xref: /openbmc/linux/net/ipv4/udp.c (revision 3932b9ca)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/inet_hashtables.h>
107 #include <net/route.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115 
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118 
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121 
122 int sysctl_udp_rmem_min __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_rmem_min);
124 
125 int sysctl_udp_wmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_wmem_min);
127 
128 atomic_long_t udp_memory_allocated;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133 
134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 			       const struct udp_hslot *hslot,
136 			       unsigned long *bitmap,
137 			       struct sock *sk,
138 			       int (*saddr_comp)(const struct sock *sk1,
139 						 const struct sock *sk2),
140 			       unsigned int log)
141 {
142 	struct sock *sk2;
143 	struct hlist_nulls_node *node;
144 	kuid_t uid = sock_i_uid(sk);
145 
146 	sk_nulls_for_each(sk2, node, &hslot->head)
147 		if (net_eq(sock_net(sk2), net) &&
148 		    sk2 != sk &&
149 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
150 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
151 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
152 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
153 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
154 		      !uid_eq(uid, sock_i_uid(sk2))) &&
155 		    (*saddr_comp)(sk, sk2)) {
156 			if (bitmap)
157 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 					  bitmap);
159 			else
160 				return 1;
161 		}
162 	return 0;
163 }
164 
165 /*
166  * Note: we still hold spinlock of primary hash chain, so no other writer
167  * can insert/delete a socket with local_port == num
168  */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 			       struct udp_hslot *hslot2,
171 			       struct sock *sk,
172 			       int (*saddr_comp)(const struct sock *sk1,
173 						 const struct sock *sk2))
174 {
175 	struct sock *sk2;
176 	struct hlist_nulls_node *node;
177 	kuid_t uid = sock_i_uid(sk);
178 	int res = 0;
179 
180 	spin_lock(&hslot2->lock);
181 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
182 		if (net_eq(sock_net(sk2), net) &&
183 		    sk2 != sk &&
184 		    (udp_sk(sk2)->udp_port_hash == num) &&
185 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
186 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 		      !uid_eq(uid, sock_i_uid(sk2))) &&
190 		    (*saddr_comp)(sk, sk2)) {
191 			res = 1;
192 			break;
193 		}
194 	spin_unlock(&hslot2->lock);
195 	return res;
196 }
197 
198 /**
199  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
200  *
201  *  @sk:          socket struct in question
202  *  @snum:        port number to look up
203  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
204  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
205  *                   with NULL address
206  */
207 int udp_lib_get_port(struct sock *sk, unsigned short snum,
208 		       int (*saddr_comp)(const struct sock *sk1,
209 					 const struct sock *sk2),
210 		     unsigned int hash2_nulladdr)
211 {
212 	struct udp_hslot *hslot, *hslot2;
213 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
214 	int    error = 1;
215 	struct net *net = sock_net(sk);
216 
217 	if (!snum) {
218 		int low, high, remaining;
219 		unsigned int rand;
220 		unsigned short first, last;
221 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
222 
223 		inet_get_local_port_range(net, &low, &high);
224 		remaining = (high - low) + 1;
225 
226 		rand = prandom_u32();
227 		first = (((u64)rand * remaining) >> 32) + low;
228 		/*
229 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
230 		 */
231 		rand = (rand | 1) * (udptable->mask + 1);
232 		last = first + udptable->mask + 1;
233 		do {
234 			hslot = udp_hashslot(udptable, net, first);
235 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
236 			spin_lock_bh(&hslot->lock);
237 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
238 					    saddr_comp, udptable->log);
239 
240 			snum = first;
241 			/*
242 			 * Iterate on all possible values of snum for this hash.
243 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
244 			 * give us randomization and full range coverage.
245 			 */
246 			do {
247 				if (low <= snum && snum <= high &&
248 				    !test_bit(snum >> udptable->log, bitmap) &&
249 				    !inet_is_local_reserved_port(net, snum))
250 					goto found;
251 				snum += rand;
252 			} while (snum != first);
253 			spin_unlock_bh(&hslot->lock);
254 		} while (++first != last);
255 		goto fail;
256 	} else {
257 		hslot = udp_hashslot(udptable, net, snum);
258 		spin_lock_bh(&hslot->lock);
259 		if (hslot->count > 10) {
260 			int exist;
261 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
262 
263 			slot2          &= udptable->mask;
264 			hash2_nulladdr &= udptable->mask;
265 
266 			hslot2 = udp_hashslot2(udptable, slot2);
267 			if (hslot->count < hslot2->count)
268 				goto scan_primary_hash;
269 
270 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
271 						     sk, saddr_comp);
272 			if (!exist && (hash2_nulladdr != slot2)) {
273 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
274 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
275 							     sk, saddr_comp);
276 			}
277 			if (exist)
278 				goto fail_unlock;
279 			else
280 				goto found;
281 		}
282 scan_primary_hash:
283 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
284 					saddr_comp, 0))
285 			goto fail_unlock;
286 	}
287 found:
288 	inet_sk(sk)->inet_num = snum;
289 	udp_sk(sk)->udp_port_hash = snum;
290 	udp_sk(sk)->udp_portaddr_hash ^= snum;
291 	if (sk_unhashed(sk)) {
292 		sk_nulls_add_node_rcu(sk, &hslot->head);
293 		hslot->count++;
294 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
295 
296 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
297 		spin_lock(&hslot2->lock);
298 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
299 					 &hslot2->head);
300 		hslot2->count++;
301 		spin_unlock(&hslot2->lock);
302 	}
303 	error = 0;
304 fail_unlock:
305 	spin_unlock_bh(&hslot->lock);
306 fail:
307 	return error;
308 }
309 EXPORT_SYMBOL(udp_lib_get_port);
310 
311 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
312 {
313 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
314 
315 	return 	(!ipv6_only_sock(sk2)  &&
316 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
317 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
318 }
319 
320 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
321 				       unsigned int port)
322 {
323 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
324 }
325 
326 int udp_v4_get_port(struct sock *sk, unsigned short snum)
327 {
328 	unsigned int hash2_nulladdr =
329 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
330 	unsigned int hash2_partial =
331 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
332 
333 	/* precompute partial secondary hash */
334 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
335 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
336 }
337 
338 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
339 			 unsigned short hnum,
340 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
341 {
342 	int score = -1;
343 
344 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
345 			!ipv6_only_sock(sk)) {
346 		struct inet_sock *inet = inet_sk(sk);
347 
348 		score = (sk->sk_family == PF_INET ? 2 : 1);
349 		if (inet->inet_rcv_saddr) {
350 			if (inet->inet_rcv_saddr != daddr)
351 				return -1;
352 			score += 4;
353 		}
354 		if (inet->inet_daddr) {
355 			if (inet->inet_daddr != saddr)
356 				return -1;
357 			score += 4;
358 		}
359 		if (inet->inet_dport) {
360 			if (inet->inet_dport != sport)
361 				return -1;
362 			score += 4;
363 		}
364 		if (sk->sk_bound_dev_if) {
365 			if (sk->sk_bound_dev_if != dif)
366 				return -1;
367 			score += 4;
368 		}
369 	}
370 	return score;
371 }
372 
373 /*
374  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
375  */
376 static inline int compute_score2(struct sock *sk, struct net *net,
377 				 __be32 saddr, __be16 sport,
378 				 __be32 daddr, unsigned int hnum, int dif)
379 {
380 	int score = -1;
381 
382 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
383 		struct inet_sock *inet = inet_sk(sk);
384 
385 		if (inet->inet_rcv_saddr != daddr)
386 			return -1;
387 		if (inet->inet_num != hnum)
388 			return -1;
389 
390 		score = (sk->sk_family == PF_INET ? 2 : 1);
391 		if (inet->inet_daddr) {
392 			if (inet->inet_daddr != saddr)
393 				return -1;
394 			score += 4;
395 		}
396 		if (inet->inet_dport) {
397 			if (inet->inet_dport != sport)
398 				return -1;
399 			score += 4;
400 		}
401 		if (sk->sk_bound_dev_if) {
402 			if (sk->sk_bound_dev_if != dif)
403 				return -1;
404 			score += 4;
405 		}
406 	}
407 	return score;
408 }
409 
410 static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
411 				 const __u16 lport, const __be32 faddr,
412 				 const __be16 fport)
413 {
414 	static u32 udp_ehash_secret __read_mostly;
415 
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 
422 
423 /* called with read_rcu_lock() */
424 static struct sock *udp4_lib_lookup2(struct net *net,
425 		__be32 saddr, __be16 sport,
426 		__be32 daddr, unsigned int hnum, int dif,
427 		struct udp_hslot *hslot2, unsigned int slot2)
428 {
429 	struct sock *sk, *result;
430 	struct hlist_nulls_node *node;
431 	int score, badness, matches = 0, reuseport = 0;
432 	u32 hash = 0;
433 
434 begin:
435 	result = NULL;
436 	badness = 0;
437 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
438 		score = compute_score2(sk, net, saddr, sport,
439 				      daddr, hnum, dif);
440 		if (score > badness) {
441 			result = sk;
442 			badness = score;
443 			reuseport = sk->sk_reuseport;
444 			if (reuseport) {
445 				hash = udp_ehashfn(net, daddr, hnum,
446 						   saddr, sport);
447 				matches = 1;
448 			}
449 		} else if (score == badness && reuseport) {
450 			matches++;
451 			if (((u64)hash * matches) >> 32 == 0)
452 				result = sk;
453 			hash = next_pseudo_random32(hash);
454 		}
455 	}
456 	/*
457 	 * if the nulls value we got at the end of this lookup is
458 	 * not the expected one, we must restart lookup.
459 	 * We probably met an item that was moved to another chain.
460 	 */
461 	if (get_nulls_value(node) != slot2)
462 		goto begin;
463 	if (result) {
464 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
465 			result = NULL;
466 		else if (unlikely(compute_score2(result, net, saddr, sport,
467 				  daddr, hnum, dif) < badness)) {
468 			sock_put(result);
469 			goto begin;
470 		}
471 	}
472 	return result;
473 }
474 
475 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
476  * harder than this. -DaveM
477  */
478 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
479 		__be16 sport, __be32 daddr, __be16 dport,
480 		int dif, struct udp_table *udptable)
481 {
482 	struct sock *sk, *result;
483 	struct hlist_nulls_node *node;
484 	unsigned short hnum = ntohs(dport);
485 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
486 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
487 	int score, badness, matches = 0, reuseport = 0;
488 	u32 hash = 0;
489 
490 	rcu_read_lock();
491 	if (hslot->count > 10) {
492 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
493 		slot2 = hash2 & udptable->mask;
494 		hslot2 = &udptable->hash2[slot2];
495 		if (hslot->count < hslot2->count)
496 			goto begin;
497 
498 		result = udp4_lib_lookup2(net, saddr, sport,
499 					  daddr, hnum, dif,
500 					  hslot2, slot2);
501 		if (!result) {
502 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
503 			slot2 = hash2 & udptable->mask;
504 			hslot2 = &udptable->hash2[slot2];
505 			if (hslot->count < hslot2->count)
506 				goto begin;
507 
508 			result = udp4_lib_lookup2(net, saddr, sport,
509 						  htonl(INADDR_ANY), hnum, dif,
510 						  hslot2, slot2);
511 		}
512 		rcu_read_unlock();
513 		return result;
514 	}
515 begin:
516 	result = NULL;
517 	badness = 0;
518 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
519 		score = compute_score(sk, net, saddr, hnum, sport,
520 				      daddr, dport, dif);
521 		if (score > badness) {
522 			result = sk;
523 			badness = score;
524 			reuseport = sk->sk_reuseport;
525 			if (reuseport) {
526 				hash = udp_ehashfn(net, daddr, hnum,
527 						   saddr, sport);
528 				matches = 1;
529 			}
530 		} else if (score == badness && reuseport) {
531 			matches++;
532 			if (((u64)hash * matches) >> 32 == 0)
533 				result = sk;
534 			hash = next_pseudo_random32(hash);
535 		}
536 	}
537 	/*
538 	 * if the nulls value we got at the end of this lookup is
539 	 * not the expected one, we must restart lookup.
540 	 * We probably met an item that was moved to another chain.
541 	 */
542 	if (get_nulls_value(node) != slot)
543 		goto begin;
544 
545 	if (result) {
546 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
547 			result = NULL;
548 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
549 				  daddr, dport, dif) < badness)) {
550 			sock_put(result);
551 			goto begin;
552 		}
553 	}
554 	rcu_read_unlock();
555 	return result;
556 }
557 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
558 
559 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
560 						 __be16 sport, __be16 dport,
561 						 struct udp_table *udptable)
562 {
563 	const struct iphdr *iph = ip_hdr(skb);
564 
565 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
566 				 iph->daddr, dport, inet_iif(skb),
567 				 udptable);
568 }
569 
570 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
571 			     __be32 daddr, __be16 dport, int dif)
572 {
573 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
574 }
575 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
576 
577 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
578 				       __be16 loc_port, __be32 loc_addr,
579 				       __be16 rmt_port, __be32 rmt_addr,
580 				       int dif, unsigned short hnum)
581 {
582 	struct inet_sock *inet = inet_sk(sk);
583 
584 	if (!net_eq(sock_net(sk), net) ||
585 	    udp_sk(sk)->udp_port_hash != hnum ||
586 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
587 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
588 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
589 	    ipv6_only_sock(sk) ||
590 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
591 		return false;
592 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
593 		return false;
594 	return true;
595 }
596 
597 /*
598  * This routine is called by the ICMP module when it gets some
599  * sort of error condition.  If err < 0 then the socket should
600  * be closed and the error returned to the user.  If err > 0
601  * it's just the icmp type << 8 | icmp code.
602  * Header points to the ip header of the error packet. We move
603  * on past this. Then (as it used to claim before adjustment)
604  * header points to the first 8 bytes of the udp header.  We need
605  * to find the appropriate port.
606  */
607 
608 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
609 {
610 	struct inet_sock *inet;
611 	const struct iphdr *iph = (const struct iphdr *)skb->data;
612 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
613 	const int type = icmp_hdr(skb)->type;
614 	const int code = icmp_hdr(skb)->code;
615 	struct sock *sk;
616 	int harderr;
617 	int err;
618 	struct net *net = dev_net(skb->dev);
619 
620 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
621 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
622 	if (sk == NULL) {
623 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
624 		return;	/* No socket for error */
625 	}
626 
627 	err = 0;
628 	harderr = 0;
629 	inet = inet_sk(sk);
630 
631 	switch (type) {
632 	default:
633 	case ICMP_TIME_EXCEEDED:
634 		err = EHOSTUNREACH;
635 		break;
636 	case ICMP_SOURCE_QUENCH:
637 		goto out;
638 	case ICMP_PARAMETERPROB:
639 		err = EPROTO;
640 		harderr = 1;
641 		break;
642 	case ICMP_DEST_UNREACH:
643 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
644 			ipv4_sk_update_pmtu(skb, sk, info);
645 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
646 				err = EMSGSIZE;
647 				harderr = 1;
648 				break;
649 			}
650 			goto out;
651 		}
652 		err = EHOSTUNREACH;
653 		if (code <= NR_ICMP_UNREACH) {
654 			harderr = icmp_err_convert[code].fatal;
655 			err = icmp_err_convert[code].errno;
656 		}
657 		break;
658 	case ICMP_REDIRECT:
659 		ipv4_sk_redirect(skb, sk);
660 		goto out;
661 	}
662 
663 	/*
664 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
665 	 *	4.1.3.3.
666 	 */
667 	if (!inet->recverr) {
668 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
669 			goto out;
670 	} else
671 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
672 
673 	sk->sk_err = err;
674 	sk->sk_error_report(sk);
675 out:
676 	sock_put(sk);
677 }
678 
679 void udp_err(struct sk_buff *skb, u32 info)
680 {
681 	__udp4_lib_err(skb, info, &udp_table);
682 }
683 
684 /*
685  * Throw away all pending data and cancel the corking. Socket is locked.
686  */
687 void udp_flush_pending_frames(struct sock *sk)
688 {
689 	struct udp_sock *up = udp_sk(sk);
690 
691 	if (up->pending) {
692 		up->len = 0;
693 		up->pending = 0;
694 		ip_flush_pending_frames(sk);
695 	}
696 }
697 EXPORT_SYMBOL(udp_flush_pending_frames);
698 
699 /**
700  * 	udp4_hwcsum  -  handle outgoing HW checksumming
701  * 	@skb: 	sk_buff containing the filled-in UDP header
702  * 	        (checksum field must be zeroed out)
703  *	@src:	source IP address
704  *	@dst:	destination IP address
705  */
706 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
707 {
708 	struct udphdr *uh = udp_hdr(skb);
709 	int offset = skb_transport_offset(skb);
710 	int len = skb->len - offset;
711 	int hlen = len;
712 	__wsum csum = 0;
713 
714 	if (!skb_has_frag_list(skb)) {
715 		/*
716 		 * Only one fragment on the socket.
717 		 */
718 		skb->csum_start = skb_transport_header(skb) - skb->head;
719 		skb->csum_offset = offsetof(struct udphdr, check);
720 		uh->check = ~csum_tcpudp_magic(src, dst, len,
721 					       IPPROTO_UDP, 0);
722 	} else {
723 		struct sk_buff *frags;
724 
725 		/*
726 		 * HW-checksum won't work as there are two or more
727 		 * fragments on the socket so that all csums of sk_buffs
728 		 * should be together
729 		 */
730 		skb_walk_frags(skb, frags) {
731 			csum = csum_add(csum, frags->csum);
732 			hlen -= frags->len;
733 		}
734 
735 		csum = skb_checksum(skb, offset, hlen, csum);
736 		skb->ip_summed = CHECKSUM_NONE;
737 
738 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
739 		if (uh->check == 0)
740 			uh->check = CSUM_MANGLED_0;
741 	}
742 }
743 EXPORT_SYMBOL_GPL(udp4_hwcsum);
744 
745 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
746  * for the simple case like when setting the checksum for a UDP tunnel.
747  */
748 void udp_set_csum(bool nocheck, struct sk_buff *skb,
749 		  __be32 saddr, __be32 daddr, int len)
750 {
751 	struct udphdr *uh = udp_hdr(skb);
752 
753 	if (nocheck)
754 		uh->check = 0;
755 	else if (skb_is_gso(skb))
756 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
757 	else if (skb_dst(skb) && skb_dst(skb)->dev &&
758 		 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
759 
760 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
761 
762 		skb->ip_summed = CHECKSUM_PARTIAL;
763 		skb->csum_start = skb_transport_header(skb) - skb->head;
764 		skb->csum_offset = offsetof(struct udphdr, check);
765 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
766 	} else {
767 		__wsum csum;
768 
769 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
770 
771 		uh->check = 0;
772 		csum = skb_checksum(skb, 0, len, 0);
773 		uh->check = udp_v4_check(len, saddr, daddr, csum);
774 		if (uh->check == 0)
775 			uh->check = CSUM_MANGLED_0;
776 
777 		skb->ip_summed = CHECKSUM_UNNECESSARY;
778 	}
779 }
780 EXPORT_SYMBOL(udp_set_csum);
781 
782 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
783 {
784 	struct sock *sk = skb->sk;
785 	struct inet_sock *inet = inet_sk(sk);
786 	struct udphdr *uh;
787 	int err = 0;
788 	int is_udplite = IS_UDPLITE(sk);
789 	int offset = skb_transport_offset(skb);
790 	int len = skb->len - offset;
791 	__wsum csum = 0;
792 
793 	/*
794 	 * Create a UDP header
795 	 */
796 	uh = udp_hdr(skb);
797 	uh->source = inet->inet_sport;
798 	uh->dest = fl4->fl4_dport;
799 	uh->len = htons(len);
800 	uh->check = 0;
801 
802 	if (is_udplite)  				 /*     UDP-Lite      */
803 		csum = udplite_csum(skb);
804 
805 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
806 
807 		skb->ip_summed = CHECKSUM_NONE;
808 		goto send;
809 
810 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
811 
812 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
813 		goto send;
814 
815 	} else
816 		csum = udp_csum(skb);
817 
818 	/* add protocol-dependent pseudo-header */
819 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
820 				      sk->sk_protocol, csum);
821 	if (uh->check == 0)
822 		uh->check = CSUM_MANGLED_0;
823 
824 send:
825 	err = ip_send_skb(sock_net(sk), skb);
826 	if (err) {
827 		if (err == -ENOBUFS && !inet->recverr) {
828 			UDP_INC_STATS_USER(sock_net(sk),
829 					   UDP_MIB_SNDBUFERRORS, is_udplite);
830 			err = 0;
831 		}
832 	} else
833 		UDP_INC_STATS_USER(sock_net(sk),
834 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
835 	return err;
836 }
837 
838 /*
839  * Push out all pending data as one UDP datagram. Socket is locked.
840  */
841 int udp_push_pending_frames(struct sock *sk)
842 {
843 	struct udp_sock  *up = udp_sk(sk);
844 	struct inet_sock *inet = inet_sk(sk);
845 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
846 	struct sk_buff *skb;
847 	int err = 0;
848 
849 	skb = ip_finish_skb(sk, fl4);
850 	if (!skb)
851 		goto out;
852 
853 	err = udp_send_skb(skb, fl4);
854 
855 out:
856 	up->len = 0;
857 	up->pending = 0;
858 	return err;
859 }
860 EXPORT_SYMBOL(udp_push_pending_frames);
861 
862 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
863 		size_t len)
864 {
865 	struct inet_sock *inet = inet_sk(sk);
866 	struct udp_sock *up = udp_sk(sk);
867 	struct flowi4 fl4_stack;
868 	struct flowi4 *fl4;
869 	int ulen = len;
870 	struct ipcm_cookie ipc;
871 	struct rtable *rt = NULL;
872 	int free = 0;
873 	int connected = 0;
874 	__be32 daddr, faddr, saddr;
875 	__be16 dport;
876 	u8  tos;
877 	int err, is_udplite = IS_UDPLITE(sk);
878 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
879 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
880 	struct sk_buff *skb;
881 	struct ip_options_data opt_copy;
882 
883 	if (len > 0xFFFF)
884 		return -EMSGSIZE;
885 
886 	/*
887 	 *	Check the flags.
888 	 */
889 
890 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
891 		return -EOPNOTSUPP;
892 
893 	ipc.opt = NULL;
894 	ipc.tx_flags = 0;
895 	ipc.ttl = 0;
896 	ipc.tos = -1;
897 
898 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
899 
900 	fl4 = &inet->cork.fl.u.ip4;
901 	if (up->pending) {
902 		/*
903 		 * There are pending frames.
904 		 * The socket lock must be held while it's corked.
905 		 */
906 		lock_sock(sk);
907 		if (likely(up->pending)) {
908 			if (unlikely(up->pending != AF_INET)) {
909 				release_sock(sk);
910 				return -EINVAL;
911 			}
912 			goto do_append_data;
913 		}
914 		release_sock(sk);
915 	}
916 	ulen += sizeof(struct udphdr);
917 
918 	/*
919 	 *	Get and verify the address.
920 	 */
921 	if (msg->msg_name) {
922 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
923 		if (msg->msg_namelen < sizeof(*usin))
924 			return -EINVAL;
925 		if (usin->sin_family != AF_INET) {
926 			if (usin->sin_family != AF_UNSPEC)
927 				return -EAFNOSUPPORT;
928 		}
929 
930 		daddr = usin->sin_addr.s_addr;
931 		dport = usin->sin_port;
932 		if (dport == 0)
933 			return -EINVAL;
934 	} else {
935 		if (sk->sk_state != TCP_ESTABLISHED)
936 			return -EDESTADDRREQ;
937 		daddr = inet->inet_daddr;
938 		dport = inet->inet_dport;
939 		/* Open fast path for connected socket.
940 		   Route will not be used, if at least one option is set.
941 		 */
942 		connected = 1;
943 	}
944 	ipc.addr = inet->inet_saddr;
945 
946 	ipc.oif = sk->sk_bound_dev_if;
947 
948 	sock_tx_timestamp(sk, &ipc.tx_flags);
949 
950 	if (msg->msg_controllen) {
951 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
952 				   sk->sk_family == AF_INET6);
953 		if (err)
954 			return err;
955 		if (ipc.opt)
956 			free = 1;
957 		connected = 0;
958 	}
959 	if (!ipc.opt) {
960 		struct ip_options_rcu *inet_opt;
961 
962 		rcu_read_lock();
963 		inet_opt = rcu_dereference(inet->inet_opt);
964 		if (inet_opt) {
965 			memcpy(&opt_copy, inet_opt,
966 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
967 			ipc.opt = &opt_copy.opt;
968 		}
969 		rcu_read_unlock();
970 	}
971 
972 	saddr = ipc.addr;
973 	ipc.addr = faddr = daddr;
974 
975 	if (ipc.opt && ipc.opt->opt.srr) {
976 		if (!daddr)
977 			return -EINVAL;
978 		faddr = ipc.opt->opt.faddr;
979 		connected = 0;
980 	}
981 	tos = get_rttos(&ipc, inet);
982 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
983 	    (msg->msg_flags & MSG_DONTROUTE) ||
984 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
985 		tos |= RTO_ONLINK;
986 		connected = 0;
987 	}
988 
989 	if (ipv4_is_multicast(daddr)) {
990 		if (!ipc.oif)
991 			ipc.oif = inet->mc_index;
992 		if (!saddr)
993 			saddr = inet->mc_addr;
994 		connected = 0;
995 	} else if (!ipc.oif)
996 		ipc.oif = inet->uc_index;
997 
998 	if (connected)
999 		rt = (struct rtable *)sk_dst_check(sk, 0);
1000 
1001 	if (rt == NULL) {
1002 		struct net *net = sock_net(sk);
1003 
1004 		fl4 = &fl4_stack;
1005 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1006 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1007 				   inet_sk_flowi_flags(sk),
1008 				   faddr, saddr, dport, inet->inet_sport);
1009 
1010 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1011 		rt = ip_route_output_flow(net, fl4, sk);
1012 		if (IS_ERR(rt)) {
1013 			err = PTR_ERR(rt);
1014 			rt = NULL;
1015 			if (err == -ENETUNREACH)
1016 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1017 			goto out;
1018 		}
1019 
1020 		err = -EACCES;
1021 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1022 		    !sock_flag(sk, SOCK_BROADCAST))
1023 			goto out;
1024 		if (connected)
1025 			sk_dst_set(sk, dst_clone(&rt->dst));
1026 	}
1027 
1028 	if (msg->msg_flags&MSG_CONFIRM)
1029 		goto do_confirm;
1030 back_from_confirm:
1031 
1032 	saddr = fl4->saddr;
1033 	if (!ipc.addr)
1034 		daddr = ipc.addr = fl4->daddr;
1035 
1036 	/* Lockless fast path for the non-corking case. */
1037 	if (!corkreq) {
1038 		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
1039 				  sizeof(struct udphdr), &ipc, &rt,
1040 				  msg->msg_flags);
1041 		err = PTR_ERR(skb);
1042 		if (!IS_ERR_OR_NULL(skb))
1043 			err = udp_send_skb(skb, fl4);
1044 		goto out;
1045 	}
1046 
1047 	lock_sock(sk);
1048 	if (unlikely(up->pending)) {
1049 		/* The socket is already corked while preparing it. */
1050 		/* ... which is an evident application bug. --ANK */
1051 		release_sock(sk);
1052 
1053 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1054 		err = -EINVAL;
1055 		goto out;
1056 	}
1057 	/*
1058 	 *	Now cork the socket to pend data.
1059 	 */
1060 	fl4 = &inet->cork.fl.u.ip4;
1061 	fl4->daddr = daddr;
1062 	fl4->saddr = saddr;
1063 	fl4->fl4_dport = dport;
1064 	fl4->fl4_sport = inet->inet_sport;
1065 	up->pending = AF_INET;
1066 
1067 do_append_data:
1068 	up->len += ulen;
1069 	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1070 			     sizeof(struct udphdr), &ipc, &rt,
1071 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1072 	if (err)
1073 		udp_flush_pending_frames(sk);
1074 	else if (!corkreq)
1075 		err = udp_push_pending_frames(sk);
1076 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1077 		up->pending = 0;
1078 	release_sock(sk);
1079 
1080 out:
1081 	ip_rt_put(rt);
1082 	if (free)
1083 		kfree(ipc.opt);
1084 	if (!err)
1085 		return len;
1086 	/*
1087 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1088 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1089 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1090 	 * things).  We could add another new stat but at least for now that
1091 	 * seems like overkill.
1092 	 */
1093 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1094 		UDP_INC_STATS_USER(sock_net(sk),
1095 				UDP_MIB_SNDBUFERRORS, is_udplite);
1096 	}
1097 	return err;
1098 
1099 do_confirm:
1100 	dst_confirm(&rt->dst);
1101 	if (!(msg->msg_flags&MSG_PROBE) || len)
1102 		goto back_from_confirm;
1103 	err = 0;
1104 	goto out;
1105 }
1106 EXPORT_SYMBOL(udp_sendmsg);
1107 
1108 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1109 		 size_t size, int flags)
1110 {
1111 	struct inet_sock *inet = inet_sk(sk);
1112 	struct udp_sock *up = udp_sk(sk);
1113 	int ret;
1114 
1115 	if (flags & MSG_SENDPAGE_NOTLAST)
1116 		flags |= MSG_MORE;
1117 
1118 	if (!up->pending) {
1119 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1120 
1121 		/* Call udp_sendmsg to specify destination address which
1122 		 * sendpage interface can't pass.
1123 		 * This will succeed only when the socket is connected.
1124 		 */
1125 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1126 		if (ret < 0)
1127 			return ret;
1128 	}
1129 
1130 	lock_sock(sk);
1131 
1132 	if (unlikely(!up->pending)) {
1133 		release_sock(sk);
1134 
1135 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1136 		return -EINVAL;
1137 	}
1138 
1139 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1140 			     page, offset, size, flags);
1141 	if (ret == -EOPNOTSUPP) {
1142 		release_sock(sk);
1143 		return sock_no_sendpage(sk->sk_socket, page, offset,
1144 					size, flags);
1145 	}
1146 	if (ret < 0) {
1147 		udp_flush_pending_frames(sk);
1148 		goto out;
1149 	}
1150 
1151 	up->len += size;
1152 	if (!(up->corkflag || (flags&MSG_MORE)))
1153 		ret = udp_push_pending_frames(sk);
1154 	if (!ret)
1155 		ret = size;
1156 out:
1157 	release_sock(sk);
1158 	return ret;
1159 }
1160 
1161 
1162 /**
1163  *	first_packet_length	- return length of first packet in receive queue
1164  *	@sk: socket
1165  *
1166  *	Drops all bad checksum frames, until a valid one is found.
1167  *	Returns the length of found skb, or 0 if none is found.
1168  */
1169 static unsigned int first_packet_length(struct sock *sk)
1170 {
1171 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1172 	struct sk_buff *skb;
1173 	unsigned int res;
1174 
1175 	__skb_queue_head_init(&list_kill);
1176 
1177 	spin_lock_bh(&rcvq->lock);
1178 	while ((skb = skb_peek(rcvq)) != NULL &&
1179 		udp_lib_checksum_complete(skb)) {
1180 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1181 				 IS_UDPLITE(sk));
1182 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1183 				 IS_UDPLITE(sk));
1184 		atomic_inc(&sk->sk_drops);
1185 		__skb_unlink(skb, rcvq);
1186 		__skb_queue_tail(&list_kill, skb);
1187 	}
1188 	res = skb ? skb->len : 0;
1189 	spin_unlock_bh(&rcvq->lock);
1190 
1191 	if (!skb_queue_empty(&list_kill)) {
1192 		bool slow = lock_sock_fast(sk);
1193 
1194 		__skb_queue_purge(&list_kill);
1195 		sk_mem_reclaim_partial(sk);
1196 		unlock_sock_fast(sk, slow);
1197 	}
1198 	return res;
1199 }
1200 
1201 /*
1202  *	IOCTL requests applicable to the UDP protocol
1203  */
1204 
1205 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1206 {
1207 	switch (cmd) {
1208 	case SIOCOUTQ:
1209 	{
1210 		int amount = sk_wmem_alloc_get(sk);
1211 
1212 		return put_user(amount, (int __user *)arg);
1213 	}
1214 
1215 	case SIOCINQ:
1216 	{
1217 		unsigned int amount = first_packet_length(sk);
1218 
1219 		if (amount)
1220 			/*
1221 			 * We will only return the amount
1222 			 * of this packet since that is all
1223 			 * that will be read.
1224 			 */
1225 			amount -= sizeof(struct udphdr);
1226 
1227 		return put_user(amount, (int __user *)arg);
1228 	}
1229 
1230 	default:
1231 		return -ENOIOCTLCMD;
1232 	}
1233 
1234 	return 0;
1235 }
1236 EXPORT_SYMBOL(udp_ioctl);
1237 
1238 /*
1239  * 	This should be easy, if there is something there we
1240  * 	return it, otherwise we block.
1241  */
1242 
1243 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1244 		size_t len, int noblock, int flags, int *addr_len)
1245 {
1246 	struct inet_sock *inet = inet_sk(sk);
1247 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1248 	struct sk_buff *skb;
1249 	unsigned int ulen, copied;
1250 	int peeked, off = 0;
1251 	int err;
1252 	int is_udplite = IS_UDPLITE(sk);
1253 	bool slow;
1254 
1255 	if (flags & MSG_ERRQUEUE)
1256 		return ip_recv_error(sk, msg, len, addr_len);
1257 
1258 try_again:
1259 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1260 				  &peeked, &off, &err);
1261 	if (!skb)
1262 		goto out;
1263 
1264 	ulen = skb->len - sizeof(struct udphdr);
1265 	copied = len;
1266 	if (copied > ulen)
1267 		copied = ulen;
1268 	else if (copied < ulen)
1269 		msg->msg_flags |= MSG_TRUNC;
1270 
1271 	/*
1272 	 * If checksum is needed at all, try to do it while copying the
1273 	 * data.  If the data is truncated, or if we only want a partial
1274 	 * coverage checksum (UDP-Lite), do it before the copy.
1275 	 */
1276 
1277 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1278 		if (udp_lib_checksum_complete(skb))
1279 			goto csum_copy_err;
1280 	}
1281 
1282 	if (skb_csum_unnecessary(skb))
1283 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1284 					      msg->msg_iov, copied);
1285 	else {
1286 		err = skb_copy_and_csum_datagram_iovec(skb,
1287 						       sizeof(struct udphdr),
1288 						       msg->msg_iov);
1289 
1290 		if (err == -EINVAL)
1291 			goto csum_copy_err;
1292 	}
1293 
1294 	if (unlikely(err)) {
1295 		trace_kfree_skb(skb, udp_recvmsg);
1296 		if (!peeked) {
1297 			atomic_inc(&sk->sk_drops);
1298 			UDP_INC_STATS_USER(sock_net(sk),
1299 					   UDP_MIB_INERRORS, is_udplite);
1300 		}
1301 		goto out_free;
1302 	}
1303 
1304 	if (!peeked)
1305 		UDP_INC_STATS_USER(sock_net(sk),
1306 				UDP_MIB_INDATAGRAMS, is_udplite);
1307 
1308 	sock_recv_ts_and_drops(msg, sk, skb);
1309 
1310 	/* Copy the address. */
1311 	if (sin) {
1312 		sin->sin_family = AF_INET;
1313 		sin->sin_port = udp_hdr(skb)->source;
1314 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1315 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1316 		*addr_len = sizeof(*sin);
1317 	}
1318 	if (inet->cmsg_flags)
1319 		ip_cmsg_recv(msg, skb);
1320 
1321 	err = copied;
1322 	if (flags & MSG_TRUNC)
1323 		err = ulen;
1324 
1325 out_free:
1326 	skb_free_datagram_locked(sk, skb);
1327 out:
1328 	return err;
1329 
1330 csum_copy_err:
1331 	slow = lock_sock_fast(sk);
1332 	if (!skb_kill_datagram(sk, skb, flags)) {
1333 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1334 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1335 	}
1336 	unlock_sock_fast(sk, slow);
1337 
1338 	if (noblock)
1339 		return -EAGAIN;
1340 
1341 	/* starting over for a new packet */
1342 	msg->msg_flags &= ~MSG_TRUNC;
1343 	goto try_again;
1344 }
1345 
1346 
1347 int udp_disconnect(struct sock *sk, int flags)
1348 {
1349 	struct inet_sock *inet = inet_sk(sk);
1350 	/*
1351 	 *	1003.1g - break association.
1352 	 */
1353 
1354 	sk->sk_state = TCP_CLOSE;
1355 	inet->inet_daddr = 0;
1356 	inet->inet_dport = 0;
1357 	sock_rps_reset_rxhash(sk);
1358 	sk->sk_bound_dev_if = 0;
1359 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1360 		inet_reset_saddr(sk);
1361 
1362 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1363 		sk->sk_prot->unhash(sk);
1364 		inet->inet_sport = 0;
1365 	}
1366 	sk_dst_reset(sk);
1367 	return 0;
1368 }
1369 EXPORT_SYMBOL(udp_disconnect);
1370 
1371 void udp_lib_unhash(struct sock *sk)
1372 {
1373 	if (sk_hashed(sk)) {
1374 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1375 		struct udp_hslot *hslot, *hslot2;
1376 
1377 		hslot  = udp_hashslot(udptable, sock_net(sk),
1378 				      udp_sk(sk)->udp_port_hash);
1379 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1380 
1381 		spin_lock_bh(&hslot->lock);
1382 		if (sk_nulls_del_node_init_rcu(sk)) {
1383 			hslot->count--;
1384 			inet_sk(sk)->inet_num = 0;
1385 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1386 
1387 			spin_lock(&hslot2->lock);
1388 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1389 			hslot2->count--;
1390 			spin_unlock(&hslot2->lock);
1391 		}
1392 		spin_unlock_bh(&hslot->lock);
1393 	}
1394 }
1395 EXPORT_SYMBOL(udp_lib_unhash);
1396 
1397 /*
1398  * inet_rcv_saddr was changed, we must rehash secondary hash
1399  */
1400 void udp_lib_rehash(struct sock *sk, u16 newhash)
1401 {
1402 	if (sk_hashed(sk)) {
1403 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1404 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1405 
1406 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1407 		nhslot2 = udp_hashslot2(udptable, newhash);
1408 		udp_sk(sk)->udp_portaddr_hash = newhash;
1409 		if (hslot2 != nhslot2) {
1410 			hslot = udp_hashslot(udptable, sock_net(sk),
1411 					     udp_sk(sk)->udp_port_hash);
1412 			/* we must lock primary chain too */
1413 			spin_lock_bh(&hslot->lock);
1414 
1415 			spin_lock(&hslot2->lock);
1416 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1417 			hslot2->count--;
1418 			spin_unlock(&hslot2->lock);
1419 
1420 			spin_lock(&nhslot2->lock);
1421 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1422 						 &nhslot2->head);
1423 			nhslot2->count++;
1424 			spin_unlock(&nhslot2->lock);
1425 
1426 			spin_unlock_bh(&hslot->lock);
1427 		}
1428 	}
1429 }
1430 EXPORT_SYMBOL(udp_lib_rehash);
1431 
1432 static void udp_v4_rehash(struct sock *sk)
1433 {
1434 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1435 					  inet_sk(sk)->inet_rcv_saddr,
1436 					  inet_sk(sk)->inet_num);
1437 	udp_lib_rehash(sk, new_hash);
1438 }
1439 
1440 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1441 {
1442 	int rc;
1443 
1444 	if (inet_sk(sk)->inet_daddr) {
1445 		sock_rps_save_rxhash(sk, skb);
1446 		sk_mark_napi_id(sk, skb);
1447 	}
1448 
1449 	rc = sock_queue_rcv_skb(sk, skb);
1450 	if (rc < 0) {
1451 		int is_udplite = IS_UDPLITE(sk);
1452 
1453 		/* Note that an ENOMEM error is charged twice */
1454 		if (rc == -ENOMEM)
1455 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1456 					 is_udplite);
1457 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1458 		kfree_skb(skb);
1459 		trace_udp_fail_queue_rcv_skb(rc, sk);
1460 		return -1;
1461 	}
1462 
1463 	return 0;
1464 
1465 }
1466 
1467 static struct static_key udp_encap_needed __read_mostly;
1468 void udp_encap_enable(void)
1469 {
1470 	if (!static_key_enabled(&udp_encap_needed))
1471 		static_key_slow_inc(&udp_encap_needed);
1472 }
1473 EXPORT_SYMBOL(udp_encap_enable);
1474 
1475 /* returns:
1476  *  -1: error
1477  *   0: success
1478  *  >0: "udp encap" protocol resubmission
1479  *
1480  * Note that in the success and error cases, the skb is assumed to
1481  * have either been requeued or freed.
1482  */
1483 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1484 {
1485 	struct udp_sock *up = udp_sk(sk);
1486 	int rc;
1487 	int is_udplite = IS_UDPLITE(sk);
1488 
1489 	/*
1490 	 *	Charge it to the socket, dropping if the queue is full.
1491 	 */
1492 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1493 		goto drop;
1494 	nf_reset(skb);
1495 
1496 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1497 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1498 
1499 		/*
1500 		 * This is an encapsulation socket so pass the skb to
1501 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1502 		 * fall through and pass this up the UDP socket.
1503 		 * up->encap_rcv() returns the following value:
1504 		 * =0 if skb was successfully passed to the encap
1505 		 *    handler or was discarded by it.
1506 		 * >0 if skb should be passed on to UDP.
1507 		 * <0 if skb should be resubmitted as proto -N
1508 		 */
1509 
1510 		/* if we're overly short, let UDP handle it */
1511 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1512 		if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1513 			int ret;
1514 
1515 			/* Verify checksum before giving to encap */
1516 			if (udp_lib_checksum_complete(skb))
1517 				goto csum_error;
1518 
1519 			ret = encap_rcv(sk, skb);
1520 			if (ret <= 0) {
1521 				UDP_INC_STATS_BH(sock_net(sk),
1522 						 UDP_MIB_INDATAGRAMS,
1523 						 is_udplite);
1524 				return -ret;
1525 			}
1526 		}
1527 
1528 		/* FALLTHROUGH -- it's a UDP Packet */
1529 	}
1530 
1531 	/*
1532 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1533 	 */
1534 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1535 
1536 		/*
1537 		 * MIB statistics other than incrementing the error count are
1538 		 * disabled for the following two types of errors: these depend
1539 		 * on the application settings, not on the functioning of the
1540 		 * protocol stack as such.
1541 		 *
1542 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1543 		 * way ... to ... at least let the receiving application block
1544 		 * delivery of packets with coverage values less than a value
1545 		 * provided by the application."
1546 		 */
1547 		if (up->pcrlen == 0) {          /* full coverage was set  */
1548 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1549 				       UDP_SKB_CB(skb)->cscov, skb->len);
1550 			goto drop;
1551 		}
1552 		/* The next case involves violating the min. coverage requested
1553 		 * by the receiver. This is subtle: if receiver wants x and x is
1554 		 * greater than the buffersize/MTU then receiver will complain
1555 		 * that it wants x while sender emits packets of smaller size y.
1556 		 * Therefore the above ...()->partial_cov statement is essential.
1557 		 */
1558 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1559 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1560 				       UDP_SKB_CB(skb)->cscov, up->pcrlen);
1561 			goto drop;
1562 		}
1563 	}
1564 
1565 	if (rcu_access_pointer(sk->sk_filter) &&
1566 	    udp_lib_checksum_complete(skb))
1567 		goto csum_error;
1568 
1569 
1570 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1571 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1572 				 is_udplite);
1573 		goto drop;
1574 	}
1575 
1576 	rc = 0;
1577 
1578 	ipv4_pktinfo_prepare(sk, skb);
1579 	bh_lock_sock(sk);
1580 	if (!sock_owned_by_user(sk))
1581 		rc = __udp_queue_rcv_skb(sk, skb);
1582 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1583 		bh_unlock_sock(sk);
1584 		goto drop;
1585 	}
1586 	bh_unlock_sock(sk);
1587 
1588 	return rc;
1589 
1590 csum_error:
1591 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1592 drop:
1593 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1594 	atomic_inc(&sk->sk_drops);
1595 	kfree_skb(skb);
1596 	return -1;
1597 }
1598 
1599 
1600 static void flush_stack(struct sock **stack, unsigned int count,
1601 			struct sk_buff *skb, unsigned int final)
1602 {
1603 	unsigned int i;
1604 	struct sk_buff *skb1 = NULL;
1605 	struct sock *sk;
1606 
1607 	for (i = 0; i < count; i++) {
1608 		sk = stack[i];
1609 		if (likely(skb1 == NULL))
1610 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1611 
1612 		if (!skb1) {
1613 			atomic_inc(&sk->sk_drops);
1614 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1615 					 IS_UDPLITE(sk));
1616 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1617 					 IS_UDPLITE(sk));
1618 		}
1619 
1620 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1621 			skb1 = NULL;
1622 
1623 		sock_put(sk);
1624 	}
1625 	if (unlikely(skb1))
1626 		kfree_skb(skb1);
1627 }
1628 
1629 /* For TCP sockets, sk_rx_dst is protected by socket lock
1630  * For UDP, we use xchg() to guard against concurrent changes.
1631  */
1632 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1633 {
1634 	struct dst_entry *old;
1635 
1636 	dst_hold(dst);
1637 	old = xchg(&sk->sk_rx_dst, dst);
1638 	dst_release(old);
1639 }
1640 
1641 /*
1642  *	Multicasts and broadcasts go to each listener.
1643  *
1644  *	Note: called only from the BH handler context.
1645  */
1646 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1647 				    struct udphdr  *uh,
1648 				    __be32 saddr, __be32 daddr,
1649 				    struct udp_table *udptable)
1650 {
1651 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1652 	struct hlist_nulls_node *node;
1653 	unsigned short hnum = ntohs(uh->dest);
1654 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1655 	int dif = skb->dev->ifindex;
1656 	unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1657 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1658 
1659 	if (use_hash2) {
1660 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1661 			    udp_table.mask;
1662 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1663 start_lookup:
1664 		hslot = &udp_table.hash2[hash2];
1665 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1666 	}
1667 
1668 	spin_lock(&hslot->lock);
1669 	sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1670 		if (__udp_is_mcast_sock(net, sk,
1671 					uh->dest, daddr,
1672 					uh->source, saddr,
1673 					dif, hnum)) {
1674 			if (unlikely(count == ARRAY_SIZE(stack))) {
1675 				flush_stack(stack, count, skb, ~0);
1676 				count = 0;
1677 			}
1678 			stack[count++] = sk;
1679 			sock_hold(sk);
1680 		}
1681 	}
1682 
1683 	spin_unlock(&hslot->lock);
1684 
1685 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1686 	if (use_hash2 && hash2 != hash2_any) {
1687 		hash2 = hash2_any;
1688 		goto start_lookup;
1689 	}
1690 
1691 	/*
1692 	 * do the slow work with no lock held
1693 	 */
1694 	if (count) {
1695 		flush_stack(stack, count, skb, count - 1);
1696 	} else {
1697 		kfree_skb(skb);
1698 	}
1699 	return 0;
1700 }
1701 
1702 /* Initialize UDP checksum. If exited with zero value (success),
1703  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1704  * Otherwise, csum completion requires chacksumming packet body,
1705  * including udp header and folding it to skb->csum.
1706  */
1707 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1708 				 int proto)
1709 {
1710 	int err;
1711 
1712 	UDP_SKB_CB(skb)->partial_cov = 0;
1713 	UDP_SKB_CB(skb)->cscov = skb->len;
1714 
1715 	if (proto == IPPROTO_UDPLITE) {
1716 		err = udplite_checksum_init(skb, uh);
1717 		if (err)
1718 			return err;
1719 	}
1720 
1721 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1722 					    inet_compute_pseudo);
1723 }
1724 
1725 /*
1726  *	All we need to do is get the socket, and then do a checksum.
1727  */
1728 
1729 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1730 		   int proto)
1731 {
1732 	struct sock *sk;
1733 	struct udphdr *uh;
1734 	unsigned short ulen;
1735 	struct rtable *rt = skb_rtable(skb);
1736 	__be32 saddr, daddr;
1737 	struct net *net = dev_net(skb->dev);
1738 
1739 	/*
1740 	 *  Validate the packet.
1741 	 */
1742 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1743 		goto drop;		/* No space for header. */
1744 
1745 	uh   = udp_hdr(skb);
1746 	ulen = ntohs(uh->len);
1747 	saddr = ip_hdr(skb)->saddr;
1748 	daddr = ip_hdr(skb)->daddr;
1749 
1750 	if (ulen > skb->len)
1751 		goto short_packet;
1752 
1753 	if (proto == IPPROTO_UDP) {
1754 		/* UDP validates ulen. */
1755 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1756 			goto short_packet;
1757 		uh = udp_hdr(skb);
1758 	}
1759 
1760 	if (udp4_csum_init(skb, uh, proto))
1761 		goto csum_error;
1762 
1763 	sk = skb_steal_sock(skb);
1764 	if (sk) {
1765 		struct dst_entry *dst = skb_dst(skb);
1766 		int ret;
1767 
1768 		if (unlikely(sk->sk_rx_dst != dst))
1769 			udp_sk_rx_dst_set(sk, dst);
1770 
1771 		ret = udp_queue_rcv_skb(sk, skb);
1772 		sock_put(sk);
1773 		/* a return value > 0 means to resubmit the input, but
1774 		 * it wants the return to be -protocol, or 0
1775 		 */
1776 		if (ret > 0)
1777 			return -ret;
1778 		return 0;
1779 	} else {
1780 		if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1781 			return __udp4_lib_mcast_deliver(net, skb, uh,
1782 					saddr, daddr, udptable);
1783 
1784 		sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1785 	}
1786 
1787 	if (sk != NULL) {
1788 		int ret;
1789 
1790 		ret = udp_queue_rcv_skb(sk, skb);
1791 		sock_put(sk);
1792 
1793 		/* a return value > 0 means to resubmit the input, but
1794 		 * it wants the return to be -protocol, or 0
1795 		 */
1796 		if (ret > 0)
1797 			return -ret;
1798 		return 0;
1799 	}
1800 
1801 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1802 		goto drop;
1803 	nf_reset(skb);
1804 
1805 	/* No socket. Drop packet silently, if checksum is wrong */
1806 	if (udp_lib_checksum_complete(skb))
1807 		goto csum_error;
1808 
1809 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1810 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1811 
1812 	/*
1813 	 * Hmm.  We got an UDP packet to a port to which we
1814 	 * don't wanna listen.  Ignore it.
1815 	 */
1816 	kfree_skb(skb);
1817 	return 0;
1818 
1819 short_packet:
1820 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1821 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1822 		       &saddr, ntohs(uh->source),
1823 		       ulen, skb->len,
1824 		       &daddr, ntohs(uh->dest));
1825 	goto drop;
1826 
1827 csum_error:
1828 	/*
1829 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1830 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1831 	 */
1832 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1833 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1834 		       &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1835 		       ulen);
1836 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1837 drop:
1838 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1839 	kfree_skb(skb);
1840 	return 0;
1841 }
1842 
1843 /* We can only early demux multicast if there is a single matching socket.
1844  * If more than one socket found returns NULL
1845  */
1846 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1847 						  __be16 loc_port, __be32 loc_addr,
1848 						  __be16 rmt_port, __be32 rmt_addr,
1849 						  int dif)
1850 {
1851 	struct sock *sk, *result;
1852 	struct hlist_nulls_node *node;
1853 	unsigned short hnum = ntohs(loc_port);
1854 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1855 	struct udp_hslot *hslot = &udp_table.hash[slot];
1856 
1857 	/* Do not bother scanning a too big list */
1858 	if (hslot->count > 10)
1859 		return NULL;
1860 
1861 	rcu_read_lock();
1862 begin:
1863 	count = 0;
1864 	result = NULL;
1865 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1866 		if (__udp_is_mcast_sock(net, sk,
1867 					loc_port, loc_addr,
1868 					rmt_port, rmt_addr,
1869 					dif, hnum)) {
1870 			result = sk;
1871 			++count;
1872 		}
1873 	}
1874 	/*
1875 	 * if the nulls value we got at the end of this lookup is
1876 	 * not the expected one, we must restart lookup.
1877 	 * We probably met an item that was moved to another chain.
1878 	 */
1879 	if (get_nulls_value(node) != slot)
1880 		goto begin;
1881 
1882 	if (result) {
1883 		if (count != 1 ||
1884 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1885 			result = NULL;
1886 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1887 						       loc_port, loc_addr,
1888 						       rmt_port, rmt_addr,
1889 						       dif, hnum))) {
1890 			sock_put(result);
1891 			result = NULL;
1892 		}
1893 	}
1894 	rcu_read_unlock();
1895 	return result;
1896 }
1897 
1898 /* For unicast we should only early demux connected sockets or we can
1899  * break forwarding setups.  The chains here can be long so only check
1900  * if the first socket is an exact match and if not move on.
1901  */
1902 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1903 					    __be16 loc_port, __be32 loc_addr,
1904 					    __be16 rmt_port, __be32 rmt_addr,
1905 					    int dif)
1906 {
1907 	struct sock *sk, *result;
1908 	struct hlist_nulls_node *node;
1909 	unsigned short hnum = ntohs(loc_port);
1910 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1911 	unsigned int slot2 = hash2 & udp_table.mask;
1912 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1913 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1914 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1915 
1916 	rcu_read_lock();
1917 	result = NULL;
1918 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1919 		if (INET_MATCH(sk, net, acookie,
1920 			       rmt_addr, loc_addr, ports, dif))
1921 			result = sk;
1922 		/* Only check first socket in chain */
1923 		break;
1924 	}
1925 
1926 	if (result) {
1927 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1928 			result = NULL;
1929 		else if (unlikely(!INET_MATCH(sk, net, acookie,
1930 					      rmt_addr, loc_addr,
1931 					      ports, dif))) {
1932 			sock_put(result);
1933 			result = NULL;
1934 		}
1935 	}
1936 	rcu_read_unlock();
1937 	return result;
1938 }
1939 
1940 void udp_v4_early_demux(struct sk_buff *skb)
1941 {
1942 	struct net *net = dev_net(skb->dev);
1943 	const struct iphdr *iph;
1944 	const struct udphdr *uh;
1945 	struct sock *sk;
1946 	struct dst_entry *dst;
1947 	int dif = skb->dev->ifindex;
1948 
1949 	/* validate the packet */
1950 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1951 		return;
1952 
1953 	iph = ip_hdr(skb);
1954 	uh = udp_hdr(skb);
1955 
1956 	if (skb->pkt_type == PACKET_BROADCAST ||
1957 	    skb->pkt_type == PACKET_MULTICAST)
1958 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1959 						   uh->source, iph->saddr, dif);
1960 	else if (skb->pkt_type == PACKET_HOST)
1961 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1962 					     uh->source, iph->saddr, dif);
1963 	else
1964 		return;
1965 
1966 	if (!sk)
1967 		return;
1968 
1969 	skb->sk = sk;
1970 	skb->destructor = sock_edemux;
1971 	dst = sk->sk_rx_dst;
1972 
1973 	if (dst)
1974 		dst = dst_check(dst, 0);
1975 	if (dst)
1976 		skb_dst_set_noref(skb, dst);
1977 }
1978 
1979 int udp_rcv(struct sk_buff *skb)
1980 {
1981 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1982 }
1983 
1984 void udp_destroy_sock(struct sock *sk)
1985 {
1986 	struct udp_sock *up = udp_sk(sk);
1987 	bool slow = lock_sock_fast(sk);
1988 	udp_flush_pending_frames(sk);
1989 	unlock_sock_fast(sk, slow);
1990 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1991 		void (*encap_destroy)(struct sock *sk);
1992 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
1993 		if (encap_destroy)
1994 			encap_destroy(sk);
1995 	}
1996 }
1997 
1998 /*
1999  *	Socket option code for UDP
2000  */
2001 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2002 		       char __user *optval, unsigned int optlen,
2003 		       int (*push_pending_frames)(struct sock *))
2004 {
2005 	struct udp_sock *up = udp_sk(sk);
2006 	int val, valbool;
2007 	int err = 0;
2008 	int is_udplite = IS_UDPLITE(sk);
2009 
2010 	if (optlen < sizeof(int))
2011 		return -EINVAL;
2012 
2013 	if (get_user(val, (int __user *)optval))
2014 		return -EFAULT;
2015 
2016 	valbool = val ? 1 : 0;
2017 
2018 	switch (optname) {
2019 	case UDP_CORK:
2020 		if (val != 0) {
2021 			up->corkflag = 1;
2022 		} else {
2023 			up->corkflag = 0;
2024 			lock_sock(sk);
2025 			(*push_pending_frames)(sk);
2026 			release_sock(sk);
2027 		}
2028 		break;
2029 
2030 	case UDP_ENCAP:
2031 		switch (val) {
2032 		case 0:
2033 		case UDP_ENCAP_ESPINUDP:
2034 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2035 			up->encap_rcv = xfrm4_udp_encap_rcv;
2036 			/* FALLTHROUGH */
2037 		case UDP_ENCAP_L2TPINUDP:
2038 			up->encap_type = val;
2039 			udp_encap_enable();
2040 			break;
2041 		default:
2042 			err = -ENOPROTOOPT;
2043 			break;
2044 		}
2045 		break;
2046 
2047 	case UDP_NO_CHECK6_TX:
2048 		up->no_check6_tx = valbool;
2049 		break;
2050 
2051 	case UDP_NO_CHECK6_RX:
2052 		up->no_check6_rx = valbool;
2053 		break;
2054 
2055 	/*
2056 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2057 	 */
2058 	/* The sender sets actual checksum coverage length via this option.
2059 	 * The case coverage > packet length is handled by send module. */
2060 	case UDPLITE_SEND_CSCOV:
2061 		if (!is_udplite)         /* Disable the option on UDP sockets */
2062 			return -ENOPROTOOPT;
2063 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2064 			val = 8;
2065 		else if (val > USHRT_MAX)
2066 			val = USHRT_MAX;
2067 		up->pcslen = val;
2068 		up->pcflag |= UDPLITE_SEND_CC;
2069 		break;
2070 
2071 	/* The receiver specifies a minimum checksum coverage value. To make
2072 	 * sense, this should be set to at least 8 (as done below). If zero is
2073 	 * used, this again means full checksum coverage.                     */
2074 	case UDPLITE_RECV_CSCOV:
2075 		if (!is_udplite)         /* Disable the option on UDP sockets */
2076 			return -ENOPROTOOPT;
2077 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2078 			val = 8;
2079 		else if (val > USHRT_MAX)
2080 			val = USHRT_MAX;
2081 		up->pcrlen = val;
2082 		up->pcflag |= UDPLITE_RECV_CC;
2083 		break;
2084 
2085 	default:
2086 		err = -ENOPROTOOPT;
2087 		break;
2088 	}
2089 
2090 	return err;
2091 }
2092 EXPORT_SYMBOL(udp_lib_setsockopt);
2093 
2094 int udp_setsockopt(struct sock *sk, int level, int optname,
2095 		   char __user *optval, unsigned int optlen)
2096 {
2097 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2098 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2099 					  udp_push_pending_frames);
2100 	return ip_setsockopt(sk, level, optname, optval, optlen);
2101 }
2102 
2103 #ifdef CONFIG_COMPAT
2104 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2105 			  char __user *optval, unsigned int optlen)
2106 {
2107 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2108 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2109 					  udp_push_pending_frames);
2110 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2111 }
2112 #endif
2113 
2114 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2115 		       char __user *optval, int __user *optlen)
2116 {
2117 	struct udp_sock *up = udp_sk(sk);
2118 	int val, len;
2119 
2120 	if (get_user(len, optlen))
2121 		return -EFAULT;
2122 
2123 	len = min_t(unsigned int, len, sizeof(int));
2124 
2125 	if (len < 0)
2126 		return -EINVAL;
2127 
2128 	switch (optname) {
2129 	case UDP_CORK:
2130 		val = up->corkflag;
2131 		break;
2132 
2133 	case UDP_ENCAP:
2134 		val = up->encap_type;
2135 		break;
2136 
2137 	case UDP_NO_CHECK6_TX:
2138 		val = up->no_check6_tx;
2139 		break;
2140 
2141 	case UDP_NO_CHECK6_RX:
2142 		val = up->no_check6_rx;
2143 		break;
2144 
2145 	/* The following two cannot be changed on UDP sockets, the return is
2146 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2147 	case UDPLITE_SEND_CSCOV:
2148 		val = up->pcslen;
2149 		break;
2150 
2151 	case UDPLITE_RECV_CSCOV:
2152 		val = up->pcrlen;
2153 		break;
2154 
2155 	default:
2156 		return -ENOPROTOOPT;
2157 	}
2158 
2159 	if (put_user(len, optlen))
2160 		return -EFAULT;
2161 	if (copy_to_user(optval, &val, len))
2162 		return -EFAULT;
2163 	return 0;
2164 }
2165 EXPORT_SYMBOL(udp_lib_getsockopt);
2166 
2167 int udp_getsockopt(struct sock *sk, int level, int optname,
2168 		   char __user *optval, int __user *optlen)
2169 {
2170 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2171 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2172 	return ip_getsockopt(sk, level, optname, optval, optlen);
2173 }
2174 
2175 #ifdef CONFIG_COMPAT
2176 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2177 				 char __user *optval, int __user *optlen)
2178 {
2179 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2180 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2181 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2182 }
2183 #endif
2184 /**
2185  * 	udp_poll - wait for a UDP event.
2186  *	@file - file struct
2187  *	@sock - socket
2188  *	@wait - poll table
2189  *
2190  *	This is same as datagram poll, except for the special case of
2191  *	blocking sockets. If application is using a blocking fd
2192  *	and a packet with checksum error is in the queue;
2193  *	then it could get return from select indicating data available
2194  *	but then block when reading it. Add special case code
2195  *	to work around these arguably broken applications.
2196  */
2197 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2198 {
2199 	unsigned int mask = datagram_poll(file, sock, wait);
2200 	struct sock *sk = sock->sk;
2201 
2202 	sock_rps_record_flow(sk);
2203 
2204 	/* Check for false positives due to checksum errors */
2205 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2206 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2207 		mask &= ~(POLLIN | POLLRDNORM);
2208 
2209 	return mask;
2210 
2211 }
2212 EXPORT_SYMBOL(udp_poll);
2213 
2214 struct proto udp_prot = {
2215 	.name		   = "UDP",
2216 	.owner		   = THIS_MODULE,
2217 	.close		   = udp_lib_close,
2218 	.connect	   = ip4_datagram_connect,
2219 	.disconnect	   = udp_disconnect,
2220 	.ioctl		   = udp_ioctl,
2221 	.destroy	   = udp_destroy_sock,
2222 	.setsockopt	   = udp_setsockopt,
2223 	.getsockopt	   = udp_getsockopt,
2224 	.sendmsg	   = udp_sendmsg,
2225 	.recvmsg	   = udp_recvmsg,
2226 	.sendpage	   = udp_sendpage,
2227 	.backlog_rcv	   = __udp_queue_rcv_skb,
2228 	.release_cb	   = ip4_datagram_release_cb,
2229 	.hash		   = udp_lib_hash,
2230 	.unhash		   = udp_lib_unhash,
2231 	.rehash		   = udp_v4_rehash,
2232 	.get_port	   = udp_v4_get_port,
2233 	.memory_allocated  = &udp_memory_allocated,
2234 	.sysctl_mem	   = sysctl_udp_mem,
2235 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2236 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2237 	.obj_size	   = sizeof(struct udp_sock),
2238 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2239 	.h.udp_table	   = &udp_table,
2240 #ifdef CONFIG_COMPAT
2241 	.compat_setsockopt = compat_udp_setsockopt,
2242 	.compat_getsockopt = compat_udp_getsockopt,
2243 #endif
2244 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2245 };
2246 EXPORT_SYMBOL(udp_prot);
2247 
2248 /* ------------------------------------------------------------------------ */
2249 #ifdef CONFIG_PROC_FS
2250 
2251 static struct sock *udp_get_first(struct seq_file *seq, int start)
2252 {
2253 	struct sock *sk;
2254 	struct udp_iter_state *state = seq->private;
2255 	struct net *net = seq_file_net(seq);
2256 
2257 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2258 	     ++state->bucket) {
2259 		struct hlist_nulls_node *node;
2260 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2261 
2262 		if (hlist_nulls_empty(&hslot->head))
2263 			continue;
2264 
2265 		spin_lock_bh(&hslot->lock);
2266 		sk_nulls_for_each(sk, node, &hslot->head) {
2267 			if (!net_eq(sock_net(sk), net))
2268 				continue;
2269 			if (sk->sk_family == state->family)
2270 				goto found;
2271 		}
2272 		spin_unlock_bh(&hslot->lock);
2273 	}
2274 	sk = NULL;
2275 found:
2276 	return sk;
2277 }
2278 
2279 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2280 {
2281 	struct udp_iter_state *state = seq->private;
2282 	struct net *net = seq_file_net(seq);
2283 
2284 	do {
2285 		sk = sk_nulls_next(sk);
2286 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2287 
2288 	if (!sk) {
2289 		if (state->bucket <= state->udp_table->mask)
2290 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2291 		return udp_get_first(seq, state->bucket + 1);
2292 	}
2293 	return sk;
2294 }
2295 
2296 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2297 {
2298 	struct sock *sk = udp_get_first(seq, 0);
2299 
2300 	if (sk)
2301 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2302 			--pos;
2303 	return pos ? NULL : sk;
2304 }
2305 
2306 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2307 {
2308 	struct udp_iter_state *state = seq->private;
2309 	state->bucket = MAX_UDP_PORTS;
2310 
2311 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2312 }
2313 
2314 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2315 {
2316 	struct sock *sk;
2317 
2318 	if (v == SEQ_START_TOKEN)
2319 		sk = udp_get_idx(seq, 0);
2320 	else
2321 		sk = udp_get_next(seq, v);
2322 
2323 	++*pos;
2324 	return sk;
2325 }
2326 
2327 static void udp_seq_stop(struct seq_file *seq, void *v)
2328 {
2329 	struct udp_iter_state *state = seq->private;
2330 
2331 	if (state->bucket <= state->udp_table->mask)
2332 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2333 }
2334 
2335 int udp_seq_open(struct inode *inode, struct file *file)
2336 {
2337 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2338 	struct udp_iter_state *s;
2339 	int err;
2340 
2341 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2342 			   sizeof(struct udp_iter_state));
2343 	if (err < 0)
2344 		return err;
2345 
2346 	s = ((struct seq_file *)file->private_data)->private;
2347 	s->family		= afinfo->family;
2348 	s->udp_table		= afinfo->udp_table;
2349 	return err;
2350 }
2351 EXPORT_SYMBOL(udp_seq_open);
2352 
2353 /* ------------------------------------------------------------------------ */
2354 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2355 {
2356 	struct proc_dir_entry *p;
2357 	int rc = 0;
2358 
2359 	afinfo->seq_ops.start		= udp_seq_start;
2360 	afinfo->seq_ops.next		= udp_seq_next;
2361 	afinfo->seq_ops.stop		= udp_seq_stop;
2362 
2363 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2364 			     afinfo->seq_fops, afinfo);
2365 	if (!p)
2366 		rc = -ENOMEM;
2367 	return rc;
2368 }
2369 EXPORT_SYMBOL(udp_proc_register);
2370 
2371 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2372 {
2373 	remove_proc_entry(afinfo->name, net->proc_net);
2374 }
2375 EXPORT_SYMBOL(udp_proc_unregister);
2376 
2377 /* ------------------------------------------------------------------------ */
2378 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2379 		int bucket)
2380 {
2381 	struct inet_sock *inet = inet_sk(sp);
2382 	__be32 dest = inet->inet_daddr;
2383 	__be32 src  = inet->inet_rcv_saddr;
2384 	__u16 destp	  = ntohs(inet->inet_dport);
2385 	__u16 srcp	  = ntohs(inet->inet_sport);
2386 
2387 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2388 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2389 		bucket, src, srcp, dest, destp, sp->sk_state,
2390 		sk_wmem_alloc_get(sp),
2391 		sk_rmem_alloc_get(sp),
2392 		0, 0L, 0,
2393 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2394 		0, sock_i_ino(sp),
2395 		atomic_read(&sp->sk_refcnt), sp,
2396 		atomic_read(&sp->sk_drops));
2397 }
2398 
2399 int udp4_seq_show(struct seq_file *seq, void *v)
2400 {
2401 	seq_setwidth(seq, 127);
2402 	if (v == SEQ_START_TOKEN)
2403 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2404 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2405 			   "inode ref pointer drops");
2406 	else {
2407 		struct udp_iter_state *state = seq->private;
2408 
2409 		udp4_format_sock(v, seq, state->bucket);
2410 	}
2411 	seq_pad(seq, '\n');
2412 	return 0;
2413 }
2414 
2415 static const struct file_operations udp_afinfo_seq_fops = {
2416 	.owner    = THIS_MODULE,
2417 	.open     = udp_seq_open,
2418 	.read     = seq_read,
2419 	.llseek   = seq_lseek,
2420 	.release  = seq_release_net
2421 };
2422 
2423 /* ------------------------------------------------------------------------ */
2424 static struct udp_seq_afinfo udp4_seq_afinfo = {
2425 	.name		= "udp",
2426 	.family		= AF_INET,
2427 	.udp_table	= &udp_table,
2428 	.seq_fops	= &udp_afinfo_seq_fops,
2429 	.seq_ops	= {
2430 		.show		= udp4_seq_show,
2431 	},
2432 };
2433 
2434 static int __net_init udp4_proc_init_net(struct net *net)
2435 {
2436 	return udp_proc_register(net, &udp4_seq_afinfo);
2437 }
2438 
2439 static void __net_exit udp4_proc_exit_net(struct net *net)
2440 {
2441 	udp_proc_unregister(net, &udp4_seq_afinfo);
2442 }
2443 
2444 static struct pernet_operations udp4_net_ops = {
2445 	.init = udp4_proc_init_net,
2446 	.exit = udp4_proc_exit_net,
2447 };
2448 
2449 int __init udp4_proc_init(void)
2450 {
2451 	return register_pernet_subsys(&udp4_net_ops);
2452 }
2453 
2454 void udp4_proc_exit(void)
2455 {
2456 	unregister_pernet_subsys(&udp4_net_ops);
2457 }
2458 #endif /* CONFIG_PROC_FS */
2459 
2460 static __initdata unsigned long uhash_entries;
2461 static int __init set_uhash_entries(char *str)
2462 {
2463 	ssize_t ret;
2464 
2465 	if (!str)
2466 		return 0;
2467 
2468 	ret = kstrtoul(str, 0, &uhash_entries);
2469 	if (ret)
2470 		return 0;
2471 
2472 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2473 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2474 	return 1;
2475 }
2476 __setup("uhash_entries=", set_uhash_entries);
2477 
2478 void __init udp_table_init(struct udp_table *table, const char *name)
2479 {
2480 	unsigned int i;
2481 
2482 	table->hash = alloc_large_system_hash(name,
2483 					      2 * sizeof(struct udp_hslot),
2484 					      uhash_entries,
2485 					      21, /* one slot per 2 MB */
2486 					      0,
2487 					      &table->log,
2488 					      &table->mask,
2489 					      UDP_HTABLE_SIZE_MIN,
2490 					      64 * 1024);
2491 
2492 	table->hash2 = table->hash + (table->mask + 1);
2493 	for (i = 0; i <= table->mask; i++) {
2494 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2495 		table->hash[i].count = 0;
2496 		spin_lock_init(&table->hash[i].lock);
2497 	}
2498 	for (i = 0; i <= table->mask; i++) {
2499 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2500 		table->hash2[i].count = 0;
2501 		spin_lock_init(&table->hash2[i].lock);
2502 	}
2503 }
2504 
2505 void __init udp_init(void)
2506 {
2507 	unsigned long limit;
2508 
2509 	udp_table_init(&udp_table, "UDP");
2510 	limit = nr_free_buffer_pages() / 8;
2511 	limit = max(limit, 128UL);
2512 	sysctl_udp_mem[0] = limit / 4 * 3;
2513 	sysctl_udp_mem[1] = limit;
2514 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2515 
2516 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2517 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2518 }
2519