xref: /openbmc/linux/net/ipv4/udp.c (revision 4f3db074)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/netdevice.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 
117 struct udp_table udp_table __read_mostly;
118 EXPORT_SYMBOL(udp_table);
119 
120 long sysctl_udp_mem[3] __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_mem);
122 
123 int sysctl_udp_rmem_min __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_rmem_min);
125 
126 int sysctl_udp_wmem_min __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_wmem_min);
128 
129 atomic_long_t udp_memory_allocated;
130 EXPORT_SYMBOL(udp_memory_allocated);
131 
132 #define MAX_UDP_PORTS 65536
133 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
134 
135 static int udp_lib_lport_inuse(struct net *net, __u16 num,
136 			       const struct udp_hslot *hslot,
137 			       unsigned long *bitmap,
138 			       struct sock *sk,
139 			       int (*saddr_comp)(const struct sock *sk1,
140 						 const struct sock *sk2),
141 			       unsigned int log)
142 {
143 	struct sock *sk2;
144 	struct hlist_nulls_node *node;
145 	kuid_t uid = sock_i_uid(sk);
146 
147 	sk_nulls_for_each(sk2, node, &hslot->head) {
148 		if (net_eq(sock_net(sk2), net) &&
149 		    sk2 != sk &&
150 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
152 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
155 		     !uid_eq(uid, sock_i_uid(sk2))) &&
156 		    saddr_comp(sk, sk2)) {
157 			if (!bitmap)
158 				return 1;
159 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
160 		}
161 	}
162 	return 0;
163 }
164 
165 /*
166  * Note: we still hold spinlock of primary hash chain, so no other writer
167  * can insert/delete a socket with local_port == num
168  */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 				struct udp_hslot *hslot2,
171 				struct sock *sk,
172 				int (*saddr_comp)(const struct sock *sk1,
173 						  const struct sock *sk2))
174 {
175 	struct sock *sk2;
176 	struct hlist_nulls_node *node;
177 	kuid_t uid = sock_i_uid(sk);
178 	int res = 0;
179 
180 	spin_lock(&hslot2->lock);
181 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
182 		if (net_eq(sock_net(sk2), net) &&
183 		    sk2 != sk &&
184 		    (udp_sk(sk2)->udp_port_hash == num) &&
185 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
186 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 		     !uid_eq(uid, sock_i_uid(sk2))) &&
190 		    saddr_comp(sk, sk2)) {
191 			res = 1;
192 			break;
193 		}
194 	}
195 	spin_unlock(&hslot2->lock);
196 	return res;
197 }
198 
199 /**
200  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
201  *
202  *  @sk:          socket struct in question
203  *  @snum:        port number to look up
204  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
205  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
206  *                   with NULL address
207  */
208 int udp_lib_get_port(struct sock *sk, unsigned short snum,
209 		     int (*saddr_comp)(const struct sock *sk1,
210 				       const struct sock *sk2),
211 		     unsigned int hash2_nulladdr)
212 {
213 	struct udp_hslot *hslot, *hslot2;
214 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
215 	int    error = 1;
216 	struct net *net = sock_net(sk);
217 
218 	if (!snum) {
219 		int low, high, remaining;
220 		unsigned int rand;
221 		unsigned short first, last;
222 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
223 
224 		inet_get_local_port_range(net, &low, &high);
225 		remaining = (high - low) + 1;
226 
227 		rand = prandom_u32();
228 		first = reciprocal_scale(rand, remaining) + low;
229 		/*
230 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
231 		 */
232 		rand = (rand | 1) * (udptable->mask + 1);
233 		last = first + udptable->mask + 1;
234 		do {
235 			hslot = udp_hashslot(udptable, net, first);
236 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
237 			spin_lock_bh(&hslot->lock);
238 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
239 					    saddr_comp, udptable->log);
240 
241 			snum = first;
242 			/*
243 			 * Iterate on all possible values of snum for this hash.
244 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
245 			 * give us randomization and full range coverage.
246 			 */
247 			do {
248 				if (low <= snum && snum <= high &&
249 				    !test_bit(snum >> udptable->log, bitmap) &&
250 				    !inet_is_local_reserved_port(net, snum))
251 					goto found;
252 				snum += rand;
253 			} while (snum != first);
254 			spin_unlock_bh(&hslot->lock);
255 		} while (++first != last);
256 		goto fail;
257 	} else {
258 		hslot = udp_hashslot(udptable, net, snum);
259 		spin_lock_bh(&hslot->lock);
260 		if (hslot->count > 10) {
261 			int exist;
262 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
263 
264 			slot2          &= udptable->mask;
265 			hash2_nulladdr &= udptable->mask;
266 
267 			hslot2 = udp_hashslot2(udptable, slot2);
268 			if (hslot->count < hslot2->count)
269 				goto scan_primary_hash;
270 
271 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
272 						     sk, saddr_comp);
273 			if (!exist && (hash2_nulladdr != slot2)) {
274 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
275 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
276 							     sk, saddr_comp);
277 			}
278 			if (exist)
279 				goto fail_unlock;
280 			else
281 				goto found;
282 		}
283 scan_primary_hash:
284 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
285 					saddr_comp, 0))
286 			goto fail_unlock;
287 	}
288 found:
289 	inet_sk(sk)->inet_num = snum;
290 	udp_sk(sk)->udp_port_hash = snum;
291 	udp_sk(sk)->udp_portaddr_hash ^= snum;
292 	if (sk_unhashed(sk)) {
293 		sk_nulls_add_node_rcu(sk, &hslot->head);
294 		hslot->count++;
295 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
296 
297 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
298 		spin_lock(&hslot2->lock);
299 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
300 					 &hslot2->head);
301 		hslot2->count++;
302 		spin_unlock(&hslot2->lock);
303 	}
304 	error = 0;
305 fail_unlock:
306 	spin_unlock_bh(&hslot->lock);
307 fail:
308 	return error;
309 }
310 EXPORT_SYMBOL(udp_lib_get_port);
311 
312 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
313 {
314 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
315 
316 	return 	(!ipv6_only_sock(sk2)  &&
317 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
318 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
319 }
320 
321 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
322 			      unsigned int port)
323 {
324 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
325 }
326 
327 int udp_v4_get_port(struct sock *sk, unsigned short snum)
328 {
329 	unsigned int hash2_nulladdr =
330 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
331 	unsigned int hash2_partial =
332 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
333 
334 	/* precompute partial secondary hash */
335 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
336 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
337 }
338 
339 static inline int compute_score(struct sock *sk, struct net *net,
340 				__be32 saddr, unsigned short hnum, __be16 sport,
341 				__be32 daddr, __be16 dport, int dif)
342 {
343 	int score;
344 	struct inet_sock *inet;
345 
346 	if (!net_eq(sock_net(sk), net) ||
347 	    udp_sk(sk)->udp_port_hash != hnum ||
348 	    ipv6_only_sock(sk))
349 		return -1;
350 
351 	score = (sk->sk_family == PF_INET) ? 2 : 1;
352 	inet = inet_sk(sk);
353 
354 	if (inet->inet_rcv_saddr) {
355 		if (inet->inet_rcv_saddr != daddr)
356 			return -1;
357 		score += 4;
358 	}
359 
360 	if (inet->inet_daddr) {
361 		if (inet->inet_daddr != saddr)
362 			return -1;
363 		score += 4;
364 	}
365 
366 	if (inet->inet_dport) {
367 		if (inet->inet_dport != sport)
368 			return -1;
369 		score += 4;
370 	}
371 
372 	if (sk->sk_bound_dev_if) {
373 		if (sk->sk_bound_dev_if != dif)
374 			return -1;
375 		score += 4;
376 	}
377 
378 	return score;
379 }
380 
381 /*
382  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
383  */
384 static inline int compute_score2(struct sock *sk, struct net *net,
385 				 __be32 saddr, __be16 sport,
386 				 __be32 daddr, unsigned int hnum, int dif)
387 {
388 	int score;
389 	struct inet_sock *inet;
390 
391 	if (!net_eq(sock_net(sk), net) ||
392 	    ipv6_only_sock(sk))
393 		return -1;
394 
395 	inet = inet_sk(sk);
396 
397 	if (inet->inet_rcv_saddr != daddr ||
398 	    inet->inet_num != hnum)
399 		return -1;
400 
401 	score = (sk->sk_family == PF_INET) ? 2 : 1;
402 
403 	if (inet->inet_daddr) {
404 		if (inet->inet_daddr != saddr)
405 			return -1;
406 		score += 4;
407 	}
408 
409 	if (inet->inet_dport) {
410 		if (inet->inet_dport != sport)
411 			return -1;
412 		score += 4;
413 	}
414 
415 	if (sk->sk_bound_dev_if) {
416 		if (sk->sk_bound_dev_if != dif)
417 			return -1;
418 		score += 4;
419 	}
420 
421 	return score;
422 }
423 
424 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
425 		       const __u16 lport, const __be32 faddr,
426 		       const __be16 fport)
427 {
428 	static u32 udp_ehash_secret __read_mostly;
429 
430 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
431 
432 	return __inet_ehashfn(laddr, lport, faddr, fport,
433 			      udp_ehash_secret + net_hash_mix(net));
434 }
435 
436 /* called with read_rcu_lock() */
437 static struct sock *udp4_lib_lookup2(struct net *net,
438 		__be32 saddr, __be16 sport,
439 		__be32 daddr, unsigned int hnum, int dif,
440 		struct udp_hslot *hslot2, unsigned int slot2)
441 {
442 	struct sock *sk, *result;
443 	struct hlist_nulls_node *node;
444 	int score, badness, matches = 0, reuseport = 0;
445 	u32 hash = 0;
446 
447 begin:
448 	result = NULL;
449 	badness = 0;
450 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
451 		score = compute_score2(sk, net, saddr, sport,
452 				      daddr, hnum, dif);
453 		if (score > badness) {
454 			result = sk;
455 			badness = score;
456 			reuseport = sk->sk_reuseport;
457 			if (reuseport) {
458 				hash = udp_ehashfn(net, daddr, hnum,
459 						   saddr, sport);
460 				matches = 1;
461 			}
462 		} else if (score == badness && reuseport) {
463 			matches++;
464 			if (reciprocal_scale(hash, matches) == 0)
465 				result = sk;
466 			hash = next_pseudo_random32(hash);
467 		}
468 	}
469 	/*
470 	 * if the nulls value we got at the end of this lookup is
471 	 * not the expected one, we must restart lookup.
472 	 * We probably met an item that was moved to another chain.
473 	 */
474 	if (get_nulls_value(node) != slot2)
475 		goto begin;
476 	if (result) {
477 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
478 			result = NULL;
479 		else if (unlikely(compute_score2(result, net, saddr, sport,
480 				  daddr, hnum, dif) < badness)) {
481 			sock_put(result);
482 			goto begin;
483 		}
484 	}
485 	return result;
486 }
487 
488 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
489  * harder than this. -DaveM
490  */
491 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
492 		__be16 sport, __be32 daddr, __be16 dport,
493 		int dif, struct udp_table *udptable)
494 {
495 	struct sock *sk, *result;
496 	struct hlist_nulls_node *node;
497 	unsigned short hnum = ntohs(dport);
498 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
499 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
500 	int score, badness, matches = 0, reuseport = 0;
501 	u32 hash = 0;
502 
503 	rcu_read_lock();
504 	if (hslot->count > 10) {
505 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
506 		slot2 = hash2 & udptable->mask;
507 		hslot2 = &udptable->hash2[slot2];
508 		if (hslot->count < hslot2->count)
509 			goto begin;
510 
511 		result = udp4_lib_lookup2(net, saddr, sport,
512 					  daddr, hnum, dif,
513 					  hslot2, slot2);
514 		if (!result) {
515 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
516 			slot2 = hash2 & udptable->mask;
517 			hslot2 = &udptable->hash2[slot2];
518 			if (hslot->count < hslot2->count)
519 				goto begin;
520 
521 			result = udp4_lib_lookup2(net, saddr, sport,
522 						  htonl(INADDR_ANY), hnum, dif,
523 						  hslot2, slot2);
524 		}
525 		rcu_read_unlock();
526 		return result;
527 	}
528 begin:
529 	result = NULL;
530 	badness = 0;
531 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
532 		score = compute_score(sk, net, saddr, hnum, sport,
533 				      daddr, dport, dif);
534 		if (score > badness) {
535 			result = sk;
536 			badness = score;
537 			reuseport = sk->sk_reuseport;
538 			if (reuseport) {
539 				hash = udp_ehashfn(net, daddr, hnum,
540 						   saddr, sport);
541 				matches = 1;
542 			}
543 		} else if (score == badness && reuseport) {
544 			matches++;
545 			if (reciprocal_scale(hash, matches) == 0)
546 				result = sk;
547 			hash = next_pseudo_random32(hash);
548 		}
549 	}
550 	/*
551 	 * if the nulls value we got at the end of this lookup is
552 	 * not the expected one, we must restart lookup.
553 	 * We probably met an item that was moved to another chain.
554 	 */
555 	if (get_nulls_value(node) != slot)
556 		goto begin;
557 
558 	if (result) {
559 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
560 			result = NULL;
561 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
562 				  daddr, dport, dif) < badness)) {
563 			sock_put(result);
564 			goto begin;
565 		}
566 	}
567 	rcu_read_unlock();
568 	return result;
569 }
570 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
571 
572 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
573 						 __be16 sport, __be16 dport,
574 						 struct udp_table *udptable)
575 {
576 	const struct iphdr *iph = ip_hdr(skb);
577 
578 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
579 				 iph->daddr, dport, inet_iif(skb),
580 				 udptable);
581 }
582 
583 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
584 			     __be32 daddr, __be16 dport, int dif)
585 {
586 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
587 }
588 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
589 
590 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
591 				       __be16 loc_port, __be32 loc_addr,
592 				       __be16 rmt_port, __be32 rmt_addr,
593 				       int dif, unsigned short hnum)
594 {
595 	struct inet_sock *inet = inet_sk(sk);
596 
597 	if (!net_eq(sock_net(sk), net) ||
598 	    udp_sk(sk)->udp_port_hash != hnum ||
599 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
600 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
601 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
602 	    ipv6_only_sock(sk) ||
603 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
604 		return false;
605 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
606 		return false;
607 	return true;
608 }
609 
610 /*
611  * This routine is called by the ICMP module when it gets some
612  * sort of error condition.  If err < 0 then the socket should
613  * be closed and the error returned to the user.  If err > 0
614  * it's just the icmp type << 8 | icmp code.
615  * Header points to the ip header of the error packet. We move
616  * on past this. Then (as it used to claim before adjustment)
617  * header points to the first 8 bytes of the udp header.  We need
618  * to find the appropriate port.
619  */
620 
621 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
622 {
623 	struct inet_sock *inet;
624 	const struct iphdr *iph = (const struct iphdr *)skb->data;
625 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
626 	const int type = icmp_hdr(skb)->type;
627 	const int code = icmp_hdr(skb)->code;
628 	struct sock *sk;
629 	int harderr;
630 	int err;
631 	struct net *net = dev_net(skb->dev);
632 
633 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
634 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
635 	if (!sk) {
636 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
637 		return;	/* No socket for error */
638 	}
639 
640 	err = 0;
641 	harderr = 0;
642 	inet = inet_sk(sk);
643 
644 	switch (type) {
645 	default:
646 	case ICMP_TIME_EXCEEDED:
647 		err = EHOSTUNREACH;
648 		break;
649 	case ICMP_SOURCE_QUENCH:
650 		goto out;
651 	case ICMP_PARAMETERPROB:
652 		err = EPROTO;
653 		harderr = 1;
654 		break;
655 	case ICMP_DEST_UNREACH:
656 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
657 			ipv4_sk_update_pmtu(skb, sk, info);
658 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
659 				err = EMSGSIZE;
660 				harderr = 1;
661 				break;
662 			}
663 			goto out;
664 		}
665 		err = EHOSTUNREACH;
666 		if (code <= NR_ICMP_UNREACH) {
667 			harderr = icmp_err_convert[code].fatal;
668 			err = icmp_err_convert[code].errno;
669 		}
670 		break;
671 	case ICMP_REDIRECT:
672 		ipv4_sk_redirect(skb, sk);
673 		goto out;
674 	}
675 
676 	/*
677 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
678 	 *	4.1.3.3.
679 	 */
680 	if (!inet->recverr) {
681 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
682 			goto out;
683 	} else
684 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
685 
686 	sk->sk_err = err;
687 	sk->sk_error_report(sk);
688 out:
689 	sock_put(sk);
690 }
691 
692 void udp_err(struct sk_buff *skb, u32 info)
693 {
694 	__udp4_lib_err(skb, info, &udp_table);
695 }
696 
697 /*
698  * Throw away all pending data and cancel the corking. Socket is locked.
699  */
700 void udp_flush_pending_frames(struct sock *sk)
701 {
702 	struct udp_sock *up = udp_sk(sk);
703 
704 	if (up->pending) {
705 		up->len = 0;
706 		up->pending = 0;
707 		ip_flush_pending_frames(sk);
708 	}
709 }
710 EXPORT_SYMBOL(udp_flush_pending_frames);
711 
712 /**
713  * 	udp4_hwcsum  -  handle outgoing HW checksumming
714  * 	@skb: 	sk_buff containing the filled-in UDP header
715  * 	        (checksum field must be zeroed out)
716  *	@src:	source IP address
717  *	@dst:	destination IP address
718  */
719 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
720 {
721 	struct udphdr *uh = udp_hdr(skb);
722 	int offset = skb_transport_offset(skb);
723 	int len = skb->len - offset;
724 	int hlen = len;
725 	__wsum csum = 0;
726 
727 	if (!skb_has_frag_list(skb)) {
728 		/*
729 		 * Only one fragment on the socket.
730 		 */
731 		skb->csum_start = skb_transport_header(skb) - skb->head;
732 		skb->csum_offset = offsetof(struct udphdr, check);
733 		uh->check = ~csum_tcpudp_magic(src, dst, len,
734 					       IPPROTO_UDP, 0);
735 	} else {
736 		struct sk_buff *frags;
737 
738 		/*
739 		 * HW-checksum won't work as there are two or more
740 		 * fragments on the socket so that all csums of sk_buffs
741 		 * should be together
742 		 */
743 		skb_walk_frags(skb, frags) {
744 			csum = csum_add(csum, frags->csum);
745 			hlen -= frags->len;
746 		}
747 
748 		csum = skb_checksum(skb, offset, hlen, csum);
749 		skb->ip_summed = CHECKSUM_NONE;
750 
751 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
752 		if (uh->check == 0)
753 			uh->check = CSUM_MANGLED_0;
754 	}
755 }
756 EXPORT_SYMBOL_GPL(udp4_hwcsum);
757 
758 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
759  * for the simple case like when setting the checksum for a UDP tunnel.
760  */
761 void udp_set_csum(bool nocheck, struct sk_buff *skb,
762 		  __be32 saddr, __be32 daddr, int len)
763 {
764 	struct udphdr *uh = udp_hdr(skb);
765 
766 	if (nocheck)
767 		uh->check = 0;
768 	else if (skb_is_gso(skb))
769 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
770 	else if (skb_dst(skb) && skb_dst(skb)->dev &&
771 		 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
772 
773 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
774 
775 		skb->ip_summed = CHECKSUM_PARTIAL;
776 		skb->csum_start = skb_transport_header(skb) - skb->head;
777 		skb->csum_offset = offsetof(struct udphdr, check);
778 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
779 	} else {
780 		__wsum csum;
781 
782 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
783 
784 		uh->check = 0;
785 		csum = skb_checksum(skb, 0, len, 0);
786 		uh->check = udp_v4_check(len, saddr, daddr, csum);
787 		if (uh->check == 0)
788 			uh->check = CSUM_MANGLED_0;
789 
790 		skb->ip_summed = CHECKSUM_UNNECESSARY;
791 	}
792 }
793 EXPORT_SYMBOL(udp_set_csum);
794 
795 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
796 {
797 	struct sock *sk = skb->sk;
798 	struct inet_sock *inet = inet_sk(sk);
799 	struct udphdr *uh;
800 	int err = 0;
801 	int is_udplite = IS_UDPLITE(sk);
802 	int offset = skb_transport_offset(skb);
803 	int len = skb->len - offset;
804 	__wsum csum = 0;
805 
806 	/*
807 	 * Create a UDP header
808 	 */
809 	uh = udp_hdr(skb);
810 	uh->source = inet->inet_sport;
811 	uh->dest = fl4->fl4_dport;
812 	uh->len = htons(len);
813 	uh->check = 0;
814 
815 	if (is_udplite)  				 /*     UDP-Lite      */
816 		csum = udplite_csum(skb);
817 
818 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
819 
820 		skb->ip_summed = CHECKSUM_NONE;
821 		goto send;
822 
823 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
824 
825 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
826 		goto send;
827 
828 	} else
829 		csum = udp_csum(skb);
830 
831 	/* add protocol-dependent pseudo-header */
832 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
833 				      sk->sk_protocol, csum);
834 	if (uh->check == 0)
835 		uh->check = CSUM_MANGLED_0;
836 
837 send:
838 	err = ip_send_skb(sock_net(sk), skb);
839 	if (err) {
840 		if (err == -ENOBUFS && !inet->recverr) {
841 			UDP_INC_STATS_USER(sock_net(sk),
842 					   UDP_MIB_SNDBUFERRORS, is_udplite);
843 			err = 0;
844 		}
845 	} else
846 		UDP_INC_STATS_USER(sock_net(sk),
847 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
848 	return err;
849 }
850 
851 /*
852  * Push out all pending data as one UDP datagram. Socket is locked.
853  */
854 int udp_push_pending_frames(struct sock *sk)
855 {
856 	struct udp_sock  *up = udp_sk(sk);
857 	struct inet_sock *inet = inet_sk(sk);
858 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
859 	struct sk_buff *skb;
860 	int err = 0;
861 
862 	skb = ip_finish_skb(sk, fl4);
863 	if (!skb)
864 		goto out;
865 
866 	err = udp_send_skb(skb, fl4);
867 
868 out:
869 	up->len = 0;
870 	up->pending = 0;
871 	return err;
872 }
873 EXPORT_SYMBOL(udp_push_pending_frames);
874 
875 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
876 {
877 	struct inet_sock *inet = inet_sk(sk);
878 	struct udp_sock *up = udp_sk(sk);
879 	struct flowi4 fl4_stack;
880 	struct flowi4 *fl4;
881 	int ulen = len;
882 	struct ipcm_cookie ipc;
883 	struct rtable *rt = NULL;
884 	int free = 0;
885 	int connected = 0;
886 	__be32 daddr, faddr, saddr;
887 	__be16 dport;
888 	u8  tos;
889 	int err, is_udplite = IS_UDPLITE(sk);
890 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
891 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
892 	struct sk_buff *skb;
893 	struct ip_options_data opt_copy;
894 
895 	if (len > 0xFFFF)
896 		return -EMSGSIZE;
897 
898 	/*
899 	 *	Check the flags.
900 	 */
901 
902 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
903 		return -EOPNOTSUPP;
904 
905 	ipc.opt = NULL;
906 	ipc.tx_flags = 0;
907 	ipc.ttl = 0;
908 	ipc.tos = -1;
909 
910 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
911 
912 	fl4 = &inet->cork.fl.u.ip4;
913 	if (up->pending) {
914 		/*
915 		 * There are pending frames.
916 		 * The socket lock must be held while it's corked.
917 		 */
918 		lock_sock(sk);
919 		if (likely(up->pending)) {
920 			if (unlikely(up->pending != AF_INET)) {
921 				release_sock(sk);
922 				return -EINVAL;
923 			}
924 			goto do_append_data;
925 		}
926 		release_sock(sk);
927 	}
928 	ulen += sizeof(struct udphdr);
929 
930 	/*
931 	 *	Get and verify the address.
932 	 */
933 	if (msg->msg_name) {
934 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
935 		if (msg->msg_namelen < sizeof(*usin))
936 			return -EINVAL;
937 		if (usin->sin_family != AF_INET) {
938 			if (usin->sin_family != AF_UNSPEC)
939 				return -EAFNOSUPPORT;
940 		}
941 
942 		daddr = usin->sin_addr.s_addr;
943 		dport = usin->sin_port;
944 		if (dport == 0)
945 			return -EINVAL;
946 	} else {
947 		if (sk->sk_state != TCP_ESTABLISHED)
948 			return -EDESTADDRREQ;
949 		daddr = inet->inet_daddr;
950 		dport = inet->inet_dport;
951 		/* Open fast path for connected socket.
952 		   Route will not be used, if at least one option is set.
953 		 */
954 		connected = 1;
955 	}
956 	ipc.addr = inet->inet_saddr;
957 
958 	ipc.oif = sk->sk_bound_dev_if;
959 
960 	sock_tx_timestamp(sk, &ipc.tx_flags);
961 
962 	if (msg->msg_controllen) {
963 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
964 				   sk->sk_family == AF_INET6);
965 		if (err)
966 			return err;
967 		if (ipc.opt)
968 			free = 1;
969 		connected = 0;
970 	}
971 	if (!ipc.opt) {
972 		struct ip_options_rcu *inet_opt;
973 
974 		rcu_read_lock();
975 		inet_opt = rcu_dereference(inet->inet_opt);
976 		if (inet_opt) {
977 			memcpy(&opt_copy, inet_opt,
978 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
979 			ipc.opt = &opt_copy.opt;
980 		}
981 		rcu_read_unlock();
982 	}
983 
984 	saddr = ipc.addr;
985 	ipc.addr = faddr = daddr;
986 
987 	if (ipc.opt && ipc.opt->opt.srr) {
988 		if (!daddr)
989 			return -EINVAL;
990 		faddr = ipc.opt->opt.faddr;
991 		connected = 0;
992 	}
993 	tos = get_rttos(&ipc, inet);
994 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
995 	    (msg->msg_flags & MSG_DONTROUTE) ||
996 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
997 		tos |= RTO_ONLINK;
998 		connected = 0;
999 	}
1000 
1001 	if (ipv4_is_multicast(daddr)) {
1002 		if (!ipc.oif)
1003 			ipc.oif = inet->mc_index;
1004 		if (!saddr)
1005 			saddr = inet->mc_addr;
1006 		connected = 0;
1007 	} else if (!ipc.oif)
1008 		ipc.oif = inet->uc_index;
1009 
1010 	if (connected)
1011 		rt = (struct rtable *)sk_dst_check(sk, 0);
1012 
1013 	if (!rt) {
1014 		struct net *net = sock_net(sk);
1015 
1016 		fl4 = &fl4_stack;
1017 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1018 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1019 				   inet_sk_flowi_flags(sk),
1020 				   faddr, saddr, dport, inet->inet_sport);
1021 
1022 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1023 		rt = ip_route_output_flow(net, fl4, sk);
1024 		if (IS_ERR(rt)) {
1025 			err = PTR_ERR(rt);
1026 			rt = NULL;
1027 			if (err == -ENETUNREACH)
1028 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1029 			goto out;
1030 		}
1031 
1032 		err = -EACCES;
1033 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1034 		    !sock_flag(sk, SOCK_BROADCAST))
1035 			goto out;
1036 		if (connected)
1037 			sk_dst_set(sk, dst_clone(&rt->dst));
1038 	}
1039 
1040 	if (msg->msg_flags&MSG_CONFIRM)
1041 		goto do_confirm;
1042 back_from_confirm:
1043 
1044 	saddr = fl4->saddr;
1045 	if (!ipc.addr)
1046 		daddr = ipc.addr = fl4->daddr;
1047 
1048 	/* Lockless fast path for the non-corking case. */
1049 	if (!corkreq) {
1050 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1051 				  sizeof(struct udphdr), &ipc, &rt,
1052 				  msg->msg_flags);
1053 		err = PTR_ERR(skb);
1054 		if (!IS_ERR_OR_NULL(skb))
1055 			err = udp_send_skb(skb, fl4);
1056 		goto out;
1057 	}
1058 
1059 	lock_sock(sk);
1060 	if (unlikely(up->pending)) {
1061 		/* The socket is already corked while preparing it. */
1062 		/* ... which is an evident application bug. --ANK */
1063 		release_sock(sk);
1064 
1065 		net_dbg_ratelimited("cork app bug 2\n");
1066 		err = -EINVAL;
1067 		goto out;
1068 	}
1069 	/*
1070 	 *	Now cork the socket to pend data.
1071 	 */
1072 	fl4 = &inet->cork.fl.u.ip4;
1073 	fl4->daddr = daddr;
1074 	fl4->saddr = saddr;
1075 	fl4->fl4_dport = dport;
1076 	fl4->fl4_sport = inet->inet_sport;
1077 	up->pending = AF_INET;
1078 
1079 do_append_data:
1080 	up->len += ulen;
1081 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1082 			     sizeof(struct udphdr), &ipc, &rt,
1083 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1084 	if (err)
1085 		udp_flush_pending_frames(sk);
1086 	else if (!corkreq)
1087 		err = udp_push_pending_frames(sk);
1088 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1089 		up->pending = 0;
1090 	release_sock(sk);
1091 
1092 out:
1093 	ip_rt_put(rt);
1094 	if (free)
1095 		kfree(ipc.opt);
1096 	if (!err)
1097 		return len;
1098 	/*
1099 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1100 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1101 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1102 	 * things).  We could add another new stat but at least for now that
1103 	 * seems like overkill.
1104 	 */
1105 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1106 		UDP_INC_STATS_USER(sock_net(sk),
1107 				UDP_MIB_SNDBUFERRORS, is_udplite);
1108 	}
1109 	return err;
1110 
1111 do_confirm:
1112 	dst_confirm(&rt->dst);
1113 	if (!(msg->msg_flags&MSG_PROBE) || len)
1114 		goto back_from_confirm;
1115 	err = 0;
1116 	goto out;
1117 }
1118 EXPORT_SYMBOL(udp_sendmsg);
1119 
1120 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1121 		 size_t size, int flags)
1122 {
1123 	struct inet_sock *inet = inet_sk(sk);
1124 	struct udp_sock *up = udp_sk(sk);
1125 	int ret;
1126 
1127 	if (flags & MSG_SENDPAGE_NOTLAST)
1128 		flags |= MSG_MORE;
1129 
1130 	if (!up->pending) {
1131 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1132 
1133 		/* Call udp_sendmsg to specify destination address which
1134 		 * sendpage interface can't pass.
1135 		 * This will succeed only when the socket is connected.
1136 		 */
1137 		ret = udp_sendmsg(sk, &msg, 0);
1138 		if (ret < 0)
1139 			return ret;
1140 	}
1141 
1142 	lock_sock(sk);
1143 
1144 	if (unlikely(!up->pending)) {
1145 		release_sock(sk);
1146 
1147 		net_dbg_ratelimited("udp cork app bug 3\n");
1148 		return -EINVAL;
1149 	}
1150 
1151 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1152 			     page, offset, size, flags);
1153 	if (ret == -EOPNOTSUPP) {
1154 		release_sock(sk);
1155 		return sock_no_sendpage(sk->sk_socket, page, offset,
1156 					size, flags);
1157 	}
1158 	if (ret < 0) {
1159 		udp_flush_pending_frames(sk);
1160 		goto out;
1161 	}
1162 
1163 	up->len += size;
1164 	if (!(up->corkflag || (flags&MSG_MORE)))
1165 		ret = udp_push_pending_frames(sk);
1166 	if (!ret)
1167 		ret = size;
1168 out:
1169 	release_sock(sk);
1170 	return ret;
1171 }
1172 
1173 /**
1174  *	first_packet_length	- return length of first packet in receive queue
1175  *	@sk: socket
1176  *
1177  *	Drops all bad checksum frames, until a valid one is found.
1178  *	Returns the length of found skb, or 0 if none is found.
1179  */
1180 static unsigned int first_packet_length(struct sock *sk)
1181 {
1182 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1183 	struct sk_buff *skb;
1184 	unsigned int res;
1185 
1186 	__skb_queue_head_init(&list_kill);
1187 
1188 	spin_lock_bh(&rcvq->lock);
1189 	while ((skb = skb_peek(rcvq)) != NULL &&
1190 		udp_lib_checksum_complete(skb)) {
1191 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1192 				 IS_UDPLITE(sk));
1193 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1194 				 IS_UDPLITE(sk));
1195 		atomic_inc(&sk->sk_drops);
1196 		__skb_unlink(skb, rcvq);
1197 		__skb_queue_tail(&list_kill, skb);
1198 	}
1199 	res = skb ? skb->len : 0;
1200 	spin_unlock_bh(&rcvq->lock);
1201 
1202 	if (!skb_queue_empty(&list_kill)) {
1203 		bool slow = lock_sock_fast(sk);
1204 
1205 		__skb_queue_purge(&list_kill);
1206 		sk_mem_reclaim_partial(sk);
1207 		unlock_sock_fast(sk, slow);
1208 	}
1209 	return res;
1210 }
1211 
1212 /*
1213  *	IOCTL requests applicable to the UDP protocol
1214  */
1215 
1216 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1217 {
1218 	switch (cmd) {
1219 	case SIOCOUTQ:
1220 	{
1221 		int amount = sk_wmem_alloc_get(sk);
1222 
1223 		return put_user(amount, (int __user *)arg);
1224 	}
1225 
1226 	case SIOCINQ:
1227 	{
1228 		unsigned int amount = first_packet_length(sk);
1229 
1230 		if (amount)
1231 			/*
1232 			 * We will only return the amount
1233 			 * of this packet since that is all
1234 			 * that will be read.
1235 			 */
1236 			amount -= sizeof(struct udphdr);
1237 
1238 		return put_user(amount, (int __user *)arg);
1239 	}
1240 
1241 	default:
1242 		return -ENOIOCTLCMD;
1243 	}
1244 
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL(udp_ioctl);
1248 
1249 /*
1250  * 	This should be easy, if there is something there we
1251  * 	return it, otherwise we block.
1252  */
1253 
1254 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1255 		int flags, int *addr_len)
1256 {
1257 	struct inet_sock *inet = inet_sk(sk);
1258 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1259 	struct sk_buff *skb;
1260 	unsigned int ulen, copied;
1261 	int peeked, off = 0;
1262 	int err;
1263 	int is_udplite = IS_UDPLITE(sk);
1264 	bool slow;
1265 
1266 	if (flags & MSG_ERRQUEUE)
1267 		return ip_recv_error(sk, msg, len, addr_len);
1268 
1269 try_again:
1270 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1271 				  &peeked, &off, &err);
1272 	if (!skb)
1273 		goto out;
1274 
1275 	ulen = skb->len - sizeof(struct udphdr);
1276 	copied = len;
1277 	if (copied > ulen)
1278 		copied = ulen;
1279 	else if (copied < ulen)
1280 		msg->msg_flags |= MSG_TRUNC;
1281 
1282 	/*
1283 	 * If checksum is needed at all, try to do it while copying the
1284 	 * data.  If the data is truncated, or if we only want a partial
1285 	 * coverage checksum (UDP-Lite), do it before the copy.
1286 	 */
1287 
1288 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1289 		if (udp_lib_checksum_complete(skb))
1290 			goto csum_copy_err;
1291 	}
1292 
1293 	if (skb_csum_unnecessary(skb))
1294 		err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1295 					    msg, copied);
1296 	else {
1297 		err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1298 						     msg);
1299 
1300 		if (err == -EINVAL)
1301 			goto csum_copy_err;
1302 	}
1303 
1304 	if (unlikely(err)) {
1305 		trace_kfree_skb(skb, udp_recvmsg);
1306 		if (!peeked) {
1307 			atomic_inc(&sk->sk_drops);
1308 			UDP_INC_STATS_USER(sock_net(sk),
1309 					   UDP_MIB_INERRORS, is_udplite);
1310 		}
1311 		goto out_free;
1312 	}
1313 
1314 	if (!peeked)
1315 		UDP_INC_STATS_USER(sock_net(sk),
1316 				UDP_MIB_INDATAGRAMS, is_udplite);
1317 
1318 	sock_recv_ts_and_drops(msg, sk, skb);
1319 
1320 	/* Copy the address. */
1321 	if (sin) {
1322 		sin->sin_family = AF_INET;
1323 		sin->sin_port = udp_hdr(skb)->source;
1324 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1325 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1326 		*addr_len = sizeof(*sin);
1327 	}
1328 	if (inet->cmsg_flags)
1329 		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1330 
1331 	err = copied;
1332 	if (flags & MSG_TRUNC)
1333 		err = ulen;
1334 
1335 out_free:
1336 	skb_free_datagram_locked(sk, skb);
1337 out:
1338 	return err;
1339 
1340 csum_copy_err:
1341 	slow = lock_sock_fast(sk);
1342 	if (!skb_kill_datagram(sk, skb, flags)) {
1343 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1344 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1345 	}
1346 	unlock_sock_fast(sk, slow);
1347 
1348 	if (noblock)
1349 		return -EAGAIN;
1350 
1351 	/* starting over for a new packet */
1352 	msg->msg_flags &= ~MSG_TRUNC;
1353 	goto try_again;
1354 }
1355 
1356 int udp_disconnect(struct sock *sk, int flags)
1357 {
1358 	struct inet_sock *inet = inet_sk(sk);
1359 	/*
1360 	 *	1003.1g - break association.
1361 	 */
1362 
1363 	sk->sk_state = TCP_CLOSE;
1364 	inet->inet_daddr = 0;
1365 	inet->inet_dport = 0;
1366 	sock_rps_reset_rxhash(sk);
1367 	sk->sk_bound_dev_if = 0;
1368 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1369 		inet_reset_saddr(sk);
1370 
1371 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1372 		sk->sk_prot->unhash(sk);
1373 		inet->inet_sport = 0;
1374 	}
1375 	sk_dst_reset(sk);
1376 	return 0;
1377 }
1378 EXPORT_SYMBOL(udp_disconnect);
1379 
1380 void udp_lib_unhash(struct sock *sk)
1381 {
1382 	if (sk_hashed(sk)) {
1383 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1384 		struct udp_hslot *hslot, *hslot2;
1385 
1386 		hslot  = udp_hashslot(udptable, sock_net(sk),
1387 				      udp_sk(sk)->udp_port_hash);
1388 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1389 
1390 		spin_lock_bh(&hslot->lock);
1391 		if (sk_nulls_del_node_init_rcu(sk)) {
1392 			hslot->count--;
1393 			inet_sk(sk)->inet_num = 0;
1394 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1395 
1396 			spin_lock(&hslot2->lock);
1397 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1398 			hslot2->count--;
1399 			spin_unlock(&hslot2->lock);
1400 		}
1401 		spin_unlock_bh(&hslot->lock);
1402 	}
1403 }
1404 EXPORT_SYMBOL(udp_lib_unhash);
1405 
1406 /*
1407  * inet_rcv_saddr was changed, we must rehash secondary hash
1408  */
1409 void udp_lib_rehash(struct sock *sk, u16 newhash)
1410 {
1411 	if (sk_hashed(sk)) {
1412 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1413 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1414 
1415 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1416 		nhslot2 = udp_hashslot2(udptable, newhash);
1417 		udp_sk(sk)->udp_portaddr_hash = newhash;
1418 		if (hslot2 != nhslot2) {
1419 			hslot = udp_hashslot(udptable, sock_net(sk),
1420 					     udp_sk(sk)->udp_port_hash);
1421 			/* we must lock primary chain too */
1422 			spin_lock_bh(&hslot->lock);
1423 
1424 			spin_lock(&hslot2->lock);
1425 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1426 			hslot2->count--;
1427 			spin_unlock(&hslot2->lock);
1428 
1429 			spin_lock(&nhslot2->lock);
1430 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1431 						 &nhslot2->head);
1432 			nhslot2->count++;
1433 			spin_unlock(&nhslot2->lock);
1434 
1435 			spin_unlock_bh(&hslot->lock);
1436 		}
1437 	}
1438 }
1439 EXPORT_SYMBOL(udp_lib_rehash);
1440 
1441 static void udp_v4_rehash(struct sock *sk)
1442 {
1443 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1444 					  inet_sk(sk)->inet_rcv_saddr,
1445 					  inet_sk(sk)->inet_num);
1446 	udp_lib_rehash(sk, new_hash);
1447 }
1448 
1449 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1450 {
1451 	int rc;
1452 
1453 	if (inet_sk(sk)->inet_daddr) {
1454 		sock_rps_save_rxhash(sk, skb);
1455 		sk_mark_napi_id(sk, skb);
1456 		sk_incoming_cpu_update(sk);
1457 	}
1458 
1459 	rc = sock_queue_rcv_skb(sk, skb);
1460 	if (rc < 0) {
1461 		int is_udplite = IS_UDPLITE(sk);
1462 
1463 		/* Note that an ENOMEM error is charged twice */
1464 		if (rc == -ENOMEM)
1465 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1466 					 is_udplite);
1467 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1468 		kfree_skb(skb);
1469 		trace_udp_fail_queue_rcv_skb(rc, sk);
1470 		return -1;
1471 	}
1472 
1473 	return 0;
1474 
1475 }
1476 
1477 static struct static_key udp_encap_needed __read_mostly;
1478 void udp_encap_enable(void)
1479 {
1480 	if (!static_key_enabled(&udp_encap_needed))
1481 		static_key_slow_inc(&udp_encap_needed);
1482 }
1483 EXPORT_SYMBOL(udp_encap_enable);
1484 
1485 /* returns:
1486  *  -1: error
1487  *   0: success
1488  *  >0: "udp encap" protocol resubmission
1489  *
1490  * Note that in the success and error cases, the skb is assumed to
1491  * have either been requeued or freed.
1492  */
1493 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1494 {
1495 	struct udp_sock *up = udp_sk(sk);
1496 	int rc;
1497 	int is_udplite = IS_UDPLITE(sk);
1498 
1499 	/*
1500 	 *	Charge it to the socket, dropping if the queue is full.
1501 	 */
1502 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1503 		goto drop;
1504 	nf_reset(skb);
1505 
1506 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1507 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1508 
1509 		/*
1510 		 * This is an encapsulation socket so pass the skb to
1511 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1512 		 * fall through and pass this up the UDP socket.
1513 		 * up->encap_rcv() returns the following value:
1514 		 * =0 if skb was successfully passed to the encap
1515 		 *    handler or was discarded by it.
1516 		 * >0 if skb should be passed on to UDP.
1517 		 * <0 if skb should be resubmitted as proto -N
1518 		 */
1519 
1520 		/* if we're overly short, let UDP handle it */
1521 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1522 		if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1523 			int ret;
1524 
1525 			/* Verify checksum before giving to encap */
1526 			if (udp_lib_checksum_complete(skb))
1527 				goto csum_error;
1528 
1529 			ret = encap_rcv(sk, skb);
1530 			if (ret <= 0) {
1531 				UDP_INC_STATS_BH(sock_net(sk),
1532 						 UDP_MIB_INDATAGRAMS,
1533 						 is_udplite);
1534 				return -ret;
1535 			}
1536 		}
1537 
1538 		/* FALLTHROUGH -- it's a UDP Packet */
1539 	}
1540 
1541 	/*
1542 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1543 	 */
1544 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1545 
1546 		/*
1547 		 * MIB statistics other than incrementing the error count are
1548 		 * disabled for the following two types of errors: these depend
1549 		 * on the application settings, not on the functioning of the
1550 		 * protocol stack as such.
1551 		 *
1552 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1553 		 * way ... to ... at least let the receiving application block
1554 		 * delivery of packets with coverage values less than a value
1555 		 * provided by the application."
1556 		 */
1557 		if (up->pcrlen == 0) {          /* full coverage was set  */
1558 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1559 					    UDP_SKB_CB(skb)->cscov, skb->len);
1560 			goto drop;
1561 		}
1562 		/* The next case involves violating the min. coverage requested
1563 		 * by the receiver. This is subtle: if receiver wants x and x is
1564 		 * greater than the buffersize/MTU then receiver will complain
1565 		 * that it wants x while sender emits packets of smaller size y.
1566 		 * Therefore the above ...()->partial_cov statement is essential.
1567 		 */
1568 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1569 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1570 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1571 			goto drop;
1572 		}
1573 	}
1574 
1575 	if (rcu_access_pointer(sk->sk_filter) &&
1576 	    udp_lib_checksum_complete(skb))
1577 		goto csum_error;
1578 
1579 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1580 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1581 				 is_udplite);
1582 		goto drop;
1583 	}
1584 
1585 	rc = 0;
1586 
1587 	ipv4_pktinfo_prepare(sk, skb);
1588 	bh_lock_sock(sk);
1589 	if (!sock_owned_by_user(sk))
1590 		rc = __udp_queue_rcv_skb(sk, skb);
1591 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1592 		bh_unlock_sock(sk);
1593 		goto drop;
1594 	}
1595 	bh_unlock_sock(sk);
1596 
1597 	return rc;
1598 
1599 csum_error:
1600 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1601 drop:
1602 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1603 	atomic_inc(&sk->sk_drops);
1604 	kfree_skb(skb);
1605 	return -1;
1606 }
1607 
1608 static void flush_stack(struct sock **stack, unsigned int count,
1609 			struct sk_buff *skb, unsigned int final)
1610 {
1611 	unsigned int i;
1612 	struct sk_buff *skb1 = NULL;
1613 	struct sock *sk;
1614 
1615 	for (i = 0; i < count; i++) {
1616 		sk = stack[i];
1617 		if (likely(!skb1))
1618 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1619 
1620 		if (!skb1) {
1621 			atomic_inc(&sk->sk_drops);
1622 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1623 					 IS_UDPLITE(sk));
1624 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1625 					 IS_UDPLITE(sk));
1626 		}
1627 
1628 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1629 			skb1 = NULL;
1630 
1631 		sock_put(sk);
1632 	}
1633 	if (unlikely(skb1))
1634 		kfree_skb(skb1);
1635 }
1636 
1637 /* For TCP sockets, sk_rx_dst is protected by socket lock
1638  * For UDP, we use xchg() to guard against concurrent changes.
1639  */
1640 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1641 {
1642 	struct dst_entry *old;
1643 
1644 	dst_hold(dst);
1645 	old = xchg(&sk->sk_rx_dst, dst);
1646 	dst_release(old);
1647 }
1648 
1649 /*
1650  *	Multicasts and broadcasts go to each listener.
1651  *
1652  *	Note: called only from the BH handler context.
1653  */
1654 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1655 				    struct udphdr  *uh,
1656 				    __be32 saddr, __be32 daddr,
1657 				    struct udp_table *udptable,
1658 				    int proto)
1659 {
1660 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1661 	struct hlist_nulls_node *node;
1662 	unsigned short hnum = ntohs(uh->dest);
1663 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1664 	int dif = skb->dev->ifindex;
1665 	unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1666 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1667 	bool inner_flushed = false;
1668 
1669 	if (use_hash2) {
1670 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1671 			    udp_table.mask;
1672 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1673 start_lookup:
1674 		hslot = &udp_table.hash2[hash2];
1675 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1676 	}
1677 
1678 	spin_lock(&hslot->lock);
1679 	sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1680 		if (__udp_is_mcast_sock(net, sk,
1681 					uh->dest, daddr,
1682 					uh->source, saddr,
1683 					dif, hnum)) {
1684 			if (unlikely(count == ARRAY_SIZE(stack))) {
1685 				flush_stack(stack, count, skb, ~0);
1686 				inner_flushed = true;
1687 				count = 0;
1688 			}
1689 			stack[count++] = sk;
1690 			sock_hold(sk);
1691 		}
1692 	}
1693 
1694 	spin_unlock(&hslot->lock);
1695 
1696 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1697 	if (use_hash2 && hash2 != hash2_any) {
1698 		hash2 = hash2_any;
1699 		goto start_lookup;
1700 	}
1701 
1702 	/*
1703 	 * do the slow work with no lock held
1704 	 */
1705 	if (count) {
1706 		flush_stack(stack, count, skb, count - 1);
1707 	} else {
1708 		if (!inner_flushed)
1709 			UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1710 					 proto == IPPROTO_UDPLITE);
1711 		consume_skb(skb);
1712 	}
1713 	return 0;
1714 }
1715 
1716 /* Initialize UDP checksum. If exited with zero value (success),
1717  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1718  * Otherwise, csum completion requires chacksumming packet body,
1719  * including udp header and folding it to skb->csum.
1720  */
1721 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1722 				 int proto)
1723 {
1724 	int err;
1725 
1726 	UDP_SKB_CB(skb)->partial_cov = 0;
1727 	UDP_SKB_CB(skb)->cscov = skb->len;
1728 
1729 	if (proto == IPPROTO_UDPLITE) {
1730 		err = udplite_checksum_init(skb, uh);
1731 		if (err)
1732 			return err;
1733 	}
1734 
1735 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1736 					    inet_compute_pseudo);
1737 }
1738 
1739 /*
1740  *	All we need to do is get the socket, and then do a checksum.
1741  */
1742 
1743 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1744 		   int proto)
1745 {
1746 	struct sock *sk;
1747 	struct udphdr *uh;
1748 	unsigned short ulen;
1749 	struct rtable *rt = skb_rtable(skb);
1750 	__be32 saddr, daddr;
1751 	struct net *net = dev_net(skb->dev);
1752 
1753 	/*
1754 	 *  Validate the packet.
1755 	 */
1756 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1757 		goto drop;		/* No space for header. */
1758 
1759 	uh   = udp_hdr(skb);
1760 	ulen = ntohs(uh->len);
1761 	saddr = ip_hdr(skb)->saddr;
1762 	daddr = ip_hdr(skb)->daddr;
1763 
1764 	if (ulen > skb->len)
1765 		goto short_packet;
1766 
1767 	if (proto == IPPROTO_UDP) {
1768 		/* UDP validates ulen. */
1769 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1770 			goto short_packet;
1771 		uh = udp_hdr(skb);
1772 	}
1773 
1774 	if (udp4_csum_init(skb, uh, proto))
1775 		goto csum_error;
1776 
1777 	sk = skb_steal_sock(skb);
1778 	if (sk) {
1779 		struct dst_entry *dst = skb_dst(skb);
1780 		int ret;
1781 
1782 		if (unlikely(sk->sk_rx_dst != dst))
1783 			udp_sk_rx_dst_set(sk, dst);
1784 
1785 		ret = udp_queue_rcv_skb(sk, skb);
1786 		sock_put(sk);
1787 		/* a return value > 0 means to resubmit the input, but
1788 		 * it wants the return to be -protocol, or 0
1789 		 */
1790 		if (ret > 0)
1791 			return -ret;
1792 		return 0;
1793 	}
1794 
1795 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1796 		return __udp4_lib_mcast_deliver(net, skb, uh,
1797 						saddr, daddr, udptable, proto);
1798 
1799 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1800 	if (sk) {
1801 		int ret;
1802 
1803 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1804 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1805 						 inet_compute_pseudo);
1806 
1807 		ret = udp_queue_rcv_skb(sk, skb);
1808 		sock_put(sk);
1809 
1810 		/* a return value > 0 means to resubmit the input, but
1811 		 * it wants the return to be -protocol, or 0
1812 		 */
1813 		if (ret > 0)
1814 			return -ret;
1815 		return 0;
1816 	}
1817 
1818 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1819 		goto drop;
1820 	nf_reset(skb);
1821 
1822 	/* No socket. Drop packet silently, if checksum is wrong */
1823 	if (udp_lib_checksum_complete(skb))
1824 		goto csum_error;
1825 
1826 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1827 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1828 
1829 	/*
1830 	 * Hmm.  We got an UDP packet to a port to which we
1831 	 * don't wanna listen.  Ignore it.
1832 	 */
1833 	kfree_skb(skb);
1834 	return 0;
1835 
1836 short_packet:
1837 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1838 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1839 			    &saddr, ntohs(uh->source),
1840 			    ulen, skb->len,
1841 			    &daddr, ntohs(uh->dest));
1842 	goto drop;
1843 
1844 csum_error:
1845 	/*
1846 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1847 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1848 	 */
1849 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1850 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1851 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1852 			    ulen);
1853 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1854 drop:
1855 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1856 	kfree_skb(skb);
1857 	return 0;
1858 }
1859 
1860 /* We can only early demux multicast if there is a single matching socket.
1861  * If more than one socket found returns NULL
1862  */
1863 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1864 						  __be16 loc_port, __be32 loc_addr,
1865 						  __be16 rmt_port, __be32 rmt_addr,
1866 						  int dif)
1867 {
1868 	struct sock *sk, *result;
1869 	struct hlist_nulls_node *node;
1870 	unsigned short hnum = ntohs(loc_port);
1871 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1872 	struct udp_hslot *hslot = &udp_table.hash[slot];
1873 
1874 	/* Do not bother scanning a too big list */
1875 	if (hslot->count > 10)
1876 		return NULL;
1877 
1878 	rcu_read_lock();
1879 begin:
1880 	count = 0;
1881 	result = NULL;
1882 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1883 		if (__udp_is_mcast_sock(net, sk,
1884 					loc_port, loc_addr,
1885 					rmt_port, rmt_addr,
1886 					dif, hnum)) {
1887 			result = sk;
1888 			++count;
1889 		}
1890 	}
1891 	/*
1892 	 * if the nulls value we got at the end of this lookup is
1893 	 * not the expected one, we must restart lookup.
1894 	 * We probably met an item that was moved to another chain.
1895 	 */
1896 	if (get_nulls_value(node) != slot)
1897 		goto begin;
1898 
1899 	if (result) {
1900 		if (count != 1 ||
1901 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1902 			result = NULL;
1903 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1904 						       loc_port, loc_addr,
1905 						       rmt_port, rmt_addr,
1906 						       dif, hnum))) {
1907 			sock_put(result);
1908 			result = NULL;
1909 		}
1910 	}
1911 	rcu_read_unlock();
1912 	return result;
1913 }
1914 
1915 /* For unicast we should only early demux connected sockets or we can
1916  * break forwarding setups.  The chains here can be long so only check
1917  * if the first socket is an exact match and if not move on.
1918  */
1919 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1920 					    __be16 loc_port, __be32 loc_addr,
1921 					    __be16 rmt_port, __be32 rmt_addr,
1922 					    int dif)
1923 {
1924 	struct sock *sk, *result;
1925 	struct hlist_nulls_node *node;
1926 	unsigned short hnum = ntohs(loc_port);
1927 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1928 	unsigned int slot2 = hash2 & udp_table.mask;
1929 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1930 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1931 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1932 
1933 	rcu_read_lock();
1934 	result = NULL;
1935 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1936 		if (INET_MATCH(sk, net, acookie,
1937 			       rmt_addr, loc_addr, ports, dif))
1938 			result = sk;
1939 		/* Only check first socket in chain */
1940 		break;
1941 	}
1942 
1943 	if (result) {
1944 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1945 			result = NULL;
1946 		else if (unlikely(!INET_MATCH(sk, net, acookie,
1947 					      rmt_addr, loc_addr,
1948 					      ports, dif))) {
1949 			sock_put(result);
1950 			result = NULL;
1951 		}
1952 	}
1953 	rcu_read_unlock();
1954 	return result;
1955 }
1956 
1957 void udp_v4_early_demux(struct sk_buff *skb)
1958 {
1959 	struct net *net = dev_net(skb->dev);
1960 	const struct iphdr *iph;
1961 	const struct udphdr *uh;
1962 	struct sock *sk;
1963 	struct dst_entry *dst;
1964 	int dif = skb->dev->ifindex;
1965 
1966 	/* validate the packet */
1967 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1968 		return;
1969 
1970 	iph = ip_hdr(skb);
1971 	uh = udp_hdr(skb);
1972 
1973 	if (skb->pkt_type == PACKET_BROADCAST ||
1974 	    skb->pkt_type == PACKET_MULTICAST)
1975 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1976 						   uh->source, iph->saddr, dif);
1977 	else if (skb->pkt_type == PACKET_HOST)
1978 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1979 					     uh->source, iph->saddr, dif);
1980 	else
1981 		return;
1982 
1983 	if (!sk)
1984 		return;
1985 
1986 	skb->sk = sk;
1987 	skb->destructor = sock_efree;
1988 	dst = sk->sk_rx_dst;
1989 
1990 	if (dst)
1991 		dst = dst_check(dst, 0);
1992 	if (dst)
1993 		skb_dst_set_noref(skb, dst);
1994 }
1995 
1996 int udp_rcv(struct sk_buff *skb)
1997 {
1998 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1999 }
2000 
2001 void udp_destroy_sock(struct sock *sk)
2002 {
2003 	struct udp_sock *up = udp_sk(sk);
2004 	bool slow = lock_sock_fast(sk);
2005 	udp_flush_pending_frames(sk);
2006 	unlock_sock_fast(sk, slow);
2007 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2008 		void (*encap_destroy)(struct sock *sk);
2009 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2010 		if (encap_destroy)
2011 			encap_destroy(sk);
2012 	}
2013 }
2014 
2015 /*
2016  *	Socket option code for UDP
2017  */
2018 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2019 		       char __user *optval, unsigned int optlen,
2020 		       int (*push_pending_frames)(struct sock *))
2021 {
2022 	struct udp_sock *up = udp_sk(sk);
2023 	int val, valbool;
2024 	int err = 0;
2025 	int is_udplite = IS_UDPLITE(sk);
2026 
2027 	if (optlen < sizeof(int))
2028 		return -EINVAL;
2029 
2030 	if (get_user(val, (int __user *)optval))
2031 		return -EFAULT;
2032 
2033 	valbool = val ? 1 : 0;
2034 
2035 	switch (optname) {
2036 	case UDP_CORK:
2037 		if (val != 0) {
2038 			up->corkflag = 1;
2039 		} else {
2040 			up->corkflag = 0;
2041 			lock_sock(sk);
2042 			push_pending_frames(sk);
2043 			release_sock(sk);
2044 		}
2045 		break;
2046 
2047 	case UDP_ENCAP:
2048 		switch (val) {
2049 		case 0:
2050 		case UDP_ENCAP_ESPINUDP:
2051 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2052 			up->encap_rcv = xfrm4_udp_encap_rcv;
2053 			/* FALLTHROUGH */
2054 		case UDP_ENCAP_L2TPINUDP:
2055 			up->encap_type = val;
2056 			udp_encap_enable();
2057 			break;
2058 		default:
2059 			err = -ENOPROTOOPT;
2060 			break;
2061 		}
2062 		break;
2063 
2064 	case UDP_NO_CHECK6_TX:
2065 		up->no_check6_tx = valbool;
2066 		break;
2067 
2068 	case UDP_NO_CHECK6_RX:
2069 		up->no_check6_rx = valbool;
2070 		break;
2071 
2072 	/*
2073 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2074 	 */
2075 	/* The sender sets actual checksum coverage length via this option.
2076 	 * The case coverage > packet length is handled by send module. */
2077 	case UDPLITE_SEND_CSCOV:
2078 		if (!is_udplite)         /* Disable the option on UDP sockets */
2079 			return -ENOPROTOOPT;
2080 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2081 			val = 8;
2082 		else if (val > USHRT_MAX)
2083 			val = USHRT_MAX;
2084 		up->pcslen = val;
2085 		up->pcflag |= UDPLITE_SEND_CC;
2086 		break;
2087 
2088 	/* The receiver specifies a minimum checksum coverage value. To make
2089 	 * sense, this should be set to at least 8 (as done below). If zero is
2090 	 * used, this again means full checksum coverage.                     */
2091 	case UDPLITE_RECV_CSCOV:
2092 		if (!is_udplite)         /* Disable the option on UDP sockets */
2093 			return -ENOPROTOOPT;
2094 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2095 			val = 8;
2096 		else if (val > USHRT_MAX)
2097 			val = USHRT_MAX;
2098 		up->pcrlen = val;
2099 		up->pcflag |= UDPLITE_RECV_CC;
2100 		break;
2101 
2102 	default:
2103 		err = -ENOPROTOOPT;
2104 		break;
2105 	}
2106 
2107 	return err;
2108 }
2109 EXPORT_SYMBOL(udp_lib_setsockopt);
2110 
2111 int udp_setsockopt(struct sock *sk, int level, int optname,
2112 		   char __user *optval, unsigned int optlen)
2113 {
2114 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2115 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2116 					  udp_push_pending_frames);
2117 	return ip_setsockopt(sk, level, optname, optval, optlen);
2118 }
2119 
2120 #ifdef CONFIG_COMPAT
2121 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2122 			  char __user *optval, unsigned int optlen)
2123 {
2124 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2125 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2126 					  udp_push_pending_frames);
2127 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2128 }
2129 #endif
2130 
2131 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2132 		       char __user *optval, int __user *optlen)
2133 {
2134 	struct udp_sock *up = udp_sk(sk);
2135 	int val, len;
2136 
2137 	if (get_user(len, optlen))
2138 		return -EFAULT;
2139 
2140 	len = min_t(unsigned int, len, sizeof(int));
2141 
2142 	if (len < 0)
2143 		return -EINVAL;
2144 
2145 	switch (optname) {
2146 	case UDP_CORK:
2147 		val = up->corkflag;
2148 		break;
2149 
2150 	case UDP_ENCAP:
2151 		val = up->encap_type;
2152 		break;
2153 
2154 	case UDP_NO_CHECK6_TX:
2155 		val = up->no_check6_tx;
2156 		break;
2157 
2158 	case UDP_NO_CHECK6_RX:
2159 		val = up->no_check6_rx;
2160 		break;
2161 
2162 	/* The following two cannot be changed on UDP sockets, the return is
2163 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2164 	case UDPLITE_SEND_CSCOV:
2165 		val = up->pcslen;
2166 		break;
2167 
2168 	case UDPLITE_RECV_CSCOV:
2169 		val = up->pcrlen;
2170 		break;
2171 
2172 	default:
2173 		return -ENOPROTOOPT;
2174 	}
2175 
2176 	if (put_user(len, optlen))
2177 		return -EFAULT;
2178 	if (copy_to_user(optval, &val, len))
2179 		return -EFAULT;
2180 	return 0;
2181 }
2182 EXPORT_SYMBOL(udp_lib_getsockopt);
2183 
2184 int udp_getsockopt(struct sock *sk, int level, int optname,
2185 		   char __user *optval, int __user *optlen)
2186 {
2187 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2188 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2189 	return ip_getsockopt(sk, level, optname, optval, optlen);
2190 }
2191 
2192 #ifdef CONFIG_COMPAT
2193 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2194 				 char __user *optval, int __user *optlen)
2195 {
2196 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2197 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2198 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2199 }
2200 #endif
2201 /**
2202  * 	udp_poll - wait for a UDP event.
2203  *	@file - file struct
2204  *	@sock - socket
2205  *	@wait - poll table
2206  *
2207  *	This is same as datagram poll, except for the special case of
2208  *	blocking sockets. If application is using a blocking fd
2209  *	and a packet with checksum error is in the queue;
2210  *	then it could get return from select indicating data available
2211  *	but then block when reading it. Add special case code
2212  *	to work around these arguably broken applications.
2213  */
2214 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2215 {
2216 	unsigned int mask = datagram_poll(file, sock, wait);
2217 	struct sock *sk = sock->sk;
2218 
2219 	sock_rps_record_flow(sk);
2220 
2221 	/* Check for false positives due to checksum errors */
2222 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2223 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2224 		mask &= ~(POLLIN | POLLRDNORM);
2225 
2226 	return mask;
2227 
2228 }
2229 EXPORT_SYMBOL(udp_poll);
2230 
2231 struct proto udp_prot = {
2232 	.name		   = "UDP",
2233 	.owner		   = THIS_MODULE,
2234 	.close		   = udp_lib_close,
2235 	.connect	   = ip4_datagram_connect,
2236 	.disconnect	   = udp_disconnect,
2237 	.ioctl		   = udp_ioctl,
2238 	.destroy	   = udp_destroy_sock,
2239 	.setsockopt	   = udp_setsockopt,
2240 	.getsockopt	   = udp_getsockopt,
2241 	.sendmsg	   = udp_sendmsg,
2242 	.recvmsg	   = udp_recvmsg,
2243 	.sendpage	   = udp_sendpage,
2244 	.backlog_rcv	   = __udp_queue_rcv_skb,
2245 	.release_cb	   = ip4_datagram_release_cb,
2246 	.hash		   = udp_lib_hash,
2247 	.unhash		   = udp_lib_unhash,
2248 	.rehash		   = udp_v4_rehash,
2249 	.get_port	   = udp_v4_get_port,
2250 	.memory_allocated  = &udp_memory_allocated,
2251 	.sysctl_mem	   = sysctl_udp_mem,
2252 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2253 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2254 	.obj_size	   = sizeof(struct udp_sock),
2255 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2256 	.h.udp_table	   = &udp_table,
2257 #ifdef CONFIG_COMPAT
2258 	.compat_setsockopt = compat_udp_setsockopt,
2259 	.compat_getsockopt = compat_udp_getsockopt,
2260 #endif
2261 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2262 };
2263 EXPORT_SYMBOL(udp_prot);
2264 
2265 /* ------------------------------------------------------------------------ */
2266 #ifdef CONFIG_PROC_FS
2267 
2268 static struct sock *udp_get_first(struct seq_file *seq, int start)
2269 {
2270 	struct sock *sk;
2271 	struct udp_iter_state *state = seq->private;
2272 	struct net *net = seq_file_net(seq);
2273 
2274 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2275 	     ++state->bucket) {
2276 		struct hlist_nulls_node *node;
2277 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2278 
2279 		if (hlist_nulls_empty(&hslot->head))
2280 			continue;
2281 
2282 		spin_lock_bh(&hslot->lock);
2283 		sk_nulls_for_each(sk, node, &hslot->head) {
2284 			if (!net_eq(sock_net(sk), net))
2285 				continue;
2286 			if (sk->sk_family == state->family)
2287 				goto found;
2288 		}
2289 		spin_unlock_bh(&hslot->lock);
2290 	}
2291 	sk = NULL;
2292 found:
2293 	return sk;
2294 }
2295 
2296 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2297 {
2298 	struct udp_iter_state *state = seq->private;
2299 	struct net *net = seq_file_net(seq);
2300 
2301 	do {
2302 		sk = sk_nulls_next(sk);
2303 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2304 
2305 	if (!sk) {
2306 		if (state->bucket <= state->udp_table->mask)
2307 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2308 		return udp_get_first(seq, state->bucket + 1);
2309 	}
2310 	return sk;
2311 }
2312 
2313 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2314 {
2315 	struct sock *sk = udp_get_first(seq, 0);
2316 
2317 	if (sk)
2318 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2319 			--pos;
2320 	return pos ? NULL : sk;
2321 }
2322 
2323 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2324 {
2325 	struct udp_iter_state *state = seq->private;
2326 	state->bucket = MAX_UDP_PORTS;
2327 
2328 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2329 }
2330 
2331 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2332 {
2333 	struct sock *sk;
2334 
2335 	if (v == SEQ_START_TOKEN)
2336 		sk = udp_get_idx(seq, 0);
2337 	else
2338 		sk = udp_get_next(seq, v);
2339 
2340 	++*pos;
2341 	return sk;
2342 }
2343 
2344 static void udp_seq_stop(struct seq_file *seq, void *v)
2345 {
2346 	struct udp_iter_state *state = seq->private;
2347 
2348 	if (state->bucket <= state->udp_table->mask)
2349 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2350 }
2351 
2352 int udp_seq_open(struct inode *inode, struct file *file)
2353 {
2354 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2355 	struct udp_iter_state *s;
2356 	int err;
2357 
2358 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2359 			   sizeof(struct udp_iter_state));
2360 	if (err < 0)
2361 		return err;
2362 
2363 	s = ((struct seq_file *)file->private_data)->private;
2364 	s->family		= afinfo->family;
2365 	s->udp_table		= afinfo->udp_table;
2366 	return err;
2367 }
2368 EXPORT_SYMBOL(udp_seq_open);
2369 
2370 /* ------------------------------------------------------------------------ */
2371 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2372 {
2373 	struct proc_dir_entry *p;
2374 	int rc = 0;
2375 
2376 	afinfo->seq_ops.start		= udp_seq_start;
2377 	afinfo->seq_ops.next		= udp_seq_next;
2378 	afinfo->seq_ops.stop		= udp_seq_stop;
2379 
2380 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2381 			     afinfo->seq_fops, afinfo);
2382 	if (!p)
2383 		rc = -ENOMEM;
2384 	return rc;
2385 }
2386 EXPORT_SYMBOL(udp_proc_register);
2387 
2388 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2389 {
2390 	remove_proc_entry(afinfo->name, net->proc_net);
2391 }
2392 EXPORT_SYMBOL(udp_proc_unregister);
2393 
2394 /* ------------------------------------------------------------------------ */
2395 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2396 		int bucket)
2397 {
2398 	struct inet_sock *inet = inet_sk(sp);
2399 	__be32 dest = inet->inet_daddr;
2400 	__be32 src  = inet->inet_rcv_saddr;
2401 	__u16 destp	  = ntohs(inet->inet_dport);
2402 	__u16 srcp	  = ntohs(inet->inet_sport);
2403 
2404 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2405 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2406 		bucket, src, srcp, dest, destp, sp->sk_state,
2407 		sk_wmem_alloc_get(sp),
2408 		sk_rmem_alloc_get(sp),
2409 		0, 0L, 0,
2410 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2411 		0, sock_i_ino(sp),
2412 		atomic_read(&sp->sk_refcnt), sp,
2413 		atomic_read(&sp->sk_drops));
2414 }
2415 
2416 int udp4_seq_show(struct seq_file *seq, void *v)
2417 {
2418 	seq_setwidth(seq, 127);
2419 	if (v == SEQ_START_TOKEN)
2420 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2421 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2422 			   "inode ref pointer drops");
2423 	else {
2424 		struct udp_iter_state *state = seq->private;
2425 
2426 		udp4_format_sock(v, seq, state->bucket);
2427 	}
2428 	seq_pad(seq, '\n');
2429 	return 0;
2430 }
2431 
2432 static const struct file_operations udp_afinfo_seq_fops = {
2433 	.owner    = THIS_MODULE,
2434 	.open     = udp_seq_open,
2435 	.read     = seq_read,
2436 	.llseek   = seq_lseek,
2437 	.release  = seq_release_net
2438 };
2439 
2440 /* ------------------------------------------------------------------------ */
2441 static struct udp_seq_afinfo udp4_seq_afinfo = {
2442 	.name		= "udp",
2443 	.family		= AF_INET,
2444 	.udp_table	= &udp_table,
2445 	.seq_fops	= &udp_afinfo_seq_fops,
2446 	.seq_ops	= {
2447 		.show		= udp4_seq_show,
2448 	},
2449 };
2450 
2451 static int __net_init udp4_proc_init_net(struct net *net)
2452 {
2453 	return udp_proc_register(net, &udp4_seq_afinfo);
2454 }
2455 
2456 static void __net_exit udp4_proc_exit_net(struct net *net)
2457 {
2458 	udp_proc_unregister(net, &udp4_seq_afinfo);
2459 }
2460 
2461 static struct pernet_operations udp4_net_ops = {
2462 	.init = udp4_proc_init_net,
2463 	.exit = udp4_proc_exit_net,
2464 };
2465 
2466 int __init udp4_proc_init(void)
2467 {
2468 	return register_pernet_subsys(&udp4_net_ops);
2469 }
2470 
2471 void udp4_proc_exit(void)
2472 {
2473 	unregister_pernet_subsys(&udp4_net_ops);
2474 }
2475 #endif /* CONFIG_PROC_FS */
2476 
2477 static __initdata unsigned long uhash_entries;
2478 static int __init set_uhash_entries(char *str)
2479 {
2480 	ssize_t ret;
2481 
2482 	if (!str)
2483 		return 0;
2484 
2485 	ret = kstrtoul(str, 0, &uhash_entries);
2486 	if (ret)
2487 		return 0;
2488 
2489 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2490 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2491 	return 1;
2492 }
2493 __setup("uhash_entries=", set_uhash_entries);
2494 
2495 void __init udp_table_init(struct udp_table *table, const char *name)
2496 {
2497 	unsigned int i;
2498 
2499 	table->hash = alloc_large_system_hash(name,
2500 					      2 * sizeof(struct udp_hslot),
2501 					      uhash_entries,
2502 					      21, /* one slot per 2 MB */
2503 					      0,
2504 					      &table->log,
2505 					      &table->mask,
2506 					      UDP_HTABLE_SIZE_MIN,
2507 					      64 * 1024);
2508 
2509 	table->hash2 = table->hash + (table->mask + 1);
2510 	for (i = 0; i <= table->mask; i++) {
2511 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2512 		table->hash[i].count = 0;
2513 		spin_lock_init(&table->hash[i].lock);
2514 	}
2515 	for (i = 0; i <= table->mask; i++) {
2516 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2517 		table->hash2[i].count = 0;
2518 		spin_lock_init(&table->hash2[i].lock);
2519 	}
2520 }
2521 
2522 u32 udp_flow_hashrnd(void)
2523 {
2524 	static u32 hashrnd __read_mostly;
2525 
2526 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2527 
2528 	return hashrnd;
2529 }
2530 EXPORT_SYMBOL(udp_flow_hashrnd);
2531 
2532 void __init udp_init(void)
2533 {
2534 	unsigned long limit;
2535 
2536 	udp_table_init(&udp_table, "UDP");
2537 	limit = nr_free_buffer_pages() / 8;
2538 	limit = max(limit, 128UL);
2539 	sysctl_udp_mem[0] = limit / 4 * 3;
2540 	sysctl_udp_mem[1] = limit;
2541 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2542 
2543 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2544 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2545 }
2546