xref: /openbmc/linux/net/ipv4/udp.c (revision 4beec1d7)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127 
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130 
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136 
137 static int udp_lib_lport_inuse(struct net *net, __u16 num,
138 			       const struct udp_hslot *hslot,
139 			       unsigned long *bitmap,
140 			       struct sock *sk,
141 			       int (*saddr_comp)(const struct sock *sk1,
142 						 const struct sock *sk2,
143 						 bool match_wildcard),
144 			       unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
157 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
158 		     !uid_eq(uid, sock_i_uid(sk2))) &&
159 		    saddr_comp(sk, sk2, true)) {
160 			if (!bitmap)
161 				return 1;
162 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
163 		}
164 	}
165 	return 0;
166 }
167 
168 /*
169  * Note: we still hold spinlock of primary hash chain, so no other writer
170  * can insert/delete a socket with local_port == num
171  */
172 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
173 				struct udp_hslot *hslot2,
174 				struct sock *sk,
175 				int (*saddr_comp)(const struct sock *sk1,
176 						  const struct sock *sk2,
177 						  bool match_wildcard))
178 {
179 	struct sock *sk2;
180 	kuid_t uid = sock_i_uid(sk);
181 	int res = 0;
182 
183 	spin_lock(&hslot2->lock);
184 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 		if (net_eq(sock_net(sk2), net) &&
186 		    sk2 != sk &&
187 		    (udp_sk(sk2)->udp_port_hash == num) &&
188 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
189 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
192 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
193 		     !uid_eq(uid, sock_i_uid(sk2))) &&
194 		    saddr_comp(sk, sk2, true)) {
195 			res = 1;
196 			break;
197 		}
198 	}
199 	spin_unlock(&hslot2->lock);
200 	return res;
201 }
202 
203 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
204 				  int (*saddr_same)(const struct sock *sk1,
205 						    const struct sock *sk2,
206 						    bool match_wildcard))
207 {
208 	struct net *net = sock_net(sk);
209 	kuid_t uid = sock_i_uid(sk);
210 	struct sock *sk2;
211 
212 	sk_for_each(sk2, &hslot->head) {
213 		if (net_eq(sock_net(sk2), net) &&
214 		    sk2 != sk &&
215 		    sk2->sk_family == sk->sk_family &&
216 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 		    (*saddr_same)(sk, sk2, false)) {
221 			return reuseport_add_sock(sk, sk2);
222 		}
223 	}
224 
225 	/* Initial allocation may have already happened via setsockopt */
226 	if (!rcu_access_pointer(sk->sk_reuseport_cb))
227 		return reuseport_alloc(sk);
228 	return 0;
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
237  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238  *                   with NULL address
239  */
240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 		     int (*saddr_comp)(const struct sock *sk1,
242 				       const struct sock *sk2,
243 				       bool match_wildcard),
244 		     unsigned int hash2_nulladdr)
245 {
246 	struct udp_hslot *hslot, *hslot2;
247 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
248 	int    error = 1;
249 	struct net *net = sock_net(sk);
250 
251 	if (!snum) {
252 		int low, high, remaining;
253 		unsigned int rand;
254 		unsigned short first, last;
255 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
256 
257 		inet_get_local_port_range(net, &low, &high);
258 		remaining = (high - low) + 1;
259 
260 		rand = prandom_u32();
261 		first = reciprocal_scale(rand, remaining) + low;
262 		/*
263 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
264 		 */
265 		rand = (rand | 1) * (udptable->mask + 1);
266 		last = first + udptable->mask + 1;
267 		do {
268 			hslot = udp_hashslot(udptable, net, first);
269 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
270 			spin_lock_bh(&hslot->lock);
271 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
272 					    saddr_comp, udptable->log);
273 
274 			snum = first;
275 			/*
276 			 * Iterate on all possible values of snum for this hash.
277 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
278 			 * give us randomization and full range coverage.
279 			 */
280 			do {
281 				if (low <= snum && snum <= high &&
282 				    !test_bit(snum >> udptable->log, bitmap) &&
283 				    !inet_is_local_reserved_port(net, snum))
284 					goto found;
285 				snum += rand;
286 			} while (snum != first);
287 			spin_unlock_bh(&hslot->lock);
288 		} while (++first != last);
289 		goto fail;
290 	} else {
291 		hslot = udp_hashslot(udptable, net, snum);
292 		spin_lock_bh(&hslot->lock);
293 		if (hslot->count > 10) {
294 			int exist;
295 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
296 
297 			slot2          &= udptable->mask;
298 			hash2_nulladdr &= udptable->mask;
299 
300 			hslot2 = udp_hashslot2(udptable, slot2);
301 			if (hslot->count < hslot2->count)
302 				goto scan_primary_hash;
303 
304 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 						     sk, saddr_comp);
306 			if (!exist && (hash2_nulladdr != slot2)) {
307 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
308 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
309 							     sk, saddr_comp);
310 			}
311 			if (exist)
312 				goto fail_unlock;
313 			else
314 				goto found;
315 		}
316 scan_primary_hash:
317 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
318 					saddr_comp, 0))
319 			goto fail_unlock;
320 	}
321 found:
322 	inet_sk(sk)->inet_num = snum;
323 	udp_sk(sk)->udp_port_hash = snum;
324 	udp_sk(sk)->udp_portaddr_hash ^= snum;
325 	if (sk_unhashed(sk)) {
326 		if (sk->sk_reuseport &&
327 		    udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
328 			inet_sk(sk)->inet_num = 0;
329 			udp_sk(sk)->udp_port_hash = 0;
330 			udp_sk(sk)->udp_portaddr_hash ^= snum;
331 			goto fail_unlock;
332 		}
333 
334 		sk_add_node_rcu(sk, &hslot->head);
335 		hslot->count++;
336 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
337 
338 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
339 		spin_lock(&hslot2->lock);
340 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
341 		    sk->sk_family == AF_INET6)
342 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
343 					   &hslot2->head);
344 		else
345 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
346 					   &hslot2->head);
347 		hslot2->count++;
348 		spin_unlock(&hslot2->lock);
349 	}
350 	sock_set_flag(sk, SOCK_RCU_FREE);
351 	error = 0;
352 fail_unlock:
353 	spin_unlock_bh(&hslot->lock);
354 fail:
355 	return error;
356 }
357 EXPORT_SYMBOL(udp_lib_get_port);
358 
359 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
360  * match_wildcard == false: addresses must be exactly the same, i.e.
361  *                          0.0.0.0 only equals to 0.0.0.0
362  */
363 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
364 			 bool match_wildcard)
365 {
366 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
367 
368 	if (!ipv6_only_sock(sk2)) {
369 		if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
370 			return 1;
371 		if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
372 			return match_wildcard;
373 	}
374 	return 0;
375 }
376 
377 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
378 			      unsigned int port)
379 {
380 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
381 }
382 
383 int udp_v4_get_port(struct sock *sk, unsigned short snum)
384 {
385 	unsigned int hash2_nulladdr =
386 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
387 	unsigned int hash2_partial =
388 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
389 
390 	/* precompute partial secondary hash */
391 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
392 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
393 }
394 
395 static int compute_score(struct sock *sk, struct net *net,
396 			 __be32 saddr, __be16 sport,
397 			 __be32 daddr, unsigned short hnum, int dif)
398 {
399 	int score;
400 	struct inet_sock *inet;
401 
402 	if (!net_eq(sock_net(sk), net) ||
403 	    udp_sk(sk)->udp_port_hash != hnum ||
404 	    ipv6_only_sock(sk))
405 		return -1;
406 
407 	score = (sk->sk_family == PF_INET) ? 2 : 1;
408 	inet = inet_sk(sk);
409 
410 	if (inet->inet_rcv_saddr) {
411 		if (inet->inet_rcv_saddr != daddr)
412 			return -1;
413 		score += 4;
414 	}
415 
416 	if (inet->inet_daddr) {
417 		if (inet->inet_daddr != saddr)
418 			return -1;
419 		score += 4;
420 	}
421 
422 	if (inet->inet_dport) {
423 		if (inet->inet_dport != sport)
424 			return -1;
425 		score += 4;
426 	}
427 
428 	if (sk->sk_bound_dev_if) {
429 		if (sk->sk_bound_dev_if != dif)
430 			return -1;
431 		score += 4;
432 	}
433 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
434 		score++;
435 	return score;
436 }
437 
438 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
439 		       const __u16 lport, const __be32 faddr,
440 		       const __be16 fport)
441 {
442 	static u32 udp_ehash_secret __read_mostly;
443 
444 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
445 
446 	return __inet_ehashfn(laddr, lport, faddr, fport,
447 			      udp_ehash_secret + net_hash_mix(net));
448 }
449 
450 /* called with rcu_read_lock() */
451 static struct sock *udp4_lib_lookup2(struct net *net,
452 		__be32 saddr, __be16 sport,
453 		__be32 daddr, unsigned int hnum, int dif,
454 		struct udp_hslot *hslot2,
455 		struct sk_buff *skb)
456 {
457 	struct sock *sk, *result;
458 	int score, badness, matches = 0, reuseport = 0;
459 	u32 hash = 0;
460 
461 	result = NULL;
462 	badness = 0;
463 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
464 		score = compute_score(sk, net, saddr, sport,
465 				      daddr, hnum, dif);
466 		if (score > badness) {
467 			reuseport = sk->sk_reuseport;
468 			if (reuseport) {
469 				hash = udp_ehashfn(net, daddr, hnum,
470 						   saddr, sport);
471 				result = reuseport_select_sock(sk, hash, skb,
472 							sizeof(struct udphdr));
473 				if (result)
474 					return result;
475 				matches = 1;
476 			}
477 			badness = score;
478 			result = sk;
479 		} else if (score == badness && reuseport) {
480 			matches++;
481 			if (reciprocal_scale(hash, matches) == 0)
482 				result = sk;
483 			hash = next_pseudo_random32(hash);
484 		}
485 	}
486 	return result;
487 }
488 
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490  * harder than this. -DaveM
491  */
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 		__be16 sport, __be32 daddr, __be16 dport,
494 		int dif, struct udp_table *udptable, struct sk_buff *skb)
495 {
496 	struct sock *sk, *result;
497 	unsigned short hnum = ntohs(dport);
498 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
499 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
500 	int score, badness, matches = 0, reuseport = 0;
501 	u32 hash = 0;
502 
503 	if (hslot->count > 10) {
504 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
505 		slot2 = hash2 & udptable->mask;
506 		hslot2 = &udptable->hash2[slot2];
507 		if (hslot->count < hslot2->count)
508 			goto begin;
509 
510 		result = udp4_lib_lookup2(net, saddr, sport,
511 					  daddr, hnum, dif,
512 					  hslot2, skb);
513 		if (!result) {
514 			unsigned int old_slot2 = slot2;
515 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
516 			slot2 = hash2 & udptable->mask;
517 			/* avoid searching the same slot again. */
518 			if (unlikely(slot2 == old_slot2))
519 				return result;
520 
521 			hslot2 = &udptable->hash2[slot2];
522 			if (hslot->count < hslot2->count)
523 				goto begin;
524 
525 			result = udp4_lib_lookup2(net, saddr, sport,
526 						  daddr, hnum, dif,
527 						  hslot2, skb);
528 		}
529 		return result;
530 	}
531 begin:
532 	result = NULL;
533 	badness = 0;
534 	sk_for_each_rcu(sk, &hslot->head) {
535 		score = compute_score(sk, net, saddr, sport,
536 				      daddr, hnum, dif);
537 		if (score > badness) {
538 			reuseport = sk->sk_reuseport;
539 			if (reuseport) {
540 				hash = udp_ehashfn(net, daddr, hnum,
541 						   saddr, sport);
542 				result = reuseport_select_sock(sk, hash, skb,
543 							sizeof(struct udphdr));
544 				if (result)
545 					return result;
546 				matches = 1;
547 			}
548 			result = sk;
549 			badness = score;
550 		} else if (score == badness && reuseport) {
551 			matches++;
552 			if (reciprocal_scale(hash, matches) == 0)
553 				result = sk;
554 			hash = next_pseudo_random32(hash);
555 		}
556 	}
557 	return result;
558 }
559 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
560 
561 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
562 						 __be16 sport, __be16 dport,
563 						 struct udp_table *udptable)
564 {
565 	const struct iphdr *iph = ip_hdr(skb);
566 
567 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
568 				 iph->daddr, dport, inet_iif(skb),
569 				 udptable, skb);
570 }
571 
572 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
573 				 __be16 sport, __be16 dport)
574 {
575 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
576 }
577 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
578 
579 /* Must be called under rcu_read_lock().
580  * Does increment socket refcount.
581  */
582 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
583     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
584     IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
585 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
586 			     __be32 daddr, __be16 dport, int dif)
587 {
588 	struct sock *sk;
589 
590 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
591 			       dif, &udp_table, NULL);
592 	if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
593 		sk = NULL;
594 	return sk;
595 }
596 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
597 #endif
598 
599 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
600 				       __be16 loc_port, __be32 loc_addr,
601 				       __be16 rmt_port, __be32 rmt_addr,
602 				       int dif, unsigned short hnum)
603 {
604 	struct inet_sock *inet = inet_sk(sk);
605 
606 	if (!net_eq(sock_net(sk), net) ||
607 	    udp_sk(sk)->udp_port_hash != hnum ||
608 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
609 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
610 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
611 	    ipv6_only_sock(sk) ||
612 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
613 		return false;
614 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
615 		return false;
616 	return true;
617 }
618 
619 /*
620  * This routine is called by the ICMP module when it gets some
621  * sort of error condition.  If err < 0 then the socket should
622  * be closed and the error returned to the user.  If err > 0
623  * it's just the icmp type << 8 | icmp code.
624  * Header points to the ip header of the error packet. We move
625  * on past this. Then (as it used to claim before adjustment)
626  * header points to the first 8 bytes of the udp header.  We need
627  * to find the appropriate port.
628  */
629 
630 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
631 {
632 	struct inet_sock *inet;
633 	const struct iphdr *iph = (const struct iphdr *)skb->data;
634 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
635 	const int type = icmp_hdr(skb)->type;
636 	const int code = icmp_hdr(skb)->code;
637 	struct sock *sk;
638 	int harderr;
639 	int err;
640 	struct net *net = dev_net(skb->dev);
641 
642 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
643 			iph->saddr, uh->source, skb->dev->ifindex, udptable,
644 			NULL);
645 	if (!sk) {
646 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
647 		return;	/* No socket for error */
648 	}
649 
650 	err = 0;
651 	harderr = 0;
652 	inet = inet_sk(sk);
653 
654 	switch (type) {
655 	default:
656 	case ICMP_TIME_EXCEEDED:
657 		err = EHOSTUNREACH;
658 		break;
659 	case ICMP_SOURCE_QUENCH:
660 		goto out;
661 	case ICMP_PARAMETERPROB:
662 		err = EPROTO;
663 		harderr = 1;
664 		break;
665 	case ICMP_DEST_UNREACH:
666 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
667 			ipv4_sk_update_pmtu(skb, sk, info);
668 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
669 				err = EMSGSIZE;
670 				harderr = 1;
671 				break;
672 			}
673 			goto out;
674 		}
675 		err = EHOSTUNREACH;
676 		if (code <= NR_ICMP_UNREACH) {
677 			harderr = icmp_err_convert[code].fatal;
678 			err = icmp_err_convert[code].errno;
679 		}
680 		break;
681 	case ICMP_REDIRECT:
682 		ipv4_sk_redirect(skb, sk);
683 		goto out;
684 	}
685 
686 	/*
687 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
688 	 *	4.1.3.3.
689 	 */
690 	if (!inet->recverr) {
691 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
692 			goto out;
693 	} else
694 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
695 
696 	sk->sk_err = err;
697 	sk->sk_error_report(sk);
698 out:
699 	return;
700 }
701 
702 void udp_err(struct sk_buff *skb, u32 info)
703 {
704 	__udp4_lib_err(skb, info, &udp_table);
705 }
706 
707 /*
708  * Throw away all pending data and cancel the corking. Socket is locked.
709  */
710 void udp_flush_pending_frames(struct sock *sk)
711 {
712 	struct udp_sock *up = udp_sk(sk);
713 
714 	if (up->pending) {
715 		up->len = 0;
716 		up->pending = 0;
717 		ip_flush_pending_frames(sk);
718 	}
719 }
720 EXPORT_SYMBOL(udp_flush_pending_frames);
721 
722 /**
723  * 	udp4_hwcsum  -  handle outgoing HW checksumming
724  * 	@skb: 	sk_buff containing the filled-in UDP header
725  * 	        (checksum field must be zeroed out)
726  *	@src:	source IP address
727  *	@dst:	destination IP address
728  */
729 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
730 {
731 	struct udphdr *uh = udp_hdr(skb);
732 	int offset = skb_transport_offset(skb);
733 	int len = skb->len - offset;
734 	int hlen = len;
735 	__wsum csum = 0;
736 
737 	if (!skb_has_frag_list(skb)) {
738 		/*
739 		 * Only one fragment on the socket.
740 		 */
741 		skb->csum_start = skb_transport_header(skb) - skb->head;
742 		skb->csum_offset = offsetof(struct udphdr, check);
743 		uh->check = ~csum_tcpudp_magic(src, dst, len,
744 					       IPPROTO_UDP, 0);
745 	} else {
746 		struct sk_buff *frags;
747 
748 		/*
749 		 * HW-checksum won't work as there are two or more
750 		 * fragments on the socket so that all csums of sk_buffs
751 		 * should be together
752 		 */
753 		skb_walk_frags(skb, frags) {
754 			csum = csum_add(csum, frags->csum);
755 			hlen -= frags->len;
756 		}
757 
758 		csum = skb_checksum(skb, offset, hlen, csum);
759 		skb->ip_summed = CHECKSUM_NONE;
760 
761 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
762 		if (uh->check == 0)
763 			uh->check = CSUM_MANGLED_0;
764 	}
765 }
766 EXPORT_SYMBOL_GPL(udp4_hwcsum);
767 
768 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
769  * for the simple case like when setting the checksum for a UDP tunnel.
770  */
771 void udp_set_csum(bool nocheck, struct sk_buff *skb,
772 		  __be32 saddr, __be32 daddr, int len)
773 {
774 	struct udphdr *uh = udp_hdr(skb);
775 
776 	if (nocheck) {
777 		uh->check = 0;
778 	} else if (skb_is_gso(skb)) {
779 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
780 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
781 		uh->check = 0;
782 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
783 		if (uh->check == 0)
784 			uh->check = CSUM_MANGLED_0;
785 	} else {
786 		skb->ip_summed = CHECKSUM_PARTIAL;
787 		skb->csum_start = skb_transport_header(skb) - skb->head;
788 		skb->csum_offset = offsetof(struct udphdr, check);
789 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
790 	}
791 }
792 EXPORT_SYMBOL(udp_set_csum);
793 
794 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
795 {
796 	struct sock *sk = skb->sk;
797 	struct inet_sock *inet = inet_sk(sk);
798 	struct udphdr *uh;
799 	int err = 0;
800 	int is_udplite = IS_UDPLITE(sk);
801 	int offset = skb_transport_offset(skb);
802 	int len = skb->len - offset;
803 	__wsum csum = 0;
804 
805 	/*
806 	 * Create a UDP header
807 	 */
808 	uh = udp_hdr(skb);
809 	uh->source = inet->inet_sport;
810 	uh->dest = fl4->fl4_dport;
811 	uh->len = htons(len);
812 	uh->check = 0;
813 
814 	if (is_udplite)  				 /*     UDP-Lite      */
815 		csum = udplite_csum(skb);
816 
817 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
818 
819 		skb->ip_summed = CHECKSUM_NONE;
820 		goto send;
821 
822 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
823 
824 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
825 		goto send;
826 
827 	} else
828 		csum = udp_csum(skb);
829 
830 	/* add protocol-dependent pseudo-header */
831 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
832 				      sk->sk_protocol, csum);
833 	if (uh->check == 0)
834 		uh->check = CSUM_MANGLED_0;
835 
836 send:
837 	err = ip_send_skb(sock_net(sk), skb);
838 	if (err) {
839 		if (err == -ENOBUFS && !inet->recverr) {
840 			UDP_INC_STATS(sock_net(sk),
841 				      UDP_MIB_SNDBUFERRORS, is_udplite);
842 			err = 0;
843 		}
844 	} else
845 		UDP_INC_STATS(sock_net(sk),
846 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
847 	return err;
848 }
849 
850 /*
851  * Push out all pending data as one UDP datagram. Socket is locked.
852  */
853 int udp_push_pending_frames(struct sock *sk)
854 {
855 	struct udp_sock  *up = udp_sk(sk);
856 	struct inet_sock *inet = inet_sk(sk);
857 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
858 	struct sk_buff *skb;
859 	int err = 0;
860 
861 	skb = ip_finish_skb(sk, fl4);
862 	if (!skb)
863 		goto out;
864 
865 	err = udp_send_skb(skb, fl4);
866 
867 out:
868 	up->len = 0;
869 	up->pending = 0;
870 	return err;
871 }
872 EXPORT_SYMBOL(udp_push_pending_frames);
873 
874 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
875 {
876 	struct inet_sock *inet = inet_sk(sk);
877 	struct udp_sock *up = udp_sk(sk);
878 	struct flowi4 fl4_stack;
879 	struct flowi4 *fl4;
880 	int ulen = len;
881 	struct ipcm_cookie ipc;
882 	struct rtable *rt = NULL;
883 	int free = 0;
884 	int connected = 0;
885 	__be32 daddr, faddr, saddr;
886 	__be16 dport;
887 	u8  tos;
888 	int err, is_udplite = IS_UDPLITE(sk);
889 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
890 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
891 	struct sk_buff *skb;
892 	struct ip_options_data opt_copy;
893 
894 	if (len > 0xFFFF)
895 		return -EMSGSIZE;
896 
897 	/*
898 	 *	Check the flags.
899 	 */
900 
901 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
902 		return -EOPNOTSUPP;
903 
904 	ipc.opt = NULL;
905 	ipc.tx_flags = 0;
906 	ipc.ttl = 0;
907 	ipc.tos = -1;
908 
909 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
910 
911 	fl4 = &inet->cork.fl.u.ip4;
912 	if (up->pending) {
913 		/*
914 		 * There are pending frames.
915 		 * The socket lock must be held while it's corked.
916 		 */
917 		lock_sock(sk);
918 		if (likely(up->pending)) {
919 			if (unlikely(up->pending != AF_INET)) {
920 				release_sock(sk);
921 				return -EINVAL;
922 			}
923 			goto do_append_data;
924 		}
925 		release_sock(sk);
926 	}
927 	ulen += sizeof(struct udphdr);
928 
929 	/*
930 	 *	Get and verify the address.
931 	 */
932 	if (msg->msg_name) {
933 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
934 		if (msg->msg_namelen < sizeof(*usin))
935 			return -EINVAL;
936 		if (usin->sin_family != AF_INET) {
937 			if (usin->sin_family != AF_UNSPEC)
938 				return -EAFNOSUPPORT;
939 		}
940 
941 		daddr = usin->sin_addr.s_addr;
942 		dport = usin->sin_port;
943 		if (dport == 0)
944 			return -EINVAL;
945 	} else {
946 		if (sk->sk_state != TCP_ESTABLISHED)
947 			return -EDESTADDRREQ;
948 		daddr = inet->inet_daddr;
949 		dport = inet->inet_dport;
950 		/* Open fast path for connected socket.
951 		   Route will not be used, if at least one option is set.
952 		 */
953 		connected = 1;
954 	}
955 
956 	ipc.sockc.tsflags = sk->sk_tsflags;
957 	ipc.addr = inet->inet_saddr;
958 	ipc.oif = sk->sk_bound_dev_if;
959 
960 	if (msg->msg_controllen) {
961 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
962 		if (unlikely(err)) {
963 			kfree(ipc.opt);
964 			return err;
965 		}
966 		if (ipc.opt)
967 			free = 1;
968 		connected = 0;
969 	}
970 	if (!ipc.opt) {
971 		struct ip_options_rcu *inet_opt;
972 
973 		rcu_read_lock();
974 		inet_opt = rcu_dereference(inet->inet_opt);
975 		if (inet_opt) {
976 			memcpy(&opt_copy, inet_opt,
977 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
978 			ipc.opt = &opt_copy.opt;
979 		}
980 		rcu_read_unlock();
981 	}
982 
983 	saddr = ipc.addr;
984 	ipc.addr = faddr = daddr;
985 
986 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
987 
988 	if (ipc.opt && ipc.opt->opt.srr) {
989 		if (!daddr)
990 			return -EINVAL;
991 		faddr = ipc.opt->opt.faddr;
992 		connected = 0;
993 	}
994 	tos = get_rttos(&ipc, inet);
995 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
996 	    (msg->msg_flags & MSG_DONTROUTE) ||
997 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
998 		tos |= RTO_ONLINK;
999 		connected = 0;
1000 	}
1001 
1002 	if (ipv4_is_multicast(daddr)) {
1003 		if (!ipc.oif)
1004 			ipc.oif = inet->mc_index;
1005 		if (!saddr)
1006 			saddr = inet->mc_addr;
1007 		connected = 0;
1008 	} else if (!ipc.oif)
1009 		ipc.oif = inet->uc_index;
1010 
1011 	if (connected)
1012 		rt = (struct rtable *)sk_dst_check(sk, 0);
1013 
1014 	if (!rt) {
1015 		struct net *net = sock_net(sk);
1016 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1017 
1018 		fl4 = &fl4_stack;
1019 
1020 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1021 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1022 				   flow_flags,
1023 				   faddr, saddr, dport, inet->inet_sport,
1024 				   sk->sk_uid);
1025 
1026 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1027 		rt = ip_route_output_flow(net, fl4, sk);
1028 		if (IS_ERR(rt)) {
1029 			err = PTR_ERR(rt);
1030 			rt = NULL;
1031 			if (err == -ENETUNREACH)
1032 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1033 			goto out;
1034 		}
1035 
1036 		err = -EACCES;
1037 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1038 		    !sock_flag(sk, SOCK_BROADCAST))
1039 			goto out;
1040 		if (connected)
1041 			sk_dst_set(sk, dst_clone(&rt->dst));
1042 	}
1043 
1044 	if (msg->msg_flags&MSG_CONFIRM)
1045 		goto do_confirm;
1046 back_from_confirm:
1047 
1048 	saddr = fl4->saddr;
1049 	if (!ipc.addr)
1050 		daddr = ipc.addr = fl4->daddr;
1051 
1052 	/* Lockless fast path for the non-corking case. */
1053 	if (!corkreq) {
1054 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1055 				  sizeof(struct udphdr), &ipc, &rt,
1056 				  msg->msg_flags);
1057 		err = PTR_ERR(skb);
1058 		if (!IS_ERR_OR_NULL(skb))
1059 			err = udp_send_skb(skb, fl4);
1060 		goto out;
1061 	}
1062 
1063 	lock_sock(sk);
1064 	if (unlikely(up->pending)) {
1065 		/* The socket is already corked while preparing it. */
1066 		/* ... which is an evident application bug. --ANK */
1067 		release_sock(sk);
1068 
1069 		net_dbg_ratelimited("cork app bug 2\n");
1070 		err = -EINVAL;
1071 		goto out;
1072 	}
1073 	/*
1074 	 *	Now cork the socket to pend data.
1075 	 */
1076 	fl4 = &inet->cork.fl.u.ip4;
1077 	fl4->daddr = daddr;
1078 	fl4->saddr = saddr;
1079 	fl4->fl4_dport = dport;
1080 	fl4->fl4_sport = inet->inet_sport;
1081 	up->pending = AF_INET;
1082 
1083 do_append_data:
1084 	up->len += ulen;
1085 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1086 			     sizeof(struct udphdr), &ipc, &rt,
1087 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1088 	if (err)
1089 		udp_flush_pending_frames(sk);
1090 	else if (!corkreq)
1091 		err = udp_push_pending_frames(sk);
1092 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1093 		up->pending = 0;
1094 	release_sock(sk);
1095 
1096 out:
1097 	ip_rt_put(rt);
1098 	if (free)
1099 		kfree(ipc.opt);
1100 	if (!err)
1101 		return len;
1102 	/*
1103 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1104 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1105 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1106 	 * things).  We could add another new stat but at least for now that
1107 	 * seems like overkill.
1108 	 */
1109 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1110 		UDP_INC_STATS(sock_net(sk),
1111 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1112 	}
1113 	return err;
1114 
1115 do_confirm:
1116 	dst_confirm(&rt->dst);
1117 	if (!(msg->msg_flags&MSG_PROBE) || len)
1118 		goto back_from_confirm;
1119 	err = 0;
1120 	goto out;
1121 }
1122 EXPORT_SYMBOL(udp_sendmsg);
1123 
1124 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1125 		 size_t size, int flags)
1126 {
1127 	struct inet_sock *inet = inet_sk(sk);
1128 	struct udp_sock *up = udp_sk(sk);
1129 	int ret;
1130 
1131 	if (flags & MSG_SENDPAGE_NOTLAST)
1132 		flags |= MSG_MORE;
1133 
1134 	if (!up->pending) {
1135 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1136 
1137 		/* Call udp_sendmsg to specify destination address which
1138 		 * sendpage interface can't pass.
1139 		 * This will succeed only when the socket is connected.
1140 		 */
1141 		ret = udp_sendmsg(sk, &msg, 0);
1142 		if (ret < 0)
1143 			return ret;
1144 	}
1145 
1146 	lock_sock(sk);
1147 
1148 	if (unlikely(!up->pending)) {
1149 		release_sock(sk);
1150 
1151 		net_dbg_ratelimited("udp cork app bug 3\n");
1152 		return -EINVAL;
1153 	}
1154 
1155 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1156 			     page, offset, size, flags);
1157 	if (ret == -EOPNOTSUPP) {
1158 		release_sock(sk);
1159 		return sock_no_sendpage(sk->sk_socket, page, offset,
1160 					size, flags);
1161 	}
1162 	if (ret < 0) {
1163 		udp_flush_pending_frames(sk);
1164 		goto out;
1165 	}
1166 
1167 	up->len += size;
1168 	if (!(up->corkflag || (flags&MSG_MORE)))
1169 		ret = udp_push_pending_frames(sk);
1170 	if (!ret)
1171 		ret = size;
1172 out:
1173 	release_sock(sk);
1174 	return ret;
1175 }
1176 
1177 /* fully reclaim rmem/fwd memory allocated for skb */
1178 static void udp_rmem_release(struct sock *sk, int size, int partial)
1179 {
1180 	struct udp_sock *up = udp_sk(sk);
1181 	int amt;
1182 
1183 	if (likely(partial)) {
1184 		up->forward_deficit += size;
1185 		size = up->forward_deficit;
1186 		if (size < (sk->sk_rcvbuf >> 2) &&
1187 		    !skb_queue_empty(&sk->sk_receive_queue))
1188 			return;
1189 	} else {
1190 		size += up->forward_deficit;
1191 	}
1192 	up->forward_deficit = 0;
1193 
1194 	sk->sk_forward_alloc += size;
1195 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1196 	sk->sk_forward_alloc -= amt;
1197 
1198 	if (amt)
1199 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1200 
1201 	atomic_sub(size, &sk->sk_rmem_alloc);
1202 }
1203 
1204 /* Note: called with sk_receive_queue.lock held.
1205  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1206  * This avoids a cache line miss while receive_queue lock is held.
1207  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1208  */
1209 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1210 {
1211 	udp_rmem_release(sk, skb->dev_scratch, 1);
1212 }
1213 EXPORT_SYMBOL(udp_skb_destructor);
1214 
1215 /* Idea of busylocks is to let producers grab an extra spinlock
1216  * to relieve pressure on the receive_queue spinlock shared by consumer.
1217  * Under flood, this means that only one producer can be in line
1218  * trying to acquire the receive_queue spinlock.
1219  * These busylock can be allocated on a per cpu manner, instead of a
1220  * per socket one (that would consume a cache line per socket)
1221  */
1222 static int udp_busylocks_log __read_mostly;
1223 static spinlock_t *udp_busylocks __read_mostly;
1224 
1225 static spinlock_t *busylock_acquire(void *ptr)
1226 {
1227 	spinlock_t *busy;
1228 
1229 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1230 	spin_lock(busy);
1231 	return busy;
1232 }
1233 
1234 static void busylock_release(spinlock_t *busy)
1235 {
1236 	if (busy)
1237 		spin_unlock(busy);
1238 }
1239 
1240 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1241 {
1242 	struct sk_buff_head *list = &sk->sk_receive_queue;
1243 	int rmem, delta, amt, err = -ENOMEM;
1244 	spinlock_t *busy = NULL;
1245 	int size;
1246 
1247 	/* try to avoid the costly atomic add/sub pair when the receive
1248 	 * queue is full; always allow at least a packet
1249 	 */
1250 	rmem = atomic_read(&sk->sk_rmem_alloc);
1251 	if (rmem > sk->sk_rcvbuf)
1252 		goto drop;
1253 
1254 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1255 	 * having linear skbs :
1256 	 * - Reduce memory overhead and thus increase receive queue capacity
1257 	 * - Less cache line misses at copyout() time
1258 	 * - Less work at consume_skb() (less alien page frag freeing)
1259 	 */
1260 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1261 		skb_condense(skb);
1262 
1263 		busy = busylock_acquire(sk);
1264 	}
1265 	size = skb->truesize;
1266 	/* Copy skb->truesize into skb->dev_scratch to avoid a cache line miss
1267 	 * in udp_skb_destructor()
1268 	 */
1269 	skb->dev_scratch = size;
1270 
1271 	/* we drop only if the receive buf is full and the receive
1272 	 * queue contains some other skb
1273 	 */
1274 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1275 	if (rmem > (size + sk->sk_rcvbuf))
1276 		goto uncharge_drop;
1277 
1278 	spin_lock(&list->lock);
1279 	if (size >= sk->sk_forward_alloc) {
1280 		amt = sk_mem_pages(size);
1281 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1282 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1283 			err = -ENOBUFS;
1284 			spin_unlock(&list->lock);
1285 			goto uncharge_drop;
1286 		}
1287 
1288 		sk->sk_forward_alloc += delta;
1289 	}
1290 
1291 	sk->sk_forward_alloc -= size;
1292 
1293 	/* no need to setup a destructor, we will explicitly release the
1294 	 * forward allocated memory on dequeue
1295 	 */
1296 	sock_skb_set_dropcount(sk, skb);
1297 
1298 	__skb_queue_tail(list, skb);
1299 	spin_unlock(&list->lock);
1300 
1301 	if (!sock_flag(sk, SOCK_DEAD))
1302 		sk->sk_data_ready(sk);
1303 
1304 	busylock_release(busy);
1305 	return 0;
1306 
1307 uncharge_drop:
1308 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1309 
1310 drop:
1311 	atomic_inc(&sk->sk_drops);
1312 	busylock_release(busy);
1313 	return err;
1314 }
1315 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1316 
1317 void udp_destruct_sock(struct sock *sk)
1318 {
1319 	/* reclaim completely the forward allocated memory */
1320 	unsigned int total = 0;
1321 	struct sk_buff *skb;
1322 
1323 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1324 		total += skb->truesize;
1325 		kfree_skb(skb);
1326 	}
1327 	udp_rmem_release(sk, total, 0);
1328 
1329 	inet_sock_destruct(sk);
1330 }
1331 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1332 
1333 int udp_init_sock(struct sock *sk)
1334 {
1335 	sk->sk_destruct = udp_destruct_sock;
1336 	return 0;
1337 }
1338 EXPORT_SYMBOL_GPL(udp_init_sock);
1339 
1340 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1341 {
1342 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1343 		bool slow = lock_sock_fast(sk);
1344 
1345 		sk_peek_offset_bwd(sk, len);
1346 		unlock_sock_fast(sk, slow);
1347 	}
1348 	consume_skb(skb);
1349 }
1350 EXPORT_SYMBOL_GPL(skb_consume_udp);
1351 
1352 /**
1353  *	first_packet_length	- return length of first packet in receive queue
1354  *	@sk: socket
1355  *
1356  *	Drops all bad checksum frames, until a valid one is found.
1357  *	Returns the length of found skb, or -1 if none is found.
1358  */
1359 static int first_packet_length(struct sock *sk)
1360 {
1361 	struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1362 	struct sk_buff *skb;
1363 	int total = 0;
1364 	int res;
1365 
1366 	spin_lock_bh(&rcvq->lock);
1367 	while ((skb = skb_peek(rcvq)) != NULL &&
1368 		udp_lib_checksum_complete(skb)) {
1369 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1370 				IS_UDPLITE(sk));
1371 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1372 				IS_UDPLITE(sk));
1373 		atomic_inc(&sk->sk_drops);
1374 		__skb_unlink(skb, rcvq);
1375 		total += skb->truesize;
1376 		kfree_skb(skb);
1377 	}
1378 	res = skb ? skb->len : -1;
1379 	if (total)
1380 		udp_rmem_release(sk, total, 1);
1381 	spin_unlock_bh(&rcvq->lock);
1382 	return res;
1383 }
1384 
1385 /*
1386  *	IOCTL requests applicable to the UDP protocol
1387  */
1388 
1389 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1390 {
1391 	switch (cmd) {
1392 	case SIOCOUTQ:
1393 	{
1394 		int amount = sk_wmem_alloc_get(sk);
1395 
1396 		return put_user(amount, (int __user *)arg);
1397 	}
1398 
1399 	case SIOCINQ:
1400 	{
1401 		int amount = max_t(int, 0, first_packet_length(sk));
1402 
1403 		return put_user(amount, (int __user *)arg);
1404 	}
1405 
1406 	default:
1407 		return -ENOIOCTLCMD;
1408 	}
1409 
1410 	return 0;
1411 }
1412 EXPORT_SYMBOL(udp_ioctl);
1413 
1414 /*
1415  * 	This should be easy, if there is something there we
1416  * 	return it, otherwise we block.
1417  */
1418 
1419 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1420 		int flags, int *addr_len)
1421 {
1422 	struct inet_sock *inet = inet_sk(sk);
1423 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1424 	struct sk_buff *skb;
1425 	unsigned int ulen, copied;
1426 	int peeked, peeking, off;
1427 	int err;
1428 	int is_udplite = IS_UDPLITE(sk);
1429 	bool checksum_valid = false;
1430 
1431 	if (flags & MSG_ERRQUEUE)
1432 		return ip_recv_error(sk, msg, len, addr_len);
1433 
1434 try_again:
1435 	peeking = off = sk_peek_offset(sk, flags);
1436 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1437 	if (!skb)
1438 		return err;
1439 
1440 	ulen = skb->len;
1441 	copied = len;
1442 	if (copied > ulen - off)
1443 		copied = ulen - off;
1444 	else if (copied < ulen)
1445 		msg->msg_flags |= MSG_TRUNC;
1446 
1447 	/*
1448 	 * If checksum is needed at all, try to do it while copying the
1449 	 * data.  If the data is truncated, or if we only want a partial
1450 	 * coverage checksum (UDP-Lite), do it before the copy.
1451 	 */
1452 
1453 	if (copied < ulen || peeking ||
1454 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1455 		checksum_valid = !udp_lib_checksum_complete(skb);
1456 		if (!checksum_valid)
1457 			goto csum_copy_err;
1458 	}
1459 
1460 	if (checksum_valid || skb_csum_unnecessary(skb))
1461 		err = skb_copy_datagram_msg(skb, off, msg, copied);
1462 	else {
1463 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1464 
1465 		if (err == -EINVAL)
1466 			goto csum_copy_err;
1467 	}
1468 
1469 	if (unlikely(err)) {
1470 		if (!peeked) {
1471 			atomic_inc(&sk->sk_drops);
1472 			UDP_INC_STATS(sock_net(sk),
1473 				      UDP_MIB_INERRORS, is_udplite);
1474 		}
1475 		kfree_skb(skb);
1476 		return err;
1477 	}
1478 
1479 	if (!peeked)
1480 		UDP_INC_STATS(sock_net(sk),
1481 			      UDP_MIB_INDATAGRAMS, is_udplite);
1482 
1483 	sock_recv_ts_and_drops(msg, sk, skb);
1484 
1485 	/* Copy the address. */
1486 	if (sin) {
1487 		sin->sin_family = AF_INET;
1488 		sin->sin_port = udp_hdr(skb)->source;
1489 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1490 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1491 		*addr_len = sizeof(*sin);
1492 	}
1493 	if (inet->cmsg_flags)
1494 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1495 
1496 	err = copied;
1497 	if (flags & MSG_TRUNC)
1498 		err = ulen;
1499 
1500 	skb_consume_udp(sk, skb, peeking ? -err : err);
1501 	return err;
1502 
1503 csum_copy_err:
1504 	if (!__sk_queue_drop_skb(sk, skb, flags, udp_skb_destructor)) {
1505 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1506 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1507 	}
1508 	kfree_skb(skb);
1509 
1510 	/* starting over for a new packet, but check if we need to yield */
1511 	cond_resched();
1512 	msg->msg_flags &= ~MSG_TRUNC;
1513 	goto try_again;
1514 }
1515 
1516 int __udp_disconnect(struct sock *sk, int flags)
1517 {
1518 	struct inet_sock *inet = inet_sk(sk);
1519 	/*
1520 	 *	1003.1g - break association.
1521 	 */
1522 
1523 	sk->sk_state = TCP_CLOSE;
1524 	inet->inet_daddr = 0;
1525 	inet->inet_dport = 0;
1526 	sock_rps_reset_rxhash(sk);
1527 	sk->sk_bound_dev_if = 0;
1528 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1529 		inet_reset_saddr(sk);
1530 
1531 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1532 		sk->sk_prot->unhash(sk);
1533 		inet->inet_sport = 0;
1534 	}
1535 	sk_dst_reset(sk);
1536 	return 0;
1537 }
1538 EXPORT_SYMBOL(__udp_disconnect);
1539 
1540 int udp_disconnect(struct sock *sk, int flags)
1541 {
1542 	lock_sock(sk);
1543 	__udp_disconnect(sk, flags);
1544 	release_sock(sk);
1545 	return 0;
1546 }
1547 EXPORT_SYMBOL(udp_disconnect);
1548 
1549 void udp_lib_unhash(struct sock *sk)
1550 {
1551 	if (sk_hashed(sk)) {
1552 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1553 		struct udp_hslot *hslot, *hslot2;
1554 
1555 		hslot  = udp_hashslot(udptable, sock_net(sk),
1556 				      udp_sk(sk)->udp_port_hash);
1557 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1558 
1559 		spin_lock_bh(&hslot->lock);
1560 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1561 			reuseport_detach_sock(sk);
1562 		if (sk_del_node_init_rcu(sk)) {
1563 			hslot->count--;
1564 			inet_sk(sk)->inet_num = 0;
1565 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1566 
1567 			spin_lock(&hslot2->lock);
1568 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1569 			hslot2->count--;
1570 			spin_unlock(&hslot2->lock);
1571 		}
1572 		spin_unlock_bh(&hslot->lock);
1573 	}
1574 }
1575 EXPORT_SYMBOL(udp_lib_unhash);
1576 
1577 /*
1578  * inet_rcv_saddr was changed, we must rehash secondary hash
1579  */
1580 void udp_lib_rehash(struct sock *sk, u16 newhash)
1581 {
1582 	if (sk_hashed(sk)) {
1583 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1584 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1585 
1586 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1587 		nhslot2 = udp_hashslot2(udptable, newhash);
1588 		udp_sk(sk)->udp_portaddr_hash = newhash;
1589 
1590 		if (hslot2 != nhslot2 ||
1591 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1592 			hslot = udp_hashslot(udptable, sock_net(sk),
1593 					     udp_sk(sk)->udp_port_hash);
1594 			/* we must lock primary chain too */
1595 			spin_lock_bh(&hslot->lock);
1596 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1597 				reuseport_detach_sock(sk);
1598 
1599 			if (hslot2 != nhslot2) {
1600 				spin_lock(&hslot2->lock);
1601 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1602 				hslot2->count--;
1603 				spin_unlock(&hslot2->lock);
1604 
1605 				spin_lock(&nhslot2->lock);
1606 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1607 							 &nhslot2->head);
1608 				nhslot2->count++;
1609 				spin_unlock(&nhslot2->lock);
1610 			}
1611 
1612 			spin_unlock_bh(&hslot->lock);
1613 		}
1614 	}
1615 }
1616 EXPORT_SYMBOL(udp_lib_rehash);
1617 
1618 static void udp_v4_rehash(struct sock *sk)
1619 {
1620 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1621 					  inet_sk(sk)->inet_rcv_saddr,
1622 					  inet_sk(sk)->inet_num);
1623 	udp_lib_rehash(sk, new_hash);
1624 }
1625 
1626 int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1627 {
1628 	int rc;
1629 
1630 	if (inet_sk(sk)->inet_daddr) {
1631 		sock_rps_save_rxhash(sk, skb);
1632 		sk_mark_napi_id(sk, skb);
1633 		sk_incoming_cpu_update(sk);
1634 	} else {
1635 		sk_mark_napi_id_once(sk, skb);
1636 	}
1637 
1638 	rc = __udp_enqueue_schedule_skb(sk, skb);
1639 	if (rc < 0) {
1640 		int is_udplite = IS_UDPLITE(sk);
1641 
1642 		/* Note that an ENOMEM error is charged twice */
1643 		if (rc == -ENOMEM)
1644 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1645 					is_udplite);
1646 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1647 		kfree_skb(skb);
1648 		trace_udp_fail_queue_rcv_skb(rc, sk);
1649 		return -1;
1650 	}
1651 
1652 	return 0;
1653 }
1654 
1655 static struct static_key udp_encap_needed __read_mostly;
1656 void udp_encap_enable(void)
1657 {
1658 	if (!static_key_enabled(&udp_encap_needed))
1659 		static_key_slow_inc(&udp_encap_needed);
1660 }
1661 EXPORT_SYMBOL(udp_encap_enable);
1662 
1663 /* returns:
1664  *  -1: error
1665  *   0: success
1666  *  >0: "udp encap" protocol resubmission
1667  *
1668  * Note that in the success and error cases, the skb is assumed to
1669  * have either been requeued or freed.
1670  */
1671 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1672 {
1673 	struct udp_sock *up = udp_sk(sk);
1674 	int is_udplite = IS_UDPLITE(sk);
1675 
1676 	/*
1677 	 *	Charge it to the socket, dropping if the queue is full.
1678 	 */
1679 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1680 		goto drop;
1681 	nf_reset(skb);
1682 
1683 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1684 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1685 
1686 		/*
1687 		 * This is an encapsulation socket so pass the skb to
1688 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1689 		 * fall through and pass this up the UDP socket.
1690 		 * up->encap_rcv() returns the following value:
1691 		 * =0 if skb was successfully passed to the encap
1692 		 *    handler or was discarded by it.
1693 		 * >0 if skb should be passed on to UDP.
1694 		 * <0 if skb should be resubmitted as proto -N
1695 		 */
1696 
1697 		/* if we're overly short, let UDP handle it */
1698 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1699 		if (encap_rcv) {
1700 			int ret;
1701 
1702 			/* Verify checksum before giving to encap */
1703 			if (udp_lib_checksum_complete(skb))
1704 				goto csum_error;
1705 
1706 			ret = encap_rcv(sk, skb);
1707 			if (ret <= 0) {
1708 				__UDP_INC_STATS(sock_net(sk),
1709 						UDP_MIB_INDATAGRAMS,
1710 						is_udplite);
1711 				return -ret;
1712 			}
1713 		}
1714 
1715 		/* FALLTHROUGH -- it's a UDP Packet */
1716 	}
1717 
1718 	/*
1719 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1720 	 */
1721 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1722 
1723 		/*
1724 		 * MIB statistics other than incrementing the error count are
1725 		 * disabled for the following two types of errors: these depend
1726 		 * on the application settings, not on the functioning of the
1727 		 * protocol stack as such.
1728 		 *
1729 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1730 		 * way ... to ... at least let the receiving application block
1731 		 * delivery of packets with coverage values less than a value
1732 		 * provided by the application."
1733 		 */
1734 		if (up->pcrlen == 0) {          /* full coverage was set  */
1735 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1736 					    UDP_SKB_CB(skb)->cscov, skb->len);
1737 			goto drop;
1738 		}
1739 		/* The next case involves violating the min. coverage requested
1740 		 * by the receiver. This is subtle: if receiver wants x and x is
1741 		 * greater than the buffersize/MTU then receiver will complain
1742 		 * that it wants x while sender emits packets of smaller size y.
1743 		 * Therefore the above ...()->partial_cov statement is essential.
1744 		 */
1745 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1746 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1747 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1748 			goto drop;
1749 		}
1750 	}
1751 
1752 	if (rcu_access_pointer(sk->sk_filter) &&
1753 	    udp_lib_checksum_complete(skb))
1754 			goto csum_error;
1755 
1756 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1757 		goto drop;
1758 
1759 	udp_csum_pull_header(skb);
1760 
1761 	ipv4_pktinfo_prepare(sk, skb);
1762 	return __udp_queue_rcv_skb(sk, skb);
1763 
1764 csum_error:
1765 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1766 drop:
1767 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1768 	atomic_inc(&sk->sk_drops);
1769 	kfree_skb(skb);
1770 	return -1;
1771 }
1772 
1773 /* For TCP sockets, sk_rx_dst is protected by socket lock
1774  * For UDP, we use xchg() to guard against concurrent changes.
1775  */
1776 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1777 {
1778 	struct dst_entry *old;
1779 
1780 	dst_hold(dst);
1781 	old = xchg(&sk->sk_rx_dst, dst);
1782 	dst_release(old);
1783 }
1784 
1785 /*
1786  *	Multicasts and broadcasts go to each listener.
1787  *
1788  *	Note: called only from the BH handler context.
1789  */
1790 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1791 				    struct udphdr  *uh,
1792 				    __be32 saddr, __be32 daddr,
1793 				    struct udp_table *udptable,
1794 				    int proto)
1795 {
1796 	struct sock *sk, *first = NULL;
1797 	unsigned short hnum = ntohs(uh->dest);
1798 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1799 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1800 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1801 	int dif = skb->dev->ifindex;
1802 	struct hlist_node *node;
1803 	struct sk_buff *nskb;
1804 
1805 	if (use_hash2) {
1806 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1807 			    udptable->mask;
1808 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1809 start_lookup:
1810 		hslot = &udptable->hash2[hash2];
1811 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1812 	}
1813 
1814 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1815 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1816 					 uh->source, saddr, dif, hnum))
1817 			continue;
1818 
1819 		if (!first) {
1820 			first = sk;
1821 			continue;
1822 		}
1823 		nskb = skb_clone(skb, GFP_ATOMIC);
1824 
1825 		if (unlikely(!nskb)) {
1826 			atomic_inc(&sk->sk_drops);
1827 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1828 					IS_UDPLITE(sk));
1829 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1830 					IS_UDPLITE(sk));
1831 			continue;
1832 		}
1833 		if (udp_queue_rcv_skb(sk, nskb) > 0)
1834 			consume_skb(nskb);
1835 	}
1836 
1837 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1838 	if (use_hash2 && hash2 != hash2_any) {
1839 		hash2 = hash2_any;
1840 		goto start_lookup;
1841 	}
1842 
1843 	if (first) {
1844 		if (udp_queue_rcv_skb(first, skb) > 0)
1845 			consume_skb(skb);
1846 	} else {
1847 		kfree_skb(skb);
1848 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
1849 				proto == IPPROTO_UDPLITE);
1850 	}
1851 	return 0;
1852 }
1853 
1854 /* Initialize UDP checksum. If exited with zero value (success),
1855  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1856  * Otherwise, csum completion requires chacksumming packet body,
1857  * including udp header and folding it to skb->csum.
1858  */
1859 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1860 				 int proto)
1861 {
1862 	int err;
1863 
1864 	UDP_SKB_CB(skb)->partial_cov = 0;
1865 	UDP_SKB_CB(skb)->cscov = skb->len;
1866 
1867 	if (proto == IPPROTO_UDPLITE) {
1868 		err = udplite_checksum_init(skb, uh);
1869 		if (err)
1870 			return err;
1871 	}
1872 
1873 	/* Note, we are only interested in != 0 or == 0, thus the
1874 	 * force to int.
1875 	 */
1876 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
1877 							 inet_compute_pseudo);
1878 }
1879 
1880 /*
1881  *	All we need to do is get the socket, and then do a checksum.
1882  */
1883 
1884 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1885 		   int proto)
1886 {
1887 	struct sock *sk;
1888 	struct udphdr *uh;
1889 	unsigned short ulen;
1890 	struct rtable *rt = skb_rtable(skb);
1891 	__be32 saddr, daddr;
1892 	struct net *net = dev_net(skb->dev);
1893 
1894 	/*
1895 	 *  Validate the packet.
1896 	 */
1897 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1898 		goto drop;		/* No space for header. */
1899 
1900 	uh   = udp_hdr(skb);
1901 	ulen = ntohs(uh->len);
1902 	saddr = ip_hdr(skb)->saddr;
1903 	daddr = ip_hdr(skb)->daddr;
1904 
1905 	if (ulen > skb->len)
1906 		goto short_packet;
1907 
1908 	if (proto == IPPROTO_UDP) {
1909 		/* UDP validates ulen. */
1910 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1911 			goto short_packet;
1912 		uh = udp_hdr(skb);
1913 	}
1914 
1915 	if (udp4_csum_init(skb, uh, proto))
1916 		goto csum_error;
1917 
1918 	sk = skb_steal_sock(skb);
1919 	if (sk) {
1920 		struct dst_entry *dst = skb_dst(skb);
1921 		int ret;
1922 
1923 		if (unlikely(sk->sk_rx_dst != dst))
1924 			udp_sk_rx_dst_set(sk, dst);
1925 
1926 		ret = udp_queue_rcv_skb(sk, skb);
1927 		sock_put(sk);
1928 		/* a return value > 0 means to resubmit the input, but
1929 		 * it wants the return to be -protocol, or 0
1930 		 */
1931 		if (ret > 0)
1932 			return -ret;
1933 		return 0;
1934 	}
1935 
1936 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1937 		return __udp4_lib_mcast_deliver(net, skb, uh,
1938 						saddr, daddr, udptable, proto);
1939 
1940 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1941 	if (sk) {
1942 		int ret;
1943 
1944 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1945 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1946 						 inet_compute_pseudo);
1947 
1948 		ret = udp_queue_rcv_skb(sk, skb);
1949 
1950 		/* a return value > 0 means to resubmit the input, but
1951 		 * it wants the return to be -protocol, or 0
1952 		 */
1953 		if (ret > 0)
1954 			return -ret;
1955 		return 0;
1956 	}
1957 
1958 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1959 		goto drop;
1960 	nf_reset(skb);
1961 
1962 	/* No socket. Drop packet silently, if checksum is wrong */
1963 	if (udp_lib_checksum_complete(skb))
1964 		goto csum_error;
1965 
1966 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1967 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1968 
1969 	/*
1970 	 * Hmm.  We got an UDP packet to a port to which we
1971 	 * don't wanna listen.  Ignore it.
1972 	 */
1973 	kfree_skb(skb);
1974 	return 0;
1975 
1976 short_packet:
1977 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1978 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1979 			    &saddr, ntohs(uh->source),
1980 			    ulen, skb->len,
1981 			    &daddr, ntohs(uh->dest));
1982 	goto drop;
1983 
1984 csum_error:
1985 	/*
1986 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1987 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1988 	 */
1989 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1990 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1991 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1992 			    ulen);
1993 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1994 drop:
1995 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1996 	kfree_skb(skb);
1997 	return 0;
1998 }
1999 
2000 /* We can only early demux multicast if there is a single matching socket.
2001  * If more than one socket found returns NULL
2002  */
2003 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2004 						  __be16 loc_port, __be32 loc_addr,
2005 						  __be16 rmt_port, __be32 rmt_addr,
2006 						  int dif)
2007 {
2008 	struct sock *sk, *result;
2009 	unsigned short hnum = ntohs(loc_port);
2010 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2011 	struct udp_hslot *hslot = &udp_table.hash[slot];
2012 
2013 	/* Do not bother scanning a too big list */
2014 	if (hslot->count > 10)
2015 		return NULL;
2016 
2017 	result = NULL;
2018 	sk_for_each_rcu(sk, &hslot->head) {
2019 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2020 					rmt_port, rmt_addr, dif, hnum)) {
2021 			if (result)
2022 				return NULL;
2023 			result = sk;
2024 		}
2025 	}
2026 
2027 	return result;
2028 }
2029 
2030 /* For unicast we should only early demux connected sockets or we can
2031  * break forwarding setups.  The chains here can be long so only check
2032  * if the first socket is an exact match and if not move on.
2033  */
2034 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2035 					    __be16 loc_port, __be32 loc_addr,
2036 					    __be16 rmt_port, __be32 rmt_addr,
2037 					    int dif)
2038 {
2039 	unsigned short hnum = ntohs(loc_port);
2040 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2041 	unsigned int slot2 = hash2 & udp_table.mask;
2042 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2043 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2044 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2045 	struct sock *sk;
2046 
2047 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2048 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2049 			       loc_addr, ports, dif))
2050 			return sk;
2051 		/* Only check first socket in chain */
2052 		break;
2053 	}
2054 	return NULL;
2055 }
2056 
2057 void udp_v4_early_demux(struct sk_buff *skb)
2058 {
2059 	struct net *net = dev_net(skb->dev);
2060 	const struct iphdr *iph;
2061 	const struct udphdr *uh;
2062 	struct sock *sk = NULL;
2063 	struct dst_entry *dst;
2064 	int dif = skb->dev->ifindex;
2065 	int ours;
2066 
2067 	/* validate the packet */
2068 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2069 		return;
2070 
2071 	iph = ip_hdr(skb);
2072 	uh = udp_hdr(skb);
2073 
2074 	if (skb->pkt_type == PACKET_BROADCAST ||
2075 	    skb->pkt_type == PACKET_MULTICAST) {
2076 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
2077 
2078 		if (!in_dev)
2079 			return;
2080 
2081 		/* we are supposed to accept bcast packets */
2082 		if (skb->pkt_type == PACKET_MULTICAST) {
2083 			ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2084 					       iph->protocol);
2085 			if (!ours)
2086 				return;
2087 		}
2088 
2089 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2090 						   uh->source, iph->saddr, dif);
2091 	} else if (skb->pkt_type == PACKET_HOST) {
2092 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2093 					     uh->source, iph->saddr, dif);
2094 	}
2095 
2096 	if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
2097 		return;
2098 
2099 	skb->sk = sk;
2100 	skb->destructor = sock_efree;
2101 	dst = READ_ONCE(sk->sk_rx_dst);
2102 
2103 	if (dst)
2104 		dst = dst_check(dst, 0);
2105 	if (dst) {
2106 		/* DST_NOCACHE can not be used without taking a reference */
2107 		if (dst->flags & DST_NOCACHE) {
2108 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2109 				skb_dst_set(skb, dst);
2110 		} else {
2111 			skb_dst_set_noref(skb, dst);
2112 		}
2113 	}
2114 }
2115 
2116 int udp_rcv(struct sk_buff *skb)
2117 {
2118 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2119 }
2120 
2121 void udp_destroy_sock(struct sock *sk)
2122 {
2123 	struct udp_sock *up = udp_sk(sk);
2124 	bool slow = lock_sock_fast(sk);
2125 	udp_flush_pending_frames(sk);
2126 	unlock_sock_fast(sk, slow);
2127 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2128 		void (*encap_destroy)(struct sock *sk);
2129 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2130 		if (encap_destroy)
2131 			encap_destroy(sk);
2132 	}
2133 }
2134 
2135 /*
2136  *	Socket option code for UDP
2137  */
2138 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2139 		       char __user *optval, unsigned int optlen,
2140 		       int (*push_pending_frames)(struct sock *))
2141 {
2142 	struct udp_sock *up = udp_sk(sk);
2143 	int val, valbool;
2144 	int err = 0;
2145 	int is_udplite = IS_UDPLITE(sk);
2146 
2147 	if (optlen < sizeof(int))
2148 		return -EINVAL;
2149 
2150 	if (get_user(val, (int __user *)optval))
2151 		return -EFAULT;
2152 
2153 	valbool = val ? 1 : 0;
2154 
2155 	switch (optname) {
2156 	case UDP_CORK:
2157 		if (val != 0) {
2158 			up->corkflag = 1;
2159 		} else {
2160 			up->corkflag = 0;
2161 			lock_sock(sk);
2162 			push_pending_frames(sk);
2163 			release_sock(sk);
2164 		}
2165 		break;
2166 
2167 	case UDP_ENCAP:
2168 		switch (val) {
2169 		case 0:
2170 		case UDP_ENCAP_ESPINUDP:
2171 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2172 			up->encap_rcv = xfrm4_udp_encap_rcv;
2173 			/* FALLTHROUGH */
2174 		case UDP_ENCAP_L2TPINUDP:
2175 			up->encap_type = val;
2176 			udp_encap_enable();
2177 			break;
2178 		default:
2179 			err = -ENOPROTOOPT;
2180 			break;
2181 		}
2182 		break;
2183 
2184 	case UDP_NO_CHECK6_TX:
2185 		up->no_check6_tx = valbool;
2186 		break;
2187 
2188 	case UDP_NO_CHECK6_RX:
2189 		up->no_check6_rx = valbool;
2190 		break;
2191 
2192 	/*
2193 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2194 	 */
2195 	/* The sender sets actual checksum coverage length via this option.
2196 	 * The case coverage > packet length is handled by send module. */
2197 	case UDPLITE_SEND_CSCOV:
2198 		if (!is_udplite)         /* Disable the option on UDP sockets */
2199 			return -ENOPROTOOPT;
2200 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2201 			val = 8;
2202 		else if (val > USHRT_MAX)
2203 			val = USHRT_MAX;
2204 		up->pcslen = val;
2205 		up->pcflag |= UDPLITE_SEND_CC;
2206 		break;
2207 
2208 	/* The receiver specifies a minimum checksum coverage value. To make
2209 	 * sense, this should be set to at least 8 (as done below). If zero is
2210 	 * used, this again means full checksum coverage.                     */
2211 	case UDPLITE_RECV_CSCOV:
2212 		if (!is_udplite)         /* Disable the option on UDP sockets */
2213 			return -ENOPROTOOPT;
2214 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2215 			val = 8;
2216 		else if (val > USHRT_MAX)
2217 			val = USHRT_MAX;
2218 		up->pcrlen = val;
2219 		up->pcflag |= UDPLITE_RECV_CC;
2220 		break;
2221 
2222 	default:
2223 		err = -ENOPROTOOPT;
2224 		break;
2225 	}
2226 
2227 	return err;
2228 }
2229 EXPORT_SYMBOL(udp_lib_setsockopt);
2230 
2231 int udp_setsockopt(struct sock *sk, int level, int optname,
2232 		   char __user *optval, unsigned int optlen)
2233 {
2234 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2235 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2236 					  udp_push_pending_frames);
2237 	return ip_setsockopt(sk, level, optname, optval, optlen);
2238 }
2239 
2240 #ifdef CONFIG_COMPAT
2241 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2242 			  char __user *optval, unsigned int optlen)
2243 {
2244 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2245 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2246 					  udp_push_pending_frames);
2247 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2248 }
2249 #endif
2250 
2251 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2252 		       char __user *optval, int __user *optlen)
2253 {
2254 	struct udp_sock *up = udp_sk(sk);
2255 	int val, len;
2256 
2257 	if (get_user(len, optlen))
2258 		return -EFAULT;
2259 
2260 	len = min_t(unsigned int, len, sizeof(int));
2261 
2262 	if (len < 0)
2263 		return -EINVAL;
2264 
2265 	switch (optname) {
2266 	case UDP_CORK:
2267 		val = up->corkflag;
2268 		break;
2269 
2270 	case UDP_ENCAP:
2271 		val = up->encap_type;
2272 		break;
2273 
2274 	case UDP_NO_CHECK6_TX:
2275 		val = up->no_check6_tx;
2276 		break;
2277 
2278 	case UDP_NO_CHECK6_RX:
2279 		val = up->no_check6_rx;
2280 		break;
2281 
2282 	/* The following two cannot be changed on UDP sockets, the return is
2283 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2284 	case UDPLITE_SEND_CSCOV:
2285 		val = up->pcslen;
2286 		break;
2287 
2288 	case UDPLITE_RECV_CSCOV:
2289 		val = up->pcrlen;
2290 		break;
2291 
2292 	default:
2293 		return -ENOPROTOOPT;
2294 	}
2295 
2296 	if (put_user(len, optlen))
2297 		return -EFAULT;
2298 	if (copy_to_user(optval, &val, len))
2299 		return -EFAULT;
2300 	return 0;
2301 }
2302 EXPORT_SYMBOL(udp_lib_getsockopt);
2303 
2304 int udp_getsockopt(struct sock *sk, int level, int optname,
2305 		   char __user *optval, int __user *optlen)
2306 {
2307 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2308 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2309 	return ip_getsockopt(sk, level, optname, optval, optlen);
2310 }
2311 
2312 #ifdef CONFIG_COMPAT
2313 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2314 				 char __user *optval, int __user *optlen)
2315 {
2316 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2317 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2318 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2319 }
2320 #endif
2321 /**
2322  * 	udp_poll - wait for a UDP event.
2323  *	@file - file struct
2324  *	@sock - socket
2325  *	@wait - poll table
2326  *
2327  *	This is same as datagram poll, except for the special case of
2328  *	blocking sockets. If application is using a blocking fd
2329  *	and a packet with checksum error is in the queue;
2330  *	then it could get return from select indicating data available
2331  *	but then block when reading it. Add special case code
2332  *	to work around these arguably broken applications.
2333  */
2334 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2335 {
2336 	unsigned int mask = datagram_poll(file, sock, wait);
2337 	struct sock *sk = sock->sk;
2338 
2339 	sock_rps_record_flow(sk);
2340 
2341 	/* Check for false positives due to checksum errors */
2342 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2343 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2344 		mask &= ~(POLLIN | POLLRDNORM);
2345 
2346 	return mask;
2347 
2348 }
2349 EXPORT_SYMBOL(udp_poll);
2350 
2351 int udp_abort(struct sock *sk, int err)
2352 {
2353 	lock_sock(sk);
2354 
2355 	sk->sk_err = err;
2356 	sk->sk_error_report(sk);
2357 	__udp_disconnect(sk, 0);
2358 
2359 	release_sock(sk);
2360 
2361 	return 0;
2362 }
2363 EXPORT_SYMBOL_GPL(udp_abort);
2364 
2365 struct proto udp_prot = {
2366 	.name		   = "UDP",
2367 	.owner		   = THIS_MODULE,
2368 	.close		   = udp_lib_close,
2369 	.connect	   = ip4_datagram_connect,
2370 	.disconnect	   = udp_disconnect,
2371 	.ioctl		   = udp_ioctl,
2372 	.init		   = udp_init_sock,
2373 	.destroy	   = udp_destroy_sock,
2374 	.setsockopt	   = udp_setsockopt,
2375 	.getsockopt	   = udp_getsockopt,
2376 	.sendmsg	   = udp_sendmsg,
2377 	.recvmsg	   = udp_recvmsg,
2378 	.sendpage	   = udp_sendpage,
2379 	.release_cb	   = ip4_datagram_release_cb,
2380 	.hash		   = udp_lib_hash,
2381 	.unhash		   = udp_lib_unhash,
2382 	.rehash		   = udp_v4_rehash,
2383 	.get_port	   = udp_v4_get_port,
2384 	.memory_allocated  = &udp_memory_allocated,
2385 	.sysctl_mem	   = sysctl_udp_mem,
2386 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2387 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2388 	.obj_size	   = sizeof(struct udp_sock),
2389 	.h.udp_table	   = &udp_table,
2390 #ifdef CONFIG_COMPAT
2391 	.compat_setsockopt = compat_udp_setsockopt,
2392 	.compat_getsockopt = compat_udp_getsockopt,
2393 #endif
2394 	.diag_destroy	   = udp_abort,
2395 };
2396 EXPORT_SYMBOL(udp_prot);
2397 
2398 /* ------------------------------------------------------------------------ */
2399 #ifdef CONFIG_PROC_FS
2400 
2401 static struct sock *udp_get_first(struct seq_file *seq, int start)
2402 {
2403 	struct sock *sk;
2404 	struct udp_iter_state *state = seq->private;
2405 	struct net *net = seq_file_net(seq);
2406 
2407 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2408 	     ++state->bucket) {
2409 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2410 
2411 		if (hlist_empty(&hslot->head))
2412 			continue;
2413 
2414 		spin_lock_bh(&hslot->lock);
2415 		sk_for_each(sk, &hslot->head) {
2416 			if (!net_eq(sock_net(sk), net))
2417 				continue;
2418 			if (sk->sk_family == state->family)
2419 				goto found;
2420 		}
2421 		spin_unlock_bh(&hslot->lock);
2422 	}
2423 	sk = NULL;
2424 found:
2425 	return sk;
2426 }
2427 
2428 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2429 {
2430 	struct udp_iter_state *state = seq->private;
2431 	struct net *net = seq_file_net(seq);
2432 
2433 	do {
2434 		sk = sk_next(sk);
2435 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2436 
2437 	if (!sk) {
2438 		if (state->bucket <= state->udp_table->mask)
2439 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2440 		return udp_get_first(seq, state->bucket + 1);
2441 	}
2442 	return sk;
2443 }
2444 
2445 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2446 {
2447 	struct sock *sk = udp_get_first(seq, 0);
2448 
2449 	if (sk)
2450 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2451 			--pos;
2452 	return pos ? NULL : sk;
2453 }
2454 
2455 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2456 {
2457 	struct udp_iter_state *state = seq->private;
2458 	state->bucket = MAX_UDP_PORTS;
2459 
2460 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2461 }
2462 
2463 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2464 {
2465 	struct sock *sk;
2466 
2467 	if (v == SEQ_START_TOKEN)
2468 		sk = udp_get_idx(seq, 0);
2469 	else
2470 		sk = udp_get_next(seq, v);
2471 
2472 	++*pos;
2473 	return sk;
2474 }
2475 
2476 static void udp_seq_stop(struct seq_file *seq, void *v)
2477 {
2478 	struct udp_iter_state *state = seq->private;
2479 
2480 	if (state->bucket <= state->udp_table->mask)
2481 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2482 }
2483 
2484 int udp_seq_open(struct inode *inode, struct file *file)
2485 {
2486 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2487 	struct udp_iter_state *s;
2488 	int err;
2489 
2490 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2491 			   sizeof(struct udp_iter_state));
2492 	if (err < 0)
2493 		return err;
2494 
2495 	s = ((struct seq_file *)file->private_data)->private;
2496 	s->family		= afinfo->family;
2497 	s->udp_table		= afinfo->udp_table;
2498 	return err;
2499 }
2500 EXPORT_SYMBOL(udp_seq_open);
2501 
2502 /* ------------------------------------------------------------------------ */
2503 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2504 {
2505 	struct proc_dir_entry *p;
2506 	int rc = 0;
2507 
2508 	afinfo->seq_ops.start		= udp_seq_start;
2509 	afinfo->seq_ops.next		= udp_seq_next;
2510 	afinfo->seq_ops.stop		= udp_seq_stop;
2511 
2512 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2513 			     afinfo->seq_fops, afinfo);
2514 	if (!p)
2515 		rc = -ENOMEM;
2516 	return rc;
2517 }
2518 EXPORT_SYMBOL(udp_proc_register);
2519 
2520 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2521 {
2522 	remove_proc_entry(afinfo->name, net->proc_net);
2523 }
2524 EXPORT_SYMBOL(udp_proc_unregister);
2525 
2526 /* ------------------------------------------------------------------------ */
2527 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2528 		int bucket)
2529 {
2530 	struct inet_sock *inet = inet_sk(sp);
2531 	__be32 dest = inet->inet_daddr;
2532 	__be32 src  = inet->inet_rcv_saddr;
2533 	__u16 destp	  = ntohs(inet->inet_dport);
2534 	__u16 srcp	  = ntohs(inet->inet_sport);
2535 
2536 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2537 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2538 		bucket, src, srcp, dest, destp, sp->sk_state,
2539 		sk_wmem_alloc_get(sp),
2540 		sk_rmem_alloc_get(sp),
2541 		0, 0L, 0,
2542 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2543 		0, sock_i_ino(sp),
2544 		atomic_read(&sp->sk_refcnt), sp,
2545 		atomic_read(&sp->sk_drops));
2546 }
2547 
2548 int udp4_seq_show(struct seq_file *seq, void *v)
2549 {
2550 	seq_setwidth(seq, 127);
2551 	if (v == SEQ_START_TOKEN)
2552 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2553 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2554 			   "inode ref pointer drops");
2555 	else {
2556 		struct udp_iter_state *state = seq->private;
2557 
2558 		udp4_format_sock(v, seq, state->bucket);
2559 	}
2560 	seq_pad(seq, '\n');
2561 	return 0;
2562 }
2563 
2564 static const struct file_operations udp_afinfo_seq_fops = {
2565 	.owner    = THIS_MODULE,
2566 	.open     = udp_seq_open,
2567 	.read     = seq_read,
2568 	.llseek   = seq_lseek,
2569 	.release  = seq_release_net
2570 };
2571 
2572 /* ------------------------------------------------------------------------ */
2573 static struct udp_seq_afinfo udp4_seq_afinfo = {
2574 	.name		= "udp",
2575 	.family		= AF_INET,
2576 	.udp_table	= &udp_table,
2577 	.seq_fops	= &udp_afinfo_seq_fops,
2578 	.seq_ops	= {
2579 		.show		= udp4_seq_show,
2580 	},
2581 };
2582 
2583 static int __net_init udp4_proc_init_net(struct net *net)
2584 {
2585 	return udp_proc_register(net, &udp4_seq_afinfo);
2586 }
2587 
2588 static void __net_exit udp4_proc_exit_net(struct net *net)
2589 {
2590 	udp_proc_unregister(net, &udp4_seq_afinfo);
2591 }
2592 
2593 static struct pernet_operations udp4_net_ops = {
2594 	.init = udp4_proc_init_net,
2595 	.exit = udp4_proc_exit_net,
2596 };
2597 
2598 int __init udp4_proc_init(void)
2599 {
2600 	return register_pernet_subsys(&udp4_net_ops);
2601 }
2602 
2603 void udp4_proc_exit(void)
2604 {
2605 	unregister_pernet_subsys(&udp4_net_ops);
2606 }
2607 #endif /* CONFIG_PROC_FS */
2608 
2609 static __initdata unsigned long uhash_entries;
2610 static int __init set_uhash_entries(char *str)
2611 {
2612 	ssize_t ret;
2613 
2614 	if (!str)
2615 		return 0;
2616 
2617 	ret = kstrtoul(str, 0, &uhash_entries);
2618 	if (ret)
2619 		return 0;
2620 
2621 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2622 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2623 	return 1;
2624 }
2625 __setup("uhash_entries=", set_uhash_entries);
2626 
2627 void __init udp_table_init(struct udp_table *table, const char *name)
2628 {
2629 	unsigned int i;
2630 
2631 	table->hash = alloc_large_system_hash(name,
2632 					      2 * sizeof(struct udp_hslot),
2633 					      uhash_entries,
2634 					      21, /* one slot per 2 MB */
2635 					      0,
2636 					      &table->log,
2637 					      &table->mask,
2638 					      UDP_HTABLE_SIZE_MIN,
2639 					      64 * 1024);
2640 
2641 	table->hash2 = table->hash + (table->mask + 1);
2642 	for (i = 0; i <= table->mask; i++) {
2643 		INIT_HLIST_HEAD(&table->hash[i].head);
2644 		table->hash[i].count = 0;
2645 		spin_lock_init(&table->hash[i].lock);
2646 	}
2647 	for (i = 0; i <= table->mask; i++) {
2648 		INIT_HLIST_HEAD(&table->hash2[i].head);
2649 		table->hash2[i].count = 0;
2650 		spin_lock_init(&table->hash2[i].lock);
2651 	}
2652 }
2653 
2654 u32 udp_flow_hashrnd(void)
2655 {
2656 	static u32 hashrnd __read_mostly;
2657 
2658 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2659 
2660 	return hashrnd;
2661 }
2662 EXPORT_SYMBOL(udp_flow_hashrnd);
2663 
2664 void __init udp_init(void)
2665 {
2666 	unsigned long limit;
2667 	unsigned int i;
2668 
2669 	udp_table_init(&udp_table, "UDP");
2670 	limit = nr_free_buffer_pages() / 8;
2671 	limit = max(limit, 128UL);
2672 	sysctl_udp_mem[0] = limit / 4 * 3;
2673 	sysctl_udp_mem[1] = limit;
2674 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2675 
2676 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2677 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2678 
2679 	/* 16 spinlocks per cpu */
2680 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2681 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2682 				GFP_KERNEL);
2683 	if (!udp_busylocks)
2684 		panic("UDP: failed to alloc udp_busylocks\n");
2685 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2686 		spin_lock_init(udp_busylocks + i);
2687 }
2688