xref: /openbmc/linux/net/ipv4/udp.c (revision 4a65896f94fa82370041823837cd75aac1186b54)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120 
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123 
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126 
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129 
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135 
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 			       const struct udp_hslot *hslot,
138 			       unsigned long *bitmap,
139 			       struct sock *sk,
140 			       int (*saddr_comp)(const struct sock *sk1,
141 						 const struct sock *sk2,
142 						 bool match_wildcard),
143 			       unsigned int log)
144 {
145 	struct sock *sk2;
146 	kuid_t uid = sock_i_uid(sk);
147 
148 	sk_for_each(sk2, &hslot->head) {
149 		if (net_eq(sock_net(sk2), net) &&
150 		    sk2 != sk &&
151 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
153 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
156 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
157 		     !uid_eq(uid, sock_i_uid(sk2))) &&
158 		    saddr_comp(sk, sk2, true)) {
159 			if (!bitmap)
160 				return 1;
161 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
162 		}
163 	}
164 	return 0;
165 }
166 
167 /*
168  * Note: we still hold spinlock of primary hash chain, so no other writer
169  * can insert/delete a socket with local_port == num
170  */
171 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
172 				struct udp_hslot *hslot2,
173 				struct sock *sk,
174 				int (*saddr_comp)(const struct sock *sk1,
175 						  const struct sock *sk2,
176 						  bool match_wildcard))
177 {
178 	struct sock *sk2;
179 	kuid_t uid = sock_i_uid(sk);
180 	int res = 0;
181 
182 	spin_lock(&hslot2->lock);
183 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
184 		if (net_eq(sock_net(sk2), net) &&
185 		    sk2 != sk &&
186 		    (udp_sk(sk2)->udp_port_hash == num) &&
187 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
188 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
189 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
190 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
191 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
192 		     !uid_eq(uid, sock_i_uid(sk2))) &&
193 		    saddr_comp(sk, sk2, true)) {
194 			res = 1;
195 			break;
196 		}
197 	}
198 	spin_unlock(&hslot2->lock);
199 	return res;
200 }
201 
202 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
203 				  int (*saddr_same)(const struct sock *sk1,
204 						    const struct sock *sk2,
205 						    bool match_wildcard))
206 {
207 	struct net *net = sock_net(sk);
208 	kuid_t uid = sock_i_uid(sk);
209 	struct sock *sk2;
210 
211 	sk_for_each(sk2, &hslot->head) {
212 		if (net_eq(sock_net(sk2), net) &&
213 		    sk2 != sk &&
214 		    sk2->sk_family == sk->sk_family &&
215 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
216 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
217 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
218 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
219 		    (*saddr_same)(sk, sk2, false)) {
220 			return reuseport_add_sock(sk, sk2);
221 		}
222 	}
223 
224 	/* Initial allocation may have already happened via setsockopt */
225 	if (!rcu_access_pointer(sk->sk_reuseport_cb))
226 		return reuseport_alloc(sk);
227 	return 0;
228 }
229 
230 /**
231  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
232  *
233  *  @sk:          socket struct in question
234  *  @snum:        port number to look up
235  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     int (*saddr_comp)(const struct sock *sk1,
241 				       const struct sock *sk2,
242 				       bool match_wildcard),
243 		     unsigned int hash2_nulladdr)
244 {
245 	struct udp_hslot *hslot, *hslot2;
246 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
247 	int    error = 1;
248 	struct net *net = sock_net(sk);
249 
250 	if (!snum) {
251 		int low, high, remaining;
252 		unsigned int rand;
253 		unsigned short first, last;
254 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
255 
256 		inet_get_local_port_range(net, &low, &high);
257 		remaining = (high - low) + 1;
258 
259 		rand = prandom_u32();
260 		first = reciprocal_scale(rand, remaining) + low;
261 		/*
262 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
263 		 */
264 		rand = (rand | 1) * (udptable->mask + 1);
265 		last = first + udptable->mask + 1;
266 		do {
267 			hslot = udp_hashslot(udptable, net, first);
268 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
269 			spin_lock_bh(&hslot->lock);
270 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
271 					    saddr_comp, udptable->log);
272 
273 			snum = first;
274 			/*
275 			 * Iterate on all possible values of snum for this hash.
276 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
277 			 * give us randomization and full range coverage.
278 			 */
279 			do {
280 				if (low <= snum && snum <= high &&
281 				    !test_bit(snum >> udptable->log, bitmap) &&
282 				    !inet_is_local_reserved_port(net, snum))
283 					goto found;
284 				snum += rand;
285 			} while (snum != first);
286 			spin_unlock_bh(&hslot->lock);
287 		} while (++first != last);
288 		goto fail;
289 	} else {
290 		hslot = udp_hashslot(udptable, net, snum);
291 		spin_lock_bh(&hslot->lock);
292 		if (hslot->count > 10) {
293 			int exist;
294 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
295 
296 			slot2          &= udptable->mask;
297 			hash2_nulladdr &= udptable->mask;
298 
299 			hslot2 = udp_hashslot2(udptable, slot2);
300 			if (hslot->count < hslot2->count)
301 				goto scan_primary_hash;
302 
303 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
304 						     sk, saddr_comp);
305 			if (!exist && (hash2_nulladdr != slot2)) {
306 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
307 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
308 							     sk, saddr_comp);
309 			}
310 			if (exist)
311 				goto fail_unlock;
312 			else
313 				goto found;
314 		}
315 scan_primary_hash:
316 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
317 					saddr_comp, 0))
318 			goto fail_unlock;
319 	}
320 found:
321 	inet_sk(sk)->inet_num = snum;
322 	udp_sk(sk)->udp_port_hash = snum;
323 	udp_sk(sk)->udp_portaddr_hash ^= snum;
324 	if (sk_unhashed(sk)) {
325 		if (sk->sk_reuseport &&
326 		    udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
327 			inet_sk(sk)->inet_num = 0;
328 			udp_sk(sk)->udp_port_hash = 0;
329 			udp_sk(sk)->udp_portaddr_hash ^= snum;
330 			goto fail_unlock;
331 		}
332 
333 		sk_add_node_rcu(sk, &hslot->head);
334 		hslot->count++;
335 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
336 
337 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
338 		spin_lock(&hslot2->lock);
339 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
340 		    sk->sk_family == AF_INET6)
341 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
342 					   &hslot2->head);
343 		else
344 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
345 					   &hslot2->head);
346 		hslot2->count++;
347 		spin_unlock(&hslot2->lock);
348 	}
349 	sock_set_flag(sk, SOCK_RCU_FREE);
350 	error = 0;
351 fail_unlock:
352 	spin_unlock_bh(&hslot->lock);
353 fail:
354 	return error;
355 }
356 EXPORT_SYMBOL(udp_lib_get_port);
357 
358 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
359  * match_wildcard == false: addresses must be exactly the same, i.e.
360  *                          0.0.0.0 only equals to 0.0.0.0
361  */
362 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
363 			 bool match_wildcard)
364 {
365 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
366 
367 	if (!ipv6_only_sock(sk2)) {
368 		if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
369 			return 1;
370 		if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
371 			return match_wildcard;
372 	}
373 	return 0;
374 }
375 
376 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
377 			      unsigned int port)
378 {
379 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
380 }
381 
382 int udp_v4_get_port(struct sock *sk, unsigned short snum)
383 {
384 	unsigned int hash2_nulladdr =
385 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
386 	unsigned int hash2_partial =
387 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
388 
389 	/* precompute partial secondary hash */
390 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
391 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
392 }
393 
394 static inline int compute_score(struct sock *sk, struct net *net,
395 				__be32 saddr, unsigned short hnum, __be16 sport,
396 				__be32 daddr, __be16 dport, int dif)
397 {
398 	int score;
399 	struct inet_sock *inet;
400 
401 	if (!net_eq(sock_net(sk), net) ||
402 	    udp_sk(sk)->udp_port_hash != hnum ||
403 	    ipv6_only_sock(sk))
404 		return -1;
405 
406 	score = (sk->sk_family == PF_INET) ? 2 : 1;
407 	inet = inet_sk(sk);
408 
409 	if (inet->inet_rcv_saddr) {
410 		if (inet->inet_rcv_saddr != daddr)
411 			return -1;
412 		score += 4;
413 	}
414 
415 	if (inet->inet_daddr) {
416 		if (inet->inet_daddr != saddr)
417 			return -1;
418 		score += 4;
419 	}
420 
421 	if (inet->inet_dport) {
422 		if (inet->inet_dport != sport)
423 			return -1;
424 		score += 4;
425 	}
426 
427 	if (sk->sk_bound_dev_if) {
428 		if (sk->sk_bound_dev_if != dif)
429 			return -1;
430 		score += 4;
431 	}
432 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
433 		score++;
434 	return score;
435 }
436 
437 /*
438  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
439  */
440 static inline int compute_score2(struct sock *sk, struct net *net,
441 				 __be32 saddr, __be16 sport,
442 				 __be32 daddr, unsigned int hnum, int dif)
443 {
444 	int score;
445 	struct inet_sock *inet;
446 
447 	if (!net_eq(sock_net(sk), net) ||
448 	    ipv6_only_sock(sk))
449 		return -1;
450 
451 	inet = inet_sk(sk);
452 
453 	if (inet->inet_rcv_saddr != daddr ||
454 	    inet->inet_num != hnum)
455 		return -1;
456 
457 	score = (sk->sk_family == PF_INET) ? 2 : 1;
458 
459 	if (inet->inet_daddr) {
460 		if (inet->inet_daddr != saddr)
461 			return -1;
462 		score += 4;
463 	}
464 
465 	if (inet->inet_dport) {
466 		if (inet->inet_dport != sport)
467 			return -1;
468 		score += 4;
469 	}
470 
471 	if (sk->sk_bound_dev_if) {
472 		if (sk->sk_bound_dev_if != dif)
473 			return -1;
474 		score += 4;
475 	}
476 
477 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
478 		score++;
479 
480 	return score;
481 }
482 
483 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
484 		       const __u16 lport, const __be32 faddr,
485 		       const __be16 fport)
486 {
487 	static u32 udp_ehash_secret __read_mostly;
488 
489 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
490 
491 	return __inet_ehashfn(laddr, lport, faddr, fport,
492 			      udp_ehash_secret + net_hash_mix(net));
493 }
494 
495 /* called with read_rcu_lock() */
496 static struct sock *udp4_lib_lookup2(struct net *net,
497 		__be32 saddr, __be16 sport,
498 		__be32 daddr, unsigned int hnum, int dif,
499 		struct udp_hslot *hslot2, unsigned int slot2,
500 		struct sk_buff *skb)
501 {
502 	struct sock *sk, *result;
503 	int score, badness, matches = 0, reuseport = 0;
504 	u32 hash = 0;
505 
506 	result = NULL;
507 	badness = 0;
508 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
509 		score = compute_score2(sk, net, saddr, sport,
510 				      daddr, hnum, dif);
511 		if (score > badness) {
512 			reuseport = sk->sk_reuseport;
513 			if (reuseport) {
514 				hash = udp_ehashfn(net, daddr, hnum,
515 						   saddr, sport);
516 				result = reuseport_select_sock(sk, hash, skb,
517 							sizeof(struct udphdr));
518 				if (result)
519 					return result;
520 				matches = 1;
521 			}
522 			badness = score;
523 			result = sk;
524 		} else if (score == badness && reuseport) {
525 			matches++;
526 			if (reciprocal_scale(hash, matches) == 0)
527 				result = sk;
528 			hash = next_pseudo_random32(hash);
529 		}
530 	}
531 	return result;
532 }
533 
534 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
535  * harder than this. -DaveM
536  */
537 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
538 		__be16 sport, __be32 daddr, __be16 dport,
539 		int dif, struct udp_table *udptable, struct sk_buff *skb)
540 {
541 	struct sock *sk, *result;
542 	unsigned short hnum = ntohs(dport);
543 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
544 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
545 	int score, badness, matches = 0, reuseport = 0;
546 	u32 hash = 0;
547 
548 	if (hslot->count > 10) {
549 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
550 		slot2 = hash2 & udptable->mask;
551 		hslot2 = &udptable->hash2[slot2];
552 		if (hslot->count < hslot2->count)
553 			goto begin;
554 
555 		result = udp4_lib_lookup2(net, saddr, sport,
556 					  daddr, hnum, dif,
557 					  hslot2, slot2, skb);
558 		if (!result) {
559 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
560 			slot2 = hash2 & udptable->mask;
561 			hslot2 = &udptable->hash2[slot2];
562 			if (hslot->count < hslot2->count)
563 				goto begin;
564 
565 			result = udp4_lib_lookup2(net, saddr, sport,
566 						  htonl(INADDR_ANY), hnum, dif,
567 						  hslot2, slot2, skb);
568 		}
569 		return result;
570 	}
571 begin:
572 	result = NULL;
573 	badness = 0;
574 	sk_for_each_rcu(sk, &hslot->head) {
575 		score = compute_score(sk, net, saddr, hnum, sport,
576 				      daddr, dport, dif);
577 		if (score > badness) {
578 			reuseport = sk->sk_reuseport;
579 			if (reuseport) {
580 				hash = udp_ehashfn(net, daddr, hnum,
581 						   saddr, sport);
582 				result = reuseport_select_sock(sk, hash, skb,
583 							sizeof(struct udphdr));
584 				if (result)
585 					return result;
586 				matches = 1;
587 			}
588 			result = sk;
589 			badness = score;
590 		} else if (score == badness && reuseport) {
591 			matches++;
592 			if (reciprocal_scale(hash, matches) == 0)
593 				result = sk;
594 			hash = next_pseudo_random32(hash);
595 		}
596 	}
597 	return result;
598 }
599 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
600 
601 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
602 						 __be16 sport, __be16 dport,
603 						 struct udp_table *udptable)
604 {
605 	const struct iphdr *iph = ip_hdr(skb);
606 
607 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
608 				 iph->daddr, dport, inet_iif(skb),
609 				 udptable, skb);
610 }
611 
612 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
613 				 __be16 sport, __be16 dport)
614 {
615 	const struct iphdr *iph = ip_hdr(skb);
616 	const struct net_device *dev =
617 	    skb_dst(skb) ? skb_dst(skb)->dev : skb->dev;
618 
619 	return __udp4_lib_lookup(dev_net(dev), iph->saddr, sport,
620 				 iph->daddr, dport, inet_iif(skb),
621 				 &udp_table, skb);
622 }
623 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
624 
625 /* Must be called under rcu_read_lock().
626  * Does increment socket refcount.
627  */
628 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
629     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY)
630 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
631 			     __be32 daddr, __be16 dport, int dif)
632 {
633 	struct sock *sk;
634 
635 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
636 			       dif, &udp_table, NULL);
637 	if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
638 		sk = NULL;
639 	return sk;
640 }
641 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
642 #endif
643 
644 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
645 				       __be16 loc_port, __be32 loc_addr,
646 				       __be16 rmt_port, __be32 rmt_addr,
647 				       int dif, unsigned short hnum)
648 {
649 	struct inet_sock *inet = inet_sk(sk);
650 
651 	if (!net_eq(sock_net(sk), net) ||
652 	    udp_sk(sk)->udp_port_hash != hnum ||
653 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
654 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
655 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
656 	    ipv6_only_sock(sk) ||
657 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
658 		return false;
659 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
660 		return false;
661 	return true;
662 }
663 
664 /*
665  * This routine is called by the ICMP module when it gets some
666  * sort of error condition.  If err < 0 then the socket should
667  * be closed and the error returned to the user.  If err > 0
668  * it's just the icmp type << 8 | icmp code.
669  * Header points to the ip header of the error packet. We move
670  * on past this. Then (as it used to claim before adjustment)
671  * header points to the first 8 bytes of the udp header.  We need
672  * to find the appropriate port.
673  */
674 
675 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
676 {
677 	struct inet_sock *inet;
678 	const struct iphdr *iph = (const struct iphdr *)skb->data;
679 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
680 	const int type = icmp_hdr(skb)->type;
681 	const int code = icmp_hdr(skb)->code;
682 	struct sock *sk;
683 	int harderr;
684 	int err;
685 	struct net *net = dev_net(skb->dev);
686 
687 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
688 			iph->saddr, uh->source, skb->dev->ifindex, udptable,
689 			NULL);
690 	if (!sk) {
691 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
692 		return;	/* No socket for error */
693 	}
694 
695 	err = 0;
696 	harderr = 0;
697 	inet = inet_sk(sk);
698 
699 	switch (type) {
700 	default:
701 	case ICMP_TIME_EXCEEDED:
702 		err = EHOSTUNREACH;
703 		break;
704 	case ICMP_SOURCE_QUENCH:
705 		goto out;
706 	case ICMP_PARAMETERPROB:
707 		err = EPROTO;
708 		harderr = 1;
709 		break;
710 	case ICMP_DEST_UNREACH:
711 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
712 			ipv4_sk_update_pmtu(skb, sk, info);
713 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
714 				err = EMSGSIZE;
715 				harderr = 1;
716 				break;
717 			}
718 			goto out;
719 		}
720 		err = EHOSTUNREACH;
721 		if (code <= NR_ICMP_UNREACH) {
722 			harderr = icmp_err_convert[code].fatal;
723 			err = icmp_err_convert[code].errno;
724 		}
725 		break;
726 	case ICMP_REDIRECT:
727 		ipv4_sk_redirect(skb, sk);
728 		goto out;
729 	}
730 
731 	/*
732 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
733 	 *	4.1.3.3.
734 	 */
735 	if (!inet->recverr) {
736 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
737 			goto out;
738 	} else
739 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
740 
741 	sk->sk_err = err;
742 	sk->sk_error_report(sk);
743 out:
744 	return;
745 }
746 
747 void udp_err(struct sk_buff *skb, u32 info)
748 {
749 	__udp4_lib_err(skb, info, &udp_table);
750 }
751 
752 /*
753  * Throw away all pending data and cancel the corking. Socket is locked.
754  */
755 void udp_flush_pending_frames(struct sock *sk)
756 {
757 	struct udp_sock *up = udp_sk(sk);
758 
759 	if (up->pending) {
760 		up->len = 0;
761 		up->pending = 0;
762 		ip_flush_pending_frames(sk);
763 	}
764 }
765 EXPORT_SYMBOL(udp_flush_pending_frames);
766 
767 /**
768  * 	udp4_hwcsum  -  handle outgoing HW checksumming
769  * 	@skb: 	sk_buff containing the filled-in UDP header
770  * 	        (checksum field must be zeroed out)
771  *	@src:	source IP address
772  *	@dst:	destination IP address
773  */
774 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
775 {
776 	struct udphdr *uh = udp_hdr(skb);
777 	int offset = skb_transport_offset(skb);
778 	int len = skb->len - offset;
779 	int hlen = len;
780 	__wsum csum = 0;
781 
782 	if (!skb_has_frag_list(skb)) {
783 		/*
784 		 * Only one fragment on the socket.
785 		 */
786 		skb->csum_start = skb_transport_header(skb) - skb->head;
787 		skb->csum_offset = offsetof(struct udphdr, check);
788 		uh->check = ~csum_tcpudp_magic(src, dst, len,
789 					       IPPROTO_UDP, 0);
790 	} else {
791 		struct sk_buff *frags;
792 
793 		/*
794 		 * HW-checksum won't work as there are two or more
795 		 * fragments on the socket so that all csums of sk_buffs
796 		 * should be together
797 		 */
798 		skb_walk_frags(skb, frags) {
799 			csum = csum_add(csum, frags->csum);
800 			hlen -= frags->len;
801 		}
802 
803 		csum = skb_checksum(skb, offset, hlen, csum);
804 		skb->ip_summed = CHECKSUM_NONE;
805 
806 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
807 		if (uh->check == 0)
808 			uh->check = CSUM_MANGLED_0;
809 	}
810 }
811 EXPORT_SYMBOL_GPL(udp4_hwcsum);
812 
813 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
814  * for the simple case like when setting the checksum for a UDP tunnel.
815  */
816 void udp_set_csum(bool nocheck, struct sk_buff *skb,
817 		  __be32 saddr, __be32 daddr, int len)
818 {
819 	struct udphdr *uh = udp_hdr(skb);
820 
821 	if (nocheck) {
822 		uh->check = 0;
823 	} else if (skb_is_gso(skb)) {
824 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
825 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
826 		uh->check = 0;
827 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
828 		if (uh->check == 0)
829 			uh->check = CSUM_MANGLED_0;
830 	} else {
831 		skb->ip_summed = CHECKSUM_PARTIAL;
832 		skb->csum_start = skb_transport_header(skb) - skb->head;
833 		skb->csum_offset = offsetof(struct udphdr, check);
834 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
835 	}
836 }
837 EXPORT_SYMBOL(udp_set_csum);
838 
839 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
840 {
841 	struct sock *sk = skb->sk;
842 	struct inet_sock *inet = inet_sk(sk);
843 	struct udphdr *uh;
844 	int err = 0;
845 	int is_udplite = IS_UDPLITE(sk);
846 	int offset = skb_transport_offset(skb);
847 	int len = skb->len - offset;
848 	__wsum csum = 0;
849 
850 	/*
851 	 * Create a UDP header
852 	 */
853 	uh = udp_hdr(skb);
854 	uh->source = inet->inet_sport;
855 	uh->dest = fl4->fl4_dport;
856 	uh->len = htons(len);
857 	uh->check = 0;
858 
859 	if (is_udplite)  				 /*     UDP-Lite      */
860 		csum = udplite_csum(skb);
861 
862 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
863 
864 		skb->ip_summed = CHECKSUM_NONE;
865 		goto send;
866 
867 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
868 
869 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
870 		goto send;
871 
872 	} else
873 		csum = udp_csum(skb);
874 
875 	/* add protocol-dependent pseudo-header */
876 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
877 				      sk->sk_protocol, csum);
878 	if (uh->check == 0)
879 		uh->check = CSUM_MANGLED_0;
880 
881 send:
882 	err = ip_send_skb(sock_net(sk), skb);
883 	if (err) {
884 		if (err == -ENOBUFS && !inet->recverr) {
885 			UDP_INC_STATS(sock_net(sk),
886 				      UDP_MIB_SNDBUFERRORS, is_udplite);
887 			err = 0;
888 		}
889 	} else
890 		UDP_INC_STATS(sock_net(sk),
891 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
892 	return err;
893 }
894 
895 /*
896  * Push out all pending data as one UDP datagram. Socket is locked.
897  */
898 int udp_push_pending_frames(struct sock *sk)
899 {
900 	struct udp_sock  *up = udp_sk(sk);
901 	struct inet_sock *inet = inet_sk(sk);
902 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
903 	struct sk_buff *skb;
904 	int err = 0;
905 
906 	skb = ip_finish_skb(sk, fl4);
907 	if (!skb)
908 		goto out;
909 
910 	err = udp_send_skb(skb, fl4);
911 
912 out:
913 	up->len = 0;
914 	up->pending = 0;
915 	return err;
916 }
917 EXPORT_SYMBOL(udp_push_pending_frames);
918 
919 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
920 {
921 	struct inet_sock *inet = inet_sk(sk);
922 	struct udp_sock *up = udp_sk(sk);
923 	struct flowi4 fl4_stack;
924 	struct flowi4 *fl4;
925 	int ulen = len;
926 	struct ipcm_cookie ipc;
927 	struct rtable *rt = NULL;
928 	int free = 0;
929 	int connected = 0;
930 	__be32 daddr, faddr, saddr;
931 	__be16 dport;
932 	u8  tos;
933 	int err, is_udplite = IS_UDPLITE(sk);
934 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
935 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
936 	struct sk_buff *skb;
937 	struct ip_options_data opt_copy;
938 
939 	if (len > 0xFFFF)
940 		return -EMSGSIZE;
941 
942 	/*
943 	 *	Check the flags.
944 	 */
945 
946 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
947 		return -EOPNOTSUPP;
948 
949 	ipc.opt = NULL;
950 	ipc.tx_flags = 0;
951 	ipc.ttl = 0;
952 	ipc.tos = -1;
953 
954 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
955 
956 	fl4 = &inet->cork.fl.u.ip4;
957 	if (up->pending) {
958 		/*
959 		 * There are pending frames.
960 		 * The socket lock must be held while it's corked.
961 		 */
962 		lock_sock(sk);
963 		if (likely(up->pending)) {
964 			if (unlikely(up->pending != AF_INET)) {
965 				release_sock(sk);
966 				return -EINVAL;
967 			}
968 			goto do_append_data;
969 		}
970 		release_sock(sk);
971 	}
972 	ulen += sizeof(struct udphdr);
973 
974 	/*
975 	 *	Get and verify the address.
976 	 */
977 	if (msg->msg_name) {
978 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
979 		if (msg->msg_namelen < sizeof(*usin))
980 			return -EINVAL;
981 		if (usin->sin_family != AF_INET) {
982 			if (usin->sin_family != AF_UNSPEC)
983 				return -EAFNOSUPPORT;
984 		}
985 
986 		daddr = usin->sin_addr.s_addr;
987 		dport = usin->sin_port;
988 		if (dport == 0)
989 			return -EINVAL;
990 	} else {
991 		if (sk->sk_state != TCP_ESTABLISHED)
992 			return -EDESTADDRREQ;
993 		daddr = inet->inet_daddr;
994 		dport = inet->inet_dport;
995 		/* Open fast path for connected socket.
996 		   Route will not be used, if at least one option is set.
997 		 */
998 		connected = 1;
999 	}
1000 
1001 	ipc.sockc.tsflags = sk->sk_tsflags;
1002 	ipc.addr = inet->inet_saddr;
1003 	ipc.oif = sk->sk_bound_dev_if;
1004 
1005 	if (msg->msg_controllen) {
1006 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
1007 		if (unlikely(err)) {
1008 			kfree(ipc.opt);
1009 			return err;
1010 		}
1011 		if (ipc.opt)
1012 			free = 1;
1013 		connected = 0;
1014 	}
1015 	if (!ipc.opt) {
1016 		struct ip_options_rcu *inet_opt;
1017 
1018 		rcu_read_lock();
1019 		inet_opt = rcu_dereference(inet->inet_opt);
1020 		if (inet_opt) {
1021 			memcpy(&opt_copy, inet_opt,
1022 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1023 			ipc.opt = &opt_copy.opt;
1024 		}
1025 		rcu_read_unlock();
1026 	}
1027 
1028 	saddr = ipc.addr;
1029 	ipc.addr = faddr = daddr;
1030 
1031 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
1032 
1033 	if (ipc.opt && ipc.opt->opt.srr) {
1034 		if (!daddr)
1035 			return -EINVAL;
1036 		faddr = ipc.opt->opt.faddr;
1037 		connected = 0;
1038 	}
1039 	tos = get_rttos(&ipc, inet);
1040 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1041 	    (msg->msg_flags & MSG_DONTROUTE) ||
1042 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1043 		tos |= RTO_ONLINK;
1044 		connected = 0;
1045 	}
1046 
1047 	if (ipv4_is_multicast(daddr)) {
1048 		if (!ipc.oif)
1049 			ipc.oif = inet->mc_index;
1050 		if (!saddr)
1051 			saddr = inet->mc_addr;
1052 		connected = 0;
1053 	} else if (!ipc.oif)
1054 		ipc.oif = inet->uc_index;
1055 
1056 	if (connected)
1057 		rt = (struct rtable *)sk_dst_check(sk, 0);
1058 
1059 	if (!rt) {
1060 		struct net *net = sock_net(sk);
1061 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1062 
1063 		fl4 = &fl4_stack;
1064 
1065 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1066 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1067 				   flow_flags,
1068 				   faddr, saddr, dport, inet->inet_sport);
1069 
1070 		if (!saddr && ipc.oif) {
1071 			err = l3mdev_get_saddr(net, ipc.oif, fl4);
1072 			if (err < 0)
1073 				goto out;
1074 		}
1075 
1076 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1077 		rt = ip_route_output_flow(net, fl4, sk);
1078 		if (IS_ERR(rt)) {
1079 			err = PTR_ERR(rt);
1080 			rt = NULL;
1081 			if (err == -ENETUNREACH)
1082 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1083 			goto out;
1084 		}
1085 
1086 		err = -EACCES;
1087 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1088 		    !sock_flag(sk, SOCK_BROADCAST))
1089 			goto out;
1090 		if (connected)
1091 			sk_dst_set(sk, dst_clone(&rt->dst));
1092 	}
1093 
1094 	if (msg->msg_flags&MSG_CONFIRM)
1095 		goto do_confirm;
1096 back_from_confirm:
1097 
1098 	saddr = fl4->saddr;
1099 	if (!ipc.addr)
1100 		daddr = ipc.addr = fl4->daddr;
1101 
1102 	/* Lockless fast path for the non-corking case. */
1103 	if (!corkreq) {
1104 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1105 				  sizeof(struct udphdr), &ipc, &rt,
1106 				  msg->msg_flags);
1107 		err = PTR_ERR(skb);
1108 		if (!IS_ERR_OR_NULL(skb))
1109 			err = udp_send_skb(skb, fl4);
1110 		goto out;
1111 	}
1112 
1113 	lock_sock(sk);
1114 	if (unlikely(up->pending)) {
1115 		/* The socket is already corked while preparing it. */
1116 		/* ... which is an evident application bug. --ANK */
1117 		release_sock(sk);
1118 
1119 		net_dbg_ratelimited("cork app bug 2\n");
1120 		err = -EINVAL;
1121 		goto out;
1122 	}
1123 	/*
1124 	 *	Now cork the socket to pend data.
1125 	 */
1126 	fl4 = &inet->cork.fl.u.ip4;
1127 	fl4->daddr = daddr;
1128 	fl4->saddr = saddr;
1129 	fl4->fl4_dport = dport;
1130 	fl4->fl4_sport = inet->inet_sport;
1131 	up->pending = AF_INET;
1132 
1133 do_append_data:
1134 	up->len += ulen;
1135 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1136 			     sizeof(struct udphdr), &ipc, &rt,
1137 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1138 	if (err)
1139 		udp_flush_pending_frames(sk);
1140 	else if (!corkreq)
1141 		err = udp_push_pending_frames(sk);
1142 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1143 		up->pending = 0;
1144 	release_sock(sk);
1145 
1146 out:
1147 	ip_rt_put(rt);
1148 	if (free)
1149 		kfree(ipc.opt);
1150 	if (!err)
1151 		return len;
1152 	/*
1153 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1154 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1155 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1156 	 * things).  We could add another new stat but at least for now that
1157 	 * seems like overkill.
1158 	 */
1159 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1160 		UDP_INC_STATS(sock_net(sk),
1161 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1162 	}
1163 	return err;
1164 
1165 do_confirm:
1166 	dst_confirm(&rt->dst);
1167 	if (!(msg->msg_flags&MSG_PROBE) || len)
1168 		goto back_from_confirm;
1169 	err = 0;
1170 	goto out;
1171 }
1172 EXPORT_SYMBOL(udp_sendmsg);
1173 
1174 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1175 		 size_t size, int flags)
1176 {
1177 	struct inet_sock *inet = inet_sk(sk);
1178 	struct udp_sock *up = udp_sk(sk);
1179 	int ret;
1180 
1181 	if (flags & MSG_SENDPAGE_NOTLAST)
1182 		flags |= MSG_MORE;
1183 
1184 	if (!up->pending) {
1185 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1186 
1187 		/* Call udp_sendmsg to specify destination address which
1188 		 * sendpage interface can't pass.
1189 		 * This will succeed only when the socket is connected.
1190 		 */
1191 		ret = udp_sendmsg(sk, &msg, 0);
1192 		if (ret < 0)
1193 			return ret;
1194 	}
1195 
1196 	lock_sock(sk);
1197 
1198 	if (unlikely(!up->pending)) {
1199 		release_sock(sk);
1200 
1201 		net_dbg_ratelimited("udp cork app bug 3\n");
1202 		return -EINVAL;
1203 	}
1204 
1205 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1206 			     page, offset, size, flags);
1207 	if (ret == -EOPNOTSUPP) {
1208 		release_sock(sk);
1209 		return sock_no_sendpage(sk->sk_socket, page, offset,
1210 					size, flags);
1211 	}
1212 	if (ret < 0) {
1213 		udp_flush_pending_frames(sk);
1214 		goto out;
1215 	}
1216 
1217 	up->len += size;
1218 	if (!(up->corkflag || (flags&MSG_MORE)))
1219 		ret = udp_push_pending_frames(sk);
1220 	if (!ret)
1221 		ret = size;
1222 out:
1223 	release_sock(sk);
1224 	return ret;
1225 }
1226 
1227 /**
1228  *	first_packet_length	- return length of first packet in receive queue
1229  *	@sk: socket
1230  *
1231  *	Drops all bad checksum frames, until a valid one is found.
1232  *	Returns the length of found skb, or 0 if none is found.
1233  */
1234 static unsigned int first_packet_length(struct sock *sk)
1235 {
1236 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1237 	struct sk_buff *skb;
1238 	unsigned int res;
1239 
1240 	__skb_queue_head_init(&list_kill);
1241 
1242 	spin_lock_bh(&rcvq->lock);
1243 	while ((skb = skb_peek(rcvq)) != NULL &&
1244 		udp_lib_checksum_complete(skb)) {
1245 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1246 				IS_UDPLITE(sk));
1247 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1248 				IS_UDPLITE(sk));
1249 		atomic_inc(&sk->sk_drops);
1250 		__skb_unlink(skb, rcvq);
1251 		__skb_queue_tail(&list_kill, skb);
1252 	}
1253 	res = skb ? skb->len : 0;
1254 	spin_unlock_bh(&rcvq->lock);
1255 
1256 	if (!skb_queue_empty(&list_kill)) {
1257 		bool slow = lock_sock_fast(sk);
1258 
1259 		__skb_queue_purge(&list_kill);
1260 		sk_mem_reclaim_partial(sk);
1261 		unlock_sock_fast(sk, slow);
1262 	}
1263 	return res;
1264 }
1265 
1266 /*
1267  *	IOCTL requests applicable to the UDP protocol
1268  */
1269 
1270 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1271 {
1272 	switch (cmd) {
1273 	case SIOCOUTQ:
1274 	{
1275 		int amount = sk_wmem_alloc_get(sk);
1276 
1277 		return put_user(amount, (int __user *)arg);
1278 	}
1279 
1280 	case SIOCINQ:
1281 	{
1282 		unsigned int amount = first_packet_length(sk);
1283 
1284 		return put_user(amount, (int __user *)arg);
1285 	}
1286 
1287 	default:
1288 		return -ENOIOCTLCMD;
1289 	}
1290 
1291 	return 0;
1292 }
1293 EXPORT_SYMBOL(udp_ioctl);
1294 
1295 /*
1296  * 	This should be easy, if there is something there we
1297  * 	return it, otherwise we block.
1298  */
1299 
1300 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1301 		int flags, int *addr_len)
1302 {
1303 	struct inet_sock *inet = inet_sk(sk);
1304 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1305 	struct sk_buff *skb;
1306 	unsigned int ulen, copied;
1307 	int peeked, peeking, off;
1308 	int err;
1309 	int is_udplite = IS_UDPLITE(sk);
1310 	bool checksum_valid = false;
1311 	bool slow;
1312 
1313 	if (flags & MSG_ERRQUEUE)
1314 		return ip_recv_error(sk, msg, len, addr_len);
1315 
1316 try_again:
1317 	peeking = off = sk_peek_offset(sk, flags);
1318 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1319 				  &peeked, &off, &err);
1320 	if (!skb)
1321 		return err;
1322 
1323 	ulen = skb->len;
1324 	copied = len;
1325 	if (copied > ulen - off)
1326 		copied = ulen - off;
1327 	else if (copied < ulen)
1328 		msg->msg_flags |= MSG_TRUNC;
1329 
1330 	/*
1331 	 * If checksum is needed at all, try to do it while copying the
1332 	 * data.  If the data is truncated, or if we only want a partial
1333 	 * coverage checksum (UDP-Lite), do it before the copy.
1334 	 */
1335 
1336 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov || peeking) {
1337 		checksum_valid = !udp_lib_checksum_complete(skb);
1338 		if (!checksum_valid)
1339 			goto csum_copy_err;
1340 	}
1341 
1342 	if (checksum_valid || skb_csum_unnecessary(skb))
1343 		err = skb_copy_datagram_msg(skb, off, msg, copied);
1344 	else {
1345 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1346 
1347 		if (err == -EINVAL)
1348 			goto csum_copy_err;
1349 	}
1350 
1351 	if (unlikely(err)) {
1352 		trace_kfree_skb(skb, udp_recvmsg);
1353 		if (!peeked) {
1354 			atomic_inc(&sk->sk_drops);
1355 			UDP_INC_STATS(sock_net(sk),
1356 				      UDP_MIB_INERRORS, is_udplite);
1357 		}
1358 		skb_free_datagram_locked(sk, skb);
1359 		return err;
1360 	}
1361 
1362 	if (!peeked)
1363 		UDP_INC_STATS(sock_net(sk),
1364 			      UDP_MIB_INDATAGRAMS, is_udplite);
1365 
1366 	sock_recv_ts_and_drops(msg, sk, skb);
1367 
1368 	/* Copy the address. */
1369 	if (sin) {
1370 		sin->sin_family = AF_INET;
1371 		sin->sin_port = udp_hdr(skb)->source;
1372 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1373 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1374 		*addr_len = sizeof(*sin);
1375 	}
1376 	if (inet->cmsg_flags)
1377 		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr) + off);
1378 
1379 	err = copied;
1380 	if (flags & MSG_TRUNC)
1381 		err = ulen;
1382 
1383 	__skb_free_datagram_locked(sk, skb, peeking ? -err : err);
1384 	return err;
1385 
1386 csum_copy_err:
1387 	slow = lock_sock_fast(sk);
1388 	if (!skb_kill_datagram(sk, skb, flags)) {
1389 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1390 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1391 	}
1392 	unlock_sock_fast(sk, slow);
1393 
1394 	/* starting over for a new packet, but check if we need to yield */
1395 	cond_resched();
1396 	msg->msg_flags &= ~MSG_TRUNC;
1397 	goto try_again;
1398 }
1399 
1400 int udp_disconnect(struct sock *sk, int flags)
1401 {
1402 	struct inet_sock *inet = inet_sk(sk);
1403 	/*
1404 	 *	1003.1g - break association.
1405 	 */
1406 
1407 	sk->sk_state = TCP_CLOSE;
1408 	inet->inet_daddr = 0;
1409 	inet->inet_dport = 0;
1410 	sock_rps_reset_rxhash(sk);
1411 	sk->sk_bound_dev_if = 0;
1412 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1413 		inet_reset_saddr(sk);
1414 
1415 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1416 		sk->sk_prot->unhash(sk);
1417 		inet->inet_sport = 0;
1418 	}
1419 	sk_dst_reset(sk);
1420 	return 0;
1421 }
1422 EXPORT_SYMBOL(udp_disconnect);
1423 
1424 void udp_lib_unhash(struct sock *sk)
1425 {
1426 	if (sk_hashed(sk)) {
1427 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1428 		struct udp_hslot *hslot, *hslot2;
1429 
1430 		hslot  = udp_hashslot(udptable, sock_net(sk),
1431 				      udp_sk(sk)->udp_port_hash);
1432 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1433 
1434 		spin_lock_bh(&hslot->lock);
1435 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1436 			reuseport_detach_sock(sk);
1437 		if (sk_del_node_init_rcu(sk)) {
1438 			hslot->count--;
1439 			inet_sk(sk)->inet_num = 0;
1440 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1441 
1442 			spin_lock(&hslot2->lock);
1443 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1444 			hslot2->count--;
1445 			spin_unlock(&hslot2->lock);
1446 		}
1447 		spin_unlock_bh(&hslot->lock);
1448 	}
1449 }
1450 EXPORT_SYMBOL(udp_lib_unhash);
1451 
1452 /*
1453  * inet_rcv_saddr was changed, we must rehash secondary hash
1454  */
1455 void udp_lib_rehash(struct sock *sk, u16 newhash)
1456 {
1457 	if (sk_hashed(sk)) {
1458 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1459 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1460 
1461 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1462 		nhslot2 = udp_hashslot2(udptable, newhash);
1463 		udp_sk(sk)->udp_portaddr_hash = newhash;
1464 
1465 		if (hslot2 != nhslot2 ||
1466 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1467 			hslot = udp_hashslot(udptable, sock_net(sk),
1468 					     udp_sk(sk)->udp_port_hash);
1469 			/* we must lock primary chain too */
1470 			spin_lock_bh(&hslot->lock);
1471 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1472 				reuseport_detach_sock(sk);
1473 
1474 			if (hslot2 != nhslot2) {
1475 				spin_lock(&hslot2->lock);
1476 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1477 				hslot2->count--;
1478 				spin_unlock(&hslot2->lock);
1479 
1480 				spin_lock(&nhslot2->lock);
1481 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1482 							 &nhslot2->head);
1483 				nhslot2->count++;
1484 				spin_unlock(&nhslot2->lock);
1485 			}
1486 
1487 			spin_unlock_bh(&hslot->lock);
1488 		}
1489 	}
1490 }
1491 EXPORT_SYMBOL(udp_lib_rehash);
1492 
1493 static void udp_v4_rehash(struct sock *sk)
1494 {
1495 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1496 					  inet_sk(sk)->inet_rcv_saddr,
1497 					  inet_sk(sk)->inet_num);
1498 	udp_lib_rehash(sk, new_hash);
1499 }
1500 
1501 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1502 {
1503 	int rc;
1504 
1505 	if (inet_sk(sk)->inet_daddr) {
1506 		sock_rps_save_rxhash(sk, skb);
1507 		sk_mark_napi_id(sk, skb);
1508 		sk_incoming_cpu_update(sk);
1509 	}
1510 
1511 	rc = __sock_queue_rcv_skb(sk, skb);
1512 	if (rc < 0) {
1513 		int is_udplite = IS_UDPLITE(sk);
1514 
1515 		/* Note that an ENOMEM error is charged twice */
1516 		if (rc == -ENOMEM)
1517 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1518 					is_udplite);
1519 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1520 		kfree_skb(skb);
1521 		trace_udp_fail_queue_rcv_skb(rc, sk);
1522 		return -1;
1523 	}
1524 
1525 	return 0;
1526 
1527 }
1528 
1529 static struct static_key udp_encap_needed __read_mostly;
1530 void udp_encap_enable(void)
1531 {
1532 	if (!static_key_enabled(&udp_encap_needed))
1533 		static_key_slow_inc(&udp_encap_needed);
1534 }
1535 EXPORT_SYMBOL(udp_encap_enable);
1536 
1537 /* returns:
1538  *  -1: error
1539  *   0: success
1540  *  >0: "udp encap" protocol resubmission
1541  *
1542  * Note that in the success and error cases, the skb is assumed to
1543  * have either been requeued or freed.
1544  */
1545 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1546 {
1547 	struct udp_sock *up = udp_sk(sk);
1548 	int rc;
1549 	int is_udplite = IS_UDPLITE(sk);
1550 
1551 	/*
1552 	 *	Charge it to the socket, dropping if the queue is full.
1553 	 */
1554 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1555 		goto drop;
1556 	nf_reset(skb);
1557 
1558 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1559 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1560 
1561 		/*
1562 		 * This is an encapsulation socket so pass the skb to
1563 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1564 		 * fall through and pass this up the UDP socket.
1565 		 * up->encap_rcv() returns the following value:
1566 		 * =0 if skb was successfully passed to the encap
1567 		 *    handler or was discarded by it.
1568 		 * >0 if skb should be passed on to UDP.
1569 		 * <0 if skb should be resubmitted as proto -N
1570 		 */
1571 
1572 		/* if we're overly short, let UDP handle it */
1573 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1574 		if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1575 			int ret;
1576 
1577 			/* Verify checksum before giving to encap */
1578 			if (udp_lib_checksum_complete(skb))
1579 				goto csum_error;
1580 
1581 			ret = encap_rcv(sk, skb);
1582 			if (ret <= 0) {
1583 				__UDP_INC_STATS(sock_net(sk),
1584 						UDP_MIB_INDATAGRAMS,
1585 						is_udplite);
1586 				return -ret;
1587 			}
1588 		}
1589 
1590 		/* FALLTHROUGH -- it's a UDP Packet */
1591 	}
1592 
1593 	/*
1594 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1595 	 */
1596 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1597 
1598 		/*
1599 		 * MIB statistics other than incrementing the error count are
1600 		 * disabled for the following two types of errors: these depend
1601 		 * on the application settings, not on the functioning of the
1602 		 * protocol stack as such.
1603 		 *
1604 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1605 		 * way ... to ... at least let the receiving application block
1606 		 * delivery of packets with coverage values less than a value
1607 		 * provided by the application."
1608 		 */
1609 		if (up->pcrlen == 0) {          /* full coverage was set  */
1610 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1611 					    UDP_SKB_CB(skb)->cscov, skb->len);
1612 			goto drop;
1613 		}
1614 		/* The next case involves violating the min. coverage requested
1615 		 * by the receiver. This is subtle: if receiver wants x and x is
1616 		 * greater than the buffersize/MTU then receiver will complain
1617 		 * that it wants x while sender emits packets of smaller size y.
1618 		 * Therefore the above ...()->partial_cov statement is essential.
1619 		 */
1620 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1621 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1622 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1623 			goto drop;
1624 		}
1625 	}
1626 
1627 	if (rcu_access_pointer(sk->sk_filter)) {
1628 		if (udp_lib_checksum_complete(skb))
1629 			goto csum_error;
1630 		if (sk_filter(sk, skb))
1631 			goto drop;
1632 	}
1633 
1634 	udp_csum_pull_header(skb);
1635 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1636 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1637 				is_udplite);
1638 		goto drop;
1639 	}
1640 
1641 	rc = 0;
1642 
1643 	ipv4_pktinfo_prepare(sk, skb);
1644 	bh_lock_sock(sk);
1645 	if (!sock_owned_by_user(sk))
1646 		rc = __udp_queue_rcv_skb(sk, skb);
1647 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1648 		bh_unlock_sock(sk);
1649 		goto drop;
1650 	}
1651 	bh_unlock_sock(sk);
1652 
1653 	return rc;
1654 
1655 csum_error:
1656 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1657 drop:
1658 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1659 	atomic_inc(&sk->sk_drops);
1660 	kfree_skb(skb);
1661 	return -1;
1662 }
1663 
1664 /* For TCP sockets, sk_rx_dst is protected by socket lock
1665  * For UDP, we use xchg() to guard against concurrent changes.
1666  */
1667 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1668 {
1669 	struct dst_entry *old;
1670 
1671 	dst_hold(dst);
1672 	old = xchg(&sk->sk_rx_dst, dst);
1673 	dst_release(old);
1674 }
1675 
1676 /*
1677  *	Multicasts and broadcasts go to each listener.
1678  *
1679  *	Note: called only from the BH handler context.
1680  */
1681 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1682 				    struct udphdr  *uh,
1683 				    __be32 saddr, __be32 daddr,
1684 				    struct udp_table *udptable,
1685 				    int proto)
1686 {
1687 	struct sock *sk, *first = NULL;
1688 	unsigned short hnum = ntohs(uh->dest);
1689 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1690 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1691 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1692 	int dif = skb->dev->ifindex;
1693 	struct hlist_node *node;
1694 	struct sk_buff *nskb;
1695 
1696 	if (use_hash2) {
1697 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1698 			    udp_table.mask;
1699 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1700 start_lookup:
1701 		hslot = &udp_table.hash2[hash2];
1702 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1703 	}
1704 
1705 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1706 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1707 					 uh->source, saddr, dif, hnum))
1708 			continue;
1709 
1710 		if (!first) {
1711 			first = sk;
1712 			continue;
1713 		}
1714 		nskb = skb_clone(skb, GFP_ATOMIC);
1715 
1716 		if (unlikely(!nskb)) {
1717 			atomic_inc(&sk->sk_drops);
1718 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1719 					IS_UDPLITE(sk));
1720 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1721 					IS_UDPLITE(sk));
1722 			continue;
1723 		}
1724 		if (udp_queue_rcv_skb(sk, nskb) > 0)
1725 			consume_skb(nskb);
1726 	}
1727 
1728 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1729 	if (use_hash2 && hash2 != hash2_any) {
1730 		hash2 = hash2_any;
1731 		goto start_lookup;
1732 	}
1733 
1734 	if (first) {
1735 		if (udp_queue_rcv_skb(first, skb) > 0)
1736 			consume_skb(skb);
1737 	} else {
1738 		kfree_skb(skb);
1739 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
1740 				proto == IPPROTO_UDPLITE);
1741 	}
1742 	return 0;
1743 }
1744 
1745 /* Initialize UDP checksum. If exited with zero value (success),
1746  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1747  * Otherwise, csum completion requires chacksumming packet body,
1748  * including udp header and folding it to skb->csum.
1749  */
1750 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1751 				 int proto)
1752 {
1753 	int err;
1754 
1755 	UDP_SKB_CB(skb)->partial_cov = 0;
1756 	UDP_SKB_CB(skb)->cscov = skb->len;
1757 
1758 	if (proto == IPPROTO_UDPLITE) {
1759 		err = udplite_checksum_init(skb, uh);
1760 		if (err)
1761 			return err;
1762 	}
1763 
1764 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1765 					    inet_compute_pseudo);
1766 }
1767 
1768 /*
1769  *	All we need to do is get the socket, and then do a checksum.
1770  */
1771 
1772 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1773 		   int proto)
1774 {
1775 	struct sock *sk;
1776 	struct udphdr *uh;
1777 	unsigned short ulen;
1778 	struct rtable *rt = skb_rtable(skb);
1779 	__be32 saddr, daddr;
1780 	struct net *net = dev_net(skb->dev);
1781 
1782 	/*
1783 	 *  Validate the packet.
1784 	 */
1785 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1786 		goto drop;		/* No space for header. */
1787 
1788 	uh   = udp_hdr(skb);
1789 	ulen = ntohs(uh->len);
1790 	saddr = ip_hdr(skb)->saddr;
1791 	daddr = ip_hdr(skb)->daddr;
1792 
1793 	if (ulen > skb->len)
1794 		goto short_packet;
1795 
1796 	if (proto == IPPROTO_UDP) {
1797 		/* UDP validates ulen. */
1798 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1799 			goto short_packet;
1800 		uh = udp_hdr(skb);
1801 	}
1802 
1803 	if (udp4_csum_init(skb, uh, proto))
1804 		goto csum_error;
1805 
1806 	sk = skb_steal_sock(skb);
1807 	if (sk) {
1808 		struct dst_entry *dst = skb_dst(skb);
1809 		int ret;
1810 
1811 		if (unlikely(sk->sk_rx_dst != dst))
1812 			udp_sk_rx_dst_set(sk, dst);
1813 
1814 		ret = udp_queue_rcv_skb(sk, skb);
1815 		sock_put(sk);
1816 		/* a return value > 0 means to resubmit the input, but
1817 		 * it wants the return to be -protocol, or 0
1818 		 */
1819 		if (ret > 0)
1820 			return -ret;
1821 		return 0;
1822 	}
1823 
1824 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1825 		return __udp4_lib_mcast_deliver(net, skb, uh,
1826 						saddr, daddr, udptable, proto);
1827 
1828 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1829 	if (sk) {
1830 		int ret;
1831 
1832 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1833 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1834 						 inet_compute_pseudo);
1835 
1836 		ret = udp_queue_rcv_skb(sk, skb);
1837 
1838 		/* a return value > 0 means to resubmit the input, but
1839 		 * it wants the return to be -protocol, or 0
1840 		 */
1841 		if (ret > 0)
1842 			return -ret;
1843 		return 0;
1844 	}
1845 
1846 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1847 		goto drop;
1848 	nf_reset(skb);
1849 
1850 	/* No socket. Drop packet silently, if checksum is wrong */
1851 	if (udp_lib_checksum_complete(skb))
1852 		goto csum_error;
1853 
1854 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1855 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1856 
1857 	/*
1858 	 * Hmm.  We got an UDP packet to a port to which we
1859 	 * don't wanna listen.  Ignore it.
1860 	 */
1861 	kfree_skb(skb);
1862 	return 0;
1863 
1864 short_packet:
1865 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1866 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1867 			    &saddr, ntohs(uh->source),
1868 			    ulen, skb->len,
1869 			    &daddr, ntohs(uh->dest));
1870 	goto drop;
1871 
1872 csum_error:
1873 	/*
1874 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1875 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1876 	 */
1877 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1878 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1879 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1880 			    ulen);
1881 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1882 drop:
1883 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1884 	kfree_skb(skb);
1885 	return 0;
1886 }
1887 
1888 /* We can only early demux multicast if there is a single matching socket.
1889  * If more than one socket found returns NULL
1890  */
1891 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1892 						  __be16 loc_port, __be32 loc_addr,
1893 						  __be16 rmt_port, __be32 rmt_addr,
1894 						  int dif)
1895 {
1896 	struct sock *sk, *result;
1897 	unsigned short hnum = ntohs(loc_port);
1898 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
1899 	struct udp_hslot *hslot = &udp_table.hash[slot];
1900 
1901 	/* Do not bother scanning a too big list */
1902 	if (hslot->count > 10)
1903 		return NULL;
1904 
1905 	result = NULL;
1906 	sk_for_each_rcu(sk, &hslot->head) {
1907 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
1908 					rmt_port, rmt_addr, dif, hnum)) {
1909 			if (result)
1910 				return NULL;
1911 			result = sk;
1912 		}
1913 	}
1914 
1915 	return result;
1916 }
1917 
1918 /* For unicast we should only early demux connected sockets or we can
1919  * break forwarding setups.  The chains here can be long so only check
1920  * if the first socket is an exact match and if not move on.
1921  */
1922 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1923 					    __be16 loc_port, __be32 loc_addr,
1924 					    __be16 rmt_port, __be32 rmt_addr,
1925 					    int dif)
1926 {
1927 	unsigned short hnum = ntohs(loc_port);
1928 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1929 	unsigned int slot2 = hash2 & udp_table.mask;
1930 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1931 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1932 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1933 	struct sock *sk;
1934 
1935 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
1936 		if (INET_MATCH(sk, net, acookie, rmt_addr,
1937 			       loc_addr, ports, dif))
1938 			return sk;
1939 		/* Only check first socket in chain */
1940 		break;
1941 	}
1942 	return NULL;
1943 }
1944 
1945 void udp_v4_early_demux(struct sk_buff *skb)
1946 {
1947 	struct net *net = dev_net(skb->dev);
1948 	const struct iphdr *iph;
1949 	const struct udphdr *uh;
1950 	struct sock *sk = NULL;
1951 	struct dst_entry *dst;
1952 	int dif = skb->dev->ifindex;
1953 	int ours;
1954 
1955 	/* validate the packet */
1956 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1957 		return;
1958 
1959 	iph = ip_hdr(skb);
1960 	uh = udp_hdr(skb);
1961 
1962 	if (skb->pkt_type == PACKET_BROADCAST ||
1963 	    skb->pkt_type == PACKET_MULTICAST) {
1964 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1965 
1966 		if (!in_dev)
1967 			return;
1968 
1969 		/* we are supposed to accept bcast packets */
1970 		if (skb->pkt_type == PACKET_MULTICAST) {
1971 			ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1972 					       iph->protocol);
1973 			if (!ours)
1974 				return;
1975 		}
1976 
1977 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1978 						   uh->source, iph->saddr, dif);
1979 	} else if (skb->pkt_type == PACKET_HOST) {
1980 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1981 					     uh->source, iph->saddr, dif);
1982 	}
1983 
1984 	if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
1985 		return;
1986 
1987 	skb->sk = sk;
1988 	skb->destructor = sock_efree;
1989 	dst = READ_ONCE(sk->sk_rx_dst);
1990 
1991 	if (dst)
1992 		dst = dst_check(dst, 0);
1993 	if (dst) {
1994 		/* DST_NOCACHE can not be used without taking a reference */
1995 		if (dst->flags & DST_NOCACHE) {
1996 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
1997 				skb_dst_set(skb, dst);
1998 		} else {
1999 			skb_dst_set_noref(skb, dst);
2000 		}
2001 	}
2002 }
2003 
2004 int udp_rcv(struct sk_buff *skb)
2005 {
2006 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2007 }
2008 
2009 void udp_destroy_sock(struct sock *sk)
2010 {
2011 	struct udp_sock *up = udp_sk(sk);
2012 	bool slow = lock_sock_fast(sk);
2013 	udp_flush_pending_frames(sk);
2014 	unlock_sock_fast(sk, slow);
2015 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2016 		void (*encap_destroy)(struct sock *sk);
2017 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2018 		if (encap_destroy)
2019 			encap_destroy(sk);
2020 	}
2021 }
2022 
2023 /*
2024  *	Socket option code for UDP
2025  */
2026 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2027 		       char __user *optval, unsigned int optlen,
2028 		       int (*push_pending_frames)(struct sock *))
2029 {
2030 	struct udp_sock *up = udp_sk(sk);
2031 	int val, valbool;
2032 	int err = 0;
2033 	int is_udplite = IS_UDPLITE(sk);
2034 
2035 	if (optlen < sizeof(int))
2036 		return -EINVAL;
2037 
2038 	if (get_user(val, (int __user *)optval))
2039 		return -EFAULT;
2040 
2041 	valbool = val ? 1 : 0;
2042 
2043 	switch (optname) {
2044 	case UDP_CORK:
2045 		if (val != 0) {
2046 			up->corkflag = 1;
2047 		} else {
2048 			up->corkflag = 0;
2049 			lock_sock(sk);
2050 			push_pending_frames(sk);
2051 			release_sock(sk);
2052 		}
2053 		break;
2054 
2055 	case UDP_ENCAP:
2056 		switch (val) {
2057 		case 0:
2058 		case UDP_ENCAP_ESPINUDP:
2059 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2060 			up->encap_rcv = xfrm4_udp_encap_rcv;
2061 			/* FALLTHROUGH */
2062 		case UDP_ENCAP_L2TPINUDP:
2063 			up->encap_type = val;
2064 			udp_encap_enable();
2065 			break;
2066 		default:
2067 			err = -ENOPROTOOPT;
2068 			break;
2069 		}
2070 		break;
2071 
2072 	case UDP_NO_CHECK6_TX:
2073 		up->no_check6_tx = valbool;
2074 		break;
2075 
2076 	case UDP_NO_CHECK6_RX:
2077 		up->no_check6_rx = valbool;
2078 		break;
2079 
2080 	/*
2081 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2082 	 */
2083 	/* The sender sets actual checksum coverage length via this option.
2084 	 * The case coverage > packet length is handled by send module. */
2085 	case UDPLITE_SEND_CSCOV:
2086 		if (!is_udplite)         /* Disable the option on UDP sockets */
2087 			return -ENOPROTOOPT;
2088 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2089 			val = 8;
2090 		else if (val > USHRT_MAX)
2091 			val = USHRT_MAX;
2092 		up->pcslen = val;
2093 		up->pcflag |= UDPLITE_SEND_CC;
2094 		break;
2095 
2096 	/* The receiver specifies a minimum checksum coverage value. To make
2097 	 * sense, this should be set to at least 8 (as done below). If zero is
2098 	 * used, this again means full checksum coverage.                     */
2099 	case UDPLITE_RECV_CSCOV:
2100 		if (!is_udplite)         /* Disable the option on UDP sockets */
2101 			return -ENOPROTOOPT;
2102 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2103 			val = 8;
2104 		else if (val > USHRT_MAX)
2105 			val = USHRT_MAX;
2106 		up->pcrlen = val;
2107 		up->pcflag |= UDPLITE_RECV_CC;
2108 		break;
2109 
2110 	default:
2111 		err = -ENOPROTOOPT;
2112 		break;
2113 	}
2114 
2115 	return err;
2116 }
2117 EXPORT_SYMBOL(udp_lib_setsockopt);
2118 
2119 int udp_setsockopt(struct sock *sk, int level, int optname,
2120 		   char __user *optval, unsigned int optlen)
2121 {
2122 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2123 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2124 					  udp_push_pending_frames);
2125 	return ip_setsockopt(sk, level, optname, optval, optlen);
2126 }
2127 
2128 #ifdef CONFIG_COMPAT
2129 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2130 			  char __user *optval, unsigned int optlen)
2131 {
2132 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2133 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2134 					  udp_push_pending_frames);
2135 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2136 }
2137 #endif
2138 
2139 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2140 		       char __user *optval, int __user *optlen)
2141 {
2142 	struct udp_sock *up = udp_sk(sk);
2143 	int val, len;
2144 
2145 	if (get_user(len, optlen))
2146 		return -EFAULT;
2147 
2148 	len = min_t(unsigned int, len, sizeof(int));
2149 
2150 	if (len < 0)
2151 		return -EINVAL;
2152 
2153 	switch (optname) {
2154 	case UDP_CORK:
2155 		val = up->corkflag;
2156 		break;
2157 
2158 	case UDP_ENCAP:
2159 		val = up->encap_type;
2160 		break;
2161 
2162 	case UDP_NO_CHECK6_TX:
2163 		val = up->no_check6_tx;
2164 		break;
2165 
2166 	case UDP_NO_CHECK6_RX:
2167 		val = up->no_check6_rx;
2168 		break;
2169 
2170 	/* The following two cannot be changed on UDP sockets, the return is
2171 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2172 	case UDPLITE_SEND_CSCOV:
2173 		val = up->pcslen;
2174 		break;
2175 
2176 	case UDPLITE_RECV_CSCOV:
2177 		val = up->pcrlen;
2178 		break;
2179 
2180 	default:
2181 		return -ENOPROTOOPT;
2182 	}
2183 
2184 	if (put_user(len, optlen))
2185 		return -EFAULT;
2186 	if (copy_to_user(optval, &val, len))
2187 		return -EFAULT;
2188 	return 0;
2189 }
2190 EXPORT_SYMBOL(udp_lib_getsockopt);
2191 
2192 int udp_getsockopt(struct sock *sk, int level, int optname,
2193 		   char __user *optval, int __user *optlen)
2194 {
2195 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2196 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2197 	return ip_getsockopt(sk, level, optname, optval, optlen);
2198 }
2199 
2200 #ifdef CONFIG_COMPAT
2201 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2202 				 char __user *optval, int __user *optlen)
2203 {
2204 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2205 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2206 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2207 }
2208 #endif
2209 /**
2210  * 	udp_poll - wait for a UDP event.
2211  *	@file - file struct
2212  *	@sock - socket
2213  *	@wait - poll table
2214  *
2215  *	This is same as datagram poll, except for the special case of
2216  *	blocking sockets. If application is using a blocking fd
2217  *	and a packet with checksum error is in the queue;
2218  *	then it could get return from select indicating data available
2219  *	but then block when reading it. Add special case code
2220  *	to work around these arguably broken applications.
2221  */
2222 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2223 {
2224 	unsigned int mask = datagram_poll(file, sock, wait);
2225 	struct sock *sk = sock->sk;
2226 
2227 	sock_rps_record_flow(sk);
2228 
2229 	/* Check for false positives due to checksum errors */
2230 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2231 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2232 		mask &= ~(POLLIN | POLLRDNORM);
2233 
2234 	return mask;
2235 
2236 }
2237 EXPORT_SYMBOL(udp_poll);
2238 
2239 struct proto udp_prot = {
2240 	.name		   = "UDP",
2241 	.owner		   = THIS_MODULE,
2242 	.close		   = udp_lib_close,
2243 	.connect	   = ip4_datagram_connect,
2244 	.disconnect	   = udp_disconnect,
2245 	.ioctl		   = udp_ioctl,
2246 	.destroy	   = udp_destroy_sock,
2247 	.setsockopt	   = udp_setsockopt,
2248 	.getsockopt	   = udp_getsockopt,
2249 	.sendmsg	   = udp_sendmsg,
2250 	.recvmsg	   = udp_recvmsg,
2251 	.sendpage	   = udp_sendpage,
2252 	.backlog_rcv	   = __udp_queue_rcv_skb,
2253 	.release_cb	   = ip4_datagram_release_cb,
2254 	.hash		   = udp_lib_hash,
2255 	.unhash		   = udp_lib_unhash,
2256 	.rehash		   = udp_v4_rehash,
2257 	.get_port	   = udp_v4_get_port,
2258 	.memory_allocated  = &udp_memory_allocated,
2259 	.sysctl_mem	   = sysctl_udp_mem,
2260 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2261 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2262 	.obj_size	   = sizeof(struct udp_sock),
2263 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2264 	.h.udp_table	   = &udp_table,
2265 #ifdef CONFIG_COMPAT
2266 	.compat_setsockopt = compat_udp_setsockopt,
2267 	.compat_getsockopt = compat_udp_getsockopt,
2268 #endif
2269 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2270 };
2271 EXPORT_SYMBOL(udp_prot);
2272 
2273 /* ------------------------------------------------------------------------ */
2274 #ifdef CONFIG_PROC_FS
2275 
2276 static struct sock *udp_get_first(struct seq_file *seq, int start)
2277 {
2278 	struct sock *sk;
2279 	struct udp_iter_state *state = seq->private;
2280 	struct net *net = seq_file_net(seq);
2281 
2282 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2283 	     ++state->bucket) {
2284 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2285 
2286 		if (hlist_empty(&hslot->head))
2287 			continue;
2288 
2289 		spin_lock_bh(&hslot->lock);
2290 		sk_for_each(sk, &hslot->head) {
2291 			if (!net_eq(sock_net(sk), net))
2292 				continue;
2293 			if (sk->sk_family == state->family)
2294 				goto found;
2295 		}
2296 		spin_unlock_bh(&hslot->lock);
2297 	}
2298 	sk = NULL;
2299 found:
2300 	return sk;
2301 }
2302 
2303 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2304 {
2305 	struct udp_iter_state *state = seq->private;
2306 	struct net *net = seq_file_net(seq);
2307 
2308 	do {
2309 		sk = sk_next(sk);
2310 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2311 
2312 	if (!sk) {
2313 		if (state->bucket <= state->udp_table->mask)
2314 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2315 		return udp_get_first(seq, state->bucket + 1);
2316 	}
2317 	return sk;
2318 }
2319 
2320 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2321 {
2322 	struct sock *sk = udp_get_first(seq, 0);
2323 
2324 	if (sk)
2325 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2326 			--pos;
2327 	return pos ? NULL : sk;
2328 }
2329 
2330 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2331 {
2332 	struct udp_iter_state *state = seq->private;
2333 	state->bucket = MAX_UDP_PORTS;
2334 
2335 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2336 }
2337 
2338 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2339 {
2340 	struct sock *sk;
2341 
2342 	if (v == SEQ_START_TOKEN)
2343 		sk = udp_get_idx(seq, 0);
2344 	else
2345 		sk = udp_get_next(seq, v);
2346 
2347 	++*pos;
2348 	return sk;
2349 }
2350 
2351 static void udp_seq_stop(struct seq_file *seq, void *v)
2352 {
2353 	struct udp_iter_state *state = seq->private;
2354 
2355 	if (state->bucket <= state->udp_table->mask)
2356 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2357 }
2358 
2359 int udp_seq_open(struct inode *inode, struct file *file)
2360 {
2361 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2362 	struct udp_iter_state *s;
2363 	int err;
2364 
2365 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2366 			   sizeof(struct udp_iter_state));
2367 	if (err < 0)
2368 		return err;
2369 
2370 	s = ((struct seq_file *)file->private_data)->private;
2371 	s->family		= afinfo->family;
2372 	s->udp_table		= afinfo->udp_table;
2373 	return err;
2374 }
2375 EXPORT_SYMBOL(udp_seq_open);
2376 
2377 /* ------------------------------------------------------------------------ */
2378 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2379 {
2380 	struct proc_dir_entry *p;
2381 	int rc = 0;
2382 
2383 	afinfo->seq_ops.start		= udp_seq_start;
2384 	afinfo->seq_ops.next		= udp_seq_next;
2385 	afinfo->seq_ops.stop		= udp_seq_stop;
2386 
2387 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2388 			     afinfo->seq_fops, afinfo);
2389 	if (!p)
2390 		rc = -ENOMEM;
2391 	return rc;
2392 }
2393 EXPORT_SYMBOL(udp_proc_register);
2394 
2395 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2396 {
2397 	remove_proc_entry(afinfo->name, net->proc_net);
2398 }
2399 EXPORT_SYMBOL(udp_proc_unregister);
2400 
2401 /* ------------------------------------------------------------------------ */
2402 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2403 		int bucket)
2404 {
2405 	struct inet_sock *inet = inet_sk(sp);
2406 	__be32 dest = inet->inet_daddr;
2407 	__be32 src  = inet->inet_rcv_saddr;
2408 	__u16 destp	  = ntohs(inet->inet_dport);
2409 	__u16 srcp	  = ntohs(inet->inet_sport);
2410 
2411 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2412 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2413 		bucket, src, srcp, dest, destp, sp->sk_state,
2414 		sk_wmem_alloc_get(sp),
2415 		sk_rmem_alloc_get(sp),
2416 		0, 0L, 0,
2417 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2418 		0, sock_i_ino(sp),
2419 		atomic_read(&sp->sk_refcnt), sp,
2420 		atomic_read(&sp->sk_drops));
2421 }
2422 
2423 int udp4_seq_show(struct seq_file *seq, void *v)
2424 {
2425 	seq_setwidth(seq, 127);
2426 	if (v == SEQ_START_TOKEN)
2427 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2428 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2429 			   "inode ref pointer drops");
2430 	else {
2431 		struct udp_iter_state *state = seq->private;
2432 
2433 		udp4_format_sock(v, seq, state->bucket);
2434 	}
2435 	seq_pad(seq, '\n');
2436 	return 0;
2437 }
2438 
2439 static const struct file_operations udp_afinfo_seq_fops = {
2440 	.owner    = THIS_MODULE,
2441 	.open     = udp_seq_open,
2442 	.read     = seq_read,
2443 	.llseek   = seq_lseek,
2444 	.release  = seq_release_net
2445 };
2446 
2447 /* ------------------------------------------------------------------------ */
2448 static struct udp_seq_afinfo udp4_seq_afinfo = {
2449 	.name		= "udp",
2450 	.family		= AF_INET,
2451 	.udp_table	= &udp_table,
2452 	.seq_fops	= &udp_afinfo_seq_fops,
2453 	.seq_ops	= {
2454 		.show		= udp4_seq_show,
2455 	},
2456 };
2457 
2458 static int __net_init udp4_proc_init_net(struct net *net)
2459 {
2460 	return udp_proc_register(net, &udp4_seq_afinfo);
2461 }
2462 
2463 static void __net_exit udp4_proc_exit_net(struct net *net)
2464 {
2465 	udp_proc_unregister(net, &udp4_seq_afinfo);
2466 }
2467 
2468 static struct pernet_operations udp4_net_ops = {
2469 	.init = udp4_proc_init_net,
2470 	.exit = udp4_proc_exit_net,
2471 };
2472 
2473 int __init udp4_proc_init(void)
2474 {
2475 	return register_pernet_subsys(&udp4_net_ops);
2476 }
2477 
2478 void udp4_proc_exit(void)
2479 {
2480 	unregister_pernet_subsys(&udp4_net_ops);
2481 }
2482 #endif /* CONFIG_PROC_FS */
2483 
2484 static __initdata unsigned long uhash_entries;
2485 static int __init set_uhash_entries(char *str)
2486 {
2487 	ssize_t ret;
2488 
2489 	if (!str)
2490 		return 0;
2491 
2492 	ret = kstrtoul(str, 0, &uhash_entries);
2493 	if (ret)
2494 		return 0;
2495 
2496 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2497 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2498 	return 1;
2499 }
2500 __setup("uhash_entries=", set_uhash_entries);
2501 
2502 void __init udp_table_init(struct udp_table *table, const char *name)
2503 {
2504 	unsigned int i;
2505 
2506 	table->hash = alloc_large_system_hash(name,
2507 					      2 * sizeof(struct udp_hslot),
2508 					      uhash_entries,
2509 					      21, /* one slot per 2 MB */
2510 					      0,
2511 					      &table->log,
2512 					      &table->mask,
2513 					      UDP_HTABLE_SIZE_MIN,
2514 					      64 * 1024);
2515 
2516 	table->hash2 = table->hash + (table->mask + 1);
2517 	for (i = 0; i <= table->mask; i++) {
2518 		INIT_HLIST_HEAD(&table->hash[i].head);
2519 		table->hash[i].count = 0;
2520 		spin_lock_init(&table->hash[i].lock);
2521 	}
2522 	for (i = 0; i <= table->mask; i++) {
2523 		INIT_HLIST_HEAD(&table->hash2[i].head);
2524 		table->hash2[i].count = 0;
2525 		spin_lock_init(&table->hash2[i].lock);
2526 	}
2527 }
2528 
2529 u32 udp_flow_hashrnd(void)
2530 {
2531 	static u32 hashrnd __read_mostly;
2532 
2533 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2534 
2535 	return hashrnd;
2536 }
2537 EXPORT_SYMBOL(udp_flow_hashrnd);
2538 
2539 void __init udp_init(void)
2540 {
2541 	unsigned long limit;
2542 
2543 	udp_table_init(&udp_table, "UDP");
2544 	limit = nr_free_buffer_pages() / 8;
2545 	limit = max(limit, 128UL);
2546 	sysctl_udp_mem[0] = limit / 4 * 3;
2547 	sysctl_udp_mem[1] = limit;
2548 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2549 
2550 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2551 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2552 }
2553