1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <asm/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 118 struct udp_table udp_table __read_mostly; 119 EXPORT_SYMBOL(udp_table); 120 121 long sysctl_udp_mem[3] __read_mostly; 122 EXPORT_SYMBOL(sysctl_udp_mem); 123 124 int sysctl_udp_rmem_min __read_mostly; 125 EXPORT_SYMBOL(sysctl_udp_rmem_min); 126 127 int sysctl_udp_wmem_min __read_mostly; 128 EXPORT_SYMBOL(sysctl_udp_wmem_min); 129 130 atomic_long_t udp_memory_allocated; 131 EXPORT_SYMBOL(udp_memory_allocated); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 135 136 static int udp_lib_lport_inuse(struct net *net, __u16 num, 137 const struct udp_hslot *hslot, 138 unsigned long *bitmap, 139 struct sock *sk, 140 int (*saddr_comp)(const struct sock *sk1, 141 const struct sock *sk2, 142 bool match_wildcard), 143 unsigned int log) 144 { 145 struct sock *sk2; 146 kuid_t uid = sock_i_uid(sk); 147 148 sk_for_each(sk2, &hslot->head) { 149 if (net_eq(sock_net(sk2), net) && 150 sk2 != sk && 151 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 152 (!sk2->sk_reuse || !sk->sk_reuse) && 153 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 154 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 155 (!sk2->sk_reuseport || !sk->sk_reuseport || 156 rcu_access_pointer(sk->sk_reuseport_cb) || 157 !uid_eq(uid, sock_i_uid(sk2))) && 158 saddr_comp(sk, sk2, true)) { 159 if (!bitmap) 160 return 1; 161 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap); 162 } 163 } 164 return 0; 165 } 166 167 /* 168 * Note: we still hold spinlock of primary hash chain, so no other writer 169 * can insert/delete a socket with local_port == num 170 */ 171 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 172 struct udp_hslot *hslot2, 173 struct sock *sk, 174 int (*saddr_comp)(const struct sock *sk1, 175 const struct sock *sk2, 176 bool match_wildcard)) 177 { 178 struct sock *sk2; 179 kuid_t uid = sock_i_uid(sk); 180 int res = 0; 181 182 spin_lock(&hslot2->lock); 183 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 184 if (net_eq(sock_net(sk2), net) && 185 sk2 != sk && 186 (udp_sk(sk2)->udp_port_hash == num) && 187 (!sk2->sk_reuse || !sk->sk_reuse) && 188 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 189 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 190 (!sk2->sk_reuseport || !sk->sk_reuseport || 191 rcu_access_pointer(sk->sk_reuseport_cb) || 192 !uid_eq(uid, sock_i_uid(sk2))) && 193 saddr_comp(sk, sk2, true)) { 194 res = 1; 195 break; 196 } 197 } 198 spin_unlock(&hslot2->lock); 199 return res; 200 } 201 202 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot, 203 int (*saddr_same)(const struct sock *sk1, 204 const struct sock *sk2, 205 bool match_wildcard)) 206 { 207 struct net *net = sock_net(sk); 208 kuid_t uid = sock_i_uid(sk); 209 struct sock *sk2; 210 211 sk_for_each(sk2, &hslot->head) { 212 if (net_eq(sock_net(sk2), net) && 213 sk2 != sk && 214 sk2->sk_family == sk->sk_family && 215 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 216 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 217 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 218 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 219 (*saddr_same)(sk, sk2, false)) { 220 return reuseport_add_sock(sk, sk2); 221 } 222 } 223 224 /* Initial allocation may have already happened via setsockopt */ 225 if (!rcu_access_pointer(sk->sk_reuseport_cb)) 226 return reuseport_alloc(sk); 227 return 0; 228 } 229 230 /** 231 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 232 * 233 * @sk: socket struct in question 234 * @snum: port number to look up 235 * @saddr_comp: AF-dependent comparison of bound local IP addresses 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 int (*saddr_comp)(const struct sock *sk1, 241 const struct sock *sk2, 242 bool match_wildcard), 243 unsigned int hash2_nulladdr) 244 { 245 struct udp_hslot *hslot, *hslot2; 246 struct udp_table *udptable = sk->sk_prot->h.udp_table; 247 int error = 1; 248 struct net *net = sock_net(sk); 249 250 if (!snum) { 251 int low, high, remaining; 252 unsigned int rand; 253 unsigned short first, last; 254 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 255 256 inet_get_local_port_range(net, &low, &high); 257 remaining = (high - low) + 1; 258 259 rand = prandom_u32(); 260 first = reciprocal_scale(rand, remaining) + low; 261 /* 262 * force rand to be an odd multiple of UDP_HTABLE_SIZE 263 */ 264 rand = (rand | 1) * (udptable->mask + 1); 265 last = first + udptable->mask + 1; 266 do { 267 hslot = udp_hashslot(udptable, net, first); 268 bitmap_zero(bitmap, PORTS_PER_CHAIN); 269 spin_lock_bh(&hslot->lock); 270 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 271 saddr_comp, udptable->log); 272 273 snum = first; 274 /* 275 * Iterate on all possible values of snum for this hash. 276 * Using steps of an odd multiple of UDP_HTABLE_SIZE 277 * give us randomization and full range coverage. 278 */ 279 do { 280 if (low <= snum && snum <= high && 281 !test_bit(snum >> udptable->log, bitmap) && 282 !inet_is_local_reserved_port(net, snum)) 283 goto found; 284 snum += rand; 285 } while (snum != first); 286 spin_unlock_bh(&hslot->lock); 287 } while (++first != last); 288 goto fail; 289 } else { 290 hslot = udp_hashslot(udptable, net, snum); 291 spin_lock_bh(&hslot->lock); 292 if (hslot->count > 10) { 293 int exist; 294 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 295 296 slot2 &= udptable->mask; 297 hash2_nulladdr &= udptable->mask; 298 299 hslot2 = udp_hashslot2(udptable, slot2); 300 if (hslot->count < hslot2->count) 301 goto scan_primary_hash; 302 303 exist = udp_lib_lport_inuse2(net, snum, hslot2, 304 sk, saddr_comp); 305 if (!exist && (hash2_nulladdr != slot2)) { 306 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 307 exist = udp_lib_lport_inuse2(net, snum, hslot2, 308 sk, saddr_comp); 309 } 310 if (exist) 311 goto fail_unlock; 312 else 313 goto found; 314 } 315 scan_primary_hash: 316 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 317 saddr_comp, 0)) 318 goto fail_unlock; 319 } 320 found: 321 inet_sk(sk)->inet_num = snum; 322 udp_sk(sk)->udp_port_hash = snum; 323 udp_sk(sk)->udp_portaddr_hash ^= snum; 324 if (sk_unhashed(sk)) { 325 if (sk->sk_reuseport && 326 udp_reuseport_add_sock(sk, hslot, saddr_comp)) { 327 inet_sk(sk)->inet_num = 0; 328 udp_sk(sk)->udp_port_hash = 0; 329 udp_sk(sk)->udp_portaddr_hash ^= snum; 330 goto fail_unlock; 331 } 332 333 sk_add_node_rcu(sk, &hslot->head); 334 hslot->count++; 335 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 336 337 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 338 spin_lock(&hslot2->lock); 339 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 340 sk->sk_family == AF_INET6) 341 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 342 &hslot2->head); 343 else 344 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 345 &hslot2->head); 346 hslot2->count++; 347 spin_unlock(&hslot2->lock); 348 } 349 sock_set_flag(sk, SOCK_RCU_FREE); 350 error = 0; 351 fail_unlock: 352 spin_unlock_bh(&hslot->lock); 353 fail: 354 return error; 355 } 356 EXPORT_SYMBOL(udp_lib_get_port); 357 358 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 359 * match_wildcard == false: addresses must be exactly the same, i.e. 360 * 0.0.0.0 only equals to 0.0.0.0 361 */ 362 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2, 363 bool match_wildcard) 364 { 365 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2); 366 367 if (!ipv6_only_sock(sk2)) { 368 if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr) 369 return 1; 370 if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr) 371 return match_wildcard; 372 } 373 return 0; 374 } 375 376 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr, 377 unsigned int port) 378 { 379 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; 380 } 381 382 int udp_v4_get_port(struct sock *sk, unsigned short snum) 383 { 384 unsigned int hash2_nulladdr = 385 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 386 unsigned int hash2_partial = 387 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 388 389 /* precompute partial secondary hash */ 390 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 391 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr); 392 } 393 394 static inline int compute_score(struct sock *sk, struct net *net, 395 __be32 saddr, unsigned short hnum, __be16 sport, 396 __be32 daddr, __be16 dport, int dif) 397 { 398 int score; 399 struct inet_sock *inet; 400 401 if (!net_eq(sock_net(sk), net) || 402 udp_sk(sk)->udp_port_hash != hnum || 403 ipv6_only_sock(sk)) 404 return -1; 405 406 score = (sk->sk_family == PF_INET) ? 2 : 1; 407 inet = inet_sk(sk); 408 409 if (inet->inet_rcv_saddr) { 410 if (inet->inet_rcv_saddr != daddr) 411 return -1; 412 score += 4; 413 } 414 415 if (inet->inet_daddr) { 416 if (inet->inet_daddr != saddr) 417 return -1; 418 score += 4; 419 } 420 421 if (inet->inet_dport) { 422 if (inet->inet_dport != sport) 423 return -1; 424 score += 4; 425 } 426 427 if (sk->sk_bound_dev_if) { 428 if (sk->sk_bound_dev_if != dif) 429 return -1; 430 score += 4; 431 } 432 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 433 score++; 434 return score; 435 } 436 437 /* 438 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num) 439 */ 440 static inline int compute_score2(struct sock *sk, struct net *net, 441 __be32 saddr, __be16 sport, 442 __be32 daddr, unsigned int hnum, int dif) 443 { 444 int score; 445 struct inet_sock *inet; 446 447 if (!net_eq(sock_net(sk), net) || 448 ipv6_only_sock(sk)) 449 return -1; 450 451 inet = inet_sk(sk); 452 453 if (inet->inet_rcv_saddr != daddr || 454 inet->inet_num != hnum) 455 return -1; 456 457 score = (sk->sk_family == PF_INET) ? 2 : 1; 458 459 if (inet->inet_daddr) { 460 if (inet->inet_daddr != saddr) 461 return -1; 462 score += 4; 463 } 464 465 if (inet->inet_dport) { 466 if (inet->inet_dport != sport) 467 return -1; 468 score += 4; 469 } 470 471 if (sk->sk_bound_dev_if) { 472 if (sk->sk_bound_dev_if != dif) 473 return -1; 474 score += 4; 475 } 476 477 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 478 score++; 479 480 return score; 481 } 482 483 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 484 const __u16 lport, const __be32 faddr, 485 const __be16 fport) 486 { 487 static u32 udp_ehash_secret __read_mostly; 488 489 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 490 491 return __inet_ehashfn(laddr, lport, faddr, fport, 492 udp_ehash_secret + net_hash_mix(net)); 493 } 494 495 /* called with read_rcu_lock() */ 496 static struct sock *udp4_lib_lookup2(struct net *net, 497 __be32 saddr, __be16 sport, 498 __be32 daddr, unsigned int hnum, int dif, 499 struct udp_hslot *hslot2, unsigned int slot2, 500 struct sk_buff *skb) 501 { 502 struct sock *sk, *result; 503 int score, badness, matches = 0, reuseport = 0; 504 u32 hash = 0; 505 506 result = NULL; 507 badness = 0; 508 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 509 score = compute_score2(sk, net, saddr, sport, 510 daddr, hnum, dif); 511 if (score > badness) { 512 reuseport = sk->sk_reuseport; 513 if (reuseport) { 514 hash = udp_ehashfn(net, daddr, hnum, 515 saddr, sport); 516 result = reuseport_select_sock(sk, hash, skb, 517 sizeof(struct udphdr)); 518 if (result) 519 return result; 520 matches = 1; 521 } 522 badness = score; 523 result = sk; 524 } else if (score == badness && reuseport) { 525 matches++; 526 if (reciprocal_scale(hash, matches) == 0) 527 result = sk; 528 hash = next_pseudo_random32(hash); 529 } 530 } 531 return result; 532 } 533 534 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 535 * harder than this. -DaveM 536 */ 537 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 538 __be16 sport, __be32 daddr, __be16 dport, 539 int dif, struct udp_table *udptable, struct sk_buff *skb) 540 { 541 struct sock *sk, *result; 542 unsigned short hnum = ntohs(dport); 543 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 544 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 545 int score, badness, matches = 0, reuseport = 0; 546 u32 hash = 0; 547 548 if (hslot->count > 10) { 549 hash2 = udp4_portaddr_hash(net, daddr, hnum); 550 slot2 = hash2 & udptable->mask; 551 hslot2 = &udptable->hash2[slot2]; 552 if (hslot->count < hslot2->count) 553 goto begin; 554 555 result = udp4_lib_lookup2(net, saddr, sport, 556 daddr, hnum, dif, 557 hslot2, slot2, skb); 558 if (!result) { 559 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 560 slot2 = hash2 & udptable->mask; 561 hslot2 = &udptable->hash2[slot2]; 562 if (hslot->count < hslot2->count) 563 goto begin; 564 565 result = udp4_lib_lookup2(net, saddr, sport, 566 htonl(INADDR_ANY), hnum, dif, 567 hslot2, slot2, skb); 568 } 569 return result; 570 } 571 begin: 572 result = NULL; 573 badness = 0; 574 sk_for_each_rcu(sk, &hslot->head) { 575 score = compute_score(sk, net, saddr, hnum, sport, 576 daddr, dport, dif); 577 if (score > badness) { 578 reuseport = sk->sk_reuseport; 579 if (reuseport) { 580 hash = udp_ehashfn(net, daddr, hnum, 581 saddr, sport); 582 result = reuseport_select_sock(sk, hash, skb, 583 sizeof(struct udphdr)); 584 if (result) 585 return result; 586 matches = 1; 587 } 588 result = sk; 589 badness = score; 590 } else if (score == badness && reuseport) { 591 matches++; 592 if (reciprocal_scale(hash, matches) == 0) 593 result = sk; 594 hash = next_pseudo_random32(hash); 595 } 596 } 597 return result; 598 } 599 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 600 601 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 602 __be16 sport, __be16 dport, 603 struct udp_table *udptable) 604 { 605 const struct iphdr *iph = ip_hdr(skb); 606 607 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport, 608 iph->daddr, dport, inet_iif(skb), 609 udptable, skb); 610 } 611 612 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 613 __be16 sport, __be16 dport) 614 { 615 const struct iphdr *iph = ip_hdr(skb); 616 const struct net_device *dev = 617 skb_dst(skb) ? skb_dst(skb)->dev : skb->dev; 618 619 return __udp4_lib_lookup(dev_net(dev), iph->saddr, sport, 620 iph->daddr, dport, inet_iif(skb), 621 &udp_table, skb); 622 } 623 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 624 625 /* Must be called under rcu_read_lock(). 626 * Does increment socket refcount. 627 */ 628 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \ 629 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) 630 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 631 __be32 daddr, __be16 dport, int dif) 632 { 633 struct sock *sk; 634 635 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 636 dif, &udp_table, NULL); 637 if (sk && !atomic_inc_not_zero(&sk->sk_refcnt)) 638 sk = NULL; 639 return sk; 640 } 641 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 642 #endif 643 644 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 645 __be16 loc_port, __be32 loc_addr, 646 __be16 rmt_port, __be32 rmt_addr, 647 int dif, unsigned short hnum) 648 { 649 struct inet_sock *inet = inet_sk(sk); 650 651 if (!net_eq(sock_net(sk), net) || 652 udp_sk(sk)->udp_port_hash != hnum || 653 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 654 (inet->inet_dport != rmt_port && inet->inet_dport) || 655 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 656 ipv6_only_sock(sk) || 657 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif)) 658 return false; 659 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif)) 660 return false; 661 return true; 662 } 663 664 /* 665 * This routine is called by the ICMP module when it gets some 666 * sort of error condition. If err < 0 then the socket should 667 * be closed and the error returned to the user. If err > 0 668 * it's just the icmp type << 8 | icmp code. 669 * Header points to the ip header of the error packet. We move 670 * on past this. Then (as it used to claim before adjustment) 671 * header points to the first 8 bytes of the udp header. We need 672 * to find the appropriate port. 673 */ 674 675 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 676 { 677 struct inet_sock *inet; 678 const struct iphdr *iph = (const struct iphdr *)skb->data; 679 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 680 const int type = icmp_hdr(skb)->type; 681 const int code = icmp_hdr(skb)->code; 682 struct sock *sk; 683 int harderr; 684 int err; 685 struct net *net = dev_net(skb->dev); 686 687 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 688 iph->saddr, uh->source, skb->dev->ifindex, udptable, 689 NULL); 690 if (!sk) { 691 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 692 return; /* No socket for error */ 693 } 694 695 err = 0; 696 harderr = 0; 697 inet = inet_sk(sk); 698 699 switch (type) { 700 default: 701 case ICMP_TIME_EXCEEDED: 702 err = EHOSTUNREACH; 703 break; 704 case ICMP_SOURCE_QUENCH: 705 goto out; 706 case ICMP_PARAMETERPROB: 707 err = EPROTO; 708 harderr = 1; 709 break; 710 case ICMP_DEST_UNREACH: 711 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 712 ipv4_sk_update_pmtu(skb, sk, info); 713 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 714 err = EMSGSIZE; 715 harderr = 1; 716 break; 717 } 718 goto out; 719 } 720 err = EHOSTUNREACH; 721 if (code <= NR_ICMP_UNREACH) { 722 harderr = icmp_err_convert[code].fatal; 723 err = icmp_err_convert[code].errno; 724 } 725 break; 726 case ICMP_REDIRECT: 727 ipv4_sk_redirect(skb, sk); 728 goto out; 729 } 730 731 /* 732 * RFC1122: OK. Passes ICMP errors back to application, as per 733 * 4.1.3.3. 734 */ 735 if (!inet->recverr) { 736 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 737 goto out; 738 } else 739 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 740 741 sk->sk_err = err; 742 sk->sk_error_report(sk); 743 out: 744 return; 745 } 746 747 void udp_err(struct sk_buff *skb, u32 info) 748 { 749 __udp4_lib_err(skb, info, &udp_table); 750 } 751 752 /* 753 * Throw away all pending data and cancel the corking. Socket is locked. 754 */ 755 void udp_flush_pending_frames(struct sock *sk) 756 { 757 struct udp_sock *up = udp_sk(sk); 758 759 if (up->pending) { 760 up->len = 0; 761 up->pending = 0; 762 ip_flush_pending_frames(sk); 763 } 764 } 765 EXPORT_SYMBOL(udp_flush_pending_frames); 766 767 /** 768 * udp4_hwcsum - handle outgoing HW checksumming 769 * @skb: sk_buff containing the filled-in UDP header 770 * (checksum field must be zeroed out) 771 * @src: source IP address 772 * @dst: destination IP address 773 */ 774 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 775 { 776 struct udphdr *uh = udp_hdr(skb); 777 int offset = skb_transport_offset(skb); 778 int len = skb->len - offset; 779 int hlen = len; 780 __wsum csum = 0; 781 782 if (!skb_has_frag_list(skb)) { 783 /* 784 * Only one fragment on the socket. 785 */ 786 skb->csum_start = skb_transport_header(skb) - skb->head; 787 skb->csum_offset = offsetof(struct udphdr, check); 788 uh->check = ~csum_tcpudp_magic(src, dst, len, 789 IPPROTO_UDP, 0); 790 } else { 791 struct sk_buff *frags; 792 793 /* 794 * HW-checksum won't work as there are two or more 795 * fragments on the socket so that all csums of sk_buffs 796 * should be together 797 */ 798 skb_walk_frags(skb, frags) { 799 csum = csum_add(csum, frags->csum); 800 hlen -= frags->len; 801 } 802 803 csum = skb_checksum(skb, offset, hlen, csum); 804 skb->ip_summed = CHECKSUM_NONE; 805 806 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 807 if (uh->check == 0) 808 uh->check = CSUM_MANGLED_0; 809 } 810 } 811 EXPORT_SYMBOL_GPL(udp4_hwcsum); 812 813 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 814 * for the simple case like when setting the checksum for a UDP tunnel. 815 */ 816 void udp_set_csum(bool nocheck, struct sk_buff *skb, 817 __be32 saddr, __be32 daddr, int len) 818 { 819 struct udphdr *uh = udp_hdr(skb); 820 821 if (nocheck) { 822 uh->check = 0; 823 } else if (skb_is_gso(skb)) { 824 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 825 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 826 uh->check = 0; 827 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 828 if (uh->check == 0) 829 uh->check = CSUM_MANGLED_0; 830 } else { 831 skb->ip_summed = CHECKSUM_PARTIAL; 832 skb->csum_start = skb_transport_header(skb) - skb->head; 833 skb->csum_offset = offsetof(struct udphdr, check); 834 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 835 } 836 } 837 EXPORT_SYMBOL(udp_set_csum); 838 839 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 840 { 841 struct sock *sk = skb->sk; 842 struct inet_sock *inet = inet_sk(sk); 843 struct udphdr *uh; 844 int err = 0; 845 int is_udplite = IS_UDPLITE(sk); 846 int offset = skb_transport_offset(skb); 847 int len = skb->len - offset; 848 __wsum csum = 0; 849 850 /* 851 * Create a UDP header 852 */ 853 uh = udp_hdr(skb); 854 uh->source = inet->inet_sport; 855 uh->dest = fl4->fl4_dport; 856 uh->len = htons(len); 857 uh->check = 0; 858 859 if (is_udplite) /* UDP-Lite */ 860 csum = udplite_csum(skb); 861 862 else if (sk->sk_no_check_tx) { /* UDP csum disabled */ 863 864 skb->ip_summed = CHECKSUM_NONE; 865 goto send; 866 867 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 868 869 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 870 goto send; 871 872 } else 873 csum = udp_csum(skb); 874 875 /* add protocol-dependent pseudo-header */ 876 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 877 sk->sk_protocol, csum); 878 if (uh->check == 0) 879 uh->check = CSUM_MANGLED_0; 880 881 send: 882 err = ip_send_skb(sock_net(sk), skb); 883 if (err) { 884 if (err == -ENOBUFS && !inet->recverr) { 885 UDP_INC_STATS(sock_net(sk), 886 UDP_MIB_SNDBUFERRORS, is_udplite); 887 err = 0; 888 } 889 } else 890 UDP_INC_STATS(sock_net(sk), 891 UDP_MIB_OUTDATAGRAMS, is_udplite); 892 return err; 893 } 894 895 /* 896 * Push out all pending data as one UDP datagram. Socket is locked. 897 */ 898 int udp_push_pending_frames(struct sock *sk) 899 { 900 struct udp_sock *up = udp_sk(sk); 901 struct inet_sock *inet = inet_sk(sk); 902 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 903 struct sk_buff *skb; 904 int err = 0; 905 906 skb = ip_finish_skb(sk, fl4); 907 if (!skb) 908 goto out; 909 910 err = udp_send_skb(skb, fl4); 911 912 out: 913 up->len = 0; 914 up->pending = 0; 915 return err; 916 } 917 EXPORT_SYMBOL(udp_push_pending_frames); 918 919 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 920 { 921 struct inet_sock *inet = inet_sk(sk); 922 struct udp_sock *up = udp_sk(sk); 923 struct flowi4 fl4_stack; 924 struct flowi4 *fl4; 925 int ulen = len; 926 struct ipcm_cookie ipc; 927 struct rtable *rt = NULL; 928 int free = 0; 929 int connected = 0; 930 __be32 daddr, faddr, saddr; 931 __be16 dport; 932 u8 tos; 933 int err, is_udplite = IS_UDPLITE(sk); 934 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 935 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 936 struct sk_buff *skb; 937 struct ip_options_data opt_copy; 938 939 if (len > 0xFFFF) 940 return -EMSGSIZE; 941 942 /* 943 * Check the flags. 944 */ 945 946 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 947 return -EOPNOTSUPP; 948 949 ipc.opt = NULL; 950 ipc.tx_flags = 0; 951 ipc.ttl = 0; 952 ipc.tos = -1; 953 954 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 955 956 fl4 = &inet->cork.fl.u.ip4; 957 if (up->pending) { 958 /* 959 * There are pending frames. 960 * The socket lock must be held while it's corked. 961 */ 962 lock_sock(sk); 963 if (likely(up->pending)) { 964 if (unlikely(up->pending != AF_INET)) { 965 release_sock(sk); 966 return -EINVAL; 967 } 968 goto do_append_data; 969 } 970 release_sock(sk); 971 } 972 ulen += sizeof(struct udphdr); 973 974 /* 975 * Get and verify the address. 976 */ 977 if (msg->msg_name) { 978 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 979 if (msg->msg_namelen < sizeof(*usin)) 980 return -EINVAL; 981 if (usin->sin_family != AF_INET) { 982 if (usin->sin_family != AF_UNSPEC) 983 return -EAFNOSUPPORT; 984 } 985 986 daddr = usin->sin_addr.s_addr; 987 dport = usin->sin_port; 988 if (dport == 0) 989 return -EINVAL; 990 } else { 991 if (sk->sk_state != TCP_ESTABLISHED) 992 return -EDESTADDRREQ; 993 daddr = inet->inet_daddr; 994 dport = inet->inet_dport; 995 /* Open fast path for connected socket. 996 Route will not be used, if at least one option is set. 997 */ 998 connected = 1; 999 } 1000 1001 ipc.sockc.tsflags = sk->sk_tsflags; 1002 ipc.addr = inet->inet_saddr; 1003 ipc.oif = sk->sk_bound_dev_if; 1004 1005 if (msg->msg_controllen) { 1006 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6); 1007 if (unlikely(err)) { 1008 kfree(ipc.opt); 1009 return err; 1010 } 1011 if (ipc.opt) 1012 free = 1; 1013 connected = 0; 1014 } 1015 if (!ipc.opt) { 1016 struct ip_options_rcu *inet_opt; 1017 1018 rcu_read_lock(); 1019 inet_opt = rcu_dereference(inet->inet_opt); 1020 if (inet_opt) { 1021 memcpy(&opt_copy, inet_opt, 1022 sizeof(*inet_opt) + inet_opt->opt.optlen); 1023 ipc.opt = &opt_copy.opt; 1024 } 1025 rcu_read_unlock(); 1026 } 1027 1028 saddr = ipc.addr; 1029 ipc.addr = faddr = daddr; 1030 1031 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 1032 1033 if (ipc.opt && ipc.opt->opt.srr) { 1034 if (!daddr) 1035 return -EINVAL; 1036 faddr = ipc.opt->opt.faddr; 1037 connected = 0; 1038 } 1039 tos = get_rttos(&ipc, inet); 1040 if (sock_flag(sk, SOCK_LOCALROUTE) || 1041 (msg->msg_flags & MSG_DONTROUTE) || 1042 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1043 tos |= RTO_ONLINK; 1044 connected = 0; 1045 } 1046 1047 if (ipv4_is_multicast(daddr)) { 1048 if (!ipc.oif) 1049 ipc.oif = inet->mc_index; 1050 if (!saddr) 1051 saddr = inet->mc_addr; 1052 connected = 0; 1053 } else if (!ipc.oif) 1054 ipc.oif = inet->uc_index; 1055 1056 if (connected) 1057 rt = (struct rtable *)sk_dst_check(sk, 0); 1058 1059 if (!rt) { 1060 struct net *net = sock_net(sk); 1061 __u8 flow_flags = inet_sk_flowi_flags(sk); 1062 1063 fl4 = &fl4_stack; 1064 1065 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1066 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1067 flow_flags, 1068 faddr, saddr, dport, inet->inet_sport); 1069 1070 if (!saddr && ipc.oif) { 1071 err = l3mdev_get_saddr(net, ipc.oif, fl4); 1072 if (err < 0) 1073 goto out; 1074 } 1075 1076 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1077 rt = ip_route_output_flow(net, fl4, sk); 1078 if (IS_ERR(rt)) { 1079 err = PTR_ERR(rt); 1080 rt = NULL; 1081 if (err == -ENETUNREACH) 1082 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1083 goto out; 1084 } 1085 1086 err = -EACCES; 1087 if ((rt->rt_flags & RTCF_BROADCAST) && 1088 !sock_flag(sk, SOCK_BROADCAST)) 1089 goto out; 1090 if (connected) 1091 sk_dst_set(sk, dst_clone(&rt->dst)); 1092 } 1093 1094 if (msg->msg_flags&MSG_CONFIRM) 1095 goto do_confirm; 1096 back_from_confirm: 1097 1098 saddr = fl4->saddr; 1099 if (!ipc.addr) 1100 daddr = ipc.addr = fl4->daddr; 1101 1102 /* Lockless fast path for the non-corking case. */ 1103 if (!corkreq) { 1104 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1105 sizeof(struct udphdr), &ipc, &rt, 1106 msg->msg_flags); 1107 err = PTR_ERR(skb); 1108 if (!IS_ERR_OR_NULL(skb)) 1109 err = udp_send_skb(skb, fl4); 1110 goto out; 1111 } 1112 1113 lock_sock(sk); 1114 if (unlikely(up->pending)) { 1115 /* The socket is already corked while preparing it. */ 1116 /* ... which is an evident application bug. --ANK */ 1117 release_sock(sk); 1118 1119 net_dbg_ratelimited("cork app bug 2\n"); 1120 err = -EINVAL; 1121 goto out; 1122 } 1123 /* 1124 * Now cork the socket to pend data. 1125 */ 1126 fl4 = &inet->cork.fl.u.ip4; 1127 fl4->daddr = daddr; 1128 fl4->saddr = saddr; 1129 fl4->fl4_dport = dport; 1130 fl4->fl4_sport = inet->inet_sport; 1131 up->pending = AF_INET; 1132 1133 do_append_data: 1134 up->len += ulen; 1135 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1136 sizeof(struct udphdr), &ipc, &rt, 1137 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1138 if (err) 1139 udp_flush_pending_frames(sk); 1140 else if (!corkreq) 1141 err = udp_push_pending_frames(sk); 1142 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1143 up->pending = 0; 1144 release_sock(sk); 1145 1146 out: 1147 ip_rt_put(rt); 1148 if (free) 1149 kfree(ipc.opt); 1150 if (!err) 1151 return len; 1152 /* 1153 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1154 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1155 * we don't have a good statistic (IpOutDiscards but it can be too many 1156 * things). We could add another new stat but at least for now that 1157 * seems like overkill. 1158 */ 1159 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1160 UDP_INC_STATS(sock_net(sk), 1161 UDP_MIB_SNDBUFERRORS, is_udplite); 1162 } 1163 return err; 1164 1165 do_confirm: 1166 dst_confirm(&rt->dst); 1167 if (!(msg->msg_flags&MSG_PROBE) || len) 1168 goto back_from_confirm; 1169 err = 0; 1170 goto out; 1171 } 1172 EXPORT_SYMBOL(udp_sendmsg); 1173 1174 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1175 size_t size, int flags) 1176 { 1177 struct inet_sock *inet = inet_sk(sk); 1178 struct udp_sock *up = udp_sk(sk); 1179 int ret; 1180 1181 if (flags & MSG_SENDPAGE_NOTLAST) 1182 flags |= MSG_MORE; 1183 1184 if (!up->pending) { 1185 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1186 1187 /* Call udp_sendmsg to specify destination address which 1188 * sendpage interface can't pass. 1189 * This will succeed only when the socket is connected. 1190 */ 1191 ret = udp_sendmsg(sk, &msg, 0); 1192 if (ret < 0) 1193 return ret; 1194 } 1195 1196 lock_sock(sk); 1197 1198 if (unlikely(!up->pending)) { 1199 release_sock(sk); 1200 1201 net_dbg_ratelimited("udp cork app bug 3\n"); 1202 return -EINVAL; 1203 } 1204 1205 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1206 page, offset, size, flags); 1207 if (ret == -EOPNOTSUPP) { 1208 release_sock(sk); 1209 return sock_no_sendpage(sk->sk_socket, page, offset, 1210 size, flags); 1211 } 1212 if (ret < 0) { 1213 udp_flush_pending_frames(sk); 1214 goto out; 1215 } 1216 1217 up->len += size; 1218 if (!(up->corkflag || (flags&MSG_MORE))) 1219 ret = udp_push_pending_frames(sk); 1220 if (!ret) 1221 ret = size; 1222 out: 1223 release_sock(sk); 1224 return ret; 1225 } 1226 1227 /** 1228 * first_packet_length - return length of first packet in receive queue 1229 * @sk: socket 1230 * 1231 * Drops all bad checksum frames, until a valid one is found. 1232 * Returns the length of found skb, or 0 if none is found. 1233 */ 1234 static unsigned int first_packet_length(struct sock *sk) 1235 { 1236 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue; 1237 struct sk_buff *skb; 1238 unsigned int res; 1239 1240 __skb_queue_head_init(&list_kill); 1241 1242 spin_lock_bh(&rcvq->lock); 1243 while ((skb = skb_peek(rcvq)) != NULL && 1244 udp_lib_checksum_complete(skb)) { 1245 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1246 IS_UDPLITE(sk)); 1247 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1248 IS_UDPLITE(sk)); 1249 atomic_inc(&sk->sk_drops); 1250 __skb_unlink(skb, rcvq); 1251 __skb_queue_tail(&list_kill, skb); 1252 } 1253 res = skb ? skb->len : 0; 1254 spin_unlock_bh(&rcvq->lock); 1255 1256 if (!skb_queue_empty(&list_kill)) { 1257 bool slow = lock_sock_fast(sk); 1258 1259 __skb_queue_purge(&list_kill); 1260 sk_mem_reclaim_partial(sk); 1261 unlock_sock_fast(sk, slow); 1262 } 1263 return res; 1264 } 1265 1266 /* 1267 * IOCTL requests applicable to the UDP protocol 1268 */ 1269 1270 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1271 { 1272 switch (cmd) { 1273 case SIOCOUTQ: 1274 { 1275 int amount = sk_wmem_alloc_get(sk); 1276 1277 return put_user(amount, (int __user *)arg); 1278 } 1279 1280 case SIOCINQ: 1281 { 1282 unsigned int amount = first_packet_length(sk); 1283 1284 return put_user(amount, (int __user *)arg); 1285 } 1286 1287 default: 1288 return -ENOIOCTLCMD; 1289 } 1290 1291 return 0; 1292 } 1293 EXPORT_SYMBOL(udp_ioctl); 1294 1295 /* 1296 * This should be easy, if there is something there we 1297 * return it, otherwise we block. 1298 */ 1299 1300 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1301 int flags, int *addr_len) 1302 { 1303 struct inet_sock *inet = inet_sk(sk); 1304 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1305 struct sk_buff *skb; 1306 unsigned int ulen, copied; 1307 int peeked, peeking, off; 1308 int err; 1309 int is_udplite = IS_UDPLITE(sk); 1310 bool checksum_valid = false; 1311 bool slow; 1312 1313 if (flags & MSG_ERRQUEUE) 1314 return ip_recv_error(sk, msg, len, addr_len); 1315 1316 try_again: 1317 peeking = off = sk_peek_offset(sk, flags); 1318 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0), 1319 &peeked, &off, &err); 1320 if (!skb) 1321 return err; 1322 1323 ulen = skb->len; 1324 copied = len; 1325 if (copied > ulen - off) 1326 copied = ulen - off; 1327 else if (copied < ulen) 1328 msg->msg_flags |= MSG_TRUNC; 1329 1330 /* 1331 * If checksum is needed at all, try to do it while copying the 1332 * data. If the data is truncated, or if we only want a partial 1333 * coverage checksum (UDP-Lite), do it before the copy. 1334 */ 1335 1336 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov || peeking) { 1337 checksum_valid = !udp_lib_checksum_complete(skb); 1338 if (!checksum_valid) 1339 goto csum_copy_err; 1340 } 1341 1342 if (checksum_valid || skb_csum_unnecessary(skb)) 1343 err = skb_copy_datagram_msg(skb, off, msg, copied); 1344 else { 1345 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1346 1347 if (err == -EINVAL) 1348 goto csum_copy_err; 1349 } 1350 1351 if (unlikely(err)) { 1352 trace_kfree_skb(skb, udp_recvmsg); 1353 if (!peeked) { 1354 atomic_inc(&sk->sk_drops); 1355 UDP_INC_STATS(sock_net(sk), 1356 UDP_MIB_INERRORS, is_udplite); 1357 } 1358 skb_free_datagram_locked(sk, skb); 1359 return err; 1360 } 1361 1362 if (!peeked) 1363 UDP_INC_STATS(sock_net(sk), 1364 UDP_MIB_INDATAGRAMS, is_udplite); 1365 1366 sock_recv_ts_and_drops(msg, sk, skb); 1367 1368 /* Copy the address. */ 1369 if (sin) { 1370 sin->sin_family = AF_INET; 1371 sin->sin_port = udp_hdr(skb)->source; 1372 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1373 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1374 *addr_len = sizeof(*sin); 1375 } 1376 if (inet->cmsg_flags) 1377 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr) + off); 1378 1379 err = copied; 1380 if (flags & MSG_TRUNC) 1381 err = ulen; 1382 1383 __skb_free_datagram_locked(sk, skb, peeking ? -err : err); 1384 return err; 1385 1386 csum_copy_err: 1387 slow = lock_sock_fast(sk); 1388 if (!skb_kill_datagram(sk, skb, flags)) { 1389 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1390 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1391 } 1392 unlock_sock_fast(sk, slow); 1393 1394 /* starting over for a new packet, but check if we need to yield */ 1395 cond_resched(); 1396 msg->msg_flags &= ~MSG_TRUNC; 1397 goto try_again; 1398 } 1399 1400 int udp_disconnect(struct sock *sk, int flags) 1401 { 1402 struct inet_sock *inet = inet_sk(sk); 1403 /* 1404 * 1003.1g - break association. 1405 */ 1406 1407 sk->sk_state = TCP_CLOSE; 1408 inet->inet_daddr = 0; 1409 inet->inet_dport = 0; 1410 sock_rps_reset_rxhash(sk); 1411 sk->sk_bound_dev_if = 0; 1412 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1413 inet_reset_saddr(sk); 1414 1415 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1416 sk->sk_prot->unhash(sk); 1417 inet->inet_sport = 0; 1418 } 1419 sk_dst_reset(sk); 1420 return 0; 1421 } 1422 EXPORT_SYMBOL(udp_disconnect); 1423 1424 void udp_lib_unhash(struct sock *sk) 1425 { 1426 if (sk_hashed(sk)) { 1427 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1428 struct udp_hslot *hslot, *hslot2; 1429 1430 hslot = udp_hashslot(udptable, sock_net(sk), 1431 udp_sk(sk)->udp_port_hash); 1432 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1433 1434 spin_lock_bh(&hslot->lock); 1435 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1436 reuseport_detach_sock(sk); 1437 if (sk_del_node_init_rcu(sk)) { 1438 hslot->count--; 1439 inet_sk(sk)->inet_num = 0; 1440 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1441 1442 spin_lock(&hslot2->lock); 1443 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1444 hslot2->count--; 1445 spin_unlock(&hslot2->lock); 1446 } 1447 spin_unlock_bh(&hslot->lock); 1448 } 1449 } 1450 EXPORT_SYMBOL(udp_lib_unhash); 1451 1452 /* 1453 * inet_rcv_saddr was changed, we must rehash secondary hash 1454 */ 1455 void udp_lib_rehash(struct sock *sk, u16 newhash) 1456 { 1457 if (sk_hashed(sk)) { 1458 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1459 struct udp_hslot *hslot, *hslot2, *nhslot2; 1460 1461 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1462 nhslot2 = udp_hashslot2(udptable, newhash); 1463 udp_sk(sk)->udp_portaddr_hash = newhash; 1464 1465 if (hslot2 != nhslot2 || 1466 rcu_access_pointer(sk->sk_reuseport_cb)) { 1467 hslot = udp_hashslot(udptable, sock_net(sk), 1468 udp_sk(sk)->udp_port_hash); 1469 /* we must lock primary chain too */ 1470 spin_lock_bh(&hslot->lock); 1471 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1472 reuseport_detach_sock(sk); 1473 1474 if (hslot2 != nhslot2) { 1475 spin_lock(&hslot2->lock); 1476 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1477 hslot2->count--; 1478 spin_unlock(&hslot2->lock); 1479 1480 spin_lock(&nhslot2->lock); 1481 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1482 &nhslot2->head); 1483 nhslot2->count++; 1484 spin_unlock(&nhslot2->lock); 1485 } 1486 1487 spin_unlock_bh(&hslot->lock); 1488 } 1489 } 1490 } 1491 EXPORT_SYMBOL(udp_lib_rehash); 1492 1493 static void udp_v4_rehash(struct sock *sk) 1494 { 1495 u16 new_hash = udp4_portaddr_hash(sock_net(sk), 1496 inet_sk(sk)->inet_rcv_saddr, 1497 inet_sk(sk)->inet_num); 1498 udp_lib_rehash(sk, new_hash); 1499 } 1500 1501 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1502 { 1503 int rc; 1504 1505 if (inet_sk(sk)->inet_daddr) { 1506 sock_rps_save_rxhash(sk, skb); 1507 sk_mark_napi_id(sk, skb); 1508 sk_incoming_cpu_update(sk); 1509 } 1510 1511 rc = __sock_queue_rcv_skb(sk, skb); 1512 if (rc < 0) { 1513 int is_udplite = IS_UDPLITE(sk); 1514 1515 /* Note that an ENOMEM error is charged twice */ 1516 if (rc == -ENOMEM) 1517 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1518 is_udplite); 1519 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1520 kfree_skb(skb); 1521 trace_udp_fail_queue_rcv_skb(rc, sk); 1522 return -1; 1523 } 1524 1525 return 0; 1526 1527 } 1528 1529 static struct static_key udp_encap_needed __read_mostly; 1530 void udp_encap_enable(void) 1531 { 1532 if (!static_key_enabled(&udp_encap_needed)) 1533 static_key_slow_inc(&udp_encap_needed); 1534 } 1535 EXPORT_SYMBOL(udp_encap_enable); 1536 1537 /* returns: 1538 * -1: error 1539 * 0: success 1540 * >0: "udp encap" protocol resubmission 1541 * 1542 * Note that in the success and error cases, the skb is assumed to 1543 * have either been requeued or freed. 1544 */ 1545 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1546 { 1547 struct udp_sock *up = udp_sk(sk); 1548 int rc; 1549 int is_udplite = IS_UDPLITE(sk); 1550 1551 /* 1552 * Charge it to the socket, dropping if the queue is full. 1553 */ 1554 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1555 goto drop; 1556 nf_reset(skb); 1557 1558 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1559 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1560 1561 /* 1562 * This is an encapsulation socket so pass the skb to 1563 * the socket's udp_encap_rcv() hook. Otherwise, just 1564 * fall through and pass this up the UDP socket. 1565 * up->encap_rcv() returns the following value: 1566 * =0 if skb was successfully passed to the encap 1567 * handler or was discarded by it. 1568 * >0 if skb should be passed on to UDP. 1569 * <0 if skb should be resubmitted as proto -N 1570 */ 1571 1572 /* if we're overly short, let UDP handle it */ 1573 encap_rcv = ACCESS_ONCE(up->encap_rcv); 1574 if (skb->len > sizeof(struct udphdr) && encap_rcv) { 1575 int ret; 1576 1577 /* Verify checksum before giving to encap */ 1578 if (udp_lib_checksum_complete(skb)) 1579 goto csum_error; 1580 1581 ret = encap_rcv(sk, skb); 1582 if (ret <= 0) { 1583 __UDP_INC_STATS(sock_net(sk), 1584 UDP_MIB_INDATAGRAMS, 1585 is_udplite); 1586 return -ret; 1587 } 1588 } 1589 1590 /* FALLTHROUGH -- it's a UDP Packet */ 1591 } 1592 1593 /* 1594 * UDP-Lite specific tests, ignored on UDP sockets 1595 */ 1596 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1597 1598 /* 1599 * MIB statistics other than incrementing the error count are 1600 * disabled for the following two types of errors: these depend 1601 * on the application settings, not on the functioning of the 1602 * protocol stack as such. 1603 * 1604 * RFC 3828 here recommends (sec 3.3): "There should also be a 1605 * way ... to ... at least let the receiving application block 1606 * delivery of packets with coverage values less than a value 1607 * provided by the application." 1608 */ 1609 if (up->pcrlen == 0) { /* full coverage was set */ 1610 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1611 UDP_SKB_CB(skb)->cscov, skb->len); 1612 goto drop; 1613 } 1614 /* The next case involves violating the min. coverage requested 1615 * by the receiver. This is subtle: if receiver wants x and x is 1616 * greater than the buffersize/MTU then receiver will complain 1617 * that it wants x while sender emits packets of smaller size y. 1618 * Therefore the above ...()->partial_cov statement is essential. 1619 */ 1620 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1621 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1622 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1623 goto drop; 1624 } 1625 } 1626 1627 if (rcu_access_pointer(sk->sk_filter)) { 1628 if (udp_lib_checksum_complete(skb)) 1629 goto csum_error; 1630 if (sk_filter(sk, skb)) 1631 goto drop; 1632 } 1633 1634 udp_csum_pull_header(skb); 1635 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 1636 __UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1637 is_udplite); 1638 goto drop; 1639 } 1640 1641 rc = 0; 1642 1643 ipv4_pktinfo_prepare(sk, skb); 1644 bh_lock_sock(sk); 1645 if (!sock_owned_by_user(sk)) 1646 rc = __udp_queue_rcv_skb(sk, skb); 1647 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 1648 bh_unlock_sock(sk); 1649 goto drop; 1650 } 1651 bh_unlock_sock(sk); 1652 1653 return rc; 1654 1655 csum_error: 1656 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1657 drop: 1658 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1659 atomic_inc(&sk->sk_drops); 1660 kfree_skb(skb); 1661 return -1; 1662 } 1663 1664 /* For TCP sockets, sk_rx_dst is protected by socket lock 1665 * For UDP, we use xchg() to guard against concurrent changes. 1666 */ 1667 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 1668 { 1669 struct dst_entry *old; 1670 1671 dst_hold(dst); 1672 old = xchg(&sk->sk_rx_dst, dst); 1673 dst_release(old); 1674 } 1675 1676 /* 1677 * Multicasts and broadcasts go to each listener. 1678 * 1679 * Note: called only from the BH handler context. 1680 */ 1681 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1682 struct udphdr *uh, 1683 __be32 saddr, __be32 daddr, 1684 struct udp_table *udptable, 1685 int proto) 1686 { 1687 struct sock *sk, *first = NULL; 1688 unsigned short hnum = ntohs(uh->dest); 1689 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 1690 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 1691 unsigned int offset = offsetof(typeof(*sk), sk_node); 1692 int dif = skb->dev->ifindex; 1693 struct hlist_node *node; 1694 struct sk_buff *nskb; 1695 1696 if (use_hash2) { 1697 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 1698 udp_table.mask; 1699 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask; 1700 start_lookup: 1701 hslot = &udp_table.hash2[hash2]; 1702 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 1703 } 1704 1705 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 1706 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 1707 uh->source, saddr, dif, hnum)) 1708 continue; 1709 1710 if (!first) { 1711 first = sk; 1712 continue; 1713 } 1714 nskb = skb_clone(skb, GFP_ATOMIC); 1715 1716 if (unlikely(!nskb)) { 1717 atomic_inc(&sk->sk_drops); 1718 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 1719 IS_UDPLITE(sk)); 1720 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 1721 IS_UDPLITE(sk)); 1722 continue; 1723 } 1724 if (udp_queue_rcv_skb(sk, nskb) > 0) 1725 consume_skb(nskb); 1726 } 1727 1728 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 1729 if (use_hash2 && hash2 != hash2_any) { 1730 hash2 = hash2_any; 1731 goto start_lookup; 1732 } 1733 1734 if (first) { 1735 if (udp_queue_rcv_skb(first, skb) > 0) 1736 consume_skb(skb); 1737 } else { 1738 kfree_skb(skb); 1739 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 1740 proto == IPPROTO_UDPLITE); 1741 } 1742 return 0; 1743 } 1744 1745 /* Initialize UDP checksum. If exited with zero value (success), 1746 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1747 * Otherwise, csum completion requires chacksumming packet body, 1748 * including udp header and folding it to skb->csum. 1749 */ 1750 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 1751 int proto) 1752 { 1753 int err; 1754 1755 UDP_SKB_CB(skb)->partial_cov = 0; 1756 UDP_SKB_CB(skb)->cscov = skb->len; 1757 1758 if (proto == IPPROTO_UDPLITE) { 1759 err = udplite_checksum_init(skb, uh); 1760 if (err) 1761 return err; 1762 } 1763 1764 return skb_checksum_init_zero_check(skb, proto, uh->check, 1765 inet_compute_pseudo); 1766 } 1767 1768 /* 1769 * All we need to do is get the socket, and then do a checksum. 1770 */ 1771 1772 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 1773 int proto) 1774 { 1775 struct sock *sk; 1776 struct udphdr *uh; 1777 unsigned short ulen; 1778 struct rtable *rt = skb_rtable(skb); 1779 __be32 saddr, daddr; 1780 struct net *net = dev_net(skb->dev); 1781 1782 /* 1783 * Validate the packet. 1784 */ 1785 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1786 goto drop; /* No space for header. */ 1787 1788 uh = udp_hdr(skb); 1789 ulen = ntohs(uh->len); 1790 saddr = ip_hdr(skb)->saddr; 1791 daddr = ip_hdr(skb)->daddr; 1792 1793 if (ulen > skb->len) 1794 goto short_packet; 1795 1796 if (proto == IPPROTO_UDP) { 1797 /* UDP validates ulen. */ 1798 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 1799 goto short_packet; 1800 uh = udp_hdr(skb); 1801 } 1802 1803 if (udp4_csum_init(skb, uh, proto)) 1804 goto csum_error; 1805 1806 sk = skb_steal_sock(skb); 1807 if (sk) { 1808 struct dst_entry *dst = skb_dst(skb); 1809 int ret; 1810 1811 if (unlikely(sk->sk_rx_dst != dst)) 1812 udp_sk_rx_dst_set(sk, dst); 1813 1814 ret = udp_queue_rcv_skb(sk, skb); 1815 sock_put(sk); 1816 /* a return value > 0 means to resubmit the input, but 1817 * it wants the return to be -protocol, or 0 1818 */ 1819 if (ret > 0) 1820 return -ret; 1821 return 0; 1822 } 1823 1824 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1825 return __udp4_lib_mcast_deliver(net, skb, uh, 1826 saddr, daddr, udptable, proto); 1827 1828 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 1829 if (sk) { 1830 int ret; 1831 1832 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 1833 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 1834 inet_compute_pseudo); 1835 1836 ret = udp_queue_rcv_skb(sk, skb); 1837 1838 /* a return value > 0 means to resubmit the input, but 1839 * it wants the return to be -protocol, or 0 1840 */ 1841 if (ret > 0) 1842 return -ret; 1843 return 0; 1844 } 1845 1846 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1847 goto drop; 1848 nf_reset(skb); 1849 1850 /* No socket. Drop packet silently, if checksum is wrong */ 1851 if (udp_lib_checksum_complete(skb)) 1852 goto csum_error; 1853 1854 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 1855 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1856 1857 /* 1858 * Hmm. We got an UDP packet to a port to which we 1859 * don't wanna listen. Ignore it. 1860 */ 1861 kfree_skb(skb); 1862 return 0; 1863 1864 short_packet: 1865 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 1866 proto == IPPROTO_UDPLITE ? "Lite" : "", 1867 &saddr, ntohs(uh->source), 1868 ulen, skb->len, 1869 &daddr, ntohs(uh->dest)); 1870 goto drop; 1871 1872 csum_error: 1873 /* 1874 * RFC1122: OK. Discards the bad packet silently (as far as 1875 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1876 */ 1877 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 1878 proto == IPPROTO_UDPLITE ? "Lite" : "", 1879 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 1880 ulen); 1881 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 1882 drop: 1883 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 1884 kfree_skb(skb); 1885 return 0; 1886 } 1887 1888 /* We can only early demux multicast if there is a single matching socket. 1889 * If more than one socket found returns NULL 1890 */ 1891 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 1892 __be16 loc_port, __be32 loc_addr, 1893 __be16 rmt_port, __be32 rmt_addr, 1894 int dif) 1895 { 1896 struct sock *sk, *result; 1897 unsigned short hnum = ntohs(loc_port); 1898 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 1899 struct udp_hslot *hslot = &udp_table.hash[slot]; 1900 1901 /* Do not bother scanning a too big list */ 1902 if (hslot->count > 10) 1903 return NULL; 1904 1905 result = NULL; 1906 sk_for_each_rcu(sk, &hslot->head) { 1907 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 1908 rmt_port, rmt_addr, dif, hnum)) { 1909 if (result) 1910 return NULL; 1911 result = sk; 1912 } 1913 } 1914 1915 return result; 1916 } 1917 1918 /* For unicast we should only early demux connected sockets or we can 1919 * break forwarding setups. The chains here can be long so only check 1920 * if the first socket is an exact match and if not move on. 1921 */ 1922 static struct sock *__udp4_lib_demux_lookup(struct net *net, 1923 __be16 loc_port, __be32 loc_addr, 1924 __be16 rmt_port, __be32 rmt_addr, 1925 int dif) 1926 { 1927 unsigned short hnum = ntohs(loc_port); 1928 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum); 1929 unsigned int slot2 = hash2 & udp_table.mask; 1930 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 1931 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 1932 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 1933 struct sock *sk; 1934 1935 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 1936 if (INET_MATCH(sk, net, acookie, rmt_addr, 1937 loc_addr, ports, dif)) 1938 return sk; 1939 /* Only check first socket in chain */ 1940 break; 1941 } 1942 return NULL; 1943 } 1944 1945 void udp_v4_early_demux(struct sk_buff *skb) 1946 { 1947 struct net *net = dev_net(skb->dev); 1948 const struct iphdr *iph; 1949 const struct udphdr *uh; 1950 struct sock *sk = NULL; 1951 struct dst_entry *dst; 1952 int dif = skb->dev->ifindex; 1953 int ours; 1954 1955 /* validate the packet */ 1956 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 1957 return; 1958 1959 iph = ip_hdr(skb); 1960 uh = udp_hdr(skb); 1961 1962 if (skb->pkt_type == PACKET_BROADCAST || 1963 skb->pkt_type == PACKET_MULTICAST) { 1964 struct in_device *in_dev = __in_dev_get_rcu(skb->dev); 1965 1966 if (!in_dev) 1967 return; 1968 1969 /* we are supposed to accept bcast packets */ 1970 if (skb->pkt_type == PACKET_MULTICAST) { 1971 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 1972 iph->protocol); 1973 if (!ours) 1974 return; 1975 } 1976 1977 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 1978 uh->source, iph->saddr, dif); 1979 } else if (skb->pkt_type == PACKET_HOST) { 1980 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 1981 uh->source, iph->saddr, dif); 1982 } 1983 1984 if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2)) 1985 return; 1986 1987 skb->sk = sk; 1988 skb->destructor = sock_efree; 1989 dst = READ_ONCE(sk->sk_rx_dst); 1990 1991 if (dst) 1992 dst = dst_check(dst, 0); 1993 if (dst) { 1994 /* DST_NOCACHE can not be used without taking a reference */ 1995 if (dst->flags & DST_NOCACHE) { 1996 if (likely(atomic_inc_not_zero(&dst->__refcnt))) 1997 skb_dst_set(skb, dst); 1998 } else { 1999 skb_dst_set_noref(skb, dst); 2000 } 2001 } 2002 } 2003 2004 int udp_rcv(struct sk_buff *skb) 2005 { 2006 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2007 } 2008 2009 void udp_destroy_sock(struct sock *sk) 2010 { 2011 struct udp_sock *up = udp_sk(sk); 2012 bool slow = lock_sock_fast(sk); 2013 udp_flush_pending_frames(sk); 2014 unlock_sock_fast(sk, slow); 2015 if (static_key_false(&udp_encap_needed) && up->encap_type) { 2016 void (*encap_destroy)(struct sock *sk); 2017 encap_destroy = ACCESS_ONCE(up->encap_destroy); 2018 if (encap_destroy) 2019 encap_destroy(sk); 2020 } 2021 } 2022 2023 /* 2024 * Socket option code for UDP 2025 */ 2026 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2027 char __user *optval, unsigned int optlen, 2028 int (*push_pending_frames)(struct sock *)) 2029 { 2030 struct udp_sock *up = udp_sk(sk); 2031 int val, valbool; 2032 int err = 0; 2033 int is_udplite = IS_UDPLITE(sk); 2034 2035 if (optlen < sizeof(int)) 2036 return -EINVAL; 2037 2038 if (get_user(val, (int __user *)optval)) 2039 return -EFAULT; 2040 2041 valbool = val ? 1 : 0; 2042 2043 switch (optname) { 2044 case UDP_CORK: 2045 if (val != 0) { 2046 up->corkflag = 1; 2047 } else { 2048 up->corkflag = 0; 2049 lock_sock(sk); 2050 push_pending_frames(sk); 2051 release_sock(sk); 2052 } 2053 break; 2054 2055 case UDP_ENCAP: 2056 switch (val) { 2057 case 0: 2058 case UDP_ENCAP_ESPINUDP: 2059 case UDP_ENCAP_ESPINUDP_NON_IKE: 2060 up->encap_rcv = xfrm4_udp_encap_rcv; 2061 /* FALLTHROUGH */ 2062 case UDP_ENCAP_L2TPINUDP: 2063 up->encap_type = val; 2064 udp_encap_enable(); 2065 break; 2066 default: 2067 err = -ENOPROTOOPT; 2068 break; 2069 } 2070 break; 2071 2072 case UDP_NO_CHECK6_TX: 2073 up->no_check6_tx = valbool; 2074 break; 2075 2076 case UDP_NO_CHECK6_RX: 2077 up->no_check6_rx = valbool; 2078 break; 2079 2080 /* 2081 * UDP-Lite's partial checksum coverage (RFC 3828). 2082 */ 2083 /* The sender sets actual checksum coverage length via this option. 2084 * The case coverage > packet length is handled by send module. */ 2085 case UDPLITE_SEND_CSCOV: 2086 if (!is_udplite) /* Disable the option on UDP sockets */ 2087 return -ENOPROTOOPT; 2088 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2089 val = 8; 2090 else if (val > USHRT_MAX) 2091 val = USHRT_MAX; 2092 up->pcslen = val; 2093 up->pcflag |= UDPLITE_SEND_CC; 2094 break; 2095 2096 /* The receiver specifies a minimum checksum coverage value. To make 2097 * sense, this should be set to at least 8 (as done below). If zero is 2098 * used, this again means full checksum coverage. */ 2099 case UDPLITE_RECV_CSCOV: 2100 if (!is_udplite) /* Disable the option on UDP sockets */ 2101 return -ENOPROTOOPT; 2102 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2103 val = 8; 2104 else if (val > USHRT_MAX) 2105 val = USHRT_MAX; 2106 up->pcrlen = val; 2107 up->pcflag |= UDPLITE_RECV_CC; 2108 break; 2109 2110 default: 2111 err = -ENOPROTOOPT; 2112 break; 2113 } 2114 2115 return err; 2116 } 2117 EXPORT_SYMBOL(udp_lib_setsockopt); 2118 2119 int udp_setsockopt(struct sock *sk, int level, int optname, 2120 char __user *optval, unsigned int optlen) 2121 { 2122 if (level == SOL_UDP || level == SOL_UDPLITE) 2123 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2124 udp_push_pending_frames); 2125 return ip_setsockopt(sk, level, optname, optval, optlen); 2126 } 2127 2128 #ifdef CONFIG_COMPAT 2129 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2130 char __user *optval, unsigned int optlen) 2131 { 2132 if (level == SOL_UDP || level == SOL_UDPLITE) 2133 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2134 udp_push_pending_frames); 2135 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2136 } 2137 #endif 2138 2139 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2140 char __user *optval, int __user *optlen) 2141 { 2142 struct udp_sock *up = udp_sk(sk); 2143 int val, len; 2144 2145 if (get_user(len, optlen)) 2146 return -EFAULT; 2147 2148 len = min_t(unsigned int, len, sizeof(int)); 2149 2150 if (len < 0) 2151 return -EINVAL; 2152 2153 switch (optname) { 2154 case UDP_CORK: 2155 val = up->corkflag; 2156 break; 2157 2158 case UDP_ENCAP: 2159 val = up->encap_type; 2160 break; 2161 2162 case UDP_NO_CHECK6_TX: 2163 val = up->no_check6_tx; 2164 break; 2165 2166 case UDP_NO_CHECK6_RX: 2167 val = up->no_check6_rx; 2168 break; 2169 2170 /* The following two cannot be changed on UDP sockets, the return is 2171 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2172 case UDPLITE_SEND_CSCOV: 2173 val = up->pcslen; 2174 break; 2175 2176 case UDPLITE_RECV_CSCOV: 2177 val = up->pcrlen; 2178 break; 2179 2180 default: 2181 return -ENOPROTOOPT; 2182 } 2183 2184 if (put_user(len, optlen)) 2185 return -EFAULT; 2186 if (copy_to_user(optval, &val, len)) 2187 return -EFAULT; 2188 return 0; 2189 } 2190 EXPORT_SYMBOL(udp_lib_getsockopt); 2191 2192 int udp_getsockopt(struct sock *sk, int level, int optname, 2193 char __user *optval, int __user *optlen) 2194 { 2195 if (level == SOL_UDP || level == SOL_UDPLITE) 2196 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2197 return ip_getsockopt(sk, level, optname, optval, optlen); 2198 } 2199 2200 #ifdef CONFIG_COMPAT 2201 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2202 char __user *optval, int __user *optlen) 2203 { 2204 if (level == SOL_UDP || level == SOL_UDPLITE) 2205 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2206 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2207 } 2208 #endif 2209 /** 2210 * udp_poll - wait for a UDP event. 2211 * @file - file struct 2212 * @sock - socket 2213 * @wait - poll table 2214 * 2215 * This is same as datagram poll, except for the special case of 2216 * blocking sockets. If application is using a blocking fd 2217 * and a packet with checksum error is in the queue; 2218 * then it could get return from select indicating data available 2219 * but then block when reading it. Add special case code 2220 * to work around these arguably broken applications. 2221 */ 2222 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2223 { 2224 unsigned int mask = datagram_poll(file, sock, wait); 2225 struct sock *sk = sock->sk; 2226 2227 sock_rps_record_flow(sk); 2228 2229 /* Check for false positives due to checksum errors */ 2230 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2231 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk)) 2232 mask &= ~(POLLIN | POLLRDNORM); 2233 2234 return mask; 2235 2236 } 2237 EXPORT_SYMBOL(udp_poll); 2238 2239 struct proto udp_prot = { 2240 .name = "UDP", 2241 .owner = THIS_MODULE, 2242 .close = udp_lib_close, 2243 .connect = ip4_datagram_connect, 2244 .disconnect = udp_disconnect, 2245 .ioctl = udp_ioctl, 2246 .destroy = udp_destroy_sock, 2247 .setsockopt = udp_setsockopt, 2248 .getsockopt = udp_getsockopt, 2249 .sendmsg = udp_sendmsg, 2250 .recvmsg = udp_recvmsg, 2251 .sendpage = udp_sendpage, 2252 .backlog_rcv = __udp_queue_rcv_skb, 2253 .release_cb = ip4_datagram_release_cb, 2254 .hash = udp_lib_hash, 2255 .unhash = udp_lib_unhash, 2256 .rehash = udp_v4_rehash, 2257 .get_port = udp_v4_get_port, 2258 .memory_allocated = &udp_memory_allocated, 2259 .sysctl_mem = sysctl_udp_mem, 2260 .sysctl_wmem = &sysctl_udp_wmem_min, 2261 .sysctl_rmem = &sysctl_udp_rmem_min, 2262 .obj_size = sizeof(struct udp_sock), 2263 .slab_flags = SLAB_DESTROY_BY_RCU, 2264 .h.udp_table = &udp_table, 2265 #ifdef CONFIG_COMPAT 2266 .compat_setsockopt = compat_udp_setsockopt, 2267 .compat_getsockopt = compat_udp_getsockopt, 2268 #endif 2269 .clear_sk = sk_prot_clear_portaddr_nulls, 2270 }; 2271 EXPORT_SYMBOL(udp_prot); 2272 2273 /* ------------------------------------------------------------------------ */ 2274 #ifdef CONFIG_PROC_FS 2275 2276 static struct sock *udp_get_first(struct seq_file *seq, int start) 2277 { 2278 struct sock *sk; 2279 struct udp_iter_state *state = seq->private; 2280 struct net *net = seq_file_net(seq); 2281 2282 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2283 ++state->bucket) { 2284 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2285 2286 if (hlist_empty(&hslot->head)) 2287 continue; 2288 2289 spin_lock_bh(&hslot->lock); 2290 sk_for_each(sk, &hslot->head) { 2291 if (!net_eq(sock_net(sk), net)) 2292 continue; 2293 if (sk->sk_family == state->family) 2294 goto found; 2295 } 2296 spin_unlock_bh(&hslot->lock); 2297 } 2298 sk = NULL; 2299 found: 2300 return sk; 2301 } 2302 2303 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2304 { 2305 struct udp_iter_state *state = seq->private; 2306 struct net *net = seq_file_net(seq); 2307 2308 do { 2309 sk = sk_next(sk); 2310 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2311 2312 if (!sk) { 2313 if (state->bucket <= state->udp_table->mask) 2314 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2315 return udp_get_first(seq, state->bucket + 1); 2316 } 2317 return sk; 2318 } 2319 2320 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2321 { 2322 struct sock *sk = udp_get_first(seq, 0); 2323 2324 if (sk) 2325 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2326 --pos; 2327 return pos ? NULL : sk; 2328 } 2329 2330 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2331 { 2332 struct udp_iter_state *state = seq->private; 2333 state->bucket = MAX_UDP_PORTS; 2334 2335 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2336 } 2337 2338 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2339 { 2340 struct sock *sk; 2341 2342 if (v == SEQ_START_TOKEN) 2343 sk = udp_get_idx(seq, 0); 2344 else 2345 sk = udp_get_next(seq, v); 2346 2347 ++*pos; 2348 return sk; 2349 } 2350 2351 static void udp_seq_stop(struct seq_file *seq, void *v) 2352 { 2353 struct udp_iter_state *state = seq->private; 2354 2355 if (state->bucket <= state->udp_table->mask) 2356 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2357 } 2358 2359 int udp_seq_open(struct inode *inode, struct file *file) 2360 { 2361 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2362 struct udp_iter_state *s; 2363 int err; 2364 2365 err = seq_open_net(inode, file, &afinfo->seq_ops, 2366 sizeof(struct udp_iter_state)); 2367 if (err < 0) 2368 return err; 2369 2370 s = ((struct seq_file *)file->private_data)->private; 2371 s->family = afinfo->family; 2372 s->udp_table = afinfo->udp_table; 2373 return err; 2374 } 2375 EXPORT_SYMBOL(udp_seq_open); 2376 2377 /* ------------------------------------------------------------------------ */ 2378 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2379 { 2380 struct proc_dir_entry *p; 2381 int rc = 0; 2382 2383 afinfo->seq_ops.start = udp_seq_start; 2384 afinfo->seq_ops.next = udp_seq_next; 2385 afinfo->seq_ops.stop = udp_seq_stop; 2386 2387 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2388 afinfo->seq_fops, afinfo); 2389 if (!p) 2390 rc = -ENOMEM; 2391 return rc; 2392 } 2393 EXPORT_SYMBOL(udp_proc_register); 2394 2395 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2396 { 2397 remove_proc_entry(afinfo->name, net->proc_net); 2398 } 2399 EXPORT_SYMBOL(udp_proc_unregister); 2400 2401 /* ------------------------------------------------------------------------ */ 2402 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2403 int bucket) 2404 { 2405 struct inet_sock *inet = inet_sk(sp); 2406 __be32 dest = inet->inet_daddr; 2407 __be32 src = inet->inet_rcv_saddr; 2408 __u16 destp = ntohs(inet->inet_dport); 2409 __u16 srcp = ntohs(inet->inet_sport); 2410 2411 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2412 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2413 bucket, src, srcp, dest, destp, sp->sk_state, 2414 sk_wmem_alloc_get(sp), 2415 sk_rmem_alloc_get(sp), 2416 0, 0L, 0, 2417 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2418 0, sock_i_ino(sp), 2419 atomic_read(&sp->sk_refcnt), sp, 2420 atomic_read(&sp->sk_drops)); 2421 } 2422 2423 int udp4_seq_show(struct seq_file *seq, void *v) 2424 { 2425 seq_setwidth(seq, 127); 2426 if (v == SEQ_START_TOKEN) 2427 seq_puts(seq, " sl local_address rem_address st tx_queue " 2428 "rx_queue tr tm->when retrnsmt uid timeout " 2429 "inode ref pointer drops"); 2430 else { 2431 struct udp_iter_state *state = seq->private; 2432 2433 udp4_format_sock(v, seq, state->bucket); 2434 } 2435 seq_pad(seq, '\n'); 2436 return 0; 2437 } 2438 2439 static const struct file_operations udp_afinfo_seq_fops = { 2440 .owner = THIS_MODULE, 2441 .open = udp_seq_open, 2442 .read = seq_read, 2443 .llseek = seq_lseek, 2444 .release = seq_release_net 2445 }; 2446 2447 /* ------------------------------------------------------------------------ */ 2448 static struct udp_seq_afinfo udp4_seq_afinfo = { 2449 .name = "udp", 2450 .family = AF_INET, 2451 .udp_table = &udp_table, 2452 .seq_fops = &udp_afinfo_seq_fops, 2453 .seq_ops = { 2454 .show = udp4_seq_show, 2455 }, 2456 }; 2457 2458 static int __net_init udp4_proc_init_net(struct net *net) 2459 { 2460 return udp_proc_register(net, &udp4_seq_afinfo); 2461 } 2462 2463 static void __net_exit udp4_proc_exit_net(struct net *net) 2464 { 2465 udp_proc_unregister(net, &udp4_seq_afinfo); 2466 } 2467 2468 static struct pernet_operations udp4_net_ops = { 2469 .init = udp4_proc_init_net, 2470 .exit = udp4_proc_exit_net, 2471 }; 2472 2473 int __init udp4_proc_init(void) 2474 { 2475 return register_pernet_subsys(&udp4_net_ops); 2476 } 2477 2478 void udp4_proc_exit(void) 2479 { 2480 unregister_pernet_subsys(&udp4_net_ops); 2481 } 2482 #endif /* CONFIG_PROC_FS */ 2483 2484 static __initdata unsigned long uhash_entries; 2485 static int __init set_uhash_entries(char *str) 2486 { 2487 ssize_t ret; 2488 2489 if (!str) 2490 return 0; 2491 2492 ret = kstrtoul(str, 0, &uhash_entries); 2493 if (ret) 2494 return 0; 2495 2496 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2497 uhash_entries = UDP_HTABLE_SIZE_MIN; 2498 return 1; 2499 } 2500 __setup("uhash_entries=", set_uhash_entries); 2501 2502 void __init udp_table_init(struct udp_table *table, const char *name) 2503 { 2504 unsigned int i; 2505 2506 table->hash = alloc_large_system_hash(name, 2507 2 * sizeof(struct udp_hslot), 2508 uhash_entries, 2509 21, /* one slot per 2 MB */ 2510 0, 2511 &table->log, 2512 &table->mask, 2513 UDP_HTABLE_SIZE_MIN, 2514 64 * 1024); 2515 2516 table->hash2 = table->hash + (table->mask + 1); 2517 for (i = 0; i <= table->mask; i++) { 2518 INIT_HLIST_HEAD(&table->hash[i].head); 2519 table->hash[i].count = 0; 2520 spin_lock_init(&table->hash[i].lock); 2521 } 2522 for (i = 0; i <= table->mask; i++) { 2523 INIT_HLIST_HEAD(&table->hash2[i].head); 2524 table->hash2[i].count = 0; 2525 spin_lock_init(&table->hash2[i].lock); 2526 } 2527 } 2528 2529 u32 udp_flow_hashrnd(void) 2530 { 2531 static u32 hashrnd __read_mostly; 2532 2533 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2534 2535 return hashrnd; 2536 } 2537 EXPORT_SYMBOL(udp_flow_hashrnd); 2538 2539 void __init udp_init(void) 2540 { 2541 unsigned long limit; 2542 2543 udp_table_init(&udp_table, "UDP"); 2544 limit = nr_free_buffer_pages() / 8; 2545 limit = max(limit, 128UL); 2546 sysctl_udp_mem[0] = limit / 4 * 3; 2547 sysctl_udp_mem[1] = limit; 2548 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2549 2550 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2551 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2552 } 2553