1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/uaccess.h> 78 #include <asm/ioctls.h> 79 #include <linux/memblock.h> 80 #include <linux/highmem.h> 81 #include <linux/swap.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <trace/events/udp.h> 108 #include <linux/static_key.h> 109 #include <trace/events/skb.h> 110 #include <net/busy_poll.h> 111 #include "udp_impl.h" 112 #include <net/sock_reuseport.h> 113 #include <net/addrconf.h> 114 #include <net/udp_tunnel.h> 115 116 struct udp_table udp_table __read_mostly; 117 EXPORT_SYMBOL(udp_table); 118 119 long sysctl_udp_mem[3] __read_mostly; 120 EXPORT_SYMBOL(sysctl_udp_mem); 121 122 atomic_long_t udp_memory_allocated; 123 EXPORT_SYMBOL(udp_memory_allocated); 124 125 #define MAX_UDP_PORTS 65536 126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 127 128 /* IPCB reference means this can not be used from early demux */ 129 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 130 { 131 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 132 if (!net->ipv4.sysctl_udp_l3mdev_accept && 133 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 134 return true; 135 #endif 136 return false; 137 } 138 139 static int udp_lib_lport_inuse(struct net *net, __u16 num, 140 const struct udp_hslot *hslot, 141 unsigned long *bitmap, 142 struct sock *sk, unsigned int log) 143 { 144 struct sock *sk2; 145 kuid_t uid = sock_i_uid(sk); 146 147 sk_for_each(sk2, &hslot->head) { 148 if (net_eq(sock_net(sk2), net) && 149 sk2 != sk && 150 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 151 (!sk2->sk_reuse || !sk->sk_reuse) && 152 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 153 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 154 inet_rcv_saddr_equal(sk, sk2, true)) { 155 if (sk2->sk_reuseport && sk->sk_reuseport && 156 !rcu_access_pointer(sk->sk_reuseport_cb) && 157 uid_eq(uid, sock_i_uid(sk2))) { 158 if (!bitmap) 159 return 0; 160 } else { 161 if (!bitmap) 162 return 1; 163 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 164 bitmap); 165 } 166 } 167 } 168 return 0; 169 } 170 171 /* 172 * Note: we still hold spinlock of primary hash chain, so no other writer 173 * can insert/delete a socket with local_port == num 174 */ 175 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 176 struct udp_hslot *hslot2, 177 struct sock *sk) 178 { 179 struct sock *sk2; 180 kuid_t uid = sock_i_uid(sk); 181 int res = 0; 182 183 spin_lock(&hslot2->lock); 184 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 185 if (net_eq(sock_net(sk2), net) && 186 sk2 != sk && 187 (udp_sk(sk2)->udp_port_hash == num) && 188 (!sk2->sk_reuse || !sk->sk_reuse) && 189 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 190 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 191 inet_rcv_saddr_equal(sk, sk2, true)) { 192 if (sk2->sk_reuseport && sk->sk_reuseport && 193 !rcu_access_pointer(sk->sk_reuseport_cb) && 194 uid_eq(uid, sock_i_uid(sk2))) { 195 res = 0; 196 } else { 197 res = 1; 198 } 199 break; 200 } 201 } 202 spin_unlock(&hslot2->lock); 203 return res; 204 } 205 206 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 207 { 208 struct net *net = sock_net(sk); 209 kuid_t uid = sock_i_uid(sk); 210 struct sock *sk2; 211 212 sk_for_each(sk2, &hslot->head) { 213 if (net_eq(sock_net(sk2), net) && 214 sk2 != sk && 215 sk2->sk_family == sk->sk_family && 216 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 217 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 218 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 219 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 220 inet_rcv_saddr_equal(sk, sk2, false)) { 221 return reuseport_add_sock(sk, sk2, 222 inet_rcv_saddr_any(sk)); 223 } 224 } 225 226 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 227 } 228 229 /** 230 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 231 * 232 * @sk: socket struct in question 233 * @snum: port number to look up 234 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 235 * with NULL address 236 */ 237 int udp_lib_get_port(struct sock *sk, unsigned short snum, 238 unsigned int hash2_nulladdr) 239 { 240 struct udp_hslot *hslot, *hslot2; 241 struct udp_table *udptable = sk->sk_prot->h.udp_table; 242 int error = 1; 243 struct net *net = sock_net(sk); 244 245 if (!snum) { 246 int low, high, remaining; 247 unsigned int rand; 248 unsigned short first, last; 249 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 250 251 inet_get_local_port_range(net, &low, &high); 252 remaining = (high - low) + 1; 253 254 rand = prandom_u32(); 255 first = reciprocal_scale(rand, remaining) + low; 256 /* 257 * force rand to be an odd multiple of UDP_HTABLE_SIZE 258 */ 259 rand = (rand | 1) * (udptable->mask + 1); 260 last = first + udptable->mask + 1; 261 do { 262 hslot = udp_hashslot(udptable, net, first); 263 bitmap_zero(bitmap, PORTS_PER_CHAIN); 264 spin_lock_bh(&hslot->lock); 265 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 266 udptable->log); 267 268 snum = first; 269 /* 270 * Iterate on all possible values of snum for this hash. 271 * Using steps of an odd multiple of UDP_HTABLE_SIZE 272 * give us randomization and full range coverage. 273 */ 274 do { 275 if (low <= snum && snum <= high && 276 !test_bit(snum >> udptable->log, bitmap) && 277 !inet_is_local_reserved_port(net, snum)) 278 goto found; 279 snum += rand; 280 } while (snum != first); 281 spin_unlock_bh(&hslot->lock); 282 cond_resched(); 283 } while (++first != last); 284 goto fail; 285 } else { 286 hslot = udp_hashslot(udptable, net, snum); 287 spin_lock_bh(&hslot->lock); 288 if (hslot->count > 10) { 289 int exist; 290 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 291 292 slot2 &= udptable->mask; 293 hash2_nulladdr &= udptable->mask; 294 295 hslot2 = udp_hashslot2(udptable, slot2); 296 if (hslot->count < hslot2->count) 297 goto scan_primary_hash; 298 299 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 300 if (!exist && (hash2_nulladdr != slot2)) { 301 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 302 exist = udp_lib_lport_inuse2(net, snum, hslot2, 303 sk); 304 } 305 if (exist) 306 goto fail_unlock; 307 else 308 goto found; 309 } 310 scan_primary_hash: 311 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 312 goto fail_unlock; 313 } 314 found: 315 inet_sk(sk)->inet_num = snum; 316 udp_sk(sk)->udp_port_hash = snum; 317 udp_sk(sk)->udp_portaddr_hash ^= snum; 318 if (sk_unhashed(sk)) { 319 if (sk->sk_reuseport && 320 udp_reuseport_add_sock(sk, hslot)) { 321 inet_sk(sk)->inet_num = 0; 322 udp_sk(sk)->udp_port_hash = 0; 323 udp_sk(sk)->udp_portaddr_hash ^= snum; 324 goto fail_unlock; 325 } 326 327 sk_add_node_rcu(sk, &hslot->head); 328 hslot->count++; 329 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 330 331 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 332 spin_lock(&hslot2->lock); 333 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 334 sk->sk_family == AF_INET6) 335 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 336 &hslot2->head); 337 else 338 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 339 &hslot2->head); 340 hslot2->count++; 341 spin_unlock(&hslot2->lock); 342 } 343 sock_set_flag(sk, SOCK_RCU_FREE); 344 error = 0; 345 fail_unlock: 346 spin_unlock_bh(&hslot->lock); 347 fail: 348 return error; 349 } 350 EXPORT_SYMBOL(udp_lib_get_port); 351 352 int udp_v4_get_port(struct sock *sk, unsigned short snum) 353 { 354 unsigned int hash2_nulladdr = 355 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 356 unsigned int hash2_partial = 357 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 358 359 /* precompute partial secondary hash */ 360 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 361 return udp_lib_get_port(sk, snum, hash2_nulladdr); 362 } 363 364 static int compute_score(struct sock *sk, struct net *net, 365 __be32 saddr, __be16 sport, 366 __be32 daddr, unsigned short hnum, 367 int dif, int sdif, bool exact_dif) 368 { 369 int score; 370 struct inet_sock *inet; 371 bool dev_match; 372 373 if (!net_eq(sock_net(sk), net) || 374 udp_sk(sk)->udp_port_hash != hnum || 375 ipv6_only_sock(sk)) 376 return -1; 377 378 if (sk->sk_rcv_saddr != daddr) 379 return -1; 380 381 score = (sk->sk_family == PF_INET) ? 2 : 1; 382 383 inet = inet_sk(sk); 384 if (inet->inet_daddr) { 385 if (inet->inet_daddr != saddr) 386 return -1; 387 score += 4; 388 } 389 390 if (inet->inet_dport) { 391 if (inet->inet_dport != sport) 392 return -1; 393 score += 4; 394 } 395 396 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 397 dif, sdif); 398 if (!dev_match) 399 return -1; 400 score += 4; 401 402 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 403 score++; 404 return score; 405 } 406 407 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 408 const __u16 lport, const __be32 faddr, 409 const __be16 fport) 410 { 411 static u32 udp_ehash_secret __read_mostly; 412 413 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 414 415 return __inet_ehashfn(laddr, lport, faddr, fport, 416 udp_ehash_secret + net_hash_mix(net)); 417 } 418 419 /* called with rcu_read_lock() */ 420 static struct sock *udp4_lib_lookup2(struct net *net, 421 __be32 saddr, __be16 sport, 422 __be32 daddr, unsigned int hnum, 423 int dif, int sdif, bool exact_dif, 424 struct udp_hslot *hslot2, 425 struct sk_buff *skb) 426 { 427 struct sock *sk, *result; 428 int score, badness; 429 u32 hash = 0; 430 431 result = NULL; 432 badness = 0; 433 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 434 score = compute_score(sk, net, saddr, sport, 435 daddr, hnum, dif, sdif, exact_dif); 436 if (score > badness) { 437 if (sk->sk_reuseport) { 438 hash = udp_ehashfn(net, daddr, hnum, 439 saddr, sport); 440 result = reuseport_select_sock(sk, hash, skb, 441 sizeof(struct udphdr)); 442 if (result) 443 return result; 444 } 445 badness = score; 446 result = sk; 447 } 448 } 449 return result; 450 } 451 452 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 453 * harder than this. -DaveM 454 */ 455 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 456 __be16 sport, __be32 daddr, __be16 dport, int dif, 457 int sdif, struct udp_table *udptable, struct sk_buff *skb) 458 { 459 struct sock *result; 460 unsigned short hnum = ntohs(dport); 461 unsigned int hash2, slot2; 462 struct udp_hslot *hslot2; 463 bool exact_dif = udp_lib_exact_dif_match(net, skb); 464 465 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 466 slot2 = hash2 & udptable->mask; 467 hslot2 = &udptable->hash2[slot2]; 468 469 result = udp4_lib_lookup2(net, saddr, sport, 470 daddr, hnum, dif, sdif, 471 exact_dif, hslot2, skb); 472 if (!result) { 473 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 474 slot2 = hash2 & udptable->mask; 475 hslot2 = &udptable->hash2[slot2]; 476 477 result = udp4_lib_lookup2(net, saddr, sport, 478 htonl(INADDR_ANY), hnum, dif, sdif, 479 exact_dif, hslot2, skb); 480 } 481 if (unlikely(IS_ERR(result))) 482 return NULL; 483 return result; 484 } 485 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 486 487 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 488 __be16 sport, __be16 dport, 489 struct udp_table *udptable) 490 { 491 const struct iphdr *iph = ip_hdr(skb); 492 493 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 494 iph->daddr, dport, inet_iif(skb), 495 inet_sdif(skb), udptable, skb); 496 } 497 498 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 499 __be16 sport, __be16 dport) 500 { 501 const struct iphdr *iph = ip_hdr(skb); 502 503 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 504 iph->daddr, dport, inet_iif(skb), 505 inet_sdif(skb), &udp_table, NULL); 506 } 507 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 508 509 /* Must be called under rcu_read_lock(). 510 * Does increment socket refcount. 511 */ 512 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 513 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 514 __be32 daddr, __be16 dport, int dif) 515 { 516 struct sock *sk; 517 518 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 519 dif, 0, &udp_table, NULL); 520 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 521 sk = NULL; 522 return sk; 523 } 524 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 525 #endif 526 527 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 528 __be16 loc_port, __be32 loc_addr, 529 __be16 rmt_port, __be32 rmt_addr, 530 int dif, int sdif, unsigned short hnum) 531 { 532 struct inet_sock *inet = inet_sk(sk); 533 534 if (!net_eq(sock_net(sk), net) || 535 udp_sk(sk)->udp_port_hash != hnum || 536 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 537 (inet->inet_dport != rmt_port && inet->inet_dport) || 538 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 539 ipv6_only_sock(sk) || 540 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 541 return false; 542 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 543 return false; 544 return true; 545 } 546 547 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 548 void udp_encap_enable(void) 549 { 550 static_branch_inc(&udp_encap_needed_key); 551 } 552 EXPORT_SYMBOL(udp_encap_enable); 553 554 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 555 * through error handlers in encapsulations looking for a match. 556 */ 557 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 558 { 559 int i; 560 561 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 562 int (*handler)(struct sk_buff *skb, u32 info); 563 const struct ip_tunnel_encap_ops *encap; 564 565 encap = rcu_dereference(iptun_encaps[i]); 566 if (!encap) 567 continue; 568 handler = encap->err_handler; 569 if (handler && !handler(skb, info)) 570 return 0; 571 } 572 573 return -ENOENT; 574 } 575 576 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 577 * reversing source and destination port: this will match tunnels that force the 578 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 579 * lwtunnels might actually break this assumption by being configured with 580 * different destination ports on endpoints, in this case we won't be able to 581 * trace ICMP messages back to them. 582 * 583 * If this doesn't match any socket, probe tunnels with arbitrary destination 584 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 585 * we've sent packets to won't necessarily match the local destination port. 586 * 587 * Then ask the tunnel implementation to match the error against a valid 588 * association. 589 * 590 * Return an error if we can't find a match, the socket if we need further 591 * processing, zero otherwise. 592 */ 593 static struct sock *__udp4_lib_err_encap(struct net *net, 594 const struct iphdr *iph, 595 struct udphdr *uh, 596 struct udp_table *udptable, 597 struct sk_buff *skb, u32 info) 598 { 599 int network_offset, transport_offset; 600 struct sock *sk; 601 602 network_offset = skb_network_offset(skb); 603 transport_offset = skb_transport_offset(skb); 604 605 /* Network header needs to point to the outer IPv4 header inside ICMP */ 606 skb_reset_network_header(skb); 607 608 /* Transport header needs to point to the UDP header */ 609 skb_set_transport_header(skb, iph->ihl << 2); 610 611 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 612 iph->saddr, uh->dest, skb->dev->ifindex, 0, 613 udptable, NULL); 614 if (sk) { 615 int (*lookup)(struct sock *sk, struct sk_buff *skb); 616 struct udp_sock *up = udp_sk(sk); 617 618 lookup = READ_ONCE(up->encap_err_lookup); 619 if (!lookup || lookup(sk, skb)) 620 sk = NULL; 621 } 622 623 if (!sk) 624 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 625 626 skb_set_transport_header(skb, transport_offset); 627 skb_set_network_header(skb, network_offset); 628 629 return sk; 630 } 631 632 /* 633 * This routine is called by the ICMP module when it gets some 634 * sort of error condition. If err < 0 then the socket should 635 * be closed and the error returned to the user. If err > 0 636 * it's just the icmp type << 8 | icmp code. 637 * Header points to the ip header of the error packet. We move 638 * on past this. Then (as it used to claim before adjustment) 639 * header points to the first 8 bytes of the udp header. We need 640 * to find the appropriate port. 641 */ 642 643 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 644 { 645 struct inet_sock *inet; 646 const struct iphdr *iph = (const struct iphdr *)skb->data; 647 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 648 const int type = icmp_hdr(skb)->type; 649 const int code = icmp_hdr(skb)->code; 650 bool tunnel = false; 651 struct sock *sk; 652 int harderr; 653 int err; 654 struct net *net = dev_net(skb->dev); 655 656 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 657 iph->saddr, uh->source, skb->dev->ifindex, 658 inet_sdif(skb), udptable, NULL); 659 if (!sk) { 660 /* No socket for error: try tunnels before discarding */ 661 sk = ERR_PTR(-ENOENT); 662 if (static_branch_unlikely(&udp_encap_needed_key)) { 663 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb, 664 info); 665 if (!sk) 666 return 0; 667 } 668 669 if (IS_ERR(sk)) { 670 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 671 return PTR_ERR(sk); 672 } 673 674 tunnel = true; 675 } 676 677 err = 0; 678 harderr = 0; 679 inet = inet_sk(sk); 680 681 switch (type) { 682 default: 683 case ICMP_TIME_EXCEEDED: 684 err = EHOSTUNREACH; 685 break; 686 case ICMP_SOURCE_QUENCH: 687 goto out; 688 case ICMP_PARAMETERPROB: 689 err = EPROTO; 690 harderr = 1; 691 break; 692 case ICMP_DEST_UNREACH: 693 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 694 ipv4_sk_update_pmtu(skb, sk, info); 695 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 696 err = EMSGSIZE; 697 harderr = 1; 698 break; 699 } 700 goto out; 701 } 702 err = EHOSTUNREACH; 703 if (code <= NR_ICMP_UNREACH) { 704 harderr = icmp_err_convert[code].fatal; 705 err = icmp_err_convert[code].errno; 706 } 707 break; 708 case ICMP_REDIRECT: 709 ipv4_sk_redirect(skb, sk); 710 goto out; 711 } 712 713 /* 714 * RFC1122: OK. Passes ICMP errors back to application, as per 715 * 4.1.3.3. 716 */ 717 if (tunnel) { 718 /* ...not for tunnels though: we don't have a sending socket */ 719 goto out; 720 } 721 if (!inet->recverr) { 722 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 723 goto out; 724 } else 725 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 726 727 sk->sk_err = err; 728 sk->sk_error_report(sk); 729 out: 730 return 0; 731 } 732 733 int udp_err(struct sk_buff *skb, u32 info) 734 { 735 return __udp4_lib_err(skb, info, &udp_table); 736 } 737 738 /* 739 * Throw away all pending data and cancel the corking. Socket is locked. 740 */ 741 void udp_flush_pending_frames(struct sock *sk) 742 { 743 struct udp_sock *up = udp_sk(sk); 744 745 if (up->pending) { 746 up->len = 0; 747 up->pending = 0; 748 ip_flush_pending_frames(sk); 749 } 750 } 751 EXPORT_SYMBOL(udp_flush_pending_frames); 752 753 /** 754 * udp4_hwcsum - handle outgoing HW checksumming 755 * @skb: sk_buff containing the filled-in UDP header 756 * (checksum field must be zeroed out) 757 * @src: source IP address 758 * @dst: destination IP address 759 */ 760 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 761 { 762 struct udphdr *uh = udp_hdr(skb); 763 int offset = skb_transport_offset(skb); 764 int len = skb->len - offset; 765 int hlen = len; 766 __wsum csum = 0; 767 768 if (!skb_has_frag_list(skb)) { 769 /* 770 * Only one fragment on the socket. 771 */ 772 skb->csum_start = skb_transport_header(skb) - skb->head; 773 skb->csum_offset = offsetof(struct udphdr, check); 774 uh->check = ~csum_tcpudp_magic(src, dst, len, 775 IPPROTO_UDP, 0); 776 } else { 777 struct sk_buff *frags; 778 779 /* 780 * HW-checksum won't work as there are two or more 781 * fragments on the socket so that all csums of sk_buffs 782 * should be together 783 */ 784 skb_walk_frags(skb, frags) { 785 csum = csum_add(csum, frags->csum); 786 hlen -= frags->len; 787 } 788 789 csum = skb_checksum(skb, offset, hlen, csum); 790 skb->ip_summed = CHECKSUM_NONE; 791 792 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 793 if (uh->check == 0) 794 uh->check = CSUM_MANGLED_0; 795 } 796 } 797 EXPORT_SYMBOL_GPL(udp4_hwcsum); 798 799 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 800 * for the simple case like when setting the checksum for a UDP tunnel. 801 */ 802 void udp_set_csum(bool nocheck, struct sk_buff *skb, 803 __be32 saddr, __be32 daddr, int len) 804 { 805 struct udphdr *uh = udp_hdr(skb); 806 807 if (nocheck) { 808 uh->check = 0; 809 } else if (skb_is_gso(skb)) { 810 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 811 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 812 uh->check = 0; 813 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 814 if (uh->check == 0) 815 uh->check = CSUM_MANGLED_0; 816 } else { 817 skb->ip_summed = CHECKSUM_PARTIAL; 818 skb->csum_start = skb_transport_header(skb) - skb->head; 819 skb->csum_offset = offsetof(struct udphdr, check); 820 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 821 } 822 } 823 EXPORT_SYMBOL(udp_set_csum); 824 825 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 826 struct inet_cork *cork) 827 { 828 struct sock *sk = skb->sk; 829 struct inet_sock *inet = inet_sk(sk); 830 struct udphdr *uh; 831 int err = 0; 832 int is_udplite = IS_UDPLITE(sk); 833 int offset = skb_transport_offset(skb); 834 int len = skb->len - offset; 835 __wsum csum = 0; 836 837 /* 838 * Create a UDP header 839 */ 840 uh = udp_hdr(skb); 841 uh->source = inet->inet_sport; 842 uh->dest = fl4->fl4_dport; 843 uh->len = htons(len); 844 uh->check = 0; 845 846 if (cork->gso_size) { 847 const int hlen = skb_network_header_len(skb) + 848 sizeof(struct udphdr); 849 850 if (hlen + cork->gso_size > cork->fragsize) { 851 kfree_skb(skb); 852 return -EINVAL; 853 } 854 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) { 855 kfree_skb(skb); 856 return -EINVAL; 857 } 858 if (sk->sk_no_check_tx) { 859 kfree_skb(skb); 860 return -EINVAL; 861 } 862 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 863 dst_xfrm(skb_dst(skb))) { 864 kfree_skb(skb); 865 return -EIO; 866 } 867 868 skb_shinfo(skb)->gso_size = cork->gso_size; 869 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 870 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh), 871 cork->gso_size); 872 goto csum_partial; 873 } 874 875 if (is_udplite) /* UDP-Lite */ 876 csum = udplite_csum(skb); 877 878 else if (sk->sk_no_check_tx) { /* UDP csum off */ 879 880 skb->ip_summed = CHECKSUM_NONE; 881 goto send; 882 883 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 884 csum_partial: 885 886 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 887 goto send; 888 889 } else 890 csum = udp_csum(skb); 891 892 /* add protocol-dependent pseudo-header */ 893 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 894 sk->sk_protocol, csum); 895 if (uh->check == 0) 896 uh->check = CSUM_MANGLED_0; 897 898 send: 899 err = ip_send_skb(sock_net(sk), skb); 900 if (err) { 901 if (err == -ENOBUFS && !inet->recverr) { 902 UDP_INC_STATS(sock_net(sk), 903 UDP_MIB_SNDBUFERRORS, is_udplite); 904 err = 0; 905 } 906 } else 907 UDP_INC_STATS(sock_net(sk), 908 UDP_MIB_OUTDATAGRAMS, is_udplite); 909 return err; 910 } 911 912 /* 913 * Push out all pending data as one UDP datagram. Socket is locked. 914 */ 915 int udp_push_pending_frames(struct sock *sk) 916 { 917 struct udp_sock *up = udp_sk(sk); 918 struct inet_sock *inet = inet_sk(sk); 919 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 920 struct sk_buff *skb; 921 int err = 0; 922 923 skb = ip_finish_skb(sk, fl4); 924 if (!skb) 925 goto out; 926 927 err = udp_send_skb(skb, fl4, &inet->cork.base); 928 929 out: 930 up->len = 0; 931 up->pending = 0; 932 return err; 933 } 934 EXPORT_SYMBOL(udp_push_pending_frames); 935 936 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 937 { 938 switch (cmsg->cmsg_type) { 939 case UDP_SEGMENT: 940 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 941 return -EINVAL; 942 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 943 return 0; 944 default: 945 return -EINVAL; 946 } 947 } 948 949 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 950 { 951 struct cmsghdr *cmsg; 952 bool need_ip = false; 953 int err; 954 955 for_each_cmsghdr(cmsg, msg) { 956 if (!CMSG_OK(msg, cmsg)) 957 return -EINVAL; 958 959 if (cmsg->cmsg_level != SOL_UDP) { 960 need_ip = true; 961 continue; 962 } 963 964 err = __udp_cmsg_send(cmsg, gso_size); 965 if (err) 966 return err; 967 } 968 969 return need_ip; 970 } 971 EXPORT_SYMBOL_GPL(udp_cmsg_send); 972 973 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 974 { 975 struct inet_sock *inet = inet_sk(sk); 976 struct udp_sock *up = udp_sk(sk); 977 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 978 struct flowi4 fl4_stack; 979 struct flowi4 *fl4; 980 int ulen = len; 981 struct ipcm_cookie ipc; 982 struct rtable *rt = NULL; 983 int free = 0; 984 int connected = 0; 985 __be32 daddr, faddr, saddr; 986 __be16 dport; 987 u8 tos; 988 int err, is_udplite = IS_UDPLITE(sk); 989 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 990 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 991 struct sk_buff *skb; 992 struct ip_options_data opt_copy; 993 994 if (len > 0xFFFF) 995 return -EMSGSIZE; 996 997 /* 998 * Check the flags. 999 */ 1000 1001 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1002 return -EOPNOTSUPP; 1003 1004 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1005 1006 fl4 = &inet->cork.fl.u.ip4; 1007 if (up->pending) { 1008 /* 1009 * There are pending frames. 1010 * The socket lock must be held while it's corked. 1011 */ 1012 lock_sock(sk); 1013 if (likely(up->pending)) { 1014 if (unlikely(up->pending != AF_INET)) { 1015 release_sock(sk); 1016 return -EINVAL; 1017 } 1018 goto do_append_data; 1019 } 1020 release_sock(sk); 1021 } 1022 ulen += sizeof(struct udphdr); 1023 1024 /* 1025 * Get and verify the address. 1026 */ 1027 if (usin) { 1028 if (msg->msg_namelen < sizeof(*usin)) 1029 return -EINVAL; 1030 if (usin->sin_family != AF_INET) { 1031 if (usin->sin_family != AF_UNSPEC) 1032 return -EAFNOSUPPORT; 1033 } 1034 1035 daddr = usin->sin_addr.s_addr; 1036 dport = usin->sin_port; 1037 if (dport == 0) 1038 return -EINVAL; 1039 } else { 1040 if (sk->sk_state != TCP_ESTABLISHED) 1041 return -EDESTADDRREQ; 1042 daddr = inet->inet_daddr; 1043 dport = inet->inet_dport; 1044 /* Open fast path for connected socket. 1045 Route will not be used, if at least one option is set. 1046 */ 1047 connected = 1; 1048 } 1049 1050 ipcm_init_sk(&ipc, inet); 1051 ipc.gso_size = up->gso_size; 1052 1053 if (msg->msg_controllen) { 1054 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1055 if (err > 0) 1056 err = ip_cmsg_send(sk, msg, &ipc, 1057 sk->sk_family == AF_INET6); 1058 if (unlikely(err < 0)) { 1059 kfree(ipc.opt); 1060 return err; 1061 } 1062 if (ipc.opt) 1063 free = 1; 1064 connected = 0; 1065 } 1066 if (!ipc.opt) { 1067 struct ip_options_rcu *inet_opt; 1068 1069 rcu_read_lock(); 1070 inet_opt = rcu_dereference(inet->inet_opt); 1071 if (inet_opt) { 1072 memcpy(&opt_copy, inet_opt, 1073 sizeof(*inet_opt) + inet_opt->opt.optlen); 1074 ipc.opt = &opt_copy.opt; 1075 } 1076 rcu_read_unlock(); 1077 } 1078 1079 if (cgroup_bpf_enabled && !connected) { 1080 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1081 (struct sockaddr *)usin, &ipc.addr); 1082 if (err) 1083 goto out_free; 1084 if (usin) { 1085 if (usin->sin_port == 0) { 1086 /* BPF program set invalid port. Reject it. */ 1087 err = -EINVAL; 1088 goto out_free; 1089 } 1090 daddr = usin->sin_addr.s_addr; 1091 dport = usin->sin_port; 1092 } 1093 } 1094 1095 saddr = ipc.addr; 1096 ipc.addr = faddr = daddr; 1097 1098 if (ipc.opt && ipc.opt->opt.srr) { 1099 if (!daddr) { 1100 err = -EINVAL; 1101 goto out_free; 1102 } 1103 faddr = ipc.opt->opt.faddr; 1104 connected = 0; 1105 } 1106 tos = get_rttos(&ipc, inet); 1107 if (sock_flag(sk, SOCK_LOCALROUTE) || 1108 (msg->msg_flags & MSG_DONTROUTE) || 1109 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1110 tos |= RTO_ONLINK; 1111 connected = 0; 1112 } 1113 1114 if (ipv4_is_multicast(daddr)) { 1115 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1116 ipc.oif = inet->mc_index; 1117 if (!saddr) 1118 saddr = inet->mc_addr; 1119 connected = 0; 1120 } else if (!ipc.oif) { 1121 ipc.oif = inet->uc_index; 1122 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1123 /* oif is set, packet is to local broadcast and 1124 * and uc_index is set. oif is most likely set 1125 * by sk_bound_dev_if. If uc_index != oif check if the 1126 * oif is an L3 master and uc_index is an L3 slave. 1127 * If so, we want to allow the send using the uc_index. 1128 */ 1129 if (ipc.oif != inet->uc_index && 1130 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1131 inet->uc_index)) { 1132 ipc.oif = inet->uc_index; 1133 } 1134 } 1135 1136 if (connected) 1137 rt = (struct rtable *)sk_dst_check(sk, 0); 1138 1139 if (!rt) { 1140 struct net *net = sock_net(sk); 1141 __u8 flow_flags = inet_sk_flowi_flags(sk); 1142 1143 fl4 = &fl4_stack; 1144 1145 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1146 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1147 flow_flags, 1148 faddr, saddr, dport, inet->inet_sport, 1149 sk->sk_uid); 1150 1151 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1152 rt = ip_route_output_flow(net, fl4, sk); 1153 if (IS_ERR(rt)) { 1154 err = PTR_ERR(rt); 1155 rt = NULL; 1156 if (err == -ENETUNREACH) 1157 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1158 goto out; 1159 } 1160 1161 err = -EACCES; 1162 if ((rt->rt_flags & RTCF_BROADCAST) && 1163 !sock_flag(sk, SOCK_BROADCAST)) 1164 goto out; 1165 if (connected) 1166 sk_dst_set(sk, dst_clone(&rt->dst)); 1167 } 1168 1169 if (msg->msg_flags&MSG_CONFIRM) 1170 goto do_confirm; 1171 back_from_confirm: 1172 1173 saddr = fl4->saddr; 1174 if (!ipc.addr) 1175 daddr = ipc.addr = fl4->daddr; 1176 1177 /* Lockless fast path for the non-corking case. */ 1178 if (!corkreq) { 1179 struct inet_cork cork; 1180 1181 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1182 sizeof(struct udphdr), &ipc, &rt, 1183 &cork, msg->msg_flags); 1184 err = PTR_ERR(skb); 1185 if (!IS_ERR_OR_NULL(skb)) 1186 err = udp_send_skb(skb, fl4, &cork); 1187 goto out; 1188 } 1189 1190 lock_sock(sk); 1191 if (unlikely(up->pending)) { 1192 /* The socket is already corked while preparing it. */ 1193 /* ... which is an evident application bug. --ANK */ 1194 release_sock(sk); 1195 1196 net_dbg_ratelimited("socket already corked\n"); 1197 err = -EINVAL; 1198 goto out; 1199 } 1200 /* 1201 * Now cork the socket to pend data. 1202 */ 1203 fl4 = &inet->cork.fl.u.ip4; 1204 fl4->daddr = daddr; 1205 fl4->saddr = saddr; 1206 fl4->fl4_dport = dport; 1207 fl4->fl4_sport = inet->inet_sport; 1208 up->pending = AF_INET; 1209 1210 do_append_data: 1211 up->len += ulen; 1212 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1213 sizeof(struct udphdr), &ipc, &rt, 1214 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1215 if (err) 1216 udp_flush_pending_frames(sk); 1217 else if (!corkreq) 1218 err = udp_push_pending_frames(sk); 1219 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1220 up->pending = 0; 1221 release_sock(sk); 1222 1223 out: 1224 ip_rt_put(rt); 1225 out_free: 1226 if (free) 1227 kfree(ipc.opt); 1228 if (!err) 1229 return len; 1230 /* 1231 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1232 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1233 * we don't have a good statistic (IpOutDiscards but it can be too many 1234 * things). We could add another new stat but at least for now that 1235 * seems like overkill. 1236 */ 1237 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1238 UDP_INC_STATS(sock_net(sk), 1239 UDP_MIB_SNDBUFERRORS, is_udplite); 1240 } 1241 return err; 1242 1243 do_confirm: 1244 if (msg->msg_flags & MSG_PROBE) 1245 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1246 if (!(msg->msg_flags&MSG_PROBE) || len) 1247 goto back_from_confirm; 1248 err = 0; 1249 goto out; 1250 } 1251 EXPORT_SYMBOL(udp_sendmsg); 1252 1253 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1254 size_t size, int flags) 1255 { 1256 struct inet_sock *inet = inet_sk(sk); 1257 struct udp_sock *up = udp_sk(sk); 1258 int ret; 1259 1260 if (flags & MSG_SENDPAGE_NOTLAST) 1261 flags |= MSG_MORE; 1262 1263 if (!up->pending) { 1264 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1265 1266 /* Call udp_sendmsg to specify destination address which 1267 * sendpage interface can't pass. 1268 * This will succeed only when the socket is connected. 1269 */ 1270 ret = udp_sendmsg(sk, &msg, 0); 1271 if (ret < 0) 1272 return ret; 1273 } 1274 1275 lock_sock(sk); 1276 1277 if (unlikely(!up->pending)) { 1278 release_sock(sk); 1279 1280 net_dbg_ratelimited("cork failed\n"); 1281 return -EINVAL; 1282 } 1283 1284 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1285 page, offset, size, flags); 1286 if (ret == -EOPNOTSUPP) { 1287 release_sock(sk); 1288 return sock_no_sendpage(sk->sk_socket, page, offset, 1289 size, flags); 1290 } 1291 if (ret < 0) { 1292 udp_flush_pending_frames(sk); 1293 goto out; 1294 } 1295 1296 up->len += size; 1297 if (!(up->corkflag || (flags&MSG_MORE))) 1298 ret = udp_push_pending_frames(sk); 1299 if (!ret) 1300 ret = size; 1301 out: 1302 release_sock(sk); 1303 return ret; 1304 } 1305 1306 #define UDP_SKB_IS_STATELESS 0x80000000 1307 1308 static void udp_set_dev_scratch(struct sk_buff *skb) 1309 { 1310 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1311 1312 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1313 scratch->_tsize_state = skb->truesize; 1314 #if BITS_PER_LONG == 64 1315 scratch->len = skb->len; 1316 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1317 scratch->is_linear = !skb_is_nonlinear(skb); 1318 #endif 1319 /* all head states execept sp (dst, sk, nf) are always cleared by 1320 * udp_rcv() and we need to preserve secpath, if present, to eventually 1321 * process IP_CMSG_PASSSEC at recvmsg() time 1322 */ 1323 if (likely(!skb_sec_path(skb))) 1324 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1325 } 1326 1327 static int udp_skb_truesize(struct sk_buff *skb) 1328 { 1329 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1330 } 1331 1332 static bool udp_skb_has_head_state(struct sk_buff *skb) 1333 { 1334 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1335 } 1336 1337 /* fully reclaim rmem/fwd memory allocated for skb */ 1338 static void udp_rmem_release(struct sock *sk, int size, int partial, 1339 bool rx_queue_lock_held) 1340 { 1341 struct udp_sock *up = udp_sk(sk); 1342 struct sk_buff_head *sk_queue; 1343 int amt; 1344 1345 if (likely(partial)) { 1346 up->forward_deficit += size; 1347 size = up->forward_deficit; 1348 if (size < (sk->sk_rcvbuf >> 2)) 1349 return; 1350 } else { 1351 size += up->forward_deficit; 1352 } 1353 up->forward_deficit = 0; 1354 1355 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1356 * if the called don't held it already 1357 */ 1358 sk_queue = &sk->sk_receive_queue; 1359 if (!rx_queue_lock_held) 1360 spin_lock(&sk_queue->lock); 1361 1362 1363 sk->sk_forward_alloc += size; 1364 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1365 sk->sk_forward_alloc -= amt; 1366 1367 if (amt) 1368 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1369 1370 atomic_sub(size, &sk->sk_rmem_alloc); 1371 1372 /* this can save us from acquiring the rx queue lock on next receive */ 1373 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1374 1375 if (!rx_queue_lock_held) 1376 spin_unlock(&sk_queue->lock); 1377 } 1378 1379 /* Note: called with reader_queue.lock held. 1380 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1381 * This avoids a cache line miss while receive_queue lock is held. 1382 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1383 */ 1384 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1385 { 1386 prefetch(&skb->data); 1387 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1388 } 1389 EXPORT_SYMBOL(udp_skb_destructor); 1390 1391 /* as above, but the caller held the rx queue lock, too */ 1392 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1393 { 1394 prefetch(&skb->data); 1395 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1396 } 1397 1398 /* Idea of busylocks is to let producers grab an extra spinlock 1399 * to relieve pressure on the receive_queue spinlock shared by consumer. 1400 * Under flood, this means that only one producer can be in line 1401 * trying to acquire the receive_queue spinlock. 1402 * These busylock can be allocated on a per cpu manner, instead of a 1403 * per socket one (that would consume a cache line per socket) 1404 */ 1405 static int udp_busylocks_log __read_mostly; 1406 static spinlock_t *udp_busylocks __read_mostly; 1407 1408 static spinlock_t *busylock_acquire(void *ptr) 1409 { 1410 spinlock_t *busy; 1411 1412 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1413 spin_lock(busy); 1414 return busy; 1415 } 1416 1417 static void busylock_release(spinlock_t *busy) 1418 { 1419 if (busy) 1420 spin_unlock(busy); 1421 } 1422 1423 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1424 { 1425 struct sk_buff_head *list = &sk->sk_receive_queue; 1426 int rmem, delta, amt, err = -ENOMEM; 1427 spinlock_t *busy = NULL; 1428 int size; 1429 1430 /* try to avoid the costly atomic add/sub pair when the receive 1431 * queue is full; always allow at least a packet 1432 */ 1433 rmem = atomic_read(&sk->sk_rmem_alloc); 1434 if (rmem > sk->sk_rcvbuf) 1435 goto drop; 1436 1437 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1438 * having linear skbs : 1439 * - Reduce memory overhead and thus increase receive queue capacity 1440 * - Less cache line misses at copyout() time 1441 * - Less work at consume_skb() (less alien page frag freeing) 1442 */ 1443 if (rmem > (sk->sk_rcvbuf >> 1)) { 1444 skb_condense(skb); 1445 1446 busy = busylock_acquire(sk); 1447 } 1448 size = skb->truesize; 1449 udp_set_dev_scratch(skb); 1450 1451 /* we drop only if the receive buf is full and the receive 1452 * queue contains some other skb 1453 */ 1454 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1455 if (rmem > (size + sk->sk_rcvbuf)) 1456 goto uncharge_drop; 1457 1458 spin_lock(&list->lock); 1459 if (size >= sk->sk_forward_alloc) { 1460 amt = sk_mem_pages(size); 1461 delta = amt << SK_MEM_QUANTUM_SHIFT; 1462 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1463 err = -ENOBUFS; 1464 spin_unlock(&list->lock); 1465 goto uncharge_drop; 1466 } 1467 1468 sk->sk_forward_alloc += delta; 1469 } 1470 1471 sk->sk_forward_alloc -= size; 1472 1473 /* no need to setup a destructor, we will explicitly release the 1474 * forward allocated memory on dequeue 1475 */ 1476 sock_skb_set_dropcount(sk, skb); 1477 1478 __skb_queue_tail(list, skb); 1479 spin_unlock(&list->lock); 1480 1481 if (!sock_flag(sk, SOCK_DEAD)) 1482 sk->sk_data_ready(sk); 1483 1484 busylock_release(busy); 1485 return 0; 1486 1487 uncharge_drop: 1488 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1489 1490 drop: 1491 atomic_inc(&sk->sk_drops); 1492 busylock_release(busy); 1493 return err; 1494 } 1495 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1496 1497 void udp_destruct_sock(struct sock *sk) 1498 { 1499 /* reclaim completely the forward allocated memory */ 1500 struct udp_sock *up = udp_sk(sk); 1501 unsigned int total = 0; 1502 struct sk_buff *skb; 1503 1504 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1505 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1506 total += skb->truesize; 1507 kfree_skb(skb); 1508 } 1509 udp_rmem_release(sk, total, 0, true); 1510 1511 inet_sock_destruct(sk); 1512 } 1513 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1514 1515 int udp_init_sock(struct sock *sk) 1516 { 1517 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1518 sk->sk_destruct = udp_destruct_sock; 1519 return 0; 1520 } 1521 EXPORT_SYMBOL_GPL(udp_init_sock); 1522 1523 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1524 { 1525 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1526 bool slow = lock_sock_fast(sk); 1527 1528 sk_peek_offset_bwd(sk, len); 1529 unlock_sock_fast(sk, slow); 1530 } 1531 1532 if (!skb_unref(skb)) 1533 return; 1534 1535 /* In the more common cases we cleared the head states previously, 1536 * see __udp_queue_rcv_skb(). 1537 */ 1538 if (unlikely(udp_skb_has_head_state(skb))) 1539 skb_release_head_state(skb); 1540 __consume_stateless_skb(skb); 1541 } 1542 EXPORT_SYMBOL_GPL(skb_consume_udp); 1543 1544 static struct sk_buff *__first_packet_length(struct sock *sk, 1545 struct sk_buff_head *rcvq, 1546 int *total) 1547 { 1548 struct sk_buff *skb; 1549 1550 while ((skb = skb_peek(rcvq)) != NULL) { 1551 if (udp_lib_checksum_complete(skb)) { 1552 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1553 IS_UDPLITE(sk)); 1554 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1555 IS_UDPLITE(sk)); 1556 atomic_inc(&sk->sk_drops); 1557 __skb_unlink(skb, rcvq); 1558 *total += skb->truesize; 1559 kfree_skb(skb); 1560 } else { 1561 /* the csum related bits could be changed, refresh 1562 * the scratch area 1563 */ 1564 udp_set_dev_scratch(skb); 1565 break; 1566 } 1567 } 1568 return skb; 1569 } 1570 1571 /** 1572 * first_packet_length - return length of first packet in receive queue 1573 * @sk: socket 1574 * 1575 * Drops all bad checksum frames, until a valid one is found. 1576 * Returns the length of found skb, or -1 if none is found. 1577 */ 1578 static int first_packet_length(struct sock *sk) 1579 { 1580 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1581 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1582 struct sk_buff *skb; 1583 int total = 0; 1584 int res; 1585 1586 spin_lock_bh(&rcvq->lock); 1587 skb = __first_packet_length(sk, rcvq, &total); 1588 if (!skb && !skb_queue_empty(sk_queue)) { 1589 spin_lock(&sk_queue->lock); 1590 skb_queue_splice_tail_init(sk_queue, rcvq); 1591 spin_unlock(&sk_queue->lock); 1592 1593 skb = __first_packet_length(sk, rcvq, &total); 1594 } 1595 res = skb ? skb->len : -1; 1596 if (total) 1597 udp_rmem_release(sk, total, 1, false); 1598 spin_unlock_bh(&rcvq->lock); 1599 return res; 1600 } 1601 1602 /* 1603 * IOCTL requests applicable to the UDP protocol 1604 */ 1605 1606 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1607 { 1608 switch (cmd) { 1609 case SIOCOUTQ: 1610 { 1611 int amount = sk_wmem_alloc_get(sk); 1612 1613 return put_user(amount, (int __user *)arg); 1614 } 1615 1616 case SIOCINQ: 1617 { 1618 int amount = max_t(int, 0, first_packet_length(sk)); 1619 1620 return put_user(amount, (int __user *)arg); 1621 } 1622 1623 default: 1624 return -ENOIOCTLCMD; 1625 } 1626 1627 return 0; 1628 } 1629 EXPORT_SYMBOL(udp_ioctl); 1630 1631 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1632 int noblock, int *off, int *err) 1633 { 1634 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1635 struct sk_buff_head *queue; 1636 struct sk_buff *last; 1637 long timeo; 1638 int error; 1639 1640 queue = &udp_sk(sk)->reader_queue; 1641 flags |= noblock ? MSG_DONTWAIT : 0; 1642 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1643 do { 1644 struct sk_buff *skb; 1645 1646 error = sock_error(sk); 1647 if (error) 1648 break; 1649 1650 error = -EAGAIN; 1651 do { 1652 spin_lock_bh(&queue->lock); 1653 skb = __skb_try_recv_from_queue(sk, queue, flags, 1654 udp_skb_destructor, 1655 off, err, &last); 1656 if (skb) { 1657 spin_unlock_bh(&queue->lock); 1658 return skb; 1659 } 1660 1661 if (skb_queue_empty(sk_queue)) { 1662 spin_unlock_bh(&queue->lock); 1663 goto busy_check; 1664 } 1665 1666 /* refill the reader queue and walk it again 1667 * keep both queues locked to avoid re-acquiring 1668 * the sk_receive_queue lock if fwd memory scheduling 1669 * is needed. 1670 */ 1671 spin_lock(&sk_queue->lock); 1672 skb_queue_splice_tail_init(sk_queue, queue); 1673 1674 skb = __skb_try_recv_from_queue(sk, queue, flags, 1675 udp_skb_dtor_locked, 1676 off, err, &last); 1677 spin_unlock(&sk_queue->lock); 1678 spin_unlock_bh(&queue->lock); 1679 if (skb) 1680 return skb; 1681 1682 busy_check: 1683 if (!sk_can_busy_loop(sk)) 1684 break; 1685 1686 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1687 } while (!skb_queue_empty(sk_queue)); 1688 1689 /* sk_queue is empty, reader_queue may contain peeked packets */ 1690 } while (timeo && 1691 !__skb_wait_for_more_packets(sk, &error, &timeo, 1692 (struct sk_buff *)sk_queue)); 1693 1694 *err = error; 1695 return NULL; 1696 } 1697 EXPORT_SYMBOL(__skb_recv_udp); 1698 1699 /* 1700 * This should be easy, if there is something there we 1701 * return it, otherwise we block. 1702 */ 1703 1704 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1705 int flags, int *addr_len) 1706 { 1707 struct inet_sock *inet = inet_sk(sk); 1708 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1709 struct sk_buff *skb; 1710 unsigned int ulen, copied; 1711 int off, err, peeking = flags & MSG_PEEK; 1712 int is_udplite = IS_UDPLITE(sk); 1713 bool checksum_valid = false; 1714 1715 if (flags & MSG_ERRQUEUE) 1716 return ip_recv_error(sk, msg, len, addr_len); 1717 1718 try_again: 1719 off = sk_peek_offset(sk, flags); 1720 skb = __skb_recv_udp(sk, flags, noblock, &off, &err); 1721 if (!skb) 1722 return err; 1723 1724 ulen = udp_skb_len(skb); 1725 copied = len; 1726 if (copied > ulen - off) 1727 copied = ulen - off; 1728 else if (copied < ulen) 1729 msg->msg_flags |= MSG_TRUNC; 1730 1731 /* 1732 * If checksum is needed at all, try to do it while copying the 1733 * data. If the data is truncated, or if we only want a partial 1734 * coverage checksum (UDP-Lite), do it before the copy. 1735 */ 1736 1737 if (copied < ulen || peeking || 1738 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1739 checksum_valid = udp_skb_csum_unnecessary(skb) || 1740 !__udp_lib_checksum_complete(skb); 1741 if (!checksum_valid) 1742 goto csum_copy_err; 1743 } 1744 1745 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1746 if (udp_skb_is_linear(skb)) 1747 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1748 else 1749 err = skb_copy_datagram_msg(skb, off, msg, copied); 1750 } else { 1751 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1752 1753 if (err == -EINVAL) 1754 goto csum_copy_err; 1755 } 1756 1757 if (unlikely(err)) { 1758 if (!peeking) { 1759 atomic_inc(&sk->sk_drops); 1760 UDP_INC_STATS(sock_net(sk), 1761 UDP_MIB_INERRORS, is_udplite); 1762 } 1763 kfree_skb(skb); 1764 return err; 1765 } 1766 1767 if (!peeking) 1768 UDP_INC_STATS(sock_net(sk), 1769 UDP_MIB_INDATAGRAMS, is_udplite); 1770 1771 sock_recv_ts_and_drops(msg, sk, skb); 1772 1773 /* Copy the address. */ 1774 if (sin) { 1775 sin->sin_family = AF_INET; 1776 sin->sin_port = udp_hdr(skb)->source; 1777 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1778 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1779 *addr_len = sizeof(*sin); 1780 1781 if (cgroup_bpf_enabled) 1782 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1783 (struct sockaddr *)sin); 1784 } 1785 1786 if (udp_sk(sk)->gro_enabled) 1787 udp_cmsg_recv(msg, sk, skb); 1788 1789 if (inet->cmsg_flags) 1790 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1791 1792 err = copied; 1793 if (flags & MSG_TRUNC) 1794 err = ulen; 1795 1796 skb_consume_udp(sk, skb, peeking ? -err : err); 1797 return err; 1798 1799 csum_copy_err: 1800 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1801 udp_skb_destructor)) { 1802 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1803 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1804 } 1805 kfree_skb(skb); 1806 1807 /* starting over for a new packet, but check if we need to yield */ 1808 cond_resched(); 1809 msg->msg_flags &= ~MSG_TRUNC; 1810 goto try_again; 1811 } 1812 1813 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1814 { 1815 /* This check is replicated from __ip4_datagram_connect() and 1816 * intended to prevent BPF program called below from accessing bytes 1817 * that are out of the bound specified by user in addr_len. 1818 */ 1819 if (addr_len < sizeof(struct sockaddr_in)) 1820 return -EINVAL; 1821 1822 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1823 } 1824 EXPORT_SYMBOL(udp_pre_connect); 1825 1826 int __udp_disconnect(struct sock *sk, int flags) 1827 { 1828 struct inet_sock *inet = inet_sk(sk); 1829 /* 1830 * 1003.1g - break association. 1831 */ 1832 1833 sk->sk_state = TCP_CLOSE; 1834 inet->inet_daddr = 0; 1835 inet->inet_dport = 0; 1836 sock_rps_reset_rxhash(sk); 1837 sk->sk_bound_dev_if = 0; 1838 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1839 inet_reset_saddr(sk); 1840 1841 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1842 sk->sk_prot->unhash(sk); 1843 inet->inet_sport = 0; 1844 } 1845 sk_dst_reset(sk); 1846 return 0; 1847 } 1848 EXPORT_SYMBOL(__udp_disconnect); 1849 1850 int udp_disconnect(struct sock *sk, int flags) 1851 { 1852 lock_sock(sk); 1853 __udp_disconnect(sk, flags); 1854 release_sock(sk); 1855 return 0; 1856 } 1857 EXPORT_SYMBOL(udp_disconnect); 1858 1859 void udp_lib_unhash(struct sock *sk) 1860 { 1861 if (sk_hashed(sk)) { 1862 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1863 struct udp_hslot *hslot, *hslot2; 1864 1865 hslot = udp_hashslot(udptable, sock_net(sk), 1866 udp_sk(sk)->udp_port_hash); 1867 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1868 1869 spin_lock_bh(&hslot->lock); 1870 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1871 reuseport_detach_sock(sk); 1872 if (sk_del_node_init_rcu(sk)) { 1873 hslot->count--; 1874 inet_sk(sk)->inet_num = 0; 1875 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1876 1877 spin_lock(&hslot2->lock); 1878 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1879 hslot2->count--; 1880 spin_unlock(&hslot2->lock); 1881 } 1882 spin_unlock_bh(&hslot->lock); 1883 } 1884 } 1885 EXPORT_SYMBOL(udp_lib_unhash); 1886 1887 /* 1888 * inet_rcv_saddr was changed, we must rehash secondary hash 1889 */ 1890 void udp_lib_rehash(struct sock *sk, u16 newhash) 1891 { 1892 if (sk_hashed(sk)) { 1893 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1894 struct udp_hslot *hslot, *hslot2, *nhslot2; 1895 1896 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1897 nhslot2 = udp_hashslot2(udptable, newhash); 1898 udp_sk(sk)->udp_portaddr_hash = newhash; 1899 1900 if (hslot2 != nhslot2 || 1901 rcu_access_pointer(sk->sk_reuseport_cb)) { 1902 hslot = udp_hashslot(udptable, sock_net(sk), 1903 udp_sk(sk)->udp_port_hash); 1904 /* we must lock primary chain too */ 1905 spin_lock_bh(&hslot->lock); 1906 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1907 reuseport_detach_sock(sk); 1908 1909 if (hslot2 != nhslot2) { 1910 spin_lock(&hslot2->lock); 1911 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1912 hslot2->count--; 1913 spin_unlock(&hslot2->lock); 1914 1915 spin_lock(&nhslot2->lock); 1916 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1917 &nhslot2->head); 1918 nhslot2->count++; 1919 spin_unlock(&nhslot2->lock); 1920 } 1921 1922 spin_unlock_bh(&hslot->lock); 1923 } 1924 } 1925 } 1926 EXPORT_SYMBOL(udp_lib_rehash); 1927 1928 void udp_v4_rehash(struct sock *sk) 1929 { 1930 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1931 inet_sk(sk)->inet_rcv_saddr, 1932 inet_sk(sk)->inet_num); 1933 udp_lib_rehash(sk, new_hash); 1934 } 1935 1936 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1937 { 1938 int rc; 1939 1940 if (inet_sk(sk)->inet_daddr) { 1941 sock_rps_save_rxhash(sk, skb); 1942 sk_mark_napi_id(sk, skb); 1943 sk_incoming_cpu_update(sk); 1944 } else { 1945 sk_mark_napi_id_once(sk, skb); 1946 } 1947 1948 rc = __udp_enqueue_schedule_skb(sk, skb); 1949 if (rc < 0) { 1950 int is_udplite = IS_UDPLITE(sk); 1951 1952 /* Note that an ENOMEM error is charged twice */ 1953 if (rc == -ENOMEM) 1954 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1955 is_udplite); 1956 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1957 kfree_skb(skb); 1958 trace_udp_fail_queue_rcv_skb(rc, sk); 1959 return -1; 1960 } 1961 1962 return 0; 1963 } 1964 1965 /* returns: 1966 * -1: error 1967 * 0: success 1968 * >0: "udp encap" protocol resubmission 1969 * 1970 * Note that in the success and error cases, the skb is assumed to 1971 * have either been requeued or freed. 1972 */ 1973 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 1974 { 1975 struct udp_sock *up = udp_sk(sk); 1976 int is_udplite = IS_UDPLITE(sk); 1977 1978 /* 1979 * Charge it to the socket, dropping if the queue is full. 1980 */ 1981 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1982 goto drop; 1983 nf_reset(skb); 1984 1985 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1986 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1987 1988 /* 1989 * This is an encapsulation socket so pass the skb to 1990 * the socket's udp_encap_rcv() hook. Otherwise, just 1991 * fall through and pass this up the UDP socket. 1992 * up->encap_rcv() returns the following value: 1993 * =0 if skb was successfully passed to the encap 1994 * handler or was discarded by it. 1995 * >0 if skb should be passed on to UDP. 1996 * <0 if skb should be resubmitted as proto -N 1997 */ 1998 1999 /* if we're overly short, let UDP handle it */ 2000 encap_rcv = READ_ONCE(up->encap_rcv); 2001 if (encap_rcv) { 2002 int ret; 2003 2004 /* Verify checksum before giving to encap */ 2005 if (udp_lib_checksum_complete(skb)) 2006 goto csum_error; 2007 2008 ret = encap_rcv(sk, skb); 2009 if (ret <= 0) { 2010 __UDP_INC_STATS(sock_net(sk), 2011 UDP_MIB_INDATAGRAMS, 2012 is_udplite); 2013 return -ret; 2014 } 2015 } 2016 2017 /* FALLTHROUGH -- it's a UDP Packet */ 2018 } 2019 2020 /* 2021 * UDP-Lite specific tests, ignored on UDP sockets 2022 */ 2023 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2024 2025 /* 2026 * MIB statistics other than incrementing the error count are 2027 * disabled for the following two types of errors: these depend 2028 * on the application settings, not on the functioning of the 2029 * protocol stack as such. 2030 * 2031 * RFC 3828 here recommends (sec 3.3): "There should also be a 2032 * way ... to ... at least let the receiving application block 2033 * delivery of packets with coverage values less than a value 2034 * provided by the application." 2035 */ 2036 if (up->pcrlen == 0) { /* full coverage was set */ 2037 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2038 UDP_SKB_CB(skb)->cscov, skb->len); 2039 goto drop; 2040 } 2041 /* The next case involves violating the min. coverage requested 2042 * by the receiver. This is subtle: if receiver wants x and x is 2043 * greater than the buffersize/MTU then receiver will complain 2044 * that it wants x while sender emits packets of smaller size y. 2045 * Therefore the above ...()->partial_cov statement is essential. 2046 */ 2047 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2048 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2049 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2050 goto drop; 2051 } 2052 } 2053 2054 prefetch(&sk->sk_rmem_alloc); 2055 if (rcu_access_pointer(sk->sk_filter) && 2056 udp_lib_checksum_complete(skb)) 2057 goto csum_error; 2058 2059 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 2060 goto drop; 2061 2062 udp_csum_pull_header(skb); 2063 2064 ipv4_pktinfo_prepare(sk, skb); 2065 return __udp_queue_rcv_skb(sk, skb); 2066 2067 csum_error: 2068 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2069 drop: 2070 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2071 atomic_inc(&sk->sk_drops); 2072 kfree_skb(skb); 2073 return -1; 2074 } 2075 2076 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2077 { 2078 struct sk_buff *next, *segs; 2079 int ret; 2080 2081 if (likely(!udp_unexpected_gso(sk, skb))) 2082 return udp_queue_rcv_one_skb(sk, skb); 2083 2084 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET); 2085 __skb_push(skb, -skb_mac_offset(skb)); 2086 segs = udp_rcv_segment(sk, skb, true); 2087 for (skb = segs; skb; skb = next) { 2088 next = skb->next; 2089 __skb_pull(skb, skb_transport_offset(skb)); 2090 ret = udp_queue_rcv_one_skb(sk, skb); 2091 if (ret > 0) 2092 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret); 2093 } 2094 return 0; 2095 } 2096 2097 /* For TCP sockets, sk_rx_dst is protected by socket lock 2098 * For UDP, we use xchg() to guard against concurrent changes. 2099 */ 2100 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2101 { 2102 struct dst_entry *old; 2103 2104 if (dst_hold_safe(dst)) { 2105 old = xchg(&sk->sk_rx_dst, dst); 2106 dst_release(old); 2107 return old != dst; 2108 } 2109 return false; 2110 } 2111 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2112 2113 /* 2114 * Multicasts and broadcasts go to each listener. 2115 * 2116 * Note: called only from the BH handler context. 2117 */ 2118 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2119 struct udphdr *uh, 2120 __be32 saddr, __be32 daddr, 2121 struct udp_table *udptable, 2122 int proto) 2123 { 2124 struct sock *sk, *first = NULL; 2125 unsigned short hnum = ntohs(uh->dest); 2126 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2127 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2128 unsigned int offset = offsetof(typeof(*sk), sk_node); 2129 int dif = skb->dev->ifindex; 2130 int sdif = inet_sdif(skb); 2131 struct hlist_node *node; 2132 struct sk_buff *nskb; 2133 2134 if (use_hash2) { 2135 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2136 udptable->mask; 2137 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2138 start_lookup: 2139 hslot = &udptable->hash2[hash2]; 2140 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2141 } 2142 2143 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2144 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2145 uh->source, saddr, dif, sdif, hnum)) 2146 continue; 2147 2148 if (!first) { 2149 first = sk; 2150 continue; 2151 } 2152 nskb = skb_clone(skb, GFP_ATOMIC); 2153 2154 if (unlikely(!nskb)) { 2155 atomic_inc(&sk->sk_drops); 2156 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2157 IS_UDPLITE(sk)); 2158 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2159 IS_UDPLITE(sk)); 2160 continue; 2161 } 2162 if (udp_queue_rcv_skb(sk, nskb) > 0) 2163 consume_skb(nskb); 2164 } 2165 2166 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2167 if (use_hash2 && hash2 != hash2_any) { 2168 hash2 = hash2_any; 2169 goto start_lookup; 2170 } 2171 2172 if (first) { 2173 if (udp_queue_rcv_skb(first, skb) > 0) 2174 consume_skb(skb); 2175 } else { 2176 kfree_skb(skb); 2177 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2178 proto == IPPROTO_UDPLITE); 2179 } 2180 return 0; 2181 } 2182 2183 /* Initialize UDP checksum. If exited with zero value (success), 2184 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2185 * Otherwise, csum completion requires chacksumming packet body, 2186 * including udp header and folding it to skb->csum. 2187 */ 2188 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2189 int proto) 2190 { 2191 int err; 2192 2193 UDP_SKB_CB(skb)->partial_cov = 0; 2194 UDP_SKB_CB(skb)->cscov = skb->len; 2195 2196 if (proto == IPPROTO_UDPLITE) { 2197 err = udplite_checksum_init(skb, uh); 2198 if (err) 2199 return err; 2200 2201 if (UDP_SKB_CB(skb)->partial_cov) { 2202 skb->csum = inet_compute_pseudo(skb, proto); 2203 return 0; 2204 } 2205 } 2206 2207 /* Note, we are only interested in != 0 or == 0, thus the 2208 * force to int. 2209 */ 2210 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2211 inet_compute_pseudo); 2212 if (err) 2213 return err; 2214 2215 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2216 /* If SW calculated the value, we know it's bad */ 2217 if (skb->csum_complete_sw) 2218 return 1; 2219 2220 /* HW says the value is bad. Let's validate that. 2221 * skb->csum is no longer the full packet checksum, 2222 * so don't treat it as such. 2223 */ 2224 skb_checksum_complete_unset(skb); 2225 } 2226 2227 return 0; 2228 } 2229 2230 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2231 * return code conversion for ip layer consumption 2232 */ 2233 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2234 struct udphdr *uh) 2235 { 2236 int ret; 2237 2238 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2239 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2240 inet_compute_pseudo); 2241 2242 ret = udp_queue_rcv_skb(sk, skb); 2243 2244 /* a return value > 0 means to resubmit the input, but 2245 * it wants the return to be -protocol, or 0 2246 */ 2247 if (ret > 0) 2248 return -ret; 2249 return 0; 2250 } 2251 2252 /* 2253 * All we need to do is get the socket, and then do a checksum. 2254 */ 2255 2256 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2257 int proto) 2258 { 2259 struct sock *sk; 2260 struct udphdr *uh; 2261 unsigned short ulen; 2262 struct rtable *rt = skb_rtable(skb); 2263 __be32 saddr, daddr; 2264 struct net *net = dev_net(skb->dev); 2265 2266 /* 2267 * Validate the packet. 2268 */ 2269 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2270 goto drop; /* No space for header. */ 2271 2272 uh = udp_hdr(skb); 2273 ulen = ntohs(uh->len); 2274 saddr = ip_hdr(skb)->saddr; 2275 daddr = ip_hdr(skb)->daddr; 2276 2277 if (ulen > skb->len) 2278 goto short_packet; 2279 2280 if (proto == IPPROTO_UDP) { 2281 /* UDP validates ulen. */ 2282 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2283 goto short_packet; 2284 uh = udp_hdr(skb); 2285 } 2286 2287 if (udp4_csum_init(skb, uh, proto)) 2288 goto csum_error; 2289 2290 sk = skb_steal_sock(skb); 2291 if (sk) { 2292 struct dst_entry *dst = skb_dst(skb); 2293 int ret; 2294 2295 if (unlikely(sk->sk_rx_dst != dst)) 2296 udp_sk_rx_dst_set(sk, dst); 2297 2298 ret = udp_unicast_rcv_skb(sk, skb, uh); 2299 sock_put(sk); 2300 return ret; 2301 } 2302 2303 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2304 return __udp4_lib_mcast_deliver(net, skb, uh, 2305 saddr, daddr, udptable, proto); 2306 2307 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2308 if (sk) 2309 return udp_unicast_rcv_skb(sk, skb, uh); 2310 2311 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2312 goto drop; 2313 nf_reset(skb); 2314 2315 /* No socket. Drop packet silently, if checksum is wrong */ 2316 if (udp_lib_checksum_complete(skb)) 2317 goto csum_error; 2318 2319 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2320 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2321 2322 /* 2323 * Hmm. We got an UDP packet to a port to which we 2324 * don't wanna listen. Ignore it. 2325 */ 2326 kfree_skb(skb); 2327 return 0; 2328 2329 short_packet: 2330 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2331 proto == IPPROTO_UDPLITE ? "Lite" : "", 2332 &saddr, ntohs(uh->source), 2333 ulen, skb->len, 2334 &daddr, ntohs(uh->dest)); 2335 goto drop; 2336 2337 csum_error: 2338 /* 2339 * RFC1122: OK. Discards the bad packet silently (as far as 2340 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2341 */ 2342 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2343 proto == IPPROTO_UDPLITE ? "Lite" : "", 2344 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2345 ulen); 2346 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2347 drop: 2348 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2349 kfree_skb(skb); 2350 return 0; 2351 } 2352 2353 /* We can only early demux multicast if there is a single matching socket. 2354 * If more than one socket found returns NULL 2355 */ 2356 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2357 __be16 loc_port, __be32 loc_addr, 2358 __be16 rmt_port, __be32 rmt_addr, 2359 int dif, int sdif) 2360 { 2361 struct sock *sk, *result; 2362 unsigned short hnum = ntohs(loc_port); 2363 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2364 struct udp_hslot *hslot = &udp_table.hash[slot]; 2365 2366 /* Do not bother scanning a too big list */ 2367 if (hslot->count > 10) 2368 return NULL; 2369 2370 result = NULL; 2371 sk_for_each_rcu(sk, &hslot->head) { 2372 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2373 rmt_port, rmt_addr, dif, sdif, hnum)) { 2374 if (result) 2375 return NULL; 2376 result = sk; 2377 } 2378 } 2379 2380 return result; 2381 } 2382 2383 /* For unicast we should only early demux connected sockets or we can 2384 * break forwarding setups. The chains here can be long so only check 2385 * if the first socket is an exact match and if not move on. 2386 */ 2387 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2388 __be16 loc_port, __be32 loc_addr, 2389 __be16 rmt_port, __be32 rmt_addr, 2390 int dif, int sdif) 2391 { 2392 unsigned short hnum = ntohs(loc_port); 2393 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2394 unsigned int slot2 = hash2 & udp_table.mask; 2395 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2396 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2397 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2398 struct sock *sk; 2399 2400 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2401 if (INET_MATCH(sk, net, acookie, rmt_addr, 2402 loc_addr, ports, dif, sdif)) 2403 return sk; 2404 /* Only check first socket in chain */ 2405 break; 2406 } 2407 return NULL; 2408 } 2409 2410 int udp_v4_early_demux(struct sk_buff *skb) 2411 { 2412 struct net *net = dev_net(skb->dev); 2413 struct in_device *in_dev = NULL; 2414 const struct iphdr *iph; 2415 const struct udphdr *uh; 2416 struct sock *sk = NULL; 2417 struct dst_entry *dst; 2418 int dif = skb->dev->ifindex; 2419 int sdif = inet_sdif(skb); 2420 int ours; 2421 2422 /* validate the packet */ 2423 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2424 return 0; 2425 2426 iph = ip_hdr(skb); 2427 uh = udp_hdr(skb); 2428 2429 if (skb->pkt_type == PACKET_MULTICAST) { 2430 in_dev = __in_dev_get_rcu(skb->dev); 2431 2432 if (!in_dev) 2433 return 0; 2434 2435 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2436 iph->protocol); 2437 if (!ours) 2438 return 0; 2439 2440 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2441 uh->source, iph->saddr, 2442 dif, sdif); 2443 } else if (skb->pkt_type == PACKET_HOST) { 2444 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2445 uh->source, iph->saddr, dif, sdif); 2446 } 2447 2448 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2449 return 0; 2450 2451 skb->sk = sk; 2452 skb->destructor = sock_efree; 2453 dst = READ_ONCE(sk->sk_rx_dst); 2454 2455 if (dst) 2456 dst = dst_check(dst, 0); 2457 if (dst) { 2458 u32 itag = 0; 2459 2460 /* set noref for now. 2461 * any place which wants to hold dst has to call 2462 * dst_hold_safe() 2463 */ 2464 skb_dst_set_noref(skb, dst); 2465 2466 /* for unconnected multicast sockets we need to validate 2467 * the source on each packet 2468 */ 2469 if (!inet_sk(sk)->inet_daddr && in_dev) 2470 return ip_mc_validate_source(skb, iph->daddr, 2471 iph->saddr, iph->tos, 2472 skb->dev, in_dev, &itag); 2473 } 2474 return 0; 2475 } 2476 2477 int udp_rcv(struct sk_buff *skb) 2478 { 2479 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2480 } 2481 2482 void udp_destroy_sock(struct sock *sk) 2483 { 2484 struct udp_sock *up = udp_sk(sk); 2485 bool slow = lock_sock_fast(sk); 2486 udp_flush_pending_frames(sk); 2487 unlock_sock_fast(sk, slow); 2488 if (static_branch_unlikely(&udp_encap_needed_key)) { 2489 if (up->encap_type) { 2490 void (*encap_destroy)(struct sock *sk); 2491 encap_destroy = READ_ONCE(up->encap_destroy); 2492 if (encap_destroy) 2493 encap_destroy(sk); 2494 } 2495 if (up->encap_enabled) 2496 static_branch_dec(&udp_encap_needed_key); 2497 } 2498 } 2499 2500 /* 2501 * Socket option code for UDP 2502 */ 2503 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2504 char __user *optval, unsigned int optlen, 2505 int (*push_pending_frames)(struct sock *)) 2506 { 2507 struct udp_sock *up = udp_sk(sk); 2508 int val, valbool; 2509 int err = 0; 2510 int is_udplite = IS_UDPLITE(sk); 2511 2512 if (optlen < sizeof(int)) 2513 return -EINVAL; 2514 2515 if (get_user(val, (int __user *)optval)) 2516 return -EFAULT; 2517 2518 valbool = val ? 1 : 0; 2519 2520 switch (optname) { 2521 case UDP_CORK: 2522 if (val != 0) { 2523 up->corkflag = 1; 2524 } else { 2525 up->corkflag = 0; 2526 lock_sock(sk); 2527 push_pending_frames(sk); 2528 release_sock(sk); 2529 } 2530 break; 2531 2532 case UDP_ENCAP: 2533 switch (val) { 2534 case 0: 2535 case UDP_ENCAP_ESPINUDP: 2536 case UDP_ENCAP_ESPINUDP_NON_IKE: 2537 up->encap_rcv = xfrm4_udp_encap_rcv; 2538 /* FALLTHROUGH */ 2539 case UDP_ENCAP_L2TPINUDP: 2540 up->encap_type = val; 2541 lock_sock(sk); 2542 udp_tunnel_encap_enable(sk->sk_socket); 2543 release_sock(sk); 2544 break; 2545 default: 2546 err = -ENOPROTOOPT; 2547 break; 2548 } 2549 break; 2550 2551 case UDP_NO_CHECK6_TX: 2552 up->no_check6_tx = valbool; 2553 break; 2554 2555 case UDP_NO_CHECK6_RX: 2556 up->no_check6_rx = valbool; 2557 break; 2558 2559 case UDP_SEGMENT: 2560 if (val < 0 || val > USHRT_MAX) 2561 return -EINVAL; 2562 up->gso_size = val; 2563 break; 2564 2565 case UDP_GRO: 2566 lock_sock(sk); 2567 if (valbool) 2568 udp_tunnel_encap_enable(sk->sk_socket); 2569 up->gro_enabled = valbool; 2570 release_sock(sk); 2571 break; 2572 2573 /* 2574 * UDP-Lite's partial checksum coverage (RFC 3828). 2575 */ 2576 /* The sender sets actual checksum coverage length via this option. 2577 * The case coverage > packet length is handled by send module. */ 2578 case UDPLITE_SEND_CSCOV: 2579 if (!is_udplite) /* Disable the option on UDP sockets */ 2580 return -ENOPROTOOPT; 2581 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2582 val = 8; 2583 else if (val > USHRT_MAX) 2584 val = USHRT_MAX; 2585 up->pcslen = val; 2586 up->pcflag |= UDPLITE_SEND_CC; 2587 break; 2588 2589 /* The receiver specifies a minimum checksum coverage value. To make 2590 * sense, this should be set to at least 8 (as done below). If zero is 2591 * used, this again means full checksum coverage. */ 2592 case UDPLITE_RECV_CSCOV: 2593 if (!is_udplite) /* Disable the option on UDP sockets */ 2594 return -ENOPROTOOPT; 2595 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2596 val = 8; 2597 else if (val > USHRT_MAX) 2598 val = USHRT_MAX; 2599 up->pcrlen = val; 2600 up->pcflag |= UDPLITE_RECV_CC; 2601 break; 2602 2603 default: 2604 err = -ENOPROTOOPT; 2605 break; 2606 } 2607 2608 return err; 2609 } 2610 EXPORT_SYMBOL(udp_lib_setsockopt); 2611 2612 int udp_setsockopt(struct sock *sk, int level, int optname, 2613 char __user *optval, unsigned int optlen) 2614 { 2615 if (level == SOL_UDP || level == SOL_UDPLITE) 2616 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2617 udp_push_pending_frames); 2618 return ip_setsockopt(sk, level, optname, optval, optlen); 2619 } 2620 2621 #ifdef CONFIG_COMPAT 2622 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2623 char __user *optval, unsigned int optlen) 2624 { 2625 if (level == SOL_UDP || level == SOL_UDPLITE) 2626 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2627 udp_push_pending_frames); 2628 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2629 } 2630 #endif 2631 2632 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2633 char __user *optval, int __user *optlen) 2634 { 2635 struct udp_sock *up = udp_sk(sk); 2636 int val, len; 2637 2638 if (get_user(len, optlen)) 2639 return -EFAULT; 2640 2641 len = min_t(unsigned int, len, sizeof(int)); 2642 2643 if (len < 0) 2644 return -EINVAL; 2645 2646 switch (optname) { 2647 case UDP_CORK: 2648 val = up->corkflag; 2649 break; 2650 2651 case UDP_ENCAP: 2652 val = up->encap_type; 2653 break; 2654 2655 case UDP_NO_CHECK6_TX: 2656 val = up->no_check6_tx; 2657 break; 2658 2659 case UDP_NO_CHECK6_RX: 2660 val = up->no_check6_rx; 2661 break; 2662 2663 case UDP_SEGMENT: 2664 val = up->gso_size; 2665 break; 2666 2667 /* The following two cannot be changed on UDP sockets, the return is 2668 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2669 case UDPLITE_SEND_CSCOV: 2670 val = up->pcslen; 2671 break; 2672 2673 case UDPLITE_RECV_CSCOV: 2674 val = up->pcrlen; 2675 break; 2676 2677 default: 2678 return -ENOPROTOOPT; 2679 } 2680 2681 if (put_user(len, optlen)) 2682 return -EFAULT; 2683 if (copy_to_user(optval, &val, len)) 2684 return -EFAULT; 2685 return 0; 2686 } 2687 EXPORT_SYMBOL(udp_lib_getsockopt); 2688 2689 int udp_getsockopt(struct sock *sk, int level, int optname, 2690 char __user *optval, int __user *optlen) 2691 { 2692 if (level == SOL_UDP || level == SOL_UDPLITE) 2693 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2694 return ip_getsockopt(sk, level, optname, optval, optlen); 2695 } 2696 2697 #ifdef CONFIG_COMPAT 2698 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2699 char __user *optval, int __user *optlen) 2700 { 2701 if (level == SOL_UDP || level == SOL_UDPLITE) 2702 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2703 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2704 } 2705 #endif 2706 /** 2707 * udp_poll - wait for a UDP event. 2708 * @file - file struct 2709 * @sock - socket 2710 * @wait - poll table 2711 * 2712 * This is same as datagram poll, except for the special case of 2713 * blocking sockets. If application is using a blocking fd 2714 * and a packet with checksum error is in the queue; 2715 * then it could get return from select indicating data available 2716 * but then block when reading it. Add special case code 2717 * to work around these arguably broken applications. 2718 */ 2719 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2720 { 2721 __poll_t mask = datagram_poll(file, sock, wait); 2722 struct sock *sk = sock->sk; 2723 2724 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2725 mask |= EPOLLIN | EPOLLRDNORM; 2726 2727 /* Check for false positives due to checksum errors */ 2728 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2729 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2730 mask &= ~(EPOLLIN | EPOLLRDNORM); 2731 2732 return mask; 2733 2734 } 2735 EXPORT_SYMBOL(udp_poll); 2736 2737 int udp_abort(struct sock *sk, int err) 2738 { 2739 lock_sock(sk); 2740 2741 sk->sk_err = err; 2742 sk->sk_error_report(sk); 2743 __udp_disconnect(sk, 0); 2744 2745 release_sock(sk); 2746 2747 return 0; 2748 } 2749 EXPORT_SYMBOL_GPL(udp_abort); 2750 2751 struct proto udp_prot = { 2752 .name = "UDP", 2753 .owner = THIS_MODULE, 2754 .close = udp_lib_close, 2755 .pre_connect = udp_pre_connect, 2756 .connect = ip4_datagram_connect, 2757 .disconnect = udp_disconnect, 2758 .ioctl = udp_ioctl, 2759 .init = udp_init_sock, 2760 .destroy = udp_destroy_sock, 2761 .setsockopt = udp_setsockopt, 2762 .getsockopt = udp_getsockopt, 2763 .sendmsg = udp_sendmsg, 2764 .recvmsg = udp_recvmsg, 2765 .sendpage = udp_sendpage, 2766 .release_cb = ip4_datagram_release_cb, 2767 .hash = udp_lib_hash, 2768 .unhash = udp_lib_unhash, 2769 .rehash = udp_v4_rehash, 2770 .get_port = udp_v4_get_port, 2771 .memory_allocated = &udp_memory_allocated, 2772 .sysctl_mem = sysctl_udp_mem, 2773 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2774 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2775 .obj_size = sizeof(struct udp_sock), 2776 .h.udp_table = &udp_table, 2777 #ifdef CONFIG_COMPAT 2778 .compat_setsockopt = compat_udp_setsockopt, 2779 .compat_getsockopt = compat_udp_getsockopt, 2780 #endif 2781 .diag_destroy = udp_abort, 2782 }; 2783 EXPORT_SYMBOL(udp_prot); 2784 2785 /* ------------------------------------------------------------------------ */ 2786 #ifdef CONFIG_PROC_FS 2787 2788 static struct sock *udp_get_first(struct seq_file *seq, int start) 2789 { 2790 struct sock *sk; 2791 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2792 struct udp_iter_state *state = seq->private; 2793 struct net *net = seq_file_net(seq); 2794 2795 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2796 ++state->bucket) { 2797 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2798 2799 if (hlist_empty(&hslot->head)) 2800 continue; 2801 2802 spin_lock_bh(&hslot->lock); 2803 sk_for_each(sk, &hslot->head) { 2804 if (!net_eq(sock_net(sk), net)) 2805 continue; 2806 if (sk->sk_family == afinfo->family) 2807 goto found; 2808 } 2809 spin_unlock_bh(&hslot->lock); 2810 } 2811 sk = NULL; 2812 found: 2813 return sk; 2814 } 2815 2816 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2817 { 2818 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2819 struct udp_iter_state *state = seq->private; 2820 struct net *net = seq_file_net(seq); 2821 2822 do { 2823 sk = sk_next(sk); 2824 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family)); 2825 2826 if (!sk) { 2827 if (state->bucket <= afinfo->udp_table->mask) 2828 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2829 return udp_get_first(seq, state->bucket + 1); 2830 } 2831 return sk; 2832 } 2833 2834 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2835 { 2836 struct sock *sk = udp_get_first(seq, 0); 2837 2838 if (sk) 2839 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2840 --pos; 2841 return pos ? NULL : sk; 2842 } 2843 2844 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2845 { 2846 struct udp_iter_state *state = seq->private; 2847 state->bucket = MAX_UDP_PORTS; 2848 2849 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2850 } 2851 EXPORT_SYMBOL(udp_seq_start); 2852 2853 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2854 { 2855 struct sock *sk; 2856 2857 if (v == SEQ_START_TOKEN) 2858 sk = udp_get_idx(seq, 0); 2859 else 2860 sk = udp_get_next(seq, v); 2861 2862 ++*pos; 2863 return sk; 2864 } 2865 EXPORT_SYMBOL(udp_seq_next); 2866 2867 void udp_seq_stop(struct seq_file *seq, void *v) 2868 { 2869 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2870 struct udp_iter_state *state = seq->private; 2871 2872 if (state->bucket <= afinfo->udp_table->mask) 2873 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2874 } 2875 EXPORT_SYMBOL(udp_seq_stop); 2876 2877 /* ------------------------------------------------------------------------ */ 2878 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2879 int bucket) 2880 { 2881 struct inet_sock *inet = inet_sk(sp); 2882 __be32 dest = inet->inet_daddr; 2883 __be32 src = inet->inet_rcv_saddr; 2884 __u16 destp = ntohs(inet->inet_dport); 2885 __u16 srcp = ntohs(inet->inet_sport); 2886 2887 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2888 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 2889 bucket, src, srcp, dest, destp, sp->sk_state, 2890 sk_wmem_alloc_get(sp), 2891 udp_rqueue_get(sp), 2892 0, 0L, 0, 2893 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2894 0, sock_i_ino(sp), 2895 refcount_read(&sp->sk_refcnt), sp, 2896 atomic_read(&sp->sk_drops)); 2897 } 2898 2899 int udp4_seq_show(struct seq_file *seq, void *v) 2900 { 2901 seq_setwidth(seq, 127); 2902 if (v == SEQ_START_TOKEN) 2903 seq_puts(seq, " sl local_address rem_address st tx_queue " 2904 "rx_queue tr tm->when retrnsmt uid timeout " 2905 "inode ref pointer drops"); 2906 else { 2907 struct udp_iter_state *state = seq->private; 2908 2909 udp4_format_sock(v, seq, state->bucket); 2910 } 2911 seq_pad(seq, '\n'); 2912 return 0; 2913 } 2914 2915 const struct seq_operations udp_seq_ops = { 2916 .start = udp_seq_start, 2917 .next = udp_seq_next, 2918 .stop = udp_seq_stop, 2919 .show = udp4_seq_show, 2920 }; 2921 EXPORT_SYMBOL(udp_seq_ops); 2922 2923 static struct udp_seq_afinfo udp4_seq_afinfo = { 2924 .family = AF_INET, 2925 .udp_table = &udp_table, 2926 }; 2927 2928 static int __net_init udp4_proc_init_net(struct net *net) 2929 { 2930 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 2931 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 2932 return -ENOMEM; 2933 return 0; 2934 } 2935 2936 static void __net_exit udp4_proc_exit_net(struct net *net) 2937 { 2938 remove_proc_entry("udp", net->proc_net); 2939 } 2940 2941 static struct pernet_operations udp4_net_ops = { 2942 .init = udp4_proc_init_net, 2943 .exit = udp4_proc_exit_net, 2944 }; 2945 2946 int __init udp4_proc_init(void) 2947 { 2948 return register_pernet_subsys(&udp4_net_ops); 2949 } 2950 2951 void udp4_proc_exit(void) 2952 { 2953 unregister_pernet_subsys(&udp4_net_ops); 2954 } 2955 #endif /* CONFIG_PROC_FS */ 2956 2957 static __initdata unsigned long uhash_entries; 2958 static int __init set_uhash_entries(char *str) 2959 { 2960 ssize_t ret; 2961 2962 if (!str) 2963 return 0; 2964 2965 ret = kstrtoul(str, 0, &uhash_entries); 2966 if (ret) 2967 return 0; 2968 2969 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2970 uhash_entries = UDP_HTABLE_SIZE_MIN; 2971 return 1; 2972 } 2973 __setup("uhash_entries=", set_uhash_entries); 2974 2975 void __init udp_table_init(struct udp_table *table, const char *name) 2976 { 2977 unsigned int i; 2978 2979 table->hash = alloc_large_system_hash(name, 2980 2 * sizeof(struct udp_hslot), 2981 uhash_entries, 2982 21, /* one slot per 2 MB */ 2983 0, 2984 &table->log, 2985 &table->mask, 2986 UDP_HTABLE_SIZE_MIN, 2987 64 * 1024); 2988 2989 table->hash2 = table->hash + (table->mask + 1); 2990 for (i = 0; i <= table->mask; i++) { 2991 INIT_HLIST_HEAD(&table->hash[i].head); 2992 table->hash[i].count = 0; 2993 spin_lock_init(&table->hash[i].lock); 2994 } 2995 for (i = 0; i <= table->mask; i++) { 2996 INIT_HLIST_HEAD(&table->hash2[i].head); 2997 table->hash2[i].count = 0; 2998 spin_lock_init(&table->hash2[i].lock); 2999 } 3000 } 3001 3002 u32 udp_flow_hashrnd(void) 3003 { 3004 static u32 hashrnd __read_mostly; 3005 3006 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3007 3008 return hashrnd; 3009 } 3010 EXPORT_SYMBOL(udp_flow_hashrnd); 3011 3012 static void __udp_sysctl_init(struct net *net) 3013 { 3014 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 3015 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 3016 3017 #ifdef CONFIG_NET_L3_MASTER_DEV 3018 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3019 #endif 3020 } 3021 3022 static int __net_init udp_sysctl_init(struct net *net) 3023 { 3024 __udp_sysctl_init(net); 3025 return 0; 3026 } 3027 3028 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3029 .init = udp_sysctl_init, 3030 }; 3031 3032 void __init udp_init(void) 3033 { 3034 unsigned long limit; 3035 unsigned int i; 3036 3037 udp_table_init(&udp_table, "UDP"); 3038 limit = nr_free_buffer_pages() / 8; 3039 limit = max(limit, 128UL); 3040 sysctl_udp_mem[0] = limit / 4 * 3; 3041 sysctl_udp_mem[1] = limit; 3042 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3043 3044 __udp_sysctl_init(&init_net); 3045 3046 /* 16 spinlocks per cpu */ 3047 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3048 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3049 GFP_KERNEL); 3050 if (!udp_busylocks) 3051 panic("UDP: failed to alloc udp_busylocks\n"); 3052 for (i = 0; i < (1U << udp_busylocks_log); i++) 3053 spin_lock_init(udp_busylocks + i); 3054 3055 if (register_pernet_subsys(&udp_sysctl_ops)) 3056 panic("UDP: failed to init sysctl parameters.\n"); 3057 } 3058