1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <asm/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/netdevice.h> 104 #include <linux/proc_fs.h> 105 #include <linux/seq_file.h> 106 #include <net/net_namespace.h> 107 #include <net/icmp.h> 108 #include <net/inet_hashtables.h> 109 #include <net/route.h> 110 #include <net/checksum.h> 111 #include <net/xfrm.h> 112 #include <trace/events/udp.h> 113 #include <linux/static_key.h> 114 #include <trace/events/skb.h> 115 #include <net/busy_poll.h> 116 #include "udp_impl.h" 117 118 struct udp_table udp_table __read_mostly; 119 EXPORT_SYMBOL(udp_table); 120 121 long sysctl_udp_mem[3] __read_mostly; 122 EXPORT_SYMBOL(sysctl_udp_mem); 123 124 int sysctl_udp_rmem_min __read_mostly; 125 EXPORT_SYMBOL(sysctl_udp_rmem_min); 126 127 int sysctl_udp_wmem_min __read_mostly; 128 EXPORT_SYMBOL(sysctl_udp_wmem_min); 129 130 atomic_long_t udp_memory_allocated; 131 EXPORT_SYMBOL(udp_memory_allocated); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 135 136 static int udp_lib_lport_inuse(struct net *net, __u16 num, 137 const struct udp_hslot *hslot, 138 unsigned long *bitmap, 139 struct sock *sk, 140 int (*saddr_comp)(const struct sock *sk1, 141 const struct sock *sk2), 142 unsigned int log) 143 { 144 struct sock *sk2; 145 struct hlist_nulls_node *node; 146 kuid_t uid = sock_i_uid(sk); 147 148 sk_nulls_for_each(sk2, node, &hslot->head) { 149 if (net_eq(sock_net(sk2), net) && 150 sk2 != sk && 151 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 152 (!sk2->sk_reuse || !sk->sk_reuse) && 153 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 154 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 155 (!sk2->sk_reuseport || !sk->sk_reuseport || 156 !uid_eq(uid, sock_i_uid(sk2))) && 157 saddr_comp(sk, sk2)) { 158 if (!bitmap) 159 return 1; 160 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap); 161 } 162 } 163 return 0; 164 } 165 166 /* 167 * Note: we still hold spinlock of primary hash chain, so no other writer 168 * can insert/delete a socket with local_port == num 169 */ 170 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 171 struct udp_hslot *hslot2, 172 struct sock *sk, 173 int (*saddr_comp)(const struct sock *sk1, 174 const struct sock *sk2)) 175 { 176 struct sock *sk2; 177 struct hlist_nulls_node *node; 178 kuid_t uid = sock_i_uid(sk); 179 int res = 0; 180 181 spin_lock(&hslot2->lock); 182 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) { 183 if (net_eq(sock_net(sk2), net) && 184 sk2 != sk && 185 (udp_sk(sk2)->udp_port_hash == num) && 186 (!sk2->sk_reuse || !sk->sk_reuse) && 187 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 188 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 189 (!sk2->sk_reuseport || !sk->sk_reuseport || 190 !uid_eq(uid, sock_i_uid(sk2))) && 191 saddr_comp(sk, sk2)) { 192 res = 1; 193 break; 194 } 195 } 196 spin_unlock(&hslot2->lock); 197 return res; 198 } 199 200 /** 201 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 202 * 203 * @sk: socket struct in question 204 * @snum: port number to look up 205 * @saddr_comp: AF-dependent comparison of bound local IP addresses 206 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 207 * with NULL address 208 */ 209 int udp_lib_get_port(struct sock *sk, unsigned short snum, 210 int (*saddr_comp)(const struct sock *sk1, 211 const struct sock *sk2), 212 unsigned int hash2_nulladdr) 213 { 214 struct udp_hslot *hslot, *hslot2; 215 struct udp_table *udptable = sk->sk_prot->h.udp_table; 216 int error = 1; 217 struct net *net = sock_net(sk); 218 219 if (!snum) { 220 int low, high, remaining; 221 unsigned int rand; 222 unsigned short first, last; 223 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 224 225 inet_get_local_port_range(net, &low, &high); 226 remaining = (high - low) + 1; 227 228 rand = prandom_u32(); 229 first = reciprocal_scale(rand, remaining) + low; 230 /* 231 * force rand to be an odd multiple of UDP_HTABLE_SIZE 232 */ 233 rand = (rand | 1) * (udptable->mask + 1); 234 last = first + udptable->mask + 1; 235 do { 236 hslot = udp_hashslot(udptable, net, first); 237 bitmap_zero(bitmap, PORTS_PER_CHAIN); 238 spin_lock_bh(&hslot->lock); 239 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 240 saddr_comp, udptable->log); 241 242 snum = first; 243 /* 244 * Iterate on all possible values of snum for this hash. 245 * Using steps of an odd multiple of UDP_HTABLE_SIZE 246 * give us randomization and full range coverage. 247 */ 248 do { 249 if (low <= snum && snum <= high && 250 !test_bit(snum >> udptable->log, bitmap) && 251 !inet_is_local_reserved_port(net, snum)) 252 goto found; 253 snum += rand; 254 } while (snum != first); 255 spin_unlock_bh(&hslot->lock); 256 } while (++first != last); 257 goto fail; 258 } else { 259 hslot = udp_hashslot(udptable, net, snum); 260 spin_lock_bh(&hslot->lock); 261 if (hslot->count > 10) { 262 int exist; 263 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 264 265 slot2 &= udptable->mask; 266 hash2_nulladdr &= udptable->mask; 267 268 hslot2 = udp_hashslot2(udptable, slot2); 269 if (hslot->count < hslot2->count) 270 goto scan_primary_hash; 271 272 exist = udp_lib_lport_inuse2(net, snum, hslot2, 273 sk, saddr_comp); 274 if (!exist && (hash2_nulladdr != slot2)) { 275 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 276 exist = udp_lib_lport_inuse2(net, snum, hslot2, 277 sk, saddr_comp); 278 } 279 if (exist) 280 goto fail_unlock; 281 else 282 goto found; 283 } 284 scan_primary_hash: 285 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 286 saddr_comp, 0)) 287 goto fail_unlock; 288 } 289 found: 290 inet_sk(sk)->inet_num = snum; 291 udp_sk(sk)->udp_port_hash = snum; 292 udp_sk(sk)->udp_portaddr_hash ^= snum; 293 if (sk_unhashed(sk)) { 294 sk_nulls_add_node_rcu(sk, &hslot->head); 295 hslot->count++; 296 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 297 298 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 299 spin_lock(&hslot2->lock); 300 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 301 &hslot2->head); 302 hslot2->count++; 303 spin_unlock(&hslot2->lock); 304 } 305 error = 0; 306 fail_unlock: 307 spin_unlock_bh(&hslot->lock); 308 fail: 309 return error; 310 } 311 EXPORT_SYMBOL(udp_lib_get_port); 312 313 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2) 314 { 315 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2); 316 317 return (!ipv6_only_sock(sk2) && 318 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr || 319 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)); 320 } 321 322 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr, 323 unsigned int port) 324 { 325 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; 326 } 327 328 int udp_v4_get_port(struct sock *sk, unsigned short snum) 329 { 330 unsigned int hash2_nulladdr = 331 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 332 unsigned int hash2_partial = 333 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 334 335 /* precompute partial secondary hash */ 336 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 337 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr); 338 } 339 340 static inline int compute_score(struct sock *sk, struct net *net, 341 __be32 saddr, unsigned short hnum, __be16 sport, 342 __be32 daddr, __be16 dport, int dif) 343 { 344 int score; 345 struct inet_sock *inet; 346 347 if (!net_eq(sock_net(sk), net) || 348 udp_sk(sk)->udp_port_hash != hnum || 349 ipv6_only_sock(sk)) 350 return -1; 351 352 score = (sk->sk_family == PF_INET) ? 2 : 1; 353 inet = inet_sk(sk); 354 355 if (inet->inet_rcv_saddr) { 356 if (inet->inet_rcv_saddr != daddr) 357 return -1; 358 score += 4; 359 } 360 361 if (inet->inet_daddr) { 362 if (inet->inet_daddr != saddr) 363 return -1; 364 score += 4; 365 } 366 367 if (inet->inet_dport) { 368 if (inet->inet_dport != sport) 369 return -1; 370 score += 4; 371 } 372 373 if (sk->sk_bound_dev_if) { 374 if (sk->sk_bound_dev_if != dif) 375 return -1; 376 score += 4; 377 } 378 379 return score; 380 } 381 382 /* 383 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num) 384 */ 385 static inline int compute_score2(struct sock *sk, struct net *net, 386 __be32 saddr, __be16 sport, 387 __be32 daddr, unsigned int hnum, int dif) 388 { 389 int score; 390 struct inet_sock *inet; 391 392 if (!net_eq(sock_net(sk), net) || 393 ipv6_only_sock(sk)) 394 return -1; 395 396 inet = inet_sk(sk); 397 398 if (inet->inet_rcv_saddr != daddr || 399 inet->inet_num != hnum) 400 return -1; 401 402 score = (sk->sk_family == PF_INET) ? 2 : 1; 403 404 if (inet->inet_daddr) { 405 if (inet->inet_daddr != saddr) 406 return -1; 407 score += 4; 408 } 409 410 if (inet->inet_dport) { 411 if (inet->inet_dport != sport) 412 return -1; 413 score += 4; 414 } 415 416 if (sk->sk_bound_dev_if) { 417 if (sk->sk_bound_dev_if != dif) 418 return -1; 419 score += 4; 420 } 421 422 return score; 423 } 424 425 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 426 const __u16 lport, const __be32 faddr, 427 const __be16 fport) 428 { 429 static u32 udp_ehash_secret __read_mostly; 430 431 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 432 433 return __inet_ehashfn(laddr, lport, faddr, fport, 434 udp_ehash_secret + net_hash_mix(net)); 435 } 436 437 /* called with read_rcu_lock() */ 438 static struct sock *udp4_lib_lookup2(struct net *net, 439 __be32 saddr, __be16 sport, 440 __be32 daddr, unsigned int hnum, int dif, 441 struct udp_hslot *hslot2, unsigned int slot2) 442 { 443 struct sock *sk, *result; 444 struct hlist_nulls_node *node; 445 int score, badness, matches = 0, reuseport = 0; 446 u32 hash = 0; 447 448 begin: 449 result = NULL; 450 badness = 0; 451 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) { 452 score = compute_score2(sk, net, saddr, sport, 453 daddr, hnum, dif); 454 if (score > badness) { 455 result = sk; 456 badness = score; 457 reuseport = sk->sk_reuseport; 458 if (reuseport) { 459 hash = udp_ehashfn(net, daddr, hnum, 460 saddr, sport); 461 matches = 1; 462 } 463 } else if (score == badness && reuseport) { 464 matches++; 465 if (reciprocal_scale(hash, matches) == 0) 466 result = sk; 467 hash = next_pseudo_random32(hash); 468 } 469 } 470 /* 471 * if the nulls value we got at the end of this lookup is 472 * not the expected one, we must restart lookup. 473 * We probably met an item that was moved to another chain. 474 */ 475 if (get_nulls_value(node) != slot2) 476 goto begin; 477 if (result) { 478 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 479 result = NULL; 480 else if (unlikely(compute_score2(result, net, saddr, sport, 481 daddr, hnum, dif) < badness)) { 482 sock_put(result); 483 goto begin; 484 } 485 } 486 return result; 487 } 488 489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 490 * harder than this. -DaveM 491 */ 492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 493 __be16 sport, __be32 daddr, __be16 dport, 494 int dif, struct udp_table *udptable) 495 { 496 struct sock *sk, *result; 497 struct hlist_nulls_node *node; 498 unsigned short hnum = ntohs(dport); 499 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 500 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 501 int score, badness, matches = 0, reuseport = 0; 502 u32 hash = 0; 503 504 rcu_read_lock(); 505 if (hslot->count > 10) { 506 hash2 = udp4_portaddr_hash(net, daddr, hnum); 507 slot2 = hash2 & udptable->mask; 508 hslot2 = &udptable->hash2[slot2]; 509 if (hslot->count < hslot2->count) 510 goto begin; 511 512 result = udp4_lib_lookup2(net, saddr, sport, 513 daddr, hnum, dif, 514 hslot2, slot2); 515 if (!result) { 516 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 517 slot2 = hash2 & udptable->mask; 518 hslot2 = &udptable->hash2[slot2]; 519 if (hslot->count < hslot2->count) 520 goto begin; 521 522 result = udp4_lib_lookup2(net, saddr, sport, 523 htonl(INADDR_ANY), hnum, dif, 524 hslot2, slot2); 525 } 526 rcu_read_unlock(); 527 return result; 528 } 529 begin: 530 result = NULL; 531 badness = 0; 532 sk_nulls_for_each_rcu(sk, node, &hslot->head) { 533 score = compute_score(sk, net, saddr, hnum, sport, 534 daddr, dport, dif); 535 if (score > badness) { 536 result = sk; 537 badness = score; 538 reuseport = sk->sk_reuseport; 539 if (reuseport) { 540 hash = udp_ehashfn(net, daddr, hnum, 541 saddr, sport); 542 matches = 1; 543 } 544 } else if (score == badness && reuseport) { 545 matches++; 546 if (reciprocal_scale(hash, matches) == 0) 547 result = sk; 548 hash = next_pseudo_random32(hash); 549 } 550 } 551 /* 552 * if the nulls value we got at the end of this lookup is 553 * not the expected one, we must restart lookup. 554 * We probably met an item that was moved to another chain. 555 */ 556 if (get_nulls_value(node) != slot) 557 goto begin; 558 559 if (result) { 560 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 561 result = NULL; 562 else if (unlikely(compute_score(result, net, saddr, hnum, sport, 563 daddr, dport, dif) < badness)) { 564 sock_put(result); 565 goto begin; 566 } 567 } 568 rcu_read_unlock(); 569 return result; 570 } 571 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 572 573 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 574 __be16 sport, __be16 dport, 575 struct udp_table *udptable) 576 { 577 const struct iphdr *iph = ip_hdr(skb); 578 579 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport, 580 iph->daddr, dport, inet_iif(skb), 581 udptable); 582 } 583 584 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 585 __be32 daddr, __be16 dport, int dif) 586 { 587 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table); 588 } 589 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 590 591 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 592 __be16 loc_port, __be32 loc_addr, 593 __be16 rmt_port, __be32 rmt_addr, 594 int dif, unsigned short hnum) 595 { 596 struct inet_sock *inet = inet_sk(sk); 597 598 if (!net_eq(sock_net(sk), net) || 599 udp_sk(sk)->udp_port_hash != hnum || 600 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 601 (inet->inet_dport != rmt_port && inet->inet_dport) || 602 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 603 ipv6_only_sock(sk) || 604 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif)) 605 return false; 606 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif)) 607 return false; 608 return true; 609 } 610 611 /* 612 * This routine is called by the ICMP module when it gets some 613 * sort of error condition. If err < 0 then the socket should 614 * be closed and the error returned to the user. If err > 0 615 * it's just the icmp type << 8 | icmp code. 616 * Header points to the ip header of the error packet. We move 617 * on past this. Then (as it used to claim before adjustment) 618 * header points to the first 8 bytes of the udp header. We need 619 * to find the appropriate port. 620 */ 621 622 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 623 { 624 struct inet_sock *inet; 625 const struct iphdr *iph = (const struct iphdr *)skb->data; 626 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 627 const int type = icmp_hdr(skb)->type; 628 const int code = icmp_hdr(skb)->code; 629 struct sock *sk; 630 int harderr; 631 int err; 632 struct net *net = dev_net(skb->dev); 633 634 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 635 iph->saddr, uh->source, skb->dev->ifindex, udptable); 636 if (!sk) { 637 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 638 return; /* No socket for error */ 639 } 640 641 err = 0; 642 harderr = 0; 643 inet = inet_sk(sk); 644 645 switch (type) { 646 default: 647 case ICMP_TIME_EXCEEDED: 648 err = EHOSTUNREACH; 649 break; 650 case ICMP_SOURCE_QUENCH: 651 goto out; 652 case ICMP_PARAMETERPROB: 653 err = EPROTO; 654 harderr = 1; 655 break; 656 case ICMP_DEST_UNREACH: 657 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 658 ipv4_sk_update_pmtu(skb, sk, info); 659 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 660 err = EMSGSIZE; 661 harderr = 1; 662 break; 663 } 664 goto out; 665 } 666 err = EHOSTUNREACH; 667 if (code <= NR_ICMP_UNREACH) { 668 harderr = icmp_err_convert[code].fatal; 669 err = icmp_err_convert[code].errno; 670 } 671 break; 672 case ICMP_REDIRECT: 673 ipv4_sk_redirect(skb, sk); 674 goto out; 675 } 676 677 /* 678 * RFC1122: OK. Passes ICMP errors back to application, as per 679 * 4.1.3.3. 680 */ 681 if (!inet->recverr) { 682 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 683 goto out; 684 } else 685 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 686 687 sk->sk_err = err; 688 sk->sk_error_report(sk); 689 out: 690 sock_put(sk); 691 } 692 693 void udp_err(struct sk_buff *skb, u32 info) 694 { 695 __udp4_lib_err(skb, info, &udp_table); 696 } 697 698 /* 699 * Throw away all pending data and cancel the corking. Socket is locked. 700 */ 701 void udp_flush_pending_frames(struct sock *sk) 702 { 703 struct udp_sock *up = udp_sk(sk); 704 705 if (up->pending) { 706 up->len = 0; 707 up->pending = 0; 708 ip_flush_pending_frames(sk); 709 } 710 } 711 EXPORT_SYMBOL(udp_flush_pending_frames); 712 713 /** 714 * udp4_hwcsum - handle outgoing HW checksumming 715 * @skb: sk_buff containing the filled-in UDP header 716 * (checksum field must be zeroed out) 717 * @src: source IP address 718 * @dst: destination IP address 719 */ 720 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 721 { 722 struct udphdr *uh = udp_hdr(skb); 723 int offset = skb_transport_offset(skb); 724 int len = skb->len - offset; 725 int hlen = len; 726 __wsum csum = 0; 727 728 if (!skb_has_frag_list(skb)) { 729 /* 730 * Only one fragment on the socket. 731 */ 732 skb->csum_start = skb_transport_header(skb) - skb->head; 733 skb->csum_offset = offsetof(struct udphdr, check); 734 uh->check = ~csum_tcpudp_magic(src, dst, len, 735 IPPROTO_UDP, 0); 736 } else { 737 struct sk_buff *frags; 738 739 /* 740 * HW-checksum won't work as there are two or more 741 * fragments on the socket so that all csums of sk_buffs 742 * should be together 743 */ 744 skb_walk_frags(skb, frags) { 745 csum = csum_add(csum, frags->csum); 746 hlen -= frags->len; 747 } 748 749 csum = skb_checksum(skb, offset, hlen, csum); 750 skb->ip_summed = CHECKSUM_NONE; 751 752 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 753 if (uh->check == 0) 754 uh->check = CSUM_MANGLED_0; 755 } 756 } 757 EXPORT_SYMBOL_GPL(udp4_hwcsum); 758 759 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 760 * for the simple case like when setting the checksum for a UDP tunnel. 761 */ 762 void udp_set_csum(bool nocheck, struct sk_buff *skb, 763 __be32 saddr, __be32 daddr, int len) 764 { 765 struct udphdr *uh = udp_hdr(skb); 766 767 if (nocheck) 768 uh->check = 0; 769 else if (skb_is_gso(skb)) 770 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 771 else if (skb_dst(skb) && skb_dst(skb)->dev && 772 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) { 773 774 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL); 775 776 skb->ip_summed = CHECKSUM_PARTIAL; 777 skb->csum_start = skb_transport_header(skb) - skb->head; 778 skb->csum_offset = offsetof(struct udphdr, check); 779 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 780 } else { 781 __wsum csum; 782 783 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL); 784 785 uh->check = 0; 786 csum = skb_checksum(skb, 0, len, 0); 787 uh->check = udp_v4_check(len, saddr, daddr, csum); 788 if (uh->check == 0) 789 uh->check = CSUM_MANGLED_0; 790 791 skb->ip_summed = CHECKSUM_UNNECESSARY; 792 } 793 } 794 EXPORT_SYMBOL(udp_set_csum); 795 796 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 797 { 798 struct sock *sk = skb->sk; 799 struct inet_sock *inet = inet_sk(sk); 800 struct udphdr *uh; 801 int err = 0; 802 int is_udplite = IS_UDPLITE(sk); 803 int offset = skb_transport_offset(skb); 804 int len = skb->len - offset; 805 __wsum csum = 0; 806 807 /* 808 * Create a UDP header 809 */ 810 uh = udp_hdr(skb); 811 uh->source = inet->inet_sport; 812 uh->dest = fl4->fl4_dport; 813 uh->len = htons(len); 814 uh->check = 0; 815 816 if (is_udplite) /* UDP-Lite */ 817 csum = udplite_csum(skb); 818 819 else if (sk->sk_no_check_tx) { /* UDP csum disabled */ 820 821 skb->ip_summed = CHECKSUM_NONE; 822 goto send; 823 824 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 825 826 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 827 goto send; 828 829 } else 830 csum = udp_csum(skb); 831 832 /* add protocol-dependent pseudo-header */ 833 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 834 sk->sk_protocol, csum); 835 if (uh->check == 0) 836 uh->check = CSUM_MANGLED_0; 837 838 send: 839 err = ip_send_skb(sock_net(sk), skb); 840 if (err) { 841 if (err == -ENOBUFS && !inet->recverr) { 842 UDP_INC_STATS_USER(sock_net(sk), 843 UDP_MIB_SNDBUFERRORS, is_udplite); 844 err = 0; 845 } 846 } else 847 UDP_INC_STATS_USER(sock_net(sk), 848 UDP_MIB_OUTDATAGRAMS, is_udplite); 849 return err; 850 } 851 852 /* 853 * Push out all pending data as one UDP datagram. Socket is locked. 854 */ 855 int udp_push_pending_frames(struct sock *sk) 856 { 857 struct udp_sock *up = udp_sk(sk); 858 struct inet_sock *inet = inet_sk(sk); 859 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 860 struct sk_buff *skb; 861 int err = 0; 862 863 skb = ip_finish_skb(sk, fl4); 864 if (!skb) 865 goto out; 866 867 err = udp_send_skb(skb, fl4); 868 869 out: 870 up->len = 0; 871 up->pending = 0; 872 return err; 873 } 874 EXPORT_SYMBOL(udp_push_pending_frames); 875 876 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 877 { 878 struct inet_sock *inet = inet_sk(sk); 879 struct udp_sock *up = udp_sk(sk); 880 struct flowi4 fl4_stack; 881 struct flowi4 *fl4; 882 int ulen = len; 883 struct ipcm_cookie ipc; 884 struct rtable *rt = NULL; 885 int free = 0; 886 int connected = 0; 887 __be32 daddr, faddr, saddr; 888 __be16 dport; 889 u8 tos; 890 int err, is_udplite = IS_UDPLITE(sk); 891 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 892 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 893 struct sk_buff *skb; 894 struct ip_options_data opt_copy; 895 896 if (len > 0xFFFF) 897 return -EMSGSIZE; 898 899 /* 900 * Check the flags. 901 */ 902 903 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 904 return -EOPNOTSUPP; 905 906 ipc.opt = NULL; 907 ipc.tx_flags = 0; 908 ipc.ttl = 0; 909 ipc.tos = -1; 910 911 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 912 913 fl4 = &inet->cork.fl.u.ip4; 914 if (up->pending) { 915 /* 916 * There are pending frames. 917 * The socket lock must be held while it's corked. 918 */ 919 lock_sock(sk); 920 if (likely(up->pending)) { 921 if (unlikely(up->pending != AF_INET)) { 922 release_sock(sk); 923 return -EINVAL; 924 } 925 goto do_append_data; 926 } 927 release_sock(sk); 928 } 929 ulen += sizeof(struct udphdr); 930 931 /* 932 * Get and verify the address. 933 */ 934 if (msg->msg_name) { 935 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 936 if (msg->msg_namelen < sizeof(*usin)) 937 return -EINVAL; 938 if (usin->sin_family != AF_INET) { 939 if (usin->sin_family != AF_UNSPEC) 940 return -EAFNOSUPPORT; 941 } 942 943 daddr = usin->sin_addr.s_addr; 944 dport = usin->sin_port; 945 if (dport == 0) 946 return -EINVAL; 947 } else { 948 if (sk->sk_state != TCP_ESTABLISHED) 949 return -EDESTADDRREQ; 950 daddr = inet->inet_daddr; 951 dport = inet->inet_dport; 952 /* Open fast path for connected socket. 953 Route will not be used, if at least one option is set. 954 */ 955 connected = 1; 956 } 957 ipc.addr = inet->inet_saddr; 958 959 ipc.oif = sk->sk_bound_dev_if; 960 961 sock_tx_timestamp(sk, &ipc.tx_flags); 962 963 if (msg->msg_controllen) { 964 err = ip_cmsg_send(sock_net(sk), msg, &ipc, 965 sk->sk_family == AF_INET6); 966 if (err) 967 return err; 968 if (ipc.opt) 969 free = 1; 970 connected = 0; 971 } 972 if (!ipc.opt) { 973 struct ip_options_rcu *inet_opt; 974 975 rcu_read_lock(); 976 inet_opt = rcu_dereference(inet->inet_opt); 977 if (inet_opt) { 978 memcpy(&opt_copy, inet_opt, 979 sizeof(*inet_opt) + inet_opt->opt.optlen); 980 ipc.opt = &opt_copy.opt; 981 } 982 rcu_read_unlock(); 983 } 984 985 saddr = ipc.addr; 986 ipc.addr = faddr = daddr; 987 988 if (ipc.opt && ipc.opt->opt.srr) { 989 if (!daddr) 990 return -EINVAL; 991 faddr = ipc.opt->opt.faddr; 992 connected = 0; 993 } 994 tos = get_rttos(&ipc, inet); 995 if (sock_flag(sk, SOCK_LOCALROUTE) || 996 (msg->msg_flags & MSG_DONTROUTE) || 997 (ipc.opt && ipc.opt->opt.is_strictroute)) { 998 tos |= RTO_ONLINK; 999 connected = 0; 1000 } 1001 1002 if (ipv4_is_multicast(daddr)) { 1003 if (!ipc.oif) 1004 ipc.oif = inet->mc_index; 1005 if (!saddr) 1006 saddr = inet->mc_addr; 1007 connected = 0; 1008 } else if (!ipc.oif) 1009 ipc.oif = inet->uc_index; 1010 1011 if (connected) 1012 rt = (struct rtable *)sk_dst_check(sk, 0); 1013 1014 if (!rt) { 1015 struct net *net = sock_net(sk); 1016 __u8 flow_flags = inet_sk_flowi_flags(sk); 1017 1018 fl4 = &fl4_stack; 1019 1020 /* unconnected socket. If output device is enslaved to a VRF 1021 * device lookup source address from VRF table. This mimics 1022 * behavior of ip_route_connect{_init}. 1023 */ 1024 if (netif_index_is_vrf(net, ipc.oif)) { 1025 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1026 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1027 (flow_flags | FLOWI_FLAG_VRFSRC), 1028 faddr, saddr, dport, 1029 inet->inet_sport); 1030 1031 rt = ip_route_output_flow(net, fl4, sk); 1032 if (!IS_ERR(rt)) { 1033 saddr = fl4->saddr; 1034 ip_rt_put(rt); 1035 } 1036 } 1037 1038 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1039 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1040 flow_flags, 1041 faddr, saddr, dport, inet->inet_sport); 1042 1043 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1044 rt = ip_route_output_flow(net, fl4, sk); 1045 if (IS_ERR(rt)) { 1046 err = PTR_ERR(rt); 1047 rt = NULL; 1048 if (err == -ENETUNREACH) 1049 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1050 goto out; 1051 } 1052 1053 err = -EACCES; 1054 if ((rt->rt_flags & RTCF_BROADCAST) && 1055 !sock_flag(sk, SOCK_BROADCAST)) 1056 goto out; 1057 if (connected) 1058 sk_dst_set(sk, dst_clone(&rt->dst)); 1059 } 1060 1061 if (msg->msg_flags&MSG_CONFIRM) 1062 goto do_confirm; 1063 back_from_confirm: 1064 1065 saddr = fl4->saddr; 1066 if (!ipc.addr) 1067 daddr = ipc.addr = fl4->daddr; 1068 1069 /* Lockless fast path for the non-corking case. */ 1070 if (!corkreq) { 1071 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1072 sizeof(struct udphdr), &ipc, &rt, 1073 msg->msg_flags); 1074 err = PTR_ERR(skb); 1075 if (!IS_ERR_OR_NULL(skb)) 1076 err = udp_send_skb(skb, fl4); 1077 goto out; 1078 } 1079 1080 lock_sock(sk); 1081 if (unlikely(up->pending)) { 1082 /* The socket is already corked while preparing it. */ 1083 /* ... which is an evident application bug. --ANK */ 1084 release_sock(sk); 1085 1086 net_dbg_ratelimited("cork app bug 2\n"); 1087 err = -EINVAL; 1088 goto out; 1089 } 1090 /* 1091 * Now cork the socket to pend data. 1092 */ 1093 fl4 = &inet->cork.fl.u.ip4; 1094 fl4->daddr = daddr; 1095 fl4->saddr = saddr; 1096 fl4->fl4_dport = dport; 1097 fl4->fl4_sport = inet->inet_sport; 1098 up->pending = AF_INET; 1099 1100 do_append_data: 1101 up->len += ulen; 1102 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1103 sizeof(struct udphdr), &ipc, &rt, 1104 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1105 if (err) 1106 udp_flush_pending_frames(sk); 1107 else if (!corkreq) 1108 err = udp_push_pending_frames(sk); 1109 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1110 up->pending = 0; 1111 release_sock(sk); 1112 1113 out: 1114 ip_rt_put(rt); 1115 if (free) 1116 kfree(ipc.opt); 1117 if (!err) 1118 return len; 1119 /* 1120 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1121 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1122 * we don't have a good statistic (IpOutDiscards but it can be too many 1123 * things). We could add another new stat but at least for now that 1124 * seems like overkill. 1125 */ 1126 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1127 UDP_INC_STATS_USER(sock_net(sk), 1128 UDP_MIB_SNDBUFERRORS, is_udplite); 1129 } 1130 return err; 1131 1132 do_confirm: 1133 dst_confirm(&rt->dst); 1134 if (!(msg->msg_flags&MSG_PROBE) || len) 1135 goto back_from_confirm; 1136 err = 0; 1137 goto out; 1138 } 1139 EXPORT_SYMBOL(udp_sendmsg); 1140 1141 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1142 size_t size, int flags) 1143 { 1144 struct inet_sock *inet = inet_sk(sk); 1145 struct udp_sock *up = udp_sk(sk); 1146 int ret; 1147 1148 if (flags & MSG_SENDPAGE_NOTLAST) 1149 flags |= MSG_MORE; 1150 1151 if (!up->pending) { 1152 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1153 1154 /* Call udp_sendmsg to specify destination address which 1155 * sendpage interface can't pass. 1156 * This will succeed only when the socket is connected. 1157 */ 1158 ret = udp_sendmsg(sk, &msg, 0); 1159 if (ret < 0) 1160 return ret; 1161 } 1162 1163 lock_sock(sk); 1164 1165 if (unlikely(!up->pending)) { 1166 release_sock(sk); 1167 1168 net_dbg_ratelimited("udp cork app bug 3\n"); 1169 return -EINVAL; 1170 } 1171 1172 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1173 page, offset, size, flags); 1174 if (ret == -EOPNOTSUPP) { 1175 release_sock(sk); 1176 return sock_no_sendpage(sk->sk_socket, page, offset, 1177 size, flags); 1178 } 1179 if (ret < 0) { 1180 udp_flush_pending_frames(sk); 1181 goto out; 1182 } 1183 1184 up->len += size; 1185 if (!(up->corkflag || (flags&MSG_MORE))) 1186 ret = udp_push_pending_frames(sk); 1187 if (!ret) 1188 ret = size; 1189 out: 1190 release_sock(sk); 1191 return ret; 1192 } 1193 1194 /** 1195 * first_packet_length - return length of first packet in receive queue 1196 * @sk: socket 1197 * 1198 * Drops all bad checksum frames, until a valid one is found. 1199 * Returns the length of found skb, or 0 if none is found. 1200 */ 1201 static unsigned int first_packet_length(struct sock *sk) 1202 { 1203 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue; 1204 struct sk_buff *skb; 1205 unsigned int res; 1206 1207 __skb_queue_head_init(&list_kill); 1208 1209 spin_lock_bh(&rcvq->lock); 1210 while ((skb = skb_peek(rcvq)) != NULL && 1211 udp_lib_checksum_complete(skb)) { 1212 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, 1213 IS_UDPLITE(sk)); 1214 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1215 IS_UDPLITE(sk)); 1216 atomic_inc(&sk->sk_drops); 1217 __skb_unlink(skb, rcvq); 1218 __skb_queue_tail(&list_kill, skb); 1219 } 1220 res = skb ? skb->len : 0; 1221 spin_unlock_bh(&rcvq->lock); 1222 1223 if (!skb_queue_empty(&list_kill)) { 1224 bool slow = lock_sock_fast(sk); 1225 1226 __skb_queue_purge(&list_kill); 1227 sk_mem_reclaim_partial(sk); 1228 unlock_sock_fast(sk, slow); 1229 } 1230 return res; 1231 } 1232 1233 /* 1234 * IOCTL requests applicable to the UDP protocol 1235 */ 1236 1237 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1238 { 1239 switch (cmd) { 1240 case SIOCOUTQ: 1241 { 1242 int amount = sk_wmem_alloc_get(sk); 1243 1244 return put_user(amount, (int __user *)arg); 1245 } 1246 1247 case SIOCINQ: 1248 { 1249 unsigned int amount = first_packet_length(sk); 1250 1251 if (amount) 1252 /* 1253 * We will only return the amount 1254 * of this packet since that is all 1255 * that will be read. 1256 */ 1257 amount -= sizeof(struct udphdr); 1258 1259 return put_user(amount, (int __user *)arg); 1260 } 1261 1262 default: 1263 return -ENOIOCTLCMD; 1264 } 1265 1266 return 0; 1267 } 1268 EXPORT_SYMBOL(udp_ioctl); 1269 1270 /* 1271 * This should be easy, if there is something there we 1272 * return it, otherwise we block. 1273 */ 1274 1275 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1276 int flags, int *addr_len) 1277 { 1278 struct inet_sock *inet = inet_sk(sk); 1279 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1280 struct sk_buff *skb; 1281 unsigned int ulen, copied; 1282 int peeked, off = 0; 1283 int err; 1284 int is_udplite = IS_UDPLITE(sk); 1285 bool slow; 1286 1287 if (flags & MSG_ERRQUEUE) 1288 return ip_recv_error(sk, msg, len, addr_len); 1289 1290 try_again: 1291 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0), 1292 &peeked, &off, &err); 1293 if (!skb) 1294 goto out; 1295 1296 ulen = skb->len - sizeof(struct udphdr); 1297 copied = len; 1298 if (copied > ulen) 1299 copied = ulen; 1300 else if (copied < ulen) 1301 msg->msg_flags |= MSG_TRUNC; 1302 1303 /* 1304 * If checksum is needed at all, try to do it while copying the 1305 * data. If the data is truncated, or if we only want a partial 1306 * coverage checksum (UDP-Lite), do it before the copy. 1307 */ 1308 1309 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) { 1310 if (udp_lib_checksum_complete(skb)) 1311 goto csum_copy_err; 1312 } 1313 1314 if (skb_csum_unnecessary(skb)) 1315 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr), 1316 msg, copied); 1317 else { 1318 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr), 1319 msg); 1320 1321 if (err == -EINVAL) 1322 goto csum_copy_err; 1323 } 1324 1325 if (unlikely(err)) { 1326 trace_kfree_skb(skb, udp_recvmsg); 1327 if (!peeked) { 1328 atomic_inc(&sk->sk_drops); 1329 UDP_INC_STATS_USER(sock_net(sk), 1330 UDP_MIB_INERRORS, is_udplite); 1331 } 1332 goto out_free; 1333 } 1334 1335 if (!peeked) 1336 UDP_INC_STATS_USER(sock_net(sk), 1337 UDP_MIB_INDATAGRAMS, is_udplite); 1338 1339 sock_recv_ts_and_drops(msg, sk, skb); 1340 1341 /* Copy the address. */ 1342 if (sin) { 1343 sin->sin_family = AF_INET; 1344 sin->sin_port = udp_hdr(skb)->source; 1345 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1346 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1347 *addr_len = sizeof(*sin); 1348 } 1349 if (inet->cmsg_flags) 1350 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr)); 1351 1352 err = copied; 1353 if (flags & MSG_TRUNC) 1354 err = ulen; 1355 1356 out_free: 1357 skb_free_datagram_locked(sk, skb); 1358 out: 1359 return err; 1360 1361 csum_copy_err: 1362 slow = lock_sock_fast(sk); 1363 if (!skb_kill_datagram(sk, skb, flags)) { 1364 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1365 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1366 } 1367 unlock_sock_fast(sk, slow); 1368 1369 /* starting over for a new packet, but check if we need to yield */ 1370 cond_resched(); 1371 msg->msg_flags &= ~MSG_TRUNC; 1372 goto try_again; 1373 } 1374 1375 int udp_disconnect(struct sock *sk, int flags) 1376 { 1377 struct inet_sock *inet = inet_sk(sk); 1378 /* 1379 * 1003.1g - break association. 1380 */ 1381 1382 sk->sk_state = TCP_CLOSE; 1383 inet->inet_daddr = 0; 1384 inet->inet_dport = 0; 1385 sock_rps_reset_rxhash(sk); 1386 sk->sk_bound_dev_if = 0; 1387 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1388 inet_reset_saddr(sk); 1389 1390 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1391 sk->sk_prot->unhash(sk); 1392 inet->inet_sport = 0; 1393 } 1394 sk_dst_reset(sk); 1395 return 0; 1396 } 1397 EXPORT_SYMBOL(udp_disconnect); 1398 1399 void udp_lib_unhash(struct sock *sk) 1400 { 1401 if (sk_hashed(sk)) { 1402 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1403 struct udp_hslot *hslot, *hslot2; 1404 1405 hslot = udp_hashslot(udptable, sock_net(sk), 1406 udp_sk(sk)->udp_port_hash); 1407 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1408 1409 spin_lock_bh(&hslot->lock); 1410 if (sk_nulls_del_node_init_rcu(sk)) { 1411 hslot->count--; 1412 inet_sk(sk)->inet_num = 0; 1413 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1414 1415 spin_lock(&hslot2->lock); 1416 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1417 hslot2->count--; 1418 spin_unlock(&hslot2->lock); 1419 } 1420 spin_unlock_bh(&hslot->lock); 1421 } 1422 } 1423 EXPORT_SYMBOL(udp_lib_unhash); 1424 1425 /* 1426 * inet_rcv_saddr was changed, we must rehash secondary hash 1427 */ 1428 void udp_lib_rehash(struct sock *sk, u16 newhash) 1429 { 1430 if (sk_hashed(sk)) { 1431 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1432 struct udp_hslot *hslot, *hslot2, *nhslot2; 1433 1434 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1435 nhslot2 = udp_hashslot2(udptable, newhash); 1436 udp_sk(sk)->udp_portaddr_hash = newhash; 1437 if (hslot2 != nhslot2) { 1438 hslot = udp_hashslot(udptable, sock_net(sk), 1439 udp_sk(sk)->udp_port_hash); 1440 /* we must lock primary chain too */ 1441 spin_lock_bh(&hslot->lock); 1442 1443 spin_lock(&hslot2->lock); 1444 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1445 hslot2->count--; 1446 spin_unlock(&hslot2->lock); 1447 1448 spin_lock(&nhslot2->lock); 1449 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1450 &nhslot2->head); 1451 nhslot2->count++; 1452 spin_unlock(&nhslot2->lock); 1453 1454 spin_unlock_bh(&hslot->lock); 1455 } 1456 } 1457 } 1458 EXPORT_SYMBOL(udp_lib_rehash); 1459 1460 static void udp_v4_rehash(struct sock *sk) 1461 { 1462 u16 new_hash = udp4_portaddr_hash(sock_net(sk), 1463 inet_sk(sk)->inet_rcv_saddr, 1464 inet_sk(sk)->inet_num); 1465 udp_lib_rehash(sk, new_hash); 1466 } 1467 1468 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1469 { 1470 int rc; 1471 1472 if (inet_sk(sk)->inet_daddr) { 1473 sock_rps_save_rxhash(sk, skb); 1474 sk_mark_napi_id(sk, skb); 1475 sk_incoming_cpu_update(sk); 1476 } 1477 1478 rc = sock_queue_rcv_skb(sk, skb); 1479 if (rc < 0) { 1480 int is_udplite = IS_UDPLITE(sk); 1481 1482 /* Note that an ENOMEM error is charged twice */ 1483 if (rc == -ENOMEM) 1484 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1485 is_udplite); 1486 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1487 kfree_skb(skb); 1488 trace_udp_fail_queue_rcv_skb(rc, sk); 1489 return -1; 1490 } 1491 1492 return 0; 1493 1494 } 1495 1496 static struct static_key udp_encap_needed __read_mostly; 1497 void udp_encap_enable(void) 1498 { 1499 if (!static_key_enabled(&udp_encap_needed)) 1500 static_key_slow_inc(&udp_encap_needed); 1501 } 1502 EXPORT_SYMBOL(udp_encap_enable); 1503 1504 /* returns: 1505 * -1: error 1506 * 0: success 1507 * >0: "udp encap" protocol resubmission 1508 * 1509 * Note that in the success and error cases, the skb is assumed to 1510 * have either been requeued or freed. 1511 */ 1512 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1513 { 1514 struct udp_sock *up = udp_sk(sk); 1515 int rc; 1516 int is_udplite = IS_UDPLITE(sk); 1517 1518 /* 1519 * Charge it to the socket, dropping if the queue is full. 1520 */ 1521 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1522 goto drop; 1523 nf_reset(skb); 1524 1525 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1526 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1527 1528 /* 1529 * This is an encapsulation socket so pass the skb to 1530 * the socket's udp_encap_rcv() hook. Otherwise, just 1531 * fall through and pass this up the UDP socket. 1532 * up->encap_rcv() returns the following value: 1533 * =0 if skb was successfully passed to the encap 1534 * handler or was discarded by it. 1535 * >0 if skb should be passed on to UDP. 1536 * <0 if skb should be resubmitted as proto -N 1537 */ 1538 1539 /* if we're overly short, let UDP handle it */ 1540 encap_rcv = ACCESS_ONCE(up->encap_rcv); 1541 if (skb->len > sizeof(struct udphdr) && encap_rcv) { 1542 int ret; 1543 1544 /* Verify checksum before giving to encap */ 1545 if (udp_lib_checksum_complete(skb)) 1546 goto csum_error; 1547 1548 ret = encap_rcv(sk, skb); 1549 if (ret <= 0) { 1550 UDP_INC_STATS_BH(sock_net(sk), 1551 UDP_MIB_INDATAGRAMS, 1552 is_udplite); 1553 return -ret; 1554 } 1555 } 1556 1557 /* FALLTHROUGH -- it's a UDP Packet */ 1558 } 1559 1560 /* 1561 * UDP-Lite specific tests, ignored on UDP sockets 1562 */ 1563 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1564 1565 /* 1566 * MIB statistics other than incrementing the error count are 1567 * disabled for the following two types of errors: these depend 1568 * on the application settings, not on the functioning of the 1569 * protocol stack as such. 1570 * 1571 * RFC 3828 here recommends (sec 3.3): "There should also be a 1572 * way ... to ... at least let the receiving application block 1573 * delivery of packets with coverage values less than a value 1574 * provided by the application." 1575 */ 1576 if (up->pcrlen == 0) { /* full coverage was set */ 1577 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1578 UDP_SKB_CB(skb)->cscov, skb->len); 1579 goto drop; 1580 } 1581 /* The next case involves violating the min. coverage requested 1582 * by the receiver. This is subtle: if receiver wants x and x is 1583 * greater than the buffersize/MTU then receiver will complain 1584 * that it wants x while sender emits packets of smaller size y. 1585 * Therefore the above ...()->partial_cov statement is essential. 1586 */ 1587 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1588 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1589 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1590 goto drop; 1591 } 1592 } 1593 1594 if (rcu_access_pointer(sk->sk_filter) && 1595 udp_lib_checksum_complete(skb)) 1596 goto csum_error; 1597 1598 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 1599 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1600 is_udplite); 1601 goto drop; 1602 } 1603 1604 rc = 0; 1605 1606 ipv4_pktinfo_prepare(sk, skb); 1607 bh_lock_sock(sk); 1608 if (!sock_owned_by_user(sk)) 1609 rc = __udp_queue_rcv_skb(sk, skb); 1610 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 1611 bh_unlock_sock(sk); 1612 goto drop; 1613 } 1614 bh_unlock_sock(sk); 1615 1616 return rc; 1617 1618 csum_error: 1619 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1620 drop: 1621 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1622 atomic_inc(&sk->sk_drops); 1623 kfree_skb(skb); 1624 return -1; 1625 } 1626 1627 static void flush_stack(struct sock **stack, unsigned int count, 1628 struct sk_buff *skb, unsigned int final) 1629 { 1630 unsigned int i; 1631 struct sk_buff *skb1 = NULL; 1632 struct sock *sk; 1633 1634 for (i = 0; i < count; i++) { 1635 sk = stack[i]; 1636 if (likely(!skb1)) 1637 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC); 1638 1639 if (!skb1) { 1640 atomic_inc(&sk->sk_drops); 1641 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1642 IS_UDPLITE(sk)); 1643 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, 1644 IS_UDPLITE(sk)); 1645 } 1646 1647 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0) 1648 skb1 = NULL; 1649 1650 sock_put(sk); 1651 } 1652 if (unlikely(skb1)) 1653 kfree_skb(skb1); 1654 } 1655 1656 /* For TCP sockets, sk_rx_dst is protected by socket lock 1657 * For UDP, we use xchg() to guard against concurrent changes. 1658 */ 1659 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 1660 { 1661 struct dst_entry *old; 1662 1663 dst_hold(dst); 1664 old = xchg(&sk->sk_rx_dst, dst); 1665 dst_release(old); 1666 } 1667 1668 /* 1669 * Multicasts and broadcasts go to each listener. 1670 * 1671 * Note: called only from the BH handler context. 1672 */ 1673 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1674 struct udphdr *uh, 1675 __be32 saddr, __be32 daddr, 1676 struct udp_table *udptable, 1677 int proto) 1678 { 1679 struct sock *sk, *stack[256 / sizeof(struct sock *)]; 1680 struct hlist_nulls_node *node; 1681 unsigned short hnum = ntohs(uh->dest); 1682 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 1683 int dif = skb->dev->ifindex; 1684 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node); 1685 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 1686 bool inner_flushed = false; 1687 1688 if (use_hash2) { 1689 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 1690 udp_table.mask; 1691 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask; 1692 start_lookup: 1693 hslot = &udp_table.hash2[hash2]; 1694 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 1695 } 1696 1697 spin_lock(&hslot->lock); 1698 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) { 1699 if (__udp_is_mcast_sock(net, sk, 1700 uh->dest, daddr, 1701 uh->source, saddr, 1702 dif, hnum)) { 1703 if (unlikely(count == ARRAY_SIZE(stack))) { 1704 flush_stack(stack, count, skb, ~0); 1705 inner_flushed = true; 1706 count = 0; 1707 } 1708 stack[count++] = sk; 1709 sock_hold(sk); 1710 } 1711 } 1712 1713 spin_unlock(&hslot->lock); 1714 1715 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 1716 if (use_hash2 && hash2 != hash2_any) { 1717 hash2 = hash2_any; 1718 goto start_lookup; 1719 } 1720 1721 /* 1722 * do the slow work with no lock held 1723 */ 1724 if (count) { 1725 flush_stack(stack, count, skb, count - 1); 1726 } else { 1727 if (!inner_flushed) 1728 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI, 1729 proto == IPPROTO_UDPLITE); 1730 consume_skb(skb); 1731 } 1732 return 0; 1733 } 1734 1735 /* Initialize UDP checksum. If exited with zero value (success), 1736 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1737 * Otherwise, csum completion requires chacksumming packet body, 1738 * including udp header and folding it to skb->csum. 1739 */ 1740 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 1741 int proto) 1742 { 1743 int err; 1744 1745 UDP_SKB_CB(skb)->partial_cov = 0; 1746 UDP_SKB_CB(skb)->cscov = skb->len; 1747 1748 if (proto == IPPROTO_UDPLITE) { 1749 err = udplite_checksum_init(skb, uh); 1750 if (err) 1751 return err; 1752 } 1753 1754 return skb_checksum_init_zero_check(skb, proto, uh->check, 1755 inet_compute_pseudo); 1756 } 1757 1758 /* 1759 * All we need to do is get the socket, and then do a checksum. 1760 */ 1761 1762 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 1763 int proto) 1764 { 1765 struct sock *sk; 1766 struct udphdr *uh; 1767 unsigned short ulen; 1768 struct rtable *rt = skb_rtable(skb); 1769 __be32 saddr, daddr; 1770 struct net *net = dev_net(skb->dev); 1771 1772 /* 1773 * Validate the packet. 1774 */ 1775 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1776 goto drop; /* No space for header. */ 1777 1778 uh = udp_hdr(skb); 1779 ulen = ntohs(uh->len); 1780 saddr = ip_hdr(skb)->saddr; 1781 daddr = ip_hdr(skb)->daddr; 1782 1783 if (ulen > skb->len) 1784 goto short_packet; 1785 1786 if (proto == IPPROTO_UDP) { 1787 /* UDP validates ulen. */ 1788 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 1789 goto short_packet; 1790 uh = udp_hdr(skb); 1791 } 1792 1793 if (udp4_csum_init(skb, uh, proto)) 1794 goto csum_error; 1795 1796 sk = skb_steal_sock(skb); 1797 if (sk) { 1798 struct dst_entry *dst = skb_dst(skb); 1799 int ret; 1800 1801 if (unlikely(sk->sk_rx_dst != dst)) 1802 udp_sk_rx_dst_set(sk, dst); 1803 1804 ret = udp_queue_rcv_skb(sk, skb); 1805 sock_put(sk); 1806 /* a return value > 0 means to resubmit the input, but 1807 * it wants the return to be -protocol, or 0 1808 */ 1809 if (ret > 0) 1810 return -ret; 1811 return 0; 1812 } 1813 1814 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1815 return __udp4_lib_mcast_deliver(net, skb, uh, 1816 saddr, daddr, udptable, proto); 1817 1818 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 1819 if (sk) { 1820 int ret; 1821 1822 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 1823 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 1824 inet_compute_pseudo); 1825 1826 ret = udp_queue_rcv_skb(sk, skb); 1827 sock_put(sk); 1828 1829 /* a return value > 0 means to resubmit the input, but 1830 * it wants the return to be -protocol, or 0 1831 */ 1832 if (ret > 0) 1833 return -ret; 1834 return 0; 1835 } 1836 1837 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1838 goto drop; 1839 nf_reset(skb); 1840 1841 /* No socket. Drop packet silently, if checksum is wrong */ 1842 if (udp_lib_checksum_complete(skb)) 1843 goto csum_error; 1844 1845 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 1846 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1847 1848 /* 1849 * Hmm. We got an UDP packet to a port to which we 1850 * don't wanna listen. Ignore it. 1851 */ 1852 kfree_skb(skb); 1853 return 0; 1854 1855 short_packet: 1856 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 1857 proto == IPPROTO_UDPLITE ? "Lite" : "", 1858 &saddr, ntohs(uh->source), 1859 ulen, skb->len, 1860 &daddr, ntohs(uh->dest)); 1861 goto drop; 1862 1863 csum_error: 1864 /* 1865 * RFC1122: OK. Discards the bad packet silently (as far as 1866 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1867 */ 1868 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 1869 proto == IPPROTO_UDPLITE ? "Lite" : "", 1870 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 1871 ulen); 1872 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 1873 drop: 1874 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 1875 kfree_skb(skb); 1876 return 0; 1877 } 1878 1879 /* We can only early demux multicast if there is a single matching socket. 1880 * If more than one socket found returns NULL 1881 */ 1882 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 1883 __be16 loc_port, __be32 loc_addr, 1884 __be16 rmt_port, __be32 rmt_addr, 1885 int dif) 1886 { 1887 struct sock *sk, *result; 1888 struct hlist_nulls_node *node; 1889 unsigned short hnum = ntohs(loc_port); 1890 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask); 1891 struct udp_hslot *hslot = &udp_table.hash[slot]; 1892 1893 /* Do not bother scanning a too big list */ 1894 if (hslot->count > 10) 1895 return NULL; 1896 1897 rcu_read_lock(); 1898 begin: 1899 count = 0; 1900 result = NULL; 1901 sk_nulls_for_each_rcu(sk, node, &hslot->head) { 1902 if (__udp_is_mcast_sock(net, sk, 1903 loc_port, loc_addr, 1904 rmt_port, rmt_addr, 1905 dif, hnum)) { 1906 result = sk; 1907 ++count; 1908 } 1909 } 1910 /* 1911 * if the nulls value we got at the end of this lookup is 1912 * not the expected one, we must restart lookup. 1913 * We probably met an item that was moved to another chain. 1914 */ 1915 if (get_nulls_value(node) != slot) 1916 goto begin; 1917 1918 if (result) { 1919 if (count != 1 || 1920 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 1921 result = NULL; 1922 else if (unlikely(!__udp_is_mcast_sock(net, result, 1923 loc_port, loc_addr, 1924 rmt_port, rmt_addr, 1925 dif, hnum))) { 1926 sock_put(result); 1927 result = NULL; 1928 } 1929 } 1930 rcu_read_unlock(); 1931 return result; 1932 } 1933 1934 /* For unicast we should only early demux connected sockets or we can 1935 * break forwarding setups. The chains here can be long so only check 1936 * if the first socket is an exact match and if not move on. 1937 */ 1938 static struct sock *__udp4_lib_demux_lookup(struct net *net, 1939 __be16 loc_port, __be32 loc_addr, 1940 __be16 rmt_port, __be32 rmt_addr, 1941 int dif) 1942 { 1943 struct sock *sk, *result; 1944 struct hlist_nulls_node *node; 1945 unsigned short hnum = ntohs(loc_port); 1946 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum); 1947 unsigned int slot2 = hash2 & udp_table.mask; 1948 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 1949 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 1950 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 1951 1952 rcu_read_lock(); 1953 result = NULL; 1954 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) { 1955 if (INET_MATCH(sk, net, acookie, 1956 rmt_addr, loc_addr, ports, dif)) 1957 result = sk; 1958 /* Only check first socket in chain */ 1959 break; 1960 } 1961 1962 if (result) { 1963 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2))) 1964 result = NULL; 1965 else if (unlikely(!INET_MATCH(sk, net, acookie, 1966 rmt_addr, loc_addr, 1967 ports, dif))) { 1968 sock_put(result); 1969 result = NULL; 1970 } 1971 } 1972 rcu_read_unlock(); 1973 return result; 1974 } 1975 1976 void udp_v4_early_demux(struct sk_buff *skb) 1977 { 1978 struct net *net = dev_net(skb->dev); 1979 const struct iphdr *iph; 1980 const struct udphdr *uh; 1981 struct sock *sk; 1982 struct dst_entry *dst; 1983 int dif = skb->dev->ifindex; 1984 int ours; 1985 1986 /* validate the packet */ 1987 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 1988 return; 1989 1990 iph = ip_hdr(skb); 1991 uh = udp_hdr(skb); 1992 1993 if (skb->pkt_type == PACKET_BROADCAST || 1994 skb->pkt_type == PACKET_MULTICAST) { 1995 struct in_device *in_dev = __in_dev_get_rcu(skb->dev); 1996 1997 if (!in_dev) 1998 return; 1999 2000 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2001 iph->protocol); 2002 if (!ours) 2003 return; 2004 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2005 uh->source, iph->saddr, dif); 2006 } else if (skb->pkt_type == PACKET_HOST) { 2007 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2008 uh->source, iph->saddr, dif); 2009 } else { 2010 return; 2011 } 2012 2013 if (!sk) 2014 return; 2015 2016 skb->sk = sk; 2017 skb->destructor = sock_efree; 2018 dst = READ_ONCE(sk->sk_rx_dst); 2019 2020 if (dst) 2021 dst = dst_check(dst, 0); 2022 if (dst) { 2023 /* DST_NOCACHE can not be used without taking a reference */ 2024 if (dst->flags & DST_NOCACHE) { 2025 if (likely(atomic_inc_not_zero(&dst->__refcnt))) 2026 skb_dst_set(skb, dst); 2027 } else { 2028 skb_dst_set_noref(skb, dst); 2029 } 2030 } 2031 } 2032 2033 int udp_rcv(struct sk_buff *skb) 2034 { 2035 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2036 } 2037 2038 void udp_destroy_sock(struct sock *sk) 2039 { 2040 struct udp_sock *up = udp_sk(sk); 2041 bool slow = lock_sock_fast(sk); 2042 udp_flush_pending_frames(sk); 2043 unlock_sock_fast(sk, slow); 2044 if (static_key_false(&udp_encap_needed) && up->encap_type) { 2045 void (*encap_destroy)(struct sock *sk); 2046 encap_destroy = ACCESS_ONCE(up->encap_destroy); 2047 if (encap_destroy) 2048 encap_destroy(sk); 2049 } 2050 } 2051 2052 /* 2053 * Socket option code for UDP 2054 */ 2055 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2056 char __user *optval, unsigned int optlen, 2057 int (*push_pending_frames)(struct sock *)) 2058 { 2059 struct udp_sock *up = udp_sk(sk); 2060 int val, valbool; 2061 int err = 0; 2062 int is_udplite = IS_UDPLITE(sk); 2063 2064 if (optlen < sizeof(int)) 2065 return -EINVAL; 2066 2067 if (get_user(val, (int __user *)optval)) 2068 return -EFAULT; 2069 2070 valbool = val ? 1 : 0; 2071 2072 switch (optname) { 2073 case UDP_CORK: 2074 if (val != 0) { 2075 up->corkflag = 1; 2076 } else { 2077 up->corkflag = 0; 2078 lock_sock(sk); 2079 push_pending_frames(sk); 2080 release_sock(sk); 2081 } 2082 break; 2083 2084 case UDP_ENCAP: 2085 switch (val) { 2086 case 0: 2087 case UDP_ENCAP_ESPINUDP: 2088 case UDP_ENCAP_ESPINUDP_NON_IKE: 2089 up->encap_rcv = xfrm4_udp_encap_rcv; 2090 /* FALLTHROUGH */ 2091 case UDP_ENCAP_L2TPINUDP: 2092 up->encap_type = val; 2093 udp_encap_enable(); 2094 break; 2095 default: 2096 err = -ENOPROTOOPT; 2097 break; 2098 } 2099 break; 2100 2101 case UDP_NO_CHECK6_TX: 2102 up->no_check6_tx = valbool; 2103 break; 2104 2105 case UDP_NO_CHECK6_RX: 2106 up->no_check6_rx = valbool; 2107 break; 2108 2109 /* 2110 * UDP-Lite's partial checksum coverage (RFC 3828). 2111 */ 2112 /* The sender sets actual checksum coverage length via this option. 2113 * The case coverage > packet length is handled by send module. */ 2114 case UDPLITE_SEND_CSCOV: 2115 if (!is_udplite) /* Disable the option on UDP sockets */ 2116 return -ENOPROTOOPT; 2117 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2118 val = 8; 2119 else if (val > USHRT_MAX) 2120 val = USHRT_MAX; 2121 up->pcslen = val; 2122 up->pcflag |= UDPLITE_SEND_CC; 2123 break; 2124 2125 /* The receiver specifies a minimum checksum coverage value. To make 2126 * sense, this should be set to at least 8 (as done below). If zero is 2127 * used, this again means full checksum coverage. */ 2128 case UDPLITE_RECV_CSCOV: 2129 if (!is_udplite) /* Disable the option on UDP sockets */ 2130 return -ENOPROTOOPT; 2131 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2132 val = 8; 2133 else if (val > USHRT_MAX) 2134 val = USHRT_MAX; 2135 up->pcrlen = val; 2136 up->pcflag |= UDPLITE_RECV_CC; 2137 break; 2138 2139 default: 2140 err = -ENOPROTOOPT; 2141 break; 2142 } 2143 2144 return err; 2145 } 2146 EXPORT_SYMBOL(udp_lib_setsockopt); 2147 2148 int udp_setsockopt(struct sock *sk, int level, int optname, 2149 char __user *optval, unsigned int optlen) 2150 { 2151 if (level == SOL_UDP || level == SOL_UDPLITE) 2152 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2153 udp_push_pending_frames); 2154 return ip_setsockopt(sk, level, optname, optval, optlen); 2155 } 2156 2157 #ifdef CONFIG_COMPAT 2158 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2159 char __user *optval, unsigned int optlen) 2160 { 2161 if (level == SOL_UDP || level == SOL_UDPLITE) 2162 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2163 udp_push_pending_frames); 2164 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2165 } 2166 #endif 2167 2168 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2169 char __user *optval, int __user *optlen) 2170 { 2171 struct udp_sock *up = udp_sk(sk); 2172 int val, len; 2173 2174 if (get_user(len, optlen)) 2175 return -EFAULT; 2176 2177 len = min_t(unsigned int, len, sizeof(int)); 2178 2179 if (len < 0) 2180 return -EINVAL; 2181 2182 switch (optname) { 2183 case UDP_CORK: 2184 val = up->corkflag; 2185 break; 2186 2187 case UDP_ENCAP: 2188 val = up->encap_type; 2189 break; 2190 2191 case UDP_NO_CHECK6_TX: 2192 val = up->no_check6_tx; 2193 break; 2194 2195 case UDP_NO_CHECK6_RX: 2196 val = up->no_check6_rx; 2197 break; 2198 2199 /* The following two cannot be changed on UDP sockets, the return is 2200 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2201 case UDPLITE_SEND_CSCOV: 2202 val = up->pcslen; 2203 break; 2204 2205 case UDPLITE_RECV_CSCOV: 2206 val = up->pcrlen; 2207 break; 2208 2209 default: 2210 return -ENOPROTOOPT; 2211 } 2212 2213 if (put_user(len, optlen)) 2214 return -EFAULT; 2215 if (copy_to_user(optval, &val, len)) 2216 return -EFAULT; 2217 return 0; 2218 } 2219 EXPORT_SYMBOL(udp_lib_getsockopt); 2220 2221 int udp_getsockopt(struct sock *sk, int level, int optname, 2222 char __user *optval, int __user *optlen) 2223 { 2224 if (level == SOL_UDP || level == SOL_UDPLITE) 2225 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2226 return ip_getsockopt(sk, level, optname, optval, optlen); 2227 } 2228 2229 #ifdef CONFIG_COMPAT 2230 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2231 char __user *optval, int __user *optlen) 2232 { 2233 if (level == SOL_UDP || level == SOL_UDPLITE) 2234 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2235 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2236 } 2237 #endif 2238 /** 2239 * udp_poll - wait for a UDP event. 2240 * @file - file struct 2241 * @sock - socket 2242 * @wait - poll table 2243 * 2244 * This is same as datagram poll, except for the special case of 2245 * blocking sockets. If application is using a blocking fd 2246 * and a packet with checksum error is in the queue; 2247 * then it could get return from select indicating data available 2248 * but then block when reading it. Add special case code 2249 * to work around these arguably broken applications. 2250 */ 2251 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2252 { 2253 unsigned int mask = datagram_poll(file, sock, wait); 2254 struct sock *sk = sock->sk; 2255 2256 sock_rps_record_flow(sk); 2257 2258 /* Check for false positives due to checksum errors */ 2259 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2260 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk)) 2261 mask &= ~(POLLIN | POLLRDNORM); 2262 2263 return mask; 2264 2265 } 2266 EXPORT_SYMBOL(udp_poll); 2267 2268 struct proto udp_prot = { 2269 .name = "UDP", 2270 .owner = THIS_MODULE, 2271 .close = udp_lib_close, 2272 .connect = ip4_datagram_connect, 2273 .disconnect = udp_disconnect, 2274 .ioctl = udp_ioctl, 2275 .destroy = udp_destroy_sock, 2276 .setsockopt = udp_setsockopt, 2277 .getsockopt = udp_getsockopt, 2278 .sendmsg = udp_sendmsg, 2279 .recvmsg = udp_recvmsg, 2280 .sendpage = udp_sendpage, 2281 .backlog_rcv = __udp_queue_rcv_skb, 2282 .release_cb = ip4_datagram_release_cb, 2283 .hash = udp_lib_hash, 2284 .unhash = udp_lib_unhash, 2285 .rehash = udp_v4_rehash, 2286 .get_port = udp_v4_get_port, 2287 .memory_allocated = &udp_memory_allocated, 2288 .sysctl_mem = sysctl_udp_mem, 2289 .sysctl_wmem = &sysctl_udp_wmem_min, 2290 .sysctl_rmem = &sysctl_udp_rmem_min, 2291 .obj_size = sizeof(struct udp_sock), 2292 .slab_flags = SLAB_DESTROY_BY_RCU, 2293 .h.udp_table = &udp_table, 2294 #ifdef CONFIG_COMPAT 2295 .compat_setsockopt = compat_udp_setsockopt, 2296 .compat_getsockopt = compat_udp_getsockopt, 2297 #endif 2298 .clear_sk = sk_prot_clear_portaddr_nulls, 2299 }; 2300 EXPORT_SYMBOL(udp_prot); 2301 2302 /* ------------------------------------------------------------------------ */ 2303 #ifdef CONFIG_PROC_FS 2304 2305 static struct sock *udp_get_first(struct seq_file *seq, int start) 2306 { 2307 struct sock *sk; 2308 struct udp_iter_state *state = seq->private; 2309 struct net *net = seq_file_net(seq); 2310 2311 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2312 ++state->bucket) { 2313 struct hlist_nulls_node *node; 2314 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2315 2316 if (hlist_nulls_empty(&hslot->head)) 2317 continue; 2318 2319 spin_lock_bh(&hslot->lock); 2320 sk_nulls_for_each(sk, node, &hslot->head) { 2321 if (!net_eq(sock_net(sk), net)) 2322 continue; 2323 if (sk->sk_family == state->family) 2324 goto found; 2325 } 2326 spin_unlock_bh(&hslot->lock); 2327 } 2328 sk = NULL; 2329 found: 2330 return sk; 2331 } 2332 2333 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2334 { 2335 struct udp_iter_state *state = seq->private; 2336 struct net *net = seq_file_net(seq); 2337 2338 do { 2339 sk = sk_nulls_next(sk); 2340 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2341 2342 if (!sk) { 2343 if (state->bucket <= state->udp_table->mask) 2344 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2345 return udp_get_first(seq, state->bucket + 1); 2346 } 2347 return sk; 2348 } 2349 2350 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2351 { 2352 struct sock *sk = udp_get_first(seq, 0); 2353 2354 if (sk) 2355 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2356 --pos; 2357 return pos ? NULL : sk; 2358 } 2359 2360 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2361 { 2362 struct udp_iter_state *state = seq->private; 2363 state->bucket = MAX_UDP_PORTS; 2364 2365 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2366 } 2367 2368 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2369 { 2370 struct sock *sk; 2371 2372 if (v == SEQ_START_TOKEN) 2373 sk = udp_get_idx(seq, 0); 2374 else 2375 sk = udp_get_next(seq, v); 2376 2377 ++*pos; 2378 return sk; 2379 } 2380 2381 static void udp_seq_stop(struct seq_file *seq, void *v) 2382 { 2383 struct udp_iter_state *state = seq->private; 2384 2385 if (state->bucket <= state->udp_table->mask) 2386 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2387 } 2388 2389 int udp_seq_open(struct inode *inode, struct file *file) 2390 { 2391 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2392 struct udp_iter_state *s; 2393 int err; 2394 2395 err = seq_open_net(inode, file, &afinfo->seq_ops, 2396 sizeof(struct udp_iter_state)); 2397 if (err < 0) 2398 return err; 2399 2400 s = ((struct seq_file *)file->private_data)->private; 2401 s->family = afinfo->family; 2402 s->udp_table = afinfo->udp_table; 2403 return err; 2404 } 2405 EXPORT_SYMBOL(udp_seq_open); 2406 2407 /* ------------------------------------------------------------------------ */ 2408 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2409 { 2410 struct proc_dir_entry *p; 2411 int rc = 0; 2412 2413 afinfo->seq_ops.start = udp_seq_start; 2414 afinfo->seq_ops.next = udp_seq_next; 2415 afinfo->seq_ops.stop = udp_seq_stop; 2416 2417 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2418 afinfo->seq_fops, afinfo); 2419 if (!p) 2420 rc = -ENOMEM; 2421 return rc; 2422 } 2423 EXPORT_SYMBOL(udp_proc_register); 2424 2425 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2426 { 2427 remove_proc_entry(afinfo->name, net->proc_net); 2428 } 2429 EXPORT_SYMBOL(udp_proc_unregister); 2430 2431 /* ------------------------------------------------------------------------ */ 2432 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2433 int bucket) 2434 { 2435 struct inet_sock *inet = inet_sk(sp); 2436 __be32 dest = inet->inet_daddr; 2437 __be32 src = inet->inet_rcv_saddr; 2438 __u16 destp = ntohs(inet->inet_dport); 2439 __u16 srcp = ntohs(inet->inet_sport); 2440 2441 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2442 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2443 bucket, src, srcp, dest, destp, sp->sk_state, 2444 sk_wmem_alloc_get(sp), 2445 sk_rmem_alloc_get(sp), 2446 0, 0L, 0, 2447 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2448 0, sock_i_ino(sp), 2449 atomic_read(&sp->sk_refcnt), sp, 2450 atomic_read(&sp->sk_drops)); 2451 } 2452 2453 int udp4_seq_show(struct seq_file *seq, void *v) 2454 { 2455 seq_setwidth(seq, 127); 2456 if (v == SEQ_START_TOKEN) 2457 seq_puts(seq, " sl local_address rem_address st tx_queue " 2458 "rx_queue tr tm->when retrnsmt uid timeout " 2459 "inode ref pointer drops"); 2460 else { 2461 struct udp_iter_state *state = seq->private; 2462 2463 udp4_format_sock(v, seq, state->bucket); 2464 } 2465 seq_pad(seq, '\n'); 2466 return 0; 2467 } 2468 2469 static const struct file_operations udp_afinfo_seq_fops = { 2470 .owner = THIS_MODULE, 2471 .open = udp_seq_open, 2472 .read = seq_read, 2473 .llseek = seq_lseek, 2474 .release = seq_release_net 2475 }; 2476 2477 /* ------------------------------------------------------------------------ */ 2478 static struct udp_seq_afinfo udp4_seq_afinfo = { 2479 .name = "udp", 2480 .family = AF_INET, 2481 .udp_table = &udp_table, 2482 .seq_fops = &udp_afinfo_seq_fops, 2483 .seq_ops = { 2484 .show = udp4_seq_show, 2485 }, 2486 }; 2487 2488 static int __net_init udp4_proc_init_net(struct net *net) 2489 { 2490 return udp_proc_register(net, &udp4_seq_afinfo); 2491 } 2492 2493 static void __net_exit udp4_proc_exit_net(struct net *net) 2494 { 2495 udp_proc_unregister(net, &udp4_seq_afinfo); 2496 } 2497 2498 static struct pernet_operations udp4_net_ops = { 2499 .init = udp4_proc_init_net, 2500 .exit = udp4_proc_exit_net, 2501 }; 2502 2503 int __init udp4_proc_init(void) 2504 { 2505 return register_pernet_subsys(&udp4_net_ops); 2506 } 2507 2508 void udp4_proc_exit(void) 2509 { 2510 unregister_pernet_subsys(&udp4_net_ops); 2511 } 2512 #endif /* CONFIG_PROC_FS */ 2513 2514 static __initdata unsigned long uhash_entries; 2515 static int __init set_uhash_entries(char *str) 2516 { 2517 ssize_t ret; 2518 2519 if (!str) 2520 return 0; 2521 2522 ret = kstrtoul(str, 0, &uhash_entries); 2523 if (ret) 2524 return 0; 2525 2526 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2527 uhash_entries = UDP_HTABLE_SIZE_MIN; 2528 return 1; 2529 } 2530 __setup("uhash_entries=", set_uhash_entries); 2531 2532 void __init udp_table_init(struct udp_table *table, const char *name) 2533 { 2534 unsigned int i; 2535 2536 table->hash = alloc_large_system_hash(name, 2537 2 * sizeof(struct udp_hslot), 2538 uhash_entries, 2539 21, /* one slot per 2 MB */ 2540 0, 2541 &table->log, 2542 &table->mask, 2543 UDP_HTABLE_SIZE_MIN, 2544 64 * 1024); 2545 2546 table->hash2 = table->hash + (table->mask + 1); 2547 for (i = 0; i <= table->mask; i++) { 2548 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i); 2549 table->hash[i].count = 0; 2550 spin_lock_init(&table->hash[i].lock); 2551 } 2552 for (i = 0; i <= table->mask; i++) { 2553 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i); 2554 table->hash2[i].count = 0; 2555 spin_lock_init(&table->hash2[i].lock); 2556 } 2557 } 2558 2559 u32 udp_flow_hashrnd(void) 2560 { 2561 static u32 hashrnd __read_mostly; 2562 2563 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2564 2565 return hashrnd; 2566 } 2567 EXPORT_SYMBOL(udp_flow_hashrnd); 2568 2569 void __init udp_init(void) 2570 { 2571 unsigned long limit; 2572 2573 udp_table_init(&udp_table, "UDP"); 2574 limit = nr_free_buffer_pages() / 8; 2575 limit = max(limit, 128UL); 2576 sysctl_udp_mem[0] = limit / 4 * 3; 2577 sysctl_udp_mem[1] = limit; 2578 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2579 2580 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2581 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2582 } 2583