xref: /openbmc/linux/net/ipv4/udp.c (revision 4800cd83)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <linux/slab.h>
99 #include <net/tcp_states.h>
100 #include <linux/skbuff.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <net/net_namespace.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include "udp_impl.h"
109 
110 struct udp_table udp_table __read_mostly;
111 EXPORT_SYMBOL(udp_table);
112 
113 long sysctl_udp_mem[3] __read_mostly;
114 EXPORT_SYMBOL(sysctl_udp_mem);
115 
116 int sysctl_udp_rmem_min __read_mostly;
117 EXPORT_SYMBOL(sysctl_udp_rmem_min);
118 
119 int sysctl_udp_wmem_min __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_wmem_min);
121 
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124 
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127 
128 static int udp_lib_lport_inuse(struct net *net, __u16 num,
129 			       const struct udp_hslot *hslot,
130 			       unsigned long *bitmap,
131 			       struct sock *sk,
132 			       int (*saddr_comp)(const struct sock *sk1,
133 						 const struct sock *sk2),
134 			       unsigned int log)
135 {
136 	struct sock *sk2;
137 	struct hlist_nulls_node *node;
138 
139 	sk_nulls_for_each(sk2, node, &hslot->head)
140 		if (net_eq(sock_net(sk2), net) &&
141 		    sk2 != sk &&
142 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
143 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
144 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
145 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
146 		    (*saddr_comp)(sk, sk2)) {
147 			if (bitmap)
148 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
149 					  bitmap);
150 			else
151 				return 1;
152 		}
153 	return 0;
154 }
155 
156 /*
157  * Note: we still hold spinlock of primary hash chain, so no other writer
158  * can insert/delete a socket with local_port == num
159  */
160 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
161 			       struct udp_hslot *hslot2,
162 			       struct sock *sk,
163 			       int (*saddr_comp)(const struct sock *sk1,
164 						 const struct sock *sk2))
165 {
166 	struct sock *sk2;
167 	struct hlist_nulls_node *node;
168 	int res = 0;
169 
170 	spin_lock(&hslot2->lock);
171 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
172 		if (net_eq(sock_net(sk2), net) &&
173 		    sk2 != sk &&
174 		    (udp_sk(sk2)->udp_port_hash == num) &&
175 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
176 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
177 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
178 		    (*saddr_comp)(sk, sk2)) {
179 			res = 1;
180 			break;
181 		}
182 	spin_unlock(&hslot2->lock);
183 	return res;
184 }
185 
186 /**
187  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
188  *
189  *  @sk:          socket struct in question
190  *  @snum:        port number to look up
191  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
192  *  @hash2_nulladdr: AF-dependant hash value in secondary hash chains,
193  *                   with NULL address
194  */
195 int udp_lib_get_port(struct sock *sk, unsigned short snum,
196 		       int (*saddr_comp)(const struct sock *sk1,
197 					 const struct sock *sk2),
198 		     unsigned int hash2_nulladdr)
199 {
200 	struct udp_hslot *hslot, *hslot2;
201 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
202 	int    error = 1;
203 	struct net *net = sock_net(sk);
204 
205 	if (!snum) {
206 		int low, high, remaining;
207 		unsigned rand;
208 		unsigned short first, last;
209 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
210 
211 		inet_get_local_port_range(&low, &high);
212 		remaining = (high - low) + 1;
213 
214 		rand = net_random();
215 		first = (((u64)rand * remaining) >> 32) + low;
216 		/*
217 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
218 		 */
219 		rand = (rand | 1) * (udptable->mask + 1);
220 		last = first + udptable->mask + 1;
221 		do {
222 			hslot = udp_hashslot(udptable, net, first);
223 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
224 			spin_lock_bh(&hslot->lock);
225 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
226 					    saddr_comp, udptable->log);
227 
228 			snum = first;
229 			/*
230 			 * Iterate on all possible values of snum for this hash.
231 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
232 			 * give us randomization and full range coverage.
233 			 */
234 			do {
235 				if (low <= snum && snum <= high &&
236 				    !test_bit(snum >> udptable->log, bitmap) &&
237 				    !inet_is_reserved_local_port(snum))
238 					goto found;
239 				snum += rand;
240 			} while (snum != first);
241 			spin_unlock_bh(&hslot->lock);
242 		} while (++first != last);
243 		goto fail;
244 	} else {
245 		hslot = udp_hashslot(udptable, net, snum);
246 		spin_lock_bh(&hslot->lock);
247 		if (hslot->count > 10) {
248 			int exist;
249 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
250 
251 			slot2          &= udptable->mask;
252 			hash2_nulladdr &= udptable->mask;
253 
254 			hslot2 = udp_hashslot2(udptable, slot2);
255 			if (hslot->count < hslot2->count)
256 				goto scan_primary_hash;
257 
258 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
259 						     sk, saddr_comp);
260 			if (!exist && (hash2_nulladdr != slot2)) {
261 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
262 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
263 							     sk, saddr_comp);
264 			}
265 			if (exist)
266 				goto fail_unlock;
267 			else
268 				goto found;
269 		}
270 scan_primary_hash:
271 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
272 					saddr_comp, 0))
273 			goto fail_unlock;
274 	}
275 found:
276 	inet_sk(sk)->inet_num = snum;
277 	udp_sk(sk)->udp_port_hash = snum;
278 	udp_sk(sk)->udp_portaddr_hash ^= snum;
279 	if (sk_unhashed(sk)) {
280 		sk_nulls_add_node_rcu(sk, &hslot->head);
281 		hslot->count++;
282 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
283 
284 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
285 		spin_lock(&hslot2->lock);
286 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
287 					 &hslot2->head);
288 		hslot2->count++;
289 		spin_unlock(&hslot2->lock);
290 	}
291 	error = 0;
292 fail_unlock:
293 	spin_unlock_bh(&hslot->lock);
294 fail:
295 	return error;
296 }
297 EXPORT_SYMBOL(udp_lib_get_port);
298 
299 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
300 {
301 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
302 
303 	return 	(!ipv6_only_sock(sk2)  &&
304 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
305 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
306 }
307 
308 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
309 				       unsigned int port)
310 {
311 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
312 }
313 
314 int udp_v4_get_port(struct sock *sk, unsigned short snum)
315 {
316 	unsigned int hash2_nulladdr =
317 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
318 	unsigned int hash2_partial =
319 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
320 
321 	/* precompute partial secondary hash */
322 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
323 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
324 }
325 
326 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
327 			 unsigned short hnum,
328 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
329 {
330 	int score = -1;
331 
332 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
333 			!ipv6_only_sock(sk)) {
334 		struct inet_sock *inet = inet_sk(sk);
335 
336 		score = (sk->sk_family == PF_INET ? 1 : 0);
337 		if (inet->inet_rcv_saddr) {
338 			if (inet->inet_rcv_saddr != daddr)
339 				return -1;
340 			score += 2;
341 		}
342 		if (inet->inet_daddr) {
343 			if (inet->inet_daddr != saddr)
344 				return -1;
345 			score += 2;
346 		}
347 		if (inet->inet_dport) {
348 			if (inet->inet_dport != sport)
349 				return -1;
350 			score += 2;
351 		}
352 		if (sk->sk_bound_dev_if) {
353 			if (sk->sk_bound_dev_if != dif)
354 				return -1;
355 			score += 2;
356 		}
357 	}
358 	return score;
359 }
360 
361 /*
362  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
363  */
364 #define SCORE2_MAX (1 + 2 + 2 + 2)
365 static inline int compute_score2(struct sock *sk, struct net *net,
366 				 __be32 saddr, __be16 sport,
367 				 __be32 daddr, unsigned int hnum, int dif)
368 {
369 	int score = -1;
370 
371 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
372 		struct inet_sock *inet = inet_sk(sk);
373 
374 		if (inet->inet_rcv_saddr != daddr)
375 			return -1;
376 		if (inet->inet_num != hnum)
377 			return -1;
378 
379 		score = (sk->sk_family == PF_INET ? 1 : 0);
380 		if (inet->inet_daddr) {
381 			if (inet->inet_daddr != saddr)
382 				return -1;
383 			score += 2;
384 		}
385 		if (inet->inet_dport) {
386 			if (inet->inet_dport != sport)
387 				return -1;
388 			score += 2;
389 		}
390 		if (sk->sk_bound_dev_if) {
391 			if (sk->sk_bound_dev_if != dif)
392 				return -1;
393 			score += 2;
394 		}
395 	}
396 	return score;
397 }
398 
399 
400 /* called with read_rcu_lock() */
401 static struct sock *udp4_lib_lookup2(struct net *net,
402 		__be32 saddr, __be16 sport,
403 		__be32 daddr, unsigned int hnum, int dif,
404 		struct udp_hslot *hslot2, unsigned int slot2)
405 {
406 	struct sock *sk, *result;
407 	struct hlist_nulls_node *node;
408 	int score, badness;
409 
410 begin:
411 	result = NULL;
412 	badness = -1;
413 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
414 		score = compute_score2(sk, net, saddr, sport,
415 				      daddr, hnum, dif);
416 		if (score > badness) {
417 			result = sk;
418 			badness = score;
419 			if (score == SCORE2_MAX)
420 				goto exact_match;
421 		}
422 	}
423 	/*
424 	 * if the nulls value we got at the end of this lookup is
425 	 * not the expected one, we must restart lookup.
426 	 * We probably met an item that was moved to another chain.
427 	 */
428 	if (get_nulls_value(node) != slot2)
429 		goto begin;
430 
431 	if (result) {
432 exact_match:
433 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
434 			result = NULL;
435 		else if (unlikely(compute_score2(result, net, saddr, sport,
436 				  daddr, hnum, dif) < badness)) {
437 			sock_put(result);
438 			goto begin;
439 		}
440 	}
441 	return result;
442 }
443 
444 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
445  * harder than this. -DaveM
446  */
447 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
448 		__be16 sport, __be32 daddr, __be16 dport,
449 		int dif, struct udp_table *udptable)
450 {
451 	struct sock *sk, *result;
452 	struct hlist_nulls_node *node;
453 	unsigned short hnum = ntohs(dport);
454 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
455 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
456 	int score, badness;
457 
458 	rcu_read_lock();
459 	if (hslot->count > 10) {
460 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
461 		slot2 = hash2 & udptable->mask;
462 		hslot2 = &udptable->hash2[slot2];
463 		if (hslot->count < hslot2->count)
464 			goto begin;
465 
466 		result = udp4_lib_lookup2(net, saddr, sport,
467 					  daddr, hnum, dif,
468 					  hslot2, slot2);
469 		if (!result) {
470 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
471 			slot2 = hash2 & udptable->mask;
472 			hslot2 = &udptable->hash2[slot2];
473 			if (hslot->count < hslot2->count)
474 				goto begin;
475 
476 			result = udp4_lib_lookup2(net, saddr, sport,
477 						  htonl(INADDR_ANY), hnum, dif,
478 						  hslot2, slot2);
479 		}
480 		rcu_read_unlock();
481 		return result;
482 	}
483 begin:
484 	result = NULL;
485 	badness = -1;
486 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
487 		score = compute_score(sk, net, saddr, hnum, sport,
488 				      daddr, dport, dif);
489 		if (score > badness) {
490 			result = sk;
491 			badness = score;
492 		}
493 	}
494 	/*
495 	 * if the nulls value we got at the end of this lookup is
496 	 * not the expected one, we must restart lookup.
497 	 * We probably met an item that was moved to another chain.
498 	 */
499 	if (get_nulls_value(node) != slot)
500 		goto begin;
501 
502 	if (result) {
503 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
504 			result = NULL;
505 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
506 				  daddr, dport, dif) < badness)) {
507 			sock_put(result);
508 			goto begin;
509 		}
510 	}
511 	rcu_read_unlock();
512 	return result;
513 }
514 
515 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
516 						 __be16 sport, __be16 dport,
517 						 struct udp_table *udptable)
518 {
519 	struct sock *sk;
520 	const struct iphdr *iph = ip_hdr(skb);
521 
522 	if (unlikely(sk = skb_steal_sock(skb)))
523 		return sk;
524 	else
525 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
526 					 iph->daddr, dport, inet_iif(skb),
527 					 udptable);
528 }
529 
530 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
531 			     __be32 daddr, __be16 dport, int dif)
532 {
533 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
534 }
535 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
536 
537 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
538 					     __be16 loc_port, __be32 loc_addr,
539 					     __be16 rmt_port, __be32 rmt_addr,
540 					     int dif)
541 {
542 	struct hlist_nulls_node *node;
543 	struct sock *s = sk;
544 	unsigned short hnum = ntohs(loc_port);
545 
546 	sk_nulls_for_each_from(s, node) {
547 		struct inet_sock *inet = inet_sk(s);
548 
549 		if (!net_eq(sock_net(s), net) ||
550 		    udp_sk(s)->udp_port_hash != hnum ||
551 		    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
552 		    (inet->inet_dport != rmt_port && inet->inet_dport) ||
553 		    (inet->inet_rcv_saddr &&
554 		     inet->inet_rcv_saddr != loc_addr) ||
555 		    ipv6_only_sock(s) ||
556 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
557 			continue;
558 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
559 			continue;
560 		goto found;
561 	}
562 	s = NULL;
563 found:
564 	return s;
565 }
566 
567 /*
568  * This routine is called by the ICMP module when it gets some
569  * sort of error condition.  If err < 0 then the socket should
570  * be closed and the error returned to the user.  If err > 0
571  * it's just the icmp type << 8 | icmp code.
572  * Header points to the ip header of the error packet. We move
573  * on past this. Then (as it used to claim before adjustment)
574  * header points to the first 8 bytes of the udp header.  We need
575  * to find the appropriate port.
576  */
577 
578 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
579 {
580 	struct inet_sock *inet;
581 	struct iphdr *iph = (struct iphdr *)skb->data;
582 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
583 	const int type = icmp_hdr(skb)->type;
584 	const int code = icmp_hdr(skb)->code;
585 	struct sock *sk;
586 	int harderr;
587 	int err;
588 	struct net *net = dev_net(skb->dev);
589 
590 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
591 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
592 	if (sk == NULL) {
593 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
594 		return;	/* No socket for error */
595 	}
596 
597 	err = 0;
598 	harderr = 0;
599 	inet = inet_sk(sk);
600 
601 	switch (type) {
602 	default:
603 	case ICMP_TIME_EXCEEDED:
604 		err = EHOSTUNREACH;
605 		break;
606 	case ICMP_SOURCE_QUENCH:
607 		goto out;
608 	case ICMP_PARAMETERPROB:
609 		err = EPROTO;
610 		harderr = 1;
611 		break;
612 	case ICMP_DEST_UNREACH:
613 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
614 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
615 				err = EMSGSIZE;
616 				harderr = 1;
617 				break;
618 			}
619 			goto out;
620 		}
621 		err = EHOSTUNREACH;
622 		if (code <= NR_ICMP_UNREACH) {
623 			harderr = icmp_err_convert[code].fatal;
624 			err = icmp_err_convert[code].errno;
625 		}
626 		break;
627 	}
628 
629 	/*
630 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
631 	 *	4.1.3.3.
632 	 */
633 	if (!inet->recverr) {
634 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
635 			goto out;
636 	} else
637 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
638 
639 	sk->sk_err = err;
640 	sk->sk_error_report(sk);
641 out:
642 	sock_put(sk);
643 }
644 
645 void udp_err(struct sk_buff *skb, u32 info)
646 {
647 	__udp4_lib_err(skb, info, &udp_table);
648 }
649 
650 /*
651  * Throw away all pending data and cancel the corking. Socket is locked.
652  */
653 void udp_flush_pending_frames(struct sock *sk)
654 {
655 	struct udp_sock *up = udp_sk(sk);
656 
657 	if (up->pending) {
658 		up->len = 0;
659 		up->pending = 0;
660 		ip_flush_pending_frames(sk);
661 	}
662 }
663 EXPORT_SYMBOL(udp_flush_pending_frames);
664 
665 /**
666  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
667  * 	@sk: 	socket we are sending on
668  * 	@skb: 	sk_buff containing the filled-in UDP header
669  * 	        (checksum field must be zeroed out)
670  */
671 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
672 				 __be32 src, __be32 dst, int len)
673 {
674 	unsigned int offset;
675 	struct udphdr *uh = udp_hdr(skb);
676 	__wsum csum = 0;
677 
678 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
679 		/*
680 		 * Only one fragment on the socket.
681 		 */
682 		skb->csum_start = skb_transport_header(skb) - skb->head;
683 		skb->csum_offset = offsetof(struct udphdr, check);
684 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
685 	} else {
686 		/*
687 		 * HW-checksum won't work as there are two or more
688 		 * fragments on the socket so that all csums of sk_buffs
689 		 * should be together
690 		 */
691 		offset = skb_transport_offset(skb);
692 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
693 
694 		skb->ip_summed = CHECKSUM_NONE;
695 
696 		skb_queue_walk(&sk->sk_write_queue, skb) {
697 			csum = csum_add(csum, skb->csum);
698 		}
699 
700 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
701 		if (uh->check == 0)
702 			uh->check = CSUM_MANGLED_0;
703 	}
704 }
705 
706 /*
707  * Push out all pending data as one UDP datagram. Socket is locked.
708  */
709 static int udp_push_pending_frames(struct sock *sk)
710 {
711 	struct udp_sock  *up = udp_sk(sk);
712 	struct inet_sock *inet = inet_sk(sk);
713 	struct flowi *fl = &inet->cork.fl;
714 	struct sk_buff *skb;
715 	struct udphdr *uh;
716 	int err = 0;
717 	int is_udplite = IS_UDPLITE(sk);
718 	__wsum csum = 0;
719 
720 	/* Grab the skbuff where UDP header space exists. */
721 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
722 		goto out;
723 
724 	/*
725 	 * Create a UDP header
726 	 */
727 	uh = udp_hdr(skb);
728 	uh->source = fl->fl_ip_sport;
729 	uh->dest = fl->fl_ip_dport;
730 	uh->len = htons(up->len);
731 	uh->check = 0;
732 
733 	if (is_udplite)  				 /*     UDP-Lite      */
734 		csum  = udplite_csum_outgoing(sk, skb);
735 
736 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
737 
738 		skb->ip_summed = CHECKSUM_NONE;
739 		goto send;
740 
741 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
742 
743 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len);
744 		goto send;
745 
746 	} else						 /*   `normal' UDP    */
747 		csum = udp_csum_outgoing(sk, skb);
748 
749 	/* add protocol-dependent pseudo-header */
750 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
751 				      sk->sk_protocol, csum);
752 	if (uh->check == 0)
753 		uh->check = CSUM_MANGLED_0;
754 
755 send:
756 	err = ip_push_pending_frames(sk);
757 	if (err) {
758 		if (err == -ENOBUFS && !inet->recverr) {
759 			UDP_INC_STATS_USER(sock_net(sk),
760 					   UDP_MIB_SNDBUFERRORS, is_udplite);
761 			err = 0;
762 		}
763 	} else
764 		UDP_INC_STATS_USER(sock_net(sk),
765 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
766 out:
767 	up->len = 0;
768 	up->pending = 0;
769 	return err;
770 }
771 
772 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
773 		size_t len)
774 {
775 	struct inet_sock *inet = inet_sk(sk);
776 	struct udp_sock *up = udp_sk(sk);
777 	int ulen = len;
778 	struct ipcm_cookie ipc;
779 	struct rtable *rt = NULL;
780 	int free = 0;
781 	int connected = 0;
782 	__be32 daddr, faddr, saddr;
783 	__be16 dport;
784 	u8  tos;
785 	int err, is_udplite = IS_UDPLITE(sk);
786 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
787 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
788 
789 	if (len > 0xFFFF)
790 		return -EMSGSIZE;
791 
792 	/*
793 	 *	Check the flags.
794 	 */
795 
796 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
797 		return -EOPNOTSUPP;
798 
799 	ipc.opt = NULL;
800 	ipc.tx_flags = 0;
801 
802 	if (up->pending) {
803 		/*
804 		 * There are pending frames.
805 		 * The socket lock must be held while it's corked.
806 		 */
807 		lock_sock(sk);
808 		if (likely(up->pending)) {
809 			if (unlikely(up->pending != AF_INET)) {
810 				release_sock(sk);
811 				return -EINVAL;
812 			}
813 			goto do_append_data;
814 		}
815 		release_sock(sk);
816 	}
817 	ulen += sizeof(struct udphdr);
818 
819 	/*
820 	 *	Get and verify the address.
821 	 */
822 	if (msg->msg_name) {
823 		struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
824 		if (msg->msg_namelen < sizeof(*usin))
825 			return -EINVAL;
826 		if (usin->sin_family != AF_INET) {
827 			if (usin->sin_family != AF_UNSPEC)
828 				return -EAFNOSUPPORT;
829 		}
830 
831 		daddr = usin->sin_addr.s_addr;
832 		dport = usin->sin_port;
833 		if (dport == 0)
834 			return -EINVAL;
835 	} else {
836 		if (sk->sk_state != TCP_ESTABLISHED)
837 			return -EDESTADDRREQ;
838 		daddr = inet->inet_daddr;
839 		dport = inet->inet_dport;
840 		/* Open fast path for connected socket.
841 		   Route will not be used, if at least one option is set.
842 		 */
843 		connected = 1;
844 	}
845 	ipc.addr = inet->inet_saddr;
846 
847 	ipc.oif = sk->sk_bound_dev_if;
848 	err = sock_tx_timestamp(sk, &ipc.tx_flags);
849 	if (err)
850 		return err;
851 	if (msg->msg_controllen) {
852 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
853 		if (err)
854 			return err;
855 		if (ipc.opt)
856 			free = 1;
857 		connected = 0;
858 	}
859 	if (!ipc.opt)
860 		ipc.opt = inet->opt;
861 
862 	saddr = ipc.addr;
863 	ipc.addr = faddr = daddr;
864 
865 	if (ipc.opt && ipc.opt->srr) {
866 		if (!daddr)
867 			return -EINVAL;
868 		faddr = ipc.opt->faddr;
869 		connected = 0;
870 	}
871 	tos = RT_TOS(inet->tos);
872 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
873 	    (msg->msg_flags & MSG_DONTROUTE) ||
874 	    (ipc.opt && ipc.opt->is_strictroute)) {
875 		tos |= RTO_ONLINK;
876 		connected = 0;
877 	}
878 
879 	if (ipv4_is_multicast(daddr)) {
880 		if (!ipc.oif)
881 			ipc.oif = inet->mc_index;
882 		if (!saddr)
883 			saddr = inet->mc_addr;
884 		connected = 0;
885 	}
886 
887 	if (connected)
888 		rt = (struct rtable *)sk_dst_check(sk, 0);
889 
890 	if (rt == NULL) {
891 		struct flowi fl = { .oif = ipc.oif,
892 				    .mark = sk->sk_mark,
893 				    .fl4_dst = faddr,
894 				    .fl4_src = saddr,
895 				    .fl4_tos = tos,
896 				    .proto = sk->sk_protocol,
897 				    .flags = inet_sk_flowi_flags(sk),
898 				    .fl_ip_sport = inet->inet_sport,
899 				    .fl_ip_dport = dport };
900 		struct net *net = sock_net(sk);
901 
902 		security_sk_classify_flow(sk, &fl);
903 		err = ip_route_output_flow(net, &rt, &fl, sk, 1);
904 		if (err) {
905 			if (err == -ENETUNREACH)
906 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
907 			goto out;
908 		}
909 
910 		err = -EACCES;
911 		if ((rt->rt_flags & RTCF_BROADCAST) &&
912 		    !sock_flag(sk, SOCK_BROADCAST))
913 			goto out;
914 		if (connected)
915 			sk_dst_set(sk, dst_clone(&rt->dst));
916 	}
917 
918 	if (msg->msg_flags&MSG_CONFIRM)
919 		goto do_confirm;
920 back_from_confirm:
921 
922 	saddr = rt->rt_src;
923 	if (!ipc.addr)
924 		daddr = ipc.addr = rt->rt_dst;
925 
926 	lock_sock(sk);
927 	if (unlikely(up->pending)) {
928 		/* The socket is already corked while preparing it. */
929 		/* ... which is an evident application bug. --ANK */
930 		release_sock(sk);
931 
932 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
933 		err = -EINVAL;
934 		goto out;
935 	}
936 	/*
937 	 *	Now cork the socket to pend data.
938 	 */
939 	inet->cork.fl.fl4_dst = daddr;
940 	inet->cork.fl.fl_ip_dport = dport;
941 	inet->cork.fl.fl4_src = saddr;
942 	inet->cork.fl.fl_ip_sport = inet->inet_sport;
943 	up->pending = AF_INET;
944 
945 do_append_data:
946 	up->len += ulen;
947 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
948 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
949 			sizeof(struct udphdr), &ipc, &rt,
950 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
951 	if (err)
952 		udp_flush_pending_frames(sk);
953 	else if (!corkreq)
954 		err = udp_push_pending_frames(sk);
955 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
956 		up->pending = 0;
957 	release_sock(sk);
958 
959 out:
960 	ip_rt_put(rt);
961 	if (free)
962 		kfree(ipc.opt);
963 	if (!err)
964 		return len;
965 	/*
966 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
967 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
968 	 * we don't have a good statistic (IpOutDiscards but it can be too many
969 	 * things).  We could add another new stat but at least for now that
970 	 * seems like overkill.
971 	 */
972 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
973 		UDP_INC_STATS_USER(sock_net(sk),
974 				UDP_MIB_SNDBUFERRORS, is_udplite);
975 	}
976 	return err;
977 
978 do_confirm:
979 	dst_confirm(&rt->dst);
980 	if (!(msg->msg_flags&MSG_PROBE) || len)
981 		goto back_from_confirm;
982 	err = 0;
983 	goto out;
984 }
985 EXPORT_SYMBOL(udp_sendmsg);
986 
987 int udp_sendpage(struct sock *sk, struct page *page, int offset,
988 		 size_t size, int flags)
989 {
990 	struct udp_sock *up = udp_sk(sk);
991 	int ret;
992 
993 	if (!up->pending) {
994 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
995 
996 		/* Call udp_sendmsg to specify destination address which
997 		 * sendpage interface can't pass.
998 		 * This will succeed only when the socket is connected.
999 		 */
1000 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1001 		if (ret < 0)
1002 			return ret;
1003 	}
1004 
1005 	lock_sock(sk);
1006 
1007 	if (unlikely(!up->pending)) {
1008 		release_sock(sk);
1009 
1010 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
1011 		return -EINVAL;
1012 	}
1013 
1014 	ret = ip_append_page(sk, page, offset, size, flags);
1015 	if (ret == -EOPNOTSUPP) {
1016 		release_sock(sk);
1017 		return sock_no_sendpage(sk->sk_socket, page, offset,
1018 					size, flags);
1019 	}
1020 	if (ret < 0) {
1021 		udp_flush_pending_frames(sk);
1022 		goto out;
1023 	}
1024 
1025 	up->len += size;
1026 	if (!(up->corkflag || (flags&MSG_MORE)))
1027 		ret = udp_push_pending_frames(sk);
1028 	if (!ret)
1029 		ret = size;
1030 out:
1031 	release_sock(sk);
1032 	return ret;
1033 }
1034 
1035 
1036 /**
1037  *	first_packet_length	- return length of first packet in receive queue
1038  *	@sk: socket
1039  *
1040  *	Drops all bad checksum frames, until a valid one is found.
1041  *	Returns the length of found skb, or 0 if none is found.
1042  */
1043 static unsigned int first_packet_length(struct sock *sk)
1044 {
1045 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1046 	struct sk_buff *skb;
1047 	unsigned int res;
1048 
1049 	__skb_queue_head_init(&list_kill);
1050 
1051 	spin_lock_bh(&rcvq->lock);
1052 	while ((skb = skb_peek(rcvq)) != NULL &&
1053 		udp_lib_checksum_complete(skb)) {
1054 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1055 				 IS_UDPLITE(sk));
1056 		atomic_inc(&sk->sk_drops);
1057 		__skb_unlink(skb, rcvq);
1058 		__skb_queue_tail(&list_kill, skb);
1059 	}
1060 	res = skb ? skb->len : 0;
1061 	spin_unlock_bh(&rcvq->lock);
1062 
1063 	if (!skb_queue_empty(&list_kill)) {
1064 		bool slow = lock_sock_fast(sk);
1065 
1066 		__skb_queue_purge(&list_kill);
1067 		sk_mem_reclaim_partial(sk);
1068 		unlock_sock_fast(sk, slow);
1069 	}
1070 	return res;
1071 }
1072 
1073 /*
1074  *	IOCTL requests applicable to the UDP protocol
1075  */
1076 
1077 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1078 {
1079 	switch (cmd) {
1080 	case SIOCOUTQ:
1081 	{
1082 		int amount = sk_wmem_alloc_get(sk);
1083 
1084 		return put_user(amount, (int __user *)arg);
1085 	}
1086 
1087 	case SIOCINQ:
1088 	{
1089 		unsigned int amount = first_packet_length(sk);
1090 
1091 		if (amount)
1092 			/*
1093 			 * We will only return the amount
1094 			 * of this packet since that is all
1095 			 * that will be read.
1096 			 */
1097 			amount -= sizeof(struct udphdr);
1098 
1099 		return put_user(amount, (int __user *)arg);
1100 	}
1101 
1102 	default:
1103 		return -ENOIOCTLCMD;
1104 	}
1105 
1106 	return 0;
1107 }
1108 EXPORT_SYMBOL(udp_ioctl);
1109 
1110 /*
1111  * 	This should be easy, if there is something there we
1112  * 	return it, otherwise we block.
1113  */
1114 
1115 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1116 		size_t len, int noblock, int flags, int *addr_len)
1117 {
1118 	struct inet_sock *inet = inet_sk(sk);
1119 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1120 	struct sk_buff *skb;
1121 	unsigned int ulen;
1122 	int peeked;
1123 	int err;
1124 	int is_udplite = IS_UDPLITE(sk);
1125 	bool slow;
1126 
1127 	/*
1128 	 *	Check any passed addresses
1129 	 */
1130 	if (addr_len)
1131 		*addr_len = sizeof(*sin);
1132 
1133 	if (flags & MSG_ERRQUEUE)
1134 		return ip_recv_error(sk, msg, len);
1135 
1136 try_again:
1137 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1138 				  &peeked, &err);
1139 	if (!skb)
1140 		goto out;
1141 
1142 	ulen = skb->len - sizeof(struct udphdr);
1143 	if (len > ulen)
1144 		len = ulen;
1145 	else if (len < ulen)
1146 		msg->msg_flags |= MSG_TRUNC;
1147 
1148 	/*
1149 	 * If checksum is needed at all, try to do it while copying the
1150 	 * data.  If the data is truncated, or if we only want a partial
1151 	 * coverage checksum (UDP-Lite), do it before the copy.
1152 	 */
1153 
1154 	if (len < ulen || UDP_SKB_CB(skb)->partial_cov) {
1155 		if (udp_lib_checksum_complete(skb))
1156 			goto csum_copy_err;
1157 	}
1158 
1159 	if (skb_csum_unnecessary(skb))
1160 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1161 					      msg->msg_iov, len);
1162 	else {
1163 		err = skb_copy_and_csum_datagram_iovec(skb,
1164 						       sizeof(struct udphdr),
1165 						       msg->msg_iov);
1166 
1167 		if (err == -EINVAL)
1168 			goto csum_copy_err;
1169 	}
1170 
1171 	if (err)
1172 		goto out_free;
1173 
1174 	if (!peeked)
1175 		UDP_INC_STATS_USER(sock_net(sk),
1176 				UDP_MIB_INDATAGRAMS, is_udplite);
1177 
1178 	sock_recv_ts_and_drops(msg, sk, skb);
1179 
1180 	/* Copy the address. */
1181 	if (sin) {
1182 		sin->sin_family = AF_INET;
1183 		sin->sin_port = udp_hdr(skb)->source;
1184 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1185 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1186 	}
1187 	if (inet->cmsg_flags)
1188 		ip_cmsg_recv(msg, skb);
1189 
1190 	err = len;
1191 	if (flags & MSG_TRUNC)
1192 		err = ulen;
1193 
1194 out_free:
1195 	skb_free_datagram_locked(sk, skb);
1196 out:
1197 	return err;
1198 
1199 csum_copy_err:
1200 	slow = lock_sock_fast(sk);
1201 	if (!skb_kill_datagram(sk, skb, flags))
1202 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1203 	unlock_sock_fast(sk, slow);
1204 
1205 	if (noblock)
1206 		return -EAGAIN;
1207 	goto try_again;
1208 }
1209 
1210 
1211 int udp_disconnect(struct sock *sk, int flags)
1212 {
1213 	struct inet_sock *inet = inet_sk(sk);
1214 	/*
1215 	 *	1003.1g - break association.
1216 	 */
1217 
1218 	sk->sk_state = TCP_CLOSE;
1219 	inet->inet_daddr = 0;
1220 	inet->inet_dport = 0;
1221 	sock_rps_save_rxhash(sk, 0);
1222 	sk->sk_bound_dev_if = 0;
1223 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1224 		inet_reset_saddr(sk);
1225 
1226 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1227 		sk->sk_prot->unhash(sk);
1228 		inet->inet_sport = 0;
1229 	}
1230 	sk_dst_reset(sk);
1231 	return 0;
1232 }
1233 EXPORT_SYMBOL(udp_disconnect);
1234 
1235 void udp_lib_unhash(struct sock *sk)
1236 {
1237 	if (sk_hashed(sk)) {
1238 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1239 		struct udp_hslot *hslot, *hslot2;
1240 
1241 		hslot  = udp_hashslot(udptable, sock_net(sk),
1242 				      udp_sk(sk)->udp_port_hash);
1243 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1244 
1245 		spin_lock_bh(&hslot->lock);
1246 		if (sk_nulls_del_node_init_rcu(sk)) {
1247 			hslot->count--;
1248 			inet_sk(sk)->inet_num = 0;
1249 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1250 
1251 			spin_lock(&hslot2->lock);
1252 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1253 			hslot2->count--;
1254 			spin_unlock(&hslot2->lock);
1255 		}
1256 		spin_unlock_bh(&hslot->lock);
1257 	}
1258 }
1259 EXPORT_SYMBOL(udp_lib_unhash);
1260 
1261 /*
1262  * inet_rcv_saddr was changed, we must rehash secondary hash
1263  */
1264 void udp_lib_rehash(struct sock *sk, u16 newhash)
1265 {
1266 	if (sk_hashed(sk)) {
1267 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1268 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1269 
1270 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1271 		nhslot2 = udp_hashslot2(udptable, newhash);
1272 		udp_sk(sk)->udp_portaddr_hash = newhash;
1273 		if (hslot2 != nhslot2) {
1274 			hslot = udp_hashslot(udptable, sock_net(sk),
1275 					     udp_sk(sk)->udp_port_hash);
1276 			/* we must lock primary chain too */
1277 			spin_lock_bh(&hslot->lock);
1278 
1279 			spin_lock(&hslot2->lock);
1280 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1281 			hslot2->count--;
1282 			spin_unlock(&hslot2->lock);
1283 
1284 			spin_lock(&nhslot2->lock);
1285 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1286 						 &nhslot2->head);
1287 			nhslot2->count++;
1288 			spin_unlock(&nhslot2->lock);
1289 
1290 			spin_unlock_bh(&hslot->lock);
1291 		}
1292 	}
1293 }
1294 EXPORT_SYMBOL(udp_lib_rehash);
1295 
1296 static void udp_v4_rehash(struct sock *sk)
1297 {
1298 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1299 					  inet_sk(sk)->inet_rcv_saddr,
1300 					  inet_sk(sk)->inet_num);
1301 	udp_lib_rehash(sk, new_hash);
1302 }
1303 
1304 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1305 {
1306 	int rc;
1307 
1308 	if (inet_sk(sk)->inet_daddr)
1309 		sock_rps_save_rxhash(sk, skb->rxhash);
1310 
1311 	rc = ip_queue_rcv_skb(sk, skb);
1312 	if (rc < 0) {
1313 		int is_udplite = IS_UDPLITE(sk);
1314 
1315 		/* Note that an ENOMEM error is charged twice */
1316 		if (rc == -ENOMEM)
1317 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1318 					 is_udplite);
1319 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1320 		kfree_skb(skb);
1321 		return -1;
1322 	}
1323 
1324 	return 0;
1325 
1326 }
1327 
1328 /* returns:
1329  *  -1: error
1330  *   0: success
1331  *  >0: "udp encap" protocol resubmission
1332  *
1333  * Note that in the success and error cases, the skb is assumed to
1334  * have either been requeued or freed.
1335  */
1336 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1337 {
1338 	struct udp_sock *up = udp_sk(sk);
1339 	int rc;
1340 	int is_udplite = IS_UDPLITE(sk);
1341 
1342 	/*
1343 	 *	Charge it to the socket, dropping if the queue is full.
1344 	 */
1345 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1346 		goto drop;
1347 	nf_reset(skb);
1348 
1349 	if (up->encap_type) {
1350 		/*
1351 		 * This is an encapsulation socket so pass the skb to
1352 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1353 		 * fall through and pass this up the UDP socket.
1354 		 * up->encap_rcv() returns the following value:
1355 		 * =0 if skb was successfully passed to the encap
1356 		 *    handler or was discarded by it.
1357 		 * >0 if skb should be passed on to UDP.
1358 		 * <0 if skb should be resubmitted as proto -N
1359 		 */
1360 
1361 		/* if we're overly short, let UDP handle it */
1362 		if (skb->len > sizeof(struct udphdr) &&
1363 		    up->encap_rcv != NULL) {
1364 			int ret;
1365 
1366 			ret = (*up->encap_rcv)(sk, skb);
1367 			if (ret <= 0) {
1368 				UDP_INC_STATS_BH(sock_net(sk),
1369 						 UDP_MIB_INDATAGRAMS,
1370 						 is_udplite);
1371 				return -ret;
1372 			}
1373 		}
1374 
1375 		/* FALLTHROUGH -- it's a UDP Packet */
1376 	}
1377 
1378 	/*
1379 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1380 	 */
1381 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1382 
1383 		/*
1384 		 * MIB statistics other than incrementing the error count are
1385 		 * disabled for the following two types of errors: these depend
1386 		 * on the application settings, not on the functioning of the
1387 		 * protocol stack as such.
1388 		 *
1389 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1390 		 * way ... to ... at least let the receiving application block
1391 		 * delivery of packets with coverage values less than a value
1392 		 * provided by the application."
1393 		 */
1394 		if (up->pcrlen == 0) {          /* full coverage was set  */
1395 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1396 				"%d while full coverage %d requested\n",
1397 				UDP_SKB_CB(skb)->cscov, skb->len);
1398 			goto drop;
1399 		}
1400 		/* The next case involves violating the min. coverage requested
1401 		 * by the receiver. This is subtle: if receiver wants x and x is
1402 		 * greater than the buffersize/MTU then receiver will complain
1403 		 * that it wants x while sender emits packets of smaller size y.
1404 		 * Therefore the above ...()->partial_cov statement is essential.
1405 		 */
1406 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1407 			LIMIT_NETDEBUG(KERN_WARNING
1408 				"UDPLITE: coverage %d too small, need min %d\n",
1409 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1410 			goto drop;
1411 		}
1412 	}
1413 
1414 	if (rcu_dereference_raw(sk->sk_filter)) {
1415 		if (udp_lib_checksum_complete(skb))
1416 			goto drop;
1417 	}
1418 
1419 
1420 	if (sk_rcvqueues_full(sk, skb))
1421 		goto drop;
1422 
1423 	rc = 0;
1424 
1425 	bh_lock_sock(sk);
1426 	if (!sock_owned_by_user(sk))
1427 		rc = __udp_queue_rcv_skb(sk, skb);
1428 	else if (sk_add_backlog(sk, skb)) {
1429 		bh_unlock_sock(sk);
1430 		goto drop;
1431 	}
1432 	bh_unlock_sock(sk);
1433 
1434 	return rc;
1435 
1436 drop:
1437 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1438 	atomic_inc(&sk->sk_drops);
1439 	kfree_skb(skb);
1440 	return -1;
1441 }
1442 
1443 
1444 static void flush_stack(struct sock **stack, unsigned int count,
1445 			struct sk_buff *skb, unsigned int final)
1446 {
1447 	unsigned int i;
1448 	struct sk_buff *skb1 = NULL;
1449 	struct sock *sk;
1450 
1451 	for (i = 0; i < count; i++) {
1452 		sk = stack[i];
1453 		if (likely(skb1 == NULL))
1454 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1455 
1456 		if (!skb1) {
1457 			atomic_inc(&sk->sk_drops);
1458 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1459 					 IS_UDPLITE(sk));
1460 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1461 					 IS_UDPLITE(sk));
1462 		}
1463 
1464 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1465 			skb1 = NULL;
1466 	}
1467 	if (unlikely(skb1))
1468 		kfree_skb(skb1);
1469 }
1470 
1471 /*
1472  *	Multicasts and broadcasts go to each listener.
1473  *
1474  *	Note: called only from the BH handler context.
1475  */
1476 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1477 				    struct udphdr  *uh,
1478 				    __be32 saddr, __be32 daddr,
1479 				    struct udp_table *udptable)
1480 {
1481 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1482 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1483 	int dif;
1484 	unsigned int i, count = 0;
1485 
1486 	spin_lock(&hslot->lock);
1487 	sk = sk_nulls_head(&hslot->head);
1488 	dif = skb->dev->ifindex;
1489 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1490 	while (sk) {
1491 		stack[count++] = sk;
1492 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1493 				       daddr, uh->source, saddr, dif);
1494 		if (unlikely(count == ARRAY_SIZE(stack))) {
1495 			if (!sk)
1496 				break;
1497 			flush_stack(stack, count, skb, ~0);
1498 			count = 0;
1499 		}
1500 	}
1501 	/*
1502 	 * before releasing chain lock, we must take a reference on sockets
1503 	 */
1504 	for (i = 0; i < count; i++)
1505 		sock_hold(stack[i]);
1506 
1507 	spin_unlock(&hslot->lock);
1508 
1509 	/*
1510 	 * do the slow work with no lock held
1511 	 */
1512 	if (count) {
1513 		flush_stack(stack, count, skb, count - 1);
1514 
1515 		for (i = 0; i < count; i++)
1516 			sock_put(stack[i]);
1517 	} else {
1518 		kfree_skb(skb);
1519 	}
1520 	return 0;
1521 }
1522 
1523 /* Initialize UDP checksum. If exited with zero value (success),
1524  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1525  * Otherwise, csum completion requires chacksumming packet body,
1526  * including udp header and folding it to skb->csum.
1527  */
1528 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1529 				 int proto)
1530 {
1531 	const struct iphdr *iph;
1532 	int err;
1533 
1534 	UDP_SKB_CB(skb)->partial_cov = 0;
1535 	UDP_SKB_CB(skb)->cscov = skb->len;
1536 
1537 	if (proto == IPPROTO_UDPLITE) {
1538 		err = udplite_checksum_init(skb, uh);
1539 		if (err)
1540 			return err;
1541 	}
1542 
1543 	iph = ip_hdr(skb);
1544 	if (uh->check == 0) {
1545 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1546 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1547 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1548 				      proto, skb->csum))
1549 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1550 	}
1551 	if (!skb_csum_unnecessary(skb))
1552 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1553 					       skb->len, proto, 0);
1554 	/* Probably, we should checksum udp header (it should be in cache
1555 	 * in any case) and data in tiny packets (< rx copybreak).
1556 	 */
1557 
1558 	return 0;
1559 }
1560 
1561 /*
1562  *	All we need to do is get the socket, and then do a checksum.
1563  */
1564 
1565 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1566 		   int proto)
1567 {
1568 	struct sock *sk;
1569 	struct udphdr *uh;
1570 	unsigned short ulen;
1571 	struct rtable *rt = skb_rtable(skb);
1572 	__be32 saddr, daddr;
1573 	struct net *net = dev_net(skb->dev);
1574 
1575 	/*
1576 	 *  Validate the packet.
1577 	 */
1578 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1579 		goto drop;		/* No space for header. */
1580 
1581 	uh   = udp_hdr(skb);
1582 	ulen = ntohs(uh->len);
1583 	saddr = ip_hdr(skb)->saddr;
1584 	daddr = ip_hdr(skb)->daddr;
1585 
1586 	if (ulen > skb->len)
1587 		goto short_packet;
1588 
1589 	if (proto == IPPROTO_UDP) {
1590 		/* UDP validates ulen. */
1591 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1592 			goto short_packet;
1593 		uh = udp_hdr(skb);
1594 	}
1595 
1596 	if (udp4_csum_init(skb, uh, proto))
1597 		goto csum_error;
1598 
1599 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1600 		return __udp4_lib_mcast_deliver(net, skb, uh,
1601 				saddr, daddr, udptable);
1602 
1603 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1604 
1605 	if (sk != NULL) {
1606 		int ret = udp_queue_rcv_skb(sk, skb);
1607 		sock_put(sk);
1608 
1609 		/* a return value > 0 means to resubmit the input, but
1610 		 * it wants the return to be -protocol, or 0
1611 		 */
1612 		if (ret > 0)
1613 			return -ret;
1614 		return 0;
1615 	}
1616 
1617 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1618 		goto drop;
1619 	nf_reset(skb);
1620 
1621 	/* No socket. Drop packet silently, if checksum is wrong */
1622 	if (udp_lib_checksum_complete(skb))
1623 		goto csum_error;
1624 
1625 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1626 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1627 
1628 	/*
1629 	 * Hmm.  We got an UDP packet to a port to which we
1630 	 * don't wanna listen.  Ignore it.
1631 	 */
1632 	kfree_skb(skb);
1633 	return 0;
1634 
1635 short_packet:
1636 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1637 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1638 		       &saddr,
1639 		       ntohs(uh->source),
1640 		       ulen,
1641 		       skb->len,
1642 		       &daddr,
1643 		       ntohs(uh->dest));
1644 	goto drop;
1645 
1646 csum_error:
1647 	/*
1648 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1649 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1650 	 */
1651 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1652 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1653 		       &saddr,
1654 		       ntohs(uh->source),
1655 		       &daddr,
1656 		       ntohs(uh->dest),
1657 		       ulen);
1658 drop:
1659 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1660 	kfree_skb(skb);
1661 	return 0;
1662 }
1663 
1664 int udp_rcv(struct sk_buff *skb)
1665 {
1666 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1667 }
1668 
1669 void udp_destroy_sock(struct sock *sk)
1670 {
1671 	bool slow = lock_sock_fast(sk);
1672 	udp_flush_pending_frames(sk);
1673 	unlock_sock_fast(sk, slow);
1674 }
1675 
1676 /*
1677  *	Socket option code for UDP
1678  */
1679 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1680 		       char __user *optval, unsigned int optlen,
1681 		       int (*push_pending_frames)(struct sock *))
1682 {
1683 	struct udp_sock *up = udp_sk(sk);
1684 	int val;
1685 	int err = 0;
1686 	int is_udplite = IS_UDPLITE(sk);
1687 
1688 	if (optlen < sizeof(int))
1689 		return -EINVAL;
1690 
1691 	if (get_user(val, (int __user *)optval))
1692 		return -EFAULT;
1693 
1694 	switch (optname) {
1695 	case UDP_CORK:
1696 		if (val != 0) {
1697 			up->corkflag = 1;
1698 		} else {
1699 			up->corkflag = 0;
1700 			lock_sock(sk);
1701 			(*push_pending_frames)(sk);
1702 			release_sock(sk);
1703 		}
1704 		break;
1705 
1706 	case UDP_ENCAP:
1707 		switch (val) {
1708 		case 0:
1709 		case UDP_ENCAP_ESPINUDP:
1710 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1711 			up->encap_rcv = xfrm4_udp_encap_rcv;
1712 			/* FALLTHROUGH */
1713 		case UDP_ENCAP_L2TPINUDP:
1714 			up->encap_type = val;
1715 			break;
1716 		default:
1717 			err = -ENOPROTOOPT;
1718 			break;
1719 		}
1720 		break;
1721 
1722 	/*
1723 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1724 	 */
1725 	/* The sender sets actual checksum coverage length via this option.
1726 	 * The case coverage > packet length is handled by send module. */
1727 	case UDPLITE_SEND_CSCOV:
1728 		if (!is_udplite)         /* Disable the option on UDP sockets */
1729 			return -ENOPROTOOPT;
1730 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1731 			val = 8;
1732 		else if (val > USHRT_MAX)
1733 			val = USHRT_MAX;
1734 		up->pcslen = val;
1735 		up->pcflag |= UDPLITE_SEND_CC;
1736 		break;
1737 
1738 	/* The receiver specifies a minimum checksum coverage value. To make
1739 	 * sense, this should be set to at least 8 (as done below). If zero is
1740 	 * used, this again means full checksum coverage.                     */
1741 	case UDPLITE_RECV_CSCOV:
1742 		if (!is_udplite)         /* Disable the option on UDP sockets */
1743 			return -ENOPROTOOPT;
1744 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1745 			val = 8;
1746 		else if (val > USHRT_MAX)
1747 			val = USHRT_MAX;
1748 		up->pcrlen = val;
1749 		up->pcflag |= UDPLITE_RECV_CC;
1750 		break;
1751 
1752 	default:
1753 		err = -ENOPROTOOPT;
1754 		break;
1755 	}
1756 
1757 	return err;
1758 }
1759 EXPORT_SYMBOL(udp_lib_setsockopt);
1760 
1761 int udp_setsockopt(struct sock *sk, int level, int optname,
1762 		   char __user *optval, unsigned int optlen)
1763 {
1764 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1765 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1766 					  udp_push_pending_frames);
1767 	return ip_setsockopt(sk, level, optname, optval, optlen);
1768 }
1769 
1770 #ifdef CONFIG_COMPAT
1771 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1772 			  char __user *optval, unsigned int optlen)
1773 {
1774 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1775 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1776 					  udp_push_pending_frames);
1777 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1778 }
1779 #endif
1780 
1781 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1782 		       char __user *optval, int __user *optlen)
1783 {
1784 	struct udp_sock *up = udp_sk(sk);
1785 	int val, len;
1786 
1787 	if (get_user(len, optlen))
1788 		return -EFAULT;
1789 
1790 	len = min_t(unsigned int, len, sizeof(int));
1791 
1792 	if (len < 0)
1793 		return -EINVAL;
1794 
1795 	switch (optname) {
1796 	case UDP_CORK:
1797 		val = up->corkflag;
1798 		break;
1799 
1800 	case UDP_ENCAP:
1801 		val = up->encap_type;
1802 		break;
1803 
1804 	/* The following two cannot be changed on UDP sockets, the return is
1805 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1806 	case UDPLITE_SEND_CSCOV:
1807 		val = up->pcslen;
1808 		break;
1809 
1810 	case UDPLITE_RECV_CSCOV:
1811 		val = up->pcrlen;
1812 		break;
1813 
1814 	default:
1815 		return -ENOPROTOOPT;
1816 	}
1817 
1818 	if (put_user(len, optlen))
1819 		return -EFAULT;
1820 	if (copy_to_user(optval, &val, len))
1821 		return -EFAULT;
1822 	return 0;
1823 }
1824 EXPORT_SYMBOL(udp_lib_getsockopt);
1825 
1826 int udp_getsockopt(struct sock *sk, int level, int optname,
1827 		   char __user *optval, int __user *optlen)
1828 {
1829 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1830 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1831 	return ip_getsockopt(sk, level, optname, optval, optlen);
1832 }
1833 
1834 #ifdef CONFIG_COMPAT
1835 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1836 				 char __user *optval, int __user *optlen)
1837 {
1838 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1839 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1840 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1841 }
1842 #endif
1843 /**
1844  * 	udp_poll - wait for a UDP event.
1845  *	@file - file struct
1846  *	@sock - socket
1847  *	@wait - poll table
1848  *
1849  *	This is same as datagram poll, except for the special case of
1850  *	blocking sockets. If application is using a blocking fd
1851  *	and a packet with checksum error is in the queue;
1852  *	then it could get return from select indicating data available
1853  *	but then block when reading it. Add special case code
1854  *	to work around these arguably broken applications.
1855  */
1856 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1857 {
1858 	unsigned int mask = datagram_poll(file, sock, wait);
1859 	struct sock *sk = sock->sk;
1860 
1861 	/* Check for false positives due to checksum errors */
1862 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1863 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1864 		mask &= ~(POLLIN | POLLRDNORM);
1865 
1866 	return mask;
1867 
1868 }
1869 EXPORT_SYMBOL(udp_poll);
1870 
1871 struct proto udp_prot = {
1872 	.name		   = "UDP",
1873 	.owner		   = THIS_MODULE,
1874 	.close		   = udp_lib_close,
1875 	.connect	   = ip4_datagram_connect,
1876 	.disconnect	   = udp_disconnect,
1877 	.ioctl		   = udp_ioctl,
1878 	.destroy	   = udp_destroy_sock,
1879 	.setsockopt	   = udp_setsockopt,
1880 	.getsockopt	   = udp_getsockopt,
1881 	.sendmsg	   = udp_sendmsg,
1882 	.recvmsg	   = udp_recvmsg,
1883 	.sendpage	   = udp_sendpage,
1884 	.backlog_rcv	   = __udp_queue_rcv_skb,
1885 	.hash		   = udp_lib_hash,
1886 	.unhash		   = udp_lib_unhash,
1887 	.rehash		   = udp_v4_rehash,
1888 	.get_port	   = udp_v4_get_port,
1889 	.memory_allocated  = &udp_memory_allocated,
1890 	.sysctl_mem	   = sysctl_udp_mem,
1891 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1892 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1893 	.obj_size	   = sizeof(struct udp_sock),
1894 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
1895 	.h.udp_table	   = &udp_table,
1896 #ifdef CONFIG_COMPAT
1897 	.compat_setsockopt = compat_udp_setsockopt,
1898 	.compat_getsockopt = compat_udp_getsockopt,
1899 #endif
1900 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
1901 };
1902 EXPORT_SYMBOL(udp_prot);
1903 
1904 /* ------------------------------------------------------------------------ */
1905 #ifdef CONFIG_PROC_FS
1906 
1907 static struct sock *udp_get_first(struct seq_file *seq, int start)
1908 {
1909 	struct sock *sk;
1910 	struct udp_iter_state *state = seq->private;
1911 	struct net *net = seq_file_net(seq);
1912 
1913 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
1914 	     ++state->bucket) {
1915 		struct hlist_nulls_node *node;
1916 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1917 
1918 		if (hlist_nulls_empty(&hslot->head))
1919 			continue;
1920 
1921 		spin_lock_bh(&hslot->lock);
1922 		sk_nulls_for_each(sk, node, &hslot->head) {
1923 			if (!net_eq(sock_net(sk), net))
1924 				continue;
1925 			if (sk->sk_family == state->family)
1926 				goto found;
1927 		}
1928 		spin_unlock_bh(&hslot->lock);
1929 	}
1930 	sk = NULL;
1931 found:
1932 	return sk;
1933 }
1934 
1935 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1936 {
1937 	struct udp_iter_state *state = seq->private;
1938 	struct net *net = seq_file_net(seq);
1939 
1940 	do {
1941 		sk = sk_nulls_next(sk);
1942 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1943 
1944 	if (!sk) {
1945 		if (state->bucket <= state->udp_table->mask)
1946 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1947 		return udp_get_first(seq, state->bucket + 1);
1948 	}
1949 	return sk;
1950 }
1951 
1952 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1953 {
1954 	struct sock *sk = udp_get_first(seq, 0);
1955 
1956 	if (sk)
1957 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1958 			--pos;
1959 	return pos ? NULL : sk;
1960 }
1961 
1962 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1963 {
1964 	struct udp_iter_state *state = seq->private;
1965 	state->bucket = MAX_UDP_PORTS;
1966 
1967 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1968 }
1969 
1970 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1971 {
1972 	struct sock *sk;
1973 
1974 	if (v == SEQ_START_TOKEN)
1975 		sk = udp_get_idx(seq, 0);
1976 	else
1977 		sk = udp_get_next(seq, v);
1978 
1979 	++*pos;
1980 	return sk;
1981 }
1982 
1983 static void udp_seq_stop(struct seq_file *seq, void *v)
1984 {
1985 	struct udp_iter_state *state = seq->private;
1986 
1987 	if (state->bucket <= state->udp_table->mask)
1988 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1989 }
1990 
1991 static int udp_seq_open(struct inode *inode, struct file *file)
1992 {
1993 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1994 	struct udp_iter_state *s;
1995 	int err;
1996 
1997 	err = seq_open_net(inode, file, &afinfo->seq_ops,
1998 			   sizeof(struct udp_iter_state));
1999 	if (err < 0)
2000 		return err;
2001 
2002 	s = ((struct seq_file *)file->private_data)->private;
2003 	s->family		= afinfo->family;
2004 	s->udp_table		= afinfo->udp_table;
2005 	return err;
2006 }
2007 
2008 /* ------------------------------------------------------------------------ */
2009 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2010 {
2011 	struct proc_dir_entry *p;
2012 	int rc = 0;
2013 
2014 	afinfo->seq_fops.open		= udp_seq_open;
2015 	afinfo->seq_fops.read		= seq_read;
2016 	afinfo->seq_fops.llseek		= seq_lseek;
2017 	afinfo->seq_fops.release	= seq_release_net;
2018 
2019 	afinfo->seq_ops.start		= udp_seq_start;
2020 	afinfo->seq_ops.next		= udp_seq_next;
2021 	afinfo->seq_ops.stop		= udp_seq_stop;
2022 
2023 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2024 			     &afinfo->seq_fops, afinfo);
2025 	if (!p)
2026 		rc = -ENOMEM;
2027 	return rc;
2028 }
2029 EXPORT_SYMBOL(udp_proc_register);
2030 
2031 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2032 {
2033 	proc_net_remove(net, afinfo->name);
2034 }
2035 EXPORT_SYMBOL(udp_proc_unregister);
2036 
2037 /* ------------------------------------------------------------------------ */
2038 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2039 		int bucket, int *len)
2040 {
2041 	struct inet_sock *inet = inet_sk(sp);
2042 	__be32 dest = inet->inet_daddr;
2043 	__be32 src  = inet->inet_rcv_saddr;
2044 	__u16 destp	  = ntohs(inet->inet_dport);
2045 	__u16 srcp	  = ntohs(inet->inet_sport);
2046 
2047 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2048 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
2049 		bucket, src, srcp, dest, destp, sp->sk_state,
2050 		sk_wmem_alloc_get(sp),
2051 		sk_rmem_alloc_get(sp),
2052 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
2053 		atomic_read(&sp->sk_refcnt), sp,
2054 		atomic_read(&sp->sk_drops), len);
2055 }
2056 
2057 int udp4_seq_show(struct seq_file *seq, void *v)
2058 {
2059 	if (v == SEQ_START_TOKEN)
2060 		seq_printf(seq, "%-127s\n",
2061 			   "  sl  local_address rem_address   st tx_queue "
2062 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2063 			   "inode ref pointer drops");
2064 	else {
2065 		struct udp_iter_state *state = seq->private;
2066 		int len;
2067 
2068 		udp4_format_sock(v, seq, state->bucket, &len);
2069 		seq_printf(seq, "%*s\n", 127 - len, "");
2070 	}
2071 	return 0;
2072 }
2073 
2074 /* ------------------------------------------------------------------------ */
2075 static struct udp_seq_afinfo udp4_seq_afinfo = {
2076 	.name		= "udp",
2077 	.family		= AF_INET,
2078 	.udp_table	= &udp_table,
2079 	.seq_fops	= {
2080 		.owner	=	THIS_MODULE,
2081 	},
2082 	.seq_ops	= {
2083 		.show		= udp4_seq_show,
2084 	},
2085 };
2086 
2087 static int __net_init udp4_proc_init_net(struct net *net)
2088 {
2089 	return udp_proc_register(net, &udp4_seq_afinfo);
2090 }
2091 
2092 static void __net_exit udp4_proc_exit_net(struct net *net)
2093 {
2094 	udp_proc_unregister(net, &udp4_seq_afinfo);
2095 }
2096 
2097 static struct pernet_operations udp4_net_ops = {
2098 	.init = udp4_proc_init_net,
2099 	.exit = udp4_proc_exit_net,
2100 };
2101 
2102 int __init udp4_proc_init(void)
2103 {
2104 	return register_pernet_subsys(&udp4_net_ops);
2105 }
2106 
2107 void udp4_proc_exit(void)
2108 {
2109 	unregister_pernet_subsys(&udp4_net_ops);
2110 }
2111 #endif /* CONFIG_PROC_FS */
2112 
2113 static __initdata unsigned long uhash_entries;
2114 static int __init set_uhash_entries(char *str)
2115 {
2116 	if (!str)
2117 		return 0;
2118 	uhash_entries = simple_strtoul(str, &str, 0);
2119 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2120 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2121 	return 1;
2122 }
2123 __setup("uhash_entries=", set_uhash_entries);
2124 
2125 void __init udp_table_init(struct udp_table *table, const char *name)
2126 {
2127 	unsigned int i;
2128 
2129 	if (!CONFIG_BASE_SMALL)
2130 		table->hash = alloc_large_system_hash(name,
2131 			2 * sizeof(struct udp_hslot),
2132 			uhash_entries,
2133 			21, /* one slot per 2 MB */
2134 			0,
2135 			&table->log,
2136 			&table->mask,
2137 			64 * 1024);
2138 	/*
2139 	 * Make sure hash table has the minimum size
2140 	 */
2141 	if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2142 		table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2143 				      2 * sizeof(struct udp_hslot), GFP_KERNEL);
2144 		if (!table->hash)
2145 			panic(name);
2146 		table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2147 		table->mask = UDP_HTABLE_SIZE_MIN - 1;
2148 	}
2149 	table->hash2 = table->hash + (table->mask + 1);
2150 	for (i = 0; i <= table->mask; i++) {
2151 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2152 		table->hash[i].count = 0;
2153 		spin_lock_init(&table->hash[i].lock);
2154 	}
2155 	for (i = 0; i <= table->mask; i++) {
2156 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2157 		table->hash2[i].count = 0;
2158 		spin_lock_init(&table->hash2[i].lock);
2159 	}
2160 }
2161 
2162 void __init udp_init(void)
2163 {
2164 	unsigned long nr_pages, limit;
2165 
2166 	udp_table_init(&udp_table, "UDP");
2167 	/* Set the pressure threshold up by the same strategy of TCP. It is a
2168 	 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
2169 	 * toward zero with the amount of memory, with a floor of 128 pages.
2170 	 */
2171 	nr_pages = totalram_pages - totalhigh_pages;
2172 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2173 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2174 	limit = max(limit, 128UL);
2175 	sysctl_udp_mem[0] = limit / 4 * 3;
2176 	sysctl_udp_mem[1] = limit;
2177 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2178 
2179 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2180 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2181 }
2182 
2183 int udp4_ufo_send_check(struct sk_buff *skb)
2184 {
2185 	const struct iphdr *iph;
2186 	struct udphdr *uh;
2187 
2188 	if (!pskb_may_pull(skb, sizeof(*uh)))
2189 		return -EINVAL;
2190 
2191 	iph = ip_hdr(skb);
2192 	uh = udp_hdr(skb);
2193 
2194 	uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2195 				       IPPROTO_UDP, 0);
2196 	skb->csum_start = skb_transport_header(skb) - skb->head;
2197 	skb->csum_offset = offsetof(struct udphdr, check);
2198 	skb->ip_summed = CHECKSUM_PARTIAL;
2199 	return 0;
2200 }
2201 
2202 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features)
2203 {
2204 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2205 	unsigned int mss;
2206 	int offset;
2207 	__wsum csum;
2208 
2209 	mss = skb_shinfo(skb)->gso_size;
2210 	if (unlikely(skb->len <= mss))
2211 		goto out;
2212 
2213 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2214 		/* Packet is from an untrusted source, reset gso_segs. */
2215 		int type = skb_shinfo(skb)->gso_type;
2216 
2217 		if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2218 			     !(type & (SKB_GSO_UDP))))
2219 			goto out;
2220 
2221 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2222 
2223 		segs = NULL;
2224 		goto out;
2225 	}
2226 
2227 	/* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2228 	 * do checksum of UDP packets sent as multiple IP fragments.
2229 	 */
2230 	offset = skb_checksum_start_offset(skb);
2231 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2232 	offset += skb->csum_offset;
2233 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2234 	skb->ip_summed = CHECKSUM_NONE;
2235 
2236 	/* Fragment the skb. IP headers of the fragments are updated in
2237 	 * inet_gso_segment()
2238 	 */
2239 	segs = skb_segment(skb, features);
2240 out:
2241 	return segs;
2242 }
2243 
2244