xref: /openbmc/linux/net/ipv4/udp.c (revision 3b64b188)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/route.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <trace/events/udp.h>
110 #include <linux/static_key.h>
111 #include <trace/events/skb.h>
112 #include "udp_impl.h"
113 
114 struct udp_table udp_table __read_mostly;
115 EXPORT_SYMBOL(udp_table);
116 
117 long sysctl_udp_mem[3] __read_mostly;
118 EXPORT_SYMBOL(sysctl_udp_mem);
119 
120 int sysctl_udp_rmem_min __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_rmem_min);
122 
123 int sysctl_udp_wmem_min __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_wmem_min);
125 
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131 
132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 			       const struct udp_hslot *hslot,
134 			       unsigned long *bitmap,
135 			       struct sock *sk,
136 			       int (*saddr_comp)(const struct sock *sk1,
137 						 const struct sock *sk2),
138 			       unsigned int log)
139 {
140 	struct sock *sk2;
141 	struct hlist_nulls_node *node;
142 
143 	sk_nulls_for_each(sk2, node, &hslot->head)
144 		if (net_eq(sock_net(sk2), net) &&
145 		    sk2 != sk &&
146 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
147 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
148 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
149 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
150 		    (*saddr_comp)(sk, sk2)) {
151 			if (bitmap)
152 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
153 					  bitmap);
154 			else
155 				return 1;
156 		}
157 	return 0;
158 }
159 
160 /*
161  * Note: we still hold spinlock of primary hash chain, so no other writer
162  * can insert/delete a socket with local_port == num
163  */
164 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
165 			       struct udp_hslot *hslot2,
166 			       struct sock *sk,
167 			       int (*saddr_comp)(const struct sock *sk1,
168 						 const struct sock *sk2))
169 {
170 	struct sock *sk2;
171 	struct hlist_nulls_node *node;
172 	int res = 0;
173 
174 	spin_lock(&hslot2->lock);
175 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
176 		if (net_eq(sock_net(sk2), net) &&
177 		    sk2 != sk &&
178 		    (udp_sk(sk2)->udp_port_hash == num) &&
179 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
180 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
181 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
182 		    (*saddr_comp)(sk, sk2)) {
183 			res = 1;
184 			break;
185 		}
186 	spin_unlock(&hslot2->lock);
187 	return res;
188 }
189 
190 /**
191  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
192  *
193  *  @sk:          socket struct in question
194  *  @snum:        port number to look up
195  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
196  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
197  *                   with NULL address
198  */
199 int udp_lib_get_port(struct sock *sk, unsigned short snum,
200 		       int (*saddr_comp)(const struct sock *sk1,
201 					 const struct sock *sk2),
202 		     unsigned int hash2_nulladdr)
203 {
204 	struct udp_hslot *hslot, *hslot2;
205 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
206 	int    error = 1;
207 	struct net *net = sock_net(sk);
208 
209 	if (!snum) {
210 		int low, high, remaining;
211 		unsigned int rand;
212 		unsigned short first, last;
213 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
214 
215 		inet_get_local_port_range(&low, &high);
216 		remaining = (high - low) + 1;
217 
218 		rand = net_random();
219 		first = (((u64)rand * remaining) >> 32) + low;
220 		/*
221 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
222 		 */
223 		rand = (rand | 1) * (udptable->mask + 1);
224 		last = first + udptable->mask + 1;
225 		do {
226 			hslot = udp_hashslot(udptable, net, first);
227 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
228 			spin_lock_bh(&hslot->lock);
229 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
230 					    saddr_comp, udptable->log);
231 
232 			snum = first;
233 			/*
234 			 * Iterate on all possible values of snum for this hash.
235 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
236 			 * give us randomization and full range coverage.
237 			 */
238 			do {
239 				if (low <= snum && snum <= high &&
240 				    !test_bit(snum >> udptable->log, bitmap) &&
241 				    !inet_is_reserved_local_port(snum))
242 					goto found;
243 				snum += rand;
244 			} while (snum != first);
245 			spin_unlock_bh(&hslot->lock);
246 		} while (++first != last);
247 		goto fail;
248 	} else {
249 		hslot = udp_hashslot(udptable, net, snum);
250 		spin_lock_bh(&hslot->lock);
251 		if (hslot->count > 10) {
252 			int exist;
253 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
254 
255 			slot2          &= udptable->mask;
256 			hash2_nulladdr &= udptable->mask;
257 
258 			hslot2 = udp_hashslot2(udptable, slot2);
259 			if (hslot->count < hslot2->count)
260 				goto scan_primary_hash;
261 
262 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
263 						     sk, saddr_comp);
264 			if (!exist && (hash2_nulladdr != slot2)) {
265 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
266 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
267 							     sk, saddr_comp);
268 			}
269 			if (exist)
270 				goto fail_unlock;
271 			else
272 				goto found;
273 		}
274 scan_primary_hash:
275 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
276 					saddr_comp, 0))
277 			goto fail_unlock;
278 	}
279 found:
280 	inet_sk(sk)->inet_num = snum;
281 	udp_sk(sk)->udp_port_hash = snum;
282 	udp_sk(sk)->udp_portaddr_hash ^= snum;
283 	if (sk_unhashed(sk)) {
284 		sk_nulls_add_node_rcu(sk, &hslot->head);
285 		hslot->count++;
286 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
287 
288 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
289 		spin_lock(&hslot2->lock);
290 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
291 					 &hslot2->head);
292 		hslot2->count++;
293 		spin_unlock(&hslot2->lock);
294 	}
295 	error = 0;
296 fail_unlock:
297 	spin_unlock_bh(&hslot->lock);
298 fail:
299 	return error;
300 }
301 EXPORT_SYMBOL(udp_lib_get_port);
302 
303 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
304 {
305 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
306 
307 	return 	(!ipv6_only_sock(sk2)  &&
308 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
309 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
310 }
311 
312 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
313 				       unsigned int port)
314 {
315 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
316 }
317 
318 int udp_v4_get_port(struct sock *sk, unsigned short snum)
319 {
320 	unsigned int hash2_nulladdr =
321 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
322 	unsigned int hash2_partial =
323 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
324 
325 	/* precompute partial secondary hash */
326 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
327 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
328 }
329 
330 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
331 			 unsigned short hnum,
332 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
333 {
334 	int score = -1;
335 
336 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
337 			!ipv6_only_sock(sk)) {
338 		struct inet_sock *inet = inet_sk(sk);
339 
340 		score = (sk->sk_family == PF_INET ? 1 : 0);
341 		if (inet->inet_rcv_saddr) {
342 			if (inet->inet_rcv_saddr != daddr)
343 				return -1;
344 			score += 2;
345 		}
346 		if (inet->inet_daddr) {
347 			if (inet->inet_daddr != saddr)
348 				return -1;
349 			score += 2;
350 		}
351 		if (inet->inet_dport) {
352 			if (inet->inet_dport != sport)
353 				return -1;
354 			score += 2;
355 		}
356 		if (sk->sk_bound_dev_if) {
357 			if (sk->sk_bound_dev_if != dif)
358 				return -1;
359 			score += 2;
360 		}
361 	}
362 	return score;
363 }
364 
365 /*
366  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
367  */
368 #define SCORE2_MAX (1 + 2 + 2 + 2)
369 static inline int compute_score2(struct sock *sk, struct net *net,
370 				 __be32 saddr, __be16 sport,
371 				 __be32 daddr, unsigned int hnum, int dif)
372 {
373 	int score = -1;
374 
375 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
376 		struct inet_sock *inet = inet_sk(sk);
377 
378 		if (inet->inet_rcv_saddr != daddr)
379 			return -1;
380 		if (inet->inet_num != hnum)
381 			return -1;
382 
383 		score = (sk->sk_family == PF_INET ? 1 : 0);
384 		if (inet->inet_daddr) {
385 			if (inet->inet_daddr != saddr)
386 				return -1;
387 			score += 2;
388 		}
389 		if (inet->inet_dport) {
390 			if (inet->inet_dport != sport)
391 				return -1;
392 			score += 2;
393 		}
394 		if (sk->sk_bound_dev_if) {
395 			if (sk->sk_bound_dev_if != dif)
396 				return -1;
397 			score += 2;
398 		}
399 	}
400 	return score;
401 }
402 
403 
404 /* called with read_rcu_lock() */
405 static struct sock *udp4_lib_lookup2(struct net *net,
406 		__be32 saddr, __be16 sport,
407 		__be32 daddr, unsigned int hnum, int dif,
408 		struct udp_hslot *hslot2, unsigned int slot2)
409 {
410 	struct sock *sk, *result;
411 	struct hlist_nulls_node *node;
412 	int score, badness;
413 
414 begin:
415 	result = NULL;
416 	badness = -1;
417 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
418 		score = compute_score2(sk, net, saddr, sport,
419 				      daddr, hnum, dif);
420 		if (score > badness) {
421 			result = sk;
422 			badness = score;
423 			if (score == SCORE2_MAX)
424 				goto exact_match;
425 		}
426 	}
427 	/*
428 	 * if the nulls value we got at the end of this lookup is
429 	 * not the expected one, we must restart lookup.
430 	 * We probably met an item that was moved to another chain.
431 	 */
432 	if (get_nulls_value(node) != slot2)
433 		goto begin;
434 
435 	if (result) {
436 exact_match:
437 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
438 			result = NULL;
439 		else if (unlikely(compute_score2(result, net, saddr, sport,
440 				  daddr, hnum, dif) < badness)) {
441 			sock_put(result);
442 			goto begin;
443 		}
444 	}
445 	return result;
446 }
447 
448 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
449  * harder than this. -DaveM
450  */
451 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
452 		__be16 sport, __be32 daddr, __be16 dport,
453 		int dif, struct udp_table *udptable)
454 {
455 	struct sock *sk, *result;
456 	struct hlist_nulls_node *node;
457 	unsigned short hnum = ntohs(dport);
458 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
459 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
460 	int score, badness;
461 
462 	rcu_read_lock();
463 	if (hslot->count > 10) {
464 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
465 		slot2 = hash2 & udptable->mask;
466 		hslot2 = &udptable->hash2[slot2];
467 		if (hslot->count < hslot2->count)
468 			goto begin;
469 
470 		result = udp4_lib_lookup2(net, saddr, sport,
471 					  daddr, hnum, dif,
472 					  hslot2, slot2);
473 		if (!result) {
474 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
475 			slot2 = hash2 & udptable->mask;
476 			hslot2 = &udptable->hash2[slot2];
477 			if (hslot->count < hslot2->count)
478 				goto begin;
479 
480 			result = udp4_lib_lookup2(net, saddr, sport,
481 						  htonl(INADDR_ANY), hnum, dif,
482 						  hslot2, slot2);
483 		}
484 		rcu_read_unlock();
485 		return result;
486 	}
487 begin:
488 	result = NULL;
489 	badness = -1;
490 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
491 		score = compute_score(sk, net, saddr, hnum, sport,
492 				      daddr, dport, dif);
493 		if (score > badness) {
494 			result = sk;
495 			badness = score;
496 		}
497 	}
498 	/*
499 	 * if the nulls value we got at the end of this lookup is
500 	 * not the expected one, we must restart lookup.
501 	 * We probably met an item that was moved to another chain.
502 	 */
503 	if (get_nulls_value(node) != slot)
504 		goto begin;
505 
506 	if (result) {
507 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
508 			result = NULL;
509 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
510 				  daddr, dport, dif) < badness)) {
511 			sock_put(result);
512 			goto begin;
513 		}
514 	}
515 	rcu_read_unlock();
516 	return result;
517 }
518 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
519 
520 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
521 						 __be16 sport, __be16 dport,
522 						 struct udp_table *udptable)
523 {
524 	struct sock *sk;
525 	const struct iphdr *iph = ip_hdr(skb);
526 
527 	if (unlikely(sk = skb_steal_sock(skb)))
528 		return sk;
529 	else
530 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
531 					 iph->daddr, dport, inet_iif(skb),
532 					 udptable);
533 }
534 
535 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
536 			     __be32 daddr, __be16 dport, int dif)
537 {
538 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
539 }
540 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
541 
542 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
543 					     __be16 loc_port, __be32 loc_addr,
544 					     __be16 rmt_port, __be32 rmt_addr,
545 					     int dif)
546 {
547 	struct hlist_nulls_node *node;
548 	struct sock *s = sk;
549 	unsigned short hnum = ntohs(loc_port);
550 
551 	sk_nulls_for_each_from(s, node) {
552 		struct inet_sock *inet = inet_sk(s);
553 
554 		if (!net_eq(sock_net(s), net) ||
555 		    udp_sk(s)->udp_port_hash != hnum ||
556 		    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
557 		    (inet->inet_dport != rmt_port && inet->inet_dport) ||
558 		    (inet->inet_rcv_saddr &&
559 		     inet->inet_rcv_saddr != loc_addr) ||
560 		    ipv6_only_sock(s) ||
561 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
562 			continue;
563 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
564 			continue;
565 		goto found;
566 	}
567 	s = NULL;
568 found:
569 	return s;
570 }
571 
572 /*
573  * This routine is called by the ICMP module when it gets some
574  * sort of error condition.  If err < 0 then the socket should
575  * be closed and the error returned to the user.  If err > 0
576  * it's just the icmp type << 8 | icmp code.
577  * Header points to the ip header of the error packet. We move
578  * on past this. Then (as it used to claim before adjustment)
579  * header points to the first 8 bytes of the udp header.  We need
580  * to find the appropriate port.
581  */
582 
583 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
584 {
585 	struct inet_sock *inet;
586 	const struct iphdr *iph = (const struct iphdr *)skb->data;
587 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
588 	const int type = icmp_hdr(skb)->type;
589 	const int code = icmp_hdr(skb)->code;
590 	struct sock *sk;
591 	int harderr;
592 	int err;
593 	struct net *net = dev_net(skb->dev);
594 
595 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
596 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
597 	if (sk == NULL) {
598 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
599 		return;	/* No socket for error */
600 	}
601 
602 	err = 0;
603 	harderr = 0;
604 	inet = inet_sk(sk);
605 
606 	switch (type) {
607 	default:
608 	case ICMP_TIME_EXCEEDED:
609 		err = EHOSTUNREACH;
610 		break;
611 	case ICMP_SOURCE_QUENCH:
612 		goto out;
613 	case ICMP_PARAMETERPROB:
614 		err = EPROTO;
615 		harderr = 1;
616 		break;
617 	case ICMP_DEST_UNREACH:
618 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
619 			ipv4_sk_update_pmtu(skb, sk, info);
620 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
621 				err = EMSGSIZE;
622 				harderr = 1;
623 				break;
624 			}
625 			goto out;
626 		}
627 		err = EHOSTUNREACH;
628 		if (code <= NR_ICMP_UNREACH) {
629 			harderr = icmp_err_convert[code].fatal;
630 			err = icmp_err_convert[code].errno;
631 		}
632 		break;
633 	case ICMP_REDIRECT:
634 		ipv4_sk_redirect(skb, sk);
635 		break;
636 	}
637 
638 	/*
639 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
640 	 *	4.1.3.3.
641 	 */
642 	if (!inet->recverr) {
643 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
644 			goto out;
645 	} else
646 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
647 
648 	sk->sk_err = err;
649 	sk->sk_error_report(sk);
650 out:
651 	sock_put(sk);
652 }
653 
654 void udp_err(struct sk_buff *skb, u32 info)
655 {
656 	__udp4_lib_err(skb, info, &udp_table);
657 }
658 
659 /*
660  * Throw away all pending data and cancel the corking. Socket is locked.
661  */
662 void udp_flush_pending_frames(struct sock *sk)
663 {
664 	struct udp_sock *up = udp_sk(sk);
665 
666 	if (up->pending) {
667 		up->len = 0;
668 		up->pending = 0;
669 		ip_flush_pending_frames(sk);
670 	}
671 }
672 EXPORT_SYMBOL(udp_flush_pending_frames);
673 
674 /**
675  * 	udp4_hwcsum  -  handle outgoing HW checksumming
676  * 	@skb: 	sk_buff containing the filled-in UDP header
677  * 	        (checksum field must be zeroed out)
678  *	@src:	source IP address
679  *	@dst:	destination IP address
680  */
681 static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
682 {
683 	struct udphdr *uh = udp_hdr(skb);
684 	struct sk_buff *frags = skb_shinfo(skb)->frag_list;
685 	int offset = skb_transport_offset(skb);
686 	int len = skb->len - offset;
687 	int hlen = len;
688 	__wsum csum = 0;
689 
690 	if (!frags) {
691 		/*
692 		 * Only one fragment on the socket.
693 		 */
694 		skb->csum_start = skb_transport_header(skb) - skb->head;
695 		skb->csum_offset = offsetof(struct udphdr, check);
696 		uh->check = ~csum_tcpudp_magic(src, dst, len,
697 					       IPPROTO_UDP, 0);
698 	} else {
699 		/*
700 		 * HW-checksum won't work as there are two or more
701 		 * fragments on the socket so that all csums of sk_buffs
702 		 * should be together
703 		 */
704 		do {
705 			csum = csum_add(csum, frags->csum);
706 			hlen -= frags->len;
707 		} while ((frags = frags->next));
708 
709 		csum = skb_checksum(skb, offset, hlen, csum);
710 		skb->ip_summed = CHECKSUM_NONE;
711 
712 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
713 		if (uh->check == 0)
714 			uh->check = CSUM_MANGLED_0;
715 	}
716 }
717 
718 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
719 {
720 	struct sock *sk = skb->sk;
721 	struct inet_sock *inet = inet_sk(sk);
722 	struct udphdr *uh;
723 	int err = 0;
724 	int is_udplite = IS_UDPLITE(sk);
725 	int offset = skb_transport_offset(skb);
726 	int len = skb->len - offset;
727 	__wsum csum = 0;
728 
729 	/*
730 	 * Create a UDP header
731 	 */
732 	uh = udp_hdr(skb);
733 	uh->source = inet->inet_sport;
734 	uh->dest = fl4->fl4_dport;
735 	uh->len = htons(len);
736 	uh->check = 0;
737 
738 	if (is_udplite)  				 /*     UDP-Lite      */
739 		csum = udplite_csum(skb);
740 
741 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
742 
743 		skb->ip_summed = CHECKSUM_NONE;
744 		goto send;
745 
746 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
747 
748 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
749 		goto send;
750 
751 	} else
752 		csum = udp_csum(skb);
753 
754 	/* add protocol-dependent pseudo-header */
755 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
756 				      sk->sk_protocol, csum);
757 	if (uh->check == 0)
758 		uh->check = CSUM_MANGLED_0;
759 
760 send:
761 	err = ip_send_skb(sock_net(sk), skb);
762 	if (err) {
763 		if (err == -ENOBUFS && !inet->recverr) {
764 			UDP_INC_STATS_USER(sock_net(sk),
765 					   UDP_MIB_SNDBUFERRORS, is_udplite);
766 			err = 0;
767 		}
768 	} else
769 		UDP_INC_STATS_USER(sock_net(sk),
770 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
771 	return err;
772 }
773 
774 /*
775  * Push out all pending data as one UDP datagram. Socket is locked.
776  */
777 static int udp_push_pending_frames(struct sock *sk)
778 {
779 	struct udp_sock  *up = udp_sk(sk);
780 	struct inet_sock *inet = inet_sk(sk);
781 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
782 	struct sk_buff *skb;
783 	int err = 0;
784 
785 	skb = ip_finish_skb(sk, fl4);
786 	if (!skb)
787 		goto out;
788 
789 	err = udp_send_skb(skb, fl4);
790 
791 out:
792 	up->len = 0;
793 	up->pending = 0;
794 	return err;
795 }
796 
797 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
798 		size_t len)
799 {
800 	struct inet_sock *inet = inet_sk(sk);
801 	struct udp_sock *up = udp_sk(sk);
802 	struct flowi4 fl4_stack;
803 	struct flowi4 *fl4;
804 	int ulen = len;
805 	struct ipcm_cookie ipc;
806 	struct rtable *rt = NULL;
807 	int free = 0;
808 	int connected = 0;
809 	__be32 daddr, faddr, saddr;
810 	__be16 dport;
811 	u8  tos;
812 	int err, is_udplite = IS_UDPLITE(sk);
813 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
814 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
815 	struct sk_buff *skb;
816 	struct ip_options_data opt_copy;
817 
818 	if (len > 0xFFFF)
819 		return -EMSGSIZE;
820 
821 	/*
822 	 *	Check the flags.
823 	 */
824 
825 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
826 		return -EOPNOTSUPP;
827 
828 	ipc.opt = NULL;
829 	ipc.tx_flags = 0;
830 
831 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
832 
833 	fl4 = &inet->cork.fl.u.ip4;
834 	if (up->pending) {
835 		/*
836 		 * There are pending frames.
837 		 * The socket lock must be held while it's corked.
838 		 */
839 		lock_sock(sk);
840 		if (likely(up->pending)) {
841 			if (unlikely(up->pending != AF_INET)) {
842 				release_sock(sk);
843 				return -EINVAL;
844 			}
845 			goto do_append_data;
846 		}
847 		release_sock(sk);
848 	}
849 	ulen += sizeof(struct udphdr);
850 
851 	/*
852 	 *	Get and verify the address.
853 	 */
854 	if (msg->msg_name) {
855 		struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
856 		if (msg->msg_namelen < sizeof(*usin))
857 			return -EINVAL;
858 		if (usin->sin_family != AF_INET) {
859 			if (usin->sin_family != AF_UNSPEC)
860 				return -EAFNOSUPPORT;
861 		}
862 
863 		daddr = usin->sin_addr.s_addr;
864 		dport = usin->sin_port;
865 		if (dport == 0)
866 			return -EINVAL;
867 	} else {
868 		if (sk->sk_state != TCP_ESTABLISHED)
869 			return -EDESTADDRREQ;
870 		daddr = inet->inet_daddr;
871 		dport = inet->inet_dport;
872 		/* Open fast path for connected socket.
873 		   Route will not be used, if at least one option is set.
874 		 */
875 		connected = 1;
876 	}
877 	ipc.addr = inet->inet_saddr;
878 
879 	ipc.oif = sk->sk_bound_dev_if;
880 	err = sock_tx_timestamp(sk, &ipc.tx_flags);
881 	if (err)
882 		return err;
883 	if (msg->msg_controllen) {
884 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
885 		if (err)
886 			return err;
887 		if (ipc.opt)
888 			free = 1;
889 		connected = 0;
890 	}
891 	if (!ipc.opt) {
892 		struct ip_options_rcu *inet_opt;
893 
894 		rcu_read_lock();
895 		inet_opt = rcu_dereference(inet->inet_opt);
896 		if (inet_opt) {
897 			memcpy(&opt_copy, inet_opt,
898 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
899 			ipc.opt = &opt_copy.opt;
900 		}
901 		rcu_read_unlock();
902 	}
903 
904 	saddr = ipc.addr;
905 	ipc.addr = faddr = daddr;
906 
907 	if (ipc.opt && ipc.opt->opt.srr) {
908 		if (!daddr)
909 			return -EINVAL;
910 		faddr = ipc.opt->opt.faddr;
911 		connected = 0;
912 	}
913 	tos = RT_TOS(inet->tos);
914 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
915 	    (msg->msg_flags & MSG_DONTROUTE) ||
916 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
917 		tos |= RTO_ONLINK;
918 		connected = 0;
919 	}
920 
921 	if (ipv4_is_multicast(daddr)) {
922 		if (!ipc.oif)
923 			ipc.oif = inet->mc_index;
924 		if (!saddr)
925 			saddr = inet->mc_addr;
926 		connected = 0;
927 	} else if (!ipc.oif)
928 		ipc.oif = inet->uc_index;
929 
930 	if (connected)
931 		rt = (struct rtable *)sk_dst_check(sk, 0);
932 
933 	if (rt == NULL) {
934 		struct net *net = sock_net(sk);
935 
936 		fl4 = &fl4_stack;
937 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
938 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
939 				   inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
940 				   faddr, saddr, dport, inet->inet_sport);
941 
942 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
943 		rt = ip_route_output_flow(net, fl4, sk);
944 		if (IS_ERR(rt)) {
945 			err = PTR_ERR(rt);
946 			rt = NULL;
947 			if (err == -ENETUNREACH)
948 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
949 			goto out;
950 		}
951 
952 		err = -EACCES;
953 		if ((rt->rt_flags & RTCF_BROADCAST) &&
954 		    !sock_flag(sk, SOCK_BROADCAST))
955 			goto out;
956 		if (connected)
957 			sk_dst_set(sk, dst_clone(&rt->dst));
958 	}
959 
960 	if (msg->msg_flags&MSG_CONFIRM)
961 		goto do_confirm;
962 back_from_confirm:
963 
964 	saddr = fl4->saddr;
965 	if (!ipc.addr)
966 		daddr = ipc.addr = fl4->daddr;
967 
968 	/* Lockless fast path for the non-corking case. */
969 	if (!corkreq) {
970 		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
971 				  sizeof(struct udphdr), &ipc, &rt,
972 				  msg->msg_flags);
973 		err = PTR_ERR(skb);
974 		if (skb && !IS_ERR(skb))
975 			err = udp_send_skb(skb, fl4);
976 		goto out;
977 	}
978 
979 	lock_sock(sk);
980 	if (unlikely(up->pending)) {
981 		/* The socket is already corked while preparing it. */
982 		/* ... which is an evident application bug. --ANK */
983 		release_sock(sk);
984 
985 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
986 		err = -EINVAL;
987 		goto out;
988 	}
989 	/*
990 	 *	Now cork the socket to pend data.
991 	 */
992 	fl4 = &inet->cork.fl.u.ip4;
993 	fl4->daddr = daddr;
994 	fl4->saddr = saddr;
995 	fl4->fl4_dport = dport;
996 	fl4->fl4_sport = inet->inet_sport;
997 	up->pending = AF_INET;
998 
999 do_append_data:
1000 	up->len += ulen;
1001 	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1002 			     sizeof(struct udphdr), &ipc, &rt,
1003 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1004 	if (err)
1005 		udp_flush_pending_frames(sk);
1006 	else if (!corkreq)
1007 		err = udp_push_pending_frames(sk);
1008 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1009 		up->pending = 0;
1010 	release_sock(sk);
1011 
1012 out:
1013 	ip_rt_put(rt);
1014 	if (free)
1015 		kfree(ipc.opt);
1016 	if (!err)
1017 		return len;
1018 	/*
1019 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1020 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1021 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1022 	 * things).  We could add another new stat but at least for now that
1023 	 * seems like overkill.
1024 	 */
1025 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1026 		UDP_INC_STATS_USER(sock_net(sk),
1027 				UDP_MIB_SNDBUFERRORS, is_udplite);
1028 	}
1029 	return err;
1030 
1031 do_confirm:
1032 	dst_confirm(&rt->dst);
1033 	if (!(msg->msg_flags&MSG_PROBE) || len)
1034 		goto back_from_confirm;
1035 	err = 0;
1036 	goto out;
1037 }
1038 EXPORT_SYMBOL(udp_sendmsg);
1039 
1040 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1041 		 size_t size, int flags)
1042 {
1043 	struct inet_sock *inet = inet_sk(sk);
1044 	struct udp_sock *up = udp_sk(sk);
1045 	int ret;
1046 
1047 	if (!up->pending) {
1048 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1049 
1050 		/* Call udp_sendmsg to specify destination address which
1051 		 * sendpage interface can't pass.
1052 		 * This will succeed only when the socket is connected.
1053 		 */
1054 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1055 		if (ret < 0)
1056 			return ret;
1057 	}
1058 
1059 	lock_sock(sk);
1060 
1061 	if (unlikely(!up->pending)) {
1062 		release_sock(sk);
1063 
1064 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1065 		return -EINVAL;
1066 	}
1067 
1068 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1069 			     page, offset, size, flags);
1070 	if (ret == -EOPNOTSUPP) {
1071 		release_sock(sk);
1072 		return sock_no_sendpage(sk->sk_socket, page, offset,
1073 					size, flags);
1074 	}
1075 	if (ret < 0) {
1076 		udp_flush_pending_frames(sk);
1077 		goto out;
1078 	}
1079 
1080 	up->len += size;
1081 	if (!(up->corkflag || (flags&MSG_MORE)))
1082 		ret = udp_push_pending_frames(sk);
1083 	if (!ret)
1084 		ret = size;
1085 out:
1086 	release_sock(sk);
1087 	return ret;
1088 }
1089 
1090 
1091 /**
1092  *	first_packet_length	- return length of first packet in receive queue
1093  *	@sk: socket
1094  *
1095  *	Drops all bad checksum frames, until a valid one is found.
1096  *	Returns the length of found skb, or 0 if none is found.
1097  */
1098 static unsigned int first_packet_length(struct sock *sk)
1099 {
1100 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1101 	struct sk_buff *skb;
1102 	unsigned int res;
1103 
1104 	__skb_queue_head_init(&list_kill);
1105 
1106 	spin_lock_bh(&rcvq->lock);
1107 	while ((skb = skb_peek(rcvq)) != NULL &&
1108 		udp_lib_checksum_complete(skb)) {
1109 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1110 				 IS_UDPLITE(sk));
1111 		atomic_inc(&sk->sk_drops);
1112 		__skb_unlink(skb, rcvq);
1113 		__skb_queue_tail(&list_kill, skb);
1114 	}
1115 	res = skb ? skb->len : 0;
1116 	spin_unlock_bh(&rcvq->lock);
1117 
1118 	if (!skb_queue_empty(&list_kill)) {
1119 		bool slow = lock_sock_fast(sk);
1120 
1121 		__skb_queue_purge(&list_kill);
1122 		sk_mem_reclaim_partial(sk);
1123 		unlock_sock_fast(sk, slow);
1124 	}
1125 	return res;
1126 }
1127 
1128 /*
1129  *	IOCTL requests applicable to the UDP protocol
1130  */
1131 
1132 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1133 {
1134 	switch (cmd) {
1135 	case SIOCOUTQ:
1136 	{
1137 		int amount = sk_wmem_alloc_get(sk);
1138 
1139 		return put_user(amount, (int __user *)arg);
1140 	}
1141 
1142 	case SIOCINQ:
1143 	{
1144 		unsigned int amount = first_packet_length(sk);
1145 
1146 		if (amount)
1147 			/*
1148 			 * We will only return the amount
1149 			 * of this packet since that is all
1150 			 * that will be read.
1151 			 */
1152 			amount -= sizeof(struct udphdr);
1153 
1154 		return put_user(amount, (int __user *)arg);
1155 	}
1156 
1157 	default:
1158 		return -ENOIOCTLCMD;
1159 	}
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(udp_ioctl);
1164 
1165 /*
1166  * 	This should be easy, if there is something there we
1167  * 	return it, otherwise we block.
1168  */
1169 
1170 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1171 		size_t len, int noblock, int flags, int *addr_len)
1172 {
1173 	struct inet_sock *inet = inet_sk(sk);
1174 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1175 	struct sk_buff *skb;
1176 	unsigned int ulen, copied;
1177 	int peeked, off = 0;
1178 	int err;
1179 	int is_udplite = IS_UDPLITE(sk);
1180 	bool slow;
1181 
1182 	/*
1183 	 *	Check any passed addresses
1184 	 */
1185 	if (addr_len)
1186 		*addr_len = sizeof(*sin);
1187 
1188 	if (flags & MSG_ERRQUEUE)
1189 		return ip_recv_error(sk, msg, len);
1190 
1191 try_again:
1192 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1193 				  &peeked, &off, &err);
1194 	if (!skb)
1195 		goto out;
1196 
1197 	ulen = skb->len - sizeof(struct udphdr);
1198 	copied = len;
1199 	if (copied > ulen)
1200 		copied = ulen;
1201 	else if (copied < ulen)
1202 		msg->msg_flags |= MSG_TRUNC;
1203 
1204 	/*
1205 	 * If checksum is needed at all, try to do it while copying the
1206 	 * data.  If the data is truncated, or if we only want a partial
1207 	 * coverage checksum (UDP-Lite), do it before the copy.
1208 	 */
1209 
1210 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1211 		if (udp_lib_checksum_complete(skb))
1212 			goto csum_copy_err;
1213 	}
1214 
1215 	if (skb_csum_unnecessary(skb))
1216 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1217 					      msg->msg_iov, copied);
1218 	else {
1219 		err = skb_copy_and_csum_datagram_iovec(skb,
1220 						       sizeof(struct udphdr),
1221 						       msg->msg_iov);
1222 
1223 		if (err == -EINVAL)
1224 			goto csum_copy_err;
1225 	}
1226 
1227 	if (unlikely(err)) {
1228 		trace_kfree_skb(skb, udp_recvmsg);
1229 		if (!peeked) {
1230 			atomic_inc(&sk->sk_drops);
1231 			UDP_INC_STATS_USER(sock_net(sk),
1232 					   UDP_MIB_INERRORS, is_udplite);
1233 		}
1234 		goto out_free;
1235 	}
1236 
1237 	if (!peeked)
1238 		UDP_INC_STATS_USER(sock_net(sk),
1239 				UDP_MIB_INDATAGRAMS, is_udplite);
1240 
1241 	sock_recv_ts_and_drops(msg, sk, skb);
1242 
1243 	/* Copy the address. */
1244 	if (sin) {
1245 		sin->sin_family = AF_INET;
1246 		sin->sin_port = udp_hdr(skb)->source;
1247 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1248 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1249 	}
1250 	if (inet->cmsg_flags)
1251 		ip_cmsg_recv(msg, skb);
1252 
1253 	err = copied;
1254 	if (flags & MSG_TRUNC)
1255 		err = ulen;
1256 
1257 out_free:
1258 	skb_free_datagram_locked(sk, skb);
1259 out:
1260 	return err;
1261 
1262 csum_copy_err:
1263 	slow = lock_sock_fast(sk);
1264 	if (!skb_kill_datagram(sk, skb, flags))
1265 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1266 	unlock_sock_fast(sk, slow);
1267 
1268 	if (noblock)
1269 		return -EAGAIN;
1270 
1271 	/* starting over for a new packet */
1272 	msg->msg_flags &= ~MSG_TRUNC;
1273 	goto try_again;
1274 }
1275 
1276 
1277 int udp_disconnect(struct sock *sk, int flags)
1278 {
1279 	struct inet_sock *inet = inet_sk(sk);
1280 	/*
1281 	 *	1003.1g - break association.
1282 	 */
1283 
1284 	sk->sk_state = TCP_CLOSE;
1285 	inet->inet_daddr = 0;
1286 	inet->inet_dport = 0;
1287 	sock_rps_reset_rxhash(sk);
1288 	sk->sk_bound_dev_if = 0;
1289 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1290 		inet_reset_saddr(sk);
1291 
1292 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1293 		sk->sk_prot->unhash(sk);
1294 		inet->inet_sport = 0;
1295 	}
1296 	sk_dst_reset(sk);
1297 	return 0;
1298 }
1299 EXPORT_SYMBOL(udp_disconnect);
1300 
1301 void udp_lib_unhash(struct sock *sk)
1302 {
1303 	if (sk_hashed(sk)) {
1304 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1305 		struct udp_hslot *hslot, *hslot2;
1306 
1307 		hslot  = udp_hashslot(udptable, sock_net(sk),
1308 				      udp_sk(sk)->udp_port_hash);
1309 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1310 
1311 		spin_lock_bh(&hslot->lock);
1312 		if (sk_nulls_del_node_init_rcu(sk)) {
1313 			hslot->count--;
1314 			inet_sk(sk)->inet_num = 0;
1315 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1316 
1317 			spin_lock(&hslot2->lock);
1318 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1319 			hslot2->count--;
1320 			spin_unlock(&hslot2->lock);
1321 		}
1322 		spin_unlock_bh(&hslot->lock);
1323 	}
1324 }
1325 EXPORT_SYMBOL(udp_lib_unhash);
1326 
1327 /*
1328  * inet_rcv_saddr was changed, we must rehash secondary hash
1329  */
1330 void udp_lib_rehash(struct sock *sk, u16 newhash)
1331 {
1332 	if (sk_hashed(sk)) {
1333 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1334 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1335 
1336 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1337 		nhslot2 = udp_hashslot2(udptable, newhash);
1338 		udp_sk(sk)->udp_portaddr_hash = newhash;
1339 		if (hslot2 != nhslot2) {
1340 			hslot = udp_hashslot(udptable, sock_net(sk),
1341 					     udp_sk(sk)->udp_port_hash);
1342 			/* we must lock primary chain too */
1343 			spin_lock_bh(&hslot->lock);
1344 
1345 			spin_lock(&hslot2->lock);
1346 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1347 			hslot2->count--;
1348 			spin_unlock(&hslot2->lock);
1349 
1350 			spin_lock(&nhslot2->lock);
1351 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1352 						 &nhslot2->head);
1353 			nhslot2->count++;
1354 			spin_unlock(&nhslot2->lock);
1355 
1356 			spin_unlock_bh(&hslot->lock);
1357 		}
1358 	}
1359 }
1360 EXPORT_SYMBOL(udp_lib_rehash);
1361 
1362 static void udp_v4_rehash(struct sock *sk)
1363 {
1364 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1365 					  inet_sk(sk)->inet_rcv_saddr,
1366 					  inet_sk(sk)->inet_num);
1367 	udp_lib_rehash(sk, new_hash);
1368 }
1369 
1370 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1371 {
1372 	int rc;
1373 
1374 	if (inet_sk(sk)->inet_daddr)
1375 		sock_rps_save_rxhash(sk, skb);
1376 
1377 	rc = sock_queue_rcv_skb(sk, skb);
1378 	if (rc < 0) {
1379 		int is_udplite = IS_UDPLITE(sk);
1380 
1381 		/* Note that an ENOMEM error is charged twice */
1382 		if (rc == -ENOMEM)
1383 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1384 					 is_udplite);
1385 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1386 		kfree_skb(skb);
1387 		trace_udp_fail_queue_rcv_skb(rc, sk);
1388 		return -1;
1389 	}
1390 
1391 	return 0;
1392 
1393 }
1394 
1395 static struct static_key udp_encap_needed __read_mostly;
1396 void udp_encap_enable(void)
1397 {
1398 	if (!static_key_enabled(&udp_encap_needed))
1399 		static_key_slow_inc(&udp_encap_needed);
1400 }
1401 EXPORT_SYMBOL(udp_encap_enable);
1402 
1403 /* returns:
1404  *  -1: error
1405  *   0: success
1406  *  >0: "udp encap" protocol resubmission
1407  *
1408  * Note that in the success and error cases, the skb is assumed to
1409  * have either been requeued or freed.
1410  */
1411 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1412 {
1413 	struct udp_sock *up = udp_sk(sk);
1414 	int rc;
1415 	int is_udplite = IS_UDPLITE(sk);
1416 
1417 	/*
1418 	 *	Charge it to the socket, dropping if the queue is full.
1419 	 */
1420 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1421 		goto drop;
1422 	nf_reset(skb);
1423 
1424 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1425 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1426 
1427 		/*
1428 		 * This is an encapsulation socket so pass the skb to
1429 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1430 		 * fall through and pass this up the UDP socket.
1431 		 * up->encap_rcv() returns the following value:
1432 		 * =0 if skb was successfully passed to the encap
1433 		 *    handler or was discarded by it.
1434 		 * >0 if skb should be passed on to UDP.
1435 		 * <0 if skb should be resubmitted as proto -N
1436 		 */
1437 
1438 		/* if we're overly short, let UDP handle it */
1439 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1440 		if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1441 			int ret;
1442 
1443 			ret = encap_rcv(sk, skb);
1444 			if (ret <= 0) {
1445 				UDP_INC_STATS_BH(sock_net(sk),
1446 						 UDP_MIB_INDATAGRAMS,
1447 						 is_udplite);
1448 				return -ret;
1449 			}
1450 		}
1451 
1452 		/* FALLTHROUGH -- it's a UDP Packet */
1453 	}
1454 
1455 	/*
1456 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1457 	 */
1458 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1459 
1460 		/*
1461 		 * MIB statistics other than incrementing the error count are
1462 		 * disabled for the following two types of errors: these depend
1463 		 * on the application settings, not on the functioning of the
1464 		 * protocol stack as such.
1465 		 *
1466 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1467 		 * way ... to ... at least let the receiving application block
1468 		 * delivery of packets with coverage values less than a value
1469 		 * provided by the application."
1470 		 */
1471 		if (up->pcrlen == 0) {          /* full coverage was set  */
1472 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1473 				       UDP_SKB_CB(skb)->cscov, skb->len);
1474 			goto drop;
1475 		}
1476 		/* The next case involves violating the min. coverage requested
1477 		 * by the receiver. This is subtle: if receiver wants x and x is
1478 		 * greater than the buffersize/MTU then receiver will complain
1479 		 * that it wants x while sender emits packets of smaller size y.
1480 		 * Therefore the above ...()->partial_cov statement is essential.
1481 		 */
1482 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1483 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1484 				       UDP_SKB_CB(skb)->cscov, up->pcrlen);
1485 			goto drop;
1486 		}
1487 	}
1488 
1489 	if (rcu_access_pointer(sk->sk_filter) &&
1490 	    udp_lib_checksum_complete(skb))
1491 		goto drop;
1492 
1493 
1494 	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1495 		goto drop;
1496 
1497 	rc = 0;
1498 
1499 	ipv4_pktinfo_prepare(skb);
1500 	bh_lock_sock(sk);
1501 	if (!sock_owned_by_user(sk))
1502 		rc = __udp_queue_rcv_skb(sk, skb);
1503 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1504 		bh_unlock_sock(sk);
1505 		goto drop;
1506 	}
1507 	bh_unlock_sock(sk);
1508 
1509 	return rc;
1510 
1511 drop:
1512 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1513 	atomic_inc(&sk->sk_drops);
1514 	kfree_skb(skb);
1515 	return -1;
1516 }
1517 
1518 
1519 static void flush_stack(struct sock **stack, unsigned int count,
1520 			struct sk_buff *skb, unsigned int final)
1521 {
1522 	unsigned int i;
1523 	struct sk_buff *skb1 = NULL;
1524 	struct sock *sk;
1525 
1526 	for (i = 0; i < count; i++) {
1527 		sk = stack[i];
1528 		if (likely(skb1 == NULL))
1529 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1530 
1531 		if (!skb1) {
1532 			atomic_inc(&sk->sk_drops);
1533 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1534 					 IS_UDPLITE(sk));
1535 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1536 					 IS_UDPLITE(sk));
1537 		}
1538 
1539 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1540 			skb1 = NULL;
1541 	}
1542 	if (unlikely(skb1))
1543 		kfree_skb(skb1);
1544 }
1545 
1546 /*
1547  *	Multicasts and broadcasts go to each listener.
1548  *
1549  *	Note: called only from the BH handler context.
1550  */
1551 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1552 				    struct udphdr  *uh,
1553 				    __be32 saddr, __be32 daddr,
1554 				    struct udp_table *udptable)
1555 {
1556 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1557 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1558 	int dif;
1559 	unsigned int i, count = 0;
1560 
1561 	spin_lock(&hslot->lock);
1562 	sk = sk_nulls_head(&hslot->head);
1563 	dif = skb->dev->ifindex;
1564 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1565 	while (sk) {
1566 		stack[count++] = sk;
1567 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1568 				       daddr, uh->source, saddr, dif);
1569 		if (unlikely(count == ARRAY_SIZE(stack))) {
1570 			if (!sk)
1571 				break;
1572 			flush_stack(stack, count, skb, ~0);
1573 			count = 0;
1574 		}
1575 	}
1576 	/*
1577 	 * before releasing chain lock, we must take a reference on sockets
1578 	 */
1579 	for (i = 0; i < count; i++)
1580 		sock_hold(stack[i]);
1581 
1582 	spin_unlock(&hslot->lock);
1583 
1584 	/*
1585 	 * do the slow work with no lock held
1586 	 */
1587 	if (count) {
1588 		flush_stack(stack, count, skb, count - 1);
1589 
1590 		for (i = 0; i < count; i++)
1591 			sock_put(stack[i]);
1592 	} else {
1593 		kfree_skb(skb);
1594 	}
1595 	return 0;
1596 }
1597 
1598 /* Initialize UDP checksum. If exited with zero value (success),
1599  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1600  * Otherwise, csum completion requires chacksumming packet body,
1601  * including udp header and folding it to skb->csum.
1602  */
1603 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1604 				 int proto)
1605 {
1606 	const struct iphdr *iph;
1607 	int err;
1608 
1609 	UDP_SKB_CB(skb)->partial_cov = 0;
1610 	UDP_SKB_CB(skb)->cscov = skb->len;
1611 
1612 	if (proto == IPPROTO_UDPLITE) {
1613 		err = udplite_checksum_init(skb, uh);
1614 		if (err)
1615 			return err;
1616 	}
1617 
1618 	iph = ip_hdr(skb);
1619 	if (uh->check == 0) {
1620 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1621 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1622 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1623 				      proto, skb->csum))
1624 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1625 	}
1626 	if (!skb_csum_unnecessary(skb))
1627 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1628 					       skb->len, proto, 0);
1629 	/* Probably, we should checksum udp header (it should be in cache
1630 	 * in any case) and data in tiny packets (< rx copybreak).
1631 	 */
1632 
1633 	return 0;
1634 }
1635 
1636 /*
1637  *	All we need to do is get the socket, and then do a checksum.
1638  */
1639 
1640 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1641 		   int proto)
1642 {
1643 	struct sock *sk;
1644 	struct udphdr *uh;
1645 	unsigned short ulen;
1646 	struct rtable *rt = skb_rtable(skb);
1647 	__be32 saddr, daddr;
1648 	struct net *net = dev_net(skb->dev);
1649 
1650 	/*
1651 	 *  Validate the packet.
1652 	 */
1653 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1654 		goto drop;		/* No space for header. */
1655 
1656 	uh   = udp_hdr(skb);
1657 	ulen = ntohs(uh->len);
1658 	saddr = ip_hdr(skb)->saddr;
1659 	daddr = ip_hdr(skb)->daddr;
1660 
1661 	if (ulen > skb->len)
1662 		goto short_packet;
1663 
1664 	if (proto == IPPROTO_UDP) {
1665 		/* UDP validates ulen. */
1666 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1667 			goto short_packet;
1668 		uh = udp_hdr(skb);
1669 	}
1670 
1671 	if (udp4_csum_init(skb, uh, proto))
1672 		goto csum_error;
1673 
1674 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1675 		return __udp4_lib_mcast_deliver(net, skb, uh,
1676 				saddr, daddr, udptable);
1677 
1678 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1679 
1680 	if (sk != NULL) {
1681 		int ret = udp_queue_rcv_skb(sk, skb);
1682 		sock_put(sk);
1683 
1684 		/* a return value > 0 means to resubmit the input, but
1685 		 * it wants the return to be -protocol, or 0
1686 		 */
1687 		if (ret > 0)
1688 			return -ret;
1689 		return 0;
1690 	}
1691 
1692 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1693 		goto drop;
1694 	nf_reset(skb);
1695 
1696 	/* No socket. Drop packet silently, if checksum is wrong */
1697 	if (udp_lib_checksum_complete(skb))
1698 		goto csum_error;
1699 
1700 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1701 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1702 
1703 	/*
1704 	 * Hmm.  We got an UDP packet to a port to which we
1705 	 * don't wanna listen.  Ignore it.
1706 	 */
1707 	kfree_skb(skb);
1708 	return 0;
1709 
1710 short_packet:
1711 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1712 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1713 		       &saddr, ntohs(uh->source),
1714 		       ulen, skb->len,
1715 		       &daddr, ntohs(uh->dest));
1716 	goto drop;
1717 
1718 csum_error:
1719 	/*
1720 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1721 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1722 	 */
1723 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1724 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1725 		       &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1726 		       ulen);
1727 drop:
1728 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1729 	kfree_skb(skb);
1730 	return 0;
1731 }
1732 
1733 int udp_rcv(struct sk_buff *skb)
1734 {
1735 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1736 }
1737 
1738 void udp_destroy_sock(struct sock *sk)
1739 {
1740 	bool slow = lock_sock_fast(sk);
1741 	udp_flush_pending_frames(sk);
1742 	unlock_sock_fast(sk, slow);
1743 }
1744 
1745 /*
1746  *	Socket option code for UDP
1747  */
1748 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1749 		       char __user *optval, unsigned int optlen,
1750 		       int (*push_pending_frames)(struct sock *))
1751 {
1752 	struct udp_sock *up = udp_sk(sk);
1753 	int val;
1754 	int err = 0;
1755 	int is_udplite = IS_UDPLITE(sk);
1756 
1757 	if (optlen < sizeof(int))
1758 		return -EINVAL;
1759 
1760 	if (get_user(val, (int __user *)optval))
1761 		return -EFAULT;
1762 
1763 	switch (optname) {
1764 	case UDP_CORK:
1765 		if (val != 0) {
1766 			up->corkflag = 1;
1767 		} else {
1768 			up->corkflag = 0;
1769 			lock_sock(sk);
1770 			(*push_pending_frames)(sk);
1771 			release_sock(sk);
1772 		}
1773 		break;
1774 
1775 	case UDP_ENCAP:
1776 		switch (val) {
1777 		case 0:
1778 		case UDP_ENCAP_ESPINUDP:
1779 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1780 			up->encap_rcv = xfrm4_udp_encap_rcv;
1781 			/* FALLTHROUGH */
1782 		case UDP_ENCAP_L2TPINUDP:
1783 			up->encap_type = val;
1784 			udp_encap_enable();
1785 			break;
1786 		default:
1787 			err = -ENOPROTOOPT;
1788 			break;
1789 		}
1790 		break;
1791 
1792 	/*
1793 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1794 	 */
1795 	/* The sender sets actual checksum coverage length via this option.
1796 	 * The case coverage > packet length is handled by send module. */
1797 	case UDPLITE_SEND_CSCOV:
1798 		if (!is_udplite)         /* Disable the option on UDP sockets */
1799 			return -ENOPROTOOPT;
1800 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1801 			val = 8;
1802 		else if (val > USHRT_MAX)
1803 			val = USHRT_MAX;
1804 		up->pcslen = val;
1805 		up->pcflag |= UDPLITE_SEND_CC;
1806 		break;
1807 
1808 	/* The receiver specifies a minimum checksum coverage value. To make
1809 	 * sense, this should be set to at least 8 (as done below). If zero is
1810 	 * used, this again means full checksum coverage.                     */
1811 	case UDPLITE_RECV_CSCOV:
1812 		if (!is_udplite)         /* Disable the option on UDP sockets */
1813 			return -ENOPROTOOPT;
1814 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1815 			val = 8;
1816 		else if (val > USHRT_MAX)
1817 			val = USHRT_MAX;
1818 		up->pcrlen = val;
1819 		up->pcflag |= UDPLITE_RECV_CC;
1820 		break;
1821 
1822 	default:
1823 		err = -ENOPROTOOPT;
1824 		break;
1825 	}
1826 
1827 	return err;
1828 }
1829 EXPORT_SYMBOL(udp_lib_setsockopt);
1830 
1831 int udp_setsockopt(struct sock *sk, int level, int optname,
1832 		   char __user *optval, unsigned int optlen)
1833 {
1834 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1835 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1836 					  udp_push_pending_frames);
1837 	return ip_setsockopt(sk, level, optname, optval, optlen);
1838 }
1839 
1840 #ifdef CONFIG_COMPAT
1841 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1842 			  char __user *optval, unsigned int optlen)
1843 {
1844 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1845 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1846 					  udp_push_pending_frames);
1847 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1848 }
1849 #endif
1850 
1851 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1852 		       char __user *optval, int __user *optlen)
1853 {
1854 	struct udp_sock *up = udp_sk(sk);
1855 	int val, len;
1856 
1857 	if (get_user(len, optlen))
1858 		return -EFAULT;
1859 
1860 	len = min_t(unsigned int, len, sizeof(int));
1861 
1862 	if (len < 0)
1863 		return -EINVAL;
1864 
1865 	switch (optname) {
1866 	case UDP_CORK:
1867 		val = up->corkflag;
1868 		break;
1869 
1870 	case UDP_ENCAP:
1871 		val = up->encap_type;
1872 		break;
1873 
1874 	/* The following two cannot be changed on UDP sockets, the return is
1875 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1876 	case UDPLITE_SEND_CSCOV:
1877 		val = up->pcslen;
1878 		break;
1879 
1880 	case UDPLITE_RECV_CSCOV:
1881 		val = up->pcrlen;
1882 		break;
1883 
1884 	default:
1885 		return -ENOPROTOOPT;
1886 	}
1887 
1888 	if (put_user(len, optlen))
1889 		return -EFAULT;
1890 	if (copy_to_user(optval, &val, len))
1891 		return -EFAULT;
1892 	return 0;
1893 }
1894 EXPORT_SYMBOL(udp_lib_getsockopt);
1895 
1896 int udp_getsockopt(struct sock *sk, int level, int optname,
1897 		   char __user *optval, int __user *optlen)
1898 {
1899 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1900 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1901 	return ip_getsockopt(sk, level, optname, optval, optlen);
1902 }
1903 
1904 #ifdef CONFIG_COMPAT
1905 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1906 				 char __user *optval, int __user *optlen)
1907 {
1908 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1909 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1910 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1911 }
1912 #endif
1913 /**
1914  * 	udp_poll - wait for a UDP event.
1915  *	@file - file struct
1916  *	@sock - socket
1917  *	@wait - poll table
1918  *
1919  *	This is same as datagram poll, except for the special case of
1920  *	blocking sockets. If application is using a blocking fd
1921  *	and a packet with checksum error is in the queue;
1922  *	then it could get return from select indicating data available
1923  *	but then block when reading it. Add special case code
1924  *	to work around these arguably broken applications.
1925  */
1926 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1927 {
1928 	unsigned int mask = datagram_poll(file, sock, wait);
1929 	struct sock *sk = sock->sk;
1930 
1931 	/* Check for false positives due to checksum errors */
1932 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1933 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1934 		mask &= ~(POLLIN | POLLRDNORM);
1935 
1936 	return mask;
1937 
1938 }
1939 EXPORT_SYMBOL(udp_poll);
1940 
1941 struct proto udp_prot = {
1942 	.name		   = "UDP",
1943 	.owner		   = THIS_MODULE,
1944 	.close		   = udp_lib_close,
1945 	.connect	   = ip4_datagram_connect,
1946 	.disconnect	   = udp_disconnect,
1947 	.ioctl		   = udp_ioctl,
1948 	.destroy	   = udp_destroy_sock,
1949 	.setsockopt	   = udp_setsockopt,
1950 	.getsockopt	   = udp_getsockopt,
1951 	.sendmsg	   = udp_sendmsg,
1952 	.recvmsg	   = udp_recvmsg,
1953 	.sendpage	   = udp_sendpage,
1954 	.backlog_rcv	   = __udp_queue_rcv_skb,
1955 	.hash		   = udp_lib_hash,
1956 	.unhash		   = udp_lib_unhash,
1957 	.rehash		   = udp_v4_rehash,
1958 	.get_port	   = udp_v4_get_port,
1959 	.memory_allocated  = &udp_memory_allocated,
1960 	.sysctl_mem	   = sysctl_udp_mem,
1961 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1962 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1963 	.obj_size	   = sizeof(struct udp_sock),
1964 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
1965 	.h.udp_table	   = &udp_table,
1966 #ifdef CONFIG_COMPAT
1967 	.compat_setsockopt = compat_udp_setsockopt,
1968 	.compat_getsockopt = compat_udp_getsockopt,
1969 #endif
1970 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
1971 };
1972 EXPORT_SYMBOL(udp_prot);
1973 
1974 /* ------------------------------------------------------------------------ */
1975 #ifdef CONFIG_PROC_FS
1976 
1977 static struct sock *udp_get_first(struct seq_file *seq, int start)
1978 {
1979 	struct sock *sk;
1980 	struct udp_iter_state *state = seq->private;
1981 	struct net *net = seq_file_net(seq);
1982 
1983 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
1984 	     ++state->bucket) {
1985 		struct hlist_nulls_node *node;
1986 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1987 
1988 		if (hlist_nulls_empty(&hslot->head))
1989 			continue;
1990 
1991 		spin_lock_bh(&hslot->lock);
1992 		sk_nulls_for_each(sk, node, &hslot->head) {
1993 			if (!net_eq(sock_net(sk), net))
1994 				continue;
1995 			if (sk->sk_family == state->family)
1996 				goto found;
1997 		}
1998 		spin_unlock_bh(&hslot->lock);
1999 	}
2000 	sk = NULL;
2001 found:
2002 	return sk;
2003 }
2004 
2005 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2006 {
2007 	struct udp_iter_state *state = seq->private;
2008 	struct net *net = seq_file_net(seq);
2009 
2010 	do {
2011 		sk = sk_nulls_next(sk);
2012 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2013 
2014 	if (!sk) {
2015 		if (state->bucket <= state->udp_table->mask)
2016 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2017 		return udp_get_first(seq, state->bucket + 1);
2018 	}
2019 	return sk;
2020 }
2021 
2022 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2023 {
2024 	struct sock *sk = udp_get_first(seq, 0);
2025 
2026 	if (sk)
2027 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2028 			--pos;
2029 	return pos ? NULL : sk;
2030 }
2031 
2032 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2033 {
2034 	struct udp_iter_state *state = seq->private;
2035 	state->bucket = MAX_UDP_PORTS;
2036 
2037 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2038 }
2039 
2040 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2041 {
2042 	struct sock *sk;
2043 
2044 	if (v == SEQ_START_TOKEN)
2045 		sk = udp_get_idx(seq, 0);
2046 	else
2047 		sk = udp_get_next(seq, v);
2048 
2049 	++*pos;
2050 	return sk;
2051 }
2052 
2053 static void udp_seq_stop(struct seq_file *seq, void *v)
2054 {
2055 	struct udp_iter_state *state = seq->private;
2056 
2057 	if (state->bucket <= state->udp_table->mask)
2058 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2059 }
2060 
2061 int udp_seq_open(struct inode *inode, struct file *file)
2062 {
2063 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
2064 	struct udp_iter_state *s;
2065 	int err;
2066 
2067 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2068 			   sizeof(struct udp_iter_state));
2069 	if (err < 0)
2070 		return err;
2071 
2072 	s = ((struct seq_file *)file->private_data)->private;
2073 	s->family		= afinfo->family;
2074 	s->udp_table		= afinfo->udp_table;
2075 	return err;
2076 }
2077 EXPORT_SYMBOL(udp_seq_open);
2078 
2079 /* ------------------------------------------------------------------------ */
2080 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2081 {
2082 	struct proc_dir_entry *p;
2083 	int rc = 0;
2084 
2085 	afinfo->seq_ops.start		= udp_seq_start;
2086 	afinfo->seq_ops.next		= udp_seq_next;
2087 	afinfo->seq_ops.stop		= udp_seq_stop;
2088 
2089 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2090 			     afinfo->seq_fops, afinfo);
2091 	if (!p)
2092 		rc = -ENOMEM;
2093 	return rc;
2094 }
2095 EXPORT_SYMBOL(udp_proc_register);
2096 
2097 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2098 {
2099 	proc_net_remove(net, afinfo->name);
2100 }
2101 EXPORT_SYMBOL(udp_proc_unregister);
2102 
2103 /* ------------------------------------------------------------------------ */
2104 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2105 		int bucket, int *len)
2106 {
2107 	struct inet_sock *inet = inet_sk(sp);
2108 	__be32 dest = inet->inet_daddr;
2109 	__be32 src  = inet->inet_rcv_saddr;
2110 	__u16 destp	  = ntohs(inet->inet_dport);
2111 	__u16 srcp	  = ntohs(inet->inet_sport);
2112 
2113 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2114 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
2115 		bucket, src, srcp, dest, destp, sp->sk_state,
2116 		sk_wmem_alloc_get(sp),
2117 		sk_rmem_alloc_get(sp),
2118 		0, 0L, 0,
2119 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2120 		0, sock_i_ino(sp),
2121 		atomic_read(&sp->sk_refcnt), sp,
2122 		atomic_read(&sp->sk_drops), len);
2123 }
2124 
2125 int udp4_seq_show(struct seq_file *seq, void *v)
2126 {
2127 	if (v == SEQ_START_TOKEN)
2128 		seq_printf(seq, "%-127s\n",
2129 			   "  sl  local_address rem_address   st tx_queue "
2130 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2131 			   "inode ref pointer drops");
2132 	else {
2133 		struct udp_iter_state *state = seq->private;
2134 		int len;
2135 
2136 		udp4_format_sock(v, seq, state->bucket, &len);
2137 		seq_printf(seq, "%*s\n", 127 - len, "");
2138 	}
2139 	return 0;
2140 }
2141 
2142 static const struct file_operations udp_afinfo_seq_fops = {
2143 	.owner    = THIS_MODULE,
2144 	.open     = udp_seq_open,
2145 	.read     = seq_read,
2146 	.llseek   = seq_lseek,
2147 	.release  = seq_release_net
2148 };
2149 
2150 /* ------------------------------------------------------------------------ */
2151 static struct udp_seq_afinfo udp4_seq_afinfo = {
2152 	.name		= "udp",
2153 	.family		= AF_INET,
2154 	.udp_table	= &udp_table,
2155 	.seq_fops	= &udp_afinfo_seq_fops,
2156 	.seq_ops	= {
2157 		.show		= udp4_seq_show,
2158 	},
2159 };
2160 
2161 static int __net_init udp4_proc_init_net(struct net *net)
2162 {
2163 	return udp_proc_register(net, &udp4_seq_afinfo);
2164 }
2165 
2166 static void __net_exit udp4_proc_exit_net(struct net *net)
2167 {
2168 	udp_proc_unregister(net, &udp4_seq_afinfo);
2169 }
2170 
2171 static struct pernet_operations udp4_net_ops = {
2172 	.init = udp4_proc_init_net,
2173 	.exit = udp4_proc_exit_net,
2174 };
2175 
2176 int __init udp4_proc_init(void)
2177 {
2178 	return register_pernet_subsys(&udp4_net_ops);
2179 }
2180 
2181 void udp4_proc_exit(void)
2182 {
2183 	unregister_pernet_subsys(&udp4_net_ops);
2184 }
2185 #endif /* CONFIG_PROC_FS */
2186 
2187 static __initdata unsigned long uhash_entries;
2188 static int __init set_uhash_entries(char *str)
2189 {
2190 	ssize_t ret;
2191 
2192 	if (!str)
2193 		return 0;
2194 
2195 	ret = kstrtoul(str, 0, &uhash_entries);
2196 	if (ret)
2197 		return 0;
2198 
2199 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2200 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2201 	return 1;
2202 }
2203 __setup("uhash_entries=", set_uhash_entries);
2204 
2205 void __init udp_table_init(struct udp_table *table, const char *name)
2206 {
2207 	unsigned int i;
2208 
2209 	table->hash = alloc_large_system_hash(name,
2210 					      2 * sizeof(struct udp_hslot),
2211 					      uhash_entries,
2212 					      21, /* one slot per 2 MB */
2213 					      0,
2214 					      &table->log,
2215 					      &table->mask,
2216 					      UDP_HTABLE_SIZE_MIN,
2217 					      64 * 1024);
2218 
2219 	table->hash2 = table->hash + (table->mask + 1);
2220 	for (i = 0; i <= table->mask; i++) {
2221 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2222 		table->hash[i].count = 0;
2223 		spin_lock_init(&table->hash[i].lock);
2224 	}
2225 	for (i = 0; i <= table->mask; i++) {
2226 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2227 		table->hash2[i].count = 0;
2228 		spin_lock_init(&table->hash2[i].lock);
2229 	}
2230 }
2231 
2232 void __init udp_init(void)
2233 {
2234 	unsigned long limit;
2235 
2236 	udp_table_init(&udp_table, "UDP");
2237 	limit = nr_free_buffer_pages() / 8;
2238 	limit = max(limit, 128UL);
2239 	sysctl_udp_mem[0] = limit / 4 * 3;
2240 	sysctl_udp_mem[1] = limit;
2241 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2242 
2243 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2244 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2245 }
2246 
2247 int udp4_ufo_send_check(struct sk_buff *skb)
2248 {
2249 	const struct iphdr *iph;
2250 	struct udphdr *uh;
2251 
2252 	if (!pskb_may_pull(skb, sizeof(*uh)))
2253 		return -EINVAL;
2254 
2255 	iph = ip_hdr(skb);
2256 	uh = udp_hdr(skb);
2257 
2258 	uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2259 				       IPPROTO_UDP, 0);
2260 	skb->csum_start = skb_transport_header(skb) - skb->head;
2261 	skb->csum_offset = offsetof(struct udphdr, check);
2262 	skb->ip_summed = CHECKSUM_PARTIAL;
2263 	return 0;
2264 }
2265 
2266 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb,
2267 	netdev_features_t features)
2268 {
2269 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2270 	unsigned int mss;
2271 	int offset;
2272 	__wsum csum;
2273 
2274 	mss = skb_shinfo(skb)->gso_size;
2275 	if (unlikely(skb->len <= mss))
2276 		goto out;
2277 
2278 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2279 		/* Packet is from an untrusted source, reset gso_segs. */
2280 		int type = skb_shinfo(skb)->gso_type;
2281 
2282 		if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2283 			     !(type & (SKB_GSO_UDP))))
2284 			goto out;
2285 
2286 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2287 
2288 		segs = NULL;
2289 		goto out;
2290 	}
2291 
2292 	/* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2293 	 * do checksum of UDP packets sent as multiple IP fragments.
2294 	 */
2295 	offset = skb_checksum_start_offset(skb);
2296 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2297 	offset += skb->csum_offset;
2298 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2299 	skb->ip_summed = CHECKSUM_NONE;
2300 
2301 	/* Fragment the skb. IP headers of the fragments are updated in
2302 	 * inet_gso_segment()
2303 	 */
2304 	segs = skb_segment(skb, features);
2305 out:
2306 	return segs;
2307 }
2308 
2309