xref: /openbmc/linux/net/ipv4/udp.c (revision 530e7a660fb795452357b36cce26b839a9a187a9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
127 
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
130 
131 /* IPCB reference means this can not be used from early demux */
132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
133 {
134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
135 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
136 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
137 		return true;
138 #endif
139 	return false;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2);
225 		}
226 	}
227 
228 	return reuseport_alloc(sk);
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_hslot *hslot, *hslot2;
243 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
244 	int    error = 1;
245 	struct net *net = sock_net(sk);
246 
247 	if (!snum) {
248 		int low, high, remaining;
249 		unsigned int rand;
250 		unsigned short first, last;
251 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
252 
253 		inet_get_local_port_range(net, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = prandom_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif, bool exact_dif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 
374 	if (!net_eq(sock_net(sk), net) ||
375 	    udp_sk(sk)->udp_port_hash != hnum ||
376 	    ipv6_only_sock(sk))
377 		return -1;
378 
379 	score = (sk->sk_family == PF_INET) ? 2 : 1;
380 	inet = inet_sk(sk);
381 
382 	if (inet->inet_rcv_saddr) {
383 		if (inet->inet_rcv_saddr != daddr)
384 			return -1;
385 		score += 4;
386 	}
387 
388 	if (inet->inet_daddr) {
389 		if (inet->inet_daddr != saddr)
390 			return -1;
391 		score += 4;
392 	}
393 
394 	if (inet->inet_dport) {
395 		if (inet->inet_dport != sport)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	if (sk->sk_bound_dev_if || exact_dif) {
401 		bool dev_match = (sk->sk_bound_dev_if == dif ||
402 				  sk->sk_bound_dev_if == sdif);
403 
404 		if (!dev_match)
405 			return -1;
406 		if (sk->sk_bound_dev_if)
407 			score += 4;
408 	}
409 
410 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
411 		score++;
412 	return score;
413 }
414 
415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
416 		       const __u16 lport, const __be32 faddr,
417 		       const __be16 fport)
418 {
419 	static u32 udp_ehash_secret __read_mostly;
420 
421 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
422 
423 	return __inet_ehashfn(laddr, lport, faddr, fport,
424 			      udp_ehash_secret + net_hash_mix(net));
425 }
426 
427 /* called with rcu_read_lock() */
428 static struct sock *udp4_lib_lookup2(struct net *net,
429 				     __be32 saddr, __be16 sport,
430 				     __be32 daddr, unsigned int hnum,
431 				     int dif, int sdif, bool exact_dif,
432 				     struct udp_hslot *hslot2,
433 				     struct sk_buff *skb)
434 {
435 	struct sock *sk, *result;
436 	int score, badness;
437 	u32 hash = 0;
438 
439 	result = NULL;
440 	badness = 0;
441 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
442 		score = compute_score(sk, net, saddr, sport,
443 				      daddr, hnum, dif, sdif, exact_dif);
444 		if (score > badness) {
445 			if (sk->sk_reuseport) {
446 				hash = udp_ehashfn(net, daddr, hnum,
447 						   saddr, sport);
448 				result = reuseport_select_sock(sk, hash, skb,
449 							sizeof(struct udphdr));
450 				if (result)
451 					return result;
452 			}
453 			badness = score;
454 			result = sk;
455 		}
456 	}
457 	return result;
458 }
459 
460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
461  * harder than this. -DaveM
462  */
463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
464 		__be16 sport, __be32 daddr, __be16 dport, int dif,
465 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
466 {
467 	struct sock *sk, *result;
468 	unsigned short hnum = ntohs(dport);
469 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
470 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
471 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
472 	int score, badness;
473 	u32 hash = 0;
474 
475 	if (hslot->count > 10) {
476 		hash2 = ipv4_portaddr_hash(net, daddr, hnum);
477 		slot2 = hash2 & udptable->mask;
478 		hslot2 = &udptable->hash2[slot2];
479 		if (hslot->count < hslot2->count)
480 			goto begin;
481 
482 		result = udp4_lib_lookup2(net, saddr, sport,
483 					  daddr, hnum, dif, sdif,
484 					  exact_dif, hslot2, skb);
485 		if (!result) {
486 			unsigned int old_slot2 = slot2;
487 			hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
488 			slot2 = hash2 & udptable->mask;
489 			/* avoid searching the same slot again. */
490 			if (unlikely(slot2 == old_slot2))
491 				return result;
492 
493 			hslot2 = &udptable->hash2[slot2];
494 			if (hslot->count < hslot2->count)
495 				goto begin;
496 
497 			result = udp4_lib_lookup2(net, saddr, sport,
498 						  daddr, hnum, dif, sdif,
499 						  exact_dif, hslot2, skb);
500 		}
501 		return result;
502 	}
503 begin:
504 	result = NULL;
505 	badness = 0;
506 	sk_for_each_rcu(sk, &hslot->head) {
507 		score = compute_score(sk, net, saddr, sport,
508 				      daddr, hnum, dif, sdif, exact_dif);
509 		if (score > badness) {
510 			if (sk->sk_reuseport) {
511 				hash = udp_ehashfn(net, daddr, hnum,
512 						   saddr, sport);
513 				result = reuseport_select_sock(sk, hash, skb,
514 							sizeof(struct udphdr));
515 				if (result)
516 					return result;
517 			}
518 			result = sk;
519 			badness = score;
520 		}
521 	}
522 	return result;
523 }
524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
525 
526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
527 						 __be16 sport, __be16 dport,
528 						 struct udp_table *udptable)
529 {
530 	const struct iphdr *iph = ip_hdr(skb);
531 
532 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
533 				 iph->daddr, dport, inet_iif(skb),
534 				 inet_sdif(skb), udptable, skb);
535 }
536 
537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
538 				 __be16 sport, __be16 dport)
539 {
540 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
541 }
542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
543 
544 /* Must be called under rcu_read_lock().
545  * Does increment socket refcount.
546  */
547 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
548 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
549 			     __be32 daddr, __be16 dport, int dif)
550 {
551 	struct sock *sk;
552 
553 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
554 			       dif, 0, &udp_table, NULL);
555 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
556 		sk = NULL;
557 	return sk;
558 }
559 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
560 #endif
561 
562 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
563 				       __be16 loc_port, __be32 loc_addr,
564 				       __be16 rmt_port, __be32 rmt_addr,
565 				       int dif, int sdif, unsigned short hnum)
566 {
567 	struct inet_sock *inet = inet_sk(sk);
568 
569 	if (!net_eq(sock_net(sk), net) ||
570 	    udp_sk(sk)->udp_port_hash != hnum ||
571 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
572 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
573 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
574 	    ipv6_only_sock(sk) ||
575 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
576 	     sk->sk_bound_dev_if != sdif))
577 		return false;
578 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
579 		return false;
580 	return true;
581 }
582 
583 /*
584  * This routine is called by the ICMP module when it gets some
585  * sort of error condition.  If err < 0 then the socket should
586  * be closed and the error returned to the user.  If err > 0
587  * it's just the icmp type << 8 | icmp code.
588  * Header points to the ip header of the error packet. We move
589  * on past this. Then (as it used to claim before adjustment)
590  * header points to the first 8 bytes of the udp header.  We need
591  * to find the appropriate port.
592  */
593 
594 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
595 {
596 	struct inet_sock *inet;
597 	const struct iphdr *iph = (const struct iphdr *)skb->data;
598 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
599 	const int type = icmp_hdr(skb)->type;
600 	const int code = icmp_hdr(skb)->code;
601 	struct sock *sk;
602 	int harderr;
603 	int err;
604 	struct net *net = dev_net(skb->dev);
605 
606 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
607 			       iph->saddr, uh->source, skb->dev->ifindex, 0,
608 			       udptable, NULL);
609 	if (!sk) {
610 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
611 		return;	/* No socket for error */
612 	}
613 
614 	err = 0;
615 	harderr = 0;
616 	inet = inet_sk(sk);
617 
618 	switch (type) {
619 	default:
620 	case ICMP_TIME_EXCEEDED:
621 		err = EHOSTUNREACH;
622 		break;
623 	case ICMP_SOURCE_QUENCH:
624 		goto out;
625 	case ICMP_PARAMETERPROB:
626 		err = EPROTO;
627 		harderr = 1;
628 		break;
629 	case ICMP_DEST_UNREACH:
630 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
631 			ipv4_sk_update_pmtu(skb, sk, info);
632 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
633 				err = EMSGSIZE;
634 				harderr = 1;
635 				break;
636 			}
637 			goto out;
638 		}
639 		err = EHOSTUNREACH;
640 		if (code <= NR_ICMP_UNREACH) {
641 			harderr = icmp_err_convert[code].fatal;
642 			err = icmp_err_convert[code].errno;
643 		}
644 		break;
645 	case ICMP_REDIRECT:
646 		ipv4_sk_redirect(skb, sk);
647 		goto out;
648 	}
649 
650 	/*
651 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
652 	 *	4.1.3.3.
653 	 */
654 	if (!inet->recverr) {
655 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
656 			goto out;
657 	} else
658 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
659 
660 	sk->sk_err = err;
661 	sk->sk_error_report(sk);
662 out:
663 	return;
664 }
665 
666 void udp_err(struct sk_buff *skb, u32 info)
667 {
668 	__udp4_lib_err(skb, info, &udp_table);
669 }
670 
671 /*
672  * Throw away all pending data and cancel the corking. Socket is locked.
673  */
674 void udp_flush_pending_frames(struct sock *sk)
675 {
676 	struct udp_sock *up = udp_sk(sk);
677 
678 	if (up->pending) {
679 		up->len = 0;
680 		up->pending = 0;
681 		ip_flush_pending_frames(sk);
682 	}
683 }
684 EXPORT_SYMBOL(udp_flush_pending_frames);
685 
686 /**
687  * 	udp4_hwcsum  -  handle outgoing HW checksumming
688  * 	@skb: 	sk_buff containing the filled-in UDP header
689  * 	        (checksum field must be zeroed out)
690  *	@src:	source IP address
691  *	@dst:	destination IP address
692  */
693 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
694 {
695 	struct udphdr *uh = udp_hdr(skb);
696 	int offset = skb_transport_offset(skb);
697 	int len = skb->len - offset;
698 	int hlen = len;
699 	__wsum csum = 0;
700 
701 	if (!skb_has_frag_list(skb)) {
702 		/*
703 		 * Only one fragment on the socket.
704 		 */
705 		skb->csum_start = skb_transport_header(skb) - skb->head;
706 		skb->csum_offset = offsetof(struct udphdr, check);
707 		uh->check = ~csum_tcpudp_magic(src, dst, len,
708 					       IPPROTO_UDP, 0);
709 	} else {
710 		struct sk_buff *frags;
711 
712 		/*
713 		 * HW-checksum won't work as there are two or more
714 		 * fragments on the socket so that all csums of sk_buffs
715 		 * should be together
716 		 */
717 		skb_walk_frags(skb, frags) {
718 			csum = csum_add(csum, frags->csum);
719 			hlen -= frags->len;
720 		}
721 
722 		csum = skb_checksum(skb, offset, hlen, csum);
723 		skb->ip_summed = CHECKSUM_NONE;
724 
725 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
726 		if (uh->check == 0)
727 			uh->check = CSUM_MANGLED_0;
728 	}
729 }
730 EXPORT_SYMBOL_GPL(udp4_hwcsum);
731 
732 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
733  * for the simple case like when setting the checksum for a UDP tunnel.
734  */
735 void udp_set_csum(bool nocheck, struct sk_buff *skb,
736 		  __be32 saddr, __be32 daddr, int len)
737 {
738 	struct udphdr *uh = udp_hdr(skb);
739 
740 	if (nocheck) {
741 		uh->check = 0;
742 	} else if (skb_is_gso(skb)) {
743 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
744 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
745 		uh->check = 0;
746 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
747 		if (uh->check == 0)
748 			uh->check = CSUM_MANGLED_0;
749 	} else {
750 		skb->ip_summed = CHECKSUM_PARTIAL;
751 		skb->csum_start = skb_transport_header(skb) - skb->head;
752 		skb->csum_offset = offsetof(struct udphdr, check);
753 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
754 	}
755 }
756 EXPORT_SYMBOL(udp_set_csum);
757 
758 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
759 			struct inet_cork *cork)
760 {
761 	struct sock *sk = skb->sk;
762 	struct inet_sock *inet = inet_sk(sk);
763 	struct udphdr *uh;
764 	int err = 0;
765 	int is_udplite = IS_UDPLITE(sk);
766 	int offset = skb_transport_offset(skb);
767 	int len = skb->len - offset;
768 	__wsum csum = 0;
769 
770 	/*
771 	 * Create a UDP header
772 	 */
773 	uh = udp_hdr(skb);
774 	uh->source = inet->inet_sport;
775 	uh->dest = fl4->fl4_dport;
776 	uh->len = htons(len);
777 	uh->check = 0;
778 
779 	if (cork->gso_size) {
780 		const int hlen = skb_network_header_len(skb) +
781 				 sizeof(struct udphdr);
782 
783 		if (hlen + cork->gso_size > cork->fragsize)
784 			return -EINVAL;
785 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS)
786 			return -EINVAL;
787 		if (sk->sk_no_check_tx)
788 			return -EINVAL;
789 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
790 		    dst_xfrm(skb_dst(skb)))
791 			return -EIO;
792 
793 		skb_shinfo(skb)->gso_size = cork->gso_size;
794 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
795 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
796 							 cork->gso_size);
797 		goto csum_partial;
798 	}
799 
800 	if (is_udplite)  				 /*     UDP-Lite      */
801 		csum = udplite_csum(skb);
802 
803 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
804 
805 		skb->ip_summed = CHECKSUM_NONE;
806 		goto send;
807 
808 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
809 csum_partial:
810 
811 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
812 		goto send;
813 
814 	} else
815 		csum = udp_csum(skb);
816 
817 	/* add protocol-dependent pseudo-header */
818 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
819 				      sk->sk_protocol, csum);
820 	if (uh->check == 0)
821 		uh->check = CSUM_MANGLED_0;
822 
823 send:
824 	err = ip_send_skb(sock_net(sk), skb);
825 	if (err) {
826 		if (err == -ENOBUFS && !inet->recverr) {
827 			UDP_INC_STATS(sock_net(sk),
828 				      UDP_MIB_SNDBUFERRORS, is_udplite);
829 			err = 0;
830 		}
831 	} else
832 		UDP_INC_STATS(sock_net(sk),
833 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
834 	return err;
835 }
836 
837 /*
838  * Push out all pending data as one UDP datagram. Socket is locked.
839  */
840 int udp_push_pending_frames(struct sock *sk)
841 {
842 	struct udp_sock  *up = udp_sk(sk);
843 	struct inet_sock *inet = inet_sk(sk);
844 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
845 	struct sk_buff *skb;
846 	int err = 0;
847 
848 	skb = ip_finish_skb(sk, fl4);
849 	if (!skb)
850 		goto out;
851 
852 	err = udp_send_skb(skb, fl4, &inet->cork.base);
853 
854 out:
855 	up->len = 0;
856 	up->pending = 0;
857 	return err;
858 }
859 EXPORT_SYMBOL(udp_push_pending_frames);
860 
861 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
862 {
863 	switch (cmsg->cmsg_type) {
864 	case UDP_SEGMENT:
865 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
866 			return -EINVAL;
867 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
868 		return 0;
869 	default:
870 		return -EINVAL;
871 	}
872 }
873 
874 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
875 {
876 	struct cmsghdr *cmsg;
877 	bool need_ip = false;
878 	int err;
879 
880 	for_each_cmsghdr(cmsg, msg) {
881 		if (!CMSG_OK(msg, cmsg))
882 			return -EINVAL;
883 
884 		if (cmsg->cmsg_level != SOL_UDP) {
885 			need_ip = true;
886 			continue;
887 		}
888 
889 		err = __udp_cmsg_send(cmsg, gso_size);
890 		if (err)
891 			return err;
892 	}
893 
894 	return need_ip;
895 }
896 EXPORT_SYMBOL_GPL(udp_cmsg_send);
897 
898 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
899 {
900 	struct inet_sock *inet = inet_sk(sk);
901 	struct udp_sock *up = udp_sk(sk);
902 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
903 	struct flowi4 fl4_stack;
904 	struct flowi4 *fl4;
905 	int ulen = len;
906 	struct ipcm_cookie ipc;
907 	struct rtable *rt = NULL;
908 	int free = 0;
909 	int connected = 0;
910 	__be32 daddr, faddr, saddr;
911 	__be16 dport;
912 	u8  tos;
913 	int err, is_udplite = IS_UDPLITE(sk);
914 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
915 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
916 	struct sk_buff *skb;
917 	struct ip_options_data opt_copy;
918 
919 	if (len > 0xFFFF)
920 		return -EMSGSIZE;
921 
922 	/*
923 	 *	Check the flags.
924 	 */
925 
926 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
927 		return -EOPNOTSUPP;
928 
929 	ipc.opt = NULL;
930 	ipc.tx_flags = 0;
931 	ipc.ttl = 0;
932 	ipc.tos = -1;
933 
934 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
935 
936 	fl4 = &inet->cork.fl.u.ip4;
937 	if (up->pending) {
938 		/*
939 		 * There are pending frames.
940 		 * The socket lock must be held while it's corked.
941 		 */
942 		lock_sock(sk);
943 		if (likely(up->pending)) {
944 			if (unlikely(up->pending != AF_INET)) {
945 				release_sock(sk);
946 				return -EINVAL;
947 			}
948 			goto do_append_data;
949 		}
950 		release_sock(sk);
951 	}
952 	ulen += sizeof(struct udphdr);
953 
954 	/*
955 	 *	Get and verify the address.
956 	 */
957 	if (usin) {
958 		if (msg->msg_namelen < sizeof(*usin))
959 			return -EINVAL;
960 		if (usin->sin_family != AF_INET) {
961 			if (usin->sin_family != AF_UNSPEC)
962 				return -EAFNOSUPPORT;
963 		}
964 
965 		daddr = usin->sin_addr.s_addr;
966 		dport = usin->sin_port;
967 		if (dport == 0)
968 			return -EINVAL;
969 	} else {
970 		if (sk->sk_state != TCP_ESTABLISHED)
971 			return -EDESTADDRREQ;
972 		daddr = inet->inet_daddr;
973 		dport = inet->inet_dport;
974 		/* Open fast path for connected socket.
975 		   Route will not be used, if at least one option is set.
976 		 */
977 		connected = 1;
978 	}
979 
980 	ipc.sockc.tsflags = sk->sk_tsflags;
981 	ipc.addr = inet->inet_saddr;
982 	ipc.oif = sk->sk_bound_dev_if;
983 	ipc.gso_size = up->gso_size;
984 
985 	if (msg->msg_controllen) {
986 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
987 		if (err > 0)
988 			err = ip_cmsg_send(sk, msg, &ipc,
989 					   sk->sk_family == AF_INET6);
990 		if (unlikely(err < 0)) {
991 			kfree(ipc.opt);
992 			return err;
993 		}
994 		if (ipc.opt)
995 			free = 1;
996 		connected = 0;
997 	}
998 	if (!ipc.opt) {
999 		struct ip_options_rcu *inet_opt;
1000 
1001 		rcu_read_lock();
1002 		inet_opt = rcu_dereference(inet->inet_opt);
1003 		if (inet_opt) {
1004 			memcpy(&opt_copy, inet_opt,
1005 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1006 			ipc.opt = &opt_copy.opt;
1007 		}
1008 		rcu_read_unlock();
1009 	}
1010 
1011 	if (cgroup_bpf_enabled && !connected) {
1012 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1013 					    (struct sockaddr *)usin, &ipc.addr);
1014 		if (err)
1015 			goto out_free;
1016 		if (usin) {
1017 			if (usin->sin_port == 0) {
1018 				/* BPF program set invalid port. Reject it. */
1019 				err = -EINVAL;
1020 				goto out_free;
1021 			}
1022 			daddr = usin->sin_addr.s_addr;
1023 			dport = usin->sin_port;
1024 		}
1025 	}
1026 
1027 	saddr = ipc.addr;
1028 	ipc.addr = faddr = daddr;
1029 
1030 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
1031 
1032 	if (ipc.opt && ipc.opt->opt.srr) {
1033 		if (!daddr) {
1034 			err = -EINVAL;
1035 			goto out_free;
1036 		}
1037 		faddr = ipc.opt->opt.faddr;
1038 		connected = 0;
1039 	}
1040 	tos = get_rttos(&ipc, inet);
1041 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1042 	    (msg->msg_flags & MSG_DONTROUTE) ||
1043 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1044 		tos |= RTO_ONLINK;
1045 		connected = 0;
1046 	}
1047 
1048 	if (ipv4_is_multicast(daddr)) {
1049 		if (!ipc.oif)
1050 			ipc.oif = inet->mc_index;
1051 		if (!saddr)
1052 			saddr = inet->mc_addr;
1053 		connected = 0;
1054 	} else if (!ipc.oif) {
1055 		ipc.oif = inet->uc_index;
1056 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1057 		/* oif is set, packet is to local broadcast and
1058 		 * and uc_index is set. oif is most likely set
1059 		 * by sk_bound_dev_if. If uc_index != oif check if the
1060 		 * oif is an L3 master and uc_index is an L3 slave.
1061 		 * If so, we want to allow the send using the uc_index.
1062 		 */
1063 		if (ipc.oif != inet->uc_index &&
1064 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1065 							      inet->uc_index)) {
1066 			ipc.oif = inet->uc_index;
1067 		}
1068 	}
1069 
1070 	if (connected)
1071 		rt = (struct rtable *)sk_dst_check(sk, 0);
1072 
1073 	if (!rt) {
1074 		struct net *net = sock_net(sk);
1075 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1076 
1077 		fl4 = &fl4_stack;
1078 
1079 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1080 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1081 				   flow_flags,
1082 				   faddr, saddr, dport, inet->inet_sport,
1083 				   sk->sk_uid);
1084 
1085 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1086 		rt = ip_route_output_flow(net, fl4, sk);
1087 		if (IS_ERR(rt)) {
1088 			err = PTR_ERR(rt);
1089 			rt = NULL;
1090 			if (err == -ENETUNREACH)
1091 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1092 			goto out;
1093 		}
1094 
1095 		err = -EACCES;
1096 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1097 		    !sock_flag(sk, SOCK_BROADCAST))
1098 			goto out;
1099 		if (connected)
1100 			sk_dst_set(sk, dst_clone(&rt->dst));
1101 	}
1102 
1103 	if (msg->msg_flags&MSG_CONFIRM)
1104 		goto do_confirm;
1105 back_from_confirm:
1106 
1107 	saddr = fl4->saddr;
1108 	if (!ipc.addr)
1109 		daddr = ipc.addr = fl4->daddr;
1110 
1111 	/* Lockless fast path for the non-corking case. */
1112 	if (!corkreq) {
1113 		struct inet_cork cork;
1114 
1115 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1116 				  sizeof(struct udphdr), &ipc, &rt,
1117 				  &cork, msg->msg_flags);
1118 		err = PTR_ERR(skb);
1119 		if (!IS_ERR_OR_NULL(skb))
1120 			err = udp_send_skb(skb, fl4, &cork);
1121 		goto out;
1122 	}
1123 
1124 	lock_sock(sk);
1125 	if (unlikely(up->pending)) {
1126 		/* The socket is already corked while preparing it. */
1127 		/* ... which is an evident application bug. --ANK */
1128 		release_sock(sk);
1129 
1130 		net_dbg_ratelimited("socket already corked\n");
1131 		err = -EINVAL;
1132 		goto out;
1133 	}
1134 	/*
1135 	 *	Now cork the socket to pend data.
1136 	 */
1137 	fl4 = &inet->cork.fl.u.ip4;
1138 	fl4->daddr = daddr;
1139 	fl4->saddr = saddr;
1140 	fl4->fl4_dport = dport;
1141 	fl4->fl4_sport = inet->inet_sport;
1142 	up->pending = AF_INET;
1143 
1144 do_append_data:
1145 	up->len += ulen;
1146 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1147 			     sizeof(struct udphdr), &ipc, &rt,
1148 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1149 	if (err)
1150 		udp_flush_pending_frames(sk);
1151 	else if (!corkreq)
1152 		err = udp_push_pending_frames(sk);
1153 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1154 		up->pending = 0;
1155 	release_sock(sk);
1156 
1157 out:
1158 	ip_rt_put(rt);
1159 out_free:
1160 	if (free)
1161 		kfree(ipc.opt);
1162 	if (!err)
1163 		return len;
1164 	/*
1165 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1166 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1167 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1168 	 * things).  We could add another new stat but at least for now that
1169 	 * seems like overkill.
1170 	 */
1171 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1172 		UDP_INC_STATS(sock_net(sk),
1173 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1174 	}
1175 	return err;
1176 
1177 do_confirm:
1178 	if (msg->msg_flags & MSG_PROBE)
1179 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1180 	if (!(msg->msg_flags&MSG_PROBE) || len)
1181 		goto back_from_confirm;
1182 	err = 0;
1183 	goto out;
1184 }
1185 EXPORT_SYMBOL(udp_sendmsg);
1186 
1187 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1188 		 size_t size, int flags)
1189 {
1190 	struct inet_sock *inet = inet_sk(sk);
1191 	struct udp_sock *up = udp_sk(sk);
1192 	int ret;
1193 
1194 	if (flags & MSG_SENDPAGE_NOTLAST)
1195 		flags |= MSG_MORE;
1196 
1197 	if (!up->pending) {
1198 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1199 
1200 		/* Call udp_sendmsg to specify destination address which
1201 		 * sendpage interface can't pass.
1202 		 * This will succeed only when the socket is connected.
1203 		 */
1204 		ret = udp_sendmsg(sk, &msg, 0);
1205 		if (ret < 0)
1206 			return ret;
1207 	}
1208 
1209 	lock_sock(sk);
1210 
1211 	if (unlikely(!up->pending)) {
1212 		release_sock(sk);
1213 
1214 		net_dbg_ratelimited("cork failed\n");
1215 		return -EINVAL;
1216 	}
1217 
1218 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1219 			     page, offset, size, flags);
1220 	if (ret == -EOPNOTSUPP) {
1221 		release_sock(sk);
1222 		return sock_no_sendpage(sk->sk_socket, page, offset,
1223 					size, flags);
1224 	}
1225 	if (ret < 0) {
1226 		udp_flush_pending_frames(sk);
1227 		goto out;
1228 	}
1229 
1230 	up->len += size;
1231 	if (!(up->corkflag || (flags&MSG_MORE)))
1232 		ret = udp_push_pending_frames(sk);
1233 	if (!ret)
1234 		ret = size;
1235 out:
1236 	release_sock(sk);
1237 	return ret;
1238 }
1239 
1240 #define UDP_SKB_IS_STATELESS 0x80000000
1241 
1242 static void udp_set_dev_scratch(struct sk_buff *skb)
1243 {
1244 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1245 
1246 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1247 	scratch->_tsize_state = skb->truesize;
1248 #if BITS_PER_LONG == 64
1249 	scratch->len = skb->len;
1250 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1251 	scratch->is_linear = !skb_is_nonlinear(skb);
1252 #endif
1253 	/* all head states execept sp (dst, sk, nf) are always cleared by
1254 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1255 	 * process IP_CMSG_PASSSEC at recvmsg() time
1256 	 */
1257 	if (likely(!skb_sec_path(skb)))
1258 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1259 }
1260 
1261 static int udp_skb_truesize(struct sk_buff *skb)
1262 {
1263 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1264 }
1265 
1266 static bool udp_skb_has_head_state(struct sk_buff *skb)
1267 {
1268 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1269 }
1270 
1271 /* fully reclaim rmem/fwd memory allocated for skb */
1272 static void udp_rmem_release(struct sock *sk, int size, int partial,
1273 			     bool rx_queue_lock_held)
1274 {
1275 	struct udp_sock *up = udp_sk(sk);
1276 	struct sk_buff_head *sk_queue;
1277 	int amt;
1278 
1279 	if (likely(partial)) {
1280 		up->forward_deficit += size;
1281 		size = up->forward_deficit;
1282 		if (size < (sk->sk_rcvbuf >> 2))
1283 			return;
1284 	} else {
1285 		size += up->forward_deficit;
1286 	}
1287 	up->forward_deficit = 0;
1288 
1289 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1290 	 * if the called don't held it already
1291 	 */
1292 	sk_queue = &sk->sk_receive_queue;
1293 	if (!rx_queue_lock_held)
1294 		spin_lock(&sk_queue->lock);
1295 
1296 
1297 	sk->sk_forward_alloc += size;
1298 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1299 	sk->sk_forward_alloc -= amt;
1300 
1301 	if (amt)
1302 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1303 
1304 	atomic_sub(size, &sk->sk_rmem_alloc);
1305 
1306 	/* this can save us from acquiring the rx queue lock on next receive */
1307 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1308 
1309 	if (!rx_queue_lock_held)
1310 		spin_unlock(&sk_queue->lock);
1311 }
1312 
1313 /* Note: called with reader_queue.lock held.
1314  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1315  * This avoids a cache line miss while receive_queue lock is held.
1316  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1317  */
1318 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1319 {
1320 	prefetch(&skb->data);
1321 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1322 }
1323 EXPORT_SYMBOL(udp_skb_destructor);
1324 
1325 /* as above, but the caller held the rx queue lock, too */
1326 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1327 {
1328 	prefetch(&skb->data);
1329 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1330 }
1331 
1332 /* Idea of busylocks is to let producers grab an extra spinlock
1333  * to relieve pressure on the receive_queue spinlock shared by consumer.
1334  * Under flood, this means that only one producer can be in line
1335  * trying to acquire the receive_queue spinlock.
1336  * These busylock can be allocated on a per cpu manner, instead of a
1337  * per socket one (that would consume a cache line per socket)
1338  */
1339 static int udp_busylocks_log __read_mostly;
1340 static spinlock_t *udp_busylocks __read_mostly;
1341 
1342 static spinlock_t *busylock_acquire(void *ptr)
1343 {
1344 	spinlock_t *busy;
1345 
1346 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1347 	spin_lock(busy);
1348 	return busy;
1349 }
1350 
1351 static void busylock_release(spinlock_t *busy)
1352 {
1353 	if (busy)
1354 		spin_unlock(busy);
1355 }
1356 
1357 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1358 {
1359 	struct sk_buff_head *list = &sk->sk_receive_queue;
1360 	int rmem, delta, amt, err = -ENOMEM;
1361 	spinlock_t *busy = NULL;
1362 	int size;
1363 
1364 	/* try to avoid the costly atomic add/sub pair when the receive
1365 	 * queue is full; always allow at least a packet
1366 	 */
1367 	rmem = atomic_read(&sk->sk_rmem_alloc);
1368 	if (rmem > sk->sk_rcvbuf)
1369 		goto drop;
1370 
1371 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1372 	 * having linear skbs :
1373 	 * - Reduce memory overhead and thus increase receive queue capacity
1374 	 * - Less cache line misses at copyout() time
1375 	 * - Less work at consume_skb() (less alien page frag freeing)
1376 	 */
1377 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1378 		skb_condense(skb);
1379 
1380 		busy = busylock_acquire(sk);
1381 	}
1382 	size = skb->truesize;
1383 	udp_set_dev_scratch(skb);
1384 
1385 	/* we drop only if the receive buf is full and the receive
1386 	 * queue contains some other skb
1387 	 */
1388 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1389 	if (rmem > (size + sk->sk_rcvbuf))
1390 		goto uncharge_drop;
1391 
1392 	spin_lock(&list->lock);
1393 	if (size >= sk->sk_forward_alloc) {
1394 		amt = sk_mem_pages(size);
1395 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1396 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1397 			err = -ENOBUFS;
1398 			spin_unlock(&list->lock);
1399 			goto uncharge_drop;
1400 		}
1401 
1402 		sk->sk_forward_alloc += delta;
1403 	}
1404 
1405 	sk->sk_forward_alloc -= size;
1406 
1407 	/* no need to setup a destructor, we will explicitly release the
1408 	 * forward allocated memory on dequeue
1409 	 */
1410 	sock_skb_set_dropcount(sk, skb);
1411 
1412 	__skb_queue_tail(list, skb);
1413 	spin_unlock(&list->lock);
1414 
1415 	if (!sock_flag(sk, SOCK_DEAD))
1416 		sk->sk_data_ready(sk);
1417 
1418 	busylock_release(busy);
1419 	return 0;
1420 
1421 uncharge_drop:
1422 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1423 
1424 drop:
1425 	atomic_inc(&sk->sk_drops);
1426 	busylock_release(busy);
1427 	return err;
1428 }
1429 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1430 
1431 void udp_destruct_sock(struct sock *sk)
1432 {
1433 	/* reclaim completely the forward allocated memory */
1434 	struct udp_sock *up = udp_sk(sk);
1435 	unsigned int total = 0;
1436 	struct sk_buff *skb;
1437 
1438 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1439 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1440 		total += skb->truesize;
1441 		kfree_skb(skb);
1442 	}
1443 	udp_rmem_release(sk, total, 0, true);
1444 
1445 	inet_sock_destruct(sk);
1446 }
1447 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1448 
1449 int udp_init_sock(struct sock *sk)
1450 {
1451 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1452 	sk->sk_destruct = udp_destruct_sock;
1453 	return 0;
1454 }
1455 EXPORT_SYMBOL_GPL(udp_init_sock);
1456 
1457 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1458 {
1459 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1460 		bool slow = lock_sock_fast(sk);
1461 
1462 		sk_peek_offset_bwd(sk, len);
1463 		unlock_sock_fast(sk, slow);
1464 	}
1465 
1466 	if (!skb_unref(skb))
1467 		return;
1468 
1469 	/* In the more common cases we cleared the head states previously,
1470 	 * see __udp_queue_rcv_skb().
1471 	 */
1472 	if (unlikely(udp_skb_has_head_state(skb)))
1473 		skb_release_head_state(skb);
1474 	__consume_stateless_skb(skb);
1475 }
1476 EXPORT_SYMBOL_GPL(skb_consume_udp);
1477 
1478 static struct sk_buff *__first_packet_length(struct sock *sk,
1479 					     struct sk_buff_head *rcvq,
1480 					     int *total)
1481 {
1482 	struct sk_buff *skb;
1483 
1484 	while ((skb = skb_peek(rcvq)) != NULL) {
1485 		if (udp_lib_checksum_complete(skb)) {
1486 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1487 					IS_UDPLITE(sk));
1488 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1489 					IS_UDPLITE(sk));
1490 			atomic_inc(&sk->sk_drops);
1491 			__skb_unlink(skb, rcvq);
1492 			*total += skb->truesize;
1493 			kfree_skb(skb);
1494 		} else {
1495 			/* the csum related bits could be changed, refresh
1496 			 * the scratch area
1497 			 */
1498 			udp_set_dev_scratch(skb);
1499 			break;
1500 		}
1501 	}
1502 	return skb;
1503 }
1504 
1505 /**
1506  *	first_packet_length	- return length of first packet in receive queue
1507  *	@sk: socket
1508  *
1509  *	Drops all bad checksum frames, until a valid one is found.
1510  *	Returns the length of found skb, or -1 if none is found.
1511  */
1512 static int first_packet_length(struct sock *sk)
1513 {
1514 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1515 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1516 	struct sk_buff *skb;
1517 	int total = 0;
1518 	int res;
1519 
1520 	spin_lock_bh(&rcvq->lock);
1521 	skb = __first_packet_length(sk, rcvq, &total);
1522 	if (!skb && !skb_queue_empty(sk_queue)) {
1523 		spin_lock(&sk_queue->lock);
1524 		skb_queue_splice_tail_init(sk_queue, rcvq);
1525 		spin_unlock(&sk_queue->lock);
1526 
1527 		skb = __first_packet_length(sk, rcvq, &total);
1528 	}
1529 	res = skb ? skb->len : -1;
1530 	if (total)
1531 		udp_rmem_release(sk, total, 1, false);
1532 	spin_unlock_bh(&rcvq->lock);
1533 	return res;
1534 }
1535 
1536 /*
1537  *	IOCTL requests applicable to the UDP protocol
1538  */
1539 
1540 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1541 {
1542 	switch (cmd) {
1543 	case SIOCOUTQ:
1544 	{
1545 		int amount = sk_wmem_alloc_get(sk);
1546 
1547 		return put_user(amount, (int __user *)arg);
1548 	}
1549 
1550 	case SIOCINQ:
1551 	{
1552 		int amount = max_t(int, 0, first_packet_length(sk));
1553 
1554 		return put_user(amount, (int __user *)arg);
1555 	}
1556 
1557 	default:
1558 		return -ENOIOCTLCMD;
1559 	}
1560 
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL(udp_ioctl);
1564 
1565 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1566 			       int noblock, int *peeked, int *off, int *err)
1567 {
1568 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1569 	struct sk_buff_head *queue;
1570 	struct sk_buff *last;
1571 	long timeo;
1572 	int error;
1573 
1574 	queue = &udp_sk(sk)->reader_queue;
1575 	flags |= noblock ? MSG_DONTWAIT : 0;
1576 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1577 	do {
1578 		struct sk_buff *skb;
1579 
1580 		error = sock_error(sk);
1581 		if (error)
1582 			break;
1583 
1584 		error = -EAGAIN;
1585 		*peeked = 0;
1586 		do {
1587 			spin_lock_bh(&queue->lock);
1588 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1589 							udp_skb_destructor,
1590 							peeked, off, err,
1591 							&last);
1592 			if (skb) {
1593 				spin_unlock_bh(&queue->lock);
1594 				return skb;
1595 			}
1596 
1597 			if (skb_queue_empty(sk_queue)) {
1598 				spin_unlock_bh(&queue->lock);
1599 				goto busy_check;
1600 			}
1601 
1602 			/* refill the reader queue and walk it again
1603 			 * keep both queues locked to avoid re-acquiring
1604 			 * the sk_receive_queue lock if fwd memory scheduling
1605 			 * is needed.
1606 			 */
1607 			spin_lock(&sk_queue->lock);
1608 			skb_queue_splice_tail_init(sk_queue, queue);
1609 
1610 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1611 							udp_skb_dtor_locked,
1612 							peeked, off, err,
1613 							&last);
1614 			spin_unlock(&sk_queue->lock);
1615 			spin_unlock_bh(&queue->lock);
1616 			if (skb)
1617 				return skb;
1618 
1619 busy_check:
1620 			if (!sk_can_busy_loop(sk))
1621 				break;
1622 
1623 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1624 		} while (!skb_queue_empty(sk_queue));
1625 
1626 		/* sk_queue is empty, reader_queue may contain peeked packets */
1627 	} while (timeo &&
1628 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1629 					      (struct sk_buff *)sk_queue));
1630 
1631 	*err = error;
1632 	return NULL;
1633 }
1634 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1635 
1636 /*
1637  * 	This should be easy, if there is something there we
1638  * 	return it, otherwise we block.
1639  */
1640 
1641 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1642 		int flags, int *addr_len)
1643 {
1644 	struct inet_sock *inet = inet_sk(sk);
1645 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1646 	struct sk_buff *skb;
1647 	unsigned int ulen, copied;
1648 	int peeked, peeking, off;
1649 	int err;
1650 	int is_udplite = IS_UDPLITE(sk);
1651 	bool checksum_valid = false;
1652 
1653 	if (flags & MSG_ERRQUEUE)
1654 		return ip_recv_error(sk, msg, len, addr_len);
1655 
1656 try_again:
1657 	peeking = flags & MSG_PEEK;
1658 	off = sk_peek_offset(sk, flags);
1659 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1660 	if (!skb)
1661 		return err;
1662 
1663 	ulen = udp_skb_len(skb);
1664 	copied = len;
1665 	if (copied > ulen - off)
1666 		copied = ulen - off;
1667 	else if (copied < ulen)
1668 		msg->msg_flags |= MSG_TRUNC;
1669 
1670 	/*
1671 	 * If checksum is needed at all, try to do it while copying the
1672 	 * data.  If the data is truncated, or if we only want a partial
1673 	 * coverage checksum (UDP-Lite), do it before the copy.
1674 	 */
1675 
1676 	if (copied < ulen || peeking ||
1677 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1678 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1679 				!__udp_lib_checksum_complete(skb);
1680 		if (!checksum_valid)
1681 			goto csum_copy_err;
1682 	}
1683 
1684 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1685 		if (udp_skb_is_linear(skb))
1686 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1687 		else
1688 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1689 	} else {
1690 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1691 
1692 		if (err == -EINVAL)
1693 			goto csum_copy_err;
1694 	}
1695 
1696 	if (unlikely(err)) {
1697 		if (!peeked) {
1698 			atomic_inc(&sk->sk_drops);
1699 			UDP_INC_STATS(sock_net(sk),
1700 				      UDP_MIB_INERRORS, is_udplite);
1701 		}
1702 		kfree_skb(skb);
1703 		return err;
1704 	}
1705 
1706 	if (!peeked)
1707 		UDP_INC_STATS(sock_net(sk),
1708 			      UDP_MIB_INDATAGRAMS, is_udplite);
1709 
1710 	sock_recv_ts_and_drops(msg, sk, skb);
1711 
1712 	/* Copy the address. */
1713 	if (sin) {
1714 		sin->sin_family = AF_INET;
1715 		sin->sin_port = udp_hdr(skb)->source;
1716 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1717 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1718 		*addr_len = sizeof(*sin);
1719 	}
1720 	if (inet->cmsg_flags)
1721 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1722 
1723 	err = copied;
1724 	if (flags & MSG_TRUNC)
1725 		err = ulen;
1726 
1727 	skb_consume_udp(sk, skb, peeking ? -err : err);
1728 	return err;
1729 
1730 csum_copy_err:
1731 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1732 				 udp_skb_destructor)) {
1733 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1734 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1735 	}
1736 	kfree_skb(skb);
1737 
1738 	/* starting over for a new packet, but check if we need to yield */
1739 	cond_resched();
1740 	msg->msg_flags &= ~MSG_TRUNC;
1741 	goto try_again;
1742 }
1743 
1744 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1745 {
1746 	/* This check is replicated from __ip4_datagram_connect() and
1747 	 * intended to prevent BPF program called below from accessing bytes
1748 	 * that are out of the bound specified by user in addr_len.
1749 	 */
1750 	if (addr_len < sizeof(struct sockaddr_in))
1751 		return -EINVAL;
1752 
1753 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1754 }
1755 EXPORT_SYMBOL(udp_pre_connect);
1756 
1757 int __udp_disconnect(struct sock *sk, int flags)
1758 {
1759 	struct inet_sock *inet = inet_sk(sk);
1760 	/*
1761 	 *	1003.1g - break association.
1762 	 */
1763 
1764 	sk->sk_state = TCP_CLOSE;
1765 	inet->inet_daddr = 0;
1766 	inet->inet_dport = 0;
1767 	sock_rps_reset_rxhash(sk);
1768 	sk->sk_bound_dev_if = 0;
1769 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1770 		inet_reset_saddr(sk);
1771 
1772 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1773 		sk->sk_prot->unhash(sk);
1774 		inet->inet_sport = 0;
1775 	}
1776 	sk_dst_reset(sk);
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL(__udp_disconnect);
1780 
1781 int udp_disconnect(struct sock *sk, int flags)
1782 {
1783 	lock_sock(sk);
1784 	__udp_disconnect(sk, flags);
1785 	release_sock(sk);
1786 	return 0;
1787 }
1788 EXPORT_SYMBOL(udp_disconnect);
1789 
1790 void udp_lib_unhash(struct sock *sk)
1791 {
1792 	if (sk_hashed(sk)) {
1793 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1794 		struct udp_hslot *hslot, *hslot2;
1795 
1796 		hslot  = udp_hashslot(udptable, sock_net(sk),
1797 				      udp_sk(sk)->udp_port_hash);
1798 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1799 
1800 		spin_lock_bh(&hslot->lock);
1801 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1802 			reuseport_detach_sock(sk);
1803 		if (sk_del_node_init_rcu(sk)) {
1804 			hslot->count--;
1805 			inet_sk(sk)->inet_num = 0;
1806 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1807 
1808 			spin_lock(&hslot2->lock);
1809 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1810 			hslot2->count--;
1811 			spin_unlock(&hslot2->lock);
1812 		}
1813 		spin_unlock_bh(&hslot->lock);
1814 	}
1815 }
1816 EXPORT_SYMBOL(udp_lib_unhash);
1817 
1818 /*
1819  * inet_rcv_saddr was changed, we must rehash secondary hash
1820  */
1821 void udp_lib_rehash(struct sock *sk, u16 newhash)
1822 {
1823 	if (sk_hashed(sk)) {
1824 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1825 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1826 
1827 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1828 		nhslot2 = udp_hashslot2(udptable, newhash);
1829 		udp_sk(sk)->udp_portaddr_hash = newhash;
1830 
1831 		if (hslot2 != nhslot2 ||
1832 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1833 			hslot = udp_hashslot(udptable, sock_net(sk),
1834 					     udp_sk(sk)->udp_port_hash);
1835 			/* we must lock primary chain too */
1836 			spin_lock_bh(&hslot->lock);
1837 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1838 				reuseport_detach_sock(sk);
1839 
1840 			if (hslot2 != nhslot2) {
1841 				spin_lock(&hslot2->lock);
1842 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1843 				hslot2->count--;
1844 				spin_unlock(&hslot2->lock);
1845 
1846 				spin_lock(&nhslot2->lock);
1847 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1848 							 &nhslot2->head);
1849 				nhslot2->count++;
1850 				spin_unlock(&nhslot2->lock);
1851 			}
1852 
1853 			spin_unlock_bh(&hslot->lock);
1854 		}
1855 	}
1856 }
1857 EXPORT_SYMBOL(udp_lib_rehash);
1858 
1859 static void udp_v4_rehash(struct sock *sk)
1860 {
1861 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1862 					  inet_sk(sk)->inet_rcv_saddr,
1863 					  inet_sk(sk)->inet_num);
1864 	udp_lib_rehash(sk, new_hash);
1865 }
1866 
1867 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1868 {
1869 	int rc;
1870 
1871 	if (inet_sk(sk)->inet_daddr) {
1872 		sock_rps_save_rxhash(sk, skb);
1873 		sk_mark_napi_id(sk, skb);
1874 		sk_incoming_cpu_update(sk);
1875 	} else {
1876 		sk_mark_napi_id_once(sk, skb);
1877 	}
1878 
1879 	rc = __udp_enqueue_schedule_skb(sk, skb);
1880 	if (rc < 0) {
1881 		int is_udplite = IS_UDPLITE(sk);
1882 
1883 		/* Note that an ENOMEM error is charged twice */
1884 		if (rc == -ENOMEM)
1885 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1886 					is_udplite);
1887 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1888 		kfree_skb(skb);
1889 		trace_udp_fail_queue_rcv_skb(rc, sk);
1890 		return -1;
1891 	}
1892 
1893 	return 0;
1894 }
1895 
1896 static DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
1897 void udp_encap_enable(void)
1898 {
1899 	static_branch_enable(&udp_encap_needed_key);
1900 }
1901 EXPORT_SYMBOL(udp_encap_enable);
1902 
1903 /* returns:
1904  *  -1: error
1905  *   0: success
1906  *  >0: "udp encap" protocol resubmission
1907  *
1908  * Note that in the success and error cases, the skb is assumed to
1909  * have either been requeued or freed.
1910  */
1911 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1912 {
1913 	struct udp_sock *up = udp_sk(sk);
1914 	int is_udplite = IS_UDPLITE(sk);
1915 
1916 	/*
1917 	 *	Charge it to the socket, dropping if the queue is full.
1918 	 */
1919 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1920 		goto drop;
1921 	nf_reset(skb);
1922 
1923 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1924 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1925 
1926 		/*
1927 		 * This is an encapsulation socket so pass the skb to
1928 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1929 		 * fall through and pass this up the UDP socket.
1930 		 * up->encap_rcv() returns the following value:
1931 		 * =0 if skb was successfully passed to the encap
1932 		 *    handler or was discarded by it.
1933 		 * >0 if skb should be passed on to UDP.
1934 		 * <0 if skb should be resubmitted as proto -N
1935 		 */
1936 
1937 		/* if we're overly short, let UDP handle it */
1938 		encap_rcv = READ_ONCE(up->encap_rcv);
1939 		if (encap_rcv) {
1940 			int ret;
1941 
1942 			/* Verify checksum before giving to encap */
1943 			if (udp_lib_checksum_complete(skb))
1944 				goto csum_error;
1945 
1946 			ret = encap_rcv(sk, skb);
1947 			if (ret <= 0) {
1948 				__UDP_INC_STATS(sock_net(sk),
1949 						UDP_MIB_INDATAGRAMS,
1950 						is_udplite);
1951 				return -ret;
1952 			}
1953 		}
1954 
1955 		/* FALLTHROUGH -- it's a UDP Packet */
1956 	}
1957 
1958 	/*
1959 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1960 	 */
1961 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1962 
1963 		/*
1964 		 * MIB statistics other than incrementing the error count are
1965 		 * disabled for the following two types of errors: these depend
1966 		 * on the application settings, not on the functioning of the
1967 		 * protocol stack as such.
1968 		 *
1969 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1970 		 * way ... to ... at least let the receiving application block
1971 		 * delivery of packets with coverage values less than a value
1972 		 * provided by the application."
1973 		 */
1974 		if (up->pcrlen == 0) {          /* full coverage was set  */
1975 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1976 					    UDP_SKB_CB(skb)->cscov, skb->len);
1977 			goto drop;
1978 		}
1979 		/* The next case involves violating the min. coverage requested
1980 		 * by the receiver. This is subtle: if receiver wants x and x is
1981 		 * greater than the buffersize/MTU then receiver will complain
1982 		 * that it wants x while sender emits packets of smaller size y.
1983 		 * Therefore the above ...()->partial_cov statement is essential.
1984 		 */
1985 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1986 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1987 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1988 			goto drop;
1989 		}
1990 	}
1991 
1992 	prefetch(&sk->sk_rmem_alloc);
1993 	if (rcu_access_pointer(sk->sk_filter) &&
1994 	    udp_lib_checksum_complete(skb))
1995 			goto csum_error;
1996 
1997 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1998 		goto drop;
1999 
2000 	udp_csum_pull_header(skb);
2001 
2002 	ipv4_pktinfo_prepare(sk, skb);
2003 	return __udp_queue_rcv_skb(sk, skb);
2004 
2005 csum_error:
2006 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2007 drop:
2008 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2009 	atomic_inc(&sk->sk_drops);
2010 	kfree_skb(skb);
2011 	return -1;
2012 }
2013 
2014 /* For TCP sockets, sk_rx_dst is protected by socket lock
2015  * For UDP, we use xchg() to guard against concurrent changes.
2016  */
2017 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2018 {
2019 	struct dst_entry *old;
2020 
2021 	if (dst_hold_safe(dst)) {
2022 		old = xchg(&sk->sk_rx_dst, dst);
2023 		dst_release(old);
2024 		return old != dst;
2025 	}
2026 	return false;
2027 }
2028 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2029 
2030 /*
2031  *	Multicasts and broadcasts go to each listener.
2032  *
2033  *	Note: called only from the BH handler context.
2034  */
2035 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2036 				    struct udphdr  *uh,
2037 				    __be32 saddr, __be32 daddr,
2038 				    struct udp_table *udptable,
2039 				    int proto)
2040 {
2041 	struct sock *sk, *first = NULL;
2042 	unsigned short hnum = ntohs(uh->dest);
2043 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2044 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2045 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2046 	int dif = skb->dev->ifindex;
2047 	int sdif = inet_sdif(skb);
2048 	struct hlist_node *node;
2049 	struct sk_buff *nskb;
2050 
2051 	if (use_hash2) {
2052 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2053 			    udptable->mask;
2054 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2055 start_lookup:
2056 		hslot = &udptable->hash2[hash2];
2057 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2058 	}
2059 
2060 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2061 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2062 					 uh->source, saddr, dif, sdif, hnum))
2063 			continue;
2064 
2065 		if (!first) {
2066 			first = sk;
2067 			continue;
2068 		}
2069 		nskb = skb_clone(skb, GFP_ATOMIC);
2070 
2071 		if (unlikely(!nskb)) {
2072 			atomic_inc(&sk->sk_drops);
2073 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2074 					IS_UDPLITE(sk));
2075 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2076 					IS_UDPLITE(sk));
2077 			continue;
2078 		}
2079 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2080 			consume_skb(nskb);
2081 	}
2082 
2083 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2084 	if (use_hash2 && hash2 != hash2_any) {
2085 		hash2 = hash2_any;
2086 		goto start_lookup;
2087 	}
2088 
2089 	if (first) {
2090 		if (udp_queue_rcv_skb(first, skb) > 0)
2091 			consume_skb(skb);
2092 	} else {
2093 		kfree_skb(skb);
2094 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2095 				proto == IPPROTO_UDPLITE);
2096 	}
2097 	return 0;
2098 }
2099 
2100 /* Initialize UDP checksum. If exited with zero value (success),
2101  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2102  * Otherwise, csum completion requires chacksumming packet body,
2103  * including udp header and folding it to skb->csum.
2104  */
2105 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2106 				 int proto)
2107 {
2108 	int err;
2109 
2110 	UDP_SKB_CB(skb)->partial_cov = 0;
2111 	UDP_SKB_CB(skb)->cscov = skb->len;
2112 
2113 	if (proto == IPPROTO_UDPLITE) {
2114 		err = udplite_checksum_init(skb, uh);
2115 		if (err)
2116 			return err;
2117 
2118 		if (UDP_SKB_CB(skb)->partial_cov) {
2119 			skb->csum = inet_compute_pseudo(skb, proto);
2120 			return 0;
2121 		}
2122 	}
2123 
2124 	/* Note, we are only interested in != 0 or == 0, thus the
2125 	 * force to int.
2126 	 */
2127 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2128 							 inet_compute_pseudo);
2129 }
2130 
2131 /*
2132  *	All we need to do is get the socket, and then do a checksum.
2133  */
2134 
2135 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2136 		   int proto)
2137 {
2138 	struct sock *sk;
2139 	struct udphdr *uh;
2140 	unsigned short ulen;
2141 	struct rtable *rt = skb_rtable(skb);
2142 	__be32 saddr, daddr;
2143 	struct net *net = dev_net(skb->dev);
2144 
2145 	/*
2146 	 *  Validate the packet.
2147 	 */
2148 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2149 		goto drop;		/* No space for header. */
2150 
2151 	uh   = udp_hdr(skb);
2152 	ulen = ntohs(uh->len);
2153 	saddr = ip_hdr(skb)->saddr;
2154 	daddr = ip_hdr(skb)->daddr;
2155 
2156 	if (ulen > skb->len)
2157 		goto short_packet;
2158 
2159 	if (proto == IPPROTO_UDP) {
2160 		/* UDP validates ulen. */
2161 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2162 			goto short_packet;
2163 		uh = udp_hdr(skb);
2164 	}
2165 
2166 	if (udp4_csum_init(skb, uh, proto))
2167 		goto csum_error;
2168 
2169 	sk = skb_steal_sock(skb);
2170 	if (sk) {
2171 		struct dst_entry *dst = skb_dst(skb);
2172 		int ret;
2173 
2174 		if (unlikely(sk->sk_rx_dst != dst))
2175 			udp_sk_rx_dst_set(sk, dst);
2176 
2177 		ret = udp_queue_rcv_skb(sk, skb);
2178 		sock_put(sk);
2179 		/* a return value > 0 means to resubmit the input, but
2180 		 * it wants the return to be -protocol, or 0
2181 		 */
2182 		if (ret > 0)
2183 			return -ret;
2184 		return 0;
2185 	}
2186 
2187 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2188 		return __udp4_lib_mcast_deliver(net, skb, uh,
2189 						saddr, daddr, udptable, proto);
2190 
2191 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2192 	if (sk) {
2193 		int ret;
2194 
2195 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2196 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2197 						 inet_compute_pseudo);
2198 
2199 		ret = udp_queue_rcv_skb(sk, skb);
2200 
2201 		/* a return value > 0 means to resubmit the input, but
2202 		 * it wants the return to be -protocol, or 0
2203 		 */
2204 		if (ret > 0)
2205 			return -ret;
2206 		return 0;
2207 	}
2208 
2209 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2210 		goto drop;
2211 	nf_reset(skb);
2212 
2213 	/* No socket. Drop packet silently, if checksum is wrong */
2214 	if (udp_lib_checksum_complete(skb))
2215 		goto csum_error;
2216 
2217 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2218 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2219 
2220 	/*
2221 	 * Hmm.  We got an UDP packet to a port to which we
2222 	 * don't wanna listen.  Ignore it.
2223 	 */
2224 	kfree_skb(skb);
2225 	return 0;
2226 
2227 short_packet:
2228 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2229 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2230 			    &saddr, ntohs(uh->source),
2231 			    ulen, skb->len,
2232 			    &daddr, ntohs(uh->dest));
2233 	goto drop;
2234 
2235 csum_error:
2236 	/*
2237 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2238 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2239 	 */
2240 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2241 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2242 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2243 			    ulen);
2244 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2245 drop:
2246 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2247 	kfree_skb(skb);
2248 	return 0;
2249 }
2250 
2251 /* We can only early demux multicast if there is a single matching socket.
2252  * If more than one socket found returns NULL
2253  */
2254 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2255 						  __be16 loc_port, __be32 loc_addr,
2256 						  __be16 rmt_port, __be32 rmt_addr,
2257 						  int dif, int sdif)
2258 {
2259 	struct sock *sk, *result;
2260 	unsigned short hnum = ntohs(loc_port);
2261 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2262 	struct udp_hslot *hslot = &udp_table.hash[slot];
2263 
2264 	/* Do not bother scanning a too big list */
2265 	if (hslot->count > 10)
2266 		return NULL;
2267 
2268 	result = NULL;
2269 	sk_for_each_rcu(sk, &hslot->head) {
2270 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2271 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2272 			if (result)
2273 				return NULL;
2274 			result = sk;
2275 		}
2276 	}
2277 
2278 	return result;
2279 }
2280 
2281 /* For unicast we should only early demux connected sockets or we can
2282  * break forwarding setups.  The chains here can be long so only check
2283  * if the first socket is an exact match and if not move on.
2284  */
2285 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2286 					    __be16 loc_port, __be32 loc_addr,
2287 					    __be16 rmt_port, __be32 rmt_addr,
2288 					    int dif, int sdif)
2289 {
2290 	unsigned short hnum = ntohs(loc_port);
2291 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2292 	unsigned int slot2 = hash2 & udp_table.mask;
2293 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2294 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2295 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2296 	struct sock *sk;
2297 
2298 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2299 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2300 			       loc_addr, ports, dif, sdif))
2301 			return sk;
2302 		/* Only check first socket in chain */
2303 		break;
2304 	}
2305 	return NULL;
2306 }
2307 
2308 int udp_v4_early_demux(struct sk_buff *skb)
2309 {
2310 	struct net *net = dev_net(skb->dev);
2311 	struct in_device *in_dev = NULL;
2312 	const struct iphdr *iph;
2313 	const struct udphdr *uh;
2314 	struct sock *sk = NULL;
2315 	struct dst_entry *dst;
2316 	int dif = skb->dev->ifindex;
2317 	int sdif = inet_sdif(skb);
2318 	int ours;
2319 
2320 	/* validate the packet */
2321 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2322 		return 0;
2323 
2324 	iph = ip_hdr(skb);
2325 	uh = udp_hdr(skb);
2326 
2327 	if (skb->pkt_type == PACKET_MULTICAST) {
2328 		in_dev = __in_dev_get_rcu(skb->dev);
2329 
2330 		if (!in_dev)
2331 			return 0;
2332 
2333 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2334 				       iph->protocol);
2335 		if (!ours)
2336 			return 0;
2337 
2338 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2339 						   uh->source, iph->saddr,
2340 						   dif, sdif);
2341 	} else if (skb->pkt_type == PACKET_HOST) {
2342 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2343 					     uh->source, iph->saddr, dif, sdif);
2344 	}
2345 
2346 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2347 		return 0;
2348 
2349 	skb->sk = sk;
2350 	skb->destructor = sock_efree;
2351 	dst = READ_ONCE(sk->sk_rx_dst);
2352 
2353 	if (dst)
2354 		dst = dst_check(dst, 0);
2355 	if (dst) {
2356 		u32 itag = 0;
2357 
2358 		/* set noref for now.
2359 		 * any place which wants to hold dst has to call
2360 		 * dst_hold_safe()
2361 		 */
2362 		skb_dst_set_noref(skb, dst);
2363 
2364 		/* for unconnected multicast sockets we need to validate
2365 		 * the source on each packet
2366 		 */
2367 		if (!inet_sk(sk)->inet_daddr && in_dev)
2368 			return ip_mc_validate_source(skb, iph->daddr,
2369 						     iph->saddr, iph->tos,
2370 						     skb->dev, in_dev, &itag);
2371 	}
2372 	return 0;
2373 }
2374 
2375 int udp_rcv(struct sk_buff *skb)
2376 {
2377 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2378 }
2379 
2380 void udp_destroy_sock(struct sock *sk)
2381 {
2382 	struct udp_sock *up = udp_sk(sk);
2383 	bool slow = lock_sock_fast(sk);
2384 	udp_flush_pending_frames(sk);
2385 	unlock_sock_fast(sk, slow);
2386 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2387 		void (*encap_destroy)(struct sock *sk);
2388 		encap_destroy = READ_ONCE(up->encap_destroy);
2389 		if (encap_destroy)
2390 			encap_destroy(sk);
2391 	}
2392 }
2393 
2394 /*
2395  *	Socket option code for UDP
2396  */
2397 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2398 		       char __user *optval, unsigned int optlen,
2399 		       int (*push_pending_frames)(struct sock *))
2400 {
2401 	struct udp_sock *up = udp_sk(sk);
2402 	int val, valbool;
2403 	int err = 0;
2404 	int is_udplite = IS_UDPLITE(sk);
2405 
2406 	if (optlen < sizeof(int))
2407 		return -EINVAL;
2408 
2409 	if (get_user(val, (int __user *)optval))
2410 		return -EFAULT;
2411 
2412 	valbool = val ? 1 : 0;
2413 
2414 	switch (optname) {
2415 	case UDP_CORK:
2416 		if (val != 0) {
2417 			up->corkflag = 1;
2418 		} else {
2419 			up->corkflag = 0;
2420 			lock_sock(sk);
2421 			push_pending_frames(sk);
2422 			release_sock(sk);
2423 		}
2424 		break;
2425 
2426 	case UDP_ENCAP:
2427 		switch (val) {
2428 		case 0:
2429 		case UDP_ENCAP_ESPINUDP:
2430 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2431 			up->encap_rcv = xfrm4_udp_encap_rcv;
2432 			/* FALLTHROUGH */
2433 		case UDP_ENCAP_L2TPINUDP:
2434 			up->encap_type = val;
2435 			udp_encap_enable();
2436 			break;
2437 		default:
2438 			err = -ENOPROTOOPT;
2439 			break;
2440 		}
2441 		break;
2442 
2443 	case UDP_NO_CHECK6_TX:
2444 		up->no_check6_tx = valbool;
2445 		break;
2446 
2447 	case UDP_NO_CHECK6_RX:
2448 		up->no_check6_rx = valbool;
2449 		break;
2450 
2451 	case UDP_SEGMENT:
2452 		if (val < 0 || val > USHRT_MAX)
2453 			return -EINVAL;
2454 		up->gso_size = val;
2455 		break;
2456 
2457 	/*
2458 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2459 	 */
2460 	/* The sender sets actual checksum coverage length via this option.
2461 	 * The case coverage > packet length is handled by send module. */
2462 	case UDPLITE_SEND_CSCOV:
2463 		if (!is_udplite)         /* Disable the option on UDP sockets */
2464 			return -ENOPROTOOPT;
2465 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2466 			val = 8;
2467 		else if (val > USHRT_MAX)
2468 			val = USHRT_MAX;
2469 		up->pcslen = val;
2470 		up->pcflag |= UDPLITE_SEND_CC;
2471 		break;
2472 
2473 	/* The receiver specifies a minimum checksum coverage value. To make
2474 	 * sense, this should be set to at least 8 (as done below). If zero is
2475 	 * used, this again means full checksum coverage.                     */
2476 	case UDPLITE_RECV_CSCOV:
2477 		if (!is_udplite)         /* Disable the option on UDP sockets */
2478 			return -ENOPROTOOPT;
2479 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2480 			val = 8;
2481 		else if (val > USHRT_MAX)
2482 			val = USHRT_MAX;
2483 		up->pcrlen = val;
2484 		up->pcflag |= UDPLITE_RECV_CC;
2485 		break;
2486 
2487 	default:
2488 		err = -ENOPROTOOPT;
2489 		break;
2490 	}
2491 
2492 	return err;
2493 }
2494 EXPORT_SYMBOL(udp_lib_setsockopt);
2495 
2496 int udp_setsockopt(struct sock *sk, int level, int optname,
2497 		   char __user *optval, unsigned int optlen)
2498 {
2499 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2500 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2501 					  udp_push_pending_frames);
2502 	return ip_setsockopt(sk, level, optname, optval, optlen);
2503 }
2504 
2505 #ifdef CONFIG_COMPAT
2506 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2507 			  char __user *optval, unsigned int optlen)
2508 {
2509 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2510 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2511 					  udp_push_pending_frames);
2512 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2513 }
2514 #endif
2515 
2516 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2517 		       char __user *optval, int __user *optlen)
2518 {
2519 	struct udp_sock *up = udp_sk(sk);
2520 	int val, len;
2521 
2522 	if (get_user(len, optlen))
2523 		return -EFAULT;
2524 
2525 	len = min_t(unsigned int, len, sizeof(int));
2526 
2527 	if (len < 0)
2528 		return -EINVAL;
2529 
2530 	switch (optname) {
2531 	case UDP_CORK:
2532 		val = up->corkflag;
2533 		break;
2534 
2535 	case UDP_ENCAP:
2536 		val = up->encap_type;
2537 		break;
2538 
2539 	case UDP_NO_CHECK6_TX:
2540 		val = up->no_check6_tx;
2541 		break;
2542 
2543 	case UDP_NO_CHECK6_RX:
2544 		val = up->no_check6_rx;
2545 		break;
2546 
2547 	case UDP_SEGMENT:
2548 		val = up->gso_size;
2549 		break;
2550 
2551 	/* The following two cannot be changed on UDP sockets, the return is
2552 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2553 	case UDPLITE_SEND_CSCOV:
2554 		val = up->pcslen;
2555 		break;
2556 
2557 	case UDPLITE_RECV_CSCOV:
2558 		val = up->pcrlen;
2559 		break;
2560 
2561 	default:
2562 		return -ENOPROTOOPT;
2563 	}
2564 
2565 	if (put_user(len, optlen))
2566 		return -EFAULT;
2567 	if (copy_to_user(optval, &val, len))
2568 		return -EFAULT;
2569 	return 0;
2570 }
2571 EXPORT_SYMBOL(udp_lib_getsockopt);
2572 
2573 int udp_getsockopt(struct sock *sk, int level, int optname,
2574 		   char __user *optval, int __user *optlen)
2575 {
2576 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2577 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2578 	return ip_getsockopt(sk, level, optname, optval, optlen);
2579 }
2580 
2581 #ifdef CONFIG_COMPAT
2582 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2583 				 char __user *optval, int __user *optlen)
2584 {
2585 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2586 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2587 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2588 }
2589 #endif
2590 /**
2591  * 	udp_poll - wait for a UDP event.
2592  *	@file - file struct
2593  *	@sock - socket
2594  *	@wait - poll table
2595  *
2596  *	This is same as datagram poll, except for the special case of
2597  *	blocking sockets. If application is using a blocking fd
2598  *	and a packet with checksum error is in the queue;
2599  *	then it could get return from select indicating data available
2600  *	but then block when reading it. Add special case code
2601  *	to work around these arguably broken applications.
2602  */
2603 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2604 {
2605 	__poll_t mask = datagram_poll(file, sock, wait);
2606 	struct sock *sk = sock->sk;
2607 
2608 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2609 		mask |= EPOLLIN | EPOLLRDNORM;
2610 
2611 	/* Check for false positives due to checksum errors */
2612 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2613 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2614 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2615 
2616 	return mask;
2617 
2618 }
2619 EXPORT_SYMBOL(udp_poll);
2620 
2621 int udp_abort(struct sock *sk, int err)
2622 {
2623 	lock_sock(sk);
2624 
2625 	sk->sk_err = err;
2626 	sk->sk_error_report(sk);
2627 	__udp_disconnect(sk, 0);
2628 
2629 	release_sock(sk);
2630 
2631 	return 0;
2632 }
2633 EXPORT_SYMBOL_GPL(udp_abort);
2634 
2635 struct proto udp_prot = {
2636 	.name			= "UDP",
2637 	.owner			= THIS_MODULE,
2638 	.close			= udp_lib_close,
2639 	.pre_connect		= udp_pre_connect,
2640 	.connect		= ip4_datagram_connect,
2641 	.disconnect		= udp_disconnect,
2642 	.ioctl			= udp_ioctl,
2643 	.init			= udp_init_sock,
2644 	.destroy		= udp_destroy_sock,
2645 	.setsockopt		= udp_setsockopt,
2646 	.getsockopt		= udp_getsockopt,
2647 	.sendmsg		= udp_sendmsg,
2648 	.recvmsg		= udp_recvmsg,
2649 	.sendpage		= udp_sendpage,
2650 	.release_cb		= ip4_datagram_release_cb,
2651 	.hash			= udp_lib_hash,
2652 	.unhash			= udp_lib_unhash,
2653 	.rehash			= udp_v4_rehash,
2654 	.get_port		= udp_v4_get_port,
2655 	.memory_allocated	= &udp_memory_allocated,
2656 	.sysctl_mem		= sysctl_udp_mem,
2657 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2658 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2659 	.obj_size		= sizeof(struct udp_sock),
2660 	.h.udp_table		= &udp_table,
2661 #ifdef CONFIG_COMPAT
2662 	.compat_setsockopt	= compat_udp_setsockopt,
2663 	.compat_getsockopt	= compat_udp_getsockopt,
2664 #endif
2665 	.diag_destroy		= udp_abort,
2666 };
2667 EXPORT_SYMBOL(udp_prot);
2668 
2669 /* ------------------------------------------------------------------------ */
2670 #ifdef CONFIG_PROC_FS
2671 
2672 static struct sock *udp_get_first(struct seq_file *seq, int start)
2673 {
2674 	struct sock *sk;
2675 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2676 	struct udp_iter_state *state = seq->private;
2677 	struct net *net = seq_file_net(seq);
2678 
2679 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2680 	     ++state->bucket) {
2681 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2682 
2683 		if (hlist_empty(&hslot->head))
2684 			continue;
2685 
2686 		spin_lock_bh(&hslot->lock);
2687 		sk_for_each(sk, &hslot->head) {
2688 			if (!net_eq(sock_net(sk), net))
2689 				continue;
2690 			if (sk->sk_family == afinfo->family)
2691 				goto found;
2692 		}
2693 		spin_unlock_bh(&hslot->lock);
2694 	}
2695 	sk = NULL;
2696 found:
2697 	return sk;
2698 }
2699 
2700 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2701 {
2702 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2703 	struct udp_iter_state *state = seq->private;
2704 	struct net *net = seq_file_net(seq);
2705 
2706 	do {
2707 		sk = sk_next(sk);
2708 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2709 
2710 	if (!sk) {
2711 		if (state->bucket <= afinfo->udp_table->mask)
2712 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2713 		return udp_get_first(seq, state->bucket + 1);
2714 	}
2715 	return sk;
2716 }
2717 
2718 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2719 {
2720 	struct sock *sk = udp_get_first(seq, 0);
2721 
2722 	if (sk)
2723 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2724 			--pos;
2725 	return pos ? NULL : sk;
2726 }
2727 
2728 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2729 {
2730 	struct udp_iter_state *state = seq->private;
2731 	state->bucket = MAX_UDP_PORTS;
2732 
2733 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2734 }
2735 EXPORT_SYMBOL(udp_seq_start);
2736 
2737 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2738 {
2739 	struct sock *sk;
2740 
2741 	if (v == SEQ_START_TOKEN)
2742 		sk = udp_get_idx(seq, 0);
2743 	else
2744 		sk = udp_get_next(seq, v);
2745 
2746 	++*pos;
2747 	return sk;
2748 }
2749 EXPORT_SYMBOL(udp_seq_next);
2750 
2751 void udp_seq_stop(struct seq_file *seq, void *v)
2752 {
2753 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2754 	struct udp_iter_state *state = seq->private;
2755 
2756 	if (state->bucket <= afinfo->udp_table->mask)
2757 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2758 }
2759 EXPORT_SYMBOL(udp_seq_stop);
2760 
2761 /* ------------------------------------------------------------------------ */
2762 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2763 		int bucket)
2764 {
2765 	struct inet_sock *inet = inet_sk(sp);
2766 	__be32 dest = inet->inet_daddr;
2767 	__be32 src  = inet->inet_rcv_saddr;
2768 	__u16 destp	  = ntohs(inet->inet_dport);
2769 	__u16 srcp	  = ntohs(inet->inet_sport);
2770 
2771 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2772 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2773 		bucket, src, srcp, dest, destp, sp->sk_state,
2774 		sk_wmem_alloc_get(sp),
2775 		udp_rqueue_get(sp),
2776 		0, 0L, 0,
2777 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2778 		0, sock_i_ino(sp),
2779 		refcount_read(&sp->sk_refcnt), sp,
2780 		atomic_read(&sp->sk_drops));
2781 }
2782 
2783 int udp4_seq_show(struct seq_file *seq, void *v)
2784 {
2785 	seq_setwidth(seq, 127);
2786 	if (v == SEQ_START_TOKEN)
2787 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2788 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2789 			   "inode ref pointer drops");
2790 	else {
2791 		struct udp_iter_state *state = seq->private;
2792 
2793 		udp4_format_sock(v, seq, state->bucket);
2794 	}
2795 	seq_pad(seq, '\n');
2796 	return 0;
2797 }
2798 
2799 const struct seq_operations udp_seq_ops = {
2800 	.start		= udp_seq_start,
2801 	.next		= udp_seq_next,
2802 	.stop		= udp_seq_stop,
2803 	.show		= udp4_seq_show,
2804 };
2805 EXPORT_SYMBOL(udp_seq_ops);
2806 
2807 static struct udp_seq_afinfo udp4_seq_afinfo = {
2808 	.family		= AF_INET,
2809 	.udp_table	= &udp_table,
2810 };
2811 
2812 static int __net_init udp4_proc_init_net(struct net *net)
2813 {
2814 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2815 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2816 		return -ENOMEM;
2817 	return 0;
2818 }
2819 
2820 static void __net_exit udp4_proc_exit_net(struct net *net)
2821 {
2822 	remove_proc_entry("udp", net->proc_net);
2823 }
2824 
2825 static struct pernet_operations udp4_net_ops = {
2826 	.init = udp4_proc_init_net,
2827 	.exit = udp4_proc_exit_net,
2828 };
2829 
2830 int __init udp4_proc_init(void)
2831 {
2832 	return register_pernet_subsys(&udp4_net_ops);
2833 }
2834 
2835 void udp4_proc_exit(void)
2836 {
2837 	unregister_pernet_subsys(&udp4_net_ops);
2838 }
2839 #endif /* CONFIG_PROC_FS */
2840 
2841 static __initdata unsigned long uhash_entries;
2842 static int __init set_uhash_entries(char *str)
2843 {
2844 	ssize_t ret;
2845 
2846 	if (!str)
2847 		return 0;
2848 
2849 	ret = kstrtoul(str, 0, &uhash_entries);
2850 	if (ret)
2851 		return 0;
2852 
2853 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2854 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2855 	return 1;
2856 }
2857 __setup("uhash_entries=", set_uhash_entries);
2858 
2859 void __init udp_table_init(struct udp_table *table, const char *name)
2860 {
2861 	unsigned int i;
2862 
2863 	table->hash = alloc_large_system_hash(name,
2864 					      2 * sizeof(struct udp_hslot),
2865 					      uhash_entries,
2866 					      21, /* one slot per 2 MB */
2867 					      0,
2868 					      &table->log,
2869 					      &table->mask,
2870 					      UDP_HTABLE_SIZE_MIN,
2871 					      64 * 1024);
2872 
2873 	table->hash2 = table->hash + (table->mask + 1);
2874 	for (i = 0; i <= table->mask; i++) {
2875 		INIT_HLIST_HEAD(&table->hash[i].head);
2876 		table->hash[i].count = 0;
2877 		spin_lock_init(&table->hash[i].lock);
2878 	}
2879 	for (i = 0; i <= table->mask; i++) {
2880 		INIT_HLIST_HEAD(&table->hash2[i].head);
2881 		table->hash2[i].count = 0;
2882 		spin_lock_init(&table->hash2[i].lock);
2883 	}
2884 }
2885 
2886 u32 udp_flow_hashrnd(void)
2887 {
2888 	static u32 hashrnd __read_mostly;
2889 
2890 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2891 
2892 	return hashrnd;
2893 }
2894 EXPORT_SYMBOL(udp_flow_hashrnd);
2895 
2896 static void __udp_sysctl_init(struct net *net)
2897 {
2898 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2899 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2900 
2901 #ifdef CONFIG_NET_L3_MASTER_DEV
2902 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
2903 #endif
2904 }
2905 
2906 static int __net_init udp_sysctl_init(struct net *net)
2907 {
2908 	__udp_sysctl_init(net);
2909 	return 0;
2910 }
2911 
2912 static struct pernet_operations __net_initdata udp_sysctl_ops = {
2913 	.init	= udp_sysctl_init,
2914 };
2915 
2916 void __init udp_init(void)
2917 {
2918 	unsigned long limit;
2919 	unsigned int i;
2920 
2921 	udp_table_init(&udp_table, "UDP");
2922 	limit = nr_free_buffer_pages() / 8;
2923 	limit = max(limit, 128UL);
2924 	sysctl_udp_mem[0] = limit / 4 * 3;
2925 	sysctl_udp_mem[1] = limit;
2926 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2927 
2928 	__udp_sysctl_init(&init_net);
2929 
2930 	/* 16 spinlocks per cpu */
2931 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2932 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2933 				GFP_KERNEL);
2934 	if (!udp_busylocks)
2935 		panic("UDP: failed to alloc udp_busylocks\n");
2936 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2937 		spin_lock_init(udp_busylocks + i);
2938 
2939 	if (register_pernet_subsys(&udp_sysctl_ops))
2940 		panic("UDP: failed to init sysctl parameters.\n");
2941 }
2942