xref: /openbmc/linux/net/ipv4/udp.c (revision 56d06fa2)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120 
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123 
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126 
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129 
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135 
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 			       const struct udp_hslot *hslot,
138 			       unsigned long *bitmap,
139 			       struct sock *sk,
140 			       int (*saddr_comp)(const struct sock *sk1,
141 						 const struct sock *sk2,
142 						 bool match_wildcard),
143 			       unsigned int log)
144 {
145 	struct sock *sk2;
146 	struct hlist_nulls_node *node;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_nulls_for_each(sk2, node, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
157 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
158 		     !uid_eq(uid, sock_i_uid(sk2))) &&
159 		    saddr_comp(sk, sk2, true)) {
160 			if (!bitmap)
161 				return 1;
162 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
163 		}
164 	}
165 	return 0;
166 }
167 
168 /*
169  * Note: we still hold spinlock of primary hash chain, so no other writer
170  * can insert/delete a socket with local_port == num
171  */
172 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
173 				struct udp_hslot *hslot2,
174 				struct sock *sk,
175 				int (*saddr_comp)(const struct sock *sk1,
176 						  const struct sock *sk2,
177 						  bool match_wildcard))
178 {
179 	struct sock *sk2;
180 	struct hlist_nulls_node *node;
181 	kuid_t uid = sock_i_uid(sk);
182 	int res = 0;
183 
184 	spin_lock(&hslot2->lock);
185 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
186 		if (net_eq(sock_net(sk2), net) &&
187 		    sk2 != sk &&
188 		    (udp_sk(sk2)->udp_port_hash == num) &&
189 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
190 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
191 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
192 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
193 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
194 		     !uid_eq(uid, sock_i_uid(sk2))) &&
195 		    saddr_comp(sk, sk2, true)) {
196 			res = 1;
197 			break;
198 		}
199 	}
200 	spin_unlock(&hslot2->lock);
201 	return res;
202 }
203 
204 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
205 				  int (*saddr_same)(const struct sock *sk1,
206 						    const struct sock *sk2,
207 						    bool match_wildcard))
208 {
209 	struct net *net = sock_net(sk);
210 	struct hlist_nulls_node *node;
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_nulls_for_each(sk2, node, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    (*saddr_same)(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2);
224 		}
225 	}
226 
227 	/* Initial allocation may have already happened via setsockopt */
228 	if (!rcu_access_pointer(sk->sk_reuseport_cb))
229 		return reuseport_alloc(sk);
230 	return 0;
231 }
232 
233 /**
234  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
235  *
236  *  @sk:          socket struct in question
237  *  @snum:        port number to look up
238  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
239  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
240  *                   with NULL address
241  */
242 int udp_lib_get_port(struct sock *sk, unsigned short snum,
243 		     int (*saddr_comp)(const struct sock *sk1,
244 				       const struct sock *sk2,
245 				       bool match_wildcard),
246 		     unsigned int hash2_nulladdr)
247 {
248 	struct udp_hslot *hslot, *hslot2;
249 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
250 	int    error = 1;
251 	struct net *net = sock_net(sk);
252 
253 	if (!snum) {
254 		int low, high, remaining;
255 		unsigned int rand;
256 		unsigned short first, last;
257 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
258 
259 		inet_get_local_port_range(net, &low, &high);
260 		remaining = (high - low) + 1;
261 
262 		rand = prandom_u32();
263 		first = reciprocal_scale(rand, remaining) + low;
264 		/*
265 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
266 		 */
267 		rand = (rand | 1) * (udptable->mask + 1);
268 		last = first + udptable->mask + 1;
269 		do {
270 			hslot = udp_hashslot(udptable, net, first);
271 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
272 			spin_lock_bh(&hslot->lock);
273 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
274 					    saddr_comp, udptable->log);
275 
276 			snum = first;
277 			/*
278 			 * Iterate on all possible values of snum for this hash.
279 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
280 			 * give us randomization and full range coverage.
281 			 */
282 			do {
283 				if (low <= snum && snum <= high &&
284 				    !test_bit(snum >> udptable->log, bitmap) &&
285 				    !inet_is_local_reserved_port(net, snum))
286 					goto found;
287 				snum += rand;
288 			} while (snum != first);
289 			spin_unlock_bh(&hslot->lock);
290 		} while (++first != last);
291 		goto fail;
292 	} else {
293 		hslot = udp_hashslot(udptable, net, snum);
294 		spin_lock_bh(&hslot->lock);
295 		if (hslot->count > 10) {
296 			int exist;
297 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
298 
299 			slot2          &= udptable->mask;
300 			hash2_nulladdr &= udptable->mask;
301 
302 			hslot2 = udp_hashslot2(udptable, slot2);
303 			if (hslot->count < hslot2->count)
304 				goto scan_primary_hash;
305 
306 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
307 						     sk, saddr_comp);
308 			if (!exist && (hash2_nulladdr != slot2)) {
309 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
310 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
311 							     sk, saddr_comp);
312 			}
313 			if (exist)
314 				goto fail_unlock;
315 			else
316 				goto found;
317 		}
318 scan_primary_hash:
319 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
320 					saddr_comp, 0))
321 			goto fail_unlock;
322 	}
323 found:
324 	inet_sk(sk)->inet_num = snum;
325 	udp_sk(sk)->udp_port_hash = snum;
326 	udp_sk(sk)->udp_portaddr_hash ^= snum;
327 	if (sk_unhashed(sk)) {
328 		if (sk->sk_reuseport &&
329 		    udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
330 			inet_sk(sk)->inet_num = 0;
331 			udp_sk(sk)->udp_port_hash = 0;
332 			udp_sk(sk)->udp_portaddr_hash ^= snum;
333 			goto fail_unlock;
334 		}
335 
336 		sk_nulls_add_node_rcu(sk, &hslot->head);
337 		hslot->count++;
338 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
339 
340 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
341 		spin_lock(&hslot2->lock);
342 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
343 			sk->sk_family == AF_INET6)
344 			hlist_nulls_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
345 						 &hslot2->head);
346 		else
347 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
348 						 &hslot2->head);
349 		hslot2->count++;
350 		spin_unlock(&hslot2->lock);
351 	}
352 	error = 0;
353 fail_unlock:
354 	spin_unlock_bh(&hslot->lock);
355 fail:
356 	return error;
357 }
358 EXPORT_SYMBOL(udp_lib_get_port);
359 
360 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
361  * match_wildcard == false: addresses must be exactly the same, i.e.
362  *                          0.0.0.0 only equals to 0.0.0.0
363  */
364 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
365 			 bool match_wildcard)
366 {
367 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
368 
369 	if (!ipv6_only_sock(sk2)) {
370 		if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
371 			return 1;
372 		if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
373 			return match_wildcard;
374 	}
375 	return 0;
376 }
377 
378 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
379 			      unsigned int port)
380 {
381 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
382 }
383 
384 int udp_v4_get_port(struct sock *sk, unsigned short snum)
385 {
386 	unsigned int hash2_nulladdr =
387 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
388 	unsigned int hash2_partial =
389 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
390 
391 	/* precompute partial secondary hash */
392 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
393 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
394 }
395 
396 static inline int compute_score(struct sock *sk, struct net *net,
397 				__be32 saddr, unsigned short hnum, __be16 sport,
398 				__be32 daddr, __be16 dport, int dif)
399 {
400 	int score;
401 	struct inet_sock *inet;
402 
403 	if (!net_eq(sock_net(sk), net) ||
404 	    udp_sk(sk)->udp_port_hash != hnum ||
405 	    ipv6_only_sock(sk))
406 		return -1;
407 
408 	score = (sk->sk_family == PF_INET) ? 2 : 1;
409 	inet = inet_sk(sk);
410 
411 	if (inet->inet_rcv_saddr) {
412 		if (inet->inet_rcv_saddr != daddr)
413 			return -1;
414 		score += 4;
415 	}
416 
417 	if (inet->inet_daddr) {
418 		if (inet->inet_daddr != saddr)
419 			return -1;
420 		score += 4;
421 	}
422 
423 	if (inet->inet_dport) {
424 		if (inet->inet_dport != sport)
425 			return -1;
426 		score += 4;
427 	}
428 
429 	if (sk->sk_bound_dev_if) {
430 		if (sk->sk_bound_dev_if != dif)
431 			return -1;
432 		score += 4;
433 	}
434 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
435 		score++;
436 	return score;
437 }
438 
439 /*
440  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
441  */
442 static inline int compute_score2(struct sock *sk, struct net *net,
443 				 __be32 saddr, __be16 sport,
444 				 __be32 daddr, unsigned int hnum, int dif)
445 {
446 	int score;
447 	struct inet_sock *inet;
448 
449 	if (!net_eq(sock_net(sk), net) ||
450 	    ipv6_only_sock(sk))
451 		return -1;
452 
453 	inet = inet_sk(sk);
454 
455 	if (inet->inet_rcv_saddr != daddr ||
456 	    inet->inet_num != hnum)
457 		return -1;
458 
459 	score = (sk->sk_family == PF_INET) ? 2 : 1;
460 
461 	if (inet->inet_daddr) {
462 		if (inet->inet_daddr != saddr)
463 			return -1;
464 		score += 4;
465 	}
466 
467 	if (inet->inet_dport) {
468 		if (inet->inet_dport != sport)
469 			return -1;
470 		score += 4;
471 	}
472 
473 	if (sk->sk_bound_dev_if) {
474 		if (sk->sk_bound_dev_if != dif)
475 			return -1;
476 		score += 4;
477 	}
478 
479 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
480 		score++;
481 
482 	return score;
483 }
484 
485 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
486 		       const __u16 lport, const __be32 faddr,
487 		       const __be16 fport)
488 {
489 	static u32 udp_ehash_secret __read_mostly;
490 
491 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
492 
493 	return __inet_ehashfn(laddr, lport, faddr, fport,
494 			      udp_ehash_secret + net_hash_mix(net));
495 }
496 
497 /* called with read_rcu_lock() */
498 static struct sock *udp4_lib_lookup2(struct net *net,
499 		__be32 saddr, __be16 sport,
500 		__be32 daddr, unsigned int hnum, int dif,
501 		struct udp_hslot *hslot2, unsigned int slot2,
502 		struct sk_buff *skb)
503 {
504 	struct sock *sk, *result;
505 	struct hlist_nulls_node *node;
506 	int score, badness, matches = 0, reuseport = 0;
507 	bool select_ok = true;
508 	u32 hash = 0;
509 
510 begin:
511 	result = NULL;
512 	badness = 0;
513 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
514 		score = compute_score2(sk, net, saddr, sport,
515 				      daddr, hnum, dif);
516 		if (score > badness) {
517 			result = sk;
518 			badness = score;
519 			reuseport = sk->sk_reuseport;
520 			if (reuseport) {
521 				hash = udp_ehashfn(net, daddr, hnum,
522 						   saddr, sport);
523 				if (select_ok) {
524 					struct sock *sk2;
525 
526 					sk2 = reuseport_select_sock(sk, hash, skb,
527 							sizeof(struct udphdr));
528 					if (sk2) {
529 						result = sk2;
530 						select_ok = false;
531 						goto found;
532 					}
533 				}
534 				matches = 1;
535 			}
536 		} else if (score == badness && reuseport) {
537 			matches++;
538 			if (reciprocal_scale(hash, matches) == 0)
539 				result = sk;
540 			hash = next_pseudo_random32(hash);
541 		}
542 	}
543 	/*
544 	 * if the nulls value we got at the end of this lookup is
545 	 * not the expected one, we must restart lookup.
546 	 * We probably met an item that was moved to another chain.
547 	 */
548 	if (get_nulls_value(node) != slot2)
549 		goto begin;
550 	if (result) {
551 found:
552 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
553 			result = NULL;
554 		else if (unlikely(compute_score2(result, net, saddr, sport,
555 				  daddr, hnum, dif) < badness)) {
556 			sock_put(result);
557 			goto begin;
558 		}
559 	}
560 	return result;
561 }
562 
563 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
564  * harder than this. -DaveM
565  */
566 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
567 		__be16 sport, __be32 daddr, __be16 dport,
568 		int dif, struct udp_table *udptable, struct sk_buff *skb)
569 {
570 	struct sock *sk, *result;
571 	struct hlist_nulls_node *node;
572 	unsigned short hnum = ntohs(dport);
573 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
574 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
575 	int score, badness, matches = 0, reuseport = 0;
576 	bool select_ok = true;
577 	u32 hash = 0;
578 
579 	rcu_read_lock();
580 	if (hslot->count > 10) {
581 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
582 		slot2 = hash2 & udptable->mask;
583 		hslot2 = &udptable->hash2[slot2];
584 		if (hslot->count < hslot2->count)
585 			goto begin;
586 
587 		result = udp4_lib_lookup2(net, saddr, sport,
588 					  daddr, hnum, dif,
589 					  hslot2, slot2, skb);
590 		if (!result) {
591 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
592 			slot2 = hash2 & udptable->mask;
593 			hslot2 = &udptable->hash2[slot2];
594 			if (hslot->count < hslot2->count)
595 				goto begin;
596 
597 			result = udp4_lib_lookup2(net, saddr, sport,
598 						  htonl(INADDR_ANY), hnum, dif,
599 						  hslot2, slot2, skb);
600 		}
601 		rcu_read_unlock();
602 		return result;
603 	}
604 begin:
605 	result = NULL;
606 	badness = 0;
607 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
608 		score = compute_score(sk, net, saddr, hnum, sport,
609 				      daddr, dport, dif);
610 		if (score > badness) {
611 			result = sk;
612 			badness = score;
613 			reuseport = sk->sk_reuseport;
614 			if (reuseport) {
615 				hash = udp_ehashfn(net, daddr, hnum,
616 						   saddr, sport);
617 				if (select_ok) {
618 					struct sock *sk2;
619 
620 					sk2 = reuseport_select_sock(sk, hash, skb,
621 							sizeof(struct udphdr));
622 					if (sk2) {
623 						result = sk2;
624 						select_ok = false;
625 						goto found;
626 					}
627 				}
628 				matches = 1;
629 			}
630 		} else if (score == badness && reuseport) {
631 			matches++;
632 			if (reciprocal_scale(hash, matches) == 0)
633 				result = sk;
634 			hash = next_pseudo_random32(hash);
635 		}
636 	}
637 	/*
638 	 * if the nulls value we got at the end of this lookup is
639 	 * not the expected one, we must restart lookup.
640 	 * We probably met an item that was moved to another chain.
641 	 */
642 	if (get_nulls_value(node) != slot)
643 		goto begin;
644 
645 	if (result) {
646 found:
647 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
648 			result = NULL;
649 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
650 				  daddr, dport, dif) < badness)) {
651 			sock_put(result);
652 			goto begin;
653 		}
654 	}
655 	rcu_read_unlock();
656 	return result;
657 }
658 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
659 
660 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
661 						 __be16 sport, __be16 dport,
662 						 struct udp_table *udptable)
663 {
664 	const struct iphdr *iph = ip_hdr(skb);
665 
666 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
667 				 iph->daddr, dport, inet_iif(skb),
668 				 udptable, skb);
669 }
670 
671 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
672 			     __be32 daddr, __be16 dport, int dif)
673 {
674 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif,
675 				 &udp_table, NULL);
676 }
677 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
678 
679 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
680 				       __be16 loc_port, __be32 loc_addr,
681 				       __be16 rmt_port, __be32 rmt_addr,
682 				       int dif, unsigned short hnum)
683 {
684 	struct inet_sock *inet = inet_sk(sk);
685 
686 	if (!net_eq(sock_net(sk), net) ||
687 	    udp_sk(sk)->udp_port_hash != hnum ||
688 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
689 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
690 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
691 	    ipv6_only_sock(sk) ||
692 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
693 		return false;
694 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
695 		return false;
696 	return true;
697 }
698 
699 /*
700  * This routine is called by the ICMP module when it gets some
701  * sort of error condition.  If err < 0 then the socket should
702  * be closed and the error returned to the user.  If err > 0
703  * it's just the icmp type << 8 | icmp code.
704  * Header points to the ip header of the error packet. We move
705  * on past this. Then (as it used to claim before adjustment)
706  * header points to the first 8 bytes of the udp header.  We need
707  * to find the appropriate port.
708  */
709 
710 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
711 {
712 	struct inet_sock *inet;
713 	const struct iphdr *iph = (const struct iphdr *)skb->data;
714 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
715 	const int type = icmp_hdr(skb)->type;
716 	const int code = icmp_hdr(skb)->code;
717 	struct sock *sk;
718 	int harderr;
719 	int err;
720 	struct net *net = dev_net(skb->dev);
721 
722 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
723 			iph->saddr, uh->source, skb->dev->ifindex, udptable,
724 			NULL);
725 	if (!sk) {
726 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
727 		return;	/* No socket for error */
728 	}
729 
730 	err = 0;
731 	harderr = 0;
732 	inet = inet_sk(sk);
733 
734 	switch (type) {
735 	default:
736 	case ICMP_TIME_EXCEEDED:
737 		err = EHOSTUNREACH;
738 		break;
739 	case ICMP_SOURCE_QUENCH:
740 		goto out;
741 	case ICMP_PARAMETERPROB:
742 		err = EPROTO;
743 		harderr = 1;
744 		break;
745 	case ICMP_DEST_UNREACH:
746 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
747 			ipv4_sk_update_pmtu(skb, sk, info);
748 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
749 				err = EMSGSIZE;
750 				harderr = 1;
751 				break;
752 			}
753 			goto out;
754 		}
755 		err = EHOSTUNREACH;
756 		if (code <= NR_ICMP_UNREACH) {
757 			harderr = icmp_err_convert[code].fatal;
758 			err = icmp_err_convert[code].errno;
759 		}
760 		break;
761 	case ICMP_REDIRECT:
762 		ipv4_sk_redirect(skb, sk);
763 		goto out;
764 	}
765 
766 	/*
767 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
768 	 *	4.1.3.3.
769 	 */
770 	if (!inet->recverr) {
771 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
772 			goto out;
773 	} else
774 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
775 
776 	sk->sk_err = err;
777 	sk->sk_error_report(sk);
778 out:
779 	sock_put(sk);
780 }
781 
782 void udp_err(struct sk_buff *skb, u32 info)
783 {
784 	__udp4_lib_err(skb, info, &udp_table);
785 }
786 
787 /*
788  * Throw away all pending data and cancel the corking. Socket is locked.
789  */
790 void udp_flush_pending_frames(struct sock *sk)
791 {
792 	struct udp_sock *up = udp_sk(sk);
793 
794 	if (up->pending) {
795 		up->len = 0;
796 		up->pending = 0;
797 		ip_flush_pending_frames(sk);
798 	}
799 }
800 EXPORT_SYMBOL(udp_flush_pending_frames);
801 
802 /**
803  * 	udp4_hwcsum  -  handle outgoing HW checksumming
804  * 	@skb: 	sk_buff containing the filled-in UDP header
805  * 	        (checksum field must be zeroed out)
806  *	@src:	source IP address
807  *	@dst:	destination IP address
808  */
809 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
810 {
811 	struct udphdr *uh = udp_hdr(skb);
812 	int offset = skb_transport_offset(skb);
813 	int len = skb->len - offset;
814 	int hlen = len;
815 	__wsum csum = 0;
816 
817 	if (!skb_has_frag_list(skb)) {
818 		/*
819 		 * Only one fragment on the socket.
820 		 */
821 		skb->csum_start = skb_transport_header(skb) - skb->head;
822 		skb->csum_offset = offsetof(struct udphdr, check);
823 		uh->check = ~csum_tcpudp_magic(src, dst, len,
824 					       IPPROTO_UDP, 0);
825 	} else {
826 		struct sk_buff *frags;
827 
828 		/*
829 		 * HW-checksum won't work as there are two or more
830 		 * fragments on the socket so that all csums of sk_buffs
831 		 * should be together
832 		 */
833 		skb_walk_frags(skb, frags) {
834 			csum = csum_add(csum, frags->csum);
835 			hlen -= frags->len;
836 		}
837 
838 		csum = skb_checksum(skb, offset, hlen, csum);
839 		skb->ip_summed = CHECKSUM_NONE;
840 
841 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
842 		if (uh->check == 0)
843 			uh->check = CSUM_MANGLED_0;
844 	}
845 }
846 EXPORT_SYMBOL_GPL(udp4_hwcsum);
847 
848 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
849  * for the simple case like when setting the checksum for a UDP tunnel.
850  */
851 void udp_set_csum(bool nocheck, struct sk_buff *skb,
852 		  __be32 saddr, __be32 daddr, int len)
853 {
854 	struct udphdr *uh = udp_hdr(skb);
855 
856 	if (nocheck) {
857 		uh->check = 0;
858 	} else if (skb_is_gso(skb)) {
859 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
860 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
861 		uh->check = 0;
862 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
863 		if (uh->check == 0)
864 			uh->check = CSUM_MANGLED_0;
865 	} else {
866 		skb->ip_summed = CHECKSUM_PARTIAL;
867 		skb->csum_start = skb_transport_header(skb) - skb->head;
868 		skb->csum_offset = offsetof(struct udphdr, check);
869 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
870 	}
871 }
872 EXPORT_SYMBOL(udp_set_csum);
873 
874 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
875 {
876 	struct sock *sk = skb->sk;
877 	struct inet_sock *inet = inet_sk(sk);
878 	struct udphdr *uh;
879 	int err = 0;
880 	int is_udplite = IS_UDPLITE(sk);
881 	int offset = skb_transport_offset(skb);
882 	int len = skb->len - offset;
883 	__wsum csum = 0;
884 
885 	/*
886 	 * Create a UDP header
887 	 */
888 	uh = udp_hdr(skb);
889 	uh->source = inet->inet_sport;
890 	uh->dest = fl4->fl4_dport;
891 	uh->len = htons(len);
892 	uh->check = 0;
893 
894 	if (is_udplite)  				 /*     UDP-Lite      */
895 		csum = udplite_csum(skb);
896 
897 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
898 
899 		skb->ip_summed = CHECKSUM_NONE;
900 		goto send;
901 
902 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
903 
904 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
905 		goto send;
906 
907 	} else
908 		csum = udp_csum(skb);
909 
910 	/* add protocol-dependent pseudo-header */
911 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
912 				      sk->sk_protocol, csum);
913 	if (uh->check == 0)
914 		uh->check = CSUM_MANGLED_0;
915 
916 send:
917 	err = ip_send_skb(sock_net(sk), skb);
918 	if (err) {
919 		if (err == -ENOBUFS && !inet->recverr) {
920 			UDP_INC_STATS_USER(sock_net(sk),
921 					   UDP_MIB_SNDBUFERRORS, is_udplite);
922 			err = 0;
923 		}
924 	} else
925 		UDP_INC_STATS_USER(sock_net(sk),
926 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
927 	return err;
928 }
929 
930 /*
931  * Push out all pending data as one UDP datagram. Socket is locked.
932  */
933 int udp_push_pending_frames(struct sock *sk)
934 {
935 	struct udp_sock  *up = udp_sk(sk);
936 	struct inet_sock *inet = inet_sk(sk);
937 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
938 	struct sk_buff *skb;
939 	int err = 0;
940 
941 	skb = ip_finish_skb(sk, fl4);
942 	if (!skb)
943 		goto out;
944 
945 	err = udp_send_skb(skb, fl4);
946 
947 out:
948 	up->len = 0;
949 	up->pending = 0;
950 	return err;
951 }
952 EXPORT_SYMBOL(udp_push_pending_frames);
953 
954 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
955 {
956 	struct inet_sock *inet = inet_sk(sk);
957 	struct udp_sock *up = udp_sk(sk);
958 	struct flowi4 fl4_stack;
959 	struct flowi4 *fl4;
960 	int ulen = len;
961 	struct ipcm_cookie ipc;
962 	struct rtable *rt = NULL;
963 	int free = 0;
964 	int connected = 0;
965 	__be32 daddr, faddr, saddr;
966 	__be16 dport;
967 	u8  tos;
968 	int err, is_udplite = IS_UDPLITE(sk);
969 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
970 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
971 	struct sk_buff *skb;
972 	struct ip_options_data opt_copy;
973 
974 	if (len > 0xFFFF)
975 		return -EMSGSIZE;
976 
977 	/*
978 	 *	Check the flags.
979 	 */
980 
981 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
982 		return -EOPNOTSUPP;
983 
984 	ipc.opt = NULL;
985 	ipc.tx_flags = 0;
986 	ipc.ttl = 0;
987 	ipc.tos = -1;
988 
989 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
990 
991 	fl4 = &inet->cork.fl.u.ip4;
992 	if (up->pending) {
993 		/*
994 		 * There are pending frames.
995 		 * The socket lock must be held while it's corked.
996 		 */
997 		lock_sock(sk);
998 		if (likely(up->pending)) {
999 			if (unlikely(up->pending != AF_INET)) {
1000 				release_sock(sk);
1001 				return -EINVAL;
1002 			}
1003 			goto do_append_data;
1004 		}
1005 		release_sock(sk);
1006 	}
1007 	ulen += sizeof(struct udphdr);
1008 
1009 	/*
1010 	 *	Get and verify the address.
1011 	 */
1012 	if (msg->msg_name) {
1013 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1014 		if (msg->msg_namelen < sizeof(*usin))
1015 			return -EINVAL;
1016 		if (usin->sin_family != AF_INET) {
1017 			if (usin->sin_family != AF_UNSPEC)
1018 				return -EAFNOSUPPORT;
1019 		}
1020 
1021 		daddr = usin->sin_addr.s_addr;
1022 		dport = usin->sin_port;
1023 		if (dport == 0)
1024 			return -EINVAL;
1025 	} else {
1026 		if (sk->sk_state != TCP_ESTABLISHED)
1027 			return -EDESTADDRREQ;
1028 		daddr = inet->inet_daddr;
1029 		dport = inet->inet_dport;
1030 		/* Open fast path for connected socket.
1031 		   Route will not be used, if at least one option is set.
1032 		 */
1033 		connected = 1;
1034 	}
1035 	ipc.addr = inet->inet_saddr;
1036 
1037 	ipc.oif = sk->sk_bound_dev_if;
1038 
1039 	sock_tx_timestamp(sk, &ipc.tx_flags);
1040 
1041 	if (msg->msg_controllen) {
1042 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
1043 				   sk->sk_family == AF_INET6);
1044 		if (unlikely(err)) {
1045 			kfree(ipc.opt);
1046 			return err;
1047 		}
1048 		if (ipc.opt)
1049 			free = 1;
1050 		connected = 0;
1051 	}
1052 	if (!ipc.opt) {
1053 		struct ip_options_rcu *inet_opt;
1054 
1055 		rcu_read_lock();
1056 		inet_opt = rcu_dereference(inet->inet_opt);
1057 		if (inet_opt) {
1058 			memcpy(&opt_copy, inet_opt,
1059 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1060 			ipc.opt = &opt_copy.opt;
1061 		}
1062 		rcu_read_unlock();
1063 	}
1064 
1065 	saddr = ipc.addr;
1066 	ipc.addr = faddr = daddr;
1067 
1068 	if (ipc.opt && ipc.opt->opt.srr) {
1069 		if (!daddr)
1070 			return -EINVAL;
1071 		faddr = ipc.opt->opt.faddr;
1072 		connected = 0;
1073 	}
1074 	tos = get_rttos(&ipc, inet);
1075 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1076 	    (msg->msg_flags & MSG_DONTROUTE) ||
1077 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1078 		tos |= RTO_ONLINK;
1079 		connected = 0;
1080 	}
1081 
1082 	if (ipv4_is_multicast(daddr)) {
1083 		if (!ipc.oif)
1084 			ipc.oif = inet->mc_index;
1085 		if (!saddr)
1086 			saddr = inet->mc_addr;
1087 		connected = 0;
1088 	} else if (!ipc.oif)
1089 		ipc.oif = inet->uc_index;
1090 
1091 	if (connected)
1092 		rt = (struct rtable *)sk_dst_check(sk, 0);
1093 
1094 	if (!rt) {
1095 		struct net *net = sock_net(sk);
1096 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1097 
1098 		fl4 = &fl4_stack;
1099 
1100 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1101 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1102 				   flow_flags,
1103 				   faddr, saddr, dport, inet->inet_sport);
1104 
1105 		if (!saddr && ipc.oif) {
1106 			err = l3mdev_get_saddr(net, ipc.oif, fl4);
1107 			if (err < 0)
1108 				goto out;
1109 		}
1110 
1111 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1112 		rt = ip_route_output_flow(net, fl4, sk);
1113 		if (IS_ERR(rt)) {
1114 			err = PTR_ERR(rt);
1115 			rt = NULL;
1116 			if (err == -ENETUNREACH)
1117 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1118 			goto out;
1119 		}
1120 
1121 		err = -EACCES;
1122 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1123 		    !sock_flag(sk, SOCK_BROADCAST))
1124 			goto out;
1125 		if (connected)
1126 			sk_dst_set(sk, dst_clone(&rt->dst));
1127 	}
1128 
1129 	if (msg->msg_flags&MSG_CONFIRM)
1130 		goto do_confirm;
1131 back_from_confirm:
1132 
1133 	saddr = fl4->saddr;
1134 	if (!ipc.addr)
1135 		daddr = ipc.addr = fl4->daddr;
1136 
1137 	/* Lockless fast path for the non-corking case. */
1138 	if (!corkreq) {
1139 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1140 				  sizeof(struct udphdr), &ipc, &rt,
1141 				  msg->msg_flags);
1142 		err = PTR_ERR(skb);
1143 		if (!IS_ERR_OR_NULL(skb))
1144 			err = udp_send_skb(skb, fl4);
1145 		goto out;
1146 	}
1147 
1148 	lock_sock(sk);
1149 	if (unlikely(up->pending)) {
1150 		/* The socket is already corked while preparing it. */
1151 		/* ... which is an evident application bug. --ANK */
1152 		release_sock(sk);
1153 
1154 		net_dbg_ratelimited("cork app bug 2\n");
1155 		err = -EINVAL;
1156 		goto out;
1157 	}
1158 	/*
1159 	 *	Now cork the socket to pend data.
1160 	 */
1161 	fl4 = &inet->cork.fl.u.ip4;
1162 	fl4->daddr = daddr;
1163 	fl4->saddr = saddr;
1164 	fl4->fl4_dport = dport;
1165 	fl4->fl4_sport = inet->inet_sport;
1166 	up->pending = AF_INET;
1167 
1168 do_append_data:
1169 	up->len += ulen;
1170 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1171 			     sizeof(struct udphdr), &ipc, &rt,
1172 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1173 	if (err)
1174 		udp_flush_pending_frames(sk);
1175 	else if (!corkreq)
1176 		err = udp_push_pending_frames(sk);
1177 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1178 		up->pending = 0;
1179 	release_sock(sk);
1180 
1181 out:
1182 	ip_rt_put(rt);
1183 	if (free)
1184 		kfree(ipc.opt);
1185 	if (!err)
1186 		return len;
1187 	/*
1188 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1189 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1190 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1191 	 * things).  We could add another new stat but at least for now that
1192 	 * seems like overkill.
1193 	 */
1194 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1195 		UDP_INC_STATS_USER(sock_net(sk),
1196 				UDP_MIB_SNDBUFERRORS, is_udplite);
1197 	}
1198 	return err;
1199 
1200 do_confirm:
1201 	dst_confirm(&rt->dst);
1202 	if (!(msg->msg_flags&MSG_PROBE) || len)
1203 		goto back_from_confirm;
1204 	err = 0;
1205 	goto out;
1206 }
1207 EXPORT_SYMBOL(udp_sendmsg);
1208 
1209 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1210 		 size_t size, int flags)
1211 {
1212 	struct inet_sock *inet = inet_sk(sk);
1213 	struct udp_sock *up = udp_sk(sk);
1214 	int ret;
1215 
1216 	if (flags & MSG_SENDPAGE_NOTLAST)
1217 		flags |= MSG_MORE;
1218 
1219 	if (!up->pending) {
1220 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1221 
1222 		/* Call udp_sendmsg to specify destination address which
1223 		 * sendpage interface can't pass.
1224 		 * This will succeed only when the socket is connected.
1225 		 */
1226 		ret = udp_sendmsg(sk, &msg, 0);
1227 		if (ret < 0)
1228 			return ret;
1229 	}
1230 
1231 	lock_sock(sk);
1232 
1233 	if (unlikely(!up->pending)) {
1234 		release_sock(sk);
1235 
1236 		net_dbg_ratelimited("udp cork app bug 3\n");
1237 		return -EINVAL;
1238 	}
1239 
1240 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1241 			     page, offset, size, flags);
1242 	if (ret == -EOPNOTSUPP) {
1243 		release_sock(sk);
1244 		return sock_no_sendpage(sk->sk_socket, page, offset,
1245 					size, flags);
1246 	}
1247 	if (ret < 0) {
1248 		udp_flush_pending_frames(sk);
1249 		goto out;
1250 	}
1251 
1252 	up->len += size;
1253 	if (!(up->corkflag || (flags&MSG_MORE)))
1254 		ret = udp_push_pending_frames(sk);
1255 	if (!ret)
1256 		ret = size;
1257 out:
1258 	release_sock(sk);
1259 	return ret;
1260 }
1261 
1262 /**
1263  *	first_packet_length	- return length of first packet in receive queue
1264  *	@sk: socket
1265  *
1266  *	Drops all bad checksum frames, until a valid one is found.
1267  *	Returns the length of found skb, or 0 if none is found.
1268  */
1269 static unsigned int first_packet_length(struct sock *sk)
1270 {
1271 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1272 	struct sk_buff *skb;
1273 	unsigned int res;
1274 
1275 	__skb_queue_head_init(&list_kill);
1276 
1277 	spin_lock_bh(&rcvq->lock);
1278 	while ((skb = skb_peek(rcvq)) != NULL &&
1279 		udp_lib_checksum_complete(skb)) {
1280 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1281 				 IS_UDPLITE(sk));
1282 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1283 				 IS_UDPLITE(sk));
1284 		atomic_inc(&sk->sk_drops);
1285 		__skb_unlink(skb, rcvq);
1286 		__skb_queue_tail(&list_kill, skb);
1287 	}
1288 	res = skb ? skb->len : 0;
1289 	spin_unlock_bh(&rcvq->lock);
1290 
1291 	if (!skb_queue_empty(&list_kill)) {
1292 		bool slow = lock_sock_fast(sk);
1293 
1294 		__skb_queue_purge(&list_kill);
1295 		sk_mem_reclaim_partial(sk);
1296 		unlock_sock_fast(sk, slow);
1297 	}
1298 	return res;
1299 }
1300 
1301 /*
1302  *	IOCTL requests applicable to the UDP protocol
1303  */
1304 
1305 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1306 {
1307 	switch (cmd) {
1308 	case SIOCOUTQ:
1309 	{
1310 		int amount = sk_wmem_alloc_get(sk);
1311 
1312 		return put_user(amount, (int __user *)arg);
1313 	}
1314 
1315 	case SIOCINQ:
1316 	{
1317 		unsigned int amount = first_packet_length(sk);
1318 
1319 		if (amount)
1320 			/*
1321 			 * We will only return the amount
1322 			 * of this packet since that is all
1323 			 * that will be read.
1324 			 */
1325 			amount -= sizeof(struct udphdr);
1326 
1327 		return put_user(amount, (int __user *)arg);
1328 	}
1329 
1330 	default:
1331 		return -ENOIOCTLCMD;
1332 	}
1333 
1334 	return 0;
1335 }
1336 EXPORT_SYMBOL(udp_ioctl);
1337 
1338 /*
1339  * 	This should be easy, if there is something there we
1340  * 	return it, otherwise we block.
1341  */
1342 
1343 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1344 		int flags, int *addr_len)
1345 {
1346 	struct inet_sock *inet = inet_sk(sk);
1347 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1348 	struct sk_buff *skb;
1349 	unsigned int ulen, copied;
1350 	int peeked, off = 0;
1351 	int err;
1352 	int is_udplite = IS_UDPLITE(sk);
1353 	bool checksum_valid = false;
1354 	bool slow;
1355 
1356 	if (flags & MSG_ERRQUEUE)
1357 		return ip_recv_error(sk, msg, len, addr_len);
1358 
1359 try_again:
1360 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1361 				  &peeked, &off, &err);
1362 	if (!skb)
1363 		goto out;
1364 
1365 	ulen = skb->len - sizeof(struct udphdr);
1366 	copied = len;
1367 	if (copied > ulen)
1368 		copied = ulen;
1369 	else if (copied < ulen)
1370 		msg->msg_flags |= MSG_TRUNC;
1371 
1372 	/*
1373 	 * If checksum is needed at all, try to do it while copying the
1374 	 * data.  If the data is truncated, or if we only want a partial
1375 	 * coverage checksum (UDP-Lite), do it before the copy.
1376 	 */
1377 
1378 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1379 		checksum_valid = !udp_lib_checksum_complete(skb);
1380 		if (!checksum_valid)
1381 			goto csum_copy_err;
1382 	}
1383 
1384 	if (checksum_valid || skb_csum_unnecessary(skb))
1385 		err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1386 					    msg, copied);
1387 	else {
1388 		err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1389 						     msg);
1390 
1391 		if (err == -EINVAL)
1392 			goto csum_copy_err;
1393 	}
1394 
1395 	if (unlikely(err)) {
1396 		trace_kfree_skb(skb, udp_recvmsg);
1397 		if (!peeked) {
1398 			atomic_inc(&sk->sk_drops);
1399 			UDP_INC_STATS_USER(sock_net(sk),
1400 					   UDP_MIB_INERRORS, is_udplite);
1401 		}
1402 		goto out_free;
1403 	}
1404 
1405 	if (!peeked)
1406 		UDP_INC_STATS_USER(sock_net(sk),
1407 				UDP_MIB_INDATAGRAMS, is_udplite);
1408 
1409 	sock_recv_ts_and_drops(msg, sk, skb);
1410 
1411 	/* Copy the address. */
1412 	if (sin) {
1413 		sin->sin_family = AF_INET;
1414 		sin->sin_port = udp_hdr(skb)->source;
1415 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1416 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1417 		*addr_len = sizeof(*sin);
1418 	}
1419 	if (inet->cmsg_flags)
1420 		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1421 
1422 	err = copied;
1423 	if (flags & MSG_TRUNC)
1424 		err = ulen;
1425 
1426 out_free:
1427 	skb_free_datagram_locked(sk, skb);
1428 out:
1429 	return err;
1430 
1431 csum_copy_err:
1432 	slow = lock_sock_fast(sk);
1433 	if (!skb_kill_datagram(sk, skb, flags)) {
1434 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1435 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1436 	}
1437 	unlock_sock_fast(sk, slow);
1438 
1439 	/* starting over for a new packet, but check if we need to yield */
1440 	cond_resched();
1441 	msg->msg_flags &= ~MSG_TRUNC;
1442 	goto try_again;
1443 }
1444 
1445 int udp_disconnect(struct sock *sk, int flags)
1446 {
1447 	struct inet_sock *inet = inet_sk(sk);
1448 	/*
1449 	 *	1003.1g - break association.
1450 	 */
1451 
1452 	sk->sk_state = TCP_CLOSE;
1453 	inet->inet_daddr = 0;
1454 	inet->inet_dport = 0;
1455 	sock_rps_reset_rxhash(sk);
1456 	sk->sk_bound_dev_if = 0;
1457 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1458 		inet_reset_saddr(sk);
1459 
1460 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1461 		sk->sk_prot->unhash(sk);
1462 		inet->inet_sport = 0;
1463 	}
1464 	sk_dst_reset(sk);
1465 	return 0;
1466 }
1467 EXPORT_SYMBOL(udp_disconnect);
1468 
1469 void udp_lib_unhash(struct sock *sk)
1470 {
1471 	if (sk_hashed(sk)) {
1472 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1473 		struct udp_hslot *hslot, *hslot2;
1474 
1475 		hslot  = udp_hashslot(udptable, sock_net(sk),
1476 				      udp_sk(sk)->udp_port_hash);
1477 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1478 
1479 		spin_lock_bh(&hslot->lock);
1480 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1481 			reuseport_detach_sock(sk);
1482 		if (sk_nulls_del_node_init_rcu(sk)) {
1483 			hslot->count--;
1484 			inet_sk(sk)->inet_num = 0;
1485 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1486 
1487 			spin_lock(&hslot2->lock);
1488 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1489 			hslot2->count--;
1490 			spin_unlock(&hslot2->lock);
1491 		}
1492 		spin_unlock_bh(&hslot->lock);
1493 	}
1494 }
1495 EXPORT_SYMBOL(udp_lib_unhash);
1496 
1497 /*
1498  * inet_rcv_saddr was changed, we must rehash secondary hash
1499  */
1500 void udp_lib_rehash(struct sock *sk, u16 newhash)
1501 {
1502 	if (sk_hashed(sk)) {
1503 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1504 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1505 
1506 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1507 		nhslot2 = udp_hashslot2(udptable, newhash);
1508 		udp_sk(sk)->udp_portaddr_hash = newhash;
1509 
1510 		if (hslot2 != nhslot2 ||
1511 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1512 			hslot = udp_hashslot(udptable, sock_net(sk),
1513 					     udp_sk(sk)->udp_port_hash);
1514 			/* we must lock primary chain too */
1515 			spin_lock_bh(&hslot->lock);
1516 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1517 				reuseport_detach_sock(sk);
1518 
1519 			if (hslot2 != nhslot2) {
1520 				spin_lock(&hslot2->lock);
1521 				hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1522 				hslot2->count--;
1523 				spin_unlock(&hslot2->lock);
1524 
1525 				spin_lock(&nhslot2->lock);
1526 				hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1527 							 &nhslot2->head);
1528 				nhslot2->count++;
1529 				spin_unlock(&nhslot2->lock);
1530 			}
1531 
1532 			spin_unlock_bh(&hslot->lock);
1533 		}
1534 	}
1535 }
1536 EXPORT_SYMBOL(udp_lib_rehash);
1537 
1538 static void udp_v4_rehash(struct sock *sk)
1539 {
1540 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1541 					  inet_sk(sk)->inet_rcv_saddr,
1542 					  inet_sk(sk)->inet_num);
1543 	udp_lib_rehash(sk, new_hash);
1544 }
1545 
1546 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1547 {
1548 	int rc;
1549 
1550 	if (inet_sk(sk)->inet_daddr) {
1551 		sock_rps_save_rxhash(sk, skb);
1552 		sk_mark_napi_id(sk, skb);
1553 		sk_incoming_cpu_update(sk);
1554 	}
1555 
1556 	rc = sock_queue_rcv_skb(sk, skb);
1557 	if (rc < 0) {
1558 		int is_udplite = IS_UDPLITE(sk);
1559 
1560 		/* Note that an ENOMEM error is charged twice */
1561 		if (rc == -ENOMEM)
1562 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1563 					 is_udplite);
1564 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1565 		kfree_skb(skb);
1566 		trace_udp_fail_queue_rcv_skb(rc, sk);
1567 		return -1;
1568 	}
1569 
1570 	return 0;
1571 
1572 }
1573 
1574 static struct static_key udp_encap_needed __read_mostly;
1575 void udp_encap_enable(void)
1576 {
1577 	if (!static_key_enabled(&udp_encap_needed))
1578 		static_key_slow_inc(&udp_encap_needed);
1579 }
1580 EXPORT_SYMBOL(udp_encap_enable);
1581 
1582 /* returns:
1583  *  -1: error
1584  *   0: success
1585  *  >0: "udp encap" protocol resubmission
1586  *
1587  * Note that in the success and error cases, the skb is assumed to
1588  * have either been requeued or freed.
1589  */
1590 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1591 {
1592 	struct udp_sock *up = udp_sk(sk);
1593 	int rc;
1594 	int is_udplite = IS_UDPLITE(sk);
1595 
1596 	/*
1597 	 *	Charge it to the socket, dropping if the queue is full.
1598 	 */
1599 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1600 		goto drop;
1601 	nf_reset(skb);
1602 
1603 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1604 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1605 
1606 		/*
1607 		 * This is an encapsulation socket so pass the skb to
1608 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1609 		 * fall through and pass this up the UDP socket.
1610 		 * up->encap_rcv() returns the following value:
1611 		 * =0 if skb was successfully passed to the encap
1612 		 *    handler or was discarded by it.
1613 		 * >0 if skb should be passed on to UDP.
1614 		 * <0 if skb should be resubmitted as proto -N
1615 		 */
1616 
1617 		/* if we're overly short, let UDP handle it */
1618 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1619 		if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1620 			int ret;
1621 
1622 			/* Verify checksum before giving to encap */
1623 			if (udp_lib_checksum_complete(skb))
1624 				goto csum_error;
1625 
1626 			ret = encap_rcv(sk, skb);
1627 			if (ret <= 0) {
1628 				UDP_INC_STATS_BH(sock_net(sk),
1629 						 UDP_MIB_INDATAGRAMS,
1630 						 is_udplite);
1631 				return -ret;
1632 			}
1633 		}
1634 
1635 		/* FALLTHROUGH -- it's a UDP Packet */
1636 	}
1637 
1638 	/*
1639 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1640 	 */
1641 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1642 
1643 		/*
1644 		 * MIB statistics other than incrementing the error count are
1645 		 * disabled for the following two types of errors: these depend
1646 		 * on the application settings, not on the functioning of the
1647 		 * protocol stack as such.
1648 		 *
1649 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1650 		 * way ... to ... at least let the receiving application block
1651 		 * delivery of packets with coverage values less than a value
1652 		 * provided by the application."
1653 		 */
1654 		if (up->pcrlen == 0) {          /* full coverage was set  */
1655 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1656 					    UDP_SKB_CB(skb)->cscov, skb->len);
1657 			goto drop;
1658 		}
1659 		/* The next case involves violating the min. coverage requested
1660 		 * by the receiver. This is subtle: if receiver wants x and x is
1661 		 * greater than the buffersize/MTU then receiver will complain
1662 		 * that it wants x while sender emits packets of smaller size y.
1663 		 * Therefore the above ...()->partial_cov statement is essential.
1664 		 */
1665 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1666 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1667 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1668 			goto drop;
1669 		}
1670 	}
1671 
1672 	if (rcu_access_pointer(sk->sk_filter) &&
1673 	    udp_lib_checksum_complete(skb))
1674 		goto csum_error;
1675 
1676 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1677 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1678 				 is_udplite);
1679 		goto drop;
1680 	}
1681 
1682 	rc = 0;
1683 
1684 	ipv4_pktinfo_prepare(sk, skb);
1685 	bh_lock_sock(sk);
1686 	if (!sock_owned_by_user(sk))
1687 		rc = __udp_queue_rcv_skb(sk, skb);
1688 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1689 		bh_unlock_sock(sk);
1690 		goto drop;
1691 	}
1692 	bh_unlock_sock(sk);
1693 
1694 	return rc;
1695 
1696 csum_error:
1697 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1698 drop:
1699 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1700 	atomic_inc(&sk->sk_drops);
1701 	kfree_skb(skb);
1702 	return -1;
1703 }
1704 
1705 static void flush_stack(struct sock **stack, unsigned int count,
1706 			struct sk_buff *skb, unsigned int final)
1707 {
1708 	unsigned int i;
1709 	struct sk_buff *skb1 = NULL;
1710 	struct sock *sk;
1711 
1712 	for (i = 0; i < count; i++) {
1713 		sk = stack[i];
1714 		if (likely(!skb1))
1715 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1716 
1717 		if (!skb1) {
1718 			atomic_inc(&sk->sk_drops);
1719 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1720 					 IS_UDPLITE(sk));
1721 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1722 					 IS_UDPLITE(sk));
1723 		}
1724 
1725 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1726 			skb1 = NULL;
1727 
1728 		sock_put(sk);
1729 	}
1730 	if (unlikely(skb1))
1731 		kfree_skb(skb1);
1732 }
1733 
1734 /* For TCP sockets, sk_rx_dst is protected by socket lock
1735  * For UDP, we use xchg() to guard against concurrent changes.
1736  */
1737 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1738 {
1739 	struct dst_entry *old;
1740 
1741 	dst_hold(dst);
1742 	old = xchg(&sk->sk_rx_dst, dst);
1743 	dst_release(old);
1744 }
1745 
1746 /*
1747  *	Multicasts and broadcasts go to each listener.
1748  *
1749  *	Note: called only from the BH handler context.
1750  */
1751 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1752 				    struct udphdr  *uh,
1753 				    __be32 saddr, __be32 daddr,
1754 				    struct udp_table *udptable,
1755 				    int proto)
1756 {
1757 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1758 	struct hlist_nulls_node *node;
1759 	unsigned short hnum = ntohs(uh->dest);
1760 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1761 	int dif = skb->dev->ifindex;
1762 	unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1763 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1764 	bool inner_flushed = false;
1765 
1766 	if (use_hash2) {
1767 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1768 			    udp_table.mask;
1769 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1770 start_lookup:
1771 		hslot = &udp_table.hash2[hash2];
1772 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1773 	}
1774 
1775 	spin_lock(&hslot->lock);
1776 	sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1777 		if (__udp_is_mcast_sock(net, sk,
1778 					uh->dest, daddr,
1779 					uh->source, saddr,
1780 					dif, hnum)) {
1781 			if (unlikely(count == ARRAY_SIZE(stack))) {
1782 				flush_stack(stack, count, skb, ~0);
1783 				inner_flushed = true;
1784 				count = 0;
1785 			}
1786 			stack[count++] = sk;
1787 			sock_hold(sk);
1788 		}
1789 	}
1790 
1791 	spin_unlock(&hslot->lock);
1792 
1793 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1794 	if (use_hash2 && hash2 != hash2_any) {
1795 		hash2 = hash2_any;
1796 		goto start_lookup;
1797 	}
1798 
1799 	/*
1800 	 * do the slow work with no lock held
1801 	 */
1802 	if (count) {
1803 		flush_stack(stack, count, skb, count - 1);
1804 	} else {
1805 		if (!inner_flushed)
1806 			UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1807 					 proto == IPPROTO_UDPLITE);
1808 		consume_skb(skb);
1809 	}
1810 	return 0;
1811 }
1812 
1813 /* Initialize UDP checksum. If exited with zero value (success),
1814  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1815  * Otherwise, csum completion requires chacksumming packet body,
1816  * including udp header and folding it to skb->csum.
1817  */
1818 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1819 				 int proto)
1820 {
1821 	int err;
1822 
1823 	UDP_SKB_CB(skb)->partial_cov = 0;
1824 	UDP_SKB_CB(skb)->cscov = skb->len;
1825 
1826 	if (proto == IPPROTO_UDPLITE) {
1827 		err = udplite_checksum_init(skb, uh);
1828 		if (err)
1829 			return err;
1830 	}
1831 
1832 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1833 					    inet_compute_pseudo);
1834 }
1835 
1836 /*
1837  *	All we need to do is get the socket, and then do a checksum.
1838  */
1839 
1840 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1841 		   int proto)
1842 {
1843 	struct sock *sk;
1844 	struct udphdr *uh;
1845 	unsigned short ulen;
1846 	struct rtable *rt = skb_rtable(skb);
1847 	__be32 saddr, daddr;
1848 	struct net *net = dev_net(skb->dev);
1849 
1850 	/*
1851 	 *  Validate the packet.
1852 	 */
1853 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1854 		goto drop;		/* No space for header. */
1855 
1856 	uh   = udp_hdr(skb);
1857 	ulen = ntohs(uh->len);
1858 	saddr = ip_hdr(skb)->saddr;
1859 	daddr = ip_hdr(skb)->daddr;
1860 
1861 	if (ulen > skb->len)
1862 		goto short_packet;
1863 
1864 	if (proto == IPPROTO_UDP) {
1865 		/* UDP validates ulen. */
1866 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1867 			goto short_packet;
1868 		uh = udp_hdr(skb);
1869 	}
1870 
1871 	if (udp4_csum_init(skb, uh, proto))
1872 		goto csum_error;
1873 
1874 	sk = skb_steal_sock(skb);
1875 	if (sk) {
1876 		struct dst_entry *dst = skb_dst(skb);
1877 		int ret;
1878 
1879 		if (unlikely(sk->sk_rx_dst != dst))
1880 			udp_sk_rx_dst_set(sk, dst);
1881 
1882 		ret = udp_queue_rcv_skb(sk, skb);
1883 		sock_put(sk);
1884 		/* a return value > 0 means to resubmit the input, but
1885 		 * it wants the return to be -protocol, or 0
1886 		 */
1887 		if (ret > 0)
1888 			return -ret;
1889 		return 0;
1890 	}
1891 
1892 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1893 		return __udp4_lib_mcast_deliver(net, skb, uh,
1894 						saddr, daddr, udptable, proto);
1895 
1896 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1897 	if (sk) {
1898 		int ret;
1899 
1900 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1901 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1902 						 inet_compute_pseudo);
1903 
1904 		ret = udp_queue_rcv_skb(sk, skb);
1905 		sock_put(sk);
1906 
1907 		/* a return value > 0 means to resubmit the input, but
1908 		 * it wants the return to be -protocol, or 0
1909 		 */
1910 		if (ret > 0)
1911 			return -ret;
1912 		return 0;
1913 	}
1914 
1915 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1916 		goto drop;
1917 	nf_reset(skb);
1918 
1919 	/* No socket. Drop packet silently, if checksum is wrong */
1920 	if (udp_lib_checksum_complete(skb))
1921 		goto csum_error;
1922 
1923 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1924 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1925 
1926 	/*
1927 	 * Hmm.  We got an UDP packet to a port to which we
1928 	 * don't wanna listen.  Ignore it.
1929 	 */
1930 	kfree_skb(skb);
1931 	return 0;
1932 
1933 short_packet:
1934 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1935 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1936 			    &saddr, ntohs(uh->source),
1937 			    ulen, skb->len,
1938 			    &daddr, ntohs(uh->dest));
1939 	goto drop;
1940 
1941 csum_error:
1942 	/*
1943 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1944 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1945 	 */
1946 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1947 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1948 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1949 			    ulen);
1950 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1951 drop:
1952 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1953 	kfree_skb(skb);
1954 	return 0;
1955 }
1956 
1957 /* We can only early demux multicast if there is a single matching socket.
1958  * If more than one socket found returns NULL
1959  */
1960 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1961 						  __be16 loc_port, __be32 loc_addr,
1962 						  __be16 rmt_port, __be32 rmt_addr,
1963 						  int dif)
1964 {
1965 	struct sock *sk, *result;
1966 	struct hlist_nulls_node *node;
1967 	unsigned short hnum = ntohs(loc_port);
1968 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1969 	struct udp_hslot *hslot = &udp_table.hash[slot];
1970 
1971 	/* Do not bother scanning a too big list */
1972 	if (hslot->count > 10)
1973 		return NULL;
1974 
1975 	rcu_read_lock();
1976 begin:
1977 	count = 0;
1978 	result = NULL;
1979 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1980 		if (__udp_is_mcast_sock(net, sk,
1981 					loc_port, loc_addr,
1982 					rmt_port, rmt_addr,
1983 					dif, hnum)) {
1984 			result = sk;
1985 			++count;
1986 		}
1987 	}
1988 	/*
1989 	 * if the nulls value we got at the end of this lookup is
1990 	 * not the expected one, we must restart lookup.
1991 	 * We probably met an item that was moved to another chain.
1992 	 */
1993 	if (get_nulls_value(node) != slot)
1994 		goto begin;
1995 
1996 	if (result) {
1997 		if (count != 1 ||
1998 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1999 			result = NULL;
2000 		else if (unlikely(!__udp_is_mcast_sock(net, result,
2001 						       loc_port, loc_addr,
2002 						       rmt_port, rmt_addr,
2003 						       dif, hnum))) {
2004 			sock_put(result);
2005 			result = NULL;
2006 		}
2007 	}
2008 	rcu_read_unlock();
2009 	return result;
2010 }
2011 
2012 /* For unicast we should only early demux connected sockets or we can
2013  * break forwarding setups.  The chains here can be long so only check
2014  * if the first socket is an exact match and if not move on.
2015  */
2016 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2017 					    __be16 loc_port, __be32 loc_addr,
2018 					    __be16 rmt_port, __be32 rmt_addr,
2019 					    int dif)
2020 {
2021 	struct sock *sk, *result;
2022 	struct hlist_nulls_node *node;
2023 	unsigned short hnum = ntohs(loc_port);
2024 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2025 	unsigned int slot2 = hash2 & udp_table.mask;
2026 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2027 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2028 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2029 
2030 	rcu_read_lock();
2031 	result = NULL;
2032 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
2033 		if (INET_MATCH(sk, net, acookie,
2034 			       rmt_addr, loc_addr, ports, dif))
2035 			result = sk;
2036 		/* Only check first socket in chain */
2037 		break;
2038 	}
2039 
2040 	if (result) {
2041 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
2042 			result = NULL;
2043 		else if (unlikely(!INET_MATCH(sk, net, acookie,
2044 					      rmt_addr, loc_addr,
2045 					      ports, dif))) {
2046 			sock_put(result);
2047 			result = NULL;
2048 		}
2049 	}
2050 	rcu_read_unlock();
2051 	return result;
2052 }
2053 
2054 void udp_v4_early_demux(struct sk_buff *skb)
2055 {
2056 	struct net *net = dev_net(skb->dev);
2057 	const struct iphdr *iph;
2058 	const struct udphdr *uh;
2059 	struct sock *sk;
2060 	struct dst_entry *dst;
2061 	int dif = skb->dev->ifindex;
2062 	int ours;
2063 
2064 	/* validate the packet */
2065 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2066 		return;
2067 
2068 	iph = ip_hdr(skb);
2069 	uh = udp_hdr(skb);
2070 
2071 	if (skb->pkt_type == PACKET_BROADCAST ||
2072 	    skb->pkt_type == PACKET_MULTICAST) {
2073 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
2074 
2075 		if (!in_dev)
2076 			return;
2077 
2078 		/* we are supposed to accept bcast packets */
2079 		if (skb->pkt_type == PACKET_MULTICAST) {
2080 			ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2081 					       iph->protocol);
2082 			if (!ours)
2083 				return;
2084 		}
2085 
2086 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2087 						   uh->source, iph->saddr, dif);
2088 	} else if (skb->pkt_type == PACKET_HOST) {
2089 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2090 					     uh->source, iph->saddr, dif);
2091 	} else {
2092 		return;
2093 	}
2094 
2095 	if (!sk)
2096 		return;
2097 
2098 	skb->sk = sk;
2099 	skb->destructor = sock_efree;
2100 	dst = READ_ONCE(sk->sk_rx_dst);
2101 
2102 	if (dst)
2103 		dst = dst_check(dst, 0);
2104 	if (dst) {
2105 		/* DST_NOCACHE can not be used without taking a reference */
2106 		if (dst->flags & DST_NOCACHE) {
2107 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2108 				skb_dst_set(skb, dst);
2109 		} else {
2110 			skb_dst_set_noref(skb, dst);
2111 		}
2112 	}
2113 }
2114 
2115 int udp_rcv(struct sk_buff *skb)
2116 {
2117 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2118 }
2119 
2120 void udp_destroy_sock(struct sock *sk)
2121 {
2122 	struct udp_sock *up = udp_sk(sk);
2123 	bool slow = lock_sock_fast(sk);
2124 	udp_flush_pending_frames(sk);
2125 	unlock_sock_fast(sk, slow);
2126 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2127 		void (*encap_destroy)(struct sock *sk);
2128 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2129 		if (encap_destroy)
2130 			encap_destroy(sk);
2131 	}
2132 }
2133 
2134 /*
2135  *	Socket option code for UDP
2136  */
2137 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2138 		       char __user *optval, unsigned int optlen,
2139 		       int (*push_pending_frames)(struct sock *))
2140 {
2141 	struct udp_sock *up = udp_sk(sk);
2142 	int val, valbool;
2143 	int err = 0;
2144 	int is_udplite = IS_UDPLITE(sk);
2145 
2146 	if (optlen < sizeof(int))
2147 		return -EINVAL;
2148 
2149 	if (get_user(val, (int __user *)optval))
2150 		return -EFAULT;
2151 
2152 	valbool = val ? 1 : 0;
2153 
2154 	switch (optname) {
2155 	case UDP_CORK:
2156 		if (val != 0) {
2157 			up->corkflag = 1;
2158 		} else {
2159 			up->corkflag = 0;
2160 			lock_sock(sk);
2161 			push_pending_frames(sk);
2162 			release_sock(sk);
2163 		}
2164 		break;
2165 
2166 	case UDP_ENCAP:
2167 		switch (val) {
2168 		case 0:
2169 		case UDP_ENCAP_ESPINUDP:
2170 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2171 			up->encap_rcv = xfrm4_udp_encap_rcv;
2172 			/* FALLTHROUGH */
2173 		case UDP_ENCAP_L2TPINUDP:
2174 			up->encap_type = val;
2175 			udp_encap_enable();
2176 			break;
2177 		default:
2178 			err = -ENOPROTOOPT;
2179 			break;
2180 		}
2181 		break;
2182 
2183 	case UDP_NO_CHECK6_TX:
2184 		up->no_check6_tx = valbool;
2185 		break;
2186 
2187 	case UDP_NO_CHECK6_RX:
2188 		up->no_check6_rx = valbool;
2189 		break;
2190 
2191 	/*
2192 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2193 	 */
2194 	/* The sender sets actual checksum coverage length via this option.
2195 	 * The case coverage > packet length is handled by send module. */
2196 	case UDPLITE_SEND_CSCOV:
2197 		if (!is_udplite)         /* Disable the option on UDP sockets */
2198 			return -ENOPROTOOPT;
2199 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2200 			val = 8;
2201 		else if (val > USHRT_MAX)
2202 			val = USHRT_MAX;
2203 		up->pcslen = val;
2204 		up->pcflag |= UDPLITE_SEND_CC;
2205 		break;
2206 
2207 	/* The receiver specifies a minimum checksum coverage value. To make
2208 	 * sense, this should be set to at least 8 (as done below). If zero is
2209 	 * used, this again means full checksum coverage.                     */
2210 	case UDPLITE_RECV_CSCOV:
2211 		if (!is_udplite)         /* Disable the option on UDP sockets */
2212 			return -ENOPROTOOPT;
2213 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2214 			val = 8;
2215 		else if (val > USHRT_MAX)
2216 			val = USHRT_MAX;
2217 		up->pcrlen = val;
2218 		up->pcflag |= UDPLITE_RECV_CC;
2219 		break;
2220 
2221 	default:
2222 		err = -ENOPROTOOPT;
2223 		break;
2224 	}
2225 
2226 	return err;
2227 }
2228 EXPORT_SYMBOL(udp_lib_setsockopt);
2229 
2230 int udp_setsockopt(struct sock *sk, int level, int optname,
2231 		   char __user *optval, unsigned int optlen)
2232 {
2233 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2234 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2235 					  udp_push_pending_frames);
2236 	return ip_setsockopt(sk, level, optname, optval, optlen);
2237 }
2238 
2239 #ifdef CONFIG_COMPAT
2240 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2241 			  char __user *optval, unsigned int optlen)
2242 {
2243 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2244 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2245 					  udp_push_pending_frames);
2246 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2247 }
2248 #endif
2249 
2250 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2251 		       char __user *optval, int __user *optlen)
2252 {
2253 	struct udp_sock *up = udp_sk(sk);
2254 	int val, len;
2255 
2256 	if (get_user(len, optlen))
2257 		return -EFAULT;
2258 
2259 	len = min_t(unsigned int, len, sizeof(int));
2260 
2261 	if (len < 0)
2262 		return -EINVAL;
2263 
2264 	switch (optname) {
2265 	case UDP_CORK:
2266 		val = up->corkflag;
2267 		break;
2268 
2269 	case UDP_ENCAP:
2270 		val = up->encap_type;
2271 		break;
2272 
2273 	case UDP_NO_CHECK6_TX:
2274 		val = up->no_check6_tx;
2275 		break;
2276 
2277 	case UDP_NO_CHECK6_RX:
2278 		val = up->no_check6_rx;
2279 		break;
2280 
2281 	/* The following two cannot be changed on UDP sockets, the return is
2282 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2283 	case UDPLITE_SEND_CSCOV:
2284 		val = up->pcslen;
2285 		break;
2286 
2287 	case UDPLITE_RECV_CSCOV:
2288 		val = up->pcrlen;
2289 		break;
2290 
2291 	default:
2292 		return -ENOPROTOOPT;
2293 	}
2294 
2295 	if (put_user(len, optlen))
2296 		return -EFAULT;
2297 	if (copy_to_user(optval, &val, len))
2298 		return -EFAULT;
2299 	return 0;
2300 }
2301 EXPORT_SYMBOL(udp_lib_getsockopt);
2302 
2303 int udp_getsockopt(struct sock *sk, int level, int optname,
2304 		   char __user *optval, int __user *optlen)
2305 {
2306 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2307 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2308 	return ip_getsockopt(sk, level, optname, optval, optlen);
2309 }
2310 
2311 #ifdef CONFIG_COMPAT
2312 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2313 				 char __user *optval, int __user *optlen)
2314 {
2315 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2316 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2317 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2318 }
2319 #endif
2320 /**
2321  * 	udp_poll - wait for a UDP event.
2322  *	@file - file struct
2323  *	@sock - socket
2324  *	@wait - poll table
2325  *
2326  *	This is same as datagram poll, except for the special case of
2327  *	blocking sockets. If application is using a blocking fd
2328  *	and a packet with checksum error is in the queue;
2329  *	then it could get return from select indicating data available
2330  *	but then block when reading it. Add special case code
2331  *	to work around these arguably broken applications.
2332  */
2333 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2334 {
2335 	unsigned int mask = datagram_poll(file, sock, wait);
2336 	struct sock *sk = sock->sk;
2337 
2338 	sock_rps_record_flow(sk);
2339 
2340 	/* Check for false positives due to checksum errors */
2341 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2342 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2343 		mask &= ~(POLLIN | POLLRDNORM);
2344 
2345 	return mask;
2346 
2347 }
2348 EXPORT_SYMBOL(udp_poll);
2349 
2350 struct proto udp_prot = {
2351 	.name		   = "UDP",
2352 	.owner		   = THIS_MODULE,
2353 	.close		   = udp_lib_close,
2354 	.connect	   = ip4_datagram_connect,
2355 	.disconnect	   = udp_disconnect,
2356 	.ioctl		   = udp_ioctl,
2357 	.destroy	   = udp_destroy_sock,
2358 	.setsockopt	   = udp_setsockopt,
2359 	.getsockopt	   = udp_getsockopt,
2360 	.sendmsg	   = udp_sendmsg,
2361 	.recvmsg	   = udp_recvmsg,
2362 	.sendpage	   = udp_sendpage,
2363 	.backlog_rcv	   = __udp_queue_rcv_skb,
2364 	.release_cb	   = ip4_datagram_release_cb,
2365 	.hash		   = udp_lib_hash,
2366 	.unhash		   = udp_lib_unhash,
2367 	.rehash		   = udp_v4_rehash,
2368 	.get_port	   = udp_v4_get_port,
2369 	.memory_allocated  = &udp_memory_allocated,
2370 	.sysctl_mem	   = sysctl_udp_mem,
2371 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2372 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2373 	.obj_size	   = sizeof(struct udp_sock),
2374 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2375 	.h.udp_table	   = &udp_table,
2376 #ifdef CONFIG_COMPAT
2377 	.compat_setsockopt = compat_udp_setsockopt,
2378 	.compat_getsockopt = compat_udp_getsockopt,
2379 #endif
2380 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2381 };
2382 EXPORT_SYMBOL(udp_prot);
2383 
2384 /* ------------------------------------------------------------------------ */
2385 #ifdef CONFIG_PROC_FS
2386 
2387 static struct sock *udp_get_first(struct seq_file *seq, int start)
2388 {
2389 	struct sock *sk;
2390 	struct udp_iter_state *state = seq->private;
2391 	struct net *net = seq_file_net(seq);
2392 
2393 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2394 	     ++state->bucket) {
2395 		struct hlist_nulls_node *node;
2396 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2397 
2398 		if (hlist_nulls_empty(&hslot->head))
2399 			continue;
2400 
2401 		spin_lock_bh(&hslot->lock);
2402 		sk_nulls_for_each(sk, node, &hslot->head) {
2403 			if (!net_eq(sock_net(sk), net))
2404 				continue;
2405 			if (sk->sk_family == state->family)
2406 				goto found;
2407 		}
2408 		spin_unlock_bh(&hslot->lock);
2409 	}
2410 	sk = NULL;
2411 found:
2412 	return sk;
2413 }
2414 
2415 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2416 {
2417 	struct udp_iter_state *state = seq->private;
2418 	struct net *net = seq_file_net(seq);
2419 
2420 	do {
2421 		sk = sk_nulls_next(sk);
2422 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2423 
2424 	if (!sk) {
2425 		if (state->bucket <= state->udp_table->mask)
2426 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2427 		return udp_get_first(seq, state->bucket + 1);
2428 	}
2429 	return sk;
2430 }
2431 
2432 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2433 {
2434 	struct sock *sk = udp_get_first(seq, 0);
2435 
2436 	if (sk)
2437 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2438 			--pos;
2439 	return pos ? NULL : sk;
2440 }
2441 
2442 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2443 {
2444 	struct udp_iter_state *state = seq->private;
2445 	state->bucket = MAX_UDP_PORTS;
2446 
2447 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2448 }
2449 
2450 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2451 {
2452 	struct sock *sk;
2453 
2454 	if (v == SEQ_START_TOKEN)
2455 		sk = udp_get_idx(seq, 0);
2456 	else
2457 		sk = udp_get_next(seq, v);
2458 
2459 	++*pos;
2460 	return sk;
2461 }
2462 
2463 static void udp_seq_stop(struct seq_file *seq, void *v)
2464 {
2465 	struct udp_iter_state *state = seq->private;
2466 
2467 	if (state->bucket <= state->udp_table->mask)
2468 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2469 }
2470 
2471 int udp_seq_open(struct inode *inode, struct file *file)
2472 {
2473 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2474 	struct udp_iter_state *s;
2475 	int err;
2476 
2477 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2478 			   sizeof(struct udp_iter_state));
2479 	if (err < 0)
2480 		return err;
2481 
2482 	s = ((struct seq_file *)file->private_data)->private;
2483 	s->family		= afinfo->family;
2484 	s->udp_table		= afinfo->udp_table;
2485 	return err;
2486 }
2487 EXPORT_SYMBOL(udp_seq_open);
2488 
2489 /* ------------------------------------------------------------------------ */
2490 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2491 {
2492 	struct proc_dir_entry *p;
2493 	int rc = 0;
2494 
2495 	afinfo->seq_ops.start		= udp_seq_start;
2496 	afinfo->seq_ops.next		= udp_seq_next;
2497 	afinfo->seq_ops.stop		= udp_seq_stop;
2498 
2499 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2500 			     afinfo->seq_fops, afinfo);
2501 	if (!p)
2502 		rc = -ENOMEM;
2503 	return rc;
2504 }
2505 EXPORT_SYMBOL(udp_proc_register);
2506 
2507 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2508 {
2509 	remove_proc_entry(afinfo->name, net->proc_net);
2510 }
2511 EXPORT_SYMBOL(udp_proc_unregister);
2512 
2513 /* ------------------------------------------------------------------------ */
2514 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2515 		int bucket)
2516 {
2517 	struct inet_sock *inet = inet_sk(sp);
2518 	__be32 dest = inet->inet_daddr;
2519 	__be32 src  = inet->inet_rcv_saddr;
2520 	__u16 destp	  = ntohs(inet->inet_dport);
2521 	__u16 srcp	  = ntohs(inet->inet_sport);
2522 
2523 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2524 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2525 		bucket, src, srcp, dest, destp, sp->sk_state,
2526 		sk_wmem_alloc_get(sp),
2527 		sk_rmem_alloc_get(sp),
2528 		0, 0L, 0,
2529 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2530 		0, sock_i_ino(sp),
2531 		atomic_read(&sp->sk_refcnt), sp,
2532 		atomic_read(&sp->sk_drops));
2533 }
2534 
2535 int udp4_seq_show(struct seq_file *seq, void *v)
2536 {
2537 	seq_setwidth(seq, 127);
2538 	if (v == SEQ_START_TOKEN)
2539 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2540 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2541 			   "inode ref pointer drops");
2542 	else {
2543 		struct udp_iter_state *state = seq->private;
2544 
2545 		udp4_format_sock(v, seq, state->bucket);
2546 	}
2547 	seq_pad(seq, '\n');
2548 	return 0;
2549 }
2550 
2551 static const struct file_operations udp_afinfo_seq_fops = {
2552 	.owner    = THIS_MODULE,
2553 	.open     = udp_seq_open,
2554 	.read     = seq_read,
2555 	.llseek   = seq_lseek,
2556 	.release  = seq_release_net
2557 };
2558 
2559 /* ------------------------------------------------------------------------ */
2560 static struct udp_seq_afinfo udp4_seq_afinfo = {
2561 	.name		= "udp",
2562 	.family		= AF_INET,
2563 	.udp_table	= &udp_table,
2564 	.seq_fops	= &udp_afinfo_seq_fops,
2565 	.seq_ops	= {
2566 		.show		= udp4_seq_show,
2567 	},
2568 };
2569 
2570 static int __net_init udp4_proc_init_net(struct net *net)
2571 {
2572 	return udp_proc_register(net, &udp4_seq_afinfo);
2573 }
2574 
2575 static void __net_exit udp4_proc_exit_net(struct net *net)
2576 {
2577 	udp_proc_unregister(net, &udp4_seq_afinfo);
2578 }
2579 
2580 static struct pernet_operations udp4_net_ops = {
2581 	.init = udp4_proc_init_net,
2582 	.exit = udp4_proc_exit_net,
2583 };
2584 
2585 int __init udp4_proc_init(void)
2586 {
2587 	return register_pernet_subsys(&udp4_net_ops);
2588 }
2589 
2590 void udp4_proc_exit(void)
2591 {
2592 	unregister_pernet_subsys(&udp4_net_ops);
2593 }
2594 #endif /* CONFIG_PROC_FS */
2595 
2596 static __initdata unsigned long uhash_entries;
2597 static int __init set_uhash_entries(char *str)
2598 {
2599 	ssize_t ret;
2600 
2601 	if (!str)
2602 		return 0;
2603 
2604 	ret = kstrtoul(str, 0, &uhash_entries);
2605 	if (ret)
2606 		return 0;
2607 
2608 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2609 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2610 	return 1;
2611 }
2612 __setup("uhash_entries=", set_uhash_entries);
2613 
2614 void __init udp_table_init(struct udp_table *table, const char *name)
2615 {
2616 	unsigned int i;
2617 
2618 	table->hash = alloc_large_system_hash(name,
2619 					      2 * sizeof(struct udp_hslot),
2620 					      uhash_entries,
2621 					      21, /* one slot per 2 MB */
2622 					      0,
2623 					      &table->log,
2624 					      &table->mask,
2625 					      UDP_HTABLE_SIZE_MIN,
2626 					      64 * 1024);
2627 
2628 	table->hash2 = table->hash + (table->mask + 1);
2629 	for (i = 0; i <= table->mask; i++) {
2630 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2631 		table->hash[i].count = 0;
2632 		spin_lock_init(&table->hash[i].lock);
2633 	}
2634 	for (i = 0; i <= table->mask; i++) {
2635 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2636 		table->hash2[i].count = 0;
2637 		spin_lock_init(&table->hash2[i].lock);
2638 	}
2639 }
2640 
2641 u32 udp_flow_hashrnd(void)
2642 {
2643 	static u32 hashrnd __read_mostly;
2644 
2645 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2646 
2647 	return hashrnd;
2648 }
2649 EXPORT_SYMBOL(udp_flow_hashrnd);
2650 
2651 void __init udp_init(void)
2652 {
2653 	unsigned long limit;
2654 
2655 	udp_table_init(&udp_table, "UDP");
2656 	limit = nr_free_buffer_pages() / 8;
2657 	limit = max(limit, 128UL);
2658 	sysctl_udp_mem[0] = limit / 4 * 3;
2659 	sysctl_udp_mem[1] = limit;
2660 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2661 
2662 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2663 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2664 }
2665