xref: /openbmc/linux/net/ipv4/udp.c (revision 3a0e75ad)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127 
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130 
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136 
137 /* IPCB reference means this can not be used from early demux */
138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
139 {
140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
141 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
142 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
143 		return true;
144 #endif
145 	return false;
146 }
147 
148 static int udp_lib_lport_inuse(struct net *net, __u16 num,
149 			       const struct udp_hslot *hslot,
150 			       unsigned long *bitmap,
151 			       struct sock *sk, unsigned int log)
152 {
153 	struct sock *sk2;
154 	kuid_t uid = sock_i_uid(sk);
155 
156 	sk_for_each(sk2, &hslot->head) {
157 		if (net_eq(sock_net(sk2), net) &&
158 		    sk2 != sk &&
159 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
160 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
161 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
162 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
163 		    inet_rcv_saddr_equal(sk, sk2, true)) {
164 			if (sk2->sk_reuseport && sk->sk_reuseport &&
165 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
166 			    uid_eq(uid, sock_i_uid(sk2))) {
167 				if (!bitmap)
168 					return 0;
169 			} else {
170 				if (!bitmap)
171 					return 1;
172 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
173 					  bitmap);
174 			}
175 		}
176 	}
177 	return 0;
178 }
179 
180 /*
181  * Note: we still hold spinlock of primary hash chain, so no other writer
182  * can insert/delete a socket with local_port == num
183  */
184 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
185 				struct udp_hslot *hslot2,
186 				struct sock *sk)
187 {
188 	struct sock *sk2;
189 	kuid_t uid = sock_i_uid(sk);
190 	int res = 0;
191 
192 	spin_lock(&hslot2->lock);
193 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
194 		if (net_eq(sock_net(sk2), net) &&
195 		    sk2 != sk &&
196 		    (udp_sk(sk2)->udp_port_hash == num) &&
197 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
198 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
199 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200 		    inet_rcv_saddr_equal(sk, sk2, true)) {
201 			if (sk2->sk_reuseport && sk->sk_reuseport &&
202 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
203 			    uid_eq(uid, sock_i_uid(sk2))) {
204 				res = 0;
205 			} else {
206 				res = 1;
207 			}
208 			break;
209 		}
210 	}
211 	spin_unlock(&hslot2->lock);
212 	return res;
213 }
214 
215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
216 {
217 	struct net *net = sock_net(sk);
218 	kuid_t uid = sock_i_uid(sk);
219 	struct sock *sk2;
220 
221 	sk_for_each(sk2, &hslot->head) {
222 		if (net_eq(sock_net(sk2), net) &&
223 		    sk2 != sk &&
224 		    sk2->sk_family == sk->sk_family &&
225 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
226 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
227 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
228 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
229 		    inet_rcv_saddr_equal(sk, sk2, false)) {
230 			return reuseport_add_sock(sk, sk2);
231 		}
232 	}
233 
234 	/* Initial allocation may have already happened via setsockopt */
235 	if (!rcu_access_pointer(sk->sk_reuseport_cb))
236 		return reuseport_alloc(sk);
237 	return 0;
238 }
239 
240 /**
241  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
242  *
243  *  @sk:          socket struct in question
244  *  @snum:        port number to look up
245  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
246  *                   with NULL address
247  */
248 int udp_lib_get_port(struct sock *sk, unsigned short snum,
249 		     unsigned int hash2_nulladdr)
250 {
251 	struct udp_hslot *hslot, *hslot2;
252 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
253 	int    error = 1;
254 	struct net *net = sock_net(sk);
255 
256 	if (!snum) {
257 		int low, high, remaining;
258 		unsigned int rand;
259 		unsigned short first, last;
260 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
261 
262 		inet_get_local_port_range(net, &low, &high);
263 		remaining = (high - low) + 1;
264 
265 		rand = prandom_u32();
266 		first = reciprocal_scale(rand, remaining) + low;
267 		/*
268 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
269 		 */
270 		rand = (rand | 1) * (udptable->mask + 1);
271 		last = first + udptable->mask + 1;
272 		do {
273 			hslot = udp_hashslot(udptable, net, first);
274 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
275 			spin_lock_bh(&hslot->lock);
276 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
277 					    udptable->log);
278 
279 			snum = first;
280 			/*
281 			 * Iterate on all possible values of snum for this hash.
282 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
283 			 * give us randomization and full range coverage.
284 			 */
285 			do {
286 				if (low <= snum && snum <= high &&
287 				    !test_bit(snum >> udptable->log, bitmap) &&
288 				    !inet_is_local_reserved_port(net, snum))
289 					goto found;
290 				snum += rand;
291 			} while (snum != first);
292 			spin_unlock_bh(&hslot->lock);
293 			cond_resched();
294 		} while (++first != last);
295 		goto fail;
296 	} else {
297 		hslot = udp_hashslot(udptable, net, snum);
298 		spin_lock_bh(&hslot->lock);
299 		if (hslot->count > 10) {
300 			int exist;
301 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
302 
303 			slot2          &= udptable->mask;
304 			hash2_nulladdr &= udptable->mask;
305 
306 			hslot2 = udp_hashslot2(udptable, slot2);
307 			if (hslot->count < hslot2->count)
308 				goto scan_primary_hash;
309 
310 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
311 			if (!exist && (hash2_nulladdr != slot2)) {
312 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
313 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
314 							     sk);
315 			}
316 			if (exist)
317 				goto fail_unlock;
318 			else
319 				goto found;
320 		}
321 scan_primary_hash:
322 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
323 			goto fail_unlock;
324 	}
325 found:
326 	inet_sk(sk)->inet_num = snum;
327 	udp_sk(sk)->udp_port_hash = snum;
328 	udp_sk(sk)->udp_portaddr_hash ^= snum;
329 	if (sk_unhashed(sk)) {
330 		if (sk->sk_reuseport &&
331 		    udp_reuseport_add_sock(sk, hslot)) {
332 			inet_sk(sk)->inet_num = 0;
333 			udp_sk(sk)->udp_port_hash = 0;
334 			udp_sk(sk)->udp_portaddr_hash ^= snum;
335 			goto fail_unlock;
336 		}
337 
338 		sk_add_node_rcu(sk, &hslot->head);
339 		hslot->count++;
340 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
341 
342 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
343 		spin_lock(&hslot2->lock);
344 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
345 		    sk->sk_family == AF_INET6)
346 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
347 					   &hslot2->head);
348 		else
349 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
350 					   &hslot2->head);
351 		hslot2->count++;
352 		spin_unlock(&hslot2->lock);
353 	}
354 	sock_set_flag(sk, SOCK_RCU_FREE);
355 	error = 0;
356 fail_unlock:
357 	spin_unlock_bh(&hslot->lock);
358 fail:
359 	return error;
360 }
361 EXPORT_SYMBOL(udp_lib_get_port);
362 
363 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
364 			      unsigned int port)
365 {
366 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
367 }
368 
369 int udp_v4_get_port(struct sock *sk, unsigned short snum)
370 {
371 	unsigned int hash2_nulladdr =
372 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
373 	unsigned int hash2_partial =
374 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
375 
376 	/* precompute partial secondary hash */
377 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
378 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
379 }
380 
381 static int compute_score(struct sock *sk, struct net *net,
382 			 __be32 saddr, __be16 sport,
383 			 __be32 daddr, unsigned short hnum, int dif,
384 			 bool exact_dif)
385 {
386 	int score;
387 	struct inet_sock *inet;
388 
389 	if (!net_eq(sock_net(sk), net) ||
390 	    udp_sk(sk)->udp_port_hash != hnum ||
391 	    ipv6_only_sock(sk))
392 		return -1;
393 
394 	score = (sk->sk_family == PF_INET) ? 2 : 1;
395 	inet = inet_sk(sk);
396 
397 	if (inet->inet_rcv_saddr) {
398 		if (inet->inet_rcv_saddr != daddr)
399 			return -1;
400 		score += 4;
401 	}
402 
403 	if (inet->inet_daddr) {
404 		if (inet->inet_daddr != saddr)
405 			return -1;
406 		score += 4;
407 	}
408 
409 	if (inet->inet_dport) {
410 		if (inet->inet_dport != sport)
411 			return -1;
412 		score += 4;
413 	}
414 
415 	if (sk->sk_bound_dev_if || exact_dif) {
416 		if (sk->sk_bound_dev_if != dif)
417 			return -1;
418 		score += 4;
419 	}
420 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
421 		score++;
422 	return score;
423 }
424 
425 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
426 		       const __u16 lport, const __be32 faddr,
427 		       const __be16 fport)
428 {
429 	static u32 udp_ehash_secret __read_mostly;
430 
431 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
432 
433 	return __inet_ehashfn(laddr, lport, faddr, fport,
434 			      udp_ehash_secret + net_hash_mix(net));
435 }
436 
437 /* called with rcu_read_lock() */
438 static struct sock *udp4_lib_lookup2(struct net *net,
439 		__be32 saddr, __be16 sport,
440 		__be32 daddr, unsigned int hnum, int dif, bool exact_dif,
441 		struct udp_hslot *hslot2,
442 		struct sk_buff *skb)
443 {
444 	struct sock *sk, *result;
445 	int score, badness, matches = 0, reuseport = 0;
446 	u32 hash = 0;
447 
448 	result = NULL;
449 	badness = 0;
450 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
451 		score = compute_score(sk, net, saddr, sport,
452 				      daddr, hnum, dif, exact_dif);
453 		if (score > badness) {
454 			reuseport = sk->sk_reuseport;
455 			if (reuseport) {
456 				hash = udp_ehashfn(net, daddr, hnum,
457 						   saddr, sport);
458 				result = reuseport_select_sock(sk, hash, skb,
459 							sizeof(struct udphdr));
460 				if (result)
461 					return result;
462 				matches = 1;
463 			}
464 			badness = score;
465 			result = sk;
466 		} else if (score == badness && reuseport) {
467 			matches++;
468 			if (reciprocal_scale(hash, matches) == 0)
469 				result = sk;
470 			hash = next_pseudo_random32(hash);
471 		}
472 	}
473 	return result;
474 }
475 
476 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
477  * harder than this. -DaveM
478  */
479 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
480 		__be16 sport, __be32 daddr, __be16 dport,
481 		int dif, struct udp_table *udptable, struct sk_buff *skb)
482 {
483 	struct sock *sk, *result;
484 	unsigned short hnum = ntohs(dport);
485 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
486 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
487 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
488 	int score, badness, matches = 0, reuseport = 0;
489 	u32 hash = 0;
490 
491 	if (hslot->count > 10) {
492 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
493 		slot2 = hash2 & udptable->mask;
494 		hslot2 = &udptable->hash2[slot2];
495 		if (hslot->count < hslot2->count)
496 			goto begin;
497 
498 		result = udp4_lib_lookup2(net, saddr, sport,
499 					  daddr, hnum, dif,
500 					  exact_dif, hslot2, skb);
501 		if (!result) {
502 			unsigned int old_slot2 = slot2;
503 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
504 			slot2 = hash2 & udptable->mask;
505 			/* avoid searching the same slot again. */
506 			if (unlikely(slot2 == old_slot2))
507 				return result;
508 
509 			hslot2 = &udptable->hash2[slot2];
510 			if (hslot->count < hslot2->count)
511 				goto begin;
512 
513 			result = udp4_lib_lookup2(net, saddr, sport,
514 						  daddr, hnum, dif,
515 						  exact_dif, hslot2, skb);
516 		}
517 		return result;
518 	}
519 begin:
520 	result = NULL;
521 	badness = 0;
522 	sk_for_each_rcu(sk, &hslot->head) {
523 		score = compute_score(sk, net, saddr, sport,
524 				      daddr, hnum, dif, exact_dif);
525 		if (score > badness) {
526 			reuseport = sk->sk_reuseport;
527 			if (reuseport) {
528 				hash = udp_ehashfn(net, daddr, hnum,
529 						   saddr, sport);
530 				result = reuseport_select_sock(sk, hash, skb,
531 							sizeof(struct udphdr));
532 				if (result)
533 					return result;
534 				matches = 1;
535 			}
536 			result = sk;
537 			badness = score;
538 		} else if (score == badness && reuseport) {
539 			matches++;
540 			if (reciprocal_scale(hash, matches) == 0)
541 				result = sk;
542 			hash = next_pseudo_random32(hash);
543 		}
544 	}
545 	return result;
546 }
547 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
548 
549 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
550 						 __be16 sport, __be16 dport,
551 						 struct udp_table *udptable)
552 {
553 	const struct iphdr *iph = ip_hdr(skb);
554 
555 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
556 				 iph->daddr, dport, inet_iif(skb),
557 				 udptable, skb);
558 }
559 
560 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
561 				 __be16 sport, __be16 dport)
562 {
563 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
564 }
565 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
566 
567 /* Must be called under rcu_read_lock().
568  * Does increment socket refcount.
569  */
570 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
571     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
572     IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
573 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
574 			     __be32 daddr, __be16 dport, int dif)
575 {
576 	struct sock *sk;
577 
578 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
579 			       dif, &udp_table, NULL);
580 	if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
581 		sk = NULL;
582 	return sk;
583 }
584 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
585 #endif
586 
587 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
588 				       __be16 loc_port, __be32 loc_addr,
589 				       __be16 rmt_port, __be32 rmt_addr,
590 				       int dif, unsigned short hnum)
591 {
592 	struct inet_sock *inet = inet_sk(sk);
593 
594 	if (!net_eq(sock_net(sk), net) ||
595 	    udp_sk(sk)->udp_port_hash != hnum ||
596 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
597 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
598 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
599 	    ipv6_only_sock(sk) ||
600 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
601 		return false;
602 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
603 		return false;
604 	return true;
605 }
606 
607 /*
608  * This routine is called by the ICMP module when it gets some
609  * sort of error condition.  If err < 0 then the socket should
610  * be closed and the error returned to the user.  If err > 0
611  * it's just the icmp type << 8 | icmp code.
612  * Header points to the ip header of the error packet. We move
613  * on past this. Then (as it used to claim before adjustment)
614  * header points to the first 8 bytes of the udp header.  We need
615  * to find the appropriate port.
616  */
617 
618 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
619 {
620 	struct inet_sock *inet;
621 	const struct iphdr *iph = (const struct iphdr *)skb->data;
622 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
623 	const int type = icmp_hdr(skb)->type;
624 	const int code = icmp_hdr(skb)->code;
625 	struct sock *sk;
626 	int harderr;
627 	int err;
628 	struct net *net = dev_net(skb->dev);
629 
630 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
631 			iph->saddr, uh->source, skb->dev->ifindex, udptable,
632 			NULL);
633 	if (!sk) {
634 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
635 		return;	/* No socket for error */
636 	}
637 
638 	err = 0;
639 	harderr = 0;
640 	inet = inet_sk(sk);
641 
642 	switch (type) {
643 	default:
644 	case ICMP_TIME_EXCEEDED:
645 		err = EHOSTUNREACH;
646 		break;
647 	case ICMP_SOURCE_QUENCH:
648 		goto out;
649 	case ICMP_PARAMETERPROB:
650 		err = EPROTO;
651 		harderr = 1;
652 		break;
653 	case ICMP_DEST_UNREACH:
654 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
655 			ipv4_sk_update_pmtu(skb, sk, info);
656 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
657 				err = EMSGSIZE;
658 				harderr = 1;
659 				break;
660 			}
661 			goto out;
662 		}
663 		err = EHOSTUNREACH;
664 		if (code <= NR_ICMP_UNREACH) {
665 			harderr = icmp_err_convert[code].fatal;
666 			err = icmp_err_convert[code].errno;
667 		}
668 		break;
669 	case ICMP_REDIRECT:
670 		ipv4_sk_redirect(skb, sk);
671 		goto out;
672 	}
673 
674 	/*
675 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
676 	 *	4.1.3.3.
677 	 */
678 	if (!inet->recverr) {
679 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
680 			goto out;
681 	} else
682 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
683 
684 	sk->sk_err = err;
685 	sk->sk_error_report(sk);
686 out:
687 	return;
688 }
689 
690 void udp_err(struct sk_buff *skb, u32 info)
691 {
692 	__udp4_lib_err(skb, info, &udp_table);
693 }
694 
695 /*
696  * Throw away all pending data and cancel the corking. Socket is locked.
697  */
698 void udp_flush_pending_frames(struct sock *sk)
699 {
700 	struct udp_sock *up = udp_sk(sk);
701 
702 	if (up->pending) {
703 		up->len = 0;
704 		up->pending = 0;
705 		ip_flush_pending_frames(sk);
706 	}
707 }
708 EXPORT_SYMBOL(udp_flush_pending_frames);
709 
710 /**
711  * 	udp4_hwcsum  -  handle outgoing HW checksumming
712  * 	@skb: 	sk_buff containing the filled-in UDP header
713  * 	        (checksum field must be zeroed out)
714  *	@src:	source IP address
715  *	@dst:	destination IP address
716  */
717 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
718 {
719 	struct udphdr *uh = udp_hdr(skb);
720 	int offset = skb_transport_offset(skb);
721 	int len = skb->len - offset;
722 	int hlen = len;
723 	__wsum csum = 0;
724 
725 	if (!skb_has_frag_list(skb)) {
726 		/*
727 		 * Only one fragment on the socket.
728 		 */
729 		skb->csum_start = skb_transport_header(skb) - skb->head;
730 		skb->csum_offset = offsetof(struct udphdr, check);
731 		uh->check = ~csum_tcpudp_magic(src, dst, len,
732 					       IPPROTO_UDP, 0);
733 	} else {
734 		struct sk_buff *frags;
735 
736 		/*
737 		 * HW-checksum won't work as there are two or more
738 		 * fragments on the socket so that all csums of sk_buffs
739 		 * should be together
740 		 */
741 		skb_walk_frags(skb, frags) {
742 			csum = csum_add(csum, frags->csum);
743 			hlen -= frags->len;
744 		}
745 
746 		csum = skb_checksum(skb, offset, hlen, csum);
747 		skb->ip_summed = CHECKSUM_NONE;
748 
749 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
750 		if (uh->check == 0)
751 			uh->check = CSUM_MANGLED_0;
752 	}
753 }
754 EXPORT_SYMBOL_GPL(udp4_hwcsum);
755 
756 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
757  * for the simple case like when setting the checksum for a UDP tunnel.
758  */
759 void udp_set_csum(bool nocheck, struct sk_buff *skb,
760 		  __be32 saddr, __be32 daddr, int len)
761 {
762 	struct udphdr *uh = udp_hdr(skb);
763 
764 	if (nocheck) {
765 		uh->check = 0;
766 	} else if (skb_is_gso(skb)) {
767 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
768 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
769 		uh->check = 0;
770 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
771 		if (uh->check == 0)
772 			uh->check = CSUM_MANGLED_0;
773 	} else {
774 		skb->ip_summed = CHECKSUM_PARTIAL;
775 		skb->csum_start = skb_transport_header(skb) - skb->head;
776 		skb->csum_offset = offsetof(struct udphdr, check);
777 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
778 	}
779 }
780 EXPORT_SYMBOL(udp_set_csum);
781 
782 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
783 {
784 	struct sock *sk = skb->sk;
785 	struct inet_sock *inet = inet_sk(sk);
786 	struct udphdr *uh;
787 	int err = 0;
788 	int is_udplite = IS_UDPLITE(sk);
789 	int offset = skb_transport_offset(skb);
790 	int len = skb->len - offset;
791 	__wsum csum = 0;
792 
793 	/*
794 	 * Create a UDP header
795 	 */
796 	uh = udp_hdr(skb);
797 	uh->source = inet->inet_sport;
798 	uh->dest = fl4->fl4_dport;
799 	uh->len = htons(len);
800 	uh->check = 0;
801 
802 	if (is_udplite)  				 /*     UDP-Lite      */
803 		csum = udplite_csum(skb);
804 
805 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
806 
807 		skb->ip_summed = CHECKSUM_NONE;
808 		goto send;
809 
810 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
811 
812 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
813 		goto send;
814 
815 	} else
816 		csum = udp_csum(skb);
817 
818 	/* add protocol-dependent pseudo-header */
819 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
820 				      sk->sk_protocol, csum);
821 	if (uh->check == 0)
822 		uh->check = CSUM_MANGLED_0;
823 
824 send:
825 	err = ip_send_skb(sock_net(sk), skb);
826 	if (err) {
827 		if (err == -ENOBUFS && !inet->recverr) {
828 			UDP_INC_STATS(sock_net(sk),
829 				      UDP_MIB_SNDBUFERRORS, is_udplite);
830 			err = 0;
831 		}
832 	} else
833 		UDP_INC_STATS(sock_net(sk),
834 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
835 	return err;
836 }
837 
838 /*
839  * Push out all pending data as one UDP datagram. Socket is locked.
840  */
841 int udp_push_pending_frames(struct sock *sk)
842 {
843 	struct udp_sock  *up = udp_sk(sk);
844 	struct inet_sock *inet = inet_sk(sk);
845 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
846 	struct sk_buff *skb;
847 	int err = 0;
848 
849 	skb = ip_finish_skb(sk, fl4);
850 	if (!skb)
851 		goto out;
852 
853 	err = udp_send_skb(skb, fl4);
854 
855 out:
856 	up->len = 0;
857 	up->pending = 0;
858 	return err;
859 }
860 EXPORT_SYMBOL(udp_push_pending_frames);
861 
862 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
863 {
864 	struct inet_sock *inet = inet_sk(sk);
865 	struct udp_sock *up = udp_sk(sk);
866 	struct flowi4 fl4_stack;
867 	struct flowi4 *fl4;
868 	int ulen = len;
869 	struct ipcm_cookie ipc;
870 	struct rtable *rt = NULL;
871 	int free = 0;
872 	int connected = 0;
873 	__be32 daddr, faddr, saddr;
874 	__be16 dport;
875 	u8  tos;
876 	int err, is_udplite = IS_UDPLITE(sk);
877 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
878 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
879 	struct sk_buff *skb;
880 	struct ip_options_data opt_copy;
881 
882 	if (len > 0xFFFF)
883 		return -EMSGSIZE;
884 
885 	/*
886 	 *	Check the flags.
887 	 */
888 
889 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
890 		return -EOPNOTSUPP;
891 
892 	ipc.opt = NULL;
893 	ipc.tx_flags = 0;
894 	ipc.ttl = 0;
895 	ipc.tos = -1;
896 
897 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
898 
899 	fl4 = &inet->cork.fl.u.ip4;
900 	if (up->pending) {
901 		/*
902 		 * There are pending frames.
903 		 * The socket lock must be held while it's corked.
904 		 */
905 		lock_sock(sk);
906 		if (likely(up->pending)) {
907 			if (unlikely(up->pending != AF_INET)) {
908 				release_sock(sk);
909 				return -EINVAL;
910 			}
911 			goto do_append_data;
912 		}
913 		release_sock(sk);
914 	}
915 	ulen += sizeof(struct udphdr);
916 
917 	/*
918 	 *	Get and verify the address.
919 	 */
920 	if (msg->msg_name) {
921 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
922 		if (msg->msg_namelen < sizeof(*usin))
923 			return -EINVAL;
924 		if (usin->sin_family != AF_INET) {
925 			if (usin->sin_family != AF_UNSPEC)
926 				return -EAFNOSUPPORT;
927 		}
928 
929 		daddr = usin->sin_addr.s_addr;
930 		dport = usin->sin_port;
931 		if (dport == 0)
932 			return -EINVAL;
933 	} else {
934 		if (sk->sk_state != TCP_ESTABLISHED)
935 			return -EDESTADDRREQ;
936 		daddr = inet->inet_daddr;
937 		dport = inet->inet_dport;
938 		/* Open fast path for connected socket.
939 		   Route will not be used, if at least one option is set.
940 		 */
941 		connected = 1;
942 	}
943 
944 	ipc.sockc.tsflags = sk->sk_tsflags;
945 	ipc.addr = inet->inet_saddr;
946 	ipc.oif = sk->sk_bound_dev_if;
947 
948 	if (msg->msg_controllen) {
949 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
950 		if (unlikely(err)) {
951 			kfree(ipc.opt);
952 			return err;
953 		}
954 		if (ipc.opt)
955 			free = 1;
956 		connected = 0;
957 	}
958 	if (!ipc.opt) {
959 		struct ip_options_rcu *inet_opt;
960 
961 		rcu_read_lock();
962 		inet_opt = rcu_dereference(inet->inet_opt);
963 		if (inet_opt) {
964 			memcpy(&opt_copy, inet_opt,
965 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
966 			ipc.opt = &opt_copy.opt;
967 		}
968 		rcu_read_unlock();
969 	}
970 
971 	saddr = ipc.addr;
972 	ipc.addr = faddr = daddr;
973 
974 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
975 
976 	if (ipc.opt && ipc.opt->opt.srr) {
977 		if (!daddr)
978 			return -EINVAL;
979 		faddr = ipc.opt->opt.faddr;
980 		connected = 0;
981 	}
982 	tos = get_rttos(&ipc, inet);
983 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
984 	    (msg->msg_flags & MSG_DONTROUTE) ||
985 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
986 		tos |= RTO_ONLINK;
987 		connected = 0;
988 	}
989 
990 	if (ipv4_is_multicast(daddr)) {
991 		if (!ipc.oif)
992 			ipc.oif = inet->mc_index;
993 		if (!saddr)
994 			saddr = inet->mc_addr;
995 		connected = 0;
996 	} else if (!ipc.oif)
997 		ipc.oif = inet->uc_index;
998 
999 	if (connected)
1000 		rt = (struct rtable *)sk_dst_check(sk, 0);
1001 
1002 	if (!rt) {
1003 		struct net *net = sock_net(sk);
1004 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1005 
1006 		fl4 = &fl4_stack;
1007 
1008 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1009 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1010 				   flow_flags,
1011 				   faddr, saddr, dport, inet->inet_sport,
1012 				   sk->sk_uid);
1013 
1014 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1015 		rt = ip_route_output_flow(net, fl4, sk);
1016 		if (IS_ERR(rt)) {
1017 			err = PTR_ERR(rt);
1018 			rt = NULL;
1019 			if (err == -ENETUNREACH)
1020 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1021 			goto out;
1022 		}
1023 
1024 		err = -EACCES;
1025 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1026 		    !sock_flag(sk, SOCK_BROADCAST))
1027 			goto out;
1028 		if (connected)
1029 			sk_dst_set(sk, dst_clone(&rt->dst));
1030 	}
1031 
1032 	if (msg->msg_flags&MSG_CONFIRM)
1033 		goto do_confirm;
1034 back_from_confirm:
1035 
1036 	saddr = fl4->saddr;
1037 	if (!ipc.addr)
1038 		daddr = ipc.addr = fl4->daddr;
1039 
1040 	/* Lockless fast path for the non-corking case. */
1041 	if (!corkreq) {
1042 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1043 				  sizeof(struct udphdr), &ipc, &rt,
1044 				  msg->msg_flags);
1045 		err = PTR_ERR(skb);
1046 		if (!IS_ERR_OR_NULL(skb))
1047 			err = udp_send_skb(skb, fl4);
1048 		goto out;
1049 	}
1050 
1051 	lock_sock(sk);
1052 	if (unlikely(up->pending)) {
1053 		/* The socket is already corked while preparing it. */
1054 		/* ... which is an evident application bug. --ANK */
1055 		release_sock(sk);
1056 
1057 		net_dbg_ratelimited("cork app bug 2\n");
1058 		err = -EINVAL;
1059 		goto out;
1060 	}
1061 	/*
1062 	 *	Now cork the socket to pend data.
1063 	 */
1064 	fl4 = &inet->cork.fl.u.ip4;
1065 	fl4->daddr = daddr;
1066 	fl4->saddr = saddr;
1067 	fl4->fl4_dport = dport;
1068 	fl4->fl4_sport = inet->inet_sport;
1069 	up->pending = AF_INET;
1070 
1071 do_append_data:
1072 	up->len += ulen;
1073 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1074 			     sizeof(struct udphdr), &ipc, &rt,
1075 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1076 	if (err)
1077 		udp_flush_pending_frames(sk);
1078 	else if (!corkreq)
1079 		err = udp_push_pending_frames(sk);
1080 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1081 		up->pending = 0;
1082 	release_sock(sk);
1083 
1084 out:
1085 	ip_rt_put(rt);
1086 	if (free)
1087 		kfree(ipc.opt);
1088 	if (!err)
1089 		return len;
1090 	/*
1091 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1092 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1093 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1094 	 * things).  We could add another new stat but at least for now that
1095 	 * seems like overkill.
1096 	 */
1097 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1098 		UDP_INC_STATS(sock_net(sk),
1099 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1100 	}
1101 	return err;
1102 
1103 do_confirm:
1104 	if (msg->msg_flags & MSG_PROBE)
1105 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1106 	if (!(msg->msg_flags&MSG_PROBE) || len)
1107 		goto back_from_confirm;
1108 	err = 0;
1109 	goto out;
1110 }
1111 EXPORT_SYMBOL(udp_sendmsg);
1112 
1113 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1114 		 size_t size, int flags)
1115 {
1116 	struct inet_sock *inet = inet_sk(sk);
1117 	struct udp_sock *up = udp_sk(sk);
1118 	int ret;
1119 
1120 	if (flags & MSG_SENDPAGE_NOTLAST)
1121 		flags |= MSG_MORE;
1122 
1123 	if (!up->pending) {
1124 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1125 
1126 		/* Call udp_sendmsg to specify destination address which
1127 		 * sendpage interface can't pass.
1128 		 * This will succeed only when the socket is connected.
1129 		 */
1130 		ret = udp_sendmsg(sk, &msg, 0);
1131 		if (ret < 0)
1132 			return ret;
1133 	}
1134 
1135 	lock_sock(sk);
1136 
1137 	if (unlikely(!up->pending)) {
1138 		release_sock(sk);
1139 
1140 		net_dbg_ratelimited("udp cork app bug 3\n");
1141 		return -EINVAL;
1142 	}
1143 
1144 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1145 			     page, offset, size, flags);
1146 	if (ret == -EOPNOTSUPP) {
1147 		release_sock(sk);
1148 		return sock_no_sendpage(sk->sk_socket, page, offset,
1149 					size, flags);
1150 	}
1151 	if (ret < 0) {
1152 		udp_flush_pending_frames(sk);
1153 		goto out;
1154 	}
1155 
1156 	up->len += size;
1157 	if (!(up->corkflag || (flags&MSG_MORE)))
1158 		ret = udp_push_pending_frames(sk);
1159 	if (!ret)
1160 		ret = size;
1161 out:
1162 	release_sock(sk);
1163 	return ret;
1164 }
1165 
1166 /* fully reclaim rmem/fwd memory allocated for skb */
1167 static void udp_rmem_release(struct sock *sk, int size, int partial)
1168 {
1169 	struct udp_sock *up = udp_sk(sk);
1170 	int amt;
1171 
1172 	if (likely(partial)) {
1173 		up->forward_deficit += size;
1174 		size = up->forward_deficit;
1175 		if (size < (sk->sk_rcvbuf >> 2) &&
1176 		    !skb_queue_empty(&sk->sk_receive_queue))
1177 			return;
1178 	} else {
1179 		size += up->forward_deficit;
1180 	}
1181 	up->forward_deficit = 0;
1182 
1183 	sk->sk_forward_alloc += size;
1184 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1185 	sk->sk_forward_alloc -= amt;
1186 
1187 	if (amt)
1188 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1189 
1190 	atomic_sub(size, &sk->sk_rmem_alloc);
1191 }
1192 
1193 /* Note: called with sk_receive_queue.lock held.
1194  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1195  * This avoids a cache line miss while receive_queue lock is held.
1196  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1197  */
1198 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1199 {
1200 	udp_rmem_release(sk, skb->dev_scratch, 1);
1201 }
1202 EXPORT_SYMBOL(udp_skb_destructor);
1203 
1204 /* Idea of busylocks is to let producers grab an extra spinlock
1205  * to relieve pressure on the receive_queue spinlock shared by consumer.
1206  * Under flood, this means that only one producer can be in line
1207  * trying to acquire the receive_queue spinlock.
1208  * These busylock can be allocated on a per cpu manner, instead of a
1209  * per socket one (that would consume a cache line per socket)
1210  */
1211 static int udp_busylocks_log __read_mostly;
1212 static spinlock_t *udp_busylocks __read_mostly;
1213 
1214 static spinlock_t *busylock_acquire(void *ptr)
1215 {
1216 	spinlock_t *busy;
1217 
1218 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1219 	spin_lock(busy);
1220 	return busy;
1221 }
1222 
1223 static void busylock_release(spinlock_t *busy)
1224 {
1225 	if (busy)
1226 		spin_unlock(busy);
1227 }
1228 
1229 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1230 {
1231 	struct sk_buff_head *list = &sk->sk_receive_queue;
1232 	int rmem, delta, amt, err = -ENOMEM;
1233 	spinlock_t *busy = NULL;
1234 	int size;
1235 
1236 	/* try to avoid the costly atomic add/sub pair when the receive
1237 	 * queue is full; always allow at least a packet
1238 	 */
1239 	rmem = atomic_read(&sk->sk_rmem_alloc);
1240 	if (rmem > sk->sk_rcvbuf)
1241 		goto drop;
1242 
1243 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1244 	 * having linear skbs :
1245 	 * - Reduce memory overhead and thus increase receive queue capacity
1246 	 * - Less cache line misses at copyout() time
1247 	 * - Less work at consume_skb() (less alien page frag freeing)
1248 	 */
1249 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1250 		skb_condense(skb);
1251 
1252 		busy = busylock_acquire(sk);
1253 	}
1254 	size = skb->truesize;
1255 	/* Copy skb->truesize into skb->dev_scratch to avoid a cache line miss
1256 	 * in udp_skb_destructor()
1257 	 */
1258 	skb->dev_scratch = size;
1259 
1260 	/* we drop only if the receive buf is full and the receive
1261 	 * queue contains some other skb
1262 	 */
1263 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1264 	if (rmem > (size + sk->sk_rcvbuf))
1265 		goto uncharge_drop;
1266 
1267 	spin_lock(&list->lock);
1268 	if (size >= sk->sk_forward_alloc) {
1269 		amt = sk_mem_pages(size);
1270 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1271 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1272 			err = -ENOBUFS;
1273 			spin_unlock(&list->lock);
1274 			goto uncharge_drop;
1275 		}
1276 
1277 		sk->sk_forward_alloc += delta;
1278 	}
1279 
1280 	sk->sk_forward_alloc -= size;
1281 
1282 	/* no need to setup a destructor, we will explicitly release the
1283 	 * forward allocated memory on dequeue
1284 	 */
1285 	sock_skb_set_dropcount(sk, skb);
1286 
1287 	__skb_queue_tail(list, skb);
1288 	spin_unlock(&list->lock);
1289 
1290 	if (!sock_flag(sk, SOCK_DEAD))
1291 		sk->sk_data_ready(sk);
1292 
1293 	busylock_release(busy);
1294 	return 0;
1295 
1296 uncharge_drop:
1297 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1298 
1299 drop:
1300 	atomic_inc(&sk->sk_drops);
1301 	busylock_release(busy);
1302 	return err;
1303 }
1304 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1305 
1306 void udp_destruct_sock(struct sock *sk)
1307 {
1308 	/* reclaim completely the forward allocated memory */
1309 	unsigned int total = 0;
1310 	struct sk_buff *skb;
1311 
1312 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1313 		total += skb->truesize;
1314 		kfree_skb(skb);
1315 	}
1316 	udp_rmem_release(sk, total, 0);
1317 
1318 	inet_sock_destruct(sk);
1319 }
1320 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1321 
1322 int udp_init_sock(struct sock *sk)
1323 {
1324 	sk->sk_destruct = udp_destruct_sock;
1325 	return 0;
1326 }
1327 EXPORT_SYMBOL_GPL(udp_init_sock);
1328 
1329 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1330 {
1331 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1332 		bool slow = lock_sock_fast(sk);
1333 
1334 		sk_peek_offset_bwd(sk, len);
1335 		unlock_sock_fast(sk, slow);
1336 	}
1337 	consume_skb(skb);
1338 }
1339 EXPORT_SYMBOL_GPL(skb_consume_udp);
1340 
1341 /**
1342  *	first_packet_length	- return length of first packet in receive queue
1343  *	@sk: socket
1344  *
1345  *	Drops all bad checksum frames, until a valid one is found.
1346  *	Returns the length of found skb, or -1 if none is found.
1347  */
1348 static int first_packet_length(struct sock *sk)
1349 {
1350 	struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1351 	struct sk_buff *skb;
1352 	int total = 0;
1353 	int res;
1354 
1355 	spin_lock_bh(&rcvq->lock);
1356 	while ((skb = skb_peek(rcvq)) != NULL &&
1357 		udp_lib_checksum_complete(skb)) {
1358 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1359 				IS_UDPLITE(sk));
1360 		__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1361 				IS_UDPLITE(sk));
1362 		atomic_inc(&sk->sk_drops);
1363 		__skb_unlink(skb, rcvq);
1364 		total += skb->truesize;
1365 		kfree_skb(skb);
1366 	}
1367 	res = skb ? skb->len : -1;
1368 	if (total)
1369 		udp_rmem_release(sk, total, 1);
1370 	spin_unlock_bh(&rcvq->lock);
1371 	return res;
1372 }
1373 
1374 /*
1375  *	IOCTL requests applicable to the UDP protocol
1376  */
1377 
1378 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1379 {
1380 	switch (cmd) {
1381 	case SIOCOUTQ:
1382 	{
1383 		int amount = sk_wmem_alloc_get(sk);
1384 
1385 		return put_user(amount, (int __user *)arg);
1386 	}
1387 
1388 	case SIOCINQ:
1389 	{
1390 		int amount = max_t(int, 0, first_packet_length(sk));
1391 
1392 		return put_user(amount, (int __user *)arg);
1393 	}
1394 
1395 	default:
1396 		return -ENOIOCTLCMD;
1397 	}
1398 
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL(udp_ioctl);
1402 
1403 /*
1404  * 	This should be easy, if there is something there we
1405  * 	return it, otherwise we block.
1406  */
1407 
1408 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1409 		int flags, int *addr_len)
1410 {
1411 	struct inet_sock *inet = inet_sk(sk);
1412 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1413 	struct sk_buff *skb;
1414 	unsigned int ulen, copied;
1415 	int peeked, peeking, off;
1416 	int err;
1417 	int is_udplite = IS_UDPLITE(sk);
1418 	bool checksum_valid = false;
1419 
1420 	if (flags & MSG_ERRQUEUE)
1421 		return ip_recv_error(sk, msg, len, addr_len);
1422 
1423 try_again:
1424 	peeking = off = sk_peek_offset(sk, flags);
1425 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1426 	if (!skb)
1427 		return err;
1428 
1429 	ulen = skb->len;
1430 	copied = len;
1431 	if (copied > ulen - off)
1432 		copied = ulen - off;
1433 	else if (copied < ulen)
1434 		msg->msg_flags |= MSG_TRUNC;
1435 
1436 	/*
1437 	 * If checksum is needed at all, try to do it while copying the
1438 	 * data.  If the data is truncated, or if we only want a partial
1439 	 * coverage checksum (UDP-Lite), do it before the copy.
1440 	 */
1441 
1442 	if (copied < ulen || peeking ||
1443 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1444 		checksum_valid = !udp_lib_checksum_complete(skb);
1445 		if (!checksum_valid)
1446 			goto csum_copy_err;
1447 	}
1448 
1449 	if (checksum_valid || skb_csum_unnecessary(skb))
1450 		err = skb_copy_datagram_msg(skb, off, msg, copied);
1451 	else {
1452 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1453 
1454 		if (err == -EINVAL)
1455 			goto csum_copy_err;
1456 	}
1457 
1458 	if (unlikely(err)) {
1459 		if (!peeked) {
1460 			atomic_inc(&sk->sk_drops);
1461 			UDP_INC_STATS(sock_net(sk),
1462 				      UDP_MIB_INERRORS, is_udplite);
1463 		}
1464 		kfree_skb(skb);
1465 		return err;
1466 	}
1467 
1468 	if (!peeked)
1469 		UDP_INC_STATS(sock_net(sk),
1470 			      UDP_MIB_INDATAGRAMS, is_udplite);
1471 
1472 	sock_recv_ts_and_drops(msg, sk, skb);
1473 
1474 	/* Copy the address. */
1475 	if (sin) {
1476 		sin->sin_family = AF_INET;
1477 		sin->sin_port = udp_hdr(skb)->source;
1478 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1479 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1480 		*addr_len = sizeof(*sin);
1481 	}
1482 	if (inet->cmsg_flags)
1483 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1484 
1485 	err = copied;
1486 	if (flags & MSG_TRUNC)
1487 		err = ulen;
1488 
1489 	skb_consume_udp(sk, skb, peeking ? -err : err);
1490 	return err;
1491 
1492 csum_copy_err:
1493 	if (!__sk_queue_drop_skb(sk, skb, flags, udp_skb_destructor)) {
1494 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1495 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1496 	}
1497 	kfree_skb(skb);
1498 
1499 	/* starting over for a new packet, but check if we need to yield */
1500 	cond_resched();
1501 	msg->msg_flags &= ~MSG_TRUNC;
1502 	goto try_again;
1503 }
1504 
1505 int __udp_disconnect(struct sock *sk, int flags)
1506 {
1507 	struct inet_sock *inet = inet_sk(sk);
1508 	/*
1509 	 *	1003.1g - break association.
1510 	 */
1511 
1512 	sk->sk_state = TCP_CLOSE;
1513 	inet->inet_daddr = 0;
1514 	inet->inet_dport = 0;
1515 	sock_rps_reset_rxhash(sk);
1516 	sk->sk_bound_dev_if = 0;
1517 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1518 		inet_reset_saddr(sk);
1519 
1520 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1521 		sk->sk_prot->unhash(sk);
1522 		inet->inet_sport = 0;
1523 	}
1524 	sk_dst_reset(sk);
1525 	return 0;
1526 }
1527 EXPORT_SYMBOL(__udp_disconnect);
1528 
1529 int udp_disconnect(struct sock *sk, int flags)
1530 {
1531 	lock_sock(sk);
1532 	__udp_disconnect(sk, flags);
1533 	release_sock(sk);
1534 	return 0;
1535 }
1536 EXPORT_SYMBOL(udp_disconnect);
1537 
1538 void udp_lib_unhash(struct sock *sk)
1539 {
1540 	if (sk_hashed(sk)) {
1541 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1542 		struct udp_hslot *hslot, *hslot2;
1543 
1544 		hslot  = udp_hashslot(udptable, sock_net(sk),
1545 				      udp_sk(sk)->udp_port_hash);
1546 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1547 
1548 		spin_lock_bh(&hslot->lock);
1549 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1550 			reuseport_detach_sock(sk);
1551 		if (sk_del_node_init_rcu(sk)) {
1552 			hslot->count--;
1553 			inet_sk(sk)->inet_num = 0;
1554 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1555 
1556 			spin_lock(&hslot2->lock);
1557 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1558 			hslot2->count--;
1559 			spin_unlock(&hslot2->lock);
1560 		}
1561 		spin_unlock_bh(&hslot->lock);
1562 	}
1563 }
1564 EXPORT_SYMBOL(udp_lib_unhash);
1565 
1566 /*
1567  * inet_rcv_saddr was changed, we must rehash secondary hash
1568  */
1569 void udp_lib_rehash(struct sock *sk, u16 newhash)
1570 {
1571 	if (sk_hashed(sk)) {
1572 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1573 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1574 
1575 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1576 		nhslot2 = udp_hashslot2(udptable, newhash);
1577 		udp_sk(sk)->udp_portaddr_hash = newhash;
1578 
1579 		if (hslot2 != nhslot2 ||
1580 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1581 			hslot = udp_hashslot(udptable, sock_net(sk),
1582 					     udp_sk(sk)->udp_port_hash);
1583 			/* we must lock primary chain too */
1584 			spin_lock_bh(&hslot->lock);
1585 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1586 				reuseport_detach_sock(sk);
1587 
1588 			if (hslot2 != nhslot2) {
1589 				spin_lock(&hslot2->lock);
1590 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1591 				hslot2->count--;
1592 				spin_unlock(&hslot2->lock);
1593 
1594 				spin_lock(&nhslot2->lock);
1595 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1596 							 &nhslot2->head);
1597 				nhslot2->count++;
1598 				spin_unlock(&nhslot2->lock);
1599 			}
1600 
1601 			spin_unlock_bh(&hslot->lock);
1602 		}
1603 	}
1604 }
1605 EXPORT_SYMBOL(udp_lib_rehash);
1606 
1607 static void udp_v4_rehash(struct sock *sk)
1608 {
1609 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1610 					  inet_sk(sk)->inet_rcv_saddr,
1611 					  inet_sk(sk)->inet_num);
1612 	udp_lib_rehash(sk, new_hash);
1613 }
1614 
1615 int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1616 {
1617 	int rc;
1618 
1619 	if (inet_sk(sk)->inet_daddr) {
1620 		sock_rps_save_rxhash(sk, skb);
1621 		sk_mark_napi_id(sk, skb);
1622 		sk_incoming_cpu_update(sk);
1623 	} else {
1624 		sk_mark_napi_id_once(sk, skb);
1625 	}
1626 
1627 	rc = __udp_enqueue_schedule_skb(sk, skb);
1628 	if (rc < 0) {
1629 		int is_udplite = IS_UDPLITE(sk);
1630 
1631 		/* Note that an ENOMEM error is charged twice */
1632 		if (rc == -ENOMEM)
1633 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1634 					is_udplite);
1635 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1636 		kfree_skb(skb);
1637 		trace_udp_fail_queue_rcv_skb(rc, sk);
1638 		return -1;
1639 	}
1640 
1641 	return 0;
1642 }
1643 
1644 static struct static_key udp_encap_needed __read_mostly;
1645 void udp_encap_enable(void)
1646 {
1647 	if (!static_key_enabled(&udp_encap_needed))
1648 		static_key_slow_inc(&udp_encap_needed);
1649 }
1650 EXPORT_SYMBOL(udp_encap_enable);
1651 
1652 /* returns:
1653  *  -1: error
1654  *   0: success
1655  *  >0: "udp encap" protocol resubmission
1656  *
1657  * Note that in the success and error cases, the skb is assumed to
1658  * have either been requeued or freed.
1659  */
1660 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1661 {
1662 	struct udp_sock *up = udp_sk(sk);
1663 	int is_udplite = IS_UDPLITE(sk);
1664 
1665 	/*
1666 	 *	Charge it to the socket, dropping if the queue is full.
1667 	 */
1668 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1669 		goto drop;
1670 	nf_reset(skb);
1671 
1672 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1673 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1674 
1675 		/*
1676 		 * This is an encapsulation socket so pass the skb to
1677 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1678 		 * fall through and pass this up the UDP socket.
1679 		 * up->encap_rcv() returns the following value:
1680 		 * =0 if skb was successfully passed to the encap
1681 		 *    handler or was discarded by it.
1682 		 * >0 if skb should be passed on to UDP.
1683 		 * <0 if skb should be resubmitted as proto -N
1684 		 */
1685 
1686 		/* if we're overly short, let UDP handle it */
1687 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1688 		if (encap_rcv) {
1689 			int ret;
1690 
1691 			/* Verify checksum before giving to encap */
1692 			if (udp_lib_checksum_complete(skb))
1693 				goto csum_error;
1694 
1695 			ret = encap_rcv(sk, skb);
1696 			if (ret <= 0) {
1697 				__UDP_INC_STATS(sock_net(sk),
1698 						UDP_MIB_INDATAGRAMS,
1699 						is_udplite);
1700 				return -ret;
1701 			}
1702 		}
1703 
1704 		/* FALLTHROUGH -- it's a UDP Packet */
1705 	}
1706 
1707 	/*
1708 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1709 	 */
1710 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1711 
1712 		/*
1713 		 * MIB statistics other than incrementing the error count are
1714 		 * disabled for the following two types of errors: these depend
1715 		 * on the application settings, not on the functioning of the
1716 		 * protocol stack as such.
1717 		 *
1718 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1719 		 * way ... to ... at least let the receiving application block
1720 		 * delivery of packets with coverage values less than a value
1721 		 * provided by the application."
1722 		 */
1723 		if (up->pcrlen == 0) {          /* full coverage was set  */
1724 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1725 					    UDP_SKB_CB(skb)->cscov, skb->len);
1726 			goto drop;
1727 		}
1728 		/* The next case involves violating the min. coverage requested
1729 		 * by the receiver. This is subtle: if receiver wants x and x is
1730 		 * greater than the buffersize/MTU then receiver will complain
1731 		 * that it wants x while sender emits packets of smaller size y.
1732 		 * Therefore the above ...()->partial_cov statement is essential.
1733 		 */
1734 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1735 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1736 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1737 			goto drop;
1738 		}
1739 	}
1740 
1741 	if (rcu_access_pointer(sk->sk_filter) &&
1742 	    udp_lib_checksum_complete(skb))
1743 			goto csum_error;
1744 
1745 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1746 		goto drop;
1747 
1748 	udp_csum_pull_header(skb);
1749 
1750 	ipv4_pktinfo_prepare(sk, skb);
1751 	return __udp_queue_rcv_skb(sk, skb);
1752 
1753 csum_error:
1754 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1755 drop:
1756 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1757 	atomic_inc(&sk->sk_drops);
1758 	kfree_skb(skb);
1759 	return -1;
1760 }
1761 
1762 /* For TCP sockets, sk_rx_dst is protected by socket lock
1763  * For UDP, we use xchg() to guard against concurrent changes.
1764  */
1765 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1766 {
1767 	struct dst_entry *old;
1768 
1769 	dst_hold(dst);
1770 	old = xchg(&sk->sk_rx_dst, dst);
1771 	dst_release(old);
1772 }
1773 
1774 /*
1775  *	Multicasts and broadcasts go to each listener.
1776  *
1777  *	Note: called only from the BH handler context.
1778  */
1779 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1780 				    struct udphdr  *uh,
1781 				    __be32 saddr, __be32 daddr,
1782 				    struct udp_table *udptable,
1783 				    int proto)
1784 {
1785 	struct sock *sk, *first = NULL;
1786 	unsigned short hnum = ntohs(uh->dest);
1787 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1788 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1789 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1790 	int dif = skb->dev->ifindex;
1791 	struct hlist_node *node;
1792 	struct sk_buff *nskb;
1793 
1794 	if (use_hash2) {
1795 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1796 			    udptable->mask;
1797 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1798 start_lookup:
1799 		hslot = &udptable->hash2[hash2];
1800 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1801 	}
1802 
1803 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1804 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1805 					 uh->source, saddr, dif, hnum))
1806 			continue;
1807 
1808 		if (!first) {
1809 			first = sk;
1810 			continue;
1811 		}
1812 		nskb = skb_clone(skb, GFP_ATOMIC);
1813 
1814 		if (unlikely(!nskb)) {
1815 			atomic_inc(&sk->sk_drops);
1816 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1817 					IS_UDPLITE(sk));
1818 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1819 					IS_UDPLITE(sk));
1820 			continue;
1821 		}
1822 		if (udp_queue_rcv_skb(sk, nskb) > 0)
1823 			consume_skb(nskb);
1824 	}
1825 
1826 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1827 	if (use_hash2 && hash2 != hash2_any) {
1828 		hash2 = hash2_any;
1829 		goto start_lookup;
1830 	}
1831 
1832 	if (first) {
1833 		if (udp_queue_rcv_skb(first, skb) > 0)
1834 			consume_skb(skb);
1835 	} else {
1836 		kfree_skb(skb);
1837 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
1838 				proto == IPPROTO_UDPLITE);
1839 	}
1840 	return 0;
1841 }
1842 
1843 /* Initialize UDP checksum. If exited with zero value (success),
1844  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1845  * Otherwise, csum completion requires chacksumming packet body,
1846  * including udp header and folding it to skb->csum.
1847  */
1848 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1849 				 int proto)
1850 {
1851 	int err;
1852 
1853 	UDP_SKB_CB(skb)->partial_cov = 0;
1854 	UDP_SKB_CB(skb)->cscov = skb->len;
1855 
1856 	if (proto == IPPROTO_UDPLITE) {
1857 		err = udplite_checksum_init(skb, uh);
1858 		if (err)
1859 			return err;
1860 	}
1861 
1862 	/* Note, we are only interested in != 0 or == 0, thus the
1863 	 * force to int.
1864 	 */
1865 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
1866 							 inet_compute_pseudo);
1867 }
1868 
1869 /*
1870  *	All we need to do is get the socket, and then do a checksum.
1871  */
1872 
1873 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1874 		   int proto)
1875 {
1876 	struct sock *sk;
1877 	struct udphdr *uh;
1878 	unsigned short ulen;
1879 	struct rtable *rt = skb_rtable(skb);
1880 	__be32 saddr, daddr;
1881 	struct net *net = dev_net(skb->dev);
1882 
1883 	/*
1884 	 *  Validate the packet.
1885 	 */
1886 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1887 		goto drop;		/* No space for header. */
1888 
1889 	uh   = udp_hdr(skb);
1890 	ulen = ntohs(uh->len);
1891 	saddr = ip_hdr(skb)->saddr;
1892 	daddr = ip_hdr(skb)->daddr;
1893 
1894 	if (ulen > skb->len)
1895 		goto short_packet;
1896 
1897 	if (proto == IPPROTO_UDP) {
1898 		/* UDP validates ulen. */
1899 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1900 			goto short_packet;
1901 		uh = udp_hdr(skb);
1902 	}
1903 
1904 	if (udp4_csum_init(skb, uh, proto))
1905 		goto csum_error;
1906 
1907 	sk = skb_steal_sock(skb);
1908 	if (sk) {
1909 		struct dst_entry *dst = skb_dst(skb);
1910 		int ret;
1911 
1912 		if (unlikely(sk->sk_rx_dst != dst))
1913 			udp_sk_rx_dst_set(sk, dst);
1914 
1915 		ret = udp_queue_rcv_skb(sk, skb);
1916 		sock_put(sk);
1917 		/* a return value > 0 means to resubmit the input, but
1918 		 * it wants the return to be -protocol, or 0
1919 		 */
1920 		if (ret > 0)
1921 			return -ret;
1922 		return 0;
1923 	}
1924 
1925 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1926 		return __udp4_lib_mcast_deliver(net, skb, uh,
1927 						saddr, daddr, udptable, proto);
1928 
1929 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1930 	if (sk) {
1931 		int ret;
1932 
1933 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1934 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1935 						 inet_compute_pseudo);
1936 
1937 		ret = udp_queue_rcv_skb(sk, skb);
1938 
1939 		/* a return value > 0 means to resubmit the input, but
1940 		 * it wants the return to be -protocol, or 0
1941 		 */
1942 		if (ret > 0)
1943 			return -ret;
1944 		return 0;
1945 	}
1946 
1947 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1948 		goto drop;
1949 	nf_reset(skb);
1950 
1951 	/* No socket. Drop packet silently, if checksum is wrong */
1952 	if (udp_lib_checksum_complete(skb))
1953 		goto csum_error;
1954 
1955 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1956 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1957 
1958 	/*
1959 	 * Hmm.  We got an UDP packet to a port to which we
1960 	 * don't wanna listen.  Ignore it.
1961 	 */
1962 	kfree_skb(skb);
1963 	return 0;
1964 
1965 short_packet:
1966 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1967 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1968 			    &saddr, ntohs(uh->source),
1969 			    ulen, skb->len,
1970 			    &daddr, ntohs(uh->dest));
1971 	goto drop;
1972 
1973 csum_error:
1974 	/*
1975 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1976 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1977 	 */
1978 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1979 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1980 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1981 			    ulen);
1982 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1983 drop:
1984 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1985 	kfree_skb(skb);
1986 	return 0;
1987 }
1988 
1989 /* We can only early demux multicast if there is a single matching socket.
1990  * If more than one socket found returns NULL
1991  */
1992 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1993 						  __be16 loc_port, __be32 loc_addr,
1994 						  __be16 rmt_port, __be32 rmt_addr,
1995 						  int dif)
1996 {
1997 	struct sock *sk, *result;
1998 	unsigned short hnum = ntohs(loc_port);
1999 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2000 	struct udp_hslot *hslot = &udp_table.hash[slot];
2001 
2002 	/* Do not bother scanning a too big list */
2003 	if (hslot->count > 10)
2004 		return NULL;
2005 
2006 	result = NULL;
2007 	sk_for_each_rcu(sk, &hslot->head) {
2008 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2009 					rmt_port, rmt_addr, dif, hnum)) {
2010 			if (result)
2011 				return NULL;
2012 			result = sk;
2013 		}
2014 	}
2015 
2016 	return result;
2017 }
2018 
2019 /* For unicast we should only early demux connected sockets or we can
2020  * break forwarding setups.  The chains here can be long so only check
2021  * if the first socket is an exact match and if not move on.
2022  */
2023 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2024 					    __be16 loc_port, __be32 loc_addr,
2025 					    __be16 rmt_port, __be32 rmt_addr,
2026 					    int dif)
2027 {
2028 	unsigned short hnum = ntohs(loc_port);
2029 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2030 	unsigned int slot2 = hash2 & udp_table.mask;
2031 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2032 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2033 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2034 	struct sock *sk;
2035 
2036 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2037 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2038 			       loc_addr, ports, dif))
2039 			return sk;
2040 		/* Only check first socket in chain */
2041 		break;
2042 	}
2043 	return NULL;
2044 }
2045 
2046 void udp_v4_early_demux(struct sk_buff *skb)
2047 {
2048 	struct net *net = dev_net(skb->dev);
2049 	const struct iphdr *iph;
2050 	const struct udphdr *uh;
2051 	struct sock *sk = NULL;
2052 	struct dst_entry *dst;
2053 	int dif = skb->dev->ifindex;
2054 	int ours;
2055 
2056 	/* validate the packet */
2057 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2058 		return;
2059 
2060 	iph = ip_hdr(skb);
2061 	uh = udp_hdr(skb);
2062 
2063 	if (skb->pkt_type == PACKET_BROADCAST ||
2064 	    skb->pkt_type == PACKET_MULTICAST) {
2065 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
2066 
2067 		if (!in_dev)
2068 			return;
2069 
2070 		/* we are supposed to accept bcast packets */
2071 		if (skb->pkt_type == PACKET_MULTICAST) {
2072 			ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2073 					       iph->protocol);
2074 			if (!ours)
2075 				return;
2076 		}
2077 
2078 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2079 						   uh->source, iph->saddr, dif);
2080 	} else if (skb->pkt_type == PACKET_HOST) {
2081 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2082 					     uh->source, iph->saddr, dif);
2083 	}
2084 
2085 	if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
2086 		return;
2087 
2088 	skb->sk = sk;
2089 	skb->destructor = sock_efree;
2090 	dst = READ_ONCE(sk->sk_rx_dst);
2091 
2092 	if (dst)
2093 		dst = dst_check(dst, 0);
2094 	if (dst) {
2095 		/* DST_NOCACHE can not be used without taking a reference */
2096 		if (dst->flags & DST_NOCACHE) {
2097 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2098 				skb_dst_set(skb, dst);
2099 		} else {
2100 			skb_dst_set_noref(skb, dst);
2101 		}
2102 	}
2103 }
2104 
2105 int udp_rcv(struct sk_buff *skb)
2106 {
2107 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2108 }
2109 
2110 void udp_destroy_sock(struct sock *sk)
2111 {
2112 	struct udp_sock *up = udp_sk(sk);
2113 	bool slow = lock_sock_fast(sk);
2114 	udp_flush_pending_frames(sk);
2115 	unlock_sock_fast(sk, slow);
2116 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2117 		void (*encap_destroy)(struct sock *sk);
2118 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2119 		if (encap_destroy)
2120 			encap_destroy(sk);
2121 	}
2122 }
2123 
2124 /*
2125  *	Socket option code for UDP
2126  */
2127 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2128 		       char __user *optval, unsigned int optlen,
2129 		       int (*push_pending_frames)(struct sock *))
2130 {
2131 	struct udp_sock *up = udp_sk(sk);
2132 	int val, valbool;
2133 	int err = 0;
2134 	int is_udplite = IS_UDPLITE(sk);
2135 
2136 	if (optlen < sizeof(int))
2137 		return -EINVAL;
2138 
2139 	if (get_user(val, (int __user *)optval))
2140 		return -EFAULT;
2141 
2142 	valbool = val ? 1 : 0;
2143 
2144 	switch (optname) {
2145 	case UDP_CORK:
2146 		if (val != 0) {
2147 			up->corkflag = 1;
2148 		} else {
2149 			up->corkflag = 0;
2150 			lock_sock(sk);
2151 			push_pending_frames(sk);
2152 			release_sock(sk);
2153 		}
2154 		break;
2155 
2156 	case UDP_ENCAP:
2157 		switch (val) {
2158 		case 0:
2159 		case UDP_ENCAP_ESPINUDP:
2160 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2161 			up->encap_rcv = xfrm4_udp_encap_rcv;
2162 			/* FALLTHROUGH */
2163 		case UDP_ENCAP_L2TPINUDP:
2164 			up->encap_type = val;
2165 			udp_encap_enable();
2166 			break;
2167 		default:
2168 			err = -ENOPROTOOPT;
2169 			break;
2170 		}
2171 		break;
2172 
2173 	case UDP_NO_CHECK6_TX:
2174 		up->no_check6_tx = valbool;
2175 		break;
2176 
2177 	case UDP_NO_CHECK6_RX:
2178 		up->no_check6_rx = valbool;
2179 		break;
2180 
2181 	/*
2182 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2183 	 */
2184 	/* The sender sets actual checksum coverage length via this option.
2185 	 * The case coverage > packet length is handled by send module. */
2186 	case UDPLITE_SEND_CSCOV:
2187 		if (!is_udplite)         /* Disable the option on UDP sockets */
2188 			return -ENOPROTOOPT;
2189 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2190 			val = 8;
2191 		else if (val > USHRT_MAX)
2192 			val = USHRT_MAX;
2193 		up->pcslen = val;
2194 		up->pcflag |= UDPLITE_SEND_CC;
2195 		break;
2196 
2197 	/* The receiver specifies a minimum checksum coverage value. To make
2198 	 * sense, this should be set to at least 8 (as done below). If zero is
2199 	 * used, this again means full checksum coverage.                     */
2200 	case UDPLITE_RECV_CSCOV:
2201 		if (!is_udplite)         /* Disable the option on UDP sockets */
2202 			return -ENOPROTOOPT;
2203 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2204 			val = 8;
2205 		else if (val > USHRT_MAX)
2206 			val = USHRT_MAX;
2207 		up->pcrlen = val;
2208 		up->pcflag |= UDPLITE_RECV_CC;
2209 		break;
2210 
2211 	default:
2212 		err = -ENOPROTOOPT;
2213 		break;
2214 	}
2215 
2216 	return err;
2217 }
2218 EXPORT_SYMBOL(udp_lib_setsockopt);
2219 
2220 int udp_setsockopt(struct sock *sk, int level, int optname,
2221 		   char __user *optval, unsigned int optlen)
2222 {
2223 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2224 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2225 					  udp_push_pending_frames);
2226 	return ip_setsockopt(sk, level, optname, optval, optlen);
2227 }
2228 
2229 #ifdef CONFIG_COMPAT
2230 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2231 			  char __user *optval, unsigned int optlen)
2232 {
2233 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2234 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2235 					  udp_push_pending_frames);
2236 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2237 }
2238 #endif
2239 
2240 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2241 		       char __user *optval, int __user *optlen)
2242 {
2243 	struct udp_sock *up = udp_sk(sk);
2244 	int val, len;
2245 
2246 	if (get_user(len, optlen))
2247 		return -EFAULT;
2248 
2249 	len = min_t(unsigned int, len, sizeof(int));
2250 
2251 	if (len < 0)
2252 		return -EINVAL;
2253 
2254 	switch (optname) {
2255 	case UDP_CORK:
2256 		val = up->corkflag;
2257 		break;
2258 
2259 	case UDP_ENCAP:
2260 		val = up->encap_type;
2261 		break;
2262 
2263 	case UDP_NO_CHECK6_TX:
2264 		val = up->no_check6_tx;
2265 		break;
2266 
2267 	case UDP_NO_CHECK6_RX:
2268 		val = up->no_check6_rx;
2269 		break;
2270 
2271 	/* The following two cannot be changed on UDP sockets, the return is
2272 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2273 	case UDPLITE_SEND_CSCOV:
2274 		val = up->pcslen;
2275 		break;
2276 
2277 	case UDPLITE_RECV_CSCOV:
2278 		val = up->pcrlen;
2279 		break;
2280 
2281 	default:
2282 		return -ENOPROTOOPT;
2283 	}
2284 
2285 	if (put_user(len, optlen))
2286 		return -EFAULT;
2287 	if (copy_to_user(optval, &val, len))
2288 		return -EFAULT;
2289 	return 0;
2290 }
2291 EXPORT_SYMBOL(udp_lib_getsockopt);
2292 
2293 int udp_getsockopt(struct sock *sk, int level, int optname,
2294 		   char __user *optval, int __user *optlen)
2295 {
2296 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2297 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2298 	return ip_getsockopt(sk, level, optname, optval, optlen);
2299 }
2300 
2301 #ifdef CONFIG_COMPAT
2302 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2303 				 char __user *optval, int __user *optlen)
2304 {
2305 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2306 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2307 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2308 }
2309 #endif
2310 /**
2311  * 	udp_poll - wait for a UDP event.
2312  *	@file - file struct
2313  *	@sock - socket
2314  *	@wait - poll table
2315  *
2316  *	This is same as datagram poll, except for the special case of
2317  *	blocking sockets. If application is using a blocking fd
2318  *	and a packet with checksum error is in the queue;
2319  *	then it could get return from select indicating data available
2320  *	but then block when reading it. Add special case code
2321  *	to work around these arguably broken applications.
2322  */
2323 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2324 {
2325 	unsigned int mask = datagram_poll(file, sock, wait);
2326 	struct sock *sk = sock->sk;
2327 
2328 	sock_rps_record_flow(sk);
2329 
2330 	/* Check for false positives due to checksum errors */
2331 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2332 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2333 		mask &= ~(POLLIN | POLLRDNORM);
2334 
2335 	return mask;
2336 
2337 }
2338 EXPORT_SYMBOL(udp_poll);
2339 
2340 int udp_abort(struct sock *sk, int err)
2341 {
2342 	lock_sock(sk);
2343 
2344 	sk->sk_err = err;
2345 	sk->sk_error_report(sk);
2346 	__udp_disconnect(sk, 0);
2347 
2348 	release_sock(sk);
2349 
2350 	return 0;
2351 }
2352 EXPORT_SYMBOL_GPL(udp_abort);
2353 
2354 struct proto udp_prot = {
2355 	.name		   = "UDP",
2356 	.owner		   = THIS_MODULE,
2357 	.close		   = udp_lib_close,
2358 	.connect	   = ip4_datagram_connect,
2359 	.disconnect	   = udp_disconnect,
2360 	.ioctl		   = udp_ioctl,
2361 	.init		   = udp_init_sock,
2362 	.destroy	   = udp_destroy_sock,
2363 	.setsockopt	   = udp_setsockopt,
2364 	.getsockopt	   = udp_getsockopt,
2365 	.sendmsg	   = udp_sendmsg,
2366 	.recvmsg	   = udp_recvmsg,
2367 	.sendpage	   = udp_sendpage,
2368 	.release_cb	   = ip4_datagram_release_cb,
2369 	.hash		   = udp_lib_hash,
2370 	.unhash		   = udp_lib_unhash,
2371 	.rehash		   = udp_v4_rehash,
2372 	.get_port	   = udp_v4_get_port,
2373 	.memory_allocated  = &udp_memory_allocated,
2374 	.sysctl_mem	   = sysctl_udp_mem,
2375 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2376 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2377 	.obj_size	   = sizeof(struct udp_sock),
2378 	.h.udp_table	   = &udp_table,
2379 #ifdef CONFIG_COMPAT
2380 	.compat_setsockopt = compat_udp_setsockopt,
2381 	.compat_getsockopt = compat_udp_getsockopt,
2382 #endif
2383 	.diag_destroy	   = udp_abort,
2384 };
2385 EXPORT_SYMBOL(udp_prot);
2386 
2387 /* ------------------------------------------------------------------------ */
2388 #ifdef CONFIG_PROC_FS
2389 
2390 static struct sock *udp_get_first(struct seq_file *seq, int start)
2391 {
2392 	struct sock *sk;
2393 	struct udp_iter_state *state = seq->private;
2394 	struct net *net = seq_file_net(seq);
2395 
2396 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2397 	     ++state->bucket) {
2398 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2399 
2400 		if (hlist_empty(&hslot->head))
2401 			continue;
2402 
2403 		spin_lock_bh(&hslot->lock);
2404 		sk_for_each(sk, &hslot->head) {
2405 			if (!net_eq(sock_net(sk), net))
2406 				continue;
2407 			if (sk->sk_family == state->family)
2408 				goto found;
2409 		}
2410 		spin_unlock_bh(&hslot->lock);
2411 	}
2412 	sk = NULL;
2413 found:
2414 	return sk;
2415 }
2416 
2417 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2418 {
2419 	struct udp_iter_state *state = seq->private;
2420 	struct net *net = seq_file_net(seq);
2421 
2422 	do {
2423 		sk = sk_next(sk);
2424 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2425 
2426 	if (!sk) {
2427 		if (state->bucket <= state->udp_table->mask)
2428 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2429 		return udp_get_first(seq, state->bucket + 1);
2430 	}
2431 	return sk;
2432 }
2433 
2434 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2435 {
2436 	struct sock *sk = udp_get_first(seq, 0);
2437 
2438 	if (sk)
2439 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2440 			--pos;
2441 	return pos ? NULL : sk;
2442 }
2443 
2444 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2445 {
2446 	struct udp_iter_state *state = seq->private;
2447 	state->bucket = MAX_UDP_PORTS;
2448 
2449 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2450 }
2451 
2452 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2453 {
2454 	struct sock *sk;
2455 
2456 	if (v == SEQ_START_TOKEN)
2457 		sk = udp_get_idx(seq, 0);
2458 	else
2459 		sk = udp_get_next(seq, v);
2460 
2461 	++*pos;
2462 	return sk;
2463 }
2464 
2465 static void udp_seq_stop(struct seq_file *seq, void *v)
2466 {
2467 	struct udp_iter_state *state = seq->private;
2468 
2469 	if (state->bucket <= state->udp_table->mask)
2470 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2471 }
2472 
2473 int udp_seq_open(struct inode *inode, struct file *file)
2474 {
2475 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2476 	struct udp_iter_state *s;
2477 	int err;
2478 
2479 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2480 			   sizeof(struct udp_iter_state));
2481 	if (err < 0)
2482 		return err;
2483 
2484 	s = ((struct seq_file *)file->private_data)->private;
2485 	s->family		= afinfo->family;
2486 	s->udp_table		= afinfo->udp_table;
2487 	return err;
2488 }
2489 EXPORT_SYMBOL(udp_seq_open);
2490 
2491 /* ------------------------------------------------------------------------ */
2492 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2493 {
2494 	struct proc_dir_entry *p;
2495 	int rc = 0;
2496 
2497 	afinfo->seq_ops.start		= udp_seq_start;
2498 	afinfo->seq_ops.next		= udp_seq_next;
2499 	afinfo->seq_ops.stop		= udp_seq_stop;
2500 
2501 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2502 			     afinfo->seq_fops, afinfo);
2503 	if (!p)
2504 		rc = -ENOMEM;
2505 	return rc;
2506 }
2507 EXPORT_SYMBOL(udp_proc_register);
2508 
2509 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2510 {
2511 	remove_proc_entry(afinfo->name, net->proc_net);
2512 }
2513 EXPORT_SYMBOL(udp_proc_unregister);
2514 
2515 /* ------------------------------------------------------------------------ */
2516 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2517 		int bucket)
2518 {
2519 	struct inet_sock *inet = inet_sk(sp);
2520 	__be32 dest = inet->inet_daddr;
2521 	__be32 src  = inet->inet_rcv_saddr;
2522 	__u16 destp	  = ntohs(inet->inet_dport);
2523 	__u16 srcp	  = ntohs(inet->inet_sport);
2524 
2525 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2526 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2527 		bucket, src, srcp, dest, destp, sp->sk_state,
2528 		sk_wmem_alloc_get(sp),
2529 		sk_rmem_alloc_get(sp),
2530 		0, 0L, 0,
2531 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2532 		0, sock_i_ino(sp),
2533 		atomic_read(&sp->sk_refcnt), sp,
2534 		atomic_read(&sp->sk_drops));
2535 }
2536 
2537 int udp4_seq_show(struct seq_file *seq, void *v)
2538 {
2539 	seq_setwidth(seq, 127);
2540 	if (v == SEQ_START_TOKEN)
2541 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2542 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2543 			   "inode ref pointer drops");
2544 	else {
2545 		struct udp_iter_state *state = seq->private;
2546 
2547 		udp4_format_sock(v, seq, state->bucket);
2548 	}
2549 	seq_pad(seq, '\n');
2550 	return 0;
2551 }
2552 
2553 static const struct file_operations udp_afinfo_seq_fops = {
2554 	.owner    = THIS_MODULE,
2555 	.open     = udp_seq_open,
2556 	.read     = seq_read,
2557 	.llseek   = seq_lseek,
2558 	.release  = seq_release_net
2559 };
2560 
2561 /* ------------------------------------------------------------------------ */
2562 static struct udp_seq_afinfo udp4_seq_afinfo = {
2563 	.name		= "udp",
2564 	.family		= AF_INET,
2565 	.udp_table	= &udp_table,
2566 	.seq_fops	= &udp_afinfo_seq_fops,
2567 	.seq_ops	= {
2568 		.show		= udp4_seq_show,
2569 	},
2570 };
2571 
2572 static int __net_init udp4_proc_init_net(struct net *net)
2573 {
2574 	return udp_proc_register(net, &udp4_seq_afinfo);
2575 }
2576 
2577 static void __net_exit udp4_proc_exit_net(struct net *net)
2578 {
2579 	udp_proc_unregister(net, &udp4_seq_afinfo);
2580 }
2581 
2582 static struct pernet_operations udp4_net_ops = {
2583 	.init = udp4_proc_init_net,
2584 	.exit = udp4_proc_exit_net,
2585 };
2586 
2587 int __init udp4_proc_init(void)
2588 {
2589 	return register_pernet_subsys(&udp4_net_ops);
2590 }
2591 
2592 void udp4_proc_exit(void)
2593 {
2594 	unregister_pernet_subsys(&udp4_net_ops);
2595 }
2596 #endif /* CONFIG_PROC_FS */
2597 
2598 static __initdata unsigned long uhash_entries;
2599 static int __init set_uhash_entries(char *str)
2600 {
2601 	ssize_t ret;
2602 
2603 	if (!str)
2604 		return 0;
2605 
2606 	ret = kstrtoul(str, 0, &uhash_entries);
2607 	if (ret)
2608 		return 0;
2609 
2610 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2611 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2612 	return 1;
2613 }
2614 __setup("uhash_entries=", set_uhash_entries);
2615 
2616 void __init udp_table_init(struct udp_table *table, const char *name)
2617 {
2618 	unsigned int i;
2619 
2620 	table->hash = alloc_large_system_hash(name,
2621 					      2 * sizeof(struct udp_hslot),
2622 					      uhash_entries,
2623 					      21, /* one slot per 2 MB */
2624 					      0,
2625 					      &table->log,
2626 					      &table->mask,
2627 					      UDP_HTABLE_SIZE_MIN,
2628 					      64 * 1024);
2629 
2630 	table->hash2 = table->hash + (table->mask + 1);
2631 	for (i = 0; i <= table->mask; i++) {
2632 		INIT_HLIST_HEAD(&table->hash[i].head);
2633 		table->hash[i].count = 0;
2634 		spin_lock_init(&table->hash[i].lock);
2635 	}
2636 	for (i = 0; i <= table->mask; i++) {
2637 		INIT_HLIST_HEAD(&table->hash2[i].head);
2638 		table->hash2[i].count = 0;
2639 		spin_lock_init(&table->hash2[i].lock);
2640 	}
2641 }
2642 
2643 u32 udp_flow_hashrnd(void)
2644 {
2645 	static u32 hashrnd __read_mostly;
2646 
2647 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2648 
2649 	return hashrnd;
2650 }
2651 EXPORT_SYMBOL(udp_flow_hashrnd);
2652 
2653 void __init udp_init(void)
2654 {
2655 	unsigned long limit;
2656 	unsigned int i;
2657 
2658 	udp_table_init(&udp_table, "UDP");
2659 	limit = nr_free_buffer_pages() / 8;
2660 	limit = max(limit, 128UL);
2661 	sysctl_udp_mem[0] = limit / 4 * 3;
2662 	sysctl_udp_mem[1] = limit;
2663 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2664 
2665 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2666 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2667 
2668 	/* 16 spinlocks per cpu */
2669 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2670 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2671 				GFP_KERNEL);
2672 	if (!udp_busylocks)
2673 		panic("UDP: failed to alloc udp_busylocks\n");
2674 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2675 		spin_lock_init(udp_busylocks + i);
2676 }
2677