1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 atomic_long_t udp_memory_allocated; 126 EXPORT_SYMBOL(udp_memory_allocated); 127 128 #define MAX_UDP_PORTS 65536 129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 130 131 /* IPCB reference means this can not be used from early demux */ 132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 133 { 134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 135 if (!net->ipv4.sysctl_udp_l3mdev_accept && 136 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 137 return true; 138 #endif 139 return false; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2); 225 } 226 } 227 228 return reuseport_alloc(sk); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_hslot *hslot, *hslot2; 243 struct udp_table *udptable = sk->sk_prot->h.udp_table; 244 int error = 1; 245 struct net *net = sock_net(sk); 246 247 if (!snum) { 248 int low, high, remaining; 249 unsigned int rand; 250 unsigned short first, last; 251 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 252 253 inet_get_local_port_range(net, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = prandom_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif, bool exact_dif) 370 { 371 int score; 372 struct inet_sock *inet; 373 374 if (!net_eq(sock_net(sk), net) || 375 udp_sk(sk)->udp_port_hash != hnum || 376 ipv6_only_sock(sk)) 377 return -1; 378 379 score = (sk->sk_family == PF_INET) ? 2 : 1; 380 inet = inet_sk(sk); 381 382 if (inet->inet_rcv_saddr) { 383 if (inet->inet_rcv_saddr != daddr) 384 return -1; 385 score += 4; 386 } 387 388 if (inet->inet_daddr) { 389 if (inet->inet_daddr != saddr) 390 return -1; 391 score += 4; 392 } 393 394 if (inet->inet_dport) { 395 if (inet->inet_dport != sport) 396 return -1; 397 score += 4; 398 } 399 400 if (sk->sk_bound_dev_if || exact_dif) { 401 bool dev_match = (sk->sk_bound_dev_if == dif || 402 sk->sk_bound_dev_if == sdif); 403 404 if (exact_dif && !dev_match) 405 return -1; 406 if (sk->sk_bound_dev_if && dev_match) 407 score += 4; 408 } 409 410 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 411 score++; 412 return score; 413 } 414 415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 416 const __u16 lport, const __be32 faddr, 417 const __be16 fport) 418 { 419 static u32 udp_ehash_secret __read_mostly; 420 421 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 422 423 return __inet_ehashfn(laddr, lport, faddr, fport, 424 udp_ehash_secret + net_hash_mix(net)); 425 } 426 427 /* called with rcu_read_lock() */ 428 static struct sock *udp4_lib_lookup2(struct net *net, 429 __be32 saddr, __be16 sport, 430 __be32 daddr, unsigned int hnum, 431 int dif, int sdif, bool exact_dif, 432 struct udp_hslot *hslot2, 433 struct sk_buff *skb) 434 { 435 struct sock *sk, *result; 436 int score, badness; 437 u32 hash = 0; 438 439 result = NULL; 440 badness = 0; 441 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 442 score = compute_score(sk, net, saddr, sport, 443 daddr, hnum, dif, sdif, exact_dif); 444 if (score > badness) { 445 if (sk->sk_reuseport) { 446 hash = udp_ehashfn(net, daddr, hnum, 447 saddr, sport); 448 result = reuseport_select_sock(sk, hash, skb, 449 sizeof(struct udphdr)); 450 if (result) 451 return result; 452 } 453 badness = score; 454 result = sk; 455 } 456 } 457 return result; 458 } 459 460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 461 * harder than this. -DaveM 462 */ 463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 464 __be16 sport, __be32 daddr, __be16 dport, int dif, 465 int sdif, struct udp_table *udptable, struct sk_buff *skb) 466 { 467 struct sock *sk, *result; 468 unsigned short hnum = ntohs(dport); 469 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 470 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 471 bool exact_dif = udp_lib_exact_dif_match(net, skb); 472 int score, badness; 473 u32 hash = 0; 474 475 if (hslot->count > 10) { 476 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 477 slot2 = hash2 & udptable->mask; 478 hslot2 = &udptable->hash2[slot2]; 479 if (hslot->count < hslot2->count) 480 goto begin; 481 482 result = udp4_lib_lookup2(net, saddr, sport, 483 daddr, hnum, dif, sdif, 484 exact_dif, hslot2, skb); 485 if (!result) { 486 unsigned int old_slot2 = slot2; 487 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 488 slot2 = hash2 & udptable->mask; 489 /* avoid searching the same slot again. */ 490 if (unlikely(slot2 == old_slot2)) 491 return result; 492 493 hslot2 = &udptable->hash2[slot2]; 494 if (hslot->count < hslot2->count) 495 goto begin; 496 497 result = udp4_lib_lookup2(net, saddr, sport, 498 daddr, hnum, dif, sdif, 499 exact_dif, hslot2, skb); 500 } 501 return result; 502 } 503 begin: 504 result = NULL; 505 badness = 0; 506 sk_for_each_rcu(sk, &hslot->head) { 507 score = compute_score(sk, net, saddr, sport, 508 daddr, hnum, dif, sdif, exact_dif); 509 if (score > badness) { 510 if (sk->sk_reuseport) { 511 hash = udp_ehashfn(net, daddr, hnum, 512 saddr, sport); 513 result = reuseport_select_sock(sk, hash, skb, 514 sizeof(struct udphdr)); 515 if (result) 516 return result; 517 } 518 result = sk; 519 badness = score; 520 } 521 } 522 return result; 523 } 524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 525 526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 527 __be16 sport, __be16 dport, 528 struct udp_table *udptable) 529 { 530 const struct iphdr *iph = ip_hdr(skb); 531 532 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 533 iph->daddr, dport, inet_iif(skb), 534 inet_sdif(skb), udptable, skb); 535 } 536 537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 538 __be16 sport, __be16 dport) 539 { 540 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 541 } 542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 543 544 /* Must be called under rcu_read_lock(). 545 * Does increment socket refcount. 546 */ 547 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \ 548 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \ 549 IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 550 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 551 __be32 daddr, __be16 dport, int dif) 552 { 553 struct sock *sk; 554 555 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 556 dif, 0, &udp_table, NULL); 557 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 558 sk = NULL; 559 return sk; 560 } 561 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 562 #endif 563 564 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 565 __be16 loc_port, __be32 loc_addr, 566 __be16 rmt_port, __be32 rmt_addr, 567 int dif, int sdif, unsigned short hnum) 568 { 569 struct inet_sock *inet = inet_sk(sk); 570 571 if (!net_eq(sock_net(sk), net) || 572 udp_sk(sk)->udp_port_hash != hnum || 573 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 574 (inet->inet_dport != rmt_port && inet->inet_dport) || 575 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 576 ipv6_only_sock(sk) || 577 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 578 sk->sk_bound_dev_if != sdif)) 579 return false; 580 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 581 return false; 582 return true; 583 } 584 585 /* 586 * This routine is called by the ICMP module when it gets some 587 * sort of error condition. If err < 0 then the socket should 588 * be closed and the error returned to the user. If err > 0 589 * it's just the icmp type << 8 | icmp code. 590 * Header points to the ip header of the error packet. We move 591 * on past this. Then (as it used to claim before adjustment) 592 * header points to the first 8 bytes of the udp header. We need 593 * to find the appropriate port. 594 */ 595 596 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 597 { 598 struct inet_sock *inet; 599 const struct iphdr *iph = (const struct iphdr *)skb->data; 600 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 601 const int type = icmp_hdr(skb)->type; 602 const int code = icmp_hdr(skb)->code; 603 struct sock *sk; 604 int harderr; 605 int err; 606 struct net *net = dev_net(skb->dev); 607 608 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 609 iph->saddr, uh->source, skb->dev->ifindex, 0, 610 udptable, NULL); 611 if (!sk) { 612 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 613 return; /* No socket for error */ 614 } 615 616 err = 0; 617 harderr = 0; 618 inet = inet_sk(sk); 619 620 switch (type) { 621 default: 622 case ICMP_TIME_EXCEEDED: 623 err = EHOSTUNREACH; 624 break; 625 case ICMP_SOURCE_QUENCH: 626 goto out; 627 case ICMP_PARAMETERPROB: 628 err = EPROTO; 629 harderr = 1; 630 break; 631 case ICMP_DEST_UNREACH: 632 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 633 ipv4_sk_update_pmtu(skb, sk, info); 634 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 635 err = EMSGSIZE; 636 harderr = 1; 637 break; 638 } 639 goto out; 640 } 641 err = EHOSTUNREACH; 642 if (code <= NR_ICMP_UNREACH) { 643 harderr = icmp_err_convert[code].fatal; 644 err = icmp_err_convert[code].errno; 645 } 646 break; 647 case ICMP_REDIRECT: 648 ipv4_sk_redirect(skb, sk); 649 goto out; 650 } 651 652 /* 653 * RFC1122: OK. Passes ICMP errors back to application, as per 654 * 4.1.3.3. 655 */ 656 if (!inet->recverr) { 657 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 658 goto out; 659 } else 660 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 661 662 sk->sk_err = err; 663 sk->sk_error_report(sk); 664 out: 665 return; 666 } 667 668 void udp_err(struct sk_buff *skb, u32 info) 669 { 670 __udp4_lib_err(skb, info, &udp_table); 671 } 672 673 /* 674 * Throw away all pending data and cancel the corking. Socket is locked. 675 */ 676 void udp_flush_pending_frames(struct sock *sk) 677 { 678 struct udp_sock *up = udp_sk(sk); 679 680 if (up->pending) { 681 up->len = 0; 682 up->pending = 0; 683 ip_flush_pending_frames(sk); 684 } 685 } 686 EXPORT_SYMBOL(udp_flush_pending_frames); 687 688 /** 689 * udp4_hwcsum - handle outgoing HW checksumming 690 * @skb: sk_buff containing the filled-in UDP header 691 * (checksum field must be zeroed out) 692 * @src: source IP address 693 * @dst: destination IP address 694 */ 695 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 696 { 697 struct udphdr *uh = udp_hdr(skb); 698 int offset = skb_transport_offset(skb); 699 int len = skb->len - offset; 700 int hlen = len; 701 __wsum csum = 0; 702 703 if (!skb_has_frag_list(skb)) { 704 /* 705 * Only one fragment on the socket. 706 */ 707 skb->csum_start = skb_transport_header(skb) - skb->head; 708 skb->csum_offset = offsetof(struct udphdr, check); 709 uh->check = ~csum_tcpudp_magic(src, dst, len, 710 IPPROTO_UDP, 0); 711 } else { 712 struct sk_buff *frags; 713 714 /* 715 * HW-checksum won't work as there are two or more 716 * fragments on the socket so that all csums of sk_buffs 717 * should be together 718 */ 719 skb_walk_frags(skb, frags) { 720 csum = csum_add(csum, frags->csum); 721 hlen -= frags->len; 722 } 723 724 csum = skb_checksum(skb, offset, hlen, csum); 725 skb->ip_summed = CHECKSUM_NONE; 726 727 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 728 if (uh->check == 0) 729 uh->check = CSUM_MANGLED_0; 730 } 731 } 732 EXPORT_SYMBOL_GPL(udp4_hwcsum); 733 734 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 735 * for the simple case like when setting the checksum for a UDP tunnel. 736 */ 737 void udp_set_csum(bool nocheck, struct sk_buff *skb, 738 __be32 saddr, __be32 daddr, int len) 739 { 740 struct udphdr *uh = udp_hdr(skb); 741 742 if (nocheck) { 743 uh->check = 0; 744 } else if (skb_is_gso(skb)) { 745 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 746 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 747 uh->check = 0; 748 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 749 if (uh->check == 0) 750 uh->check = CSUM_MANGLED_0; 751 } else { 752 skb->ip_summed = CHECKSUM_PARTIAL; 753 skb->csum_start = skb_transport_header(skb) - skb->head; 754 skb->csum_offset = offsetof(struct udphdr, check); 755 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 756 } 757 } 758 EXPORT_SYMBOL(udp_set_csum); 759 760 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 761 { 762 struct sock *sk = skb->sk; 763 struct inet_sock *inet = inet_sk(sk); 764 struct udphdr *uh; 765 int err = 0; 766 int is_udplite = IS_UDPLITE(sk); 767 int offset = skb_transport_offset(skb); 768 int len = skb->len - offset; 769 __wsum csum = 0; 770 771 /* 772 * Create a UDP header 773 */ 774 uh = udp_hdr(skb); 775 uh->source = inet->inet_sport; 776 uh->dest = fl4->fl4_dport; 777 uh->len = htons(len); 778 uh->check = 0; 779 780 if (is_udplite) /* UDP-Lite */ 781 csum = udplite_csum(skb); 782 783 else if (sk->sk_no_check_tx) { /* UDP csum off */ 784 785 skb->ip_summed = CHECKSUM_NONE; 786 goto send; 787 788 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 789 790 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 791 goto send; 792 793 } else 794 csum = udp_csum(skb); 795 796 /* add protocol-dependent pseudo-header */ 797 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 798 sk->sk_protocol, csum); 799 if (uh->check == 0) 800 uh->check = CSUM_MANGLED_0; 801 802 send: 803 err = ip_send_skb(sock_net(sk), skb); 804 if (err) { 805 if (err == -ENOBUFS && !inet->recverr) { 806 UDP_INC_STATS(sock_net(sk), 807 UDP_MIB_SNDBUFERRORS, is_udplite); 808 err = 0; 809 } 810 } else 811 UDP_INC_STATS(sock_net(sk), 812 UDP_MIB_OUTDATAGRAMS, is_udplite); 813 return err; 814 } 815 816 /* 817 * Push out all pending data as one UDP datagram. Socket is locked. 818 */ 819 int udp_push_pending_frames(struct sock *sk) 820 { 821 struct udp_sock *up = udp_sk(sk); 822 struct inet_sock *inet = inet_sk(sk); 823 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 824 struct sk_buff *skb; 825 int err = 0; 826 827 skb = ip_finish_skb(sk, fl4); 828 if (!skb) 829 goto out; 830 831 err = udp_send_skb(skb, fl4); 832 833 out: 834 up->len = 0; 835 up->pending = 0; 836 return err; 837 } 838 EXPORT_SYMBOL(udp_push_pending_frames); 839 840 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 841 { 842 struct inet_sock *inet = inet_sk(sk); 843 struct udp_sock *up = udp_sk(sk); 844 struct flowi4 fl4_stack; 845 struct flowi4 *fl4; 846 int ulen = len; 847 struct ipcm_cookie ipc; 848 struct rtable *rt = NULL; 849 int free = 0; 850 int connected = 0; 851 __be32 daddr, faddr, saddr; 852 __be16 dport; 853 u8 tos; 854 int err, is_udplite = IS_UDPLITE(sk); 855 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 856 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 857 struct sk_buff *skb; 858 struct ip_options_data opt_copy; 859 860 if (len > 0xFFFF) 861 return -EMSGSIZE; 862 863 /* 864 * Check the flags. 865 */ 866 867 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 868 return -EOPNOTSUPP; 869 870 ipc.opt = NULL; 871 ipc.tx_flags = 0; 872 ipc.ttl = 0; 873 ipc.tos = -1; 874 875 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 876 877 fl4 = &inet->cork.fl.u.ip4; 878 if (up->pending) { 879 /* 880 * There are pending frames. 881 * The socket lock must be held while it's corked. 882 */ 883 lock_sock(sk); 884 if (likely(up->pending)) { 885 if (unlikely(up->pending != AF_INET)) { 886 release_sock(sk); 887 return -EINVAL; 888 } 889 goto do_append_data; 890 } 891 release_sock(sk); 892 } 893 ulen += sizeof(struct udphdr); 894 895 /* 896 * Get and verify the address. 897 */ 898 if (msg->msg_name) { 899 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 900 if (msg->msg_namelen < sizeof(*usin)) 901 return -EINVAL; 902 if (usin->sin_family != AF_INET) { 903 if (usin->sin_family != AF_UNSPEC) 904 return -EAFNOSUPPORT; 905 } 906 907 daddr = usin->sin_addr.s_addr; 908 dport = usin->sin_port; 909 if (dport == 0) 910 return -EINVAL; 911 } else { 912 if (sk->sk_state != TCP_ESTABLISHED) 913 return -EDESTADDRREQ; 914 daddr = inet->inet_daddr; 915 dport = inet->inet_dport; 916 /* Open fast path for connected socket. 917 Route will not be used, if at least one option is set. 918 */ 919 connected = 1; 920 } 921 922 ipc.sockc.tsflags = sk->sk_tsflags; 923 ipc.addr = inet->inet_saddr; 924 ipc.oif = sk->sk_bound_dev_if; 925 926 if (msg->msg_controllen) { 927 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6); 928 if (unlikely(err)) { 929 kfree(ipc.opt); 930 return err; 931 } 932 if (ipc.opt) 933 free = 1; 934 connected = 0; 935 } 936 if (!ipc.opt) { 937 struct ip_options_rcu *inet_opt; 938 939 rcu_read_lock(); 940 inet_opt = rcu_dereference(inet->inet_opt); 941 if (inet_opt) { 942 memcpy(&opt_copy, inet_opt, 943 sizeof(*inet_opt) + inet_opt->opt.optlen); 944 ipc.opt = &opt_copy.opt; 945 } 946 rcu_read_unlock(); 947 } 948 949 saddr = ipc.addr; 950 ipc.addr = faddr = daddr; 951 952 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 953 954 if (ipc.opt && ipc.opt->opt.srr) { 955 if (!daddr) 956 return -EINVAL; 957 faddr = ipc.opt->opt.faddr; 958 connected = 0; 959 } 960 tos = get_rttos(&ipc, inet); 961 if (sock_flag(sk, SOCK_LOCALROUTE) || 962 (msg->msg_flags & MSG_DONTROUTE) || 963 (ipc.opt && ipc.opt->opt.is_strictroute)) { 964 tos |= RTO_ONLINK; 965 connected = 0; 966 } 967 968 if (ipv4_is_multicast(daddr)) { 969 if (!ipc.oif) 970 ipc.oif = inet->mc_index; 971 if (!saddr) 972 saddr = inet->mc_addr; 973 connected = 0; 974 } else if (!ipc.oif) { 975 ipc.oif = inet->uc_index; 976 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 977 /* oif is set, packet is to local broadcast and 978 * and uc_index is set. oif is most likely set 979 * by sk_bound_dev_if. If uc_index != oif check if the 980 * oif is an L3 master and uc_index is an L3 slave. 981 * If so, we want to allow the send using the uc_index. 982 */ 983 if (ipc.oif != inet->uc_index && 984 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 985 inet->uc_index)) { 986 ipc.oif = inet->uc_index; 987 } 988 } 989 990 if (connected) 991 rt = (struct rtable *)sk_dst_check(sk, 0); 992 993 if (!rt) { 994 struct net *net = sock_net(sk); 995 __u8 flow_flags = inet_sk_flowi_flags(sk); 996 997 fl4 = &fl4_stack; 998 999 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1000 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1001 flow_flags, 1002 faddr, saddr, dport, inet->inet_sport, 1003 sk->sk_uid); 1004 1005 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1006 rt = ip_route_output_flow(net, fl4, sk); 1007 if (IS_ERR(rt)) { 1008 err = PTR_ERR(rt); 1009 rt = NULL; 1010 if (err == -ENETUNREACH) 1011 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1012 goto out; 1013 } 1014 1015 err = -EACCES; 1016 if ((rt->rt_flags & RTCF_BROADCAST) && 1017 !sock_flag(sk, SOCK_BROADCAST)) 1018 goto out; 1019 if (connected) 1020 sk_dst_set(sk, dst_clone(&rt->dst)); 1021 } 1022 1023 if (msg->msg_flags&MSG_CONFIRM) 1024 goto do_confirm; 1025 back_from_confirm: 1026 1027 saddr = fl4->saddr; 1028 if (!ipc.addr) 1029 daddr = ipc.addr = fl4->daddr; 1030 1031 /* Lockless fast path for the non-corking case. */ 1032 if (!corkreq) { 1033 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1034 sizeof(struct udphdr), &ipc, &rt, 1035 msg->msg_flags); 1036 err = PTR_ERR(skb); 1037 if (!IS_ERR_OR_NULL(skb)) 1038 err = udp_send_skb(skb, fl4); 1039 goto out; 1040 } 1041 1042 lock_sock(sk); 1043 if (unlikely(up->pending)) { 1044 /* The socket is already corked while preparing it. */ 1045 /* ... which is an evident application bug. --ANK */ 1046 release_sock(sk); 1047 1048 net_dbg_ratelimited("socket already corked\n"); 1049 err = -EINVAL; 1050 goto out; 1051 } 1052 /* 1053 * Now cork the socket to pend data. 1054 */ 1055 fl4 = &inet->cork.fl.u.ip4; 1056 fl4->daddr = daddr; 1057 fl4->saddr = saddr; 1058 fl4->fl4_dport = dport; 1059 fl4->fl4_sport = inet->inet_sport; 1060 up->pending = AF_INET; 1061 1062 do_append_data: 1063 up->len += ulen; 1064 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1065 sizeof(struct udphdr), &ipc, &rt, 1066 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1067 if (err) 1068 udp_flush_pending_frames(sk); 1069 else if (!corkreq) 1070 err = udp_push_pending_frames(sk); 1071 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1072 up->pending = 0; 1073 release_sock(sk); 1074 1075 out: 1076 ip_rt_put(rt); 1077 if (free) 1078 kfree(ipc.opt); 1079 if (!err) 1080 return len; 1081 /* 1082 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1083 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1084 * we don't have a good statistic (IpOutDiscards but it can be too many 1085 * things). We could add another new stat but at least for now that 1086 * seems like overkill. 1087 */ 1088 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1089 UDP_INC_STATS(sock_net(sk), 1090 UDP_MIB_SNDBUFERRORS, is_udplite); 1091 } 1092 return err; 1093 1094 do_confirm: 1095 if (msg->msg_flags & MSG_PROBE) 1096 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1097 if (!(msg->msg_flags&MSG_PROBE) || len) 1098 goto back_from_confirm; 1099 err = 0; 1100 goto out; 1101 } 1102 EXPORT_SYMBOL(udp_sendmsg); 1103 1104 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1105 size_t size, int flags) 1106 { 1107 struct inet_sock *inet = inet_sk(sk); 1108 struct udp_sock *up = udp_sk(sk); 1109 int ret; 1110 1111 if (flags & MSG_SENDPAGE_NOTLAST) 1112 flags |= MSG_MORE; 1113 1114 if (!up->pending) { 1115 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1116 1117 /* Call udp_sendmsg to specify destination address which 1118 * sendpage interface can't pass. 1119 * This will succeed only when the socket is connected. 1120 */ 1121 ret = udp_sendmsg(sk, &msg, 0); 1122 if (ret < 0) 1123 return ret; 1124 } 1125 1126 lock_sock(sk); 1127 1128 if (unlikely(!up->pending)) { 1129 release_sock(sk); 1130 1131 net_dbg_ratelimited("cork failed\n"); 1132 return -EINVAL; 1133 } 1134 1135 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1136 page, offset, size, flags); 1137 if (ret == -EOPNOTSUPP) { 1138 release_sock(sk); 1139 return sock_no_sendpage(sk->sk_socket, page, offset, 1140 size, flags); 1141 } 1142 if (ret < 0) { 1143 udp_flush_pending_frames(sk); 1144 goto out; 1145 } 1146 1147 up->len += size; 1148 if (!(up->corkflag || (flags&MSG_MORE))) 1149 ret = udp_push_pending_frames(sk); 1150 if (!ret) 1151 ret = size; 1152 out: 1153 release_sock(sk); 1154 return ret; 1155 } 1156 1157 #define UDP_SKB_IS_STATELESS 0x80000000 1158 1159 static void udp_set_dev_scratch(struct sk_buff *skb) 1160 { 1161 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1162 1163 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1164 scratch->_tsize_state = skb->truesize; 1165 #if BITS_PER_LONG == 64 1166 scratch->len = skb->len; 1167 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1168 scratch->is_linear = !skb_is_nonlinear(skb); 1169 #endif 1170 /* all head states execept sp (dst, sk, nf) are always cleared by 1171 * udp_rcv() and we need to preserve secpath, if present, to eventually 1172 * process IP_CMSG_PASSSEC at recvmsg() time 1173 */ 1174 if (likely(!skb_sec_path(skb))) 1175 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1176 } 1177 1178 static int udp_skb_truesize(struct sk_buff *skb) 1179 { 1180 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1181 } 1182 1183 static bool udp_skb_has_head_state(struct sk_buff *skb) 1184 { 1185 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1186 } 1187 1188 /* fully reclaim rmem/fwd memory allocated for skb */ 1189 static void udp_rmem_release(struct sock *sk, int size, int partial, 1190 bool rx_queue_lock_held) 1191 { 1192 struct udp_sock *up = udp_sk(sk); 1193 struct sk_buff_head *sk_queue; 1194 int amt; 1195 1196 if (likely(partial)) { 1197 up->forward_deficit += size; 1198 size = up->forward_deficit; 1199 if (size < (sk->sk_rcvbuf >> 2)) 1200 return; 1201 } else { 1202 size += up->forward_deficit; 1203 } 1204 up->forward_deficit = 0; 1205 1206 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1207 * if the called don't held it already 1208 */ 1209 sk_queue = &sk->sk_receive_queue; 1210 if (!rx_queue_lock_held) 1211 spin_lock(&sk_queue->lock); 1212 1213 1214 sk->sk_forward_alloc += size; 1215 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1216 sk->sk_forward_alloc -= amt; 1217 1218 if (amt) 1219 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1220 1221 atomic_sub(size, &sk->sk_rmem_alloc); 1222 1223 /* this can save us from acquiring the rx queue lock on next receive */ 1224 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1225 1226 if (!rx_queue_lock_held) 1227 spin_unlock(&sk_queue->lock); 1228 } 1229 1230 /* Note: called with reader_queue.lock held. 1231 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1232 * This avoids a cache line miss while receive_queue lock is held. 1233 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1234 */ 1235 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1236 { 1237 prefetch(&skb->data); 1238 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1239 } 1240 EXPORT_SYMBOL(udp_skb_destructor); 1241 1242 /* as above, but the caller held the rx queue lock, too */ 1243 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1244 { 1245 prefetch(&skb->data); 1246 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1247 } 1248 1249 /* Idea of busylocks is to let producers grab an extra spinlock 1250 * to relieve pressure on the receive_queue spinlock shared by consumer. 1251 * Under flood, this means that only one producer can be in line 1252 * trying to acquire the receive_queue spinlock. 1253 * These busylock can be allocated on a per cpu manner, instead of a 1254 * per socket one (that would consume a cache line per socket) 1255 */ 1256 static int udp_busylocks_log __read_mostly; 1257 static spinlock_t *udp_busylocks __read_mostly; 1258 1259 static spinlock_t *busylock_acquire(void *ptr) 1260 { 1261 spinlock_t *busy; 1262 1263 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1264 spin_lock(busy); 1265 return busy; 1266 } 1267 1268 static void busylock_release(spinlock_t *busy) 1269 { 1270 if (busy) 1271 spin_unlock(busy); 1272 } 1273 1274 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1275 { 1276 struct sk_buff_head *list = &sk->sk_receive_queue; 1277 int rmem, delta, amt, err = -ENOMEM; 1278 spinlock_t *busy = NULL; 1279 int size; 1280 1281 /* try to avoid the costly atomic add/sub pair when the receive 1282 * queue is full; always allow at least a packet 1283 */ 1284 rmem = atomic_read(&sk->sk_rmem_alloc); 1285 if (rmem > sk->sk_rcvbuf) 1286 goto drop; 1287 1288 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1289 * having linear skbs : 1290 * - Reduce memory overhead and thus increase receive queue capacity 1291 * - Less cache line misses at copyout() time 1292 * - Less work at consume_skb() (less alien page frag freeing) 1293 */ 1294 if (rmem > (sk->sk_rcvbuf >> 1)) { 1295 skb_condense(skb); 1296 1297 busy = busylock_acquire(sk); 1298 } 1299 size = skb->truesize; 1300 udp_set_dev_scratch(skb); 1301 1302 /* we drop only if the receive buf is full and the receive 1303 * queue contains some other skb 1304 */ 1305 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1306 if (rmem > (size + sk->sk_rcvbuf)) 1307 goto uncharge_drop; 1308 1309 spin_lock(&list->lock); 1310 if (size >= sk->sk_forward_alloc) { 1311 amt = sk_mem_pages(size); 1312 delta = amt << SK_MEM_QUANTUM_SHIFT; 1313 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1314 err = -ENOBUFS; 1315 spin_unlock(&list->lock); 1316 goto uncharge_drop; 1317 } 1318 1319 sk->sk_forward_alloc += delta; 1320 } 1321 1322 sk->sk_forward_alloc -= size; 1323 1324 /* no need to setup a destructor, we will explicitly release the 1325 * forward allocated memory on dequeue 1326 */ 1327 sock_skb_set_dropcount(sk, skb); 1328 1329 __skb_queue_tail(list, skb); 1330 spin_unlock(&list->lock); 1331 1332 if (!sock_flag(sk, SOCK_DEAD)) 1333 sk->sk_data_ready(sk); 1334 1335 busylock_release(busy); 1336 return 0; 1337 1338 uncharge_drop: 1339 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1340 1341 drop: 1342 atomic_inc(&sk->sk_drops); 1343 busylock_release(busy); 1344 return err; 1345 } 1346 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1347 1348 void udp_destruct_sock(struct sock *sk) 1349 { 1350 /* reclaim completely the forward allocated memory */ 1351 struct udp_sock *up = udp_sk(sk); 1352 unsigned int total = 0; 1353 struct sk_buff *skb; 1354 1355 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1356 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1357 total += skb->truesize; 1358 kfree_skb(skb); 1359 } 1360 udp_rmem_release(sk, total, 0, true); 1361 1362 inet_sock_destruct(sk); 1363 } 1364 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1365 1366 int udp_init_sock(struct sock *sk) 1367 { 1368 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1369 sk->sk_destruct = udp_destruct_sock; 1370 return 0; 1371 } 1372 EXPORT_SYMBOL_GPL(udp_init_sock); 1373 1374 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1375 { 1376 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1377 bool slow = lock_sock_fast(sk); 1378 1379 sk_peek_offset_bwd(sk, len); 1380 unlock_sock_fast(sk, slow); 1381 } 1382 1383 if (!skb_unref(skb)) 1384 return; 1385 1386 /* In the more common cases we cleared the head states previously, 1387 * see __udp_queue_rcv_skb(). 1388 */ 1389 if (unlikely(udp_skb_has_head_state(skb))) 1390 skb_release_head_state(skb); 1391 __consume_stateless_skb(skb); 1392 } 1393 EXPORT_SYMBOL_GPL(skb_consume_udp); 1394 1395 static struct sk_buff *__first_packet_length(struct sock *sk, 1396 struct sk_buff_head *rcvq, 1397 int *total) 1398 { 1399 struct sk_buff *skb; 1400 1401 while ((skb = skb_peek(rcvq)) != NULL) { 1402 if (udp_lib_checksum_complete(skb)) { 1403 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1404 IS_UDPLITE(sk)); 1405 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1406 IS_UDPLITE(sk)); 1407 atomic_inc(&sk->sk_drops); 1408 __skb_unlink(skb, rcvq); 1409 *total += skb->truesize; 1410 kfree_skb(skb); 1411 } else { 1412 /* the csum related bits could be changed, refresh 1413 * the scratch area 1414 */ 1415 udp_set_dev_scratch(skb); 1416 break; 1417 } 1418 } 1419 return skb; 1420 } 1421 1422 /** 1423 * first_packet_length - return length of first packet in receive queue 1424 * @sk: socket 1425 * 1426 * Drops all bad checksum frames, until a valid one is found. 1427 * Returns the length of found skb, or -1 if none is found. 1428 */ 1429 static int first_packet_length(struct sock *sk) 1430 { 1431 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1432 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1433 struct sk_buff *skb; 1434 int total = 0; 1435 int res; 1436 1437 spin_lock_bh(&rcvq->lock); 1438 skb = __first_packet_length(sk, rcvq, &total); 1439 if (!skb && !skb_queue_empty(sk_queue)) { 1440 spin_lock(&sk_queue->lock); 1441 skb_queue_splice_tail_init(sk_queue, rcvq); 1442 spin_unlock(&sk_queue->lock); 1443 1444 skb = __first_packet_length(sk, rcvq, &total); 1445 } 1446 res = skb ? skb->len : -1; 1447 if (total) 1448 udp_rmem_release(sk, total, 1, false); 1449 spin_unlock_bh(&rcvq->lock); 1450 return res; 1451 } 1452 1453 /* 1454 * IOCTL requests applicable to the UDP protocol 1455 */ 1456 1457 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1458 { 1459 switch (cmd) { 1460 case SIOCOUTQ: 1461 { 1462 int amount = sk_wmem_alloc_get(sk); 1463 1464 return put_user(amount, (int __user *)arg); 1465 } 1466 1467 case SIOCINQ: 1468 { 1469 int amount = max_t(int, 0, first_packet_length(sk)); 1470 1471 return put_user(amount, (int __user *)arg); 1472 } 1473 1474 default: 1475 return -ENOIOCTLCMD; 1476 } 1477 1478 return 0; 1479 } 1480 EXPORT_SYMBOL(udp_ioctl); 1481 1482 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1483 int noblock, int *peeked, int *off, int *err) 1484 { 1485 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1486 struct sk_buff_head *queue; 1487 struct sk_buff *last; 1488 long timeo; 1489 int error; 1490 1491 queue = &udp_sk(sk)->reader_queue; 1492 flags |= noblock ? MSG_DONTWAIT : 0; 1493 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1494 do { 1495 struct sk_buff *skb; 1496 1497 error = sock_error(sk); 1498 if (error) 1499 break; 1500 1501 error = -EAGAIN; 1502 *peeked = 0; 1503 do { 1504 spin_lock_bh(&queue->lock); 1505 skb = __skb_try_recv_from_queue(sk, queue, flags, 1506 udp_skb_destructor, 1507 peeked, off, err, 1508 &last); 1509 if (skb) { 1510 spin_unlock_bh(&queue->lock); 1511 return skb; 1512 } 1513 1514 if (skb_queue_empty(sk_queue)) { 1515 spin_unlock_bh(&queue->lock); 1516 goto busy_check; 1517 } 1518 1519 /* refill the reader queue and walk it again 1520 * keep both queues locked to avoid re-acquiring 1521 * the sk_receive_queue lock if fwd memory scheduling 1522 * is needed. 1523 */ 1524 spin_lock(&sk_queue->lock); 1525 skb_queue_splice_tail_init(sk_queue, queue); 1526 1527 skb = __skb_try_recv_from_queue(sk, queue, flags, 1528 udp_skb_dtor_locked, 1529 peeked, off, err, 1530 &last); 1531 spin_unlock(&sk_queue->lock); 1532 spin_unlock_bh(&queue->lock); 1533 if (skb) 1534 return skb; 1535 1536 busy_check: 1537 if (!sk_can_busy_loop(sk)) 1538 break; 1539 1540 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1541 } while (!skb_queue_empty(sk_queue)); 1542 1543 /* sk_queue is empty, reader_queue may contain peeked packets */ 1544 } while (timeo && 1545 !__skb_wait_for_more_packets(sk, &error, &timeo, 1546 (struct sk_buff *)sk_queue)); 1547 1548 *err = error; 1549 return NULL; 1550 } 1551 EXPORT_SYMBOL_GPL(__skb_recv_udp); 1552 1553 /* 1554 * This should be easy, if there is something there we 1555 * return it, otherwise we block. 1556 */ 1557 1558 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1559 int flags, int *addr_len) 1560 { 1561 struct inet_sock *inet = inet_sk(sk); 1562 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1563 struct sk_buff *skb; 1564 unsigned int ulen, copied; 1565 int peeked, peeking, off; 1566 int err; 1567 int is_udplite = IS_UDPLITE(sk); 1568 bool checksum_valid = false; 1569 1570 if (flags & MSG_ERRQUEUE) 1571 return ip_recv_error(sk, msg, len, addr_len); 1572 1573 try_again: 1574 peeking = flags & MSG_PEEK; 1575 off = sk_peek_offset(sk, flags); 1576 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1577 if (!skb) 1578 return err; 1579 1580 ulen = udp_skb_len(skb); 1581 copied = len; 1582 if (copied > ulen - off) 1583 copied = ulen - off; 1584 else if (copied < ulen) 1585 msg->msg_flags |= MSG_TRUNC; 1586 1587 /* 1588 * If checksum is needed at all, try to do it while copying the 1589 * data. If the data is truncated, or if we only want a partial 1590 * coverage checksum (UDP-Lite), do it before the copy. 1591 */ 1592 1593 if (copied < ulen || peeking || 1594 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1595 checksum_valid = udp_skb_csum_unnecessary(skb) || 1596 !__udp_lib_checksum_complete(skb); 1597 if (!checksum_valid) 1598 goto csum_copy_err; 1599 } 1600 1601 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1602 if (udp_skb_is_linear(skb)) 1603 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1604 else 1605 err = skb_copy_datagram_msg(skb, off, msg, copied); 1606 } else { 1607 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1608 1609 if (err == -EINVAL) 1610 goto csum_copy_err; 1611 } 1612 1613 if (unlikely(err)) { 1614 if (!peeked) { 1615 atomic_inc(&sk->sk_drops); 1616 UDP_INC_STATS(sock_net(sk), 1617 UDP_MIB_INERRORS, is_udplite); 1618 } 1619 kfree_skb(skb); 1620 return err; 1621 } 1622 1623 if (!peeked) 1624 UDP_INC_STATS(sock_net(sk), 1625 UDP_MIB_INDATAGRAMS, is_udplite); 1626 1627 sock_recv_ts_and_drops(msg, sk, skb); 1628 1629 /* Copy the address. */ 1630 if (sin) { 1631 sin->sin_family = AF_INET; 1632 sin->sin_port = udp_hdr(skb)->source; 1633 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1634 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1635 *addr_len = sizeof(*sin); 1636 } 1637 if (inet->cmsg_flags) 1638 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1639 1640 err = copied; 1641 if (flags & MSG_TRUNC) 1642 err = ulen; 1643 1644 skb_consume_udp(sk, skb, peeking ? -err : err); 1645 return err; 1646 1647 csum_copy_err: 1648 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1649 udp_skb_destructor)) { 1650 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1651 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1652 } 1653 kfree_skb(skb); 1654 1655 /* starting over for a new packet, but check if we need to yield */ 1656 cond_resched(); 1657 msg->msg_flags &= ~MSG_TRUNC; 1658 goto try_again; 1659 } 1660 1661 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1662 { 1663 /* This check is replicated from __ip4_datagram_connect() and 1664 * intended to prevent BPF program called below from accessing bytes 1665 * that are out of the bound specified by user in addr_len. 1666 */ 1667 if (addr_len < sizeof(struct sockaddr_in)) 1668 return -EINVAL; 1669 1670 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1671 } 1672 EXPORT_SYMBOL(udp_pre_connect); 1673 1674 int __udp_disconnect(struct sock *sk, int flags) 1675 { 1676 struct inet_sock *inet = inet_sk(sk); 1677 /* 1678 * 1003.1g - break association. 1679 */ 1680 1681 sk->sk_state = TCP_CLOSE; 1682 inet->inet_daddr = 0; 1683 inet->inet_dport = 0; 1684 sock_rps_reset_rxhash(sk); 1685 sk->sk_bound_dev_if = 0; 1686 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1687 inet_reset_saddr(sk); 1688 1689 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1690 sk->sk_prot->unhash(sk); 1691 inet->inet_sport = 0; 1692 } 1693 sk_dst_reset(sk); 1694 return 0; 1695 } 1696 EXPORT_SYMBOL(__udp_disconnect); 1697 1698 int udp_disconnect(struct sock *sk, int flags) 1699 { 1700 lock_sock(sk); 1701 __udp_disconnect(sk, flags); 1702 release_sock(sk); 1703 return 0; 1704 } 1705 EXPORT_SYMBOL(udp_disconnect); 1706 1707 void udp_lib_unhash(struct sock *sk) 1708 { 1709 if (sk_hashed(sk)) { 1710 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1711 struct udp_hslot *hslot, *hslot2; 1712 1713 hslot = udp_hashslot(udptable, sock_net(sk), 1714 udp_sk(sk)->udp_port_hash); 1715 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1716 1717 spin_lock_bh(&hslot->lock); 1718 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1719 reuseport_detach_sock(sk); 1720 if (sk_del_node_init_rcu(sk)) { 1721 hslot->count--; 1722 inet_sk(sk)->inet_num = 0; 1723 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1724 1725 spin_lock(&hslot2->lock); 1726 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1727 hslot2->count--; 1728 spin_unlock(&hslot2->lock); 1729 } 1730 spin_unlock_bh(&hslot->lock); 1731 } 1732 } 1733 EXPORT_SYMBOL(udp_lib_unhash); 1734 1735 /* 1736 * inet_rcv_saddr was changed, we must rehash secondary hash 1737 */ 1738 void udp_lib_rehash(struct sock *sk, u16 newhash) 1739 { 1740 if (sk_hashed(sk)) { 1741 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1742 struct udp_hslot *hslot, *hslot2, *nhslot2; 1743 1744 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1745 nhslot2 = udp_hashslot2(udptable, newhash); 1746 udp_sk(sk)->udp_portaddr_hash = newhash; 1747 1748 if (hslot2 != nhslot2 || 1749 rcu_access_pointer(sk->sk_reuseport_cb)) { 1750 hslot = udp_hashslot(udptable, sock_net(sk), 1751 udp_sk(sk)->udp_port_hash); 1752 /* we must lock primary chain too */ 1753 spin_lock_bh(&hslot->lock); 1754 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1755 reuseport_detach_sock(sk); 1756 1757 if (hslot2 != nhslot2) { 1758 spin_lock(&hslot2->lock); 1759 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1760 hslot2->count--; 1761 spin_unlock(&hslot2->lock); 1762 1763 spin_lock(&nhslot2->lock); 1764 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1765 &nhslot2->head); 1766 nhslot2->count++; 1767 spin_unlock(&nhslot2->lock); 1768 } 1769 1770 spin_unlock_bh(&hslot->lock); 1771 } 1772 } 1773 } 1774 EXPORT_SYMBOL(udp_lib_rehash); 1775 1776 static void udp_v4_rehash(struct sock *sk) 1777 { 1778 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1779 inet_sk(sk)->inet_rcv_saddr, 1780 inet_sk(sk)->inet_num); 1781 udp_lib_rehash(sk, new_hash); 1782 } 1783 1784 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1785 { 1786 int rc; 1787 1788 if (inet_sk(sk)->inet_daddr) { 1789 sock_rps_save_rxhash(sk, skb); 1790 sk_mark_napi_id(sk, skb); 1791 sk_incoming_cpu_update(sk); 1792 } else { 1793 sk_mark_napi_id_once(sk, skb); 1794 } 1795 1796 rc = __udp_enqueue_schedule_skb(sk, skb); 1797 if (rc < 0) { 1798 int is_udplite = IS_UDPLITE(sk); 1799 1800 /* Note that an ENOMEM error is charged twice */ 1801 if (rc == -ENOMEM) 1802 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1803 is_udplite); 1804 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1805 kfree_skb(skb); 1806 trace_udp_fail_queue_rcv_skb(rc, sk); 1807 return -1; 1808 } 1809 1810 return 0; 1811 } 1812 1813 static struct static_key udp_encap_needed __read_mostly; 1814 void udp_encap_enable(void) 1815 { 1816 static_key_enable(&udp_encap_needed); 1817 } 1818 EXPORT_SYMBOL(udp_encap_enable); 1819 1820 /* returns: 1821 * -1: error 1822 * 0: success 1823 * >0: "udp encap" protocol resubmission 1824 * 1825 * Note that in the success and error cases, the skb is assumed to 1826 * have either been requeued or freed. 1827 */ 1828 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1829 { 1830 struct udp_sock *up = udp_sk(sk); 1831 int is_udplite = IS_UDPLITE(sk); 1832 1833 /* 1834 * Charge it to the socket, dropping if the queue is full. 1835 */ 1836 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1837 goto drop; 1838 nf_reset(skb); 1839 1840 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1841 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1842 1843 /* 1844 * This is an encapsulation socket so pass the skb to 1845 * the socket's udp_encap_rcv() hook. Otherwise, just 1846 * fall through and pass this up the UDP socket. 1847 * up->encap_rcv() returns the following value: 1848 * =0 if skb was successfully passed to the encap 1849 * handler or was discarded by it. 1850 * >0 if skb should be passed on to UDP. 1851 * <0 if skb should be resubmitted as proto -N 1852 */ 1853 1854 /* if we're overly short, let UDP handle it */ 1855 encap_rcv = READ_ONCE(up->encap_rcv); 1856 if (encap_rcv) { 1857 int ret; 1858 1859 /* Verify checksum before giving to encap */ 1860 if (udp_lib_checksum_complete(skb)) 1861 goto csum_error; 1862 1863 ret = encap_rcv(sk, skb); 1864 if (ret <= 0) { 1865 __UDP_INC_STATS(sock_net(sk), 1866 UDP_MIB_INDATAGRAMS, 1867 is_udplite); 1868 return -ret; 1869 } 1870 } 1871 1872 /* FALLTHROUGH -- it's a UDP Packet */ 1873 } 1874 1875 /* 1876 * UDP-Lite specific tests, ignored on UDP sockets 1877 */ 1878 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1879 1880 /* 1881 * MIB statistics other than incrementing the error count are 1882 * disabled for the following two types of errors: these depend 1883 * on the application settings, not on the functioning of the 1884 * protocol stack as such. 1885 * 1886 * RFC 3828 here recommends (sec 3.3): "There should also be a 1887 * way ... to ... at least let the receiving application block 1888 * delivery of packets with coverage values less than a value 1889 * provided by the application." 1890 */ 1891 if (up->pcrlen == 0) { /* full coverage was set */ 1892 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1893 UDP_SKB_CB(skb)->cscov, skb->len); 1894 goto drop; 1895 } 1896 /* The next case involves violating the min. coverage requested 1897 * by the receiver. This is subtle: if receiver wants x and x is 1898 * greater than the buffersize/MTU then receiver will complain 1899 * that it wants x while sender emits packets of smaller size y. 1900 * Therefore the above ...()->partial_cov statement is essential. 1901 */ 1902 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1903 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1904 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1905 goto drop; 1906 } 1907 } 1908 1909 prefetch(&sk->sk_rmem_alloc); 1910 if (rcu_access_pointer(sk->sk_filter) && 1911 udp_lib_checksum_complete(skb)) 1912 goto csum_error; 1913 1914 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1915 goto drop; 1916 1917 udp_csum_pull_header(skb); 1918 1919 ipv4_pktinfo_prepare(sk, skb); 1920 return __udp_queue_rcv_skb(sk, skb); 1921 1922 csum_error: 1923 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1924 drop: 1925 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1926 atomic_inc(&sk->sk_drops); 1927 kfree_skb(skb); 1928 return -1; 1929 } 1930 1931 /* For TCP sockets, sk_rx_dst is protected by socket lock 1932 * For UDP, we use xchg() to guard against concurrent changes. 1933 */ 1934 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 1935 { 1936 struct dst_entry *old; 1937 1938 if (dst_hold_safe(dst)) { 1939 old = xchg(&sk->sk_rx_dst, dst); 1940 dst_release(old); 1941 return old != dst; 1942 } 1943 return false; 1944 } 1945 EXPORT_SYMBOL(udp_sk_rx_dst_set); 1946 1947 /* 1948 * Multicasts and broadcasts go to each listener. 1949 * 1950 * Note: called only from the BH handler context. 1951 */ 1952 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1953 struct udphdr *uh, 1954 __be32 saddr, __be32 daddr, 1955 struct udp_table *udptable, 1956 int proto) 1957 { 1958 struct sock *sk, *first = NULL; 1959 unsigned short hnum = ntohs(uh->dest); 1960 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 1961 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 1962 unsigned int offset = offsetof(typeof(*sk), sk_node); 1963 int dif = skb->dev->ifindex; 1964 int sdif = inet_sdif(skb); 1965 struct hlist_node *node; 1966 struct sk_buff *nskb; 1967 1968 if (use_hash2) { 1969 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 1970 udptable->mask; 1971 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 1972 start_lookup: 1973 hslot = &udptable->hash2[hash2]; 1974 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 1975 } 1976 1977 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 1978 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 1979 uh->source, saddr, dif, sdif, hnum)) 1980 continue; 1981 1982 if (!first) { 1983 first = sk; 1984 continue; 1985 } 1986 nskb = skb_clone(skb, GFP_ATOMIC); 1987 1988 if (unlikely(!nskb)) { 1989 atomic_inc(&sk->sk_drops); 1990 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 1991 IS_UDPLITE(sk)); 1992 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 1993 IS_UDPLITE(sk)); 1994 continue; 1995 } 1996 if (udp_queue_rcv_skb(sk, nskb) > 0) 1997 consume_skb(nskb); 1998 } 1999 2000 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2001 if (use_hash2 && hash2 != hash2_any) { 2002 hash2 = hash2_any; 2003 goto start_lookup; 2004 } 2005 2006 if (first) { 2007 if (udp_queue_rcv_skb(first, skb) > 0) 2008 consume_skb(skb); 2009 } else { 2010 kfree_skb(skb); 2011 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2012 proto == IPPROTO_UDPLITE); 2013 } 2014 return 0; 2015 } 2016 2017 /* Initialize UDP checksum. If exited with zero value (success), 2018 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2019 * Otherwise, csum completion requires chacksumming packet body, 2020 * including udp header and folding it to skb->csum. 2021 */ 2022 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2023 int proto) 2024 { 2025 int err; 2026 2027 UDP_SKB_CB(skb)->partial_cov = 0; 2028 UDP_SKB_CB(skb)->cscov = skb->len; 2029 2030 if (proto == IPPROTO_UDPLITE) { 2031 err = udplite_checksum_init(skb, uh); 2032 if (err) 2033 return err; 2034 2035 if (UDP_SKB_CB(skb)->partial_cov) { 2036 skb->csum = inet_compute_pseudo(skb, proto); 2037 return 0; 2038 } 2039 } 2040 2041 /* Note, we are only interested in != 0 or == 0, thus the 2042 * force to int. 2043 */ 2044 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2045 inet_compute_pseudo); 2046 } 2047 2048 /* 2049 * All we need to do is get the socket, and then do a checksum. 2050 */ 2051 2052 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2053 int proto) 2054 { 2055 struct sock *sk; 2056 struct udphdr *uh; 2057 unsigned short ulen; 2058 struct rtable *rt = skb_rtable(skb); 2059 __be32 saddr, daddr; 2060 struct net *net = dev_net(skb->dev); 2061 2062 /* 2063 * Validate the packet. 2064 */ 2065 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2066 goto drop; /* No space for header. */ 2067 2068 uh = udp_hdr(skb); 2069 ulen = ntohs(uh->len); 2070 saddr = ip_hdr(skb)->saddr; 2071 daddr = ip_hdr(skb)->daddr; 2072 2073 if (ulen > skb->len) 2074 goto short_packet; 2075 2076 if (proto == IPPROTO_UDP) { 2077 /* UDP validates ulen. */ 2078 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2079 goto short_packet; 2080 uh = udp_hdr(skb); 2081 } 2082 2083 if (udp4_csum_init(skb, uh, proto)) 2084 goto csum_error; 2085 2086 sk = skb_steal_sock(skb); 2087 if (sk) { 2088 struct dst_entry *dst = skb_dst(skb); 2089 int ret; 2090 2091 if (unlikely(sk->sk_rx_dst != dst)) 2092 udp_sk_rx_dst_set(sk, dst); 2093 2094 ret = udp_queue_rcv_skb(sk, skb); 2095 sock_put(sk); 2096 /* a return value > 0 means to resubmit the input, but 2097 * it wants the return to be -protocol, or 0 2098 */ 2099 if (ret > 0) 2100 return -ret; 2101 return 0; 2102 } 2103 2104 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2105 return __udp4_lib_mcast_deliver(net, skb, uh, 2106 saddr, daddr, udptable, proto); 2107 2108 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2109 if (sk) { 2110 int ret; 2111 2112 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2113 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2114 inet_compute_pseudo); 2115 2116 ret = udp_queue_rcv_skb(sk, skb); 2117 2118 /* a return value > 0 means to resubmit the input, but 2119 * it wants the return to be -protocol, or 0 2120 */ 2121 if (ret > 0) 2122 return -ret; 2123 return 0; 2124 } 2125 2126 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2127 goto drop; 2128 nf_reset(skb); 2129 2130 /* No socket. Drop packet silently, if checksum is wrong */ 2131 if (udp_lib_checksum_complete(skb)) 2132 goto csum_error; 2133 2134 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2135 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2136 2137 /* 2138 * Hmm. We got an UDP packet to a port to which we 2139 * don't wanna listen. Ignore it. 2140 */ 2141 kfree_skb(skb); 2142 return 0; 2143 2144 short_packet: 2145 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2146 proto == IPPROTO_UDPLITE ? "Lite" : "", 2147 &saddr, ntohs(uh->source), 2148 ulen, skb->len, 2149 &daddr, ntohs(uh->dest)); 2150 goto drop; 2151 2152 csum_error: 2153 /* 2154 * RFC1122: OK. Discards the bad packet silently (as far as 2155 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2156 */ 2157 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2158 proto == IPPROTO_UDPLITE ? "Lite" : "", 2159 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2160 ulen); 2161 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2162 drop: 2163 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2164 kfree_skb(skb); 2165 return 0; 2166 } 2167 2168 /* We can only early demux multicast if there is a single matching socket. 2169 * If more than one socket found returns NULL 2170 */ 2171 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2172 __be16 loc_port, __be32 loc_addr, 2173 __be16 rmt_port, __be32 rmt_addr, 2174 int dif, int sdif) 2175 { 2176 struct sock *sk, *result; 2177 unsigned short hnum = ntohs(loc_port); 2178 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2179 struct udp_hslot *hslot = &udp_table.hash[slot]; 2180 2181 /* Do not bother scanning a too big list */ 2182 if (hslot->count > 10) 2183 return NULL; 2184 2185 result = NULL; 2186 sk_for_each_rcu(sk, &hslot->head) { 2187 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2188 rmt_port, rmt_addr, dif, sdif, hnum)) { 2189 if (result) 2190 return NULL; 2191 result = sk; 2192 } 2193 } 2194 2195 return result; 2196 } 2197 2198 /* For unicast we should only early demux connected sockets or we can 2199 * break forwarding setups. The chains here can be long so only check 2200 * if the first socket is an exact match and if not move on. 2201 */ 2202 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2203 __be16 loc_port, __be32 loc_addr, 2204 __be16 rmt_port, __be32 rmt_addr, 2205 int dif, int sdif) 2206 { 2207 unsigned short hnum = ntohs(loc_port); 2208 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2209 unsigned int slot2 = hash2 & udp_table.mask; 2210 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2211 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2212 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2213 struct sock *sk; 2214 2215 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2216 if (INET_MATCH(sk, net, acookie, rmt_addr, 2217 loc_addr, ports, dif, sdif)) 2218 return sk; 2219 /* Only check first socket in chain */ 2220 break; 2221 } 2222 return NULL; 2223 } 2224 2225 int udp_v4_early_demux(struct sk_buff *skb) 2226 { 2227 struct net *net = dev_net(skb->dev); 2228 struct in_device *in_dev = NULL; 2229 const struct iphdr *iph; 2230 const struct udphdr *uh; 2231 struct sock *sk = NULL; 2232 struct dst_entry *dst; 2233 int dif = skb->dev->ifindex; 2234 int sdif = inet_sdif(skb); 2235 int ours; 2236 2237 /* validate the packet */ 2238 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2239 return 0; 2240 2241 iph = ip_hdr(skb); 2242 uh = udp_hdr(skb); 2243 2244 if (skb->pkt_type == PACKET_MULTICAST) { 2245 in_dev = __in_dev_get_rcu(skb->dev); 2246 2247 if (!in_dev) 2248 return 0; 2249 2250 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2251 iph->protocol); 2252 if (!ours) 2253 return 0; 2254 2255 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2256 uh->source, iph->saddr, 2257 dif, sdif); 2258 } else if (skb->pkt_type == PACKET_HOST) { 2259 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2260 uh->source, iph->saddr, dif, sdif); 2261 } 2262 2263 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2264 return 0; 2265 2266 skb->sk = sk; 2267 skb->destructor = sock_efree; 2268 dst = READ_ONCE(sk->sk_rx_dst); 2269 2270 if (dst) 2271 dst = dst_check(dst, 0); 2272 if (dst) { 2273 u32 itag = 0; 2274 2275 /* set noref for now. 2276 * any place which wants to hold dst has to call 2277 * dst_hold_safe() 2278 */ 2279 skb_dst_set_noref(skb, dst); 2280 2281 /* for unconnected multicast sockets we need to validate 2282 * the source on each packet 2283 */ 2284 if (!inet_sk(sk)->inet_daddr && in_dev) 2285 return ip_mc_validate_source(skb, iph->daddr, 2286 iph->saddr, iph->tos, 2287 skb->dev, in_dev, &itag); 2288 } 2289 return 0; 2290 } 2291 2292 int udp_rcv(struct sk_buff *skb) 2293 { 2294 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2295 } 2296 2297 void udp_destroy_sock(struct sock *sk) 2298 { 2299 struct udp_sock *up = udp_sk(sk); 2300 bool slow = lock_sock_fast(sk); 2301 udp_flush_pending_frames(sk); 2302 unlock_sock_fast(sk, slow); 2303 if (static_key_false(&udp_encap_needed) && up->encap_type) { 2304 void (*encap_destroy)(struct sock *sk); 2305 encap_destroy = READ_ONCE(up->encap_destroy); 2306 if (encap_destroy) 2307 encap_destroy(sk); 2308 } 2309 } 2310 2311 /* 2312 * Socket option code for UDP 2313 */ 2314 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2315 char __user *optval, unsigned int optlen, 2316 int (*push_pending_frames)(struct sock *)) 2317 { 2318 struct udp_sock *up = udp_sk(sk); 2319 int val, valbool; 2320 int err = 0; 2321 int is_udplite = IS_UDPLITE(sk); 2322 2323 if (optlen < sizeof(int)) 2324 return -EINVAL; 2325 2326 if (get_user(val, (int __user *)optval)) 2327 return -EFAULT; 2328 2329 valbool = val ? 1 : 0; 2330 2331 switch (optname) { 2332 case UDP_CORK: 2333 if (val != 0) { 2334 up->corkflag = 1; 2335 } else { 2336 up->corkflag = 0; 2337 lock_sock(sk); 2338 push_pending_frames(sk); 2339 release_sock(sk); 2340 } 2341 break; 2342 2343 case UDP_ENCAP: 2344 switch (val) { 2345 case 0: 2346 case UDP_ENCAP_ESPINUDP: 2347 case UDP_ENCAP_ESPINUDP_NON_IKE: 2348 up->encap_rcv = xfrm4_udp_encap_rcv; 2349 /* FALLTHROUGH */ 2350 case UDP_ENCAP_L2TPINUDP: 2351 up->encap_type = val; 2352 udp_encap_enable(); 2353 break; 2354 default: 2355 err = -ENOPROTOOPT; 2356 break; 2357 } 2358 break; 2359 2360 case UDP_NO_CHECK6_TX: 2361 up->no_check6_tx = valbool; 2362 break; 2363 2364 case UDP_NO_CHECK6_RX: 2365 up->no_check6_rx = valbool; 2366 break; 2367 2368 /* 2369 * UDP-Lite's partial checksum coverage (RFC 3828). 2370 */ 2371 /* The sender sets actual checksum coverage length via this option. 2372 * The case coverage > packet length is handled by send module. */ 2373 case UDPLITE_SEND_CSCOV: 2374 if (!is_udplite) /* Disable the option on UDP sockets */ 2375 return -ENOPROTOOPT; 2376 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2377 val = 8; 2378 else if (val > USHRT_MAX) 2379 val = USHRT_MAX; 2380 up->pcslen = val; 2381 up->pcflag |= UDPLITE_SEND_CC; 2382 break; 2383 2384 /* The receiver specifies a minimum checksum coverage value. To make 2385 * sense, this should be set to at least 8 (as done below). If zero is 2386 * used, this again means full checksum coverage. */ 2387 case UDPLITE_RECV_CSCOV: 2388 if (!is_udplite) /* Disable the option on UDP sockets */ 2389 return -ENOPROTOOPT; 2390 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2391 val = 8; 2392 else if (val > USHRT_MAX) 2393 val = USHRT_MAX; 2394 up->pcrlen = val; 2395 up->pcflag |= UDPLITE_RECV_CC; 2396 break; 2397 2398 default: 2399 err = -ENOPROTOOPT; 2400 break; 2401 } 2402 2403 return err; 2404 } 2405 EXPORT_SYMBOL(udp_lib_setsockopt); 2406 2407 int udp_setsockopt(struct sock *sk, int level, int optname, 2408 char __user *optval, unsigned int optlen) 2409 { 2410 if (level == SOL_UDP || level == SOL_UDPLITE) 2411 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2412 udp_push_pending_frames); 2413 return ip_setsockopt(sk, level, optname, optval, optlen); 2414 } 2415 2416 #ifdef CONFIG_COMPAT 2417 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2418 char __user *optval, unsigned int optlen) 2419 { 2420 if (level == SOL_UDP || level == SOL_UDPLITE) 2421 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2422 udp_push_pending_frames); 2423 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2424 } 2425 #endif 2426 2427 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2428 char __user *optval, int __user *optlen) 2429 { 2430 struct udp_sock *up = udp_sk(sk); 2431 int val, len; 2432 2433 if (get_user(len, optlen)) 2434 return -EFAULT; 2435 2436 len = min_t(unsigned int, len, sizeof(int)); 2437 2438 if (len < 0) 2439 return -EINVAL; 2440 2441 switch (optname) { 2442 case UDP_CORK: 2443 val = up->corkflag; 2444 break; 2445 2446 case UDP_ENCAP: 2447 val = up->encap_type; 2448 break; 2449 2450 case UDP_NO_CHECK6_TX: 2451 val = up->no_check6_tx; 2452 break; 2453 2454 case UDP_NO_CHECK6_RX: 2455 val = up->no_check6_rx; 2456 break; 2457 2458 /* The following two cannot be changed on UDP sockets, the return is 2459 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2460 case UDPLITE_SEND_CSCOV: 2461 val = up->pcslen; 2462 break; 2463 2464 case UDPLITE_RECV_CSCOV: 2465 val = up->pcrlen; 2466 break; 2467 2468 default: 2469 return -ENOPROTOOPT; 2470 } 2471 2472 if (put_user(len, optlen)) 2473 return -EFAULT; 2474 if (copy_to_user(optval, &val, len)) 2475 return -EFAULT; 2476 return 0; 2477 } 2478 EXPORT_SYMBOL(udp_lib_getsockopt); 2479 2480 int udp_getsockopt(struct sock *sk, int level, int optname, 2481 char __user *optval, int __user *optlen) 2482 { 2483 if (level == SOL_UDP || level == SOL_UDPLITE) 2484 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2485 return ip_getsockopt(sk, level, optname, optval, optlen); 2486 } 2487 2488 #ifdef CONFIG_COMPAT 2489 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2490 char __user *optval, int __user *optlen) 2491 { 2492 if (level == SOL_UDP || level == SOL_UDPLITE) 2493 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2494 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2495 } 2496 #endif 2497 /** 2498 * udp_poll - wait for a UDP event. 2499 * @file - file struct 2500 * @sock - socket 2501 * @wait - poll table 2502 * 2503 * This is same as datagram poll, except for the special case of 2504 * blocking sockets. If application is using a blocking fd 2505 * and a packet with checksum error is in the queue; 2506 * then it could get return from select indicating data available 2507 * but then block when reading it. Add special case code 2508 * to work around these arguably broken applications. 2509 */ 2510 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2511 { 2512 __poll_t mask = datagram_poll(file, sock, wait); 2513 struct sock *sk = sock->sk; 2514 2515 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2516 mask |= EPOLLIN | EPOLLRDNORM; 2517 2518 /* Check for false positives due to checksum errors */ 2519 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2520 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2521 mask &= ~(EPOLLIN | EPOLLRDNORM); 2522 2523 return mask; 2524 2525 } 2526 EXPORT_SYMBOL(udp_poll); 2527 2528 int udp_abort(struct sock *sk, int err) 2529 { 2530 lock_sock(sk); 2531 2532 sk->sk_err = err; 2533 sk->sk_error_report(sk); 2534 __udp_disconnect(sk, 0); 2535 2536 release_sock(sk); 2537 2538 return 0; 2539 } 2540 EXPORT_SYMBOL_GPL(udp_abort); 2541 2542 struct proto udp_prot = { 2543 .name = "UDP", 2544 .owner = THIS_MODULE, 2545 .close = udp_lib_close, 2546 .pre_connect = udp_pre_connect, 2547 .connect = ip4_datagram_connect, 2548 .disconnect = udp_disconnect, 2549 .ioctl = udp_ioctl, 2550 .init = udp_init_sock, 2551 .destroy = udp_destroy_sock, 2552 .setsockopt = udp_setsockopt, 2553 .getsockopt = udp_getsockopt, 2554 .sendmsg = udp_sendmsg, 2555 .recvmsg = udp_recvmsg, 2556 .sendpage = udp_sendpage, 2557 .release_cb = ip4_datagram_release_cb, 2558 .hash = udp_lib_hash, 2559 .unhash = udp_lib_unhash, 2560 .rehash = udp_v4_rehash, 2561 .get_port = udp_v4_get_port, 2562 .memory_allocated = &udp_memory_allocated, 2563 .sysctl_mem = sysctl_udp_mem, 2564 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2565 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2566 .obj_size = sizeof(struct udp_sock), 2567 .h.udp_table = &udp_table, 2568 #ifdef CONFIG_COMPAT 2569 .compat_setsockopt = compat_udp_setsockopt, 2570 .compat_getsockopt = compat_udp_getsockopt, 2571 #endif 2572 .diag_destroy = udp_abort, 2573 }; 2574 EXPORT_SYMBOL(udp_prot); 2575 2576 /* ------------------------------------------------------------------------ */ 2577 #ifdef CONFIG_PROC_FS 2578 2579 static struct sock *udp_get_first(struct seq_file *seq, int start) 2580 { 2581 struct sock *sk; 2582 struct udp_iter_state *state = seq->private; 2583 struct net *net = seq_file_net(seq); 2584 2585 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2586 ++state->bucket) { 2587 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2588 2589 if (hlist_empty(&hslot->head)) 2590 continue; 2591 2592 spin_lock_bh(&hslot->lock); 2593 sk_for_each(sk, &hslot->head) { 2594 if (!net_eq(sock_net(sk), net)) 2595 continue; 2596 if (sk->sk_family == state->family) 2597 goto found; 2598 } 2599 spin_unlock_bh(&hslot->lock); 2600 } 2601 sk = NULL; 2602 found: 2603 return sk; 2604 } 2605 2606 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2607 { 2608 struct udp_iter_state *state = seq->private; 2609 struct net *net = seq_file_net(seq); 2610 2611 do { 2612 sk = sk_next(sk); 2613 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2614 2615 if (!sk) { 2616 if (state->bucket <= state->udp_table->mask) 2617 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2618 return udp_get_first(seq, state->bucket + 1); 2619 } 2620 return sk; 2621 } 2622 2623 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2624 { 2625 struct sock *sk = udp_get_first(seq, 0); 2626 2627 if (sk) 2628 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2629 --pos; 2630 return pos ? NULL : sk; 2631 } 2632 2633 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2634 { 2635 struct udp_iter_state *state = seq->private; 2636 state->bucket = MAX_UDP_PORTS; 2637 2638 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2639 } 2640 2641 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2642 { 2643 struct sock *sk; 2644 2645 if (v == SEQ_START_TOKEN) 2646 sk = udp_get_idx(seq, 0); 2647 else 2648 sk = udp_get_next(seq, v); 2649 2650 ++*pos; 2651 return sk; 2652 } 2653 2654 static void udp_seq_stop(struct seq_file *seq, void *v) 2655 { 2656 struct udp_iter_state *state = seq->private; 2657 2658 if (state->bucket <= state->udp_table->mask) 2659 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2660 } 2661 2662 int udp_seq_open(struct inode *inode, struct file *file) 2663 { 2664 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2665 struct udp_iter_state *s; 2666 int err; 2667 2668 err = seq_open_net(inode, file, &afinfo->seq_ops, 2669 sizeof(struct udp_iter_state)); 2670 if (err < 0) 2671 return err; 2672 2673 s = ((struct seq_file *)file->private_data)->private; 2674 s->family = afinfo->family; 2675 s->udp_table = afinfo->udp_table; 2676 return err; 2677 } 2678 EXPORT_SYMBOL(udp_seq_open); 2679 2680 /* ------------------------------------------------------------------------ */ 2681 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2682 { 2683 struct proc_dir_entry *p; 2684 int rc = 0; 2685 2686 afinfo->seq_ops.start = udp_seq_start; 2687 afinfo->seq_ops.next = udp_seq_next; 2688 afinfo->seq_ops.stop = udp_seq_stop; 2689 2690 p = proc_create_data(afinfo->name, 0444, net->proc_net, 2691 afinfo->seq_fops, afinfo); 2692 if (!p) 2693 rc = -ENOMEM; 2694 return rc; 2695 } 2696 EXPORT_SYMBOL(udp_proc_register); 2697 2698 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2699 { 2700 remove_proc_entry(afinfo->name, net->proc_net); 2701 } 2702 EXPORT_SYMBOL(udp_proc_unregister); 2703 2704 /* ------------------------------------------------------------------------ */ 2705 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2706 int bucket) 2707 { 2708 struct inet_sock *inet = inet_sk(sp); 2709 __be32 dest = inet->inet_daddr; 2710 __be32 src = inet->inet_rcv_saddr; 2711 __u16 destp = ntohs(inet->inet_dport); 2712 __u16 srcp = ntohs(inet->inet_sport); 2713 2714 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2715 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2716 bucket, src, srcp, dest, destp, sp->sk_state, 2717 sk_wmem_alloc_get(sp), 2718 sk_rmem_alloc_get(sp), 2719 0, 0L, 0, 2720 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2721 0, sock_i_ino(sp), 2722 refcount_read(&sp->sk_refcnt), sp, 2723 atomic_read(&sp->sk_drops)); 2724 } 2725 2726 int udp4_seq_show(struct seq_file *seq, void *v) 2727 { 2728 seq_setwidth(seq, 127); 2729 if (v == SEQ_START_TOKEN) 2730 seq_puts(seq, " sl local_address rem_address st tx_queue " 2731 "rx_queue tr tm->when retrnsmt uid timeout " 2732 "inode ref pointer drops"); 2733 else { 2734 struct udp_iter_state *state = seq->private; 2735 2736 udp4_format_sock(v, seq, state->bucket); 2737 } 2738 seq_pad(seq, '\n'); 2739 return 0; 2740 } 2741 2742 static const struct file_operations udp_afinfo_seq_fops = { 2743 .open = udp_seq_open, 2744 .read = seq_read, 2745 .llseek = seq_lseek, 2746 .release = seq_release_net 2747 }; 2748 2749 /* ------------------------------------------------------------------------ */ 2750 static struct udp_seq_afinfo udp4_seq_afinfo = { 2751 .name = "udp", 2752 .family = AF_INET, 2753 .udp_table = &udp_table, 2754 .seq_fops = &udp_afinfo_seq_fops, 2755 .seq_ops = { 2756 .show = udp4_seq_show, 2757 }, 2758 }; 2759 2760 static int __net_init udp4_proc_init_net(struct net *net) 2761 { 2762 return udp_proc_register(net, &udp4_seq_afinfo); 2763 } 2764 2765 static void __net_exit udp4_proc_exit_net(struct net *net) 2766 { 2767 udp_proc_unregister(net, &udp4_seq_afinfo); 2768 } 2769 2770 static struct pernet_operations udp4_net_ops = { 2771 .init = udp4_proc_init_net, 2772 .exit = udp4_proc_exit_net, 2773 }; 2774 2775 int __init udp4_proc_init(void) 2776 { 2777 return register_pernet_subsys(&udp4_net_ops); 2778 } 2779 2780 void udp4_proc_exit(void) 2781 { 2782 unregister_pernet_subsys(&udp4_net_ops); 2783 } 2784 #endif /* CONFIG_PROC_FS */ 2785 2786 static __initdata unsigned long uhash_entries; 2787 static int __init set_uhash_entries(char *str) 2788 { 2789 ssize_t ret; 2790 2791 if (!str) 2792 return 0; 2793 2794 ret = kstrtoul(str, 0, &uhash_entries); 2795 if (ret) 2796 return 0; 2797 2798 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2799 uhash_entries = UDP_HTABLE_SIZE_MIN; 2800 return 1; 2801 } 2802 __setup("uhash_entries=", set_uhash_entries); 2803 2804 void __init udp_table_init(struct udp_table *table, const char *name) 2805 { 2806 unsigned int i; 2807 2808 table->hash = alloc_large_system_hash(name, 2809 2 * sizeof(struct udp_hslot), 2810 uhash_entries, 2811 21, /* one slot per 2 MB */ 2812 0, 2813 &table->log, 2814 &table->mask, 2815 UDP_HTABLE_SIZE_MIN, 2816 64 * 1024); 2817 2818 table->hash2 = table->hash + (table->mask + 1); 2819 for (i = 0; i <= table->mask; i++) { 2820 INIT_HLIST_HEAD(&table->hash[i].head); 2821 table->hash[i].count = 0; 2822 spin_lock_init(&table->hash[i].lock); 2823 } 2824 for (i = 0; i <= table->mask; i++) { 2825 INIT_HLIST_HEAD(&table->hash2[i].head); 2826 table->hash2[i].count = 0; 2827 spin_lock_init(&table->hash2[i].lock); 2828 } 2829 } 2830 2831 u32 udp_flow_hashrnd(void) 2832 { 2833 static u32 hashrnd __read_mostly; 2834 2835 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2836 2837 return hashrnd; 2838 } 2839 EXPORT_SYMBOL(udp_flow_hashrnd); 2840 2841 static void __udp_sysctl_init(struct net *net) 2842 { 2843 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2844 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2845 2846 #ifdef CONFIG_NET_L3_MASTER_DEV 2847 net->ipv4.sysctl_udp_l3mdev_accept = 0; 2848 #endif 2849 } 2850 2851 static int __net_init udp_sysctl_init(struct net *net) 2852 { 2853 __udp_sysctl_init(net); 2854 return 0; 2855 } 2856 2857 static struct pernet_operations __net_initdata udp_sysctl_ops = { 2858 .init = udp_sysctl_init, 2859 }; 2860 2861 void __init udp_init(void) 2862 { 2863 unsigned long limit; 2864 unsigned int i; 2865 2866 udp_table_init(&udp_table, "UDP"); 2867 limit = nr_free_buffer_pages() / 8; 2868 limit = max(limit, 128UL); 2869 sysctl_udp_mem[0] = limit / 4 * 3; 2870 sysctl_udp_mem[1] = limit; 2871 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2872 2873 __udp_sysctl_init(&init_net); 2874 2875 /* 16 spinlocks per cpu */ 2876 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2877 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2878 GFP_KERNEL); 2879 if (!udp_busylocks) 2880 panic("UDP: failed to alloc udp_busylocks\n"); 2881 for (i = 0; i < (1U << udp_busylocks_log); i++) 2882 spin_lock_init(udp_busylocks + i); 2883 2884 if (register_pernet_subsys(&udp_sysctl_ops)) 2885 panic("UDP: failed to init sysctl parameters.\n"); 2886 } 2887