xref: /openbmc/linux/net/ipv4/udp.c (revision 453b5f2d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sock_i_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	struct sock *sk2;
182 	kuid_t uid = sock_i_uid(sk);
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sock_i_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 	bool dev_match;
374 
375 	if (!net_eq(sock_net(sk), net) ||
376 	    udp_sk(sk)->udp_port_hash != hnum ||
377 	    ipv6_only_sock(sk))
378 		return -1;
379 
380 	if (sk->sk_rcv_saddr != daddr)
381 		return -1;
382 
383 	score = (sk->sk_family == PF_INET) ? 2 : 1;
384 
385 	inet = inet_sk(sk);
386 	if (inet->inet_daddr) {
387 		if (inet->inet_daddr != saddr)
388 			return -1;
389 		score += 4;
390 	}
391 
392 	if (inet->inet_dport) {
393 		if (inet->inet_dport != sport)
394 			return -1;
395 		score += 4;
396 	}
397 
398 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
399 					dif, sdif);
400 	if (!dev_match)
401 		return -1;
402 	if (sk->sk_bound_dev_if)
403 		score += 4;
404 
405 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406 		score++;
407 	return score;
408 }
409 
410 INDIRECT_CALLABLE_SCOPE
411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
412 		const __be32 faddr, const __be16 fport)
413 {
414 	static u32 udp_ehash_secret __read_mostly;
415 
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 
422 /* called with rcu_read_lock() */
423 static struct sock *udp4_lib_lookup2(struct net *net,
424 				     __be32 saddr, __be16 sport,
425 				     __be32 daddr, unsigned int hnum,
426 				     int dif, int sdif,
427 				     struct udp_hslot *hslot2,
428 				     struct sk_buff *skb)
429 {
430 	struct sock *sk, *result;
431 	int score, badness;
432 
433 	result = NULL;
434 	badness = 0;
435 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
436 		score = compute_score(sk, net, saddr, sport,
437 				      daddr, hnum, dif, sdif);
438 		if (score > badness) {
439 			badness = score;
440 
441 			if (sk->sk_state == TCP_ESTABLISHED) {
442 				result = sk;
443 				continue;
444 			}
445 
446 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
447 						       saddr, sport, daddr, hnum, udp_ehashfn);
448 			if (!result) {
449 				result = sk;
450 				continue;
451 			}
452 
453 			/* Fall back to scoring if group has connections */
454 			if (!reuseport_has_conns(sk))
455 				return result;
456 
457 			/* Reuseport logic returned an error, keep original score. */
458 			if (IS_ERR(result))
459 				continue;
460 
461 			badness = compute_score(result, net, saddr, sport,
462 						daddr, hnum, dif, sdif);
463 
464 		}
465 	}
466 	return result;
467 }
468 
469 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
470  * harder than this. -DaveM
471  */
472 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
473 		__be16 sport, __be32 daddr, __be16 dport, int dif,
474 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
475 {
476 	unsigned short hnum = ntohs(dport);
477 	unsigned int hash2, slot2;
478 	struct udp_hslot *hslot2;
479 	struct sock *result, *sk;
480 
481 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
482 	slot2 = hash2 & udptable->mask;
483 	hslot2 = &udptable->hash2[slot2];
484 
485 	/* Lookup connected or non-wildcard socket */
486 	result = udp4_lib_lookup2(net, saddr, sport,
487 				  daddr, hnum, dif, sdif,
488 				  hslot2, skb);
489 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
490 		goto done;
491 
492 	/* Lookup redirect from BPF */
493 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
494 	    udptable == net->ipv4.udp_table) {
495 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
496 					       saddr, sport, daddr, hnum, dif,
497 					       udp_ehashfn);
498 		if (sk) {
499 			result = sk;
500 			goto done;
501 		}
502 	}
503 
504 	/* Got non-wildcard socket or error on first lookup */
505 	if (result)
506 		goto done;
507 
508 	/* Lookup wildcard sockets */
509 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
510 	slot2 = hash2 & udptable->mask;
511 	hslot2 = &udptable->hash2[slot2];
512 
513 	result = udp4_lib_lookup2(net, saddr, sport,
514 				  htonl(INADDR_ANY), hnum, dif, sdif,
515 				  hslot2, skb);
516 done:
517 	if (IS_ERR(result))
518 		return NULL;
519 	return result;
520 }
521 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
522 
523 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
524 						 __be16 sport, __be16 dport,
525 						 struct udp_table *udptable)
526 {
527 	const struct iphdr *iph = ip_hdr(skb);
528 
529 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
530 				 iph->daddr, dport, inet_iif(skb),
531 				 inet_sdif(skb), udptable, skb);
532 }
533 
534 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
535 				 __be16 sport, __be16 dport)
536 {
537 	const struct iphdr *iph = ip_hdr(skb);
538 	struct net *net = dev_net(skb->dev);
539 	int iif, sdif;
540 
541 	inet_get_iif_sdif(skb, &iif, &sdif);
542 
543 	return __udp4_lib_lookup(net, iph->saddr, sport,
544 				 iph->daddr, dport, iif,
545 				 sdif, net->ipv4.udp_table, NULL);
546 }
547 
548 /* Must be called under rcu_read_lock().
549  * Does increment socket refcount.
550  */
551 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
552 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
553 			     __be32 daddr, __be16 dport, int dif)
554 {
555 	struct sock *sk;
556 
557 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
558 			       dif, 0, net->ipv4.udp_table, NULL);
559 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
560 		sk = NULL;
561 	return sk;
562 }
563 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
564 #endif
565 
566 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
567 				       __be16 loc_port, __be32 loc_addr,
568 				       __be16 rmt_port, __be32 rmt_addr,
569 				       int dif, int sdif, unsigned short hnum)
570 {
571 	const struct inet_sock *inet = inet_sk(sk);
572 
573 	if (!net_eq(sock_net(sk), net) ||
574 	    udp_sk(sk)->udp_port_hash != hnum ||
575 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
576 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
577 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
578 	    ipv6_only_sock(sk) ||
579 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
580 		return false;
581 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
582 		return false;
583 	return true;
584 }
585 
586 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
587 EXPORT_SYMBOL(udp_encap_needed_key);
588 
589 #if IS_ENABLED(CONFIG_IPV6)
590 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
591 EXPORT_SYMBOL(udpv6_encap_needed_key);
592 #endif
593 
594 void udp_encap_enable(void)
595 {
596 	static_branch_inc(&udp_encap_needed_key);
597 }
598 EXPORT_SYMBOL(udp_encap_enable);
599 
600 void udp_encap_disable(void)
601 {
602 	static_branch_dec(&udp_encap_needed_key);
603 }
604 EXPORT_SYMBOL(udp_encap_disable);
605 
606 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
607  * through error handlers in encapsulations looking for a match.
608  */
609 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
610 {
611 	int i;
612 
613 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
614 		int (*handler)(struct sk_buff *skb, u32 info);
615 		const struct ip_tunnel_encap_ops *encap;
616 
617 		encap = rcu_dereference(iptun_encaps[i]);
618 		if (!encap)
619 			continue;
620 		handler = encap->err_handler;
621 		if (handler && !handler(skb, info))
622 			return 0;
623 	}
624 
625 	return -ENOENT;
626 }
627 
628 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
629  * reversing source and destination port: this will match tunnels that force the
630  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
631  * lwtunnels might actually break this assumption by being configured with
632  * different destination ports on endpoints, in this case we won't be able to
633  * trace ICMP messages back to them.
634  *
635  * If this doesn't match any socket, probe tunnels with arbitrary destination
636  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
637  * we've sent packets to won't necessarily match the local destination port.
638  *
639  * Then ask the tunnel implementation to match the error against a valid
640  * association.
641  *
642  * Return an error if we can't find a match, the socket if we need further
643  * processing, zero otherwise.
644  */
645 static struct sock *__udp4_lib_err_encap(struct net *net,
646 					 const struct iphdr *iph,
647 					 struct udphdr *uh,
648 					 struct udp_table *udptable,
649 					 struct sock *sk,
650 					 struct sk_buff *skb, u32 info)
651 {
652 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
653 	int network_offset, transport_offset;
654 	struct udp_sock *up;
655 
656 	network_offset = skb_network_offset(skb);
657 	transport_offset = skb_transport_offset(skb);
658 
659 	/* Network header needs to point to the outer IPv4 header inside ICMP */
660 	skb_reset_network_header(skb);
661 
662 	/* Transport header needs to point to the UDP header */
663 	skb_set_transport_header(skb, iph->ihl << 2);
664 
665 	if (sk) {
666 		up = udp_sk(sk);
667 
668 		lookup = READ_ONCE(up->encap_err_lookup);
669 		if (lookup && lookup(sk, skb))
670 			sk = NULL;
671 
672 		goto out;
673 	}
674 
675 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
676 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
677 			       udptable, NULL);
678 	if (sk) {
679 		up = udp_sk(sk);
680 
681 		lookup = READ_ONCE(up->encap_err_lookup);
682 		if (!lookup || lookup(sk, skb))
683 			sk = NULL;
684 	}
685 
686 out:
687 	if (!sk)
688 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
689 
690 	skb_set_transport_header(skb, transport_offset);
691 	skb_set_network_header(skb, network_offset);
692 
693 	return sk;
694 }
695 
696 /*
697  * This routine is called by the ICMP module when it gets some
698  * sort of error condition.  If err < 0 then the socket should
699  * be closed and the error returned to the user.  If err > 0
700  * it's just the icmp type << 8 | icmp code.
701  * Header points to the ip header of the error packet. We move
702  * on past this. Then (as it used to claim before adjustment)
703  * header points to the first 8 bytes of the udp header.  We need
704  * to find the appropriate port.
705  */
706 
707 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
708 {
709 	struct inet_sock *inet;
710 	const struct iphdr *iph = (const struct iphdr *)skb->data;
711 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
712 	const int type = icmp_hdr(skb)->type;
713 	const int code = icmp_hdr(skb)->code;
714 	bool tunnel = false;
715 	struct sock *sk;
716 	int harderr;
717 	int err;
718 	struct net *net = dev_net(skb->dev);
719 
720 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
721 			       iph->saddr, uh->source, skb->dev->ifindex,
722 			       inet_sdif(skb), udptable, NULL);
723 
724 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
725 		/* No socket for error: try tunnels before discarding */
726 		if (static_branch_unlikely(&udp_encap_needed_key)) {
727 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
728 						  info);
729 			if (!sk)
730 				return 0;
731 		} else
732 			sk = ERR_PTR(-ENOENT);
733 
734 		if (IS_ERR(sk)) {
735 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
736 			return PTR_ERR(sk);
737 		}
738 
739 		tunnel = true;
740 	}
741 
742 	err = 0;
743 	harderr = 0;
744 	inet = inet_sk(sk);
745 
746 	switch (type) {
747 	default:
748 	case ICMP_TIME_EXCEEDED:
749 		err = EHOSTUNREACH;
750 		break;
751 	case ICMP_SOURCE_QUENCH:
752 		goto out;
753 	case ICMP_PARAMETERPROB:
754 		err = EPROTO;
755 		harderr = 1;
756 		break;
757 	case ICMP_DEST_UNREACH:
758 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
759 			ipv4_sk_update_pmtu(skb, sk, info);
760 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
761 				err = EMSGSIZE;
762 				harderr = 1;
763 				break;
764 			}
765 			goto out;
766 		}
767 		err = EHOSTUNREACH;
768 		if (code <= NR_ICMP_UNREACH) {
769 			harderr = icmp_err_convert[code].fatal;
770 			err = icmp_err_convert[code].errno;
771 		}
772 		break;
773 	case ICMP_REDIRECT:
774 		ipv4_sk_redirect(skb, sk);
775 		goto out;
776 	}
777 
778 	/*
779 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
780 	 *	4.1.3.3.
781 	 */
782 	if (tunnel) {
783 		/* ...not for tunnels though: we don't have a sending socket */
784 		if (udp_sk(sk)->encap_err_rcv)
785 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
786 						  (u8 *)(uh+1));
787 		goto out;
788 	}
789 	if (!inet_test_bit(RECVERR, sk)) {
790 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
791 			goto out;
792 	} else
793 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
794 
795 	sk->sk_err = err;
796 	sk_error_report(sk);
797 out:
798 	return 0;
799 }
800 
801 int udp_err(struct sk_buff *skb, u32 info)
802 {
803 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
804 }
805 
806 /*
807  * Throw away all pending data and cancel the corking. Socket is locked.
808  */
809 void udp_flush_pending_frames(struct sock *sk)
810 {
811 	struct udp_sock *up = udp_sk(sk);
812 
813 	if (up->pending) {
814 		up->len = 0;
815 		WRITE_ONCE(up->pending, 0);
816 		ip_flush_pending_frames(sk);
817 	}
818 }
819 EXPORT_SYMBOL(udp_flush_pending_frames);
820 
821 /**
822  * 	udp4_hwcsum  -  handle outgoing HW checksumming
823  * 	@skb: 	sk_buff containing the filled-in UDP header
824  * 	        (checksum field must be zeroed out)
825  *	@src:	source IP address
826  *	@dst:	destination IP address
827  */
828 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
829 {
830 	struct udphdr *uh = udp_hdr(skb);
831 	int offset = skb_transport_offset(skb);
832 	int len = skb->len - offset;
833 	int hlen = len;
834 	__wsum csum = 0;
835 
836 	if (!skb_has_frag_list(skb)) {
837 		/*
838 		 * Only one fragment on the socket.
839 		 */
840 		skb->csum_start = skb_transport_header(skb) - skb->head;
841 		skb->csum_offset = offsetof(struct udphdr, check);
842 		uh->check = ~csum_tcpudp_magic(src, dst, len,
843 					       IPPROTO_UDP, 0);
844 	} else {
845 		struct sk_buff *frags;
846 
847 		/*
848 		 * HW-checksum won't work as there are two or more
849 		 * fragments on the socket so that all csums of sk_buffs
850 		 * should be together
851 		 */
852 		skb_walk_frags(skb, frags) {
853 			csum = csum_add(csum, frags->csum);
854 			hlen -= frags->len;
855 		}
856 
857 		csum = skb_checksum(skb, offset, hlen, csum);
858 		skb->ip_summed = CHECKSUM_NONE;
859 
860 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
861 		if (uh->check == 0)
862 			uh->check = CSUM_MANGLED_0;
863 	}
864 }
865 EXPORT_SYMBOL_GPL(udp4_hwcsum);
866 
867 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
868  * for the simple case like when setting the checksum for a UDP tunnel.
869  */
870 void udp_set_csum(bool nocheck, struct sk_buff *skb,
871 		  __be32 saddr, __be32 daddr, int len)
872 {
873 	struct udphdr *uh = udp_hdr(skb);
874 
875 	if (nocheck) {
876 		uh->check = 0;
877 	} else if (skb_is_gso(skb)) {
878 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
879 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
880 		uh->check = 0;
881 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
882 		if (uh->check == 0)
883 			uh->check = CSUM_MANGLED_0;
884 	} else {
885 		skb->ip_summed = CHECKSUM_PARTIAL;
886 		skb->csum_start = skb_transport_header(skb) - skb->head;
887 		skb->csum_offset = offsetof(struct udphdr, check);
888 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
889 	}
890 }
891 EXPORT_SYMBOL(udp_set_csum);
892 
893 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
894 			struct inet_cork *cork)
895 {
896 	struct sock *sk = skb->sk;
897 	struct inet_sock *inet = inet_sk(sk);
898 	struct udphdr *uh;
899 	int err;
900 	int is_udplite = IS_UDPLITE(sk);
901 	int offset = skb_transport_offset(skb);
902 	int len = skb->len - offset;
903 	int datalen = len - sizeof(*uh);
904 	__wsum csum = 0;
905 
906 	/*
907 	 * Create a UDP header
908 	 */
909 	uh = udp_hdr(skb);
910 	uh->source = inet->inet_sport;
911 	uh->dest = fl4->fl4_dport;
912 	uh->len = htons(len);
913 	uh->check = 0;
914 
915 	if (cork->gso_size) {
916 		const int hlen = skb_network_header_len(skb) +
917 				 sizeof(struct udphdr);
918 
919 		if (hlen + cork->gso_size > cork->fragsize) {
920 			kfree_skb(skb);
921 			return -EINVAL;
922 		}
923 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
924 			kfree_skb(skb);
925 			return -EINVAL;
926 		}
927 		if (sk->sk_no_check_tx) {
928 			kfree_skb(skb);
929 			return -EINVAL;
930 		}
931 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
932 		    dst_xfrm(skb_dst(skb))) {
933 			kfree_skb(skb);
934 			return -EIO;
935 		}
936 
937 		if (datalen > cork->gso_size) {
938 			skb_shinfo(skb)->gso_size = cork->gso_size;
939 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
940 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
941 								 cork->gso_size);
942 		}
943 		goto csum_partial;
944 	}
945 
946 	if (is_udplite)  				 /*     UDP-Lite      */
947 		csum = udplite_csum(skb);
948 
949 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
950 
951 		skb->ip_summed = CHECKSUM_NONE;
952 		goto send;
953 
954 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
955 csum_partial:
956 
957 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
958 		goto send;
959 
960 	} else
961 		csum = udp_csum(skb);
962 
963 	/* add protocol-dependent pseudo-header */
964 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
965 				      sk->sk_protocol, csum);
966 	if (uh->check == 0)
967 		uh->check = CSUM_MANGLED_0;
968 
969 send:
970 	err = ip_send_skb(sock_net(sk), skb);
971 	if (err) {
972 		if (err == -ENOBUFS &&
973 		    !inet_test_bit(RECVERR, sk)) {
974 			UDP_INC_STATS(sock_net(sk),
975 				      UDP_MIB_SNDBUFERRORS, is_udplite);
976 			err = 0;
977 		}
978 	} else
979 		UDP_INC_STATS(sock_net(sk),
980 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
981 	return err;
982 }
983 
984 /*
985  * Push out all pending data as one UDP datagram. Socket is locked.
986  */
987 int udp_push_pending_frames(struct sock *sk)
988 {
989 	struct udp_sock  *up = udp_sk(sk);
990 	struct inet_sock *inet = inet_sk(sk);
991 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
992 	struct sk_buff *skb;
993 	int err = 0;
994 
995 	skb = ip_finish_skb(sk, fl4);
996 	if (!skb)
997 		goto out;
998 
999 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1000 
1001 out:
1002 	up->len = 0;
1003 	WRITE_ONCE(up->pending, 0);
1004 	return err;
1005 }
1006 EXPORT_SYMBOL(udp_push_pending_frames);
1007 
1008 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1009 {
1010 	switch (cmsg->cmsg_type) {
1011 	case UDP_SEGMENT:
1012 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1013 			return -EINVAL;
1014 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1015 		return 0;
1016 	default:
1017 		return -EINVAL;
1018 	}
1019 }
1020 
1021 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1022 {
1023 	struct cmsghdr *cmsg;
1024 	bool need_ip = false;
1025 	int err;
1026 
1027 	for_each_cmsghdr(cmsg, msg) {
1028 		if (!CMSG_OK(msg, cmsg))
1029 			return -EINVAL;
1030 
1031 		if (cmsg->cmsg_level != SOL_UDP) {
1032 			need_ip = true;
1033 			continue;
1034 		}
1035 
1036 		err = __udp_cmsg_send(cmsg, gso_size);
1037 		if (err)
1038 			return err;
1039 	}
1040 
1041 	return need_ip;
1042 }
1043 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1044 
1045 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1046 {
1047 	struct inet_sock *inet = inet_sk(sk);
1048 	struct udp_sock *up = udp_sk(sk);
1049 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1050 	struct flowi4 fl4_stack;
1051 	struct flowi4 *fl4;
1052 	int ulen = len;
1053 	struct ipcm_cookie ipc;
1054 	struct rtable *rt = NULL;
1055 	int free = 0;
1056 	int connected = 0;
1057 	__be32 daddr, faddr, saddr;
1058 	u8 tos, scope;
1059 	__be16 dport;
1060 	int err, is_udplite = IS_UDPLITE(sk);
1061 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1062 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1063 	struct sk_buff *skb;
1064 	struct ip_options_data opt_copy;
1065 
1066 	if (len > 0xFFFF)
1067 		return -EMSGSIZE;
1068 
1069 	/*
1070 	 *	Check the flags.
1071 	 */
1072 
1073 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1074 		return -EOPNOTSUPP;
1075 
1076 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1077 
1078 	fl4 = &inet->cork.fl.u.ip4;
1079 	if (READ_ONCE(up->pending)) {
1080 		/*
1081 		 * There are pending frames.
1082 		 * The socket lock must be held while it's corked.
1083 		 */
1084 		lock_sock(sk);
1085 		if (likely(up->pending)) {
1086 			if (unlikely(up->pending != AF_INET)) {
1087 				release_sock(sk);
1088 				return -EINVAL;
1089 			}
1090 			goto do_append_data;
1091 		}
1092 		release_sock(sk);
1093 	}
1094 	ulen += sizeof(struct udphdr);
1095 
1096 	/*
1097 	 *	Get and verify the address.
1098 	 */
1099 	if (usin) {
1100 		if (msg->msg_namelen < sizeof(*usin))
1101 			return -EINVAL;
1102 		if (usin->sin_family != AF_INET) {
1103 			if (usin->sin_family != AF_UNSPEC)
1104 				return -EAFNOSUPPORT;
1105 		}
1106 
1107 		daddr = usin->sin_addr.s_addr;
1108 		dport = usin->sin_port;
1109 		if (dport == 0)
1110 			return -EINVAL;
1111 	} else {
1112 		if (sk->sk_state != TCP_ESTABLISHED)
1113 			return -EDESTADDRREQ;
1114 		daddr = inet->inet_daddr;
1115 		dport = inet->inet_dport;
1116 		/* Open fast path for connected socket.
1117 		   Route will not be used, if at least one option is set.
1118 		 */
1119 		connected = 1;
1120 	}
1121 
1122 	ipcm_init_sk(&ipc, inet);
1123 	ipc.gso_size = READ_ONCE(up->gso_size);
1124 
1125 	if (msg->msg_controllen) {
1126 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1127 		if (err > 0)
1128 			err = ip_cmsg_send(sk, msg, &ipc,
1129 					   sk->sk_family == AF_INET6);
1130 		if (unlikely(err < 0)) {
1131 			kfree(ipc.opt);
1132 			return err;
1133 		}
1134 		if (ipc.opt)
1135 			free = 1;
1136 		connected = 0;
1137 	}
1138 	if (!ipc.opt) {
1139 		struct ip_options_rcu *inet_opt;
1140 
1141 		rcu_read_lock();
1142 		inet_opt = rcu_dereference(inet->inet_opt);
1143 		if (inet_opt) {
1144 			memcpy(&opt_copy, inet_opt,
1145 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1146 			ipc.opt = &opt_copy.opt;
1147 		}
1148 		rcu_read_unlock();
1149 	}
1150 
1151 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1152 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1153 					    (struct sockaddr *)usin,
1154 					    &msg->msg_namelen,
1155 					    &ipc.addr);
1156 		if (err)
1157 			goto out_free;
1158 		if (usin) {
1159 			if (usin->sin_port == 0) {
1160 				/* BPF program set invalid port. Reject it. */
1161 				err = -EINVAL;
1162 				goto out_free;
1163 			}
1164 			daddr = usin->sin_addr.s_addr;
1165 			dport = usin->sin_port;
1166 		}
1167 	}
1168 
1169 	saddr = ipc.addr;
1170 	ipc.addr = faddr = daddr;
1171 
1172 	if (ipc.opt && ipc.opt->opt.srr) {
1173 		if (!daddr) {
1174 			err = -EINVAL;
1175 			goto out_free;
1176 		}
1177 		faddr = ipc.opt->opt.faddr;
1178 		connected = 0;
1179 	}
1180 	tos = get_rttos(&ipc, inet);
1181 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1182 	if (scope == RT_SCOPE_LINK)
1183 		connected = 0;
1184 
1185 	if (ipv4_is_multicast(daddr)) {
1186 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1187 			ipc.oif = inet->mc_index;
1188 		if (!saddr)
1189 			saddr = inet->mc_addr;
1190 		connected = 0;
1191 	} else if (!ipc.oif) {
1192 		ipc.oif = inet->uc_index;
1193 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1194 		/* oif is set, packet is to local broadcast and
1195 		 * uc_index is set. oif is most likely set
1196 		 * by sk_bound_dev_if. If uc_index != oif check if the
1197 		 * oif is an L3 master and uc_index is an L3 slave.
1198 		 * If so, we want to allow the send using the uc_index.
1199 		 */
1200 		if (ipc.oif != inet->uc_index &&
1201 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1202 							      inet->uc_index)) {
1203 			ipc.oif = inet->uc_index;
1204 		}
1205 	}
1206 
1207 	if (connected)
1208 		rt = (struct rtable *)sk_dst_check(sk, 0);
1209 
1210 	if (!rt) {
1211 		struct net *net = sock_net(sk);
1212 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1213 
1214 		fl4 = &fl4_stack;
1215 
1216 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1217 				   sk->sk_protocol, flow_flags, faddr, saddr,
1218 				   dport, inet->inet_sport, sk->sk_uid);
1219 
1220 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1221 		rt = ip_route_output_flow(net, fl4, sk);
1222 		if (IS_ERR(rt)) {
1223 			err = PTR_ERR(rt);
1224 			rt = NULL;
1225 			if (err == -ENETUNREACH)
1226 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1227 			goto out;
1228 		}
1229 
1230 		err = -EACCES;
1231 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1232 		    !sock_flag(sk, SOCK_BROADCAST))
1233 			goto out;
1234 		if (connected)
1235 			sk_dst_set(sk, dst_clone(&rt->dst));
1236 	}
1237 
1238 	if (msg->msg_flags&MSG_CONFIRM)
1239 		goto do_confirm;
1240 back_from_confirm:
1241 
1242 	saddr = fl4->saddr;
1243 	if (!ipc.addr)
1244 		daddr = ipc.addr = fl4->daddr;
1245 
1246 	/* Lockless fast path for the non-corking case. */
1247 	if (!corkreq) {
1248 		struct inet_cork cork;
1249 
1250 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1251 				  sizeof(struct udphdr), &ipc, &rt,
1252 				  &cork, msg->msg_flags);
1253 		err = PTR_ERR(skb);
1254 		if (!IS_ERR_OR_NULL(skb))
1255 			err = udp_send_skb(skb, fl4, &cork);
1256 		goto out;
1257 	}
1258 
1259 	lock_sock(sk);
1260 	if (unlikely(up->pending)) {
1261 		/* The socket is already corked while preparing it. */
1262 		/* ... which is an evident application bug. --ANK */
1263 		release_sock(sk);
1264 
1265 		net_dbg_ratelimited("socket already corked\n");
1266 		err = -EINVAL;
1267 		goto out;
1268 	}
1269 	/*
1270 	 *	Now cork the socket to pend data.
1271 	 */
1272 	fl4 = &inet->cork.fl.u.ip4;
1273 	fl4->daddr = daddr;
1274 	fl4->saddr = saddr;
1275 	fl4->fl4_dport = dport;
1276 	fl4->fl4_sport = inet->inet_sport;
1277 	WRITE_ONCE(up->pending, AF_INET);
1278 
1279 do_append_data:
1280 	up->len += ulen;
1281 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1282 			     sizeof(struct udphdr), &ipc, &rt,
1283 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1284 	if (err)
1285 		udp_flush_pending_frames(sk);
1286 	else if (!corkreq)
1287 		err = udp_push_pending_frames(sk);
1288 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1289 		WRITE_ONCE(up->pending, 0);
1290 	release_sock(sk);
1291 
1292 out:
1293 	ip_rt_put(rt);
1294 out_free:
1295 	if (free)
1296 		kfree(ipc.opt);
1297 	if (!err)
1298 		return len;
1299 	/*
1300 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1301 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1302 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1303 	 * things).  We could add another new stat but at least for now that
1304 	 * seems like overkill.
1305 	 */
1306 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1307 		UDP_INC_STATS(sock_net(sk),
1308 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1309 	}
1310 	return err;
1311 
1312 do_confirm:
1313 	if (msg->msg_flags & MSG_PROBE)
1314 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1315 	if (!(msg->msg_flags&MSG_PROBE) || len)
1316 		goto back_from_confirm;
1317 	err = 0;
1318 	goto out;
1319 }
1320 EXPORT_SYMBOL(udp_sendmsg);
1321 
1322 void udp_splice_eof(struct socket *sock)
1323 {
1324 	struct sock *sk = sock->sk;
1325 	struct udp_sock *up = udp_sk(sk);
1326 
1327 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1328 		return;
1329 
1330 	lock_sock(sk);
1331 	if (up->pending && !udp_test_bit(CORK, sk))
1332 		udp_push_pending_frames(sk);
1333 	release_sock(sk);
1334 }
1335 EXPORT_SYMBOL_GPL(udp_splice_eof);
1336 
1337 #define UDP_SKB_IS_STATELESS 0x80000000
1338 
1339 /* all head states (dst, sk, nf conntrack) except skb extensions are
1340  * cleared by udp_rcv().
1341  *
1342  * We need to preserve secpath, if present, to eventually process
1343  * IP_CMSG_PASSSEC at recvmsg() time.
1344  *
1345  * Other extensions can be cleared.
1346  */
1347 static bool udp_try_make_stateless(struct sk_buff *skb)
1348 {
1349 	if (!skb_has_extensions(skb))
1350 		return true;
1351 
1352 	if (!secpath_exists(skb)) {
1353 		skb_ext_reset(skb);
1354 		return true;
1355 	}
1356 
1357 	return false;
1358 }
1359 
1360 static void udp_set_dev_scratch(struct sk_buff *skb)
1361 {
1362 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1363 
1364 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1365 	scratch->_tsize_state = skb->truesize;
1366 #if BITS_PER_LONG == 64
1367 	scratch->len = skb->len;
1368 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1369 	scratch->is_linear = !skb_is_nonlinear(skb);
1370 #endif
1371 	if (udp_try_make_stateless(skb))
1372 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1373 }
1374 
1375 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1376 {
1377 	/* We come here after udp_lib_checksum_complete() returned 0.
1378 	 * This means that __skb_checksum_complete() might have
1379 	 * set skb->csum_valid to 1.
1380 	 * On 64bit platforms, we can set csum_unnecessary
1381 	 * to true, but only if the skb is not shared.
1382 	 */
1383 #if BITS_PER_LONG == 64
1384 	if (!skb_shared(skb))
1385 		udp_skb_scratch(skb)->csum_unnecessary = true;
1386 #endif
1387 }
1388 
1389 static int udp_skb_truesize(struct sk_buff *skb)
1390 {
1391 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1392 }
1393 
1394 static bool udp_skb_has_head_state(struct sk_buff *skb)
1395 {
1396 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1397 }
1398 
1399 /* fully reclaim rmem/fwd memory allocated for skb */
1400 static void udp_rmem_release(struct sock *sk, int size, int partial,
1401 			     bool rx_queue_lock_held)
1402 {
1403 	struct udp_sock *up = udp_sk(sk);
1404 	struct sk_buff_head *sk_queue;
1405 	int amt;
1406 
1407 	if (likely(partial)) {
1408 		up->forward_deficit += size;
1409 		size = up->forward_deficit;
1410 		if (size < READ_ONCE(up->forward_threshold) &&
1411 		    !skb_queue_empty(&up->reader_queue))
1412 			return;
1413 	} else {
1414 		size += up->forward_deficit;
1415 	}
1416 	up->forward_deficit = 0;
1417 
1418 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1419 	 * if the called don't held it already
1420 	 */
1421 	sk_queue = &sk->sk_receive_queue;
1422 	if (!rx_queue_lock_held)
1423 		spin_lock(&sk_queue->lock);
1424 
1425 
1426 	sk_forward_alloc_add(sk, size);
1427 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1428 	sk_forward_alloc_add(sk, -amt);
1429 
1430 	if (amt)
1431 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1432 
1433 	atomic_sub(size, &sk->sk_rmem_alloc);
1434 
1435 	/* this can save us from acquiring the rx queue lock on next receive */
1436 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1437 
1438 	if (!rx_queue_lock_held)
1439 		spin_unlock(&sk_queue->lock);
1440 }
1441 
1442 /* Note: called with reader_queue.lock held.
1443  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1444  * This avoids a cache line miss while receive_queue lock is held.
1445  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1446  */
1447 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1448 {
1449 	prefetch(&skb->data);
1450 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1451 }
1452 EXPORT_SYMBOL(udp_skb_destructor);
1453 
1454 /* as above, but the caller held the rx queue lock, too */
1455 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1456 {
1457 	prefetch(&skb->data);
1458 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1459 }
1460 
1461 /* Idea of busylocks is to let producers grab an extra spinlock
1462  * to relieve pressure on the receive_queue spinlock shared by consumer.
1463  * Under flood, this means that only one producer can be in line
1464  * trying to acquire the receive_queue spinlock.
1465  * These busylock can be allocated on a per cpu manner, instead of a
1466  * per socket one (that would consume a cache line per socket)
1467  */
1468 static int udp_busylocks_log __read_mostly;
1469 static spinlock_t *udp_busylocks __read_mostly;
1470 
1471 static spinlock_t *busylock_acquire(void *ptr)
1472 {
1473 	spinlock_t *busy;
1474 
1475 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1476 	spin_lock(busy);
1477 	return busy;
1478 }
1479 
1480 static void busylock_release(spinlock_t *busy)
1481 {
1482 	if (busy)
1483 		spin_unlock(busy);
1484 }
1485 
1486 static int udp_rmem_schedule(struct sock *sk, int size)
1487 {
1488 	int delta;
1489 
1490 	delta = size - sk->sk_forward_alloc;
1491 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1492 		return -ENOBUFS;
1493 
1494 	return 0;
1495 }
1496 
1497 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1498 {
1499 	struct sk_buff_head *list = &sk->sk_receive_queue;
1500 	int rmem, err = -ENOMEM;
1501 	spinlock_t *busy = NULL;
1502 	int size;
1503 
1504 	/* try to avoid the costly atomic add/sub pair when the receive
1505 	 * queue is full; always allow at least a packet
1506 	 */
1507 	rmem = atomic_read(&sk->sk_rmem_alloc);
1508 	if (rmem > sk->sk_rcvbuf)
1509 		goto drop;
1510 
1511 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1512 	 * having linear skbs :
1513 	 * - Reduce memory overhead and thus increase receive queue capacity
1514 	 * - Less cache line misses at copyout() time
1515 	 * - Less work at consume_skb() (less alien page frag freeing)
1516 	 */
1517 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1518 		skb_condense(skb);
1519 
1520 		busy = busylock_acquire(sk);
1521 	}
1522 	size = skb->truesize;
1523 	udp_set_dev_scratch(skb);
1524 
1525 	/* we drop only if the receive buf is full and the receive
1526 	 * queue contains some other skb
1527 	 */
1528 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1529 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1530 		goto uncharge_drop;
1531 
1532 	spin_lock(&list->lock);
1533 	err = udp_rmem_schedule(sk, size);
1534 	if (err) {
1535 		spin_unlock(&list->lock);
1536 		goto uncharge_drop;
1537 	}
1538 
1539 	sk_forward_alloc_add(sk, -size);
1540 
1541 	/* no need to setup a destructor, we will explicitly release the
1542 	 * forward allocated memory on dequeue
1543 	 */
1544 	sock_skb_set_dropcount(sk, skb);
1545 
1546 	__skb_queue_tail(list, skb);
1547 	spin_unlock(&list->lock);
1548 
1549 	if (!sock_flag(sk, SOCK_DEAD))
1550 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1551 
1552 	busylock_release(busy);
1553 	return 0;
1554 
1555 uncharge_drop:
1556 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1557 
1558 drop:
1559 	atomic_inc(&sk->sk_drops);
1560 	busylock_release(busy);
1561 	return err;
1562 }
1563 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1564 
1565 void udp_destruct_common(struct sock *sk)
1566 {
1567 	/* reclaim completely the forward allocated memory */
1568 	struct udp_sock *up = udp_sk(sk);
1569 	unsigned int total = 0;
1570 	struct sk_buff *skb;
1571 
1572 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1573 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1574 		total += skb->truesize;
1575 		kfree_skb(skb);
1576 	}
1577 	udp_rmem_release(sk, total, 0, true);
1578 }
1579 EXPORT_SYMBOL_GPL(udp_destruct_common);
1580 
1581 static void udp_destruct_sock(struct sock *sk)
1582 {
1583 	udp_destruct_common(sk);
1584 	inet_sock_destruct(sk);
1585 }
1586 
1587 int udp_init_sock(struct sock *sk)
1588 {
1589 	udp_lib_init_sock(sk);
1590 	sk->sk_destruct = udp_destruct_sock;
1591 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1592 	return 0;
1593 }
1594 
1595 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1596 {
1597 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1598 		bool slow = lock_sock_fast(sk);
1599 
1600 		sk_peek_offset_bwd(sk, len);
1601 		unlock_sock_fast(sk, slow);
1602 	}
1603 
1604 	if (!skb_unref(skb))
1605 		return;
1606 
1607 	/* In the more common cases we cleared the head states previously,
1608 	 * see __udp_queue_rcv_skb().
1609 	 */
1610 	if (unlikely(udp_skb_has_head_state(skb)))
1611 		skb_release_head_state(skb);
1612 	__consume_stateless_skb(skb);
1613 }
1614 EXPORT_SYMBOL_GPL(skb_consume_udp);
1615 
1616 static struct sk_buff *__first_packet_length(struct sock *sk,
1617 					     struct sk_buff_head *rcvq,
1618 					     int *total)
1619 {
1620 	struct sk_buff *skb;
1621 
1622 	while ((skb = skb_peek(rcvq)) != NULL) {
1623 		if (udp_lib_checksum_complete(skb)) {
1624 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1625 					IS_UDPLITE(sk));
1626 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1627 					IS_UDPLITE(sk));
1628 			atomic_inc(&sk->sk_drops);
1629 			__skb_unlink(skb, rcvq);
1630 			*total += skb->truesize;
1631 			kfree_skb(skb);
1632 		} else {
1633 			udp_skb_csum_unnecessary_set(skb);
1634 			break;
1635 		}
1636 	}
1637 	return skb;
1638 }
1639 
1640 /**
1641  *	first_packet_length	- return length of first packet in receive queue
1642  *	@sk: socket
1643  *
1644  *	Drops all bad checksum frames, until a valid one is found.
1645  *	Returns the length of found skb, or -1 if none is found.
1646  */
1647 static int first_packet_length(struct sock *sk)
1648 {
1649 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1650 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1651 	struct sk_buff *skb;
1652 	int total = 0;
1653 	int res;
1654 
1655 	spin_lock_bh(&rcvq->lock);
1656 	skb = __first_packet_length(sk, rcvq, &total);
1657 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1658 		spin_lock(&sk_queue->lock);
1659 		skb_queue_splice_tail_init(sk_queue, rcvq);
1660 		spin_unlock(&sk_queue->lock);
1661 
1662 		skb = __first_packet_length(sk, rcvq, &total);
1663 	}
1664 	res = skb ? skb->len : -1;
1665 	if (total)
1666 		udp_rmem_release(sk, total, 1, false);
1667 	spin_unlock_bh(&rcvq->lock);
1668 	return res;
1669 }
1670 
1671 /*
1672  *	IOCTL requests applicable to the UDP protocol
1673  */
1674 
1675 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1676 {
1677 	switch (cmd) {
1678 	case SIOCOUTQ:
1679 	{
1680 		*karg = sk_wmem_alloc_get(sk);
1681 		return 0;
1682 	}
1683 
1684 	case SIOCINQ:
1685 	{
1686 		*karg = max_t(int, 0, first_packet_length(sk));
1687 		return 0;
1688 	}
1689 
1690 	default:
1691 		return -ENOIOCTLCMD;
1692 	}
1693 
1694 	return 0;
1695 }
1696 EXPORT_SYMBOL(udp_ioctl);
1697 
1698 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1699 			       int *off, int *err)
1700 {
1701 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1702 	struct sk_buff_head *queue;
1703 	struct sk_buff *last;
1704 	long timeo;
1705 	int error;
1706 
1707 	queue = &udp_sk(sk)->reader_queue;
1708 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1709 	do {
1710 		struct sk_buff *skb;
1711 
1712 		error = sock_error(sk);
1713 		if (error)
1714 			break;
1715 
1716 		error = -EAGAIN;
1717 		do {
1718 			spin_lock_bh(&queue->lock);
1719 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1720 							err, &last);
1721 			if (skb) {
1722 				if (!(flags & MSG_PEEK))
1723 					udp_skb_destructor(sk, skb);
1724 				spin_unlock_bh(&queue->lock);
1725 				return skb;
1726 			}
1727 
1728 			if (skb_queue_empty_lockless(sk_queue)) {
1729 				spin_unlock_bh(&queue->lock);
1730 				goto busy_check;
1731 			}
1732 
1733 			/* refill the reader queue and walk it again
1734 			 * keep both queues locked to avoid re-acquiring
1735 			 * the sk_receive_queue lock if fwd memory scheduling
1736 			 * is needed.
1737 			 */
1738 			spin_lock(&sk_queue->lock);
1739 			skb_queue_splice_tail_init(sk_queue, queue);
1740 
1741 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1742 							err, &last);
1743 			if (skb && !(flags & MSG_PEEK))
1744 				udp_skb_dtor_locked(sk, skb);
1745 			spin_unlock(&sk_queue->lock);
1746 			spin_unlock_bh(&queue->lock);
1747 			if (skb)
1748 				return skb;
1749 
1750 busy_check:
1751 			if (!sk_can_busy_loop(sk))
1752 				break;
1753 
1754 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1755 		} while (!skb_queue_empty_lockless(sk_queue));
1756 
1757 		/* sk_queue is empty, reader_queue may contain peeked packets */
1758 	} while (timeo &&
1759 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1760 					      &error, &timeo,
1761 					      (struct sk_buff *)sk_queue));
1762 
1763 	*err = error;
1764 	return NULL;
1765 }
1766 EXPORT_SYMBOL(__skb_recv_udp);
1767 
1768 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1769 {
1770 	struct sk_buff *skb;
1771 	int err;
1772 
1773 try_again:
1774 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1775 	if (!skb)
1776 		return err;
1777 
1778 	if (udp_lib_checksum_complete(skb)) {
1779 		int is_udplite = IS_UDPLITE(sk);
1780 		struct net *net = sock_net(sk);
1781 
1782 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1783 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1784 		atomic_inc(&sk->sk_drops);
1785 		kfree_skb(skb);
1786 		goto try_again;
1787 	}
1788 
1789 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1790 	return recv_actor(sk, skb);
1791 }
1792 EXPORT_SYMBOL(udp_read_skb);
1793 
1794 /*
1795  * 	This should be easy, if there is something there we
1796  * 	return it, otherwise we block.
1797  */
1798 
1799 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1800 		int *addr_len)
1801 {
1802 	struct inet_sock *inet = inet_sk(sk);
1803 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1804 	struct sk_buff *skb;
1805 	unsigned int ulen, copied;
1806 	int off, err, peeking = flags & MSG_PEEK;
1807 	int is_udplite = IS_UDPLITE(sk);
1808 	bool checksum_valid = false;
1809 
1810 	if (flags & MSG_ERRQUEUE)
1811 		return ip_recv_error(sk, msg, len, addr_len);
1812 
1813 try_again:
1814 	off = sk_peek_offset(sk, flags);
1815 	skb = __skb_recv_udp(sk, flags, &off, &err);
1816 	if (!skb)
1817 		return err;
1818 
1819 	ulen = udp_skb_len(skb);
1820 	copied = len;
1821 	if (copied > ulen - off)
1822 		copied = ulen - off;
1823 	else if (copied < ulen)
1824 		msg->msg_flags |= MSG_TRUNC;
1825 
1826 	/*
1827 	 * If checksum is needed at all, try to do it while copying the
1828 	 * data.  If the data is truncated, or if we only want a partial
1829 	 * coverage checksum (UDP-Lite), do it before the copy.
1830 	 */
1831 
1832 	if (copied < ulen || peeking ||
1833 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1834 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1835 				!__udp_lib_checksum_complete(skb);
1836 		if (!checksum_valid)
1837 			goto csum_copy_err;
1838 	}
1839 
1840 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1841 		if (udp_skb_is_linear(skb))
1842 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1843 		else
1844 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1845 	} else {
1846 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1847 
1848 		if (err == -EINVAL)
1849 			goto csum_copy_err;
1850 	}
1851 
1852 	if (unlikely(err)) {
1853 		if (!peeking) {
1854 			atomic_inc(&sk->sk_drops);
1855 			UDP_INC_STATS(sock_net(sk),
1856 				      UDP_MIB_INERRORS, is_udplite);
1857 		}
1858 		kfree_skb(skb);
1859 		return err;
1860 	}
1861 
1862 	if (!peeking)
1863 		UDP_INC_STATS(sock_net(sk),
1864 			      UDP_MIB_INDATAGRAMS, is_udplite);
1865 
1866 	sock_recv_cmsgs(msg, sk, skb);
1867 
1868 	/* Copy the address. */
1869 	if (sin) {
1870 		sin->sin_family = AF_INET;
1871 		sin->sin_port = udp_hdr(skb)->source;
1872 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1873 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1874 		*addr_len = sizeof(*sin);
1875 
1876 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1877 						      (struct sockaddr *)sin,
1878 						      addr_len);
1879 	}
1880 
1881 	if (udp_test_bit(GRO_ENABLED, sk))
1882 		udp_cmsg_recv(msg, sk, skb);
1883 
1884 	if (inet_cmsg_flags(inet))
1885 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1886 
1887 	err = copied;
1888 	if (flags & MSG_TRUNC)
1889 		err = ulen;
1890 
1891 	skb_consume_udp(sk, skb, peeking ? -err : err);
1892 	return err;
1893 
1894 csum_copy_err:
1895 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1896 				 udp_skb_destructor)) {
1897 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1898 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1899 	}
1900 	kfree_skb(skb);
1901 
1902 	/* starting over for a new packet, but check if we need to yield */
1903 	cond_resched();
1904 	msg->msg_flags &= ~MSG_TRUNC;
1905 	goto try_again;
1906 }
1907 
1908 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1909 {
1910 	/* This check is replicated from __ip4_datagram_connect() and
1911 	 * intended to prevent BPF program called below from accessing bytes
1912 	 * that are out of the bound specified by user in addr_len.
1913 	 */
1914 	if (addr_len < sizeof(struct sockaddr_in))
1915 		return -EINVAL;
1916 
1917 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1918 }
1919 EXPORT_SYMBOL(udp_pre_connect);
1920 
1921 int __udp_disconnect(struct sock *sk, int flags)
1922 {
1923 	struct inet_sock *inet = inet_sk(sk);
1924 	/*
1925 	 *	1003.1g - break association.
1926 	 */
1927 
1928 	sk->sk_state = TCP_CLOSE;
1929 	inet->inet_daddr = 0;
1930 	inet->inet_dport = 0;
1931 	sock_rps_reset_rxhash(sk);
1932 	sk->sk_bound_dev_if = 0;
1933 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1934 		inet_reset_saddr(sk);
1935 		if (sk->sk_prot->rehash &&
1936 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1937 			sk->sk_prot->rehash(sk);
1938 	}
1939 
1940 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1941 		sk->sk_prot->unhash(sk);
1942 		inet->inet_sport = 0;
1943 	}
1944 	sk_dst_reset(sk);
1945 	return 0;
1946 }
1947 EXPORT_SYMBOL(__udp_disconnect);
1948 
1949 int udp_disconnect(struct sock *sk, int flags)
1950 {
1951 	lock_sock(sk);
1952 	__udp_disconnect(sk, flags);
1953 	release_sock(sk);
1954 	return 0;
1955 }
1956 EXPORT_SYMBOL(udp_disconnect);
1957 
1958 void udp_lib_unhash(struct sock *sk)
1959 {
1960 	if (sk_hashed(sk)) {
1961 		struct udp_table *udptable = udp_get_table_prot(sk);
1962 		struct udp_hslot *hslot, *hslot2;
1963 
1964 		hslot  = udp_hashslot(udptable, sock_net(sk),
1965 				      udp_sk(sk)->udp_port_hash);
1966 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1967 
1968 		spin_lock_bh(&hslot->lock);
1969 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1970 			reuseport_detach_sock(sk);
1971 		if (sk_del_node_init_rcu(sk)) {
1972 			hslot->count--;
1973 			inet_sk(sk)->inet_num = 0;
1974 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1975 
1976 			spin_lock(&hslot2->lock);
1977 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1978 			hslot2->count--;
1979 			spin_unlock(&hslot2->lock);
1980 		}
1981 		spin_unlock_bh(&hslot->lock);
1982 	}
1983 }
1984 EXPORT_SYMBOL(udp_lib_unhash);
1985 
1986 /*
1987  * inet_rcv_saddr was changed, we must rehash secondary hash
1988  */
1989 void udp_lib_rehash(struct sock *sk, u16 newhash)
1990 {
1991 	if (sk_hashed(sk)) {
1992 		struct udp_table *udptable = udp_get_table_prot(sk);
1993 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1994 
1995 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1996 		nhslot2 = udp_hashslot2(udptable, newhash);
1997 		udp_sk(sk)->udp_portaddr_hash = newhash;
1998 
1999 		if (hslot2 != nhslot2 ||
2000 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2001 			hslot = udp_hashslot(udptable, sock_net(sk),
2002 					     udp_sk(sk)->udp_port_hash);
2003 			/* we must lock primary chain too */
2004 			spin_lock_bh(&hslot->lock);
2005 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2006 				reuseport_detach_sock(sk);
2007 
2008 			if (hslot2 != nhslot2) {
2009 				spin_lock(&hslot2->lock);
2010 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2011 				hslot2->count--;
2012 				spin_unlock(&hslot2->lock);
2013 
2014 				spin_lock(&nhslot2->lock);
2015 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2016 							 &nhslot2->head);
2017 				nhslot2->count++;
2018 				spin_unlock(&nhslot2->lock);
2019 			}
2020 
2021 			spin_unlock_bh(&hslot->lock);
2022 		}
2023 	}
2024 }
2025 EXPORT_SYMBOL(udp_lib_rehash);
2026 
2027 void udp_v4_rehash(struct sock *sk)
2028 {
2029 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2030 					  inet_sk(sk)->inet_rcv_saddr,
2031 					  inet_sk(sk)->inet_num);
2032 	udp_lib_rehash(sk, new_hash);
2033 }
2034 
2035 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2036 {
2037 	int rc;
2038 
2039 	if (inet_sk(sk)->inet_daddr) {
2040 		sock_rps_save_rxhash(sk, skb);
2041 		sk_mark_napi_id(sk, skb);
2042 		sk_incoming_cpu_update(sk);
2043 	} else {
2044 		sk_mark_napi_id_once(sk, skb);
2045 	}
2046 
2047 	rc = __udp_enqueue_schedule_skb(sk, skb);
2048 	if (rc < 0) {
2049 		int is_udplite = IS_UDPLITE(sk);
2050 		int drop_reason;
2051 
2052 		/* Note that an ENOMEM error is charged twice */
2053 		if (rc == -ENOMEM) {
2054 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2055 					is_udplite);
2056 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2057 		} else {
2058 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2059 				      is_udplite);
2060 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2061 		}
2062 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2063 		kfree_skb_reason(skb, drop_reason);
2064 		trace_udp_fail_queue_rcv_skb(rc, sk);
2065 		return -1;
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 /* returns:
2072  *  -1: error
2073  *   0: success
2074  *  >0: "udp encap" protocol resubmission
2075  *
2076  * Note that in the success and error cases, the skb is assumed to
2077  * have either been requeued or freed.
2078  */
2079 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2080 {
2081 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2082 	struct udp_sock *up = udp_sk(sk);
2083 	int is_udplite = IS_UDPLITE(sk);
2084 
2085 	/*
2086 	 *	Charge it to the socket, dropping if the queue is full.
2087 	 */
2088 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2089 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2090 		goto drop;
2091 	}
2092 	nf_reset_ct(skb);
2093 
2094 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2095 	    READ_ONCE(up->encap_type)) {
2096 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2097 
2098 		/*
2099 		 * This is an encapsulation socket so pass the skb to
2100 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2101 		 * fall through and pass this up the UDP socket.
2102 		 * up->encap_rcv() returns the following value:
2103 		 * =0 if skb was successfully passed to the encap
2104 		 *    handler or was discarded by it.
2105 		 * >0 if skb should be passed on to UDP.
2106 		 * <0 if skb should be resubmitted as proto -N
2107 		 */
2108 
2109 		/* if we're overly short, let UDP handle it */
2110 		encap_rcv = READ_ONCE(up->encap_rcv);
2111 		if (encap_rcv) {
2112 			int ret;
2113 
2114 			/* Verify checksum before giving to encap */
2115 			if (udp_lib_checksum_complete(skb))
2116 				goto csum_error;
2117 
2118 			ret = encap_rcv(sk, skb);
2119 			if (ret <= 0) {
2120 				__UDP_INC_STATS(sock_net(sk),
2121 						UDP_MIB_INDATAGRAMS,
2122 						is_udplite);
2123 				return -ret;
2124 			}
2125 		}
2126 
2127 		/* FALLTHROUGH -- it's a UDP Packet */
2128 	}
2129 
2130 	/*
2131 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2132 	 */
2133 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2134 		u16 pcrlen = READ_ONCE(up->pcrlen);
2135 
2136 		/*
2137 		 * MIB statistics other than incrementing the error count are
2138 		 * disabled for the following two types of errors: these depend
2139 		 * on the application settings, not on the functioning of the
2140 		 * protocol stack as such.
2141 		 *
2142 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2143 		 * way ... to ... at least let the receiving application block
2144 		 * delivery of packets with coverage values less than a value
2145 		 * provided by the application."
2146 		 */
2147 		if (pcrlen == 0) {          /* full coverage was set  */
2148 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2149 					    UDP_SKB_CB(skb)->cscov, skb->len);
2150 			goto drop;
2151 		}
2152 		/* The next case involves violating the min. coverage requested
2153 		 * by the receiver. This is subtle: if receiver wants x and x is
2154 		 * greater than the buffersize/MTU then receiver will complain
2155 		 * that it wants x while sender emits packets of smaller size y.
2156 		 * Therefore the above ...()->partial_cov statement is essential.
2157 		 */
2158 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2159 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2160 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2161 			goto drop;
2162 		}
2163 	}
2164 
2165 	prefetch(&sk->sk_rmem_alloc);
2166 	if (rcu_access_pointer(sk->sk_filter) &&
2167 	    udp_lib_checksum_complete(skb))
2168 			goto csum_error;
2169 
2170 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2171 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2172 		goto drop;
2173 	}
2174 
2175 	udp_csum_pull_header(skb);
2176 
2177 	ipv4_pktinfo_prepare(sk, skb, true);
2178 	return __udp_queue_rcv_skb(sk, skb);
2179 
2180 csum_error:
2181 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2182 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2183 drop:
2184 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2185 	atomic_inc(&sk->sk_drops);
2186 	kfree_skb_reason(skb, drop_reason);
2187 	return -1;
2188 }
2189 
2190 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2191 {
2192 	struct sk_buff *next, *segs;
2193 	int ret;
2194 
2195 	if (likely(!udp_unexpected_gso(sk, skb)))
2196 		return udp_queue_rcv_one_skb(sk, skb);
2197 
2198 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2199 	__skb_push(skb, -skb_mac_offset(skb));
2200 	segs = udp_rcv_segment(sk, skb, true);
2201 	skb_list_walk_safe(segs, skb, next) {
2202 		__skb_pull(skb, skb_transport_offset(skb));
2203 
2204 		udp_post_segment_fix_csum(skb);
2205 		ret = udp_queue_rcv_one_skb(sk, skb);
2206 		if (ret > 0)
2207 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2208 	}
2209 	return 0;
2210 }
2211 
2212 /* For TCP sockets, sk_rx_dst is protected by socket lock
2213  * For UDP, we use xchg() to guard against concurrent changes.
2214  */
2215 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2216 {
2217 	struct dst_entry *old;
2218 
2219 	if (dst_hold_safe(dst)) {
2220 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2221 		dst_release(old);
2222 		return old != dst;
2223 	}
2224 	return false;
2225 }
2226 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2227 
2228 /*
2229  *	Multicasts and broadcasts go to each listener.
2230  *
2231  *	Note: called only from the BH handler context.
2232  */
2233 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2234 				    struct udphdr  *uh,
2235 				    __be32 saddr, __be32 daddr,
2236 				    struct udp_table *udptable,
2237 				    int proto)
2238 {
2239 	struct sock *sk, *first = NULL;
2240 	unsigned short hnum = ntohs(uh->dest);
2241 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2242 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2243 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2244 	int dif = skb->dev->ifindex;
2245 	int sdif = inet_sdif(skb);
2246 	struct hlist_node *node;
2247 	struct sk_buff *nskb;
2248 
2249 	if (use_hash2) {
2250 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2251 			    udptable->mask;
2252 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2253 start_lookup:
2254 		hslot = &udptable->hash2[hash2];
2255 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2256 	}
2257 
2258 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2259 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2260 					 uh->source, saddr, dif, sdif, hnum))
2261 			continue;
2262 
2263 		if (!first) {
2264 			first = sk;
2265 			continue;
2266 		}
2267 		nskb = skb_clone(skb, GFP_ATOMIC);
2268 
2269 		if (unlikely(!nskb)) {
2270 			atomic_inc(&sk->sk_drops);
2271 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2272 					IS_UDPLITE(sk));
2273 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2274 					IS_UDPLITE(sk));
2275 			continue;
2276 		}
2277 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2278 			consume_skb(nskb);
2279 	}
2280 
2281 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2282 	if (use_hash2 && hash2 != hash2_any) {
2283 		hash2 = hash2_any;
2284 		goto start_lookup;
2285 	}
2286 
2287 	if (first) {
2288 		if (udp_queue_rcv_skb(first, skb) > 0)
2289 			consume_skb(skb);
2290 	} else {
2291 		kfree_skb(skb);
2292 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2293 				proto == IPPROTO_UDPLITE);
2294 	}
2295 	return 0;
2296 }
2297 
2298 /* Initialize UDP checksum. If exited with zero value (success),
2299  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2300  * Otherwise, csum completion requires checksumming packet body,
2301  * including udp header and folding it to skb->csum.
2302  */
2303 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2304 				 int proto)
2305 {
2306 	int err;
2307 
2308 	UDP_SKB_CB(skb)->partial_cov = 0;
2309 	UDP_SKB_CB(skb)->cscov = skb->len;
2310 
2311 	if (proto == IPPROTO_UDPLITE) {
2312 		err = udplite_checksum_init(skb, uh);
2313 		if (err)
2314 			return err;
2315 
2316 		if (UDP_SKB_CB(skb)->partial_cov) {
2317 			skb->csum = inet_compute_pseudo(skb, proto);
2318 			return 0;
2319 		}
2320 	}
2321 
2322 	/* Note, we are only interested in != 0 or == 0, thus the
2323 	 * force to int.
2324 	 */
2325 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2326 							inet_compute_pseudo);
2327 	if (err)
2328 		return err;
2329 
2330 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2331 		/* If SW calculated the value, we know it's bad */
2332 		if (skb->csum_complete_sw)
2333 			return 1;
2334 
2335 		/* HW says the value is bad. Let's validate that.
2336 		 * skb->csum is no longer the full packet checksum,
2337 		 * so don't treat it as such.
2338 		 */
2339 		skb_checksum_complete_unset(skb);
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2346  * return code conversion for ip layer consumption
2347  */
2348 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2349 			       struct udphdr *uh)
2350 {
2351 	int ret;
2352 
2353 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2354 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2355 
2356 	ret = udp_queue_rcv_skb(sk, skb);
2357 
2358 	/* a return value > 0 means to resubmit the input, but
2359 	 * it wants the return to be -protocol, or 0
2360 	 */
2361 	if (ret > 0)
2362 		return -ret;
2363 	return 0;
2364 }
2365 
2366 /*
2367  *	All we need to do is get the socket, and then do a checksum.
2368  */
2369 
2370 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2371 		   int proto)
2372 {
2373 	struct sock *sk;
2374 	struct udphdr *uh;
2375 	unsigned short ulen;
2376 	struct rtable *rt = skb_rtable(skb);
2377 	__be32 saddr, daddr;
2378 	struct net *net = dev_net(skb->dev);
2379 	bool refcounted;
2380 	int drop_reason;
2381 
2382 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2383 
2384 	/*
2385 	 *  Validate the packet.
2386 	 */
2387 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2388 		goto drop;		/* No space for header. */
2389 
2390 	uh   = udp_hdr(skb);
2391 	ulen = ntohs(uh->len);
2392 	saddr = ip_hdr(skb)->saddr;
2393 	daddr = ip_hdr(skb)->daddr;
2394 
2395 	if (ulen > skb->len)
2396 		goto short_packet;
2397 
2398 	if (proto == IPPROTO_UDP) {
2399 		/* UDP validates ulen. */
2400 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2401 			goto short_packet;
2402 		uh = udp_hdr(skb);
2403 	}
2404 
2405 	if (udp4_csum_init(skb, uh, proto))
2406 		goto csum_error;
2407 
2408 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2409 			     &refcounted, udp_ehashfn);
2410 	if (IS_ERR(sk))
2411 		goto no_sk;
2412 
2413 	if (sk) {
2414 		struct dst_entry *dst = skb_dst(skb);
2415 		int ret;
2416 
2417 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2418 			udp_sk_rx_dst_set(sk, dst);
2419 
2420 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2421 		if (refcounted)
2422 			sock_put(sk);
2423 		return ret;
2424 	}
2425 
2426 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2427 		return __udp4_lib_mcast_deliver(net, skb, uh,
2428 						saddr, daddr, udptable, proto);
2429 
2430 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2431 	if (sk)
2432 		return udp_unicast_rcv_skb(sk, skb, uh);
2433 no_sk:
2434 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2435 		goto drop;
2436 	nf_reset_ct(skb);
2437 
2438 	/* No socket. Drop packet silently, if checksum is wrong */
2439 	if (udp_lib_checksum_complete(skb))
2440 		goto csum_error;
2441 
2442 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2443 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2444 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2445 
2446 	/*
2447 	 * Hmm.  We got an UDP packet to a port to which we
2448 	 * don't wanna listen.  Ignore it.
2449 	 */
2450 	kfree_skb_reason(skb, drop_reason);
2451 	return 0;
2452 
2453 short_packet:
2454 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2455 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2456 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2457 			    &saddr, ntohs(uh->source),
2458 			    ulen, skb->len,
2459 			    &daddr, ntohs(uh->dest));
2460 	goto drop;
2461 
2462 csum_error:
2463 	/*
2464 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2465 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2466 	 */
2467 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2468 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2469 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2470 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2471 			    ulen);
2472 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2473 drop:
2474 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2475 	kfree_skb_reason(skb, drop_reason);
2476 	return 0;
2477 }
2478 
2479 /* We can only early demux multicast if there is a single matching socket.
2480  * If more than one socket found returns NULL
2481  */
2482 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2483 						  __be16 loc_port, __be32 loc_addr,
2484 						  __be16 rmt_port, __be32 rmt_addr,
2485 						  int dif, int sdif)
2486 {
2487 	struct udp_table *udptable = net->ipv4.udp_table;
2488 	unsigned short hnum = ntohs(loc_port);
2489 	struct sock *sk, *result;
2490 	struct udp_hslot *hslot;
2491 	unsigned int slot;
2492 
2493 	slot = udp_hashfn(net, hnum, udptable->mask);
2494 	hslot = &udptable->hash[slot];
2495 
2496 	/* Do not bother scanning a too big list */
2497 	if (hslot->count > 10)
2498 		return NULL;
2499 
2500 	result = NULL;
2501 	sk_for_each_rcu(sk, &hslot->head) {
2502 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2503 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2504 			if (result)
2505 				return NULL;
2506 			result = sk;
2507 		}
2508 	}
2509 
2510 	return result;
2511 }
2512 
2513 /* For unicast we should only early demux connected sockets or we can
2514  * break forwarding setups.  The chains here can be long so only check
2515  * if the first socket is an exact match and if not move on.
2516  */
2517 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2518 					    __be16 loc_port, __be32 loc_addr,
2519 					    __be16 rmt_port, __be32 rmt_addr,
2520 					    int dif, int sdif)
2521 {
2522 	struct udp_table *udptable = net->ipv4.udp_table;
2523 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2524 	unsigned short hnum = ntohs(loc_port);
2525 	unsigned int hash2, slot2;
2526 	struct udp_hslot *hslot2;
2527 	__portpair ports;
2528 	struct sock *sk;
2529 
2530 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2531 	slot2 = hash2 & udptable->mask;
2532 	hslot2 = &udptable->hash2[slot2];
2533 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2534 
2535 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2536 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2537 			return sk;
2538 		/* Only check first socket in chain */
2539 		break;
2540 	}
2541 	return NULL;
2542 }
2543 
2544 int udp_v4_early_demux(struct sk_buff *skb)
2545 {
2546 	struct net *net = dev_net(skb->dev);
2547 	struct in_device *in_dev = NULL;
2548 	const struct iphdr *iph;
2549 	const struct udphdr *uh;
2550 	struct sock *sk = NULL;
2551 	struct dst_entry *dst;
2552 	int dif = skb->dev->ifindex;
2553 	int sdif = inet_sdif(skb);
2554 	int ours;
2555 
2556 	/* validate the packet */
2557 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2558 		return 0;
2559 
2560 	iph = ip_hdr(skb);
2561 	uh = udp_hdr(skb);
2562 
2563 	if (skb->pkt_type == PACKET_MULTICAST) {
2564 		in_dev = __in_dev_get_rcu(skb->dev);
2565 
2566 		if (!in_dev)
2567 			return 0;
2568 
2569 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2570 				       iph->protocol);
2571 		if (!ours)
2572 			return 0;
2573 
2574 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2575 						   uh->source, iph->saddr,
2576 						   dif, sdif);
2577 	} else if (skb->pkt_type == PACKET_HOST) {
2578 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2579 					     uh->source, iph->saddr, dif, sdif);
2580 	}
2581 
2582 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2583 		return 0;
2584 
2585 	skb->sk = sk;
2586 	skb->destructor = sock_efree;
2587 	dst = rcu_dereference(sk->sk_rx_dst);
2588 
2589 	if (dst)
2590 		dst = dst_check(dst, 0);
2591 	if (dst) {
2592 		u32 itag = 0;
2593 
2594 		/* set noref for now.
2595 		 * any place which wants to hold dst has to call
2596 		 * dst_hold_safe()
2597 		 */
2598 		skb_dst_set_noref(skb, dst);
2599 
2600 		/* for unconnected multicast sockets we need to validate
2601 		 * the source on each packet
2602 		 */
2603 		if (!inet_sk(sk)->inet_daddr && in_dev)
2604 			return ip_mc_validate_source(skb, iph->daddr,
2605 						     iph->saddr,
2606 						     iph->tos & IPTOS_RT_MASK,
2607 						     skb->dev, in_dev, &itag);
2608 	}
2609 	return 0;
2610 }
2611 
2612 int udp_rcv(struct sk_buff *skb)
2613 {
2614 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2615 }
2616 
2617 void udp_destroy_sock(struct sock *sk)
2618 {
2619 	struct udp_sock *up = udp_sk(sk);
2620 	bool slow = lock_sock_fast(sk);
2621 
2622 	/* protects from races with udp_abort() */
2623 	sock_set_flag(sk, SOCK_DEAD);
2624 	udp_flush_pending_frames(sk);
2625 	unlock_sock_fast(sk, slow);
2626 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2627 		if (up->encap_type) {
2628 			void (*encap_destroy)(struct sock *sk);
2629 			encap_destroy = READ_ONCE(up->encap_destroy);
2630 			if (encap_destroy)
2631 				encap_destroy(sk);
2632 		}
2633 		if (udp_test_bit(ENCAP_ENABLED, sk))
2634 			static_branch_dec(&udp_encap_needed_key);
2635 	}
2636 }
2637 
2638 /*
2639  *	Socket option code for UDP
2640  */
2641 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2642 		       sockptr_t optval, unsigned int optlen,
2643 		       int (*push_pending_frames)(struct sock *))
2644 {
2645 	struct udp_sock *up = udp_sk(sk);
2646 	int val, valbool;
2647 	int err = 0;
2648 	int is_udplite = IS_UDPLITE(sk);
2649 
2650 	if (level == SOL_SOCKET) {
2651 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2652 
2653 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2654 			sockopt_lock_sock(sk);
2655 			/* paired with READ_ONCE in udp_rmem_release() */
2656 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2657 			sockopt_release_sock(sk);
2658 		}
2659 		return err;
2660 	}
2661 
2662 	if (optlen < sizeof(int))
2663 		return -EINVAL;
2664 
2665 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2666 		return -EFAULT;
2667 
2668 	valbool = val ? 1 : 0;
2669 
2670 	switch (optname) {
2671 	case UDP_CORK:
2672 		if (val != 0) {
2673 			udp_set_bit(CORK, sk);
2674 		} else {
2675 			udp_clear_bit(CORK, sk);
2676 			lock_sock(sk);
2677 			push_pending_frames(sk);
2678 			release_sock(sk);
2679 		}
2680 		break;
2681 
2682 	case UDP_ENCAP:
2683 		switch (val) {
2684 		case 0:
2685 #ifdef CONFIG_XFRM
2686 		case UDP_ENCAP_ESPINUDP:
2687 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2688 #if IS_ENABLED(CONFIG_IPV6)
2689 			if (sk->sk_family == AF_INET6)
2690 				WRITE_ONCE(up->encap_rcv,
2691 					   ipv6_stub->xfrm6_udp_encap_rcv);
2692 			else
2693 #endif
2694 				WRITE_ONCE(up->encap_rcv,
2695 					   xfrm4_udp_encap_rcv);
2696 #endif
2697 			fallthrough;
2698 		case UDP_ENCAP_L2TPINUDP:
2699 			WRITE_ONCE(up->encap_type, val);
2700 			udp_tunnel_encap_enable(sk);
2701 			break;
2702 		default:
2703 			err = -ENOPROTOOPT;
2704 			break;
2705 		}
2706 		break;
2707 
2708 	case UDP_NO_CHECK6_TX:
2709 		udp_set_no_check6_tx(sk, valbool);
2710 		break;
2711 
2712 	case UDP_NO_CHECK6_RX:
2713 		udp_set_no_check6_rx(sk, valbool);
2714 		break;
2715 
2716 	case UDP_SEGMENT:
2717 		if (val < 0 || val > USHRT_MAX)
2718 			return -EINVAL;
2719 		WRITE_ONCE(up->gso_size, val);
2720 		break;
2721 
2722 	case UDP_GRO:
2723 
2724 		/* when enabling GRO, accept the related GSO packet type */
2725 		if (valbool)
2726 			udp_tunnel_encap_enable(sk);
2727 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2728 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2729 		break;
2730 
2731 	/*
2732 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2733 	 */
2734 	/* The sender sets actual checksum coverage length via this option.
2735 	 * The case coverage > packet length is handled by send module. */
2736 	case UDPLITE_SEND_CSCOV:
2737 		if (!is_udplite)         /* Disable the option on UDP sockets */
2738 			return -ENOPROTOOPT;
2739 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2740 			val = 8;
2741 		else if (val > USHRT_MAX)
2742 			val = USHRT_MAX;
2743 		WRITE_ONCE(up->pcslen, val);
2744 		udp_set_bit(UDPLITE_SEND_CC, sk);
2745 		break;
2746 
2747 	/* The receiver specifies a minimum checksum coverage value. To make
2748 	 * sense, this should be set to at least 8 (as done below). If zero is
2749 	 * used, this again means full checksum coverage.                     */
2750 	case UDPLITE_RECV_CSCOV:
2751 		if (!is_udplite)         /* Disable the option on UDP sockets */
2752 			return -ENOPROTOOPT;
2753 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2754 			val = 8;
2755 		else if (val > USHRT_MAX)
2756 			val = USHRT_MAX;
2757 		WRITE_ONCE(up->pcrlen, val);
2758 		udp_set_bit(UDPLITE_RECV_CC, sk);
2759 		break;
2760 
2761 	default:
2762 		err = -ENOPROTOOPT;
2763 		break;
2764 	}
2765 
2766 	return err;
2767 }
2768 EXPORT_SYMBOL(udp_lib_setsockopt);
2769 
2770 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2771 		   unsigned int optlen)
2772 {
2773 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2774 		return udp_lib_setsockopt(sk, level, optname,
2775 					  optval, optlen,
2776 					  udp_push_pending_frames);
2777 	return ip_setsockopt(sk, level, optname, optval, optlen);
2778 }
2779 
2780 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2781 		       char __user *optval, int __user *optlen)
2782 {
2783 	struct udp_sock *up = udp_sk(sk);
2784 	int val, len;
2785 
2786 	if (get_user(len, optlen))
2787 		return -EFAULT;
2788 
2789 	if (len < 0)
2790 		return -EINVAL;
2791 
2792 	len = min_t(unsigned int, len, sizeof(int));
2793 
2794 	switch (optname) {
2795 	case UDP_CORK:
2796 		val = udp_test_bit(CORK, sk);
2797 		break;
2798 
2799 	case UDP_ENCAP:
2800 		val = READ_ONCE(up->encap_type);
2801 		break;
2802 
2803 	case UDP_NO_CHECK6_TX:
2804 		val = udp_get_no_check6_tx(sk);
2805 		break;
2806 
2807 	case UDP_NO_CHECK6_RX:
2808 		val = udp_get_no_check6_rx(sk);
2809 		break;
2810 
2811 	case UDP_SEGMENT:
2812 		val = READ_ONCE(up->gso_size);
2813 		break;
2814 
2815 	case UDP_GRO:
2816 		val = udp_test_bit(GRO_ENABLED, sk);
2817 		break;
2818 
2819 	/* The following two cannot be changed on UDP sockets, the return is
2820 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2821 	case UDPLITE_SEND_CSCOV:
2822 		val = READ_ONCE(up->pcslen);
2823 		break;
2824 
2825 	case UDPLITE_RECV_CSCOV:
2826 		val = READ_ONCE(up->pcrlen);
2827 		break;
2828 
2829 	default:
2830 		return -ENOPROTOOPT;
2831 	}
2832 
2833 	if (put_user(len, optlen))
2834 		return -EFAULT;
2835 	if (copy_to_user(optval, &val, len))
2836 		return -EFAULT;
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(udp_lib_getsockopt);
2840 
2841 int udp_getsockopt(struct sock *sk, int level, int optname,
2842 		   char __user *optval, int __user *optlen)
2843 {
2844 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2845 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2846 	return ip_getsockopt(sk, level, optname, optval, optlen);
2847 }
2848 
2849 /**
2850  * 	udp_poll - wait for a UDP event.
2851  *	@file: - file struct
2852  *	@sock: - socket
2853  *	@wait: - poll table
2854  *
2855  *	This is same as datagram poll, except for the special case of
2856  *	blocking sockets. If application is using a blocking fd
2857  *	and a packet with checksum error is in the queue;
2858  *	then it could get return from select indicating data available
2859  *	but then block when reading it. Add special case code
2860  *	to work around these arguably broken applications.
2861  */
2862 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2863 {
2864 	__poll_t mask = datagram_poll(file, sock, wait);
2865 	struct sock *sk = sock->sk;
2866 
2867 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2868 		mask |= EPOLLIN | EPOLLRDNORM;
2869 
2870 	/* Check for false positives due to checksum errors */
2871 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2872 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2873 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2874 
2875 	/* psock ingress_msg queue should not contain any bad checksum frames */
2876 	if (sk_is_readable(sk))
2877 		mask |= EPOLLIN | EPOLLRDNORM;
2878 	return mask;
2879 
2880 }
2881 EXPORT_SYMBOL(udp_poll);
2882 
2883 int udp_abort(struct sock *sk, int err)
2884 {
2885 	if (!has_current_bpf_ctx())
2886 		lock_sock(sk);
2887 
2888 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2889 	 * with close()
2890 	 */
2891 	if (sock_flag(sk, SOCK_DEAD))
2892 		goto out;
2893 
2894 	sk->sk_err = err;
2895 	sk_error_report(sk);
2896 	__udp_disconnect(sk, 0);
2897 
2898 out:
2899 	if (!has_current_bpf_ctx())
2900 		release_sock(sk);
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL_GPL(udp_abort);
2905 
2906 struct proto udp_prot = {
2907 	.name			= "UDP",
2908 	.owner			= THIS_MODULE,
2909 	.close			= udp_lib_close,
2910 	.pre_connect		= udp_pre_connect,
2911 	.connect		= ip4_datagram_connect,
2912 	.disconnect		= udp_disconnect,
2913 	.ioctl			= udp_ioctl,
2914 	.init			= udp_init_sock,
2915 	.destroy		= udp_destroy_sock,
2916 	.setsockopt		= udp_setsockopt,
2917 	.getsockopt		= udp_getsockopt,
2918 	.sendmsg		= udp_sendmsg,
2919 	.recvmsg		= udp_recvmsg,
2920 	.splice_eof		= udp_splice_eof,
2921 	.release_cb		= ip4_datagram_release_cb,
2922 	.hash			= udp_lib_hash,
2923 	.unhash			= udp_lib_unhash,
2924 	.rehash			= udp_v4_rehash,
2925 	.get_port		= udp_v4_get_port,
2926 	.put_port		= udp_lib_unhash,
2927 #ifdef CONFIG_BPF_SYSCALL
2928 	.psock_update_sk_prot	= udp_bpf_update_proto,
2929 #endif
2930 	.memory_allocated	= &udp_memory_allocated,
2931 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2932 
2933 	.sysctl_mem		= sysctl_udp_mem,
2934 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2935 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2936 	.obj_size		= sizeof(struct udp_sock),
2937 	.h.udp_table		= NULL,
2938 	.diag_destroy		= udp_abort,
2939 };
2940 EXPORT_SYMBOL(udp_prot);
2941 
2942 /* ------------------------------------------------------------------------ */
2943 #ifdef CONFIG_PROC_FS
2944 
2945 static unsigned short seq_file_family(const struct seq_file *seq);
2946 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2947 {
2948 	unsigned short family = seq_file_family(seq);
2949 
2950 	/* AF_UNSPEC is used as a match all */
2951 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2952 		net_eq(sock_net(sk), seq_file_net(seq)));
2953 }
2954 
2955 #ifdef CONFIG_BPF_SYSCALL
2956 static const struct seq_operations bpf_iter_udp_seq_ops;
2957 #endif
2958 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2959 					   struct net *net)
2960 {
2961 	const struct udp_seq_afinfo *afinfo;
2962 
2963 #ifdef CONFIG_BPF_SYSCALL
2964 	if (seq->op == &bpf_iter_udp_seq_ops)
2965 		return net->ipv4.udp_table;
2966 #endif
2967 
2968 	afinfo = pde_data(file_inode(seq->file));
2969 	return afinfo->udp_table ? : net->ipv4.udp_table;
2970 }
2971 
2972 static struct sock *udp_get_first(struct seq_file *seq, int start)
2973 {
2974 	struct udp_iter_state *state = seq->private;
2975 	struct net *net = seq_file_net(seq);
2976 	struct udp_table *udptable;
2977 	struct sock *sk;
2978 
2979 	udptable = udp_get_table_seq(seq, net);
2980 
2981 	for (state->bucket = start; state->bucket <= udptable->mask;
2982 	     ++state->bucket) {
2983 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
2984 
2985 		if (hlist_empty(&hslot->head))
2986 			continue;
2987 
2988 		spin_lock_bh(&hslot->lock);
2989 		sk_for_each(sk, &hslot->head) {
2990 			if (seq_sk_match(seq, sk))
2991 				goto found;
2992 		}
2993 		spin_unlock_bh(&hslot->lock);
2994 	}
2995 	sk = NULL;
2996 found:
2997 	return sk;
2998 }
2999 
3000 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3001 {
3002 	struct udp_iter_state *state = seq->private;
3003 	struct net *net = seq_file_net(seq);
3004 	struct udp_table *udptable;
3005 
3006 	do {
3007 		sk = sk_next(sk);
3008 	} while (sk && !seq_sk_match(seq, sk));
3009 
3010 	if (!sk) {
3011 		udptable = udp_get_table_seq(seq, net);
3012 
3013 		if (state->bucket <= udptable->mask)
3014 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3015 
3016 		return udp_get_first(seq, state->bucket + 1);
3017 	}
3018 	return sk;
3019 }
3020 
3021 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3022 {
3023 	struct sock *sk = udp_get_first(seq, 0);
3024 
3025 	if (sk)
3026 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3027 			--pos;
3028 	return pos ? NULL : sk;
3029 }
3030 
3031 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3032 {
3033 	struct udp_iter_state *state = seq->private;
3034 	state->bucket = MAX_UDP_PORTS;
3035 
3036 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3037 }
3038 EXPORT_SYMBOL(udp_seq_start);
3039 
3040 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3041 {
3042 	struct sock *sk;
3043 
3044 	if (v == SEQ_START_TOKEN)
3045 		sk = udp_get_idx(seq, 0);
3046 	else
3047 		sk = udp_get_next(seq, v);
3048 
3049 	++*pos;
3050 	return sk;
3051 }
3052 EXPORT_SYMBOL(udp_seq_next);
3053 
3054 void udp_seq_stop(struct seq_file *seq, void *v)
3055 {
3056 	struct udp_iter_state *state = seq->private;
3057 	struct udp_table *udptable;
3058 
3059 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3060 
3061 	if (state->bucket <= udptable->mask)
3062 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3063 }
3064 EXPORT_SYMBOL(udp_seq_stop);
3065 
3066 /* ------------------------------------------------------------------------ */
3067 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3068 		int bucket)
3069 {
3070 	struct inet_sock *inet = inet_sk(sp);
3071 	__be32 dest = inet->inet_daddr;
3072 	__be32 src  = inet->inet_rcv_saddr;
3073 	__u16 destp	  = ntohs(inet->inet_dport);
3074 	__u16 srcp	  = ntohs(inet->inet_sport);
3075 
3076 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3077 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3078 		bucket, src, srcp, dest, destp, sp->sk_state,
3079 		sk_wmem_alloc_get(sp),
3080 		udp_rqueue_get(sp),
3081 		0, 0L, 0,
3082 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3083 		0, sock_i_ino(sp),
3084 		refcount_read(&sp->sk_refcnt), sp,
3085 		atomic_read(&sp->sk_drops));
3086 }
3087 
3088 int udp4_seq_show(struct seq_file *seq, void *v)
3089 {
3090 	seq_setwidth(seq, 127);
3091 	if (v == SEQ_START_TOKEN)
3092 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3093 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3094 			   "inode ref pointer drops");
3095 	else {
3096 		struct udp_iter_state *state = seq->private;
3097 
3098 		udp4_format_sock(v, seq, state->bucket);
3099 	}
3100 	seq_pad(seq, '\n');
3101 	return 0;
3102 }
3103 
3104 #ifdef CONFIG_BPF_SYSCALL
3105 struct bpf_iter__udp {
3106 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3107 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3108 	uid_t uid __aligned(8);
3109 	int bucket __aligned(8);
3110 };
3111 
3112 struct bpf_udp_iter_state {
3113 	struct udp_iter_state state;
3114 	unsigned int cur_sk;
3115 	unsigned int end_sk;
3116 	unsigned int max_sk;
3117 	int offset;
3118 	struct sock **batch;
3119 	bool st_bucket_done;
3120 };
3121 
3122 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3123 				      unsigned int new_batch_sz);
3124 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3125 {
3126 	struct bpf_udp_iter_state *iter = seq->private;
3127 	struct udp_iter_state *state = &iter->state;
3128 	struct net *net = seq_file_net(seq);
3129 	int resume_bucket, resume_offset;
3130 	struct udp_table *udptable;
3131 	unsigned int batch_sks = 0;
3132 	bool resized = false;
3133 	struct sock *sk;
3134 
3135 	resume_bucket = state->bucket;
3136 	resume_offset = iter->offset;
3137 
3138 	/* The current batch is done, so advance the bucket. */
3139 	if (iter->st_bucket_done)
3140 		state->bucket++;
3141 
3142 	udptable = udp_get_table_seq(seq, net);
3143 
3144 again:
3145 	/* New batch for the next bucket.
3146 	 * Iterate over the hash table to find a bucket with sockets matching
3147 	 * the iterator attributes, and return the first matching socket from
3148 	 * the bucket. The remaining matched sockets from the bucket are batched
3149 	 * before releasing the bucket lock. This allows BPF programs that are
3150 	 * called in seq_show to acquire the bucket lock if needed.
3151 	 */
3152 	iter->cur_sk = 0;
3153 	iter->end_sk = 0;
3154 	iter->st_bucket_done = false;
3155 	batch_sks = 0;
3156 
3157 	for (; state->bucket <= udptable->mask; state->bucket++) {
3158 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3159 
3160 		if (hlist_empty(&hslot2->head))
3161 			continue;
3162 
3163 		iter->offset = 0;
3164 		spin_lock_bh(&hslot2->lock);
3165 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3166 			if (seq_sk_match(seq, sk)) {
3167 				/* Resume from the last iterated socket at the
3168 				 * offset in the bucket before iterator was stopped.
3169 				 */
3170 				if (state->bucket == resume_bucket &&
3171 				    iter->offset < resume_offset) {
3172 					++iter->offset;
3173 					continue;
3174 				}
3175 				if (iter->end_sk < iter->max_sk) {
3176 					sock_hold(sk);
3177 					iter->batch[iter->end_sk++] = sk;
3178 				}
3179 				batch_sks++;
3180 			}
3181 		}
3182 		spin_unlock_bh(&hslot2->lock);
3183 
3184 		if (iter->end_sk)
3185 			break;
3186 	}
3187 
3188 	/* All done: no batch made. */
3189 	if (!iter->end_sk)
3190 		return NULL;
3191 
3192 	if (iter->end_sk == batch_sks) {
3193 		/* Batching is done for the current bucket; return the first
3194 		 * socket to be iterated from the batch.
3195 		 */
3196 		iter->st_bucket_done = true;
3197 		goto done;
3198 	}
3199 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3200 		resized = true;
3201 		/* After allocating a larger batch, retry one more time to grab
3202 		 * the whole bucket.
3203 		 */
3204 		goto again;
3205 	}
3206 done:
3207 	return iter->batch[0];
3208 }
3209 
3210 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3211 {
3212 	struct bpf_udp_iter_state *iter = seq->private;
3213 	struct sock *sk;
3214 
3215 	/* Whenever seq_next() is called, the iter->cur_sk is
3216 	 * done with seq_show(), so unref the iter->cur_sk.
3217 	 */
3218 	if (iter->cur_sk < iter->end_sk) {
3219 		sock_put(iter->batch[iter->cur_sk++]);
3220 		++iter->offset;
3221 	}
3222 
3223 	/* After updating iter->cur_sk, check if there are more sockets
3224 	 * available in the current bucket batch.
3225 	 */
3226 	if (iter->cur_sk < iter->end_sk)
3227 		sk = iter->batch[iter->cur_sk];
3228 	else
3229 		/* Prepare a new batch. */
3230 		sk = bpf_iter_udp_batch(seq);
3231 
3232 	++*pos;
3233 	return sk;
3234 }
3235 
3236 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3237 {
3238 	/* bpf iter does not support lseek, so it always
3239 	 * continue from where it was stop()-ped.
3240 	 */
3241 	if (*pos)
3242 		return bpf_iter_udp_batch(seq);
3243 
3244 	return SEQ_START_TOKEN;
3245 }
3246 
3247 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3248 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3249 {
3250 	struct bpf_iter__udp ctx;
3251 
3252 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3253 	ctx.meta = meta;
3254 	ctx.udp_sk = udp_sk;
3255 	ctx.uid = uid;
3256 	ctx.bucket = bucket;
3257 	return bpf_iter_run_prog(prog, &ctx);
3258 }
3259 
3260 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3261 {
3262 	struct udp_iter_state *state = seq->private;
3263 	struct bpf_iter_meta meta;
3264 	struct bpf_prog *prog;
3265 	struct sock *sk = v;
3266 	uid_t uid;
3267 	int ret;
3268 
3269 	if (v == SEQ_START_TOKEN)
3270 		return 0;
3271 
3272 	lock_sock(sk);
3273 
3274 	if (unlikely(sk_unhashed(sk))) {
3275 		ret = SEQ_SKIP;
3276 		goto unlock;
3277 	}
3278 
3279 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3280 	meta.seq = seq;
3281 	prog = bpf_iter_get_info(&meta, false);
3282 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3283 
3284 unlock:
3285 	release_sock(sk);
3286 	return ret;
3287 }
3288 
3289 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3290 {
3291 	while (iter->cur_sk < iter->end_sk)
3292 		sock_put(iter->batch[iter->cur_sk++]);
3293 }
3294 
3295 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3296 {
3297 	struct bpf_udp_iter_state *iter = seq->private;
3298 	struct bpf_iter_meta meta;
3299 	struct bpf_prog *prog;
3300 
3301 	if (!v) {
3302 		meta.seq = seq;
3303 		prog = bpf_iter_get_info(&meta, true);
3304 		if (prog)
3305 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3306 	}
3307 
3308 	if (iter->cur_sk < iter->end_sk) {
3309 		bpf_iter_udp_put_batch(iter);
3310 		iter->st_bucket_done = false;
3311 	}
3312 }
3313 
3314 static const struct seq_operations bpf_iter_udp_seq_ops = {
3315 	.start		= bpf_iter_udp_seq_start,
3316 	.next		= bpf_iter_udp_seq_next,
3317 	.stop		= bpf_iter_udp_seq_stop,
3318 	.show		= bpf_iter_udp_seq_show,
3319 };
3320 #endif
3321 
3322 static unsigned short seq_file_family(const struct seq_file *seq)
3323 {
3324 	const struct udp_seq_afinfo *afinfo;
3325 
3326 #ifdef CONFIG_BPF_SYSCALL
3327 	/* BPF iterator: bpf programs to filter sockets. */
3328 	if (seq->op == &bpf_iter_udp_seq_ops)
3329 		return AF_UNSPEC;
3330 #endif
3331 
3332 	/* Proc fs iterator */
3333 	afinfo = pde_data(file_inode(seq->file));
3334 	return afinfo->family;
3335 }
3336 
3337 const struct seq_operations udp_seq_ops = {
3338 	.start		= udp_seq_start,
3339 	.next		= udp_seq_next,
3340 	.stop		= udp_seq_stop,
3341 	.show		= udp4_seq_show,
3342 };
3343 EXPORT_SYMBOL(udp_seq_ops);
3344 
3345 static struct udp_seq_afinfo udp4_seq_afinfo = {
3346 	.family		= AF_INET,
3347 	.udp_table	= NULL,
3348 };
3349 
3350 static int __net_init udp4_proc_init_net(struct net *net)
3351 {
3352 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3353 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3354 		return -ENOMEM;
3355 	return 0;
3356 }
3357 
3358 static void __net_exit udp4_proc_exit_net(struct net *net)
3359 {
3360 	remove_proc_entry("udp", net->proc_net);
3361 }
3362 
3363 static struct pernet_operations udp4_net_ops = {
3364 	.init = udp4_proc_init_net,
3365 	.exit = udp4_proc_exit_net,
3366 };
3367 
3368 int __init udp4_proc_init(void)
3369 {
3370 	return register_pernet_subsys(&udp4_net_ops);
3371 }
3372 
3373 void udp4_proc_exit(void)
3374 {
3375 	unregister_pernet_subsys(&udp4_net_ops);
3376 }
3377 #endif /* CONFIG_PROC_FS */
3378 
3379 static __initdata unsigned long uhash_entries;
3380 static int __init set_uhash_entries(char *str)
3381 {
3382 	ssize_t ret;
3383 
3384 	if (!str)
3385 		return 0;
3386 
3387 	ret = kstrtoul(str, 0, &uhash_entries);
3388 	if (ret)
3389 		return 0;
3390 
3391 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3392 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3393 	return 1;
3394 }
3395 __setup("uhash_entries=", set_uhash_entries);
3396 
3397 void __init udp_table_init(struct udp_table *table, const char *name)
3398 {
3399 	unsigned int i;
3400 
3401 	table->hash = alloc_large_system_hash(name,
3402 					      2 * sizeof(struct udp_hslot),
3403 					      uhash_entries,
3404 					      21, /* one slot per 2 MB */
3405 					      0,
3406 					      &table->log,
3407 					      &table->mask,
3408 					      UDP_HTABLE_SIZE_MIN,
3409 					      UDP_HTABLE_SIZE_MAX);
3410 
3411 	table->hash2 = table->hash + (table->mask + 1);
3412 	for (i = 0; i <= table->mask; i++) {
3413 		INIT_HLIST_HEAD(&table->hash[i].head);
3414 		table->hash[i].count = 0;
3415 		spin_lock_init(&table->hash[i].lock);
3416 	}
3417 	for (i = 0; i <= table->mask; i++) {
3418 		INIT_HLIST_HEAD(&table->hash2[i].head);
3419 		table->hash2[i].count = 0;
3420 		spin_lock_init(&table->hash2[i].lock);
3421 	}
3422 }
3423 
3424 u32 udp_flow_hashrnd(void)
3425 {
3426 	static u32 hashrnd __read_mostly;
3427 
3428 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3429 
3430 	return hashrnd;
3431 }
3432 EXPORT_SYMBOL(udp_flow_hashrnd);
3433 
3434 static void __net_init udp_sysctl_init(struct net *net)
3435 {
3436 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3437 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3438 
3439 #ifdef CONFIG_NET_L3_MASTER_DEV
3440 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3441 #endif
3442 }
3443 
3444 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3445 {
3446 	struct udp_table *udptable;
3447 	int i;
3448 
3449 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3450 	if (!udptable)
3451 		goto out;
3452 
3453 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3454 				      GFP_KERNEL_ACCOUNT);
3455 	if (!udptable->hash)
3456 		goto free_table;
3457 
3458 	udptable->hash2 = udptable->hash + hash_entries;
3459 	udptable->mask = hash_entries - 1;
3460 	udptable->log = ilog2(hash_entries);
3461 
3462 	for (i = 0; i < hash_entries; i++) {
3463 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3464 		udptable->hash[i].count = 0;
3465 		spin_lock_init(&udptable->hash[i].lock);
3466 
3467 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3468 		udptable->hash2[i].count = 0;
3469 		spin_lock_init(&udptable->hash2[i].lock);
3470 	}
3471 
3472 	return udptable;
3473 
3474 free_table:
3475 	kfree(udptable);
3476 out:
3477 	return NULL;
3478 }
3479 
3480 static void __net_exit udp_pernet_table_free(struct net *net)
3481 {
3482 	struct udp_table *udptable = net->ipv4.udp_table;
3483 
3484 	if (udptable == &udp_table)
3485 		return;
3486 
3487 	kvfree(udptable->hash);
3488 	kfree(udptable);
3489 }
3490 
3491 static void __net_init udp_set_table(struct net *net)
3492 {
3493 	struct udp_table *udptable;
3494 	unsigned int hash_entries;
3495 	struct net *old_net;
3496 
3497 	if (net_eq(net, &init_net))
3498 		goto fallback;
3499 
3500 	old_net = current->nsproxy->net_ns;
3501 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3502 	if (!hash_entries)
3503 		goto fallback;
3504 
3505 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3506 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3507 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3508 	else
3509 		hash_entries = roundup_pow_of_two(hash_entries);
3510 
3511 	udptable = udp_pernet_table_alloc(hash_entries);
3512 	if (udptable) {
3513 		net->ipv4.udp_table = udptable;
3514 	} else {
3515 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3516 			"for a netns, fallback to the global one\n",
3517 			hash_entries);
3518 fallback:
3519 		net->ipv4.udp_table = &udp_table;
3520 	}
3521 }
3522 
3523 static int __net_init udp_pernet_init(struct net *net)
3524 {
3525 	udp_sysctl_init(net);
3526 	udp_set_table(net);
3527 
3528 	return 0;
3529 }
3530 
3531 static void __net_exit udp_pernet_exit(struct net *net)
3532 {
3533 	udp_pernet_table_free(net);
3534 }
3535 
3536 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3537 	.init	= udp_pernet_init,
3538 	.exit	= udp_pernet_exit,
3539 };
3540 
3541 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3542 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3543 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3544 
3545 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3546 				      unsigned int new_batch_sz)
3547 {
3548 	struct sock **new_batch;
3549 
3550 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3551 				   GFP_USER | __GFP_NOWARN);
3552 	if (!new_batch)
3553 		return -ENOMEM;
3554 
3555 	bpf_iter_udp_put_batch(iter);
3556 	kvfree(iter->batch);
3557 	iter->batch = new_batch;
3558 	iter->max_sk = new_batch_sz;
3559 
3560 	return 0;
3561 }
3562 
3563 #define INIT_BATCH_SZ 16
3564 
3565 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3566 {
3567 	struct bpf_udp_iter_state *iter = priv_data;
3568 	int ret;
3569 
3570 	ret = bpf_iter_init_seq_net(priv_data, aux);
3571 	if (ret)
3572 		return ret;
3573 
3574 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3575 	if (ret)
3576 		bpf_iter_fini_seq_net(priv_data);
3577 
3578 	return ret;
3579 }
3580 
3581 static void bpf_iter_fini_udp(void *priv_data)
3582 {
3583 	struct bpf_udp_iter_state *iter = priv_data;
3584 
3585 	bpf_iter_fini_seq_net(priv_data);
3586 	kvfree(iter->batch);
3587 }
3588 
3589 static const struct bpf_iter_seq_info udp_seq_info = {
3590 	.seq_ops		= &bpf_iter_udp_seq_ops,
3591 	.init_seq_private	= bpf_iter_init_udp,
3592 	.fini_seq_private	= bpf_iter_fini_udp,
3593 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3594 };
3595 
3596 static struct bpf_iter_reg udp_reg_info = {
3597 	.target			= "udp",
3598 	.ctx_arg_info_size	= 1,
3599 	.ctx_arg_info		= {
3600 		{ offsetof(struct bpf_iter__udp, udp_sk),
3601 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3602 	},
3603 	.seq_info		= &udp_seq_info,
3604 };
3605 
3606 static void __init bpf_iter_register(void)
3607 {
3608 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3609 	if (bpf_iter_reg_target(&udp_reg_info))
3610 		pr_warn("Warning: could not register bpf iterator udp\n");
3611 }
3612 #endif
3613 
3614 void __init udp_init(void)
3615 {
3616 	unsigned long limit;
3617 	unsigned int i;
3618 
3619 	udp_table_init(&udp_table, "UDP");
3620 	limit = nr_free_buffer_pages() / 8;
3621 	limit = max(limit, 128UL);
3622 	sysctl_udp_mem[0] = limit / 4 * 3;
3623 	sysctl_udp_mem[1] = limit;
3624 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3625 
3626 	/* 16 spinlocks per cpu */
3627 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3628 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3629 				GFP_KERNEL);
3630 	if (!udp_busylocks)
3631 		panic("UDP: failed to alloc udp_busylocks\n");
3632 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3633 		spin_lock_init(udp_busylocks + i);
3634 
3635 	if (register_pernet_subsys(&udp_sysctl_ops))
3636 		panic("UDP: failed to init sysctl parameters.\n");
3637 
3638 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3639 	bpf_iter_register();
3640 #endif
3641 }
3642