xref: /openbmc/linux/net/ipv4/udp.c (revision 3821a065)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/netdevice.h>
104 #include <linux/proc_fs.h>
105 #include <linux/seq_file.h>
106 #include <net/net_namespace.h>
107 #include <net/icmp.h>
108 #include <net/inet_hashtables.h>
109 #include <net/route.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <trace/events/udp.h>
113 #include <linux/static_key.h>
114 #include <trace/events/skb.h>
115 #include <net/busy_poll.h>
116 #include "udp_impl.h"
117 
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120 
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123 
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126 
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129 
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135 
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 			       const struct udp_hslot *hslot,
138 			       unsigned long *bitmap,
139 			       struct sock *sk,
140 			       int (*saddr_comp)(const struct sock *sk1,
141 						 const struct sock *sk2),
142 			       unsigned int log)
143 {
144 	struct sock *sk2;
145 	struct hlist_nulls_node *node;
146 	kuid_t uid = sock_i_uid(sk);
147 
148 	sk_nulls_for_each(sk2, node, &hslot->head) {
149 		if (net_eq(sock_net(sk2), net) &&
150 		    sk2 != sk &&
151 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
153 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
156 		     !uid_eq(uid, sock_i_uid(sk2))) &&
157 		    saddr_comp(sk, sk2)) {
158 			if (!bitmap)
159 				return 1;
160 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
161 		}
162 	}
163 	return 0;
164 }
165 
166 /*
167  * Note: we still hold spinlock of primary hash chain, so no other writer
168  * can insert/delete a socket with local_port == num
169  */
170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 				struct udp_hslot *hslot2,
172 				struct sock *sk,
173 				int (*saddr_comp)(const struct sock *sk1,
174 						  const struct sock *sk2))
175 {
176 	struct sock *sk2;
177 	struct hlist_nulls_node *node;
178 	kuid_t uid = sock_i_uid(sk);
179 	int res = 0;
180 
181 	spin_lock(&hslot2->lock);
182 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
183 		if (net_eq(sock_net(sk2), net) &&
184 		    sk2 != sk &&
185 		    (udp_sk(sk2)->udp_port_hash == num) &&
186 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
187 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
188 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
189 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
190 		     !uid_eq(uid, sock_i_uid(sk2))) &&
191 		    saddr_comp(sk, sk2)) {
192 			res = 1;
193 			break;
194 		}
195 	}
196 	spin_unlock(&hslot2->lock);
197 	return res;
198 }
199 
200 /**
201  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
202  *
203  *  @sk:          socket struct in question
204  *  @snum:        port number to look up
205  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
206  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
207  *                   with NULL address
208  */
209 int udp_lib_get_port(struct sock *sk, unsigned short snum,
210 		     int (*saddr_comp)(const struct sock *sk1,
211 				       const struct sock *sk2),
212 		     unsigned int hash2_nulladdr)
213 {
214 	struct udp_hslot *hslot, *hslot2;
215 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
216 	int    error = 1;
217 	struct net *net = sock_net(sk);
218 
219 	if (!snum) {
220 		int low, high, remaining;
221 		unsigned int rand;
222 		unsigned short first, last;
223 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
224 
225 		inet_get_local_port_range(net, &low, &high);
226 		remaining = (high - low) + 1;
227 
228 		rand = prandom_u32();
229 		first = reciprocal_scale(rand, remaining) + low;
230 		/*
231 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
232 		 */
233 		rand = (rand | 1) * (udptable->mask + 1);
234 		last = first + udptable->mask + 1;
235 		do {
236 			hslot = udp_hashslot(udptable, net, first);
237 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
238 			spin_lock_bh(&hslot->lock);
239 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
240 					    saddr_comp, udptable->log);
241 
242 			snum = first;
243 			/*
244 			 * Iterate on all possible values of snum for this hash.
245 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
246 			 * give us randomization and full range coverage.
247 			 */
248 			do {
249 				if (low <= snum && snum <= high &&
250 				    !test_bit(snum >> udptable->log, bitmap) &&
251 				    !inet_is_local_reserved_port(net, snum))
252 					goto found;
253 				snum += rand;
254 			} while (snum != first);
255 			spin_unlock_bh(&hslot->lock);
256 		} while (++first != last);
257 		goto fail;
258 	} else {
259 		hslot = udp_hashslot(udptable, net, snum);
260 		spin_lock_bh(&hslot->lock);
261 		if (hslot->count > 10) {
262 			int exist;
263 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
264 
265 			slot2          &= udptable->mask;
266 			hash2_nulladdr &= udptable->mask;
267 
268 			hslot2 = udp_hashslot2(udptable, slot2);
269 			if (hslot->count < hslot2->count)
270 				goto scan_primary_hash;
271 
272 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
273 						     sk, saddr_comp);
274 			if (!exist && (hash2_nulladdr != slot2)) {
275 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
276 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
277 							     sk, saddr_comp);
278 			}
279 			if (exist)
280 				goto fail_unlock;
281 			else
282 				goto found;
283 		}
284 scan_primary_hash:
285 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
286 					saddr_comp, 0))
287 			goto fail_unlock;
288 	}
289 found:
290 	inet_sk(sk)->inet_num = snum;
291 	udp_sk(sk)->udp_port_hash = snum;
292 	udp_sk(sk)->udp_portaddr_hash ^= snum;
293 	if (sk_unhashed(sk)) {
294 		sk_nulls_add_node_rcu(sk, &hslot->head);
295 		hslot->count++;
296 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
297 
298 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
299 		spin_lock(&hslot2->lock);
300 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
301 					 &hslot2->head);
302 		hslot2->count++;
303 		spin_unlock(&hslot2->lock);
304 	}
305 	error = 0;
306 fail_unlock:
307 	spin_unlock_bh(&hslot->lock);
308 fail:
309 	return error;
310 }
311 EXPORT_SYMBOL(udp_lib_get_port);
312 
313 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
314 {
315 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
316 
317 	return 	(!ipv6_only_sock(sk2)  &&
318 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
319 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
320 }
321 
322 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
323 			      unsigned int port)
324 {
325 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
326 }
327 
328 int udp_v4_get_port(struct sock *sk, unsigned short snum)
329 {
330 	unsigned int hash2_nulladdr =
331 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
332 	unsigned int hash2_partial =
333 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
334 
335 	/* precompute partial secondary hash */
336 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
337 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
338 }
339 
340 static inline int compute_score(struct sock *sk, struct net *net,
341 				__be32 saddr, unsigned short hnum, __be16 sport,
342 				__be32 daddr, __be16 dport, int dif)
343 {
344 	int score;
345 	struct inet_sock *inet;
346 
347 	if (!net_eq(sock_net(sk), net) ||
348 	    udp_sk(sk)->udp_port_hash != hnum ||
349 	    ipv6_only_sock(sk))
350 		return -1;
351 
352 	score = (sk->sk_family == PF_INET) ? 2 : 1;
353 	inet = inet_sk(sk);
354 
355 	if (inet->inet_rcv_saddr) {
356 		if (inet->inet_rcv_saddr != daddr)
357 			return -1;
358 		score += 4;
359 	}
360 
361 	if (inet->inet_daddr) {
362 		if (inet->inet_daddr != saddr)
363 			return -1;
364 		score += 4;
365 	}
366 
367 	if (inet->inet_dport) {
368 		if (inet->inet_dport != sport)
369 			return -1;
370 		score += 4;
371 	}
372 
373 	if (sk->sk_bound_dev_if) {
374 		if (sk->sk_bound_dev_if != dif)
375 			return -1;
376 		score += 4;
377 	}
378 
379 	return score;
380 }
381 
382 /*
383  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
384  */
385 static inline int compute_score2(struct sock *sk, struct net *net,
386 				 __be32 saddr, __be16 sport,
387 				 __be32 daddr, unsigned int hnum, int dif)
388 {
389 	int score;
390 	struct inet_sock *inet;
391 
392 	if (!net_eq(sock_net(sk), net) ||
393 	    ipv6_only_sock(sk))
394 		return -1;
395 
396 	inet = inet_sk(sk);
397 
398 	if (inet->inet_rcv_saddr != daddr ||
399 	    inet->inet_num != hnum)
400 		return -1;
401 
402 	score = (sk->sk_family == PF_INET) ? 2 : 1;
403 
404 	if (inet->inet_daddr) {
405 		if (inet->inet_daddr != saddr)
406 			return -1;
407 		score += 4;
408 	}
409 
410 	if (inet->inet_dport) {
411 		if (inet->inet_dport != sport)
412 			return -1;
413 		score += 4;
414 	}
415 
416 	if (sk->sk_bound_dev_if) {
417 		if (sk->sk_bound_dev_if != dif)
418 			return -1;
419 		score += 4;
420 	}
421 
422 	return score;
423 }
424 
425 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
426 		       const __u16 lport, const __be32 faddr,
427 		       const __be16 fport)
428 {
429 	static u32 udp_ehash_secret __read_mostly;
430 
431 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
432 
433 	return __inet_ehashfn(laddr, lport, faddr, fport,
434 			      udp_ehash_secret + net_hash_mix(net));
435 }
436 
437 /* called with read_rcu_lock() */
438 static struct sock *udp4_lib_lookup2(struct net *net,
439 		__be32 saddr, __be16 sport,
440 		__be32 daddr, unsigned int hnum, int dif,
441 		struct udp_hslot *hslot2, unsigned int slot2)
442 {
443 	struct sock *sk, *result;
444 	struct hlist_nulls_node *node;
445 	int score, badness, matches = 0, reuseport = 0;
446 	u32 hash = 0;
447 
448 begin:
449 	result = NULL;
450 	badness = 0;
451 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
452 		score = compute_score2(sk, net, saddr, sport,
453 				      daddr, hnum, dif);
454 		if (score > badness) {
455 			result = sk;
456 			badness = score;
457 			reuseport = sk->sk_reuseport;
458 			if (reuseport) {
459 				hash = udp_ehashfn(net, daddr, hnum,
460 						   saddr, sport);
461 				matches = 1;
462 			}
463 		} else if (score == badness && reuseport) {
464 			matches++;
465 			if (reciprocal_scale(hash, matches) == 0)
466 				result = sk;
467 			hash = next_pseudo_random32(hash);
468 		}
469 	}
470 	/*
471 	 * if the nulls value we got at the end of this lookup is
472 	 * not the expected one, we must restart lookup.
473 	 * We probably met an item that was moved to another chain.
474 	 */
475 	if (get_nulls_value(node) != slot2)
476 		goto begin;
477 	if (result) {
478 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
479 			result = NULL;
480 		else if (unlikely(compute_score2(result, net, saddr, sport,
481 				  daddr, hnum, dif) < badness)) {
482 			sock_put(result);
483 			goto begin;
484 		}
485 	}
486 	return result;
487 }
488 
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490  * harder than this. -DaveM
491  */
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 		__be16 sport, __be32 daddr, __be16 dport,
494 		int dif, struct udp_table *udptable)
495 {
496 	struct sock *sk, *result;
497 	struct hlist_nulls_node *node;
498 	unsigned short hnum = ntohs(dport);
499 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
500 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
501 	int score, badness, matches = 0, reuseport = 0;
502 	u32 hash = 0;
503 
504 	rcu_read_lock();
505 	if (hslot->count > 10) {
506 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
507 		slot2 = hash2 & udptable->mask;
508 		hslot2 = &udptable->hash2[slot2];
509 		if (hslot->count < hslot2->count)
510 			goto begin;
511 
512 		result = udp4_lib_lookup2(net, saddr, sport,
513 					  daddr, hnum, dif,
514 					  hslot2, slot2);
515 		if (!result) {
516 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
517 			slot2 = hash2 & udptable->mask;
518 			hslot2 = &udptable->hash2[slot2];
519 			if (hslot->count < hslot2->count)
520 				goto begin;
521 
522 			result = udp4_lib_lookup2(net, saddr, sport,
523 						  htonl(INADDR_ANY), hnum, dif,
524 						  hslot2, slot2);
525 		}
526 		rcu_read_unlock();
527 		return result;
528 	}
529 begin:
530 	result = NULL;
531 	badness = 0;
532 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
533 		score = compute_score(sk, net, saddr, hnum, sport,
534 				      daddr, dport, dif);
535 		if (score > badness) {
536 			result = sk;
537 			badness = score;
538 			reuseport = sk->sk_reuseport;
539 			if (reuseport) {
540 				hash = udp_ehashfn(net, daddr, hnum,
541 						   saddr, sport);
542 				matches = 1;
543 			}
544 		} else if (score == badness && reuseport) {
545 			matches++;
546 			if (reciprocal_scale(hash, matches) == 0)
547 				result = sk;
548 			hash = next_pseudo_random32(hash);
549 		}
550 	}
551 	/*
552 	 * if the nulls value we got at the end of this lookup is
553 	 * not the expected one, we must restart lookup.
554 	 * We probably met an item that was moved to another chain.
555 	 */
556 	if (get_nulls_value(node) != slot)
557 		goto begin;
558 
559 	if (result) {
560 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
561 			result = NULL;
562 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
563 				  daddr, dport, dif) < badness)) {
564 			sock_put(result);
565 			goto begin;
566 		}
567 	}
568 	rcu_read_unlock();
569 	return result;
570 }
571 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
572 
573 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
574 						 __be16 sport, __be16 dport,
575 						 struct udp_table *udptable)
576 {
577 	const struct iphdr *iph = ip_hdr(skb);
578 
579 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
580 				 iph->daddr, dport, inet_iif(skb),
581 				 udptable);
582 }
583 
584 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
585 			     __be32 daddr, __be16 dport, int dif)
586 {
587 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
588 }
589 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
590 
591 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
592 				       __be16 loc_port, __be32 loc_addr,
593 				       __be16 rmt_port, __be32 rmt_addr,
594 				       int dif, unsigned short hnum)
595 {
596 	struct inet_sock *inet = inet_sk(sk);
597 
598 	if (!net_eq(sock_net(sk), net) ||
599 	    udp_sk(sk)->udp_port_hash != hnum ||
600 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
601 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
602 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
603 	    ipv6_only_sock(sk) ||
604 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
605 		return false;
606 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
607 		return false;
608 	return true;
609 }
610 
611 /*
612  * This routine is called by the ICMP module when it gets some
613  * sort of error condition.  If err < 0 then the socket should
614  * be closed and the error returned to the user.  If err > 0
615  * it's just the icmp type << 8 | icmp code.
616  * Header points to the ip header of the error packet. We move
617  * on past this. Then (as it used to claim before adjustment)
618  * header points to the first 8 bytes of the udp header.  We need
619  * to find the appropriate port.
620  */
621 
622 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
623 {
624 	struct inet_sock *inet;
625 	const struct iphdr *iph = (const struct iphdr *)skb->data;
626 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
627 	const int type = icmp_hdr(skb)->type;
628 	const int code = icmp_hdr(skb)->code;
629 	struct sock *sk;
630 	int harderr;
631 	int err;
632 	struct net *net = dev_net(skb->dev);
633 
634 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
635 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
636 	if (!sk) {
637 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
638 		return;	/* No socket for error */
639 	}
640 
641 	err = 0;
642 	harderr = 0;
643 	inet = inet_sk(sk);
644 
645 	switch (type) {
646 	default:
647 	case ICMP_TIME_EXCEEDED:
648 		err = EHOSTUNREACH;
649 		break;
650 	case ICMP_SOURCE_QUENCH:
651 		goto out;
652 	case ICMP_PARAMETERPROB:
653 		err = EPROTO;
654 		harderr = 1;
655 		break;
656 	case ICMP_DEST_UNREACH:
657 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
658 			ipv4_sk_update_pmtu(skb, sk, info);
659 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
660 				err = EMSGSIZE;
661 				harderr = 1;
662 				break;
663 			}
664 			goto out;
665 		}
666 		err = EHOSTUNREACH;
667 		if (code <= NR_ICMP_UNREACH) {
668 			harderr = icmp_err_convert[code].fatal;
669 			err = icmp_err_convert[code].errno;
670 		}
671 		break;
672 	case ICMP_REDIRECT:
673 		ipv4_sk_redirect(skb, sk);
674 		goto out;
675 	}
676 
677 	/*
678 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
679 	 *	4.1.3.3.
680 	 */
681 	if (!inet->recverr) {
682 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
683 			goto out;
684 	} else
685 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
686 
687 	sk->sk_err = err;
688 	sk->sk_error_report(sk);
689 out:
690 	sock_put(sk);
691 }
692 
693 void udp_err(struct sk_buff *skb, u32 info)
694 {
695 	__udp4_lib_err(skb, info, &udp_table);
696 }
697 
698 /*
699  * Throw away all pending data and cancel the corking. Socket is locked.
700  */
701 void udp_flush_pending_frames(struct sock *sk)
702 {
703 	struct udp_sock *up = udp_sk(sk);
704 
705 	if (up->pending) {
706 		up->len = 0;
707 		up->pending = 0;
708 		ip_flush_pending_frames(sk);
709 	}
710 }
711 EXPORT_SYMBOL(udp_flush_pending_frames);
712 
713 /**
714  * 	udp4_hwcsum  -  handle outgoing HW checksumming
715  * 	@skb: 	sk_buff containing the filled-in UDP header
716  * 	        (checksum field must be zeroed out)
717  *	@src:	source IP address
718  *	@dst:	destination IP address
719  */
720 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
721 {
722 	struct udphdr *uh = udp_hdr(skb);
723 	int offset = skb_transport_offset(skb);
724 	int len = skb->len - offset;
725 	int hlen = len;
726 	__wsum csum = 0;
727 
728 	if (!skb_has_frag_list(skb)) {
729 		/*
730 		 * Only one fragment on the socket.
731 		 */
732 		skb->csum_start = skb_transport_header(skb) - skb->head;
733 		skb->csum_offset = offsetof(struct udphdr, check);
734 		uh->check = ~csum_tcpudp_magic(src, dst, len,
735 					       IPPROTO_UDP, 0);
736 	} else {
737 		struct sk_buff *frags;
738 
739 		/*
740 		 * HW-checksum won't work as there are two or more
741 		 * fragments on the socket so that all csums of sk_buffs
742 		 * should be together
743 		 */
744 		skb_walk_frags(skb, frags) {
745 			csum = csum_add(csum, frags->csum);
746 			hlen -= frags->len;
747 		}
748 
749 		csum = skb_checksum(skb, offset, hlen, csum);
750 		skb->ip_summed = CHECKSUM_NONE;
751 
752 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
753 		if (uh->check == 0)
754 			uh->check = CSUM_MANGLED_0;
755 	}
756 }
757 EXPORT_SYMBOL_GPL(udp4_hwcsum);
758 
759 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
760  * for the simple case like when setting the checksum for a UDP tunnel.
761  */
762 void udp_set_csum(bool nocheck, struct sk_buff *skb,
763 		  __be32 saddr, __be32 daddr, int len)
764 {
765 	struct udphdr *uh = udp_hdr(skb);
766 
767 	if (nocheck)
768 		uh->check = 0;
769 	else if (skb_is_gso(skb))
770 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
771 	else if (skb_dst(skb) && skb_dst(skb)->dev &&
772 		 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
773 
774 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
775 
776 		skb->ip_summed = CHECKSUM_PARTIAL;
777 		skb->csum_start = skb_transport_header(skb) - skb->head;
778 		skb->csum_offset = offsetof(struct udphdr, check);
779 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
780 	} else {
781 		__wsum csum;
782 
783 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
784 
785 		uh->check = 0;
786 		csum = skb_checksum(skb, 0, len, 0);
787 		uh->check = udp_v4_check(len, saddr, daddr, csum);
788 		if (uh->check == 0)
789 			uh->check = CSUM_MANGLED_0;
790 
791 		skb->ip_summed = CHECKSUM_UNNECESSARY;
792 	}
793 }
794 EXPORT_SYMBOL(udp_set_csum);
795 
796 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
797 {
798 	struct sock *sk = skb->sk;
799 	struct inet_sock *inet = inet_sk(sk);
800 	struct udphdr *uh;
801 	int err = 0;
802 	int is_udplite = IS_UDPLITE(sk);
803 	int offset = skb_transport_offset(skb);
804 	int len = skb->len - offset;
805 	__wsum csum = 0;
806 
807 	/*
808 	 * Create a UDP header
809 	 */
810 	uh = udp_hdr(skb);
811 	uh->source = inet->inet_sport;
812 	uh->dest = fl4->fl4_dport;
813 	uh->len = htons(len);
814 	uh->check = 0;
815 
816 	if (is_udplite)  				 /*     UDP-Lite      */
817 		csum = udplite_csum(skb);
818 
819 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
820 
821 		skb->ip_summed = CHECKSUM_NONE;
822 		goto send;
823 
824 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
825 
826 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
827 		goto send;
828 
829 	} else
830 		csum = udp_csum(skb);
831 
832 	/* add protocol-dependent pseudo-header */
833 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
834 				      sk->sk_protocol, csum);
835 	if (uh->check == 0)
836 		uh->check = CSUM_MANGLED_0;
837 
838 send:
839 	err = ip_send_skb(sock_net(sk), skb);
840 	if (err) {
841 		if (err == -ENOBUFS && !inet->recverr) {
842 			UDP_INC_STATS_USER(sock_net(sk),
843 					   UDP_MIB_SNDBUFERRORS, is_udplite);
844 			err = 0;
845 		}
846 	} else
847 		UDP_INC_STATS_USER(sock_net(sk),
848 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
849 	return err;
850 }
851 
852 /*
853  * Push out all pending data as one UDP datagram. Socket is locked.
854  */
855 int udp_push_pending_frames(struct sock *sk)
856 {
857 	struct udp_sock  *up = udp_sk(sk);
858 	struct inet_sock *inet = inet_sk(sk);
859 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
860 	struct sk_buff *skb;
861 	int err = 0;
862 
863 	skb = ip_finish_skb(sk, fl4);
864 	if (!skb)
865 		goto out;
866 
867 	err = udp_send_skb(skb, fl4);
868 
869 out:
870 	up->len = 0;
871 	up->pending = 0;
872 	return err;
873 }
874 EXPORT_SYMBOL(udp_push_pending_frames);
875 
876 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
877 {
878 	struct inet_sock *inet = inet_sk(sk);
879 	struct udp_sock *up = udp_sk(sk);
880 	struct flowi4 fl4_stack;
881 	struct flowi4 *fl4;
882 	int ulen = len;
883 	struct ipcm_cookie ipc;
884 	struct rtable *rt = NULL;
885 	int free = 0;
886 	int connected = 0;
887 	__be32 daddr, faddr, saddr;
888 	__be16 dport;
889 	u8  tos;
890 	int err, is_udplite = IS_UDPLITE(sk);
891 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
892 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
893 	struct sk_buff *skb;
894 	struct ip_options_data opt_copy;
895 
896 	if (len > 0xFFFF)
897 		return -EMSGSIZE;
898 
899 	/*
900 	 *	Check the flags.
901 	 */
902 
903 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
904 		return -EOPNOTSUPP;
905 
906 	ipc.opt = NULL;
907 	ipc.tx_flags = 0;
908 	ipc.ttl = 0;
909 	ipc.tos = -1;
910 
911 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
912 
913 	fl4 = &inet->cork.fl.u.ip4;
914 	if (up->pending) {
915 		/*
916 		 * There are pending frames.
917 		 * The socket lock must be held while it's corked.
918 		 */
919 		lock_sock(sk);
920 		if (likely(up->pending)) {
921 			if (unlikely(up->pending != AF_INET)) {
922 				release_sock(sk);
923 				return -EINVAL;
924 			}
925 			goto do_append_data;
926 		}
927 		release_sock(sk);
928 	}
929 	ulen += sizeof(struct udphdr);
930 
931 	/*
932 	 *	Get and verify the address.
933 	 */
934 	if (msg->msg_name) {
935 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
936 		if (msg->msg_namelen < sizeof(*usin))
937 			return -EINVAL;
938 		if (usin->sin_family != AF_INET) {
939 			if (usin->sin_family != AF_UNSPEC)
940 				return -EAFNOSUPPORT;
941 		}
942 
943 		daddr = usin->sin_addr.s_addr;
944 		dport = usin->sin_port;
945 		if (dport == 0)
946 			return -EINVAL;
947 	} else {
948 		if (sk->sk_state != TCP_ESTABLISHED)
949 			return -EDESTADDRREQ;
950 		daddr = inet->inet_daddr;
951 		dport = inet->inet_dport;
952 		/* Open fast path for connected socket.
953 		   Route will not be used, if at least one option is set.
954 		 */
955 		connected = 1;
956 	}
957 	ipc.addr = inet->inet_saddr;
958 
959 	ipc.oif = sk->sk_bound_dev_if;
960 
961 	sock_tx_timestamp(sk, &ipc.tx_flags);
962 
963 	if (msg->msg_controllen) {
964 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
965 				   sk->sk_family == AF_INET6);
966 		if (err)
967 			return err;
968 		if (ipc.opt)
969 			free = 1;
970 		connected = 0;
971 	}
972 	if (!ipc.opt) {
973 		struct ip_options_rcu *inet_opt;
974 
975 		rcu_read_lock();
976 		inet_opt = rcu_dereference(inet->inet_opt);
977 		if (inet_opt) {
978 			memcpy(&opt_copy, inet_opt,
979 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
980 			ipc.opt = &opt_copy.opt;
981 		}
982 		rcu_read_unlock();
983 	}
984 
985 	saddr = ipc.addr;
986 	ipc.addr = faddr = daddr;
987 
988 	if (ipc.opt && ipc.opt->opt.srr) {
989 		if (!daddr)
990 			return -EINVAL;
991 		faddr = ipc.opt->opt.faddr;
992 		connected = 0;
993 	}
994 	tos = get_rttos(&ipc, inet);
995 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
996 	    (msg->msg_flags & MSG_DONTROUTE) ||
997 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
998 		tos |= RTO_ONLINK;
999 		connected = 0;
1000 	}
1001 
1002 	if (ipv4_is_multicast(daddr)) {
1003 		if (!ipc.oif)
1004 			ipc.oif = inet->mc_index;
1005 		if (!saddr)
1006 			saddr = inet->mc_addr;
1007 		connected = 0;
1008 	} else if (!ipc.oif)
1009 		ipc.oif = inet->uc_index;
1010 
1011 	if (connected)
1012 		rt = (struct rtable *)sk_dst_check(sk, 0);
1013 
1014 	if (!rt) {
1015 		struct net *net = sock_net(sk);
1016 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1017 
1018 		fl4 = &fl4_stack;
1019 
1020 		/* unconnected socket. If output device is enslaved to a VRF
1021 		 * device lookup source address from VRF table. This mimics
1022 		 * behavior of ip_route_connect{_init}.
1023 		 */
1024 		if (netif_index_is_vrf(net, ipc.oif)) {
1025 			flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1026 					   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1027 					   (flow_flags | FLOWI_FLAG_VRFSRC),
1028 					   faddr, saddr, dport,
1029 					   inet->inet_sport);
1030 
1031 			rt = ip_route_output_flow(net, fl4, sk);
1032 			if (!IS_ERR(rt)) {
1033 				saddr = fl4->saddr;
1034 				ip_rt_put(rt);
1035 			}
1036 		}
1037 
1038 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1039 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1040 				   flow_flags,
1041 				   faddr, saddr, dport, inet->inet_sport);
1042 
1043 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1044 		rt = ip_route_output_flow(net, fl4, sk);
1045 		if (IS_ERR(rt)) {
1046 			err = PTR_ERR(rt);
1047 			rt = NULL;
1048 			if (err == -ENETUNREACH)
1049 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1050 			goto out;
1051 		}
1052 
1053 		err = -EACCES;
1054 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1055 		    !sock_flag(sk, SOCK_BROADCAST))
1056 			goto out;
1057 		if (connected)
1058 			sk_dst_set(sk, dst_clone(&rt->dst));
1059 	}
1060 
1061 	if (msg->msg_flags&MSG_CONFIRM)
1062 		goto do_confirm;
1063 back_from_confirm:
1064 
1065 	saddr = fl4->saddr;
1066 	if (!ipc.addr)
1067 		daddr = ipc.addr = fl4->daddr;
1068 
1069 	/* Lockless fast path for the non-corking case. */
1070 	if (!corkreq) {
1071 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1072 				  sizeof(struct udphdr), &ipc, &rt,
1073 				  msg->msg_flags);
1074 		err = PTR_ERR(skb);
1075 		if (!IS_ERR_OR_NULL(skb))
1076 			err = udp_send_skb(skb, fl4);
1077 		goto out;
1078 	}
1079 
1080 	lock_sock(sk);
1081 	if (unlikely(up->pending)) {
1082 		/* The socket is already corked while preparing it. */
1083 		/* ... which is an evident application bug. --ANK */
1084 		release_sock(sk);
1085 
1086 		net_dbg_ratelimited("cork app bug 2\n");
1087 		err = -EINVAL;
1088 		goto out;
1089 	}
1090 	/*
1091 	 *	Now cork the socket to pend data.
1092 	 */
1093 	fl4 = &inet->cork.fl.u.ip4;
1094 	fl4->daddr = daddr;
1095 	fl4->saddr = saddr;
1096 	fl4->fl4_dport = dport;
1097 	fl4->fl4_sport = inet->inet_sport;
1098 	up->pending = AF_INET;
1099 
1100 do_append_data:
1101 	up->len += ulen;
1102 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1103 			     sizeof(struct udphdr), &ipc, &rt,
1104 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1105 	if (err)
1106 		udp_flush_pending_frames(sk);
1107 	else if (!corkreq)
1108 		err = udp_push_pending_frames(sk);
1109 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1110 		up->pending = 0;
1111 	release_sock(sk);
1112 
1113 out:
1114 	ip_rt_put(rt);
1115 	if (free)
1116 		kfree(ipc.opt);
1117 	if (!err)
1118 		return len;
1119 	/*
1120 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1121 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1122 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1123 	 * things).  We could add another new stat but at least for now that
1124 	 * seems like overkill.
1125 	 */
1126 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1127 		UDP_INC_STATS_USER(sock_net(sk),
1128 				UDP_MIB_SNDBUFERRORS, is_udplite);
1129 	}
1130 	return err;
1131 
1132 do_confirm:
1133 	dst_confirm(&rt->dst);
1134 	if (!(msg->msg_flags&MSG_PROBE) || len)
1135 		goto back_from_confirm;
1136 	err = 0;
1137 	goto out;
1138 }
1139 EXPORT_SYMBOL(udp_sendmsg);
1140 
1141 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1142 		 size_t size, int flags)
1143 {
1144 	struct inet_sock *inet = inet_sk(sk);
1145 	struct udp_sock *up = udp_sk(sk);
1146 	int ret;
1147 
1148 	if (flags & MSG_SENDPAGE_NOTLAST)
1149 		flags |= MSG_MORE;
1150 
1151 	if (!up->pending) {
1152 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1153 
1154 		/* Call udp_sendmsg to specify destination address which
1155 		 * sendpage interface can't pass.
1156 		 * This will succeed only when the socket is connected.
1157 		 */
1158 		ret = udp_sendmsg(sk, &msg, 0);
1159 		if (ret < 0)
1160 			return ret;
1161 	}
1162 
1163 	lock_sock(sk);
1164 
1165 	if (unlikely(!up->pending)) {
1166 		release_sock(sk);
1167 
1168 		net_dbg_ratelimited("udp cork app bug 3\n");
1169 		return -EINVAL;
1170 	}
1171 
1172 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1173 			     page, offset, size, flags);
1174 	if (ret == -EOPNOTSUPP) {
1175 		release_sock(sk);
1176 		return sock_no_sendpage(sk->sk_socket, page, offset,
1177 					size, flags);
1178 	}
1179 	if (ret < 0) {
1180 		udp_flush_pending_frames(sk);
1181 		goto out;
1182 	}
1183 
1184 	up->len += size;
1185 	if (!(up->corkflag || (flags&MSG_MORE)))
1186 		ret = udp_push_pending_frames(sk);
1187 	if (!ret)
1188 		ret = size;
1189 out:
1190 	release_sock(sk);
1191 	return ret;
1192 }
1193 
1194 /**
1195  *	first_packet_length	- return length of first packet in receive queue
1196  *	@sk: socket
1197  *
1198  *	Drops all bad checksum frames, until a valid one is found.
1199  *	Returns the length of found skb, or 0 if none is found.
1200  */
1201 static unsigned int first_packet_length(struct sock *sk)
1202 {
1203 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1204 	struct sk_buff *skb;
1205 	unsigned int res;
1206 
1207 	__skb_queue_head_init(&list_kill);
1208 
1209 	spin_lock_bh(&rcvq->lock);
1210 	while ((skb = skb_peek(rcvq)) != NULL &&
1211 		udp_lib_checksum_complete(skb)) {
1212 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1213 				 IS_UDPLITE(sk));
1214 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1215 				 IS_UDPLITE(sk));
1216 		atomic_inc(&sk->sk_drops);
1217 		__skb_unlink(skb, rcvq);
1218 		__skb_queue_tail(&list_kill, skb);
1219 	}
1220 	res = skb ? skb->len : 0;
1221 	spin_unlock_bh(&rcvq->lock);
1222 
1223 	if (!skb_queue_empty(&list_kill)) {
1224 		bool slow = lock_sock_fast(sk);
1225 
1226 		__skb_queue_purge(&list_kill);
1227 		sk_mem_reclaim_partial(sk);
1228 		unlock_sock_fast(sk, slow);
1229 	}
1230 	return res;
1231 }
1232 
1233 /*
1234  *	IOCTL requests applicable to the UDP protocol
1235  */
1236 
1237 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1238 {
1239 	switch (cmd) {
1240 	case SIOCOUTQ:
1241 	{
1242 		int amount = sk_wmem_alloc_get(sk);
1243 
1244 		return put_user(amount, (int __user *)arg);
1245 	}
1246 
1247 	case SIOCINQ:
1248 	{
1249 		unsigned int amount = first_packet_length(sk);
1250 
1251 		if (amount)
1252 			/*
1253 			 * We will only return the amount
1254 			 * of this packet since that is all
1255 			 * that will be read.
1256 			 */
1257 			amount -= sizeof(struct udphdr);
1258 
1259 		return put_user(amount, (int __user *)arg);
1260 	}
1261 
1262 	default:
1263 		return -ENOIOCTLCMD;
1264 	}
1265 
1266 	return 0;
1267 }
1268 EXPORT_SYMBOL(udp_ioctl);
1269 
1270 /*
1271  * 	This should be easy, if there is something there we
1272  * 	return it, otherwise we block.
1273  */
1274 
1275 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1276 		int flags, int *addr_len)
1277 {
1278 	struct inet_sock *inet = inet_sk(sk);
1279 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1280 	struct sk_buff *skb;
1281 	unsigned int ulen, copied;
1282 	int peeked, off = 0;
1283 	int err;
1284 	int is_udplite = IS_UDPLITE(sk);
1285 	bool slow;
1286 
1287 	if (flags & MSG_ERRQUEUE)
1288 		return ip_recv_error(sk, msg, len, addr_len);
1289 
1290 try_again:
1291 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1292 				  &peeked, &off, &err);
1293 	if (!skb)
1294 		goto out;
1295 
1296 	ulen = skb->len - sizeof(struct udphdr);
1297 	copied = len;
1298 	if (copied > ulen)
1299 		copied = ulen;
1300 	else if (copied < ulen)
1301 		msg->msg_flags |= MSG_TRUNC;
1302 
1303 	/*
1304 	 * If checksum is needed at all, try to do it while copying the
1305 	 * data.  If the data is truncated, or if we only want a partial
1306 	 * coverage checksum (UDP-Lite), do it before the copy.
1307 	 */
1308 
1309 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1310 		if (udp_lib_checksum_complete(skb))
1311 			goto csum_copy_err;
1312 	}
1313 
1314 	if (skb_csum_unnecessary(skb))
1315 		err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1316 					    msg, copied);
1317 	else {
1318 		err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1319 						     msg);
1320 
1321 		if (err == -EINVAL)
1322 			goto csum_copy_err;
1323 	}
1324 
1325 	if (unlikely(err)) {
1326 		trace_kfree_skb(skb, udp_recvmsg);
1327 		if (!peeked) {
1328 			atomic_inc(&sk->sk_drops);
1329 			UDP_INC_STATS_USER(sock_net(sk),
1330 					   UDP_MIB_INERRORS, is_udplite);
1331 		}
1332 		goto out_free;
1333 	}
1334 
1335 	if (!peeked)
1336 		UDP_INC_STATS_USER(sock_net(sk),
1337 				UDP_MIB_INDATAGRAMS, is_udplite);
1338 
1339 	sock_recv_ts_and_drops(msg, sk, skb);
1340 
1341 	/* Copy the address. */
1342 	if (sin) {
1343 		sin->sin_family = AF_INET;
1344 		sin->sin_port = udp_hdr(skb)->source;
1345 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1346 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1347 		*addr_len = sizeof(*sin);
1348 	}
1349 	if (inet->cmsg_flags)
1350 		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1351 
1352 	err = copied;
1353 	if (flags & MSG_TRUNC)
1354 		err = ulen;
1355 
1356 out_free:
1357 	skb_free_datagram_locked(sk, skb);
1358 out:
1359 	return err;
1360 
1361 csum_copy_err:
1362 	slow = lock_sock_fast(sk);
1363 	if (!skb_kill_datagram(sk, skb, flags)) {
1364 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1365 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1366 	}
1367 	unlock_sock_fast(sk, slow);
1368 
1369 	/* starting over for a new packet, but check if we need to yield */
1370 	cond_resched();
1371 	msg->msg_flags &= ~MSG_TRUNC;
1372 	goto try_again;
1373 }
1374 
1375 int udp_disconnect(struct sock *sk, int flags)
1376 {
1377 	struct inet_sock *inet = inet_sk(sk);
1378 	/*
1379 	 *	1003.1g - break association.
1380 	 */
1381 
1382 	sk->sk_state = TCP_CLOSE;
1383 	inet->inet_daddr = 0;
1384 	inet->inet_dport = 0;
1385 	sock_rps_reset_rxhash(sk);
1386 	sk->sk_bound_dev_if = 0;
1387 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1388 		inet_reset_saddr(sk);
1389 
1390 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1391 		sk->sk_prot->unhash(sk);
1392 		inet->inet_sport = 0;
1393 	}
1394 	sk_dst_reset(sk);
1395 	return 0;
1396 }
1397 EXPORT_SYMBOL(udp_disconnect);
1398 
1399 void udp_lib_unhash(struct sock *sk)
1400 {
1401 	if (sk_hashed(sk)) {
1402 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1403 		struct udp_hslot *hslot, *hslot2;
1404 
1405 		hslot  = udp_hashslot(udptable, sock_net(sk),
1406 				      udp_sk(sk)->udp_port_hash);
1407 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1408 
1409 		spin_lock_bh(&hslot->lock);
1410 		if (sk_nulls_del_node_init_rcu(sk)) {
1411 			hslot->count--;
1412 			inet_sk(sk)->inet_num = 0;
1413 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1414 
1415 			spin_lock(&hslot2->lock);
1416 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1417 			hslot2->count--;
1418 			spin_unlock(&hslot2->lock);
1419 		}
1420 		spin_unlock_bh(&hslot->lock);
1421 	}
1422 }
1423 EXPORT_SYMBOL(udp_lib_unhash);
1424 
1425 /*
1426  * inet_rcv_saddr was changed, we must rehash secondary hash
1427  */
1428 void udp_lib_rehash(struct sock *sk, u16 newhash)
1429 {
1430 	if (sk_hashed(sk)) {
1431 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1432 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1433 
1434 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1435 		nhslot2 = udp_hashslot2(udptable, newhash);
1436 		udp_sk(sk)->udp_portaddr_hash = newhash;
1437 		if (hslot2 != nhslot2) {
1438 			hslot = udp_hashslot(udptable, sock_net(sk),
1439 					     udp_sk(sk)->udp_port_hash);
1440 			/* we must lock primary chain too */
1441 			spin_lock_bh(&hslot->lock);
1442 
1443 			spin_lock(&hslot2->lock);
1444 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1445 			hslot2->count--;
1446 			spin_unlock(&hslot2->lock);
1447 
1448 			spin_lock(&nhslot2->lock);
1449 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1450 						 &nhslot2->head);
1451 			nhslot2->count++;
1452 			spin_unlock(&nhslot2->lock);
1453 
1454 			spin_unlock_bh(&hslot->lock);
1455 		}
1456 	}
1457 }
1458 EXPORT_SYMBOL(udp_lib_rehash);
1459 
1460 static void udp_v4_rehash(struct sock *sk)
1461 {
1462 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1463 					  inet_sk(sk)->inet_rcv_saddr,
1464 					  inet_sk(sk)->inet_num);
1465 	udp_lib_rehash(sk, new_hash);
1466 }
1467 
1468 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1469 {
1470 	int rc;
1471 
1472 	if (inet_sk(sk)->inet_daddr) {
1473 		sock_rps_save_rxhash(sk, skb);
1474 		sk_mark_napi_id(sk, skb);
1475 		sk_incoming_cpu_update(sk);
1476 	}
1477 
1478 	rc = sock_queue_rcv_skb(sk, skb);
1479 	if (rc < 0) {
1480 		int is_udplite = IS_UDPLITE(sk);
1481 
1482 		/* Note that an ENOMEM error is charged twice */
1483 		if (rc == -ENOMEM)
1484 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1485 					 is_udplite);
1486 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1487 		kfree_skb(skb);
1488 		trace_udp_fail_queue_rcv_skb(rc, sk);
1489 		return -1;
1490 	}
1491 
1492 	return 0;
1493 
1494 }
1495 
1496 static struct static_key udp_encap_needed __read_mostly;
1497 void udp_encap_enable(void)
1498 {
1499 	if (!static_key_enabled(&udp_encap_needed))
1500 		static_key_slow_inc(&udp_encap_needed);
1501 }
1502 EXPORT_SYMBOL(udp_encap_enable);
1503 
1504 /* returns:
1505  *  -1: error
1506  *   0: success
1507  *  >0: "udp encap" protocol resubmission
1508  *
1509  * Note that in the success and error cases, the skb is assumed to
1510  * have either been requeued or freed.
1511  */
1512 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1513 {
1514 	struct udp_sock *up = udp_sk(sk);
1515 	int rc;
1516 	int is_udplite = IS_UDPLITE(sk);
1517 
1518 	/*
1519 	 *	Charge it to the socket, dropping if the queue is full.
1520 	 */
1521 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1522 		goto drop;
1523 	nf_reset(skb);
1524 
1525 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1526 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1527 
1528 		/*
1529 		 * This is an encapsulation socket so pass the skb to
1530 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1531 		 * fall through and pass this up the UDP socket.
1532 		 * up->encap_rcv() returns the following value:
1533 		 * =0 if skb was successfully passed to the encap
1534 		 *    handler or was discarded by it.
1535 		 * >0 if skb should be passed on to UDP.
1536 		 * <0 if skb should be resubmitted as proto -N
1537 		 */
1538 
1539 		/* if we're overly short, let UDP handle it */
1540 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1541 		if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1542 			int ret;
1543 
1544 			/* Verify checksum before giving to encap */
1545 			if (udp_lib_checksum_complete(skb))
1546 				goto csum_error;
1547 
1548 			ret = encap_rcv(sk, skb);
1549 			if (ret <= 0) {
1550 				UDP_INC_STATS_BH(sock_net(sk),
1551 						 UDP_MIB_INDATAGRAMS,
1552 						 is_udplite);
1553 				return -ret;
1554 			}
1555 		}
1556 
1557 		/* FALLTHROUGH -- it's a UDP Packet */
1558 	}
1559 
1560 	/*
1561 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1562 	 */
1563 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1564 
1565 		/*
1566 		 * MIB statistics other than incrementing the error count are
1567 		 * disabled for the following two types of errors: these depend
1568 		 * on the application settings, not on the functioning of the
1569 		 * protocol stack as such.
1570 		 *
1571 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1572 		 * way ... to ... at least let the receiving application block
1573 		 * delivery of packets with coverage values less than a value
1574 		 * provided by the application."
1575 		 */
1576 		if (up->pcrlen == 0) {          /* full coverage was set  */
1577 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1578 					    UDP_SKB_CB(skb)->cscov, skb->len);
1579 			goto drop;
1580 		}
1581 		/* The next case involves violating the min. coverage requested
1582 		 * by the receiver. This is subtle: if receiver wants x and x is
1583 		 * greater than the buffersize/MTU then receiver will complain
1584 		 * that it wants x while sender emits packets of smaller size y.
1585 		 * Therefore the above ...()->partial_cov statement is essential.
1586 		 */
1587 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1588 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1589 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1590 			goto drop;
1591 		}
1592 	}
1593 
1594 	if (rcu_access_pointer(sk->sk_filter) &&
1595 	    udp_lib_checksum_complete(skb))
1596 		goto csum_error;
1597 
1598 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1599 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1600 				 is_udplite);
1601 		goto drop;
1602 	}
1603 
1604 	rc = 0;
1605 
1606 	ipv4_pktinfo_prepare(sk, skb);
1607 	bh_lock_sock(sk);
1608 	if (!sock_owned_by_user(sk))
1609 		rc = __udp_queue_rcv_skb(sk, skb);
1610 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1611 		bh_unlock_sock(sk);
1612 		goto drop;
1613 	}
1614 	bh_unlock_sock(sk);
1615 
1616 	return rc;
1617 
1618 csum_error:
1619 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1620 drop:
1621 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1622 	atomic_inc(&sk->sk_drops);
1623 	kfree_skb(skb);
1624 	return -1;
1625 }
1626 
1627 static void flush_stack(struct sock **stack, unsigned int count,
1628 			struct sk_buff *skb, unsigned int final)
1629 {
1630 	unsigned int i;
1631 	struct sk_buff *skb1 = NULL;
1632 	struct sock *sk;
1633 
1634 	for (i = 0; i < count; i++) {
1635 		sk = stack[i];
1636 		if (likely(!skb1))
1637 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1638 
1639 		if (!skb1) {
1640 			atomic_inc(&sk->sk_drops);
1641 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1642 					 IS_UDPLITE(sk));
1643 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1644 					 IS_UDPLITE(sk));
1645 		}
1646 
1647 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1648 			skb1 = NULL;
1649 
1650 		sock_put(sk);
1651 	}
1652 	if (unlikely(skb1))
1653 		kfree_skb(skb1);
1654 }
1655 
1656 /* For TCP sockets, sk_rx_dst is protected by socket lock
1657  * For UDP, we use xchg() to guard against concurrent changes.
1658  */
1659 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1660 {
1661 	struct dst_entry *old;
1662 
1663 	dst_hold(dst);
1664 	old = xchg(&sk->sk_rx_dst, dst);
1665 	dst_release(old);
1666 }
1667 
1668 /*
1669  *	Multicasts and broadcasts go to each listener.
1670  *
1671  *	Note: called only from the BH handler context.
1672  */
1673 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1674 				    struct udphdr  *uh,
1675 				    __be32 saddr, __be32 daddr,
1676 				    struct udp_table *udptable,
1677 				    int proto)
1678 {
1679 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1680 	struct hlist_nulls_node *node;
1681 	unsigned short hnum = ntohs(uh->dest);
1682 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1683 	int dif = skb->dev->ifindex;
1684 	unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1685 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1686 	bool inner_flushed = false;
1687 
1688 	if (use_hash2) {
1689 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1690 			    udp_table.mask;
1691 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1692 start_lookup:
1693 		hslot = &udp_table.hash2[hash2];
1694 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1695 	}
1696 
1697 	spin_lock(&hslot->lock);
1698 	sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1699 		if (__udp_is_mcast_sock(net, sk,
1700 					uh->dest, daddr,
1701 					uh->source, saddr,
1702 					dif, hnum)) {
1703 			if (unlikely(count == ARRAY_SIZE(stack))) {
1704 				flush_stack(stack, count, skb, ~0);
1705 				inner_flushed = true;
1706 				count = 0;
1707 			}
1708 			stack[count++] = sk;
1709 			sock_hold(sk);
1710 		}
1711 	}
1712 
1713 	spin_unlock(&hslot->lock);
1714 
1715 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1716 	if (use_hash2 && hash2 != hash2_any) {
1717 		hash2 = hash2_any;
1718 		goto start_lookup;
1719 	}
1720 
1721 	/*
1722 	 * do the slow work with no lock held
1723 	 */
1724 	if (count) {
1725 		flush_stack(stack, count, skb, count - 1);
1726 	} else {
1727 		if (!inner_flushed)
1728 			UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1729 					 proto == IPPROTO_UDPLITE);
1730 		consume_skb(skb);
1731 	}
1732 	return 0;
1733 }
1734 
1735 /* Initialize UDP checksum. If exited with zero value (success),
1736  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1737  * Otherwise, csum completion requires chacksumming packet body,
1738  * including udp header and folding it to skb->csum.
1739  */
1740 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1741 				 int proto)
1742 {
1743 	int err;
1744 
1745 	UDP_SKB_CB(skb)->partial_cov = 0;
1746 	UDP_SKB_CB(skb)->cscov = skb->len;
1747 
1748 	if (proto == IPPROTO_UDPLITE) {
1749 		err = udplite_checksum_init(skb, uh);
1750 		if (err)
1751 			return err;
1752 	}
1753 
1754 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1755 					    inet_compute_pseudo);
1756 }
1757 
1758 /*
1759  *	All we need to do is get the socket, and then do a checksum.
1760  */
1761 
1762 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1763 		   int proto)
1764 {
1765 	struct sock *sk;
1766 	struct udphdr *uh;
1767 	unsigned short ulen;
1768 	struct rtable *rt = skb_rtable(skb);
1769 	__be32 saddr, daddr;
1770 	struct net *net = dev_net(skb->dev);
1771 
1772 	/*
1773 	 *  Validate the packet.
1774 	 */
1775 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1776 		goto drop;		/* No space for header. */
1777 
1778 	uh   = udp_hdr(skb);
1779 	ulen = ntohs(uh->len);
1780 	saddr = ip_hdr(skb)->saddr;
1781 	daddr = ip_hdr(skb)->daddr;
1782 
1783 	if (ulen > skb->len)
1784 		goto short_packet;
1785 
1786 	if (proto == IPPROTO_UDP) {
1787 		/* UDP validates ulen. */
1788 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1789 			goto short_packet;
1790 		uh = udp_hdr(skb);
1791 	}
1792 
1793 	if (udp4_csum_init(skb, uh, proto))
1794 		goto csum_error;
1795 
1796 	sk = skb_steal_sock(skb);
1797 	if (sk) {
1798 		struct dst_entry *dst = skb_dst(skb);
1799 		int ret;
1800 
1801 		if (unlikely(sk->sk_rx_dst != dst))
1802 			udp_sk_rx_dst_set(sk, dst);
1803 
1804 		ret = udp_queue_rcv_skb(sk, skb);
1805 		sock_put(sk);
1806 		/* a return value > 0 means to resubmit the input, but
1807 		 * it wants the return to be -protocol, or 0
1808 		 */
1809 		if (ret > 0)
1810 			return -ret;
1811 		return 0;
1812 	}
1813 
1814 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1815 		return __udp4_lib_mcast_deliver(net, skb, uh,
1816 						saddr, daddr, udptable, proto);
1817 
1818 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1819 	if (sk) {
1820 		int ret;
1821 
1822 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1823 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1824 						 inet_compute_pseudo);
1825 
1826 		ret = udp_queue_rcv_skb(sk, skb);
1827 		sock_put(sk);
1828 
1829 		/* a return value > 0 means to resubmit the input, but
1830 		 * it wants the return to be -protocol, or 0
1831 		 */
1832 		if (ret > 0)
1833 			return -ret;
1834 		return 0;
1835 	}
1836 
1837 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1838 		goto drop;
1839 	nf_reset(skb);
1840 
1841 	/* No socket. Drop packet silently, if checksum is wrong */
1842 	if (udp_lib_checksum_complete(skb))
1843 		goto csum_error;
1844 
1845 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1846 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1847 
1848 	/*
1849 	 * Hmm.  We got an UDP packet to a port to which we
1850 	 * don't wanna listen.  Ignore it.
1851 	 */
1852 	kfree_skb(skb);
1853 	return 0;
1854 
1855 short_packet:
1856 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1857 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1858 			    &saddr, ntohs(uh->source),
1859 			    ulen, skb->len,
1860 			    &daddr, ntohs(uh->dest));
1861 	goto drop;
1862 
1863 csum_error:
1864 	/*
1865 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1866 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1867 	 */
1868 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1869 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1870 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1871 			    ulen);
1872 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1873 drop:
1874 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1875 	kfree_skb(skb);
1876 	return 0;
1877 }
1878 
1879 /* We can only early demux multicast if there is a single matching socket.
1880  * If more than one socket found returns NULL
1881  */
1882 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1883 						  __be16 loc_port, __be32 loc_addr,
1884 						  __be16 rmt_port, __be32 rmt_addr,
1885 						  int dif)
1886 {
1887 	struct sock *sk, *result;
1888 	struct hlist_nulls_node *node;
1889 	unsigned short hnum = ntohs(loc_port);
1890 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1891 	struct udp_hslot *hslot = &udp_table.hash[slot];
1892 
1893 	/* Do not bother scanning a too big list */
1894 	if (hslot->count > 10)
1895 		return NULL;
1896 
1897 	rcu_read_lock();
1898 begin:
1899 	count = 0;
1900 	result = NULL;
1901 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1902 		if (__udp_is_mcast_sock(net, sk,
1903 					loc_port, loc_addr,
1904 					rmt_port, rmt_addr,
1905 					dif, hnum)) {
1906 			result = sk;
1907 			++count;
1908 		}
1909 	}
1910 	/*
1911 	 * if the nulls value we got at the end of this lookup is
1912 	 * not the expected one, we must restart lookup.
1913 	 * We probably met an item that was moved to another chain.
1914 	 */
1915 	if (get_nulls_value(node) != slot)
1916 		goto begin;
1917 
1918 	if (result) {
1919 		if (count != 1 ||
1920 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1921 			result = NULL;
1922 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1923 						       loc_port, loc_addr,
1924 						       rmt_port, rmt_addr,
1925 						       dif, hnum))) {
1926 			sock_put(result);
1927 			result = NULL;
1928 		}
1929 	}
1930 	rcu_read_unlock();
1931 	return result;
1932 }
1933 
1934 /* For unicast we should only early demux connected sockets or we can
1935  * break forwarding setups.  The chains here can be long so only check
1936  * if the first socket is an exact match and if not move on.
1937  */
1938 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1939 					    __be16 loc_port, __be32 loc_addr,
1940 					    __be16 rmt_port, __be32 rmt_addr,
1941 					    int dif)
1942 {
1943 	struct sock *sk, *result;
1944 	struct hlist_nulls_node *node;
1945 	unsigned short hnum = ntohs(loc_port);
1946 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1947 	unsigned int slot2 = hash2 & udp_table.mask;
1948 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1949 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1950 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1951 
1952 	rcu_read_lock();
1953 	result = NULL;
1954 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1955 		if (INET_MATCH(sk, net, acookie,
1956 			       rmt_addr, loc_addr, ports, dif))
1957 			result = sk;
1958 		/* Only check first socket in chain */
1959 		break;
1960 	}
1961 
1962 	if (result) {
1963 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1964 			result = NULL;
1965 		else if (unlikely(!INET_MATCH(sk, net, acookie,
1966 					      rmt_addr, loc_addr,
1967 					      ports, dif))) {
1968 			sock_put(result);
1969 			result = NULL;
1970 		}
1971 	}
1972 	rcu_read_unlock();
1973 	return result;
1974 }
1975 
1976 void udp_v4_early_demux(struct sk_buff *skb)
1977 {
1978 	struct net *net = dev_net(skb->dev);
1979 	const struct iphdr *iph;
1980 	const struct udphdr *uh;
1981 	struct sock *sk;
1982 	struct dst_entry *dst;
1983 	int dif = skb->dev->ifindex;
1984 	int ours;
1985 
1986 	/* validate the packet */
1987 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1988 		return;
1989 
1990 	iph = ip_hdr(skb);
1991 	uh = udp_hdr(skb);
1992 
1993 	if (skb->pkt_type == PACKET_BROADCAST ||
1994 	    skb->pkt_type == PACKET_MULTICAST) {
1995 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1996 
1997 		if (!in_dev)
1998 			return;
1999 
2000 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2001 				       iph->protocol);
2002 		if (!ours)
2003 			return;
2004 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2005 						   uh->source, iph->saddr, dif);
2006 	} else if (skb->pkt_type == PACKET_HOST) {
2007 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2008 					     uh->source, iph->saddr, dif);
2009 	} else {
2010 		return;
2011 	}
2012 
2013 	if (!sk)
2014 		return;
2015 
2016 	skb->sk = sk;
2017 	skb->destructor = sock_efree;
2018 	dst = READ_ONCE(sk->sk_rx_dst);
2019 
2020 	if (dst)
2021 		dst = dst_check(dst, 0);
2022 	if (dst) {
2023 		/* DST_NOCACHE can not be used without taking a reference */
2024 		if (dst->flags & DST_NOCACHE) {
2025 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2026 				skb_dst_set(skb, dst);
2027 		} else {
2028 			skb_dst_set_noref(skb, dst);
2029 		}
2030 	}
2031 }
2032 
2033 int udp_rcv(struct sk_buff *skb)
2034 {
2035 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2036 }
2037 
2038 void udp_destroy_sock(struct sock *sk)
2039 {
2040 	struct udp_sock *up = udp_sk(sk);
2041 	bool slow = lock_sock_fast(sk);
2042 	udp_flush_pending_frames(sk);
2043 	unlock_sock_fast(sk, slow);
2044 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2045 		void (*encap_destroy)(struct sock *sk);
2046 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2047 		if (encap_destroy)
2048 			encap_destroy(sk);
2049 	}
2050 }
2051 
2052 /*
2053  *	Socket option code for UDP
2054  */
2055 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2056 		       char __user *optval, unsigned int optlen,
2057 		       int (*push_pending_frames)(struct sock *))
2058 {
2059 	struct udp_sock *up = udp_sk(sk);
2060 	int val, valbool;
2061 	int err = 0;
2062 	int is_udplite = IS_UDPLITE(sk);
2063 
2064 	if (optlen < sizeof(int))
2065 		return -EINVAL;
2066 
2067 	if (get_user(val, (int __user *)optval))
2068 		return -EFAULT;
2069 
2070 	valbool = val ? 1 : 0;
2071 
2072 	switch (optname) {
2073 	case UDP_CORK:
2074 		if (val != 0) {
2075 			up->corkflag = 1;
2076 		} else {
2077 			up->corkflag = 0;
2078 			lock_sock(sk);
2079 			push_pending_frames(sk);
2080 			release_sock(sk);
2081 		}
2082 		break;
2083 
2084 	case UDP_ENCAP:
2085 		switch (val) {
2086 		case 0:
2087 		case UDP_ENCAP_ESPINUDP:
2088 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2089 			up->encap_rcv = xfrm4_udp_encap_rcv;
2090 			/* FALLTHROUGH */
2091 		case UDP_ENCAP_L2TPINUDP:
2092 			up->encap_type = val;
2093 			udp_encap_enable();
2094 			break;
2095 		default:
2096 			err = -ENOPROTOOPT;
2097 			break;
2098 		}
2099 		break;
2100 
2101 	case UDP_NO_CHECK6_TX:
2102 		up->no_check6_tx = valbool;
2103 		break;
2104 
2105 	case UDP_NO_CHECK6_RX:
2106 		up->no_check6_rx = valbool;
2107 		break;
2108 
2109 	/*
2110 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2111 	 */
2112 	/* The sender sets actual checksum coverage length via this option.
2113 	 * The case coverage > packet length is handled by send module. */
2114 	case UDPLITE_SEND_CSCOV:
2115 		if (!is_udplite)         /* Disable the option on UDP sockets */
2116 			return -ENOPROTOOPT;
2117 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2118 			val = 8;
2119 		else if (val > USHRT_MAX)
2120 			val = USHRT_MAX;
2121 		up->pcslen = val;
2122 		up->pcflag |= UDPLITE_SEND_CC;
2123 		break;
2124 
2125 	/* The receiver specifies a minimum checksum coverage value. To make
2126 	 * sense, this should be set to at least 8 (as done below). If zero is
2127 	 * used, this again means full checksum coverage.                     */
2128 	case UDPLITE_RECV_CSCOV:
2129 		if (!is_udplite)         /* Disable the option on UDP sockets */
2130 			return -ENOPROTOOPT;
2131 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2132 			val = 8;
2133 		else if (val > USHRT_MAX)
2134 			val = USHRT_MAX;
2135 		up->pcrlen = val;
2136 		up->pcflag |= UDPLITE_RECV_CC;
2137 		break;
2138 
2139 	default:
2140 		err = -ENOPROTOOPT;
2141 		break;
2142 	}
2143 
2144 	return err;
2145 }
2146 EXPORT_SYMBOL(udp_lib_setsockopt);
2147 
2148 int udp_setsockopt(struct sock *sk, int level, int optname,
2149 		   char __user *optval, unsigned int optlen)
2150 {
2151 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2152 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2153 					  udp_push_pending_frames);
2154 	return ip_setsockopt(sk, level, optname, optval, optlen);
2155 }
2156 
2157 #ifdef CONFIG_COMPAT
2158 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2159 			  char __user *optval, unsigned int optlen)
2160 {
2161 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2162 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2163 					  udp_push_pending_frames);
2164 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2165 }
2166 #endif
2167 
2168 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2169 		       char __user *optval, int __user *optlen)
2170 {
2171 	struct udp_sock *up = udp_sk(sk);
2172 	int val, len;
2173 
2174 	if (get_user(len, optlen))
2175 		return -EFAULT;
2176 
2177 	len = min_t(unsigned int, len, sizeof(int));
2178 
2179 	if (len < 0)
2180 		return -EINVAL;
2181 
2182 	switch (optname) {
2183 	case UDP_CORK:
2184 		val = up->corkflag;
2185 		break;
2186 
2187 	case UDP_ENCAP:
2188 		val = up->encap_type;
2189 		break;
2190 
2191 	case UDP_NO_CHECK6_TX:
2192 		val = up->no_check6_tx;
2193 		break;
2194 
2195 	case UDP_NO_CHECK6_RX:
2196 		val = up->no_check6_rx;
2197 		break;
2198 
2199 	/* The following two cannot be changed on UDP sockets, the return is
2200 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2201 	case UDPLITE_SEND_CSCOV:
2202 		val = up->pcslen;
2203 		break;
2204 
2205 	case UDPLITE_RECV_CSCOV:
2206 		val = up->pcrlen;
2207 		break;
2208 
2209 	default:
2210 		return -ENOPROTOOPT;
2211 	}
2212 
2213 	if (put_user(len, optlen))
2214 		return -EFAULT;
2215 	if (copy_to_user(optval, &val, len))
2216 		return -EFAULT;
2217 	return 0;
2218 }
2219 EXPORT_SYMBOL(udp_lib_getsockopt);
2220 
2221 int udp_getsockopt(struct sock *sk, int level, int optname,
2222 		   char __user *optval, int __user *optlen)
2223 {
2224 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2225 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2226 	return ip_getsockopt(sk, level, optname, optval, optlen);
2227 }
2228 
2229 #ifdef CONFIG_COMPAT
2230 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2231 				 char __user *optval, int __user *optlen)
2232 {
2233 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2234 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2235 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2236 }
2237 #endif
2238 /**
2239  * 	udp_poll - wait for a UDP event.
2240  *	@file - file struct
2241  *	@sock - socket
2242  *	@wait - poll table
2243  *
2244  *	This is same as datagram poll, except for the special case of
2245  *	blocking sockets. If application is using a blocking fd
2246  *	and a packet with checksum error is in the queue;
2247  *	then it could get return from select indicating data available
2248  *	but then block when reading it. Add special case code
2249  *	to work around these arguably broken applications.
2250  */
2251 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2252 {
2253 	unsigned int mask = datagram_poll(file, sock, wait);
2254 	struct sock *sk = sock->sk;
2255 
2256 	sock_rps_record_flow(sk);
2257 
2258 	/* Check for false positives due to checksum errors */
2259 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2260 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2261 		mask &= ~(POLLIN | POLLRDNORM);
2262 
2263 	return mask;
2264 
2265 }
2266 EXPORT_SYMBOL(udp_poll);
2267 
2268 struct proto udp_prot = {
2269 	.name		   = "UDP",
2270 	.owner		   = THIS_MODULE,
2271 	.close		   = udp_lib_close,
2272 	.connect	   = ip4_datagram_connect,
2273 	.disconnect	   = udp_disconnect,
2274 	.ioctl		   = udp_ioctl,
2275 	.destroy	   = udp_destroy_sock,
2276 	.setsockopt	   = udp_setsockopt,
2277 	.getsockopt	   = udp_getsockopt,
2278 	.sendmsg	   = udp_sendmsg,
2279 	.recvmsg	   = udp_recvmsg,
2280 	.sendpage	   = udp_sendpage,
2281 	.backlog_rcv	   = __udp_queue_rcv_skb,
2282 	.release_cb	   = ip4_datagram_release_cb,
2283 	.hash		   = udp_lib_hash,
2284 	.unhash		   = udp_lib_unhash,
2285 	.rehash		   = udp_v4_rehash,
2286 	.get_port	   = udp_v4_get_port,
2287 	.memory_allocated  = &udp_memory_allocated,
2288 	.sysctl_mem	   = sysctl_udp_mem,
2289 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2290 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2291 	.obj_size	   = sizeof(struct udp_sock),
2292 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2293 	.h.udp_table	   = &udp_table,
2294 #ifdef CONFIG_COMPAT
2295 	.compat_setsockopt = compat_udp_setsockopt,
2296 	.compat_getsockopt = compat_udp_getsockopt,
2297 #endif
2298 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2299 };
2300 EXPORT_SYMBOL(udp_prot);
2301 
2302 /* ------------------------------------------------------------------------ */
2303 #ifdef CONFIG_PROC_FS
2304 
2305 static struct sock *udp_get_first(struct seq_file *seq, int start)
2306 {
2307 	struct sock *sk;
2308 	struct udp_iter_state *state = seq->private;
2309 	struct net *net = seq_file_net(seq);
2310 
2311 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2312 	     ++state->bucket) {
2313 		struct hlist_nulls_node *node;
2314 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2315 
2316 		if (hlist_nulls_empty(&hslot->head))
2317 			continue;
2318 
2319 		spin_lock_bh(&hslot->lock);
2320 		sk_nulls_for_each(sk, node, &hslot->head) {
2321 			if (!net_eq(sock_net(sk), net))
2322 				continue;
2323 			if (sk->sk_family == state->family)
2324 				goto found;
2325 		}
2326 		spin_unlock_bh(&hslot->lock);
2327 	}
2328 	sk = NULL;
2329 found:
2330 	return sk;
2331 }
2332 
2333 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2334 {
2335 	struct udp_iter_state *state = seq->private;
2336 	struct net *net = seq_file_net(seq);
2337 
2338 	do {
2339 		sk = sk_nulls_next(sk);
2340 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2341 
2342 	if (!sk) {
2343 		if (state->bucket <= state->udp_table->mask)
2344 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2345 		return udp_get_first(seq, state->bucket + 1);
2346 	}
2347 	return sk;
2348 }
2349 
2350 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2351 {
2352 	struct sock *sk = udp_get_first(seq, 0);
2353 
2354 	if (sk)
2355 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2356 			--pos;
2357 	return pos ? NULL : sk;
2358 }
2359 
2360 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2361 {
2362 	struct udp_iter_state *state = seq->private;
2363 	state->bucket = MAX_UDP_PORTS;
2364 
2365 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2366 }
2367 
2368 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2369 {
2370 	struct sock *sk;
2371 
2372 	if (v == SEQ_START_TOKEN)
2373 		sk = udp_get_idx(seq, 0);
2374 	else
2375 		sk = udp_get_next(seq, v);
2376 
2377 	++*pos;
2378 	return sk;
2379 }
2380 
2381 static void udp_seq_stop(struct seq_file *seq, void *v)
2382 {
2383 	struct udp_iter_state *state = seq->private;
2384 
2385 	if (state->bucket <= state->udp_table->mask)
2386 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2387 }
2388 
2389 int udp_seq_open(struct inode *inode, struct file *file)
2390 {
2391 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2392 	struct udp_iter_state *s;
2393 	int err;
2394 
2395 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2396 			   sizeof(struct udp_iter_state));
2397 	if (err < 0)
2398 		return err;
2399 
2400 	s = ((struct seq_file *)file->private_data)->private;
2401 	s->family		= afinfo->family;
2402 	s->udp_table		= afinfo->udp_table;
2403 	return err;
2404 }
2405 EXPORT_SYMBOL(udp_seq_open);
2406 
2407 /* ------------------------------------------------------------------------ */
2408 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2409 {
2410 	struct proc_dir_entry *p;
2411 	int rc = 0;
2412 
2413 	afinfo->seq_ops.start		= udp_seq_start;
2414 	afinfo->seq_ops.next		= udp_seq_next;
2415 	afinfo->seq_ops.stop		= udp_seq_stop;
2416 
2417 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2418 			     afinfo->seq_fops, afinfo);
2419 	if (!p)
2420 		rc = -ENOMEM;
2421 	return rc;
2422 }
2423 EXPORT_SYMBOL(udp_proc_register);
2424 
2425 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2426 {
2427 	remove_proc_entry(afinfo->name, net->proc_net);
2428 }
2429 EXPORT_SYMBOL(udp_proc_unregister);
2430 
2431 /* ------------------------------------------------------------------------ */
2432 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2433 		int bucket)
2434 {
2435 	struct inet_sock *inet = inet_sk(sp);
2436 	__be32 dest = inet->inet_daddr;
2437 	__be32 src  = inet->inet_rcv_saddr;
2438 	__u16 destp	  = ntohs(inet->inet_dport);
2439 	__u16 srcp	  = ntohs(inet->inet_sport);
2440 
2441 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2442 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2443 		bucket, src, srcp, dest, destp, sp->sk_state,
2444 		sk_wmem_alloc_get(sp),
2445 		sk_rmem_alloc_get(sp),
2446 		0, 0L, 0,
2447 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2448 		0, sock_i_ino(sp),
2449 		atomic_read(&sp->sk_refcnt), sp,
2450 		atomic_read(&sp->sk_drops));
2451 }
2452 
2453 int udp4_seq_show(struct seq_file *seq, void *v)
2454 {
2455 	seq_setwidth(seq, 127);
2456 	if (v == SEQ_START_TOKEN)
2457 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2458 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2459 			   "inode ref pointer drops");
2460 	else {
2461 		struct udp_iter_state *state = seq->private;
2462 
2463 		udp4_format_sock(v, seq, state->bucket);
2464 	}
2465 	seq_pad(seq, '\n');
2466 	return 0;
2467 }
2468 
2469 static const struct file_operations udp_afinfo_seq_fops = {
2470 	.owner    = THIS_MODULE,
2471 	.open     = udp_seq_open,
2472 	.read     = seq_read,
2473 	.llseek   = seq_lseek,
2474 	.release  = seq_release_net
2475 };
2476 
2477 /* ------------------------------------------------------------------------ */
2478 static struct udp_seq_afinfo udp4_seq_afinfo = {
2479 	.name		= "udp",
2480 	.family		= AF_INET,
2481 	.udp_table	= &udp_table,
2482 	.seq_fops	= &udp_afinfo_seq_fops,
2483 	.seq_ops	= {
2484 		.show		= udp4_seq_show,
2485 	},
2486 };
2487 
2488 static int __net_init udp4_proc_init_net(struct net *net)
2489 {
2490 	return udp_proc_register(net, &udp4_seq_afinfo);
2491 }
2492 
2493 static void __net_exit udp4_proc_exit_net(struct net *net)
2494 {
2495 	udp_proc_unregister(net, &udp4_seq_afinfo);
2496 }
2497 
2498 static struct pernet_operations udp4_net_ops = {
2499 	.init = udp4_proc_init_net,
2500 	.exit = udp4_proc_exit_net,
2501 };
2502 
2503 int __init udp4_proc_init(void)
2504 {
2505 	return register_pernet_subsys(&udp4_net_ops);
2506 }
2507 
2508 void udp4_proc_exit(void)
2509 {
2510 	unregister_pernet_subsys(&udp4_net_ops);
2511 }
2512 #endif /* CONFIG_PROC_FS */
2513 
2514 static __initdata unsigned long uhash_entries;
2515 static int __init set_uhash_entries(char *str)
2516 {
2517 	ssize_t ret;
2518 
2519 	if (!str)
2520 		return 0;
2521 
2522 	ret = kstrtoul(str, 0, &uhash_entries);
2523 	if (ret)
2524 		return 0;
2525 
2526 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2527 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2528 	return 1;
2529 }
2530 __setup("uhash_entries=", set_uhash_entries);
2531 
2532 void __init udp_table_init(struct udp_table *table, const char *name)
2533 {
2534 	unsigned int i;
2535 
2536 	table->hash = alloc_large_system_hash(name,
2537 					      2 * sizeof(struct udp_hslot),
2538 					      uhash_entries,
2539 					      21, /* one slot per 2 MB */
2540 					      0,
2541 					      &table->log,
2542 					      &table->mask,
2543 					      UDP_HTABLE_SIZE_MIN,
2544 					      64 * 1024);
2545 
2546 	table->hash2 = table->hash + (table->mask + 1);
2547 	for (i = 0; i <= table->mask; i++) {
2548 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2549 		table->hash[i].count = 0;
2550 		spin_lock_init(&table->hash[i].lock);
2551 	}
2552 	for (i = 0; i <= table->mask; i++) {
2553 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2554 		table->hash2[i].count = 0;
2555 		spin_lock_init(&table->hash2[i].lock);
2556 	}
2557 }
2558 
2559 u32 udp_flow_hashrnd(void)
2560 {
2561 	static u32 hashrnd __read_mostly;
2562 
2563 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2564 
2565 	return hashrnd;
2566 }
2567 EXPORT_SYMBOL(udp_flow_hashrnd);
2568 
2569 void __init udp_init(void)
2570 {
2571 	unsigned long limit;
2572 
2573 	udp_table_init(&udp_table, "UDP");
2574 	limit = nr_free_buffer_pages() / 8;
2575 	limit = max(limit, 128UL);
2576 	sysctl_udp_mem[0] = limit / 4 * 3;
2577 	sysctl_udp_mem[1] = limit;
2578 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2579 
2580 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2581 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2582 }
2583