udp_sk(sk); 1451 struct sk_buff_head *sk_queue; 1452 int amt; 1453 1454 if (likely(partial)) { 1455 up->forward_deficit += size; 1456 size = up->forward_deficit; 1457 if (size < READ_ONCE(up->forward_threshold) && 1458 !skb_queue_empty(&up->reader_queue)) 1459 return; 1460 } else { 1461 size += up->forward_deficit; 1462 } 1463 up->forward_deficit = 0; 1464 1465 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1466 * if the called don't held it already 1467 */ 1468 sk_queue = &sk->sk_receive_queue; 1469 if (!rx_queue_lock_held) 1470 spin_lock(&sk_queue->lock); 1471 1472 1473 sk->sk_forward_alloc += size; 1474 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1475 sk->sk_forward_alloc -= amt; 1476 1477 if (amt) 1478 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1479 1480 atomic_sub(size, &sk->sk_rmem_alloc); 1481 1482 /* this can save us from acquiring the rx queue lock on next receive */ 1483 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1484 1485 if (!rx_queue_lock_held) 1486 spin_unlock(&sk_queue->lock); 1487 } 1488 1489 /* Note: called with reader_queue.lock held. 1490 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1491 * This avoids a cache line miss while receive_queue lock is held. 1492 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1493 */ 1494 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1495 { 1496 prefetch(&skb->data); 1497 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1498 } 1499 EXPORT_SYMBOL(udp_skb_destructor); 1500 1501 /* as above, but the caller held the rx queue lock, too */ 1502 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1503 { 1504 prefetch(&skb->data); 1505 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1506 } 1507 1508 /* Idea of busylocks is to let producers grab an extra spinlock 1509 * to relieve pressure on the receive_queue spinlock shared by consumer. 1510 * Under flood, this means that only one producer can be in line 1511 * trying to acquire the receive_queue spinlock. 1512 * These busylock can be allocated on a per cpu manner, instead of a 1513 * per socket one (that would consume a cache line per socket) 1514 */ 1515 static int udp_busylocks_log __read_mostly; 1516 static spinlock_t *udp_busylocks __read_mostly; 1517 1518 static spinlock_t *busylock_acquire(void *ptr) 1519 { 1520 spinlock_t *busy; 1521 1522 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1523 spin_lock(busy); 1524 return busy; 1525 } 1526 1527 static void busylock_release(spinlock_t *busy) 1528 { 1529 if (busy) 1530 spin_unlock(busy); 1531 } 1532 1533 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1534 { 1535 struct sk_buff_head *list = &sk->sk_receive_queue; 1536 int rmem, delta, amt, err = -ENOMEM; 1537 spinlock_t *busy = NULL; 1538 int size; 1539 1540 /* try to avoid the costly atomic add/sub pair when the receive 1541 * queue is full; always allow at least a packet 1542 */ 1543 rmem = atomic_read(&sk->sk_rmem_alloc); 1544 if (rmem > sk->sk_rcvbuf) 1545 goto drop; 1546 1547 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1548 * having linear skbs : 1549 * - Reduce memory overhead and thus increase receive queue capacity 1550 * - Less cache line misses at copyout() time 1551 * - Less work at consume_skb() (less alien page frag freeing) 1552 */ 1553 if (rmem > (sk->sk_rcvbuf >> 1)) { 1554 skb_condense(skb); 1555 1556 busy = busylock_acquire(sk); 1557 } 1558 size = skb->truesize; 1559 udp_set_dev_scratch(skb); 1560 1561 /* we drop only if the receive buf is full and the receive 1562 * queue contains some other skb 1563 */ 1564 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1565 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1566 goto uncharge_drop; 1567 1568 spin_lock(&list->lock); 1569 if (size >= sk->sk_forward_alloc) { 1570 amt = sk_mem_pages(size); 1571 delta = amt << PAGE_SHIFT; 1572 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1573 err = -ENOBUFS; 1574 spin_unlock(&list->lock); 1575 goto uncharge_drop; 1576 } 1577 1578 sk->sk_forward_alloc += delta; 1579 } 1580 1581 sk->sk_forward_alloc -= size; 1582 1583 /* no need to setup a destructor, we will explicitly release the 1584 * forward allocated memory on dequeue 1585 */ 1586 sock_skb_set_dropcount(sk, skb); 1587 1588 __skb_queue_tail(list, skb); 1589 spin_unlock(&list->lock); 1590 1591 if (!sock_flag(sk, SOCK_DEAD)) 1592 sk->sk_data_ready(sk); 1593 1594 busylock_release(busy); 1595 return 0; 1596 1597 uncharge_drop: 1598 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1599 1600 drop: 1601 atomic_inc(&sk->sk_drops); 1602 busylock_release(busy); 1603 return err; 1604 } 1605 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1606 1607 void udp_destruct_common(struct sock *sk) 1608 { 1609 /* reclaim completely the forward allocated memory */ 1610 struct udp_sock *up = udp_sk(sk); 1611 unsigned int total = 0; 1612 struct sk_buff *skb; 1613 1614 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1615 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1616 total += skb->truesize; 1617 kfree_skb(skb); 1618 } 1619 udp_rmem_release(sk, total, 0, true); 1620 } 1621 EXPORT_SYMBOL_GPL(udp_destruct_common); 1622 1623 static void udp_destruct_sock(struct sock *sk) 1624 { 1625 udp_destruct_common(sk); 1626 inet_sock_destruct(sk); 1627 } 1628 1629 int udp_init_sock(struct sock *sk) 1630 { 1631 udp_lib_init_sock(sk); 1632 sk->sk_destruct = udp_destruct_sock; 1633 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1634 return 0; 1635 } 1636 1637 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1638 { 1639 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1640 bool slow = lock_sock_fast(sk); 1641 1642 sk_peek_offset_bwd(sk, len); 1643 unlock_sock_fast(sk, slow); 1644 } 1645 1646 if (!skb_unref(skb)) 1647 return; 1648 1649 /* In the more common cases we cleared the head states previously, 1650 * see __udp_queue_rcv_skb(). 1651 */ 1652 if (unlikely(udp_skb_has_head_state(skb))) 1653 skb_release_head_state(skb); 1654 __consume_stateless_skb(skb); 1655 } 1656 EXPORT_SYMBOL_GPL(skb_consume_udp); 1657 1658 static struct sk_buff *__first_packet_length(struct sock *sk, 1659 struct sk_buff_head *rcvq, 1660 int *total) 1661 { 1662 struct sk_buff *skb; 1663 1664 while ((skb = skb_peek(rcvq)) != NULL) { 1665 if (udp_lib_checksum_complete(skb)) { 1666 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1667 IS_UDPLITE(sk)); 1668 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1669 IS_UDPLITE(sk)); 1670 atomic_inc(&sk->sk_drops); 1671 __skb_unlink(skb, rcvq); 1672 *total += skb->truesize; 1673 kfree_skb(skb); 1674 } else { 1675 udp_skb_csum_unnecessary_set(skb); 1676 break; 1677 } 1678 } 1679 return skb; 1680 } 1681 1682 /** 1683 * first_packet_length - return length of first packet in receive queue 1684 * @sk: socket 1685 * 1686 * Drops all bad checksum frames, until a valid one is found. 1687 * Returns the length of found skb, or -1 if none is found. 1688 */ 1689 static int first_packet_length(struct sock *sk) 1690 { 1691 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1692 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1693 struct sk_buff *skb; 1694 int total = 0; 1695 int res; 1696 1697 spin_lock_bh(&rcvq->lock); 1698 skb = __first_packet_length(sk, rcvq, &total); 1699 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1700 spin_lock(&sk_queue->lock); 1701 skb_queue_splice_tail_init(sk_queue, rcvq); 1702 spin_unlock(&sk_queue->lock); 1703 1704 skb = __first_packet_length(sk, rcvq, &total); 1705 } 1706 res = skb ? skb->len : -1; 1707 if (total) 1708 udp_rmem_release(sk, total, 1, false); 1709 spin_unlock_bh(&rcvq->lock); 1710 return res; 1711 } 1712 1713 /* 1714 * IOCTL requests applicable to the UDP protocol 1715 */ 1716 1717 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1718 { 1719 switch (cmd) { 1720 case SIOCOUTQ: 1721 { 1722 int amount = sk_wmem_alloc_get(sk); 1723 1724 return put_user(amount, (int __user *)arg); 1725 } 1726 1727 case SIOCINQ: 1728 { 1729 int amount = max_t(int, 0, first_packet_length(sk)); 1730 1731 return put_user(amount, (int __user *)arg); 1732 } 1733 1734 default: 1735 return -ENOIOCTLCMD; 1736 } 1737 1738 return 0; 1739 } 1740 EXPORT_SYMBOL(udp_ioctl); 1741 1742 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1743 int *off, int *err) 1744 { 1745 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1746 struct sk_buff_head *queue; 1747 struct sk_buff *last; 1748 long timeo; 1749 int error; 1750 1751 queue = &udp_sk(sk)->reader_queue; 1752 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1753 do { 1754 struct sk_buff *skb; 1755 1756 error = sock_error(sk); 1757 if (error) 1758 break; 1759 1760 error = -EAGAIN; 1761 do { 1762 spin_lock_bh(&queue->lock); 1763 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1764 err, &last); 1765 if (skb) { 1766 if (!(flags & MSG_PEEK)) 1767 udp_skb_destructor(sk, skb); 1768 spin_unlock_bh(&queue->lock); 1769 return skb; 1770 } 1771 1772 if (skb_queue_empty_lockless(sk_queue)) { 1773 spin_unlock_bh(&queue->lock); 1774 goto busy_check; 1775 } 1776 1777 /* refill the reader queue and walk it again 1778 * keep both queues locked to avoid re-acquiring 1779 * the sk_receive_queue lock if fwd memory scheduling 1780 * is needed. 1781 */ 1782 spin_lock(&sk_queue->lock); 1783 skb_queue_splice_tail_init(sk_queue, queue); 1784 1785 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1786 err, &last); 1787 if (skb && !(flags & MSG_PEEK)) 1788 udp_skb_dtor_locked(sk, skb); 1789 spin_unlock(&sk_queue->lock); 1790 spin_unlock_bh(&queue->lock); 1791 if (skb) 1792 return skb; 1793 1794 busy_check: 1795 if (!sk_can_busy_loop(sk)) 1796 break; 1797 1798 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1799 } while (!skb_queue_empty_lockless(sk_queue)); 1800 1801 /* sk_queue is empty, reader_queue may contain peeked packets */ 1802 } while (timeo && 1803 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1804 &error, &timeo, 1805 (struct sk_buff *)sk_queue)); 1806 1807 *err = error; 1808 return NULL; 1809 } 1810 EXPORT_SYMBOL(__skb_recv_udp); 1811 1812 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1813 { 1814 struct sk_buff *skb; 1815 int err, copied; 1816 1817 try_again: 1818 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1819 if (!skb) 1820 return err; 1821 1822 if (udp_lib_checksum_complete(skb)) { 1823 int is_udplite = IS_UDPLITE(sk); 1824 struct net *net = sock_net(sk); 1825 1826 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1827 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1828 atomic_inc(&sk->sk_drops); 1829 kfree_skb(skb); 1830 goto try_again; 1831 } 1832 1833 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1834 copied = recv_actor(sk, skb); 1835 kfree_skb(skb); 1836 1837 return copied; 1838 } 1839 EXPORT_SYMBOL(udp_read_skb); 1840 1841 /* 1842 * This should be easy, if there is something there we 1843 * return it, otherwise we block. 1844 */ 1845 1846 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1847 int *addr_len) 1848 { 1849 struct inet_sock *inet = inet_sk(sk); 1850 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1851 struct sk_buff *skb; 1852 unsigned int ulen, copied; 1853 int off, err, peeking = flags & MSG_PEEK; 1854 int is_udplite = IS_UDPLITE(sk); 1855 bool checksum_valid = false; 1856 1857 if (flags & MSG_ERRQUEUE) 1858 return ip_recv_error(sk, msg, len, addr_len); 1859 1860 try_again: 1861 off = sk_peek_offset(sk, flags); 1862 skb = __skb_recv_udp(sk, flags, &off, &err); 1863 if (!skb) 1864 return err; 1865 1866 ulen = udp_skb_len(skb); 1867 copied = len; 1868 if (copied > ulen - off) 1869 copied = ulen - off; 1870 else if (copied < ulen) 1871 msg->msg_flags |= MSG_TRUNC; 1872 1873 /* 1874 * If checksum is needed at all, try to do it while copying the 1875 * data. If the data is truncated, or if we only want a partial 1876 * coverage checksum (UDP-Lite), do it before the copy. 1877 */ 1878 1879 if (copied < ulen || peeking || 1880 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1881 checksum_valid = udp_skb_csum_unnecessary(skb) || 1882 !__udp_lib_checksum_complete(skb); 1883 if (!checksum_valid) 1884 goto csum_copy_err; 1885 } 1886 1887 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1888 if (udp_skb_is_linear(skb)) 1889 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1890 else 1891 err = skb_copy_datagram_msg(skb, off, msg, copied); 1892 } else { 1893 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1894 1895 if (err == -EINVAL) 1896 goto csum_copy_err; 1897 } 1898 1899 if (unlikely(err)) { 1900 if (!peeking) { 1901 atomic_inc(&sk->sk_drops); 1902 UDP_INC_STATS(sock_net(sk), 1903 UDP_MIB_INERRORS, is_udplite); 1904 } 1905 kfree_skb(skb); 1906 return err; 1907 } 1908 1909 if (!peeking) 1910 UDP_INC_STATS(sock_net(sk), 1911 UDP_MIB_INDATAGRAMS, is_udplite); 1912 1913 sock_recv_cmsgs(msg, sk, skb); 1914 1915 /* Copy the address. */ 1916 if (sin) { 1917 sin->sin_family = AF_INET; 1918 sin->sin_port = udp_hdr(skb)->source; 1919 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1920 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1921 *addr_len = sizeof(*sin); 1922 1923 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1924 (struct sockaddr *)sin); 1925 } 1926 1927 if (udp_sk(sk)->gro_enabled) 1928 udp_cmsg_recv(msg, sk, skb); 1929 1930 if (inet->cmsg_flags) 1931 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1932 1933 err = copied; 1934 if (flags & MSG_TRUNC) 1935 err = ulen; 1936 1937 skb_consume_udp(sk, skb, peeking ? -err : err); 1938 return err; 1939 1940 csum_copy_err: 1941 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1942 udp_skb_destructor)) { 1943 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1944 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1945 } 1946 kfree_skb(skb); 1947 1948 /* starting over for a new packet, but check if we need to yield */ 1949 cond_resched(); 1950 msg->msg_flags &= ~MSG_TRUNC; 1951 goto try_again; 1952 } 1953 1954 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1955 { 1956 /* This check is replicated from __ip4_datagram_connect() and 1957 * intended to prevent BPF program called below from accessing bytes 1958 * that are out of the bound specified by user in addr_len. 1959 */ 1960 if (addr_len < sizeof(struct sockaddr_in)) 1961 return -EINVAL; 1962 1963 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1964 } 1965 EXPORT_SYMBOL(udp_pre_connect); 1966 1967 int __udp_disconnect(struct sock *sk, int flags) 1968 { 1969 struct inet_sock *inet = inet_sk(sk); 1970 /* 1971 * 1003.1g - break association. 1972 */ 1973 1974 sk->sk_state = TCP_CLOSE; 1975 inet->inet_daddr = 0; 1976 inet->inet_dport = 0; 1977 sock_rps_reset_rxhash(sk); 1978 sk->sk_bound_dev_if = 0; 1979 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1980 inet_reset_saddr(sk); 1981 if (sk->sk_prot->rehash && 1982 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1983 sk->sk_prot->rehash(sk); 1984 } 1985 1986 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1987 sk->sk_prot->unhash(sk); 1988 inet->inet_sport = 0; 1989 } 1990 sk_dst_reset(sk); 1991 return 0; 1992 } 1993 EXPORT_SYMBOL(__udp_disconnect); 1994 1995 int udp_disconnect(struct sock *sk, int flags) 1996 { 1997 lock_sock(sk); 1998 __udp_disconnect(sk, flags); 1999 release_sock(sk); 2000 return 0; 2001 } 2002 EXPORT_SYMBOL(udp_disconnect); 2003 2004 void udp_lib_unhash(struct sock *sk) 2005 { 2006 if (sk_hashed(sk)) { 2007 struct udp_table *udptable = udp_get_table_prot(sk); 2008 struct udp_hslot *hslot, *hslot2; 2009 2010 hslot = udp_hashslot(udptable, sock_net(sk), 2011 udp_sk(sk)->udp_port_hash); 2012 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2013 2014 spin_lock_bh(&hslot->lock); 2015 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2016 reuseport_detach_sock(sk); 2017 if (sk_del_node_init_rcu(sk)) { 2018 hslot->count--; 2019 inet_sk(sk)->inet_num = 0; 2020 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2021 2022 spin_lock(&hslot2->lock); 2023 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2024 hslot2->count--; 2025 spin_unlock(&hslot2->lock); 2026 } 2027 spin_unlock_bh(&hslot->lock); 2028 } 2029 } 2030 EXPORT_SYMBOL(udp_lib_unhash); 2031 2032 /* 2033 * inet_rcv_saddr was changed, we must rehash secondary hash 2034 */ 2035 void udp_lib_rehash(struct sock *sk, u16 newhash) 2036 { 2037 if (sk_hashed(sk)) { 2038 struct udp_table *udptable = udp_get_table_prot(sk); 2039 struct udp_hslot *hslot, *hslot2, *nhslot2; 2040 2041 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2042 nhslot2 = udp_hashslot2(udptable, newhash); 2043 udp_sk(sk)->udp_portaddr_hash = newhash; 2044 2045 if (hslot2 != nhslot2 || 2046 rcu_access_pointer(sk->sk_reuseport_cb)) { 2047 hslot = udp_hashslot(udptable, sock_net(sk), 2048 udp_sk(sk)->udp_port_hash); 2049 /* we must lock primary chain too */ 2050 spin_lock_bh(&hslot->lock); 2051 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2052 reuseport_detach_sock(sk); 2053 2054 if (hslot2 != nhslot2) { 2055 spin_lock(&hslot2->lock); 2056 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2057 hslot2->count--; 2058 spin_unlock(&hslot2->lock); 2059 2060 spin_lock(&nhslot2->lock); 2061 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2062 &nhslot2->head); 2063 nhslot2->count++; 2064 spin_unlock(&nhslot2->lock); 2065 } 2066 2067 spin_unlock_bh(&hslot->lock); 2068 } 2069 } 2070 } 2071 EXPORT_SYMBOL(udp_lib_rehash); 2072 2073 void udp_v4_rehash(struct sock *sk) 2074 { 2075 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2076 inet_sk(sk)->inet_rcv_saddr, 2077 inet_sk(sk)->inet_num); 2078 udp_lib_rehash(sk, new_hash); 2079 } 2080 2081 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2082 { 2083 int rc; 2084 2085 if (inet_sk(sk)->inet_daddr) { 2086 sock_rps_save_rxhash(sk, skb); 2087 sk_mark_napi_id(sk, skb); 2088 sk_incoming_cpu_update(sk); 2089 } else { 2090 sk_mark_napi_id_once(sk, skb); 2091 } 2092 2093 rc = __udp_enqueue_schedule_skb(sk, skb); 2094 if (rc < 0) { 2095 int is_udplite = IS_UDPLITE(sk); 2096 int drop_reason; 2097 2098 /* Note that an ENOMEM error is charged twice */ 2099 if (rc == -ENOMEM) { 2100 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2101 is_udplite); 2102 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2103 } else { 2104 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2105 is_udplite); 2106 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2107 } 2108 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2109 kfree_skb_reason(skb, drop_reason); 2110 trace_udp_fail_queue_rcv_skb(rc, sk); 2111 return -1; 2112 } 2113 2114 return 0; 2115 } 2116 2117 /* returns: 2118 * -1: error 2119 * 0: success 2120 * >0: "udp encap" protocol resubmission 2121 * 2122 * Note that in the success and error cases, the skb is assumed to 2123 * have either been requeued or freed. 2124 */ 2125 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2126 { 2127 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2128 struct udp_sock *up = udp_sk(sk); 2129 int is_udplite = IS_UDPLITE(sk); 2130 2131 /* 2132 * Charge it to the socket, dropping if the queue is full. 2133 */ 2134 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2135 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2136 goto drop; 2137 } 2138 nf_reset_ct(skb); 2139 2140 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2141 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2142 2143 /* 2144 * This is an encapsulation socket so pass the skb to 2145 * the socket's udp_encap_rcv() hook. Otherwise, just 2146 * fall through and pass this up the UDP socket. 2147 * up->encap_rcv() returns the following value: 2148 * =0 if skb was successfully passed to the encap 2149 * handler or was discarded by it. 2150 * >0 if skb should be passed on to UDP. 2151 * <0 if skb should be resubmitted as proto -N 2152 */ 2153 2154 /* if we're overly short, let UDP handle it */ 2155 encap_rcv = READ_ONCE(up->encap_rcv); 2156 if (encap_rcv) { 2157 int ret; 2158 2159 /* Verify checksum before giving to encap */ 2160 if (udp_lib_checksum_complete(skb)) 2161 goto csum_error; 2162 2163 ret = encap_rcv(sk, skb); 2164 if (ret <= 0) { 2165 __UDP_INC_STATS(sock_net(sk), 2166 UDP_MIB_INDATAGRAMS, 2167 is_udplite); 2168 return -ret; 2169 } 2170 } 2171 2172 /* FALLTHROUGH -- it's a UDP Packet */ 2173 } 2174 2175 /* 2176 * UDP-Lite specific tests, ignored on UDP sockets 2177 */ 2178 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2179 2180 /* 2181 * MIB statistics other than incrementing the error count are 2182 * disabled for the following two types of errors: these depend 2183 * on the application settings, not on the functioning of the 2184 * protocol stack as such. 2185 * 2186 * RFC 3828 here recommends (sec 3.3): "There should also be a 2187 * way ... to ... at least let the receiving application block 2188 * delivery of packets with coverage values less than a value 2189 * provided by the application." 2190 */ 2191 if (up->pcrlen == 0) { /* full coverage was set */ 2192 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2193 UDP_SKB_CB(skb)->cscov, skb->len); 2194 goto drop; 2195 } 2196 /* The next case involves violating the min. coverage requested 2197 * by the receiver. This is subtle: if receiver wants x and x is 2198 * greater than the buffersize/MTU then receiver will complain 2199 * that it wants x while sender emits packets of smaller size y. 2200 * Therefore the above ...()->partial_cov statement is essential. 2201 */ 2202 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2203 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2204 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2205 goto drop; 2206 } 2207 } 2208 2209 prefetch(&sk->sk_rmem_alloc); 2210 if (rcu_access_pointer(sk->sk_filter) && 2211 udp_lib_checksum_complete(skb)) 2212 goto csum_error; 2213 2214 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2215 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2216 goto drop; 2217 } 2218 2219 udp_csum_pull_header(skb); 2220 2221 ipv4_pktinfo_prepare(sk, skb); 2222 return __udp_queue_rcv_skb(sk, skb); 2223 2224 csum_error: 2225 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2226 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2227 drop: 2228 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2229 atomic_inc(&sk->sk_drops); 2230 kfree_skb_reason(skb, drop_reason); 2231 return -1; 2232 } 2233 2234 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2235 { 2236 struct sk_buff *next, *segs; 2237 int ret; 2238 2239 if (likely(!udp_unexpected_gso(sk, skb))) 2240 return udp_queue_rcv_one_skb(sk, skb); 2241 2242 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2243 __skb_push(skb, -skb_mac_offset(skb)); 2244 segs = udp_rcv_segment(sk, skb, true); 2245 skb_list_walk_safe(segs, skb, next) { 2246 __skb_pull(skb, skb_transport_offset(skb)); 2247 2248 udp_post_segment_fix_csum(skb); 2249 ret = udp_queue_rcv_one_skb(sk, skb); 2250 if (ret > 0) 2251 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2252 } 2253 return 0; 2254 } 2255 2256 /* For TCP sockets, sk_rx_dst is protected by socket lock 2257 * For UDP, we use xchg() to guard against concurrent changes. 2258 */ 2259 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2260 { 2261 struct dst_entry *old; 2262 2263 if (dst_hold_safe(dst)) { 2264 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst); 2265 dst_release(old); 2266 return old != dst; 2267 } 2268 return false; 2269 } 2270 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2271 2272 /* 2273 * Multicasts and broadcasts go to each listener. 2274 * 2275 * Note: called only from the BH handler context. 2276 */ 2277 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2278 struct udphdr *uh, 2279 __be32 saddr, __be32 daddr, 2280 struct udp_table *udptable, 2281 int proto) 2282 { 2283 struct sock *sk, *first = NULL; 2284 unsigned short hnum = ntohs(uh->dest); 2285 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2286 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2287 unsigned int offset = offsetof(typeof(*sk), sk_node); 2288 int dif = skb->dev->ifindex; 2289 int sdif = inet_sdif(skb); 2290 struct hlist_node *node; 2291 struct sk_buff *nskb; 2292 2293 if (use_hash2) { 2294 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2295 udptable->mask; 2296 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2297 start_lookup: 2298 hslot = &udptable->hash2[hash2]; 2299 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2300 } 2301 2302 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2303 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2304 uh->source, saddr, dif, sdif, hnum)) 2305 continue; 2306 2307 if (!first) { 2308 first = sk; 2309 continue; 2310 } 2311 nskb = skb_clone(skb, GFP_ATOMIC); 2312 2313 if (unlikely(!nskb)) { 2314 atomic_inc(&sk->sk_drops); 2315 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2316 IS_UDPLITE(sk)); 2317 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2318 IS_UDPLITE(sk)); 2319 continue; 2320 } 2321 if (udp_queue_rcv_skb(sk, nskb) > 0) 2322 consume_skb(nskb); 2323 } 2324 2325 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2326 if (use_hash2 && hash2 != hash2_any) { 2327 hash2 = hash2_any; 2328 goto start_lookup; 2329 } 2330 2331 if (first) { 2332 if (udp_queue_rcv_skb(first, skb) > 0) 2333 consume_skb(skb); 2334 } else { 2335 kfree_skb(skb); 2336 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2337 proto == IPPROTO_UDPLITE); 2338 } 2339 return 0; 2340 } 2341 2342 /* Initialize UDP checksum. If exited with zero value (success), 2343 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2344 * Otherwise, csum completion requires checksumming packet body, 2345 * including udp header and folding it to skb->csum. 2346 */ 2347 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2348 int proto) 2349 { 2350 int err; 2351 2352 UDP_SKB_CB(skb)->partial_cov = 0; 2353 UDP_SKB_CB(skb)->cscov = skb->len; 2354 2355 if (proto == IPPROTO_UDPLITE) { 2356 err = udplite_checksum_init(skb, uh); 2357 if (err) 2358 return err; 2359 2360 if (UDP_SKB_CB(skb)->partial_cov) { 2361 skb->csum = inet_compute_pseudo(skb, proto); 2362 return 0; 2363 } 2364 } 2365 2366 /* Note, we are only interested in != 0 or == 0, thus the 2367 * force to int. 2368 */ 2369 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2370 inet_compute_pseudo); 2371 if (err) 2372 return err; 2373 2374 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2375 /* If SW calculated the value, we know it's bad */ 2376 if (skb->csum_complete_sw) 2377 return 1; 2378 2379 /* HW says the value is bad. Let's validate that. 2380 * skb->csum is no longer the full packet checksum, 2381 * so don't treat it as such. 2382 */ 2383 skb_checksum_complete_unset(skb); 2384 } 2385 2386 return 0; 2387 } 2388 2389 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2390 * return code conversion for ip layer consumption 2391 */ 2392 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2393 struct udphdr *uh) 2394 { 2395 int ret; 2396 2397 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2398 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2399 2400 ret = udp_queue_rcv_skb(sk, skb); 2401 2402 /* a return value > 0 means to resubmit the input, but 2403 * it wants the return to be -protocol, or 0 2404 */ 2405 if (ret > 0) 2406 return -ret; 2407 return 0; 2408 } 2409 2410 /* 2411 * All we need to do is get the socket, and then do a checksum. 2412 */ 2413 2414 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2415 int proto) 2416 { 2417 struct sock *sk; 2418 struct udphdr *uh; 2419 unsigned short ulen; 2420 struct rtable *rt = skb_rtable(skb); 2421 __be32 saddr, daddr; 2422 struct net *net = dev_net(skb->dev); 2423 bool refcounted; 2424 int drop_reason; 2425 2426 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2427 2428 /* 2429 * Validate the packet. 2430 */ 2431 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2432 goto drop; /* No space for header. */ 2433 2434 uh = udp_hdr(skb); 2435 ulen = ntohs(uh->len); 2436 saddr = ip_hdr(skb)->saddr; 2437 daddr = ip_hdr(skb)->daddr; 2438 2439 if (ulen > skb->len) 2440 goto short_packet; 2441 2442 if (proto == IPPROTO_UDP) { 2443 /* UDP validates ulen. */ 2444 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2445 goto short_packet; 2446 uh = udp_hdr(skb); 2447 } 2448 2449 if (udp4_csum_init(skb, uh, proto)) 2450 goto csum_error; 2451 2452 sk = skb_steal_sock(skb, &refcounted); 2453 if (sk) { 2454 struct dst_entry *dst = skb_dst(skb); 2455 int ret; 2456 2457 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2458 udp_sk_rx_dst_set(sk, dst); 2459 2460 ret = udp_unicast_rcv_skb(sk, skb, uh); 2461 if (refcounted) 2462 sock_put(sk); 2463 return ret; 2464 } 2465 2466 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2467 return __udp4_lib_mcast_deliver(net, skb, uh, 2468 saddr, daddr, udptable, proto); 2469 2470 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2471 if (sk) 2472 return udp_unicast_rcv_skb(sk, skb, uh); 2473 2474 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2475 goto drop; 2476 nf_reset_ct(skb); 2477 2478 /* No socket. Drop packet silently, if checksum is wrong */ 2479 if (udp_lib_checksum_complete(skb)) 2480 goto csum_error; 2481 2482 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2483 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2484 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2485 2486 /* 2487 * Hmm. We got an UDP packet to a port to which we 2488 * don't wanna listen. Ignore it. 2489 */ 2490 kfree_skb_reason(skb, drop_reason); 2491 return 0; 2492 2493 short_packet: 2494 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2495 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2496 proto == IPPROTO_UDPLITE ? "Lite" : "", 2497 &saddr, ntohs(uh->source), 2498 ulen, skb->len, 2499 &daddr, ntohs(uh->dest)); 2500 goto drop; 2501 2502 csum_error: 2503 /* 2504 * RFC1122: OK. Discards the bad packet silently (as far as 2505 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2506 */ 2507 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2508 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2509 proto == IPPROTO_UDPLITE ? "Lite" : "", 2510 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2511 ulen); 2512 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2513 drop: 2514 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2515 kfree_skb_reason(skb, drop_reason); 2516 return 0; 2517 } 2518 2519 /* We can only early demux multicast if there is a single matching socket. 2520 * If more than one socket found returns NULL 2521 */ 2522 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2523 __be16 loc_port, __be32 loc_addr, 2524 __be16 rmt_port, __be32 rmt_addr, 2525 int dif, int sdif) 2526 { 2527 unsigned short hnum = ntohs(loc_port); 2528 struct sock *sk, *result; 2529 struct udp_hslot *hslot; 2530 unsigned int slot; 2531 2532 slot = udp_hashfn(net, hnum, udp_table.mask); 2533 hslot = &udp_table.hash[slot]; 2534 2535 /* Do not bother scanning a too big list */ 2536 if (hslot->count > 10) 2537 return NULL; 2538 2539 result = NULL; 2540 sk_for_each_rcu(sk, &hslot->head) { 2541 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2542 rmt_port, rmt_addr, dif, sdif, hnum)) { 2543 if (result) 2544 return NULL; 2545 result = sk; 2546 } 2547 } 2548 2549 return result; 2550 } 2551 2552 /* For unicast we should only early demux connected sockets or we can 2553 * break forwarding setups. The chains here can be long so only check 2554 * if the first socket is an exact match and if not move on. 2555 */ 2556 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2557 __be16 loc_port, __be32 loc_addr, 2558 __be16 rmt_port, __be32 rmt_addr, 2559 int dif, int sdif) 2560 { 2561 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2562 unsigned short hnum = ntohs(loc_port); 2563 unsigned int hash2, slot2; 2564 struct udp_hslot *hslot2; 2565 __portpair ports; 2566 struct sock *sk; 2567 2568 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2569 slot2 = hash2 & udp_table.mask; 2570 hslot2 = &udp_table.hash2[slot2]; 2571 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2572 2573 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2574 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2575 return sk; 2576 /* Only check first socket in chain */ 2577 break; 2578 } 2579 return NULL; 2580 } 2581 2582 int udp_v4_early_demux(struct sk_buff *skb) 2583 { 2584 struct net *net = dev_net(skb->dev); 2585 struct in_device *in_dev = NULL; 2586 const struct iphdr *iph; 2587 const struct udphdr *uh; 2588 struct sock *sk = NULL; 2589 struct dst_entry *dst; 2590 int dif = skb->dev->ifindex; 2591 int sdif = inet_sdif(skb); 2592 int ours; 2593 2594 /* validate the packet */ 2595 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2596 return 0; 2597 2598 iph = ip_hdr(skb); 2599 uh = udp_hdr(skb); 2600 2601 if (skb->pkt_type == PACKET_MULTICAST) { 2602 in_dev = __in_dev_get_rcu(skb->dev); 2603 2604 if (!in_dev) 2605 return 0; 2606 2607 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2608 iph->protocol); 2609 if (!ours) 2610 return 0; 2611 2612 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2613 uh->source, iph->saddr, 2614 dif, sdif); 2615 } else if (skb->pkt_type == PACKET_HOST) { 2616 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2617 uh->source, iph->saddr, dif, sdif); 2618 } 2619 2620 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2621 return 0; 2622 2623 skb->sk = sk; 2624 skb->destructor = sock_efree; 2625 dst = rcu_dereference(sk->sk_rx_dst); 2626 2627 if (dst) 2628 dst = dst_check(dst, 0); 2629 if (dst) { 2630 u32 itag = 0; 2631 2632 /* set noref for now. 2633 * any place which wants to hold dst has to call 2634 * dst_hold_safe() 2635 */ 2636 skb_dst_set_noref(skb, dst); 2637 2638 /* for unconnected multicast sockets we need to validate 2639 * the source on each packet 2640 */ 2641 if (!inet_sk(sk)->inet_daddr && in_dev) 2642 return ip_mc_validate_source(skb, iph->daddr, 2643 iph->saddr, 2644 iph->tos & IPTOS_RT_MASK, 2645 skb->dev, in_dev, &itag); 2646 } 2647 return 0; 2648 } 2649 2650 int udp_rcv(struct sk_buff *skb) 2651 { 2652 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2653 } 2654 2655 void udp_destroy_sock(struct sock *sk) 2656 { 2657 struct udp_sock *up = udp_sk(sk); 2658 bool slow = lock_sock_fast(sk); 2659 2660 /* protects from races with udp_abort() */ 2661 sock_set_flag(sk, SOCK_DEAD); 2662 udp_flush_pending_frames(sk); 2663 unlock_sock_fast(sk, slow); 2664 if (static_branch_unlikely(&udp_encap_needed_key)) { 2665 if (up->encap_type) { 2666 void (*encap_destroy)(struct sock *sk); 2667 encap_destroy = READ_ONCE(up->encap_destroy); 2668 if (encap_destroy) 2669 encap_destroy(sk); 2670 } 2671 if (up->encap_enabled) 2672 static_branch_dec(&udp_encap_needed_key); 2673 } 2674 } 2675 2676 /* 2677 * Socket option code for UDP 2678 */ 2679 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2680 sockptr_t optval, unsigned int optlen, 2681 int (*push_pending_frames)(struct sock *)) 2682 { 2683 struct udp_sock *up = udp_sk(sk); 2684 int val, valbool; 2685 int err = 0; 2686 int is_udplite = IS_UDPLITE(sk); 2687 2688 if (level == SOL_SOCKET) { 2689 err = sk_setsockopt(sk, level, optname, optval, optlen); 2690 2691 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2692 sockopt_lock_sock(sk); 2693 /* paired with READ_ONCE in udp_rmem_release() */ 2694 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2695 sockopt_release_sock(sk); 2696 } 2697 return err; 2698 } 2699 2700 if (optlen < sizeof(int)) 2701 return -EINVAL; 2702 2703 if (copy_from_sockptr(&val, optval, sizeof(val))) 2704 return -EFAULT; 2705 2706 valbool = val ? 1 : 0; 2707 2708 switch (optname) { 2709 case UDP_CORK: 2710 if (val != 0) { 2711 WRITE_ONCE(up->corkflag, 1); 2712 } else { 2713 WRITE_ONCE(up->corkflag, 0); 2714 lock_sock(sk); 2715 push_pending_frames(sk); 2716 release_sock(sk); 2717 } 2718 break; 2719 2720 case UDP_ENCAP: 2721 switch (val) { 2722 case 0: 2723 #ifdef CONFIG_XFRM 2724 case UDP_ENCAP_ESPINUDP: 2725 case UDP_ENCAP_ESPINUDP_NON_IKE: 2726 #if IS_ENABLED(CONFIG_IPV6) 2727 if (sk->sk_family == AF_INET6) 2728 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv; 2729 else 2730 #endif 2731 up->encap_rcv = xfrm4_udp_encap_rcv; 2732 #endif 2733 fallthrough; 2734 case UDP_ENCAP_L2TPINUDP: 2735 up->encap_type = val; 2736 lock_sock(sk); 2737 udp_tunnel_encap_enable(sk->sk_socket); 2738 release_sock(sk); 2739 break; 2740 default: 2741 err = -ENOPROTOOPT; 2742 break; 2743 } 2744 break; 2745 2746 case UDP_NO_CHECK6_TX: 2747 up->no_check6_tx = valbool; 2748 break; 2749 2750 case UDP_NO_CHECK6_RX: 2751 up->no_check6_rx = valbool; 2752 break; 2753 2754 case UDP_SEGMENT: 2755 if (val < 0 || val > USHRT_MAX) 2756 return -EINVAL; 2757 WRITE_ONCE(up->gso_size, val); 2758 break; 2759 2760 case UDP_GRO: 2761 lock_sock(sk); 2762 2763 /* when enabling GRO, accept the related GSO packet type */ 2764 if (valbool) 2765 udp_tunnel_encap_enable(sk->sk_socket); 2766 up->gro_enabled = valbool; 2767 up->accept_udp_l4 = valbool; 2768 release_sock(sk); 2769 break; 2770 2771 /* 2772 * UDP-Lite's partial checksum coverage (RFC 3828). 2773 */ 2774 /* The sender sets actual checksum coverage length via this option. 2775 * The case coverage > packet length is handled by send module. */ 2776 case UDPLITE_SEND_CSCOV: 2777 if (!is_udplite) /* Disable the option on UDP sockets */ 2778 return -ENOPROTOOPT; 2779 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2780 val = 8; 2781 else if (val > USHRT_MAX) 2782 val = USHRT_MAX; 2783 up->pcslen = val; 2784 up->pcflag |= UDPLITE_SEND_CC; 2785 break; 2786 2787 /* The receiver specifies a minimum checksum coverage value. To make 2788 * sense, this should be set to at least 8 (as done below). If zero is 2789 * used, this again means full checksum coverage. */ 2790 case UDPLITE_RECV_CSCOV: 2791 if (!is_udplite) /* Disable the option on UDP sockets */ 2792 return -ENOPROTOOPT; 2793 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2794 val = 8; 2795 else if (val > USHRT_MAX) 2796 val = USHRT_MAX; 2797 up->pcrlen = val; 2798 up->pcflag |= UDPLITE_RECV_CC; 2799 break; 2800 2801 default: 2802 err = -ENOPROTOOPT; 2803 break; 2804 } 2805 2806 return err; 2807 } 2808 EXPORT_SYMBOL(udp_lib_setsockopt); 2809 2810 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2811 unsigned int optlen) 2812 { 2813 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2814 return udp_lib_setsockopt(sk, level, optname, 2815 optval, optlen, 2816 udp_push_pending_frames); 2817 return ip_setsockopt(sk, level, optname, optval, optlen); 2818 } 2819 2820 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2821 char __user *optval, int __user *optlen) 2822 { 2823 struct udp_sock *up = udp_sk(sk); 2824 int val, len; 2825 2826 if (get_user(len, optlen)) 2827 return -EFAULT; 2828 2829 len = min_t(unsigned int, len, sizeof(int)); 2830 2831 if (len < 0) 2832 return -EINVAL; 2833 2834 switch (optname) { 2835 case UDP_CORK: 2836 val = READ_ONCE(up->corkflag); 2837 break; 2838 2839 case UDP_ENCAP: 2840 val = up->encap_type; 2841 break; 2842 2843 case UDP_NO_CHECK6_TX: 2844 val = up->no_check6_tx; 2845 break; 2846 2847 case UDP_NO_CHECK6_RX: 2848 val = up->no_check6_rx; 2849 break; 2850 2851 case UDP_SEGMENT: 2852 val = READ_ONCE(up->gso_size); 2853 break; 2854 2855 case UDP_GRO: 2856 val = up->gro_enabled; 2857 break; 2858 2859 /* The following two cannot be changed on UDP sockets, the return is 2860 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2861 case UDPLITE_SEND_CSCOV: 2862 val = up->pcslen; 2863 break; 2864 2865 case UDPLITE_RECV_CSCOV: 2866 val = up->pcrlen; 2867 break; 2868 2869 default: 2870 return -ENOPROTOOPT; 2871 } 2872 2873 if (put_user(len, optlen)) 2874 return -EFAULT; 2875 if (copy_to_user(optval, &val, len)) 2876 return -EFAULT; 2877 return 0; 2878 } 2879 EXPORT_SYMBOL(udp_lib_getsockopt); 2880 2881 int udp_getsockopt(struct sock *sk, int level, int optname, 2882 char __user *optval, int __user *optlen) 2883 { 2884 if (level == SOL_UDP || level == SOL_UDPLITE) 2885 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2886 return ip_getsockopt(sk, level, optname, optval, optlen); 2887 } 2888 2889 /** 2890 * udp_poll - wait for a UDP event. 2891 * @file: - file struct 2892 * @sock: - socket 2893 * @wait: - poll table 2894 * 2895 * This is same as datagram poll, except for the special case of 2896 * blocking sockets. If application is using a blocking fd 2897 * and a packet with checksum error is in the queue; 2898 * then it could get return from select indicating data available 2899 * but then block when reading it. Add special case code 2900 * to work around these arguably broken applications. 2901 */ 2902 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2903 { 2904 __poll_t mask = datagram_poll(file, sock, wait); 2905 struct sock *sk = sock->sk; 2906 2907 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2908 mask |= EPOLLIN | EPOLLRDNORM; 2909 2910 /* Check for false positives due to checksum errors */ 2911 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2912 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2913 mask &= ~(EPOLLIN | EPOLLRDNORM); 2914 2915 /* psock ingress_msg queue should not contain any bad checksum frames */ 2916 if (sk_is_readable(sk)) 2917 mask |= EPOLLIN | EPOLLRDNORM; 2918 return mask; 2919 2920 } 2921 EXPORT_SYMBOL(udp_poll); 2922 2923 int udp_abort(struct sock *sk, int err) 2924 { 2925 lock_sock(sk); 2926 2927 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2928 * with close() 2929 */ 2930 if (sock_flag(sk, SOCK_DEAD)) 2931 goto out; 2932 2933 sk->sk_err = err; 2934 sk_error_report(sk); 2935 __udp_disconnect(sk, 0); 2936 2937 out: 2938 release_sock(sk); 2939 2940 return 0; 2941 } 2942 EXPORT_SYMBOL_GPL(udp_abort); 2943 2944 struct proto udp_prot = { 2945 .name = "UDP", 2946 .owner = THIS_MODULE, 2947 .close = udp_lib_close, 2948 .pre_connect = udp_pre_connect, 2949 .connect = ip4_datagram_connect, 2950 .disconnect = udp_disconnect, 2951 .ioctl = udp_ioctl, 2952 .init = udp_init_sock, 2953 .destroy = udp_destroy_sock, 2954 .setsockopt = udp_setsockopt, 2955 .getsockopt = udp_getsockopt, 2956 .sendmsg = udp_sendmsg, 2957 .recvmsg = udp_recvmsg, 2958 .sendpage = udp_sendpage, 2959 .release_cb = ip4_datagram_release_cb, 2960 .hash = udp_lib_hash, 2961 .unhash = udp_lib_unhash, 2962 .rehash = udp_v4_rehash, 2963 .get_port = udp_v4_get_port, 2964 .put_port = udp_lib_unhash, 2965 #ifdef CONFIG_BPF_SYSCALL 2966 .psock_update_sk_prot = udp_bpf_update_proto, 2967 #endif 2968 .memory_allocated = &udp_memory_allocated, 2969 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 2970 2971 .sysctl_mem = sysctl_udp_mem, 2972 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2973 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2974 .obj_size = sizeof(struct udp_sock), 2975 .h.udp_table = NULL, 2976 .diag_destroy = udp_abort, 2977 }; 2978 EXPORT_SYMBOL(udp_prot); 2979 2980 /* ------------------------------------------------------------------------ */ 2981 #ifdef CONFIG_PROC_FS 2982 2983 static struct sock *udp_get_first(struct seq_file *seq, int start) 2984 { 2985 struct udp_iter_state *state = seq->private; 2986 struct net *net = seq_file_net(seq); 2987 struct udp_seq_afinfo *afinfo; 2988 struct sock *sk; 2989 2990 if (state->bpf_seq_afinfo) 2991 afinfo = state->bpf_seq_afinfo; 2992 else 2993 afinfo = pde_data(file_inode(seq->file)); 2994 2995 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2996 ++state->bucket) { 2997 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2998 2999 if (hlist_empty(&hslot->head)) 3000 continue; 3001 3002 spin_lock_bh(&hslot->lock); 3003 sk_for_each(sk, &hslot->head) { 3004 if (!net_eq(sock_net(sk), net)) 3005 continue; 3006 if (afinfo->family == AF_UNSPEC || 3007 sk->sk_family == afinfo->family) 3008 goto found; 3009 } 3010 spin_unlock_bh(&hslot->lock); 3011 } 3012 sk = NULL; 3013 found: 3014 return sk; 3015 } 3016 3017 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3018 { 3019 struct udp_iter_state *state = seq->private; 3020 struct net *net = seq_file_net(seq); 3021 struct udp_seq_afinfo *afinfo; 3022 3023 if (state->bpf_seq_afinfo) 3024 afinfo = state->bpf_seq_afinfo; 3025 else 3026 afinfo = pde_data(file_inode(seq->file)); 3027 3028 do { 3029 sk = sk_next(sk); 3030 } while (sk && (!net_eq(sock_net(sk), net) || 3031 (afinfo->family != AF_UNSPEC && 3032 sk->sk_family != afinfo->family))); 3033 3034 if (!sk) { 3035 if (state->bucket <= afinfo->udp_table->mask) 3036 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 3037 return udp_get_first(seq, state->bucket + 1); 3038 } 3039 return sk; 3040 } 3041 3042 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3043 { 3044 struct sock *sk = udp_get_first(seq, 0); 3045 3046 if (sk) 3047 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3048 --pos; 3049 return pos ? NULL : sk; 3050 } 3051 3052 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3053 { 3054 struct udp_iter_state *state = seq->private; 3055 state->bucket = MAX_UDP_PORTS; 3056 3057 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3058 } 3059 EXPORT_SYMBOL(udp_seq_start); 3060 3061 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3062 { 3063 struct sock *sk; 3064 3065 if (v == SEQ_START_TOKEN) 3066 sk = udp_get_idx(seq, 0); 3067 else 3068 sk = udp_get_next(seq, v); 3069 3070 ++*pos; 3071 return sk; 3072 } 3073 EXPORT_SYMBOL(udp_seq_next); 3074 3075 void udp_seq_stop(struct seq_file *seq, void *v) 3076 { 3077 struct udp_iter_state *state = seq->private; 3078 struct udp_seq_afinfo *afinfo; 3079 3080 if (state->bpf_seq_afinfo) 3081 afinfo = state->bpf_seq_afinfo; 3082 else 3083 afinfo = pde_data(file_inode(seq->file)); 3084 3085 if (state->bucket <= afinfo->udp_table->mask) 3086 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 3087 } 3088 EXPORT_SYMBOL(udp_seq_stop); 3089 3090 /* ------------------------------------------------------------------------ */ 3091 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3092 int bucket) 3093 { 3094 struct inet_sock *inet = inet_sk(sp); 3095 __be32 dest = inet->inet_daddr; 3096 __be32 src = inet->inet_rcv_saddr; 3097 __u16 destp = ntohs(inet->inet_dport); 3098 __u16 srcp = ntohs(inet->inet_sport); 3099 3100 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3101 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3102 bucket, src, srcp, dest, destp, sp->sk_state, 3103 sk_wmem_alloc_get(sp), 3104 udp_rqueue_get(sp), 3105 0, 0L, 0, 3106 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3107 0, sock_i_ino(sp), 3108 refcount_read(&sp->sk_refcnt), sp, 3109 atomic_read(&sp->sk_drops)); 3110 } 3111 3112 int udp4_seq_show(struct seq_file *seq, void *v) 3113 { 3114 seq_setwidth(seq, 127); 3115 if (v == SEQ_START_TOKEN) 3116 seq_puts(seq, " sl local_address rem_address st tx_queue " 3117 "rx_queue tr tm->when retrnsmt uid timeout " 3118 "inode ref pointer drops"); 3119 else { 3120 struct udp_iter_state *state = seq->private; 3121 3122 udp4_format_sock(v, seq, state->bucket); 3123 } 3124 seq_pad(seq, '\n'); 3125 return 0; 3126 } 3127 3128 #ifdef CONFIG_BPF_SYSCALL 3129 struct bpf_iter__udp { 3130 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3131 __bpf_md_ptr(struct udp_sock *, udp_sk); 3132 uid_t uid __aligned(8); 3133 int bucket __aligned(8); 3134 }; 3135 3136 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3137 struct udp_sock *udp_sk, uid_t uid, int bucket) 3138 { 3139 struct bpf_iter__udp ctx; 3140 3141 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3142 ctx.meta = meta; 3143 ctx.udp_sk = udp_sk; 3144 ctx.uid = uid; 3145 ctx.bucket = bucket; 3146 return bpf_iter_run_prog(prog, &ctx); 3147 } 3148 3149 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3150 { 3151 struct udp_iter_state *state = seq->private; 3152 struct bpf_iter_meta meta; 3153 struct bpf_prog *prog; 3154 struct sock *sk = v; 3155 uid_t uid; 3156 3157 if (v == SEQ_START_TOKEN) 3158 return 0; 3159 3160 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3161 meta.seq = seq; 3162 prog = bpf_iter_get_info(&meta, false); 3163 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3164 } 3165 3166 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3167 { 3168 struct bpf_iter_meta meta; 3169 struct bpf_prog *prog; 3170 3171 if (!v) { 3172 meta.seq = seq; 3173 prog = bpf_iter_get_info(&meta, true); 3174 if (prog) 3175 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3176 } 3177 3178 udp_seq_stop(seq, v); 3179 } 3180 3181 static const struct seq_operations bpf_iter_udp_seq_ops = { 3182 .start = udp_seq_start, 3183 .next = udp_seq_next, 3184 .stop = bpf_iter_udp_seq_stop, 3185 .show = bpf_iter_udp_seq_show, 3186 }; 3187 #endif 3188 3189 const struct seq_operations udp_seq_ops = { 3190 .start = udp_seq_start, 3191 .next = udp_seq_next, 3192 .stop = udp_seq_stop, 3193 .show = udp4_seq_show, 3194 }; 3195 EXPORT_SYMBOL(udp_seq_ops); 3196 3197 static struct udp_seq_afinfo udp4_seq_afinfo = { 3198 .family = AF_INET, 3199 .udp_table = &udp_table, 3200 }; 3201 3202 static int __net_init udp4_proc_init_net(struct net *net) 3203 { 3204 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3205 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3206 return -ENOMEM; 3207 return 0; 3208 } 3209 3210 static void __net_exit udp4_proc_exit_net(struct net *net) 3211 { 3212 remove_proc_entry("udp", net->proc_net); 3213 } 3214 3215 static struct pernet_operations udp4_net_ops = { 3216 .init = udp4_proc_init_net, 3217 .exit = udp4_proc_exit_net, 3218 }; 3219 3220 int __init udp4_proc_init(void) 3221 { 3222 return register_pernet_subsys(&udp4_net_ops); 3223 } 3224 3225 void udp4_proc_exit(void) 3226 { 3227 unregister_pernet_subsys(&udp4_net_ops); 3228 } 3229 #endif /* CONFIG_PROC_FS */ 3230 3231 static __initdata unsigned long uhash_entries; 3232 static int __init set_uhash_entries(char *str) 3233 { 3234 ssize_t ret; 3235 3236 if (!str) 3237 return 0; 3238 3239 ret = kstrtoul(str, 0, &uhash_entries); 3240 if (ret) 3241 return 0; 3242 3243 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3244 uhash_entries = UDP_HTABLE_SIZE_MIN; 3245 return 1; 3246 } 3247 __setup("uhash_entries=", set_uhash_entries); 3248 3249 void __init udp_table_init(struct udp_table *table, const char *name) 3250 { 3251 unsigned int i; 3252 3253 table->hash = alloc_large_system_hash(name, 3254 2 * sizeof(struct udp_hslot), 3255 uhash_entries, 3256 21, /* one slot per 2 MB */ 3257 0, 3258 &table->log, 3259 &table->mask, 3260 UDP_HTABLE_SIZE_MIN, 3261 64 * 1024); 3262 3263 table->hash2 = table->hash + (table->mask + 1); 3264 for (i = 0; i <= table->mask; i++) { 3265 INIT_HLIST_HEAD(&table->hash[i].head); 3266 table->hash[i].count = 0; 3267 spin_lock_init(&table->hash[i].lock); 3268 } 3269 for (i = 0; i <= table->mask; i++) { 3270 INIT_HLIST_HEAD(&table->hash2[i].head); 3271 table->hash2[i].count = 0; 3272 spin_lock_init(&table->hash2[i].lock); 3273 } 3274 } 3275 3276 u32 udp_flow_hashrnd(void) 3277 { 3278 static u32 hashrnd __read_mostly; 3279 3280 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3281 3282 return hashrnd; 3283 } 3284 EXPORT_SYMBOL(udp_flow_hashrnd); 3285 3286 static int __net_init udp_sysctl_init(struct net *net) 3287 { 3288 net->ipv4.udp_table = &udp_table; 3289 3290 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3291 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3292 3293 #ifdef CONFIG_NET_L3_MASTER_DEV 3294 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3295 #endif 3296 3297 return 0; 3298 } 3299 3300 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3301 .init = udp_sysctl_init, 3302 }; 3303 3304 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3305 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3306 struct udp_sock *udp_sk, uid_t uid, int bucket) 3307 3308 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3309 { 3310 struct udp_iter_state *st = priv_data; 3311 struct udp_seq_afinfo *afinfo; 3312 int ret; 3313 3314 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN); 3315 if (!afinfo) 3316 return -ENOMEM; 3317 3318 afinfo->family = AF_UNSPEC; 3319 afinfo->udp_table = &udp_table; 3320 st->bpf_seq_afinfo = afinfo; 3321 ret = bpf_iter_init_seq_net(priv_data, aux); 3322 if (ret) 3323 kfree(afinfo); 3324 return ret; 3325 } 3326 3327 static void bpf_iter_fini_udp(void *priv_data) 3328 { 3329 struct udp_iter_state *st = priv_data; 3330 3331 kfree(st->bpf_seq_afinfo); 3332 bpf_iter_fini_seq_net(priv_data); 3333 } 3334 3335 static const struct bpf_iter_seq_info udp_seq_info = { 3336 .seq_ops = &bpf_iter_udp_seq_ops, 3337 .init_seq_private = bpf_iter_init_udp, 3338 .fini_seq_private = bpf_iter_fini_udp, 3339 .seq_priv_size = sizeof(struct udp_iter_state), 3340 }; 3341 3342 static struct bpf_iter_reg udp_reg_info = { 3343 .target = "udp", 3344 .ctx_arg_info_size = 1, 3345 .ctx_arg_info = { 3346 { offsetof(struct bpf_iter__udp, udp_sk), 3347 PTR_TO_BTF_ID_OR_NULL }, 3348 }, 3349 .seq_info = &udp_seq_info, 3350 }; 3351 3352 static void __init bpf_iter_register(void) 3353 { 3354 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3355 if (bpf_iter_reg_target(&udp_reg_info)) 3356 pr_warn("Warning: could not register bpf iterator udp\n"); 3357 } 3358 #endif 3359 3360 void __init udp_init(void) 3361 { 3362 unsigned long limit; 3363 unsigned int i; 3364 3365 udp_table_init(&udp_table, "UDP"); 3366 limit = nr_free_buffer_pages() / 8; 3367 limit = max(limit, 128UL); 3368 sysctl_udp_mem[0] = limit / 4 * 3; 3369 sysctl_udp_mem[1] = limit; 3370 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3371 3372 /* 16 spinlocks per cpu */ 3373 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3374 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3375 GFP_KERNEL); 3376 if (!udp_busylocks) 3377 panic("UDP: failed to alloc udp_busylocks\n"); 3378 for (i = 0; i < (1U << udp_busylocks_log); i++) 3379 spin_lock_init(udp_busylocks + i); 3380 3381 if (register_pernet_subsys(&udp_sysctl_ops)) 3382 panic("UDP: failed to init sysctl parameters.\n"); 3383 3384 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3385 bpf_iter_register(); 3386 #endif 3387 } 3388