1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <asm/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/in.h> 94 #include <linux/errno.h> 95 #include <linux/timer.h> 96 #include <linux/mm.h> 97 #include <linux/inet.h> 98 #include <linux/netdevice.h> 99 #include <linux/slab.h> 100 #include <net/tcp_states.h> 101 #include <linux/skbuff.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <net/net_namespace.h> 105 #include <net/icmp.h> 106 #include <net/route.h> 107 #include <net/checksum.h> 108 #include <net/xfrm.h> 109 #include <trace/events/udp.h> 110 #include "udp_impl.h" 111 112 struct udp_table udp_table __read_mostly; 113 EXPORT_SYMBOL(udp_table); 114 115 long sysctl_udp_mem[3] __read_mostly; 116 EXPORT_SYMBOL(sysctl_udp_mem); 117 118 int sysctl_udp_rmem_min __read_mostly; 119 EXPORT_SYMBOL(sysctl_udp_rmem_min); 120 121 int sysctl_udp_wmem_min __read_mostly; 122 EXPORT_SYMBOL(sysctl_udp_wmem_min); 123 124 atomic_long_t udp_memory_allocated; 125 EXPORT_SYMBOL(udp_memory_allocated); 126 127 #define MAX_UDP_PORTS 65536 128 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 129 130 static int udp_lib_lport_inuse(struct net *net, __u16 num, 131 const struct udp_hslot *hslot, 132 unsigned long *bitmap, 133 struct sock *sk, 134 int (*saddr_comp)(const struct sock *sk1, 135 const struct sock *sk2), 136 unsigned int log) 137 { 138 struct sock *sk2; 139 struct hlist_nulls_node *node; 140 141 sk_nulls_for_each(sk2, node, &hslot->head) 142 if (net_eq(sock_net(sk2), net) && 143 sk2 != sk && 144 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 145 (!sk2->sk_reuse || !sk->sk_reuse) && 146 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 147 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 148 (*saddr_comp)(sk, sk2)) { 149 if (bitmap) 150 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 151 bitmap); 152 else 153 return 1; 154 } 155 return 0; 156 } 157 158 /* 159 * Note: we still hold spinlock of primary hash chain, so no other writer 160 * can insert/delete a socket with local_port == num 161 */ 162 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 163 struct udp_hslot *hslot2, 164 struct sock *sk, 165 int (*saddr_comp)(const struct sock *sk1, 166 const struct sock *sk2)) 167 { 168 struct sock *sk2; 169 struct hlist_nulls_node *node; 170 int res = 0; 171 172 spin_lock(&hslot2->lock); 173 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) 174 if (net_eq(sock_net(sk2), net) && 175 sk2 != sk && 176 (udp_sk(sk2)->udp_port_hash == num) && 177 (!sk2->sk_reuse || !sk->sk_reuse) && 178 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 179 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 180 (*saddr_comp)(sk, sk2)) { 181 res = 1; 182 break; 183 } 184 spin_unlock(&hslot2->lock); 185 return res; 186 } 187 188 /** 189 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 190 * 191 * @sk: socket struct in question 192 * @snum: port number to look up 193 * @saddr_comp: AF-dependent comparison of bound local IP addresses 194 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 195 * with NULL address 196 */ 197 int udp_lib_get_port(struct sock *sk, unsigned short snum, 198 int (*saddr_comp)(const struct sock *sk1, 199 const struct sock *sk2), 200 unsigned int hash2_nulladdr) 201 { 202 struct udp_hslot *hslot, *hslot2; 203 struct udp_table *udptable = sk->sk_prot->h.udp_table; 204 int error = 1; 205 struct net *net = sock_net(sk); 206 207 if (!snum) { 208 int low, high, remaining; 209 unsigned rand; 210 unsigned short first, last; 211 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 212 213 inet_get_local_port_range(&low, &high); 214 remaining = (high - low) + 1; 215 216 rand = net_random(); 217 first = (((u64)rand * remaining) >> 32) + low; 218 /* 219 * force rand to be an odd multiple of UDP_HTABLE_SIZE 220 */ 221 rand = (rand | 1) * (udptable->mask + 1); 222 last = first + udptable->mask + 1; 223 do { 224 hslot = udp_hashslot(udptable, net, first); 225 bitmap_zero(bitmap, PORTS_PER_CHAIN); 226 spin_lock_bh(&hslot->lock); 227 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 228 saddr_comp, udptable->log); 229 230 snum = first; 231 /* 232 * Iterate on all possible values of snum for this hash. 233 * Using steps of an odd multiple of UDP_HTABLE_SIZE 234 * give us randomization and full range coverage. 235 */ 236 do { 237 if (low <= snum && snum <= high && 238 !test_bit(snum >> udptable->log, bitmap) && 239 !inet_is_reserved_local_port(snum)) 240 goto found; 241 snum += rand; 242 } while (snum != first); 243 spin_unlock_bh(&hslot->lock); 244 } while (++first != last); 245 goto fail; 246 } else { 247 hslot = udp_hashslot(udptable, net, snum); 248 spin_lock_bh(&hslot->lock); 249 if (hslot->count > 10) { 250 int exist; 251 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 252 253 slot2 &= udptable->mask; 254 hash2_nulladdr &= udptable->mask; 255 256 hslot2 = udp_hashslot2(udptable, slot2); 257 if (hslot->count < hslot2->count) 258 goto scan_primary_hash; 259 260 exist = udp_lib_lport_inuse2(net, snum, hslot2, 261 sk, saddr_comp); 262 if (!exist && (hash2_nulladdr != slot2)) { 263 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 264 exist = udp_lib_lport_inuse2(net, snum, hslot2, 265 sk, saddr_comp); 266 } 267 if (exist) 268 goto fail_unlock; 269 else 270 goto found; 271 } 272 scan_primary_hash: 273 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 274 saddr_comp, 0)) 275 goto fail_unlock; 276 } 277 found: 278 inet_sk(sk)->inet_num = snum; 279 udp_sk(sk)->udp_port_hash = snum; 280 udp_sk(sk)->udp_portaddr_hash ^= snum; 281 if (sk_unhashed(sk)) { 282 sk_nulls_add_node_rcu(sk, &hslot->head); 283 hslot->count++; 284 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 285 286 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 287 spin_lock(&hslot2->lock); 288 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 289 &hslot2->head); 290 hslot2->count++; 291 spin_unlock(&hslot2->lock); 292 } 293 error = 0; 294 fail_unlock: 295 spin_unlock_bh(&hslot->lock); 296 fail: 297 return error; 298 } 299 EXPORT_SYMBOL(udp_lib_get_port); 300 301 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2) 302 { 303 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2); 304 305 return (!ipv6_only_sock(sk2) && 306 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr || 307 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)); 308 } 309 310 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr, 311 unsigned int port) 312 { 313 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; 314 } 315 316 int udp_v4_get_port(struct sock *sk, unsigned short snum) 317 { 318 unsigned int hash2_nulladdr = 319 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 320 unsigned int hash2_partial = 321 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 322 323 /* precompute partial secondary hash */ 324 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 325 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr); 326 } 327 328 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr, 329 unsigned short hnum, 330 __be16 sport, __be32 daddr, __be16 dport, int dif) 331 { 332 int score = -1; 333 334 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum && 335 !ipv6_only_sock(sk)) { 336 struct inet_sock *inet = inet_sk(sk); 337 338 score = (sk->sk_family == PF_INET ? 1 : 0); 339 if (inet->inet_rcv_saddr) { 340 if (inet->inet_rcv_saddr != daddr) 341 return -1; 342 score += 2; 343 } 344 if (inet->inet_daddr) { 345 if (inet->inet_daddr != saddr) 346 return -1; 347 score += 2; 348 } 349 if (inet->inet_dport) { 350 if (inet->inet_dport != sport) 351 return -1; 352 score += 2; 353 } 354 if (sk->sk_bound_dev_if) { 355 if (sk->sk_bound_dev_if != dif) 356 return -1; 357 score += 2; 358 } 359 } 360 return score; 361 } 362 363 /* 364 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num) 365 */ 366 #define SCORE2_MAX (1 + 2 + 2 + 2) 367 static inline int compute_score2(struct sock *sk, struct net *net, 368 __be32 saddr, __be16 sport, 369 __be32 daddr, unsigned int hnum, int dif) 370 { 371 int score = -1; 372 373 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) { 374 struct inet_sock *inet = inet_sk(sk); 375 376 if (inet->inet_rcv_saddr != daddr) 377 return -1; 378 if (inet->inet_num != hnum) 379 return -1; 380 381 score = (sk->sk_family == PF_INET ? 1 : 0); 382 if (inet->inet_daddr) { 383 if (inet->inet_daddr != saddr) 384 return -1; 385 score += 2; 386 } 387 if (inet->inet_dport) { 388 if (inet->inet_dport != sport) 389 return -1; 390 score += 2; 391 } 392 if (sk->sk_bound_dev_if) { 393 if (sk->sk_bound_dev_if != dif) 394 return -1; 395 score += 2; 396 } 397 } 398 return score; 399 } 400 401 402 /* called with read_rcu_lock() */ 403 static struct sock *udp4_lib_lookup2(struct net *net, 404 __be32 saddr, __be16 sport, 405 __be32 daddr, unsigned int hnum, int dif, 406 struct udp_hslot *hslot2, unsigned int slot2) 407 { 408 struct sock *sk, *result; 409 struct hlist_nulls_node *node; 410 int score, badness; 411 412 begin: 413 result = NULL; 414 badness = -1; 415 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) { 416 score = compute_score2(sk, net, saddr, sport, 417 daddr, hnum, dif); 418 if (score > badness) { 419 result = sk; 420 badness = score; 421 if (score == SCORE2_MAX) 422 goto exact_match; 423 } 424 } 425 /* 426 * if the nulls value we got at the end of this lookup is 427 * not the expected one, we must restart lookup. 428 * We probably met an item that was moved to another chain. 429 */ 430 if (get_nulls_value(node) != slot2) 431 goto begin; 432 433 if (result) { 434 exact_match: 435 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 436 result = NULL; 437 else if (unlikely(compute_score2(result, net, saddr, sport, 438 daddr, hnum, dif) < badness)) { 439 sock_put(result); 440 goto begin; 441 } 442 } 443 return result; 444 } 445 446 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 447 * harder than this. -DaveM 448 */ 449 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 450 __be16 sport, __be32 daddr, __be16 dport, 451 int dif, struct udp_table *udptable) 452 { 453 struct sock *sk, *result; 454 struct hlist_nulls_node *node; 455 unsigned short hnum = ntohs(dport); 456 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 457 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 458 int score, badness; 459 460 rcu_read_lock(); 461 if (hslot->count > 10) { 462 hash2 = udp4_portaddr_hash(net, daddr, hnum); 463 slot2 = hash2 & udptable->mask; 464 hslot2 = &udptable->hash2[slot2]; 465 if (hslot->count < hslot2->count) 466 goto begin; 467 468 result = udp4_lib_lookup2(net, saddr, sport, 469 daddr, hnum, dif, 470 hslot2, slot2); 471 if (!result) { 472 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 473 slot2 = hash2 & udptable->mask; 474 hslot2 = &udptable->hash2[slot2]; 475 if (hslot->count < hslot2->count) 476 goto begin; 477 478 result = udp4_lib_lookup2(net, saddr, sport, 479 htonl(INADDR_ANY), hnum, dif, 480 hslot2, slot2); 481 } 482 rcu_read_unlock(); 483 return result; 484 } 485 begin: 486 result = NULL; 487 badness = -1; 488 sk_nulls_for_each_rcu(sk, node, &hslot->head) { 489 score = compute_score(sk, net, saddr, hnum, sport, 490 daddr, dport, dif); 491 if (score > badness) { 492 result = sk; 493 badness = score; 494 } 495 } 496 /* 497 * if the nulls value we got at the end of this lookup is 498 * not the expected one, we must restart lookup. 499 * We probably met an item that was moved to another chain. 500 */ 501 if (get_nulls_value(node) != slot) 502 goto begin; 503 504 if (result) { 505 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 506 result = NULL; 507 else if (unlikely(compute_score(result, net, saddr, hnum, sport, 508 daddr, dport, dif) < badness)) { 509 sock_put(result); 510 goto begin; 511 } 512 } 513 rcu_read_unlock(); 514 return result; 515 } 516 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 517 518 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 519 __be16 sport, __be16 dport, 520 struct udp_table *udptable) 521 { 522 struct sock *sk; 523 const struct iphdr *iph = ip_hdr(skb); 524 525 if (unlikely(sk = skb_steal_sock(skb))) 526 return sk; 527 else 528 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport, 529 iph->daddr, dport, inet_iif(skb), 530 udptable); 531 } 532 533 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 534 __be32 daddr, __be16 dport, int dif) 535 { 536 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table); 537 } 538 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 539 540 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk, 541 __be16 loc_port, __be32 loc_addr, 542 __be16 rmt_port, __be32 rmt_addr, 543 int dif) 544 { 545 struct hlist_nulls_node *node; 546 struct sock *s = sk; 547 unsigned short hnum = ntohs(loc_port); 548 549 sk_nulls_for_each_from(s, node) { 550 struct inet_sock *inet = inet_sk(s); 551 552 if (!net_eq(sock_net(s), net) || 553 udp_sk(s)->udp_port_hash != hnum || 554 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 555 (inet->inet_dport != rmt_port && inet->inet_dport) || 556 (inet->inet_rcv_saddr && 557 inet->inet_rcv_saddr != loc_addr) || 558 ipv6_only_sock(s) || 559 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif)) 560 continue; 561 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif)) 562 continue; 563 goto found; 564 } 565 s = NULL; 566 found: 567 return s; 568 } 569 570 /* 571 * This routine is called by the ICMP module when it gets some 572 * sort of error condition. If err < 0 then the socket should 573 * be closed and the error returned to the user. If err > 0 574 * it's just the icmp type << 8 | icmp code. 575 * Header points to the ip header of the error packet. We move 576 * on past this. Then (as it used to claim before adjustment) 577 * header points to the first 8 bytes of the udp header. We need 578 * to find the appropriate port. 579 */ 580 581 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 582 { 583 struct inet_sock *inet; 584 const struct iphdr *iph = (const struct iphdr *)skb->data; 585 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 586 const int type = icmp_hdr(skb)->type; 587 const int code = icmp_hdr(skb)->code; 588 struct sock *sk; 589 int harderr; 590 int err; 591 struct net *net = dev_net(skb->dev); 592 593 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 594 iph->saddr, uh->source, skb->dev->ifindex, udptable); 595 if (sk == NULL) { 596 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 597 return; /* No socket for error */ 598 } 599 600 err = 0; 601 harderr = 0; 602 inet = inet_sk(sk); 603 604 switch (type) { 605 default: 606 case ICMP_TIME_EXCEEDED: 607 err = EHOSTUNREACH; 608 break; 609 case ICMP_SOURCE_QUENCH: 610 goto out; 611 case ICMP_PARAMETERPROB: 612 err = EPROTO; 613 harderr = 1; 614 break; 615 case ICMP_DEST_UNREACH: 616 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 617 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 618 err = EMSGSIZE; 619 harderr = 1; 620 break; 621 } 622 goto out; 623 } 624 err = EHOSTUNREACH; 625 if (code <= NR_ICMP_UNREACH) { 626 harderr = icmp_err_convert[code].fatal; 627 err = icmp_err_convert[code].errno; 628 } 629 break; 630 } 631 632 /* 633 * RFC1122: OK. Passes ICMP errors back to application, as per 634 * 4.1.3.3. 635 */ 636 if (!inet->recverr) { 637 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 638 goto out; 639 } else 640 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 641 642 sk->sk_err = err; 643 sk->sk_error_report(sk); 644 out: 645 sock_put(sk); 646 } 647 648 void udp_err(struct sk_buff *skb, u32 info) 649 { 650 __udp4_lib_err(skb, info, &udp_table); 651 } 652 653 /* 654 * Throw away all pending data and cancel the corking. Socket is locked. 655 */ 656 void udp_flush_pending_frames(struct sock *sk) 657 { 658 struct udp_sock *up = udp_sk(sk); 659 660 if (up->pending) { 661 up->len = 0; 662 up->pending = 0; 663 ip_flush_pending_frames(sk); 664 } 665 } 666 EXPORT_SYMBOL(udp_flush_pending_frames); 667 668 /** 669 * udp4_hwcsum - handle outgoing HW checksumming 670 * @skb: sk_buff containing the filled-in UDP header 671 * (checksum field must be zeroed out) 672 * @src: source IP address 673 * @dst: destination IP address 674 */ 675 static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 676 { 677 struct udphdr *uh = udp_hdr(skb); 678 struct sk_buff *frags = skb_shinfo(skb)->frag_list; 679 int offset = skb_transport_offset(skb); 680 int len = skb->len - offset; 681 int hlen = len; 682 __wsum csum = 0; 683 684 if (!frags) { 685 /* 686 * Only one fragment on the socket. 687 */ 688 skb->csum_start = skb_transport_header(skb) - skb->head; 689 skb->csum_offset = offsetof(struct udphdr, check); 690 uh->check = ~csum_tcpudp_magic(src, dst, len, 691 IPPROTO_UDP, 0); 692 } else { 693 /* 694 * HW-checksum won't work as there are two or more 695 * fragments on the socket so that all csums of sk_buffs 696 * should be together 697 */ 698 do { 699 csum = csum_add(csum, frags->csum); 700 hlen -= frags->len; 701 } while ((frags = frags->next)); 702 703 csum = skb_checksum(skb, offset, hlen, csum); 704 skb->ip_summed = CHECKSUM_NONE; 705 706 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 707 if (uh->check == 0) 708 uh->check = CSUM_MANGLED_0; 709 } 710 } 711 712 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 713 { 714 struct sock *sk = skb->sk; 715 struct inet_sock *inet = inet_sk(sk); 716 struct udphdr *uh; 717 int err = 0; 718 int is_udplite = IS_UDPLITE(sk); 719 int offset = skb_transport_offset(skb); 720 int len = skb->len - offset; 721 __wsum csum = 0; 722 723 /* 724 * Create a UDP header 725 */ 726 uh = udp_hdr(skb); 727 uh->source = inet->inet_sport; 728 uh->dest = fl4->fl4_dport; 729 uh->len = htons(len); 730 uh->check = 0; 731 732 if (is_udplite) /* UDP-Lite */ 733 csum = udplite_csum(skb); 734 735 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */ 736 737 skb->ip_summed = CHECKSUM_NONE; 738 goto send; 739 740 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 741 742 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 743 goto send; 744 745 } else 746 csum = udp_csum(skb); 747 748 /* add protocol-dependent pseudo-header */ 749 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 750 sk->sk_protocol, csum); 751 if (uh->check == 0) 752 uh->check = CSUM_MANGLED_0; 753 754 send: 755 err = ip_send_skb(skb); 756 if (err) { 757 if (err == -ENOBUFS && !inet->recverr) { 758 UDP_INC_STATS_USER(sock_net(sk), 759 UDP_MIB_SNDBUFERRORS, is_udplite); 760 err = 0; 761 } 762 } else 763 UDP_INC_STATS_USER(sock_net(sk), 764 UDP_MIB_OUTDATAGRAMS, is_udplite); 765 return err; 766 } 767 768 /* 769 * Push out all pending data as one UDP datagram. Socket is locked. 770 */ 771 static int udp_push_pending_frames(struct sock *sk) 772 { 773 struct udp_sock *up = udp_sk(sk); 774 struct inet_sock *inet = inet_sk(sk); 775 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 776 struct sk_buff *skb; 777 int err = 0; 778 779 skb = ip_finish_skb(sk, fl4); 780 if (!skb) 781 goto out; 782 783 err = udp_send_skb(skb, fl4); 784 785 out: 786 up->len = 0; 787 up->pending = 0; 788 return err; 789 } 790 791 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 792 size_t len) 793 { 794 struct inet_sock *inet = inet_sk(sk); 795 struct udp_sock *up = udp_sk(sk); 796 struct flowi4 fl4_stack; 797 struct flowi4 *fl4; 798 int ulen = len; 799 struct ipcm_cookie ipc; 800 struct rtable *rt = NULL; 801 int free = 0; 802 int connected = 0; 803 __be32 daddr, faddr, saddr; 804 __be16 dport; 805 u8 tos; 806 int err, is_udplite = IS_UDPLITE(sk); 807 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 808 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 809 struct sk_buff *skb; 810 struct ip_options_data opt_copy; 811 812 if (len > 0xFFFF) 813 return -EMSGSIZE; 814 815 /* 816 * Check the flags. 817 */ 818 819 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 820 return -EOPNOTSUPP; 821 822 ipc.opt = NULL; 823 ipc.tx_flags = 0; 824 825 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 826 827 fl4 = &inet->cork.fl.u.ip4; 828 if (up->pending) { 829 /* 830 * There are pending frames. 831 * The socket lock must be held while it's corked. 832 */ 833 lock_sock(sk); 834 if (likely(up->pending)) { 835 if (unlikely(up->pending != AF_INET)) { 836 release_sock(sk); 837 return -EINVAL; 838 } 839 goto do_append_data; 840 } 841 release_sock(sk); 842 } 843 ulen += sizeof(struct udphdr); 844 845 /* 846 * Get and verify the address. 847 */ 848 if (msg->msg_name) { 849 struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name; 850 if (msg->msg_namelen < sizeof(*usin)) 851 return -EINVAL; 852 if (usin->sin_family != AF_INET) { 853 if (usin->sin_family != AF_UNSPEC) 854 return -EAFNOSUPPORT; 855 } 856 857 daddr = usin->sin_addr.s_addr; 858 dport = usin->sin_port; 859 if (dport == 0) 860 return -EINVAL; 861 } else { 862 if (sk->sk_state != TCP_ESTABLISHED) 863 return -EDESTADDRREQ; 864 daddr = inet->inet_daddr; 865 dport = inet->inet_dport; 866 /* Open fast path for connected socket. 867 Route will not be used, if at least one option is set. 868 */ 869 connected = 1; 870 } 871 ipc.addr = inet->inet_saddr; 872 873 ipc.oif = sk->sk_bound_dev_if; 874 err = sock_tx_timestamp(sk, &ipc.tx_flags); 875 if (err) 876 return err; 877 if (msg->msg_controllen) { 878 err = ip_cmsg_send(sock_net(sk), msg, &ipc); 879 if (err) 880 return err; 881 if (ipc.opt) 882 free = 1; 883 connected = 0; 884 } 885 if (!ipc.opt) { 886 struct ip_options_rcu *inet_opt; 887 888 rcu_read_lock(); 889 inet_opt = rcu_dereference(inet->inet_opt); 890 if (inet_opt) { 891 memcpy(&opt_copy, inet_opt, 892 sizeof(*inet_opt) + inet_opt->opt.optlen); 893 ipc.opt = &opt_copy.opt; 894 } 895 rcu_read_unlock(); 896 } 897 898 saddr = ipc.addr; 899 ipc.addr = faddr = daddr; 900 901 if (ipc.opt && ipc.opt->opt.srr) { 902 if (!daddr) 903 return -EINVAL; 904 faddr = ipc.opt->opt.faddr; 905 connected = 0; 906 } 907 tos = RT_TOS(inet->tos); 908 if (sock_flag(sk, SOCK_LOCALROUTE) || 909 (msg->msg_flags & MSG_DONTROUTE) || 910 (ipc.opt && ipc.opt->opt.is_strictroute)) { 911 tos |= RTO_ONLINK; 912 connected = 0; 913 } 914 915 if (ipv4_is_multicast(daddr)) { 916 if (!ipc.oif) 917 ipc.oif = inet->mc_index; 918 if (!saddr) 919 saddr = inet->mc_addr; 920 connected = 0; 921 } else if (!ipc.oif) 922 ipc.oif = inet->uc_index; 923 924 if (connected) 925 rt = (struct rtable *)sk_dst_check(sk, 0); 926 927 if (rt == NULL) { 928 struct net *net = sock_net(sk); 929 930 fl4 = &fl4_stack; 931 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 932 RT_SCOPE_UNIVERSE, sk->sk_protocol, 933 inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP, 934 faddr, saddr, dport, inet->inet_sport); 935 936 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 937 rt = ip_route_output_flow(net, fl4, sk); 938 if (IS_ERR(rt)) { 939 err = PTR_ERR(rt); 940 rt = NULL; 941 if (err == -ENETUNREACH) 942 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES); 943 goto out; 944 } 945 946 err = -EACCES; 947 if ((rt->rt_flags & RTCF_BROADCAST) && 948 !sock_flag(sk, SOCK_BROADCAST)) 949 goto out; 950 if (connected) 951 sk_dst_set(sk, dst_clone(&rt->dst)); 952 } 953 954 if (msg->msg_flags&MSG_CONFIRM) 955 goto do_confirm; 956 back_from_confirm: 957 958 saddr = fl4->saddr; 959 if (!ipc.addr) 960 daddr = ipc.addr = fl4->daddr; 961 962 /* Lockless fast path for the non-corking case. */ 963 if (!corkreq) { 964 skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen, 965 sizeof(struct udphdr), &ipc, &rt, 966 msg->msg_flags); 967 err = PTR_ERR(skb); 968 if (skb && !IS_ERR(skb)) 969 err = udp_send_skb(skb, fl4); 970 goto out; 971 } 972 973 lock_sock(sk); 974 if (unlikely(up->pending)) { 975 /* The socket is already corked while preparing it. */ 976 /* ... which is an evident application bug. --ANK */ 977 release_sock(sk); 978 979 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n")); 980 err = -EINVAL; 981 goto out; 982 } 983 /* 984 * Now cork the socket to pend data. 985 */ 986 fl4 = &inet->cork.fl.u.ip4; 987 fl4->daddr = daddr; 988 fl4->saddr = saddr; 989 fl4->fl4_dport = dport; 990 fl4->fl4_sport = inet->inet_sport; 991 up->pending = AF_INET; 992 993 do_append_data: 994 up->len += ulen; 995 err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen, 996 sizeof(struct udphdr), &ipc, &rt, 997 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 998 if (err) 999 udp_flush_pending_frames(sk); 1000 else if (!corkreq) 1001 err = udp_push_pending_frames(sk); 1002 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1003 up->pending = 0; 1004 release_sock(sk); 1005 1006 out: 1007 ip_rt_put(rt); 1008 if (free) 1009 kfree(ipc.opt); 1010 if (!err) 1011 return len; 1012 /* 1013 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1014 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1015 * we don't have a good statistic (IpOutDiscards but it can be too many 1016 * things). We could add another new stat but at least for now that 1017 * seems like overkill. 1018 */ 1019 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1020 UDP_INC_STATS_USER(sock_net(sk), 1021 UDP_MIB_SNDBUFERRORS, is_udplite); 1022 } 1023 return err; 1024 1025 do_confirm: 1026 dst_confirm(&rt->dst); 1027 if (!(msg->msg_flags&MSG_PROBE) || len) 1028 goto back_from_confirm; 1029 err = 0; 1030 goto out; 1031 } 1032 EXPORT_SYMBOL(udp_sendmsg); 1033 1034 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1035 size_t size, int flags) 1036 { 1037 struct inet_sock *inet = inet_sk(sk); 1038 struct udp_sock *up = udp_sk(sk); 1039 int ret; 1040 1041 if (!up->pending) { 1042 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1043 1044 /* Call udp_sendmsg to specify destination address which 1045 * sendpage interface can't pass. 1046 * This will succeed only when the socket is connected. 1047 */ 1048 ret = udp_sendmsg(NULL, sk, &msg, 0); 1049 if (ret < 0) 1050 return ret; 1051 } 1052 1053 lock_sock(sk); 1054 1055 if (unlikely(!up->pending)) { 1056 release_sock(sk); 1057 1058 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n")); 1059 return -EINVAL; 1060 } 1061 1062 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1063 page, offset, size, flags); 1064 if (ret == -EOPNOTSUPP) { 1065 release_sock(sk); 1066 return sock_no_sendpage(sk->sk_socket, page, offset, 1067 size, flags); 1068 } 1069 if (ret < 0) { 1070 udp_flush_pending_frames(sk); 1071 goto out; 1072 } 1073 1074 up->len += size; 1075 if (!(up->corkflag || (flags&MSG_MORE))) 1076 ret = udp_push_pending_frames(sk); 1077 if (!ret) 1078 ret = size; 1079 out: 1080 release_sock(sk); 1081 return ret; 1082 } 1083 1084 1085 /** 1086 * first_packet_length - return length of first packet in receive queue 1087 * @sk: socket 1088 * 1089 * Drops all bad checksum frames, until a valid one is found. 1090 * Returns the length of found skb, or 0 if none is found. 1091 */ 1092 static unsigned int first_packet_length(struct sock *sk) 1093 { 1094 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue; 1095 struct sk_buff *skb; 1096 unsigned int res; 1097 1098 __skb_queue_head_init(&list_kill); 1099 1100 spin_lock_bh(&rcvq->lock); 1101 while ((skb = skb_peek(rcvq)) != NULL && 1102 udp_lib_checksum_complete(skb)) { 1103 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1104 IS_UDPLITE(sk)); 1105 atomic_inc(&sk->sk_drops); 1106 __skb_unlink(skb, rcvq); 1107 __skb_queue_tail(&list_kill, skb); 1108 } 1109 res = skb ? skb->len : 0; 1110 spin_unlock_bh(&rcvq->lock); 1111 1112 if (!skb_queue_empty(&list_kill)) { 1113 bool slow = lock_sock_fast(sk); 1114 1115 __skb_queue_purge(&list_kill); 1116 sk_mem_reclaim_partial(sk); 1117 unlock_sock_fast(sk, slow); 1118 } 1119 return res; 1120 } 1121 1122 /* 1123 * IOCTL requests applicable to the UDP protocol 1124 */ 1125 1126 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1127 { 1128 switch (cmd) { 1129 case SIOCOUTQ: 1130 { 1131 int amount = sk_wmem_alloc_get(sk); 1132 1133 return put_user(amount, (int __user *)arg); 1134 } 1135 1136 case SIOCINQ: 1137 { 1138 unsigned int amount = first_packet_length(sk); 1139 1140 if (amount) 1141 /* 1142 * We will only return the amount 1143 * of this packet since that is all 1144 * that will be read. 1145 */ 1146 amount -= sizeof(struct udphdr); 1147 1148 return put_user(amount, (int __user *)arg); 1149 } 1150 1151 default: 1152 return -ENOIOCTLCMD; 1153 } 1154 1155 return 0; 1156 } 1157 EXPORT_SYMBOL(udp_ioctl); 1158 1159 /* 1160 * This should be easy, if there is something there we 1161 * return it, otherwise we block. 1162 */ 1163 1164 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1165 size_t len, int noblock, int flags, int *addr_len) 1166 { 1167 struct inet_sock *inet = inet_sk(sk); 1168 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name; 1169 struct sk_buff *skb; 1170 unsigned int ulen, copied; 1171 int peeked, off = 0; 1172 int err; 1173 int is_udplite = IS_UDPLITE(sk); 1174 bool slow; 1175 1176 /* 1177 * Check any passed addresses 1178 */ 1179 if (addr_len) 1180 *addr_len = sizeof(*sin); 1181 1182 if (flags & MSG_ERRQUEUE) 1183 return ip_recv_error(sk, msg, len); 1184 1185 try_again: 1186 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0), 1187 &peeked, &off, &err); 1188 if (!skb) 1189 goto out; 1190 1191 ulen = skb->len - sizeof(struct udphdr); 1192 copied = len; 1193 if (copied > ulen) 1194 copied = ulen; 1195 else if (copied < ulen) 1196 msg->msg_flags |= MSG_TRUNC; 1197 1198 /* 1199 * If checksum is needed at all, try to do it while copying the 1200 * data. If the data is truncated, or if we only want a partial 1201 * coverage checksum (UDP-Lite), do it before the copy. 1202 */ 1203 1204 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) { 1205 if (udp_lib_checksum_complete(skb)) 1206 goto csum_copy_err; 1207 } 1208 1209 if (skb_csum_unnecessary(skb)) 1210 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), 1211 msg->msg_iov, copied); 1212 else { 1213 err = skb_copy_and_csum_datagram_iovec(skb, 1214 sizeof(struct udphdr), 1215 msg->msg_iov); 1216 1217 if (err == -EINVAL) 1218 goto csum_copy_err; 1219 } 1220 1221 if (err) 1222 goto out_free; 1223 1224 if (!peeked) 1225 UDP_INC_STATS_USER(sock_net(sk), 1226 UDP_MIB_INDATAGRAMS, is_udplite); 1227 1228 sock_recv_ts_and_drops(msg, sk, skb); 1229 1230 /* Copy the address. */ 1231 if (sin) { 1232 sin->sin_family = AF_INET; 1233 sin->sin_port = udp_hdr(skb)->source; 1234 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1235 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1236 } 1237 if (inet->cmsg_flags) 1238 ip_cmsg_recv(msg, skb); 1239 1240 err = copied; 1241 if (flags & MSG_TRUNC) 1242 err = ulen; 1243 1244 out_free: 1245 skb_free_datagram_locked(sk, skb); 1246 out: 1247 return err; 1248 1249 csum_copy_err: 1250 slow = lock_sock_fast(sk); 1251 if (!skb_kill_datagram(sk, skb, flags)) 1252 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1253 unlock_sock_fast(sk, slow); 1254 1255 if (noblock) 1256 return -EAGAIN; 1257 1258 /* starting over for a new packet */ 1259 msg->msg_flags &= ~MSG_TRUNC; 1260 goto try_again; 1261 } 1262 1263 1264 int udp_disconnect(struct sock *sk, int flags) 1265 { 1266 struct inet_sock *inet = inet_sk(sk); 1267 /* 1268 * 1003.1g - break association. 1269 */ 1270 1271 sk->sk_state = TCP_CLOSE; 1272 inet->inet_daddr = 0; 1273 inet->inet_dport = 0; 1274 sock_rps_reset_rxhash(sk); 1275 sk->sk_bound_dev_if = 0; 1276 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1277 inet_reset_saddr(sk); 1278 1279 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1280 sk->sk_prot->unhash(sk); 1281 inet->inet_sport = 0; 1282 } 1283 sk_dst_reset(sk); 1284 return 0; 1285 } 1286 EXPORT_SYMBOL(udp_disconnect); 1287 1288 void udp_lib_unhash(struct sock *sk) 1289 { 1290 if (sk_hashed(sk)) { 1291 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1292 struct udp_hslot *hslot, *hslot2; 1293 1294 hslot = udp_hashslot(udptable, sock_net(sk), 1295 udp_sk(sk)->udp_port_hash); 1296 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1297 1298 spin_lock_bh(&hslot->lock); 1299 if (sk_nulls_del_node_init_rcu(sk)) { 1300 hslot->count--; 1301 inet_sk(sk)->inet_num = 0; 1302 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1303 1304 spin_lock(&hslot2->lock); 1305 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1306 hslot2->count--; 1307 spin_unlock(&hslot2->lock); 1308 } 1309 spin_unlock_bh(&hslot->lock); 1310 } 1311 } 1312 EXPORT_SYMBOL(udp_lib_unhash); 1313 1314 /* 1315 * inet_rcv_saddr was changed, we must rehash secondary hash 1316 */ 1317 void udp_lib_rehash(struct sock *sk, u16 newhash) 1318 { 1319 if (sk_hashed(sk)) { 1320 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1321 struct udp_hslot *hslot, *hslot2, *nhslot2; 1322 1323 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1324 nhslot2 = udp_hashslot2(udptable, newhash); 1325 udp_sk(sk)->udp_portaddr_hash = newhash; 1326 if (hslot2 != nhslot2) { 1327 hslot = udp_hashslot(udptable, sock_net(sk), 1328 udp_sk(sk)->udp_port_hash); 1329 /* we must lock primary chain too */ 1330 spin_lock_bh(&hslot->lock); 1331 1332 spin_lock(&hslot2->lock); 1333 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1334 hslot2->count--; 1335 spin_unlock(&hslot2->lock); 1336 1337 spin_lock(&nhslot2->lock); 1338 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1339 &nhslot2->head); 1340 nhslot2->count++; 1341 spin_unlock(&nhslot2->lock); 1342 1343 spin_unlock_bh(&hslot->lock); 1344 } 1345 } 1346 } 1347 EXPORT_SYMBOL(udp_lib_rehash); 1348 1349 static void udp_v4_rehash(struct sock *sk) 1350 { 1351 u16 new_hash = udp4_portaddr_hash(sock_net(sk), 1352 inet_sk(sk)->inet_rcv_saddr, 1353 inet_sk(sk)->inet_num); 1354 udp_lib_rehash(sk, new_hash); 1355 } 1356 1357 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1358 { 1359 int rc; 1360 1361 if (inet_sk(sk)->inet_daddr) 1362 sock_rps_save_rxhash(sk, skb); 1363 1364 rc = sock_queue_rcv_skb(sk, skb); 1365 if (rc < 0) { 1366 int is_udplite = IS_UDPLITE(sk); 1367 1368 /* Note that an ENOMEM error is charged twice */ 1369 if (rc == -ENOMEM) 1370 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1371 is_udplite); 1372 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1373 kfree_skb(skb); 1374 trace_udp_fail_queue_rcv_skb(rc, sk); 1375 return -1; 1376 } 1377 1378 return 0; 1379 1380 } 1381 1382 /* returns: 1383 * -1: error 1384 * 0: success 1385 * >0: "udp encap" protocol resubmission 1386 * 1387 * Note that in the success and error cases, the skb is assumed to 1388 * have either been requeued or freed. 1389 */ 1390 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1391 { 1392 struct udp_sock *up = udp_sk(sk); 1393 int rc; 1394 int is_udplite = IS_UDPLITE(sk); 1395 1396 /* 1397 * Charge it to the socket, dropping if the queue is full. 1398 */ 1399 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1400 goto drop; 1401 nf_reset(skb); 1402 1403 if (up->encap_type) { 1404 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1405 1406 /* 1407 * This is an encapsulation socket so pass the skb to 1408 * the socket's udp_encap_rcv() hook. Otherwise, just 1409 * fall through and pass this up the UDP socket. 1410 * up->encap_rcv() returns the following value: 1411 * =0 if skb was successfully passed to the encap 1412 * handler or was discarded by it. 1413 * >0 if skb should be passed on to UDP. 1414 * <0 if skb should be resubmitted as proto -N 1415 */ 1416 1417 /* if we're overly short, let UDP handle it */ 1418 encap_rcv = ACCESS_ONCE(up->encap_rcv); 1419 if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) { 1420 int ret; 1421 1422 ret = encap_rcv(sk, skb); 1423 if (ret <= 0) { 1424 UDP_INC_STATS_BH(sock_net(sk), 1425 UDP_MIB_INDATAGRAMS, 1426 is_udplite); 1427 return -ret; 1428 } 1429 } 1430 1431 /* FALLTHROUGH -- it's a UDP Packet */ 1432 } 1433 1434 /* 1435 * UDP-Lite specific tests, ignored on UDP sockets 1436 */ 1437 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1438 1439 /* 1440 * MIB statistics other than incrementing the error count are 1441 * disabled for the following two types of errors: these depend 1442 * on the application settings, not on the functioning of the 1443 * protocol stack as such. 1444 * 1445 * RFC 3828 here recommends (sec 3.3): "There should also be a 1446 * way ... to ... at least let the receiving application block 1447 * delivery of packets with coverage values less than a value 1448 * provided by the application." 1449 */ 1450 if (up->pcrlen == 0) { /* full coverage was set */ 1451 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n", 1452 UDP_SKB_CB(skb)->cscov, skb->len); 1453 goto drop; 1454 } 1455 /* The next case involves violating the min. coverage requested 1456 * by the receiver. This is subtle: if receiver wants x and x is 1457 * greater than the buffersize/MTU then receiver will complain 1458 * that it wants x while sender emits packets of smaller size y. 1459 * Therefore the above ...()->partial_cov statement is essential. 1460 */ 1461 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1462 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n", 1463 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1464 goto drop; 1465 } 1466 } 1467 1468 if (rcu_access_pointer(sk->sk_filter) && 1469 udp_lib_checksum_complete(skb)) 1470 goto drop; 1471 1472 1473 if (sk_rcvqueues_full(sk, skb)) 1474 goto drop; 1475 1476 rc = 0; 1477 1478 ipv4_pktinfo_prepare(skb); 1479 bh_lock_sock(sk); 1480 if (!sock_owned_by_user(sk)) 1481 rc = __udp_queue_rcv_skb(sk, skb); 1482 else if (sk_add_backlog(sk, skb)) { 1483 bh_unlock_sock(sk); 1484 goto drop; 1485 } 1486 bh_unlock_sock(sk); 1487 1488 return rc; 1489 1490 drop: 1491 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1492 atomic_inc(&sk->sk_drops); 1493 kfree_skb(skb); 1494 return -1; 1495 } 1496 1497 1498 static void flush_stack(struct sock **stack, unsigned int count, 1499 struct sk_buff *skb, unsigned int final) 1500 { 1501 unsigned int i; 1502 struct sk_buff *skb1 = NULL; 1503 struct sock *sk; 1504 1505 for (i = 0; i < count; i++) { 1506 sk = stack[i]; 1507 if (likely(skb1 == NULL)) 1508 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC); 1509 1510 if (!skb1) { 1511 atomic_inc(&sk->sk_drops); 1512 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1513 IS_UDPLITE(sk)); 1514 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1515 IS_UDPLITE(sk)); 1516 } 1517 1518 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0) 1519 skb1 = NULL; 1520 } 1521 if (unlikely(skb1)) 1522 kfree_skb(skb1); 1523 } 1524 1525 /* 1526 * Multicasts and broadcasts go to each listener. 1527 * 1528 * Note: called only from the BH handler context. 1529 */ 1530 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1531 struct udphdr *uh, 1532 __be32 saddr, __be32 daddr, 1533 struct udp_table *udptable) 1534 { 1535 struct sock *sk, *stack[256 / sizeof(struct sock *)]; 1536 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest)); 1537 int dif; 1538 unsigned int i, count = 0; 1539 1540 spin_lock(&hslot->lock); 1541 sk = sk_nulls_head(&hslot->head); 1542 dif = skb->dev->ifindex; 1543 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif); 1544 while (sk) { 1545 stack[count++] = sk; 1546 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest, 1547 daddr, uh->source, saddr, dif); 1548 if (unlikely(count == ARRAY_SIZE(stack))) { 1549 if (!sk) 1550 break; 1551 flush_stack(stack, count, skb, ~0); 1552 count = 0; 1553 } 1554 } 1555 /* 1556 * before releasing chain lock, we must take a reference on sockets 1557 */ 1558 for (i = 0; i < count; i++) 1559 sock_hold(stack[i]); 1560 1561 spin_unlock(&hslot->lock); 1562 1563 /* 1564 * do the slow work with no lock held 1565 */ 1566 if (count) { 1567 flush_stack(stack, count, skb, count - 1); 1568 1569 for (i = 0; i < count; i++) 1570 sock_put(stack[i]); 1571 } else { 1572 kfree_skb(skb); 1573 } 1574 return 0; 1575 } 1576 1577 /* Initialize UDP checksum. If exited with zero value (success), 1578 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1579 * Otherwise, csum completion requires chacksumming packet body, 1580 * including udp header and folding it to skb->csum. 1581 */ 1582 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 1583 int proto) 1584 { 1585 const struct iphdr *iph; 1586 int err; 1587 1588 UDP_SKB_CB(skb)->partial_cov = 0; 1589 UDP_SKB_CB(skb)->cscov = skb->len; 1590 1591 if (proto == IPPROTO_UDPLITE) { 1592 err = udplite_checksum_init(skb, uh); 1593 if (err) 1594 return err; 1595 } 1596 1597 iph = ip_hdr(skb); 1598 if (uh->check == 0) { 1599 skb->ip_summed = CHECKSUM_UNNECESSARY; 1600 } else if (skb->ip_summed == CHECKSUM_COMPLETE) { 1601 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len, 1602 proto, skb->csum)) 1603 skb->ip_summed = CHECKSUM_UNNECESSARY; 1604 } 1605 if (!skb_csum_unnecessary(skb)) 1606 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr, 1607 skb->len, proto, 0); 1608 /* Probably, we should checksum udp header (it should be in cache 1609 * in any case) and data in tiny packets (< rx copybreak). 1610 */ 1611 1612 return 0; 1613 } 1614 1615 /* 1616 * All we need to do is get the socket, and then do a checksum. 1617 */ 1618 1619 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 1620 int proto) 1621 { 1622 struct sock *sk; 1623 struct udphdr *uh; 1624 unsigned short ulen; 1625 struct rtable *rt = skb_rtable(skb); 1626 __be32 saddr, daddr; 1627 struct net *net = dev_net(skb->dev); 1628 1629 /* 1630 * Validate the packet. 1631 */ 1632 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1633 goto drop; /* No space for header. */ 1634 1635 uh = udp_hdr(skb); 1636 ulen = ntohs(uh->len); 1637 saddr = ip_hdr(skb)->saddr; 1638 daddr = ip_hdr(skb)->daddr; 1639 1640 if (ulen > skb->len) 1641 goto short_packet; 1642 1643 if (proto == IPPROTO_UDP) { 1644 /* UDP validates ulen. */ 1645 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 1646 goto short_packet; 1647 uh = udp_hdr(skb); 1648 } 1649 1650 if (udp4_csum_init(skb, uh, proto)) 1651 goto csum_error; 1652 1653 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1654 return __udp4_lib_mcast_deliver(net, skb, uh, 1655 saddr, daddr, udptable); 1656 1657 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 1658 1659 if (sk != NULL) { 1660 int ret = udp_queue_rcv_skb(sk, skb); 1661 sock_put(sk); 1662 1663 /* a return value > 0 means to resubmit the input, but 1664 * it wants the return to be -protocol, or 0 1665 */ 1666 if (ret > 0) 1667 return -ret; 1668 return 0; 1669 } 1670 1671 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1672 goto drop; 1673 nf_reset(skb); 1674 1675 /* No socket. Drop packet silently, if checksum is wrong */ 1676 if (udp_lib_checksum_complete(skb)) 1677 goto csum_error; 1678 1679 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 1680 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1681 1682 /* 1683 * Hmm. We got an UDP packet to a port to which we 1684 * don't wanna listen. Ignore it. 1685 */ 1686 kfree_skb(skb); 1687 return 0; 1688 1689 short_packet: 1690 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 1691 proto == IPPROTO_UDPLITE ? "Lite" : "", 1692 &saddr, ntohs(uh->source), 1693 ulen, skb->len, 1694 &daddr, ntohs(uh->dest)); 1695 goto drop; 1696 1697 csum_error: 1698 /* 1699 * RFC1122: OK. Discards the bad packet silently (as far as 1700 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1701 */ 1702 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 1703 proto == IPPROTO_UDPLITE ? "Lite" : "", 1704 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 1705 ulen); 1706 drop: 1707 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 1708 kfree_skb(skb); 1709 return 0; 1710 } 1711 1712 int udp_rcv(struct sk_buff *skb) 1713 { 1714 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 1715 } 1716 1717 void udp_destroy_sock(struct sock *sk) 1718 { 1719 bool slow = lock_sock_fast(sk); 1720 udp_flush_pending_frames(sk); 1721 unlock_sock_fast(sk, slow); 1722 } 1723 1724 /* 1725 * Socket option code for UDP 1726 */ 1727 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 1728 char __user *optval, unsigned int optlen, 1729 int (*push_pending_frames)(struct sock *)) 1730 { 1731 struct udp_sock *up = udp_sk(sk); 1732 int val; 1733 int err = 0; 1734 int is_udplite = IS_UDPLITE(sk); 1735 1736 if (optlen < sizeof(int)) 1737 return -EINVAL; 1738 1739 if (get_user(val, (int __user *)optval)) 1740 return -EFAULT; 1741 1742 switch (optname) { 1743 case UDP_CORK: 1744 if (val != 0) { 1745 up->corkflag = 1; 1746 } else { 1747 up->corkflag = 0; 1748 lock_sock(sk); 1749 (*push_pending_frames)(sk); 1750 release_sock(sk); 1751 } 1752 break; 1753 1754 case UDP_ENCAP: 1755 switch (val) { 1756 case 0: 1757 case UDP_ENCAP_ESPINUDP: 1758 case UDP_ENCAP_ESPINUDP_NON_IKE: 1759 up->encap_rcv = xfrm4_udp_encap_rcv; 1760 /* FALLTHROUGH */ 1761 case UDP_ENCAP_L2TPINUDP: 1762 up->encap_type = val; 1763 break; 1764 default: 1765 err = -ENOPROTOOPT; 1766 break; 1767 } 1768 break; 1769 1770 /* 1771 * UDP-Lite's partial checksum coverage (RFC 3828). 1772 */ 1773 /* The sender sets actual checksum coverage length via this option. 1774 * The case coverage > packet length is handled by send module. */ 1775 case UDPLITE_SEND_CSCOV: 1776 if (!is_udplite) /* Disable the option on UDP sockets */ 1777 return -ENOPROTOOPT; 1778 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 1779 val = 8; 1780 else if (val > USHRT_MAX) 1781 val = USHRT_MAX; 1782 up->pcslen = val; 1783 up->pcflag |= UDPLITE_SEND_CC; 1784 break; 1785 1786 /* The receiver specifies a minimum checksum coverage value. To make 1787 * sense, this should be set to at least 8 (as done below). If zero is 1788 * used, this again means full checksum coverage. */ 1789 case UDPLITE_RECV_CSCOV: 1790 if (!is_udplite) /* Disable the option on UDP sockets */ 1791 return -ENOPROTOOPT; 1792 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 1793 val = 8; 1794 else if (val > USHRT_MAX) 1795 val = USHRT_MAX; 1796 up->pcrlen = val; 1797 up->pcflag |= UDPLITE_RECV_CC; 1798 break; 1799 1800 default: 1801 err = -ENOPROTOOPT; 1802 break; 1803 } 1804 1805 return err; 1806 } 1807 EXPORT_SYMBOL(udp_lib_setsockopt); 1808 1809 int udp_setsockopt(struct sock *sk, int level, int optname, 1810 char __user *optval, unsigned int optlen) 1811 { 1812 if (level == SOL_UDP || level == SOL_UDPLITE) 1813 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 1814 udp_push_pending_frames); 1815 return ip_setsockopt(sk, level, optname, optval, optlen); 1816 } 1817 1818 #ifdef CONFIG_COMPAT 1819 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 1820 char __user *optval, unsigned int optlen) 1821 { 1822 if (level == SOL_UDP || level == SOL_UDPLITE) 1823 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 1824 udp_push_pending_frames); 1825 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 1826 } 1827 #endif 1828 1829 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 1830 char __user *optval, int __user *optlen) 1831 { 1832 struct udp_sock *up = udp_sk(sk); 1833 int val, len; 1834 1835 if (get_user(len, optlen)) 1836 return -EFAULT; 1837 1838 len = min_t(unsigned int, len, sizeof(int)); 1839 1840 if (len < 0) 1841 return -EINVAL; 1842 1843 switch (optname) { 1844 case UDP_CORK: 1845 val = up->corkflag; 1846 break; 1847 1848 case UDP_ENCAP: 1849 val = up->encap_type; 1850 break; 1851 1852 /* The following two cannot be changed on UDP sockets, the return is 1853 * always 0 (which corresponds to the full checksum coverage of UDP). */ 1854 case UDPLITE_SEND_CSCOV: 1855 val = up->pcslen; 1856 break; 1857 1858 case UDPLITE_RECV_CSCOV: 1859 val = up->pcrlen; 1860 break; 1861 1862 default: 1863 return -ENOPROTOOPT; 1864 } 1865 1866 if (put_user(len, optlen)) 1867 return -EFAULT; 1868 if (copy_to_user(optval, &val, len)) 1869 return -EFAULT; 1870 return 0; 1871 } 1872 EXPORT_SYMBOL(udp_lib_getsockopt); 1873 1874 int udp_getsockopt(struct sock *sk, int level, int optname, 1875 char __user *optval, int __user *optlen) 1876 { 1877 if (level == SOL_UDP || level == SOL_UDPLITE) 1878 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 1879 return ip_getsockopt(sk, level, optname, optval, optlen); 1880 } 1881 1882 #ifdef CONFIG_COMPAT 1883 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 1884 char __user *optval, int __user *optlen) 1885 { 1886 if (level == SOL_UDP || level == SOL_UDPLITE) 1887 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 1888 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 1889 } 1890 #endif 1891 /** 1892 * udp_poll - wait for a UDP event. 1893 * @file - file struct 1894 * @sock - socket 1895 * @wait - poll table 1896 * 1897 * This is same as datagram poll, except for the special case of 1898 * blocking sockets. If application is using a blocking fd 1899 * and a packet with checksum error is in the queue; 1900 * then it could get return from select indicating data available 1901 * but then block when reading it. Add special case code 1902 * to work around these arguably broken applications. 1903 */ 1904 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 1905 { 1906 unsigned int mask = datagram_poll(file, sock, wait); 1907 struct sock *sk = sock->sk; 1908 1909 /* Check for false positives due to checksum errors */ 1910 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 1911 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk)) 1912 mask &= ~(POLLIN | POLLRDNORM); 1913 1914 return mask; 1915 1916 } 1917 EXPORT_SYMBOL(udp_poll); 1918 1919 struct proto udp_prot = { 1920 .name = "UDP", 1921 .owner = THIS_MODULE, 1922 .close = udp_lib_close, 1923 .connect = ip4_datagram_connect, 1924 .disconnect = udp_disconnect, 1925 .ioctl = udp_ioctl, 1926 .destroy = udp_destroy_sock, 1927 .setsockopt = udp_setsockopt, 1928 .getsockopt = udp_getsockopt, 1929 .sendmsg = udp_sendmsg, 1930 .recvmsg = udp_recvmsg, 1931 .sendpage = udp_sendpage, 1932 .backlog_rcv = __udp_queue_rcv_skb, 1933 .hash = udp_lib_hash, 1934 .unhash = udp_lib_unhash, 1935 .rehash = udp_v4_rehash, 1936 .get_port = udp_v4_get_port, 1937 .memory_allocated = &udp_memory_allocated, 1938 .sysctl_mem = sysctl_udp_mem, 1939 .sysctl_wmem = &sysctl_udp_wmem_min, 1940 .sysctl_rmem = &sysctl_udp_rmem_min, 1941 .obj_size = sizeof(struct udp_sock), 1942 .slab_flags = SLAB_DESTROY_BY_RCU, 1943 .h.udp_table = &udp_table, 1944 #ifdef CONFIG_COMPAT 1945 .compat_setsockopt = compat_udp_setsockopt, 1946 .compat_getsockopt = compat_udp_getsockopt, 1947 #endif 1948 .clear_sk = sk_prot_clear_portaddr_nulls, 1949 }; 1950 EXPORT_SYMBOL(udp_prot); 1951 1952 /* ------------------------------------------------------------------------ */ 1953 #ifdef CONFIG_PROC_FS 1954 1955 static struct sock *udp_get_first(struct seq_file *seq, int start) 1956 { 1957 struct sock *sk; 1958 struct udp_iter_state *state = seq->private; 1959 struct net *net = seq_file_net(seq); 1960 1961 for (state->bucket = start; state->bucket <= state->udp_table->mask; 1962 ++state->bucket) { 1963 struct hlist_nulls_node *node; 1964 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 1965 1966 if (hlist_nulls_empty(&hslot->head)) 1967 continue; 1968 1969 spin_lock_bh(&hslot->lock); 1970 sk_nulls_for_each(sk, node, &hslot->head) { 1971 if (!net_eq(sock_net(sk), net)) 1972 continue; 1973 if (sk->sk_family == state->family) 1974 goto found; 1975 } 1976 spin_unlock_bh(&hslot->lock); 1977 } 1978 sk = NULL; 1979 found: 1980 return sk; 1981 } 1982 1983 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 1984 { 1985 struct udp_iter_state *state = seq->private; 1986 struct net *net = seq_file_net(seq); 1987 1988 do { 1989 sk = sk_nulls_next(sk); 1990 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 1991 1992 if (!sk) { 1993 if (state->bucket <= state->udp_table->mask) 1994 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 1995 return udp_get_first(seq, state->bucket + 1); 1996 } 1997 return sk; 1998 } 1999 2000 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2001 { 2002 struct sock *sk = udp_get_first(seq, 0); 2003 2004 if (sk) 2005 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2006 --pos; 2007 return pos ? NULL : sk; 2008 } 2009 2010 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2011 { 2012 struct udp_iter_state *state = seq->private; 2013 state->bucket = MAX_UDP_PORTS; 2014 2015 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2016 } 2017 2018 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2019 { 2020 struct sock *sk; 2021 2022 if (v == SEQ_START_TOKEN) 2023 sk = udp_get_idx(seq, 0); 2024 else 2025 sk = udp_get_next(seq, v); 2026 2027 ++*pos; 2028 return sk; 2029 } 2030 2031 static void udp_seq_stop(struct seq_file *seq, void *v) 2032 { 2033 struct udp_iter_state *state = seq->private; 2034 2035 if (state->bucket <= state->udp_table->mask) 2036 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2037 } 2038 2039 int udp_seq_open(struct inode *inode, struct file *file) 2040 { 2041 struct udp_seq_afinfo *afinfo = PDE(inode)->data; 2042 struct udp_iter_state *s; 2043 int err; 2044 2045 err = seq_open_net(inode, file, &afinfo->seq_ops, 2046 sizeof(struct udp_iter_state)); 2047 if (err < 0) 2048 return err; 2049 2050 s = ((struct seq_file *)file->private_data)->private; 2051 s->family = afinfo->family; 2052 s->udp_table = afinfo->udp_table; 2053 return err; 2054 } 2055 EXPORT_SYMBOL(udp_seq_open); 2056 2057 /* ------------------------------------------------------------------------ */ 2058 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2059 { 2060 struct proc_dir_entry *p; 2061 int rc = 0; 2062 2063 afinfo->seq_ops.start = udp_seq_start; 2064 afinfo->seq_ops.next = udp_seq_next; 2065 afinfo->seq_ops.stop = udp_seq_stop; 2066 2067 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2068 afinfo->seq_fops, afinfo); 2069 if (!p) 2070 rc = -ENOMEM; 2071 return rc; 2072 } 2073 EXPORT_SYMBOL(udp_proc_register); 2074 2075 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2076 { 2077 proc_net_remove(net, afinfo->name); 2078 } 2079 EXPORT_SYMBOL(udp_proc_unregister); 2080 2081 /* ------------------------------------------------------------------------ */ 2082 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2083 int bucket, int *len) 2084 { 2085 struct inet_sock *inet = inet_sk(sp); 2086 __be32 dest = inet->inet_daddr; 2087 __be32 src = inet->inet_rcv_saddr; 2088 __u16 destp = ntohs(inet->inet_dport); 2089 __u16 srcp = ntohs(inet->inet_sport); 2090 2091 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2092 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n", 2093 bucket, src, srcp, dest, destp, sp->sk_state, 2094 sk_wmem_alloc_get(sp), 2095 sk_rmem_alloc_get(sp), 2096 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp), 2097 atomic_read(&sp->sk_refcnt), sp, 2098 atomic_read(&sp->sk_drops), len); 2099 } 2100 2101 int udp4_seq_show(struct seq_file *seq, void *v) 2102 { 2103 if (v == SEQ_START_TOKEN) 2104 seq_printf(seq, "%-127s\n", 2105 " sl local_address rem_address st tx_queue " 2106 "rx_queue tr tm->when retrnsmt uid timeout " 2107 "inode ref pointer drops"); 2108 else { 2109 struct udp_iter_state *state = seq->private; 2110 int len; 2111 2112 udp4_format_sock(v, seq, state->bucket, &len); 2113 seq_printf(seq, "%*s\n", 127 - len, ""); 2114 } 2115 return 0; 2116 } 2117 2118 static const struct file_operations udp_afinfo_seq_fops = { 2119 .owner = THIS_MODULE, 2120 .open = udp_seq_open, 2121 .read = seq_read, 2122 .llseek = seq_lseek, 2123 .release = seq_release_net 2124 }; 2125 2126 /* ------------------------------------------------------------------------ */ 2127 static struct udp_seq_afinfo udp4_seq_afinfo = { 2128 .name = "udp", 2129 .family = AF_INET, 2130 .udp_table = &udp_table, 2131 .seq_fops = &udp_afinfo_seq_fops, 2132 .seq_ops = { 2133 .show = udp4_seq_show, 2134 }, 2135 }; 2136 2137 static int __net_init udp4_proc_init_net(struct net *net) 2138 { 2139 return udp_proc_register(net, &udp4_seq_afinfo); 2140 } 2141 2142 static void __net_exit udp4_proc_exit_net(struct net *net) 2143 { 2144 udp_proc_unregister(net, &udp4_seq_afinfo); 2145 } 2146 2147 static struct pernet_operations udp4_net_ops = { 2148 .init = udp4_proc_init_net, 2149 .exit = udp4_proc_exit_net, 2150 }; 2151 2152 int __init udp4_proc_init(void) 2153 { 2154 return register_pernet_subsys(&udp4_net_ops); 2155 } 2156 2157 void udp4_proc_exit(void) 2158 { 2159 unregister_pernet_subsys(&udp4_net_ops); 2160 } 2161 #endif /* CONFIG_PROC_FS */ 2162 2163 static __initdata unsigned long uhash_entries; 2164 static int __init set_uhash_entries(char *str) 2165 { 2166 if (!str) 2167 return 0; 2168 uhash_entries = simple_strtoul(str, &str, 0); 2169 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2170 uhash_entries = UDP_HTABLE_SIZE_MIN; 2171 return 1; 2172 } 2173 __setup("uhash_entries=", set_uhash_entries); 2174 2175 void __init udp_table_init(struct udp_table *table, const char *name) 2176 { 2177 unsigned int i; 2178 2179 if (!CONFIG_BASE_SMALL) 2180 table->hash = alloc_large_system_hash(name, 2181 2 * sizeof(struct udp_hslot), 2182 uhash_entries, 2183 21, /* one slot per 2 MB */ 2184 0, 2185 &table->log, 2186 &table->mask, 2187 64 * 1024); 2188 /* 2189 * Make sure hash table has the minimum size 2190 */ 2191 if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) { 2192 table->hash = kmalloc(UDP_HTABLE_SIZE_MIN * 2193 2 * sizeof(struct udp_hslot), GFP_KERNEL); 2194 if (!table->hash) 2195 panic(name); 2196 table->log = ilog2(UDP_HTABLE_SIZE_MIN); 2197 table->mask = UDP_HTABLE_SIZE_MIN - 1; 2198 } 2199 table->hash2 = table->hash + (table->mask + 1); 2200 for (i = 0; i <= table->mask; i++) { 2201 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i); 2202 table->hash[i].count = 0; 2203 spin_lock_init(&table->hash[i].lock); 2204 } 2205 for (i = 0; i <= table->mask; i++) { 2206 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i); 2207 table->hash2[i].count = 0; 2208 spin_lock_init(&table->hash2[i].lock); 2209 } 2210 } 2211 2212 void __init udp_init(void) 2213 { 2214 unsigned long limit; 2215 2216 udp_table_init(&udp_table, "UDP"); 2217 limit = nr_free_buffer_pages() / 8; 2218 limit = max(limit, 128UL); 2219 sysctl_udp_mem[0] = limit / 4 * 3; 2220 sysctl_udp_mem[1] = limit; 2221 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2222 2223 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2224 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2225 } 2226 2227 int udp4_ufo_send_check(struct sk_buff *skb) 2228 { 2229 const struct iphdr *iph; 2230 struct udphdr *uh; 2231 2232 if (!pskb_may_pull(skb, sizeof(*uh))) 2233 return -EINVAL; 2234 2235 iph = ip_hdr(skb); 2236 uh = udp_hdr(skb); 2237 2238 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len, 2239 IPPROTO_UDP, 0); 2240 skb->csum_start = skb_transport_header(skb) - skb->head; 2241 skb->csum_offset = offsetof(struct udphdr, check); 2242 skb->ip_summed = CHECKSUM_PARTIAL; 2243 return 0; 2244 } 2245 2246 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, 2247 netdev_features_t features) 2248 { 2249 struct sk_buff *segs = ERR_PTR(-EINVAL); 2250 unsigned int mss; 2251 int offset; 2252 __wsum csum; 2253 2254 mss = skb_shinfo(skb)->gso_size; 2255 if (unlikely(skb->len <= mss)) 2256 goto out; 2257 2258 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2259 /* Packet is from an untrusted source, reset gso_segs. */ 2260 int type = skb_shinfo(skb)->gso_type; 2261 2262 if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) || 2263 !(type & (SKB_GSO_UDP)))) 2264 goto out; 2265 2266 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2267 2268 segs = NULL; 2269 goto out; 2270 } 2271 2272 /* Do software UFO. Complete and fill in the UDP checksum as HW cannot 2273 * do checksum of UDP packets sent as multiple IP fragments. 2274 */ 2275 offset = skb_checksum_start_offset(skb); 2276 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2277 offset += skb->csum_offset; 2278 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2279 skb->ip_summed = CHECKSUM_NONE; 2280 2281 /* Fragment the skb. IP headers of the fragments are updated in 2282 * inet_gso_segment() 2283 */ 2284 segs = skb_segment(skb, features); 2285 out: 2286 return segs; 2287 } 2288 2289