xref: /openbmc/linux/net/ipv4/udp.c (revision 2b8232ce)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Version:	$Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Hirokazu Takahashi, <taka@valinux.co.jp>
15  *
16  * Fixes:
17  *		Alan Cox	:	verify_area() calls
18  *		Alan Cox	: 	stopped close while in use off icmp
19  *					messages. Not a fix but a botch that
20  *					for udp at least is 'valid'.
21  *		Alan Cox	:	Fixed icmp handling properly
22  *		Alan Cox	: 	Correct error for oversized datagrams
23  *		Alan Cox	:	Tidied select() semantics.
24  *		Alan Cox	:	udp_err() fixed properly, also now
25  *					select and read wake correctly on errors
26  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
27  *		Alan Cox	:	UDP can count its memory
28  *		Alan Cox	:	send to an unknown connection causes
29  *					an ECONNREFUSED off the icmp, but
30  *					does NOT close.
31  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
32  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
33  *					bug no longer crashes it.
34  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
35  *		Alan Cox	:	Uses skb_free_datagram
36  *		Alan Cox	:	Added get/set sockopt support.
37  *		Alan Cox	:	Broadcasting without option set returns EACCES.
38  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
39  *		Alan Cox	:	Use ip_tos and ip_ttl
40  *		Alan Cox	:	SNMP Mibs
41  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
42  *		Matt Dillon	:	UDP length checks.
43  *		Alan Cox	:	Smarter af_inet used properly.
44  *		Alan Cox	:	Use new kernel side addressing.
45  *		Alan Cox	:	Incorrect return on truncated datagram receive.
46  *	Arnt Gulbrandsen 	:	New udp_send and stuff
47  *		Alan Cox	:	Cache last socket
48  *		Alan Cox	:	Route cache
49  *		Jon Peatfield	:	Minor efficiency fix to sendto().
50  *		Mike Shaver	:	RFC1122 checks.
51  *		Alan Cox	:	Nonblocking error fix.
52  *	Willy Konynenberg	:	Transparent proxying support.
53  *		Mike McLagan	:	Routing by source
54  *		David S. Miller	:	New socket lookup architecture.
55  *					Last socket cache retained as it
56  *					does have a high hit rate.
57  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
58  *		Andi Kleen	:	Some cleanups, cache destination entry
59  *					for connect.
60  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
61  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
62  *					return ENOTCONN for unconnected sockets (POSIX)
63  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
64  *					bound-to-device socket
65  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
66  *					datagrams.
67  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
68  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
69  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
70  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
71  *					a single port at the same time.
72  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
73  *	James Chapman		:	Add L2TP encapsulation type.
74  *
75  *
76  *		This program is free software; you can redistribute it and/or
77  *		modify it under the terms of the GNU General Public License
78  *		as published by the Free Software Foundation; either version
79  *		2 of the License, or (at your option) any later version.
80  */
81 
82 #include <asm/system.h>
83 #include <asm/uaccess.h>
84 #include <asm/ioctls.h>
85 #include <linux/types.h>
86 #include <linux/fcntl.h>
87 #include <linux/module.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/igmp.h>
91 #include <linux/in.h>
92 #include <linux/errno.h>
93 #include <linux/timer.h>
94 #include <linux/mm.h>
95 #include <linux/inet.h>
96 #include <linux/netdevice.h>
97 #include <net/tcp_states.h>
98 #include <linux/skbuff.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <net/net_namespace.h>
102 #include <net/icmp.h>
103 #include <net/route.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include "udp_impl.h"
107 
108 /*
109  *	Snmp MIB for the UDP layer
110  */
111 
112 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly;
113 
114 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
115 DEFINE_RWLOCK(udp_hash_lock);
116 
117 static inline int __udp_lib_lport_inuse(__u16 num,
118 					const struct hlist_head udptable[])
119 {
120 	struct sock *sk;
121 	struct hlist_node *node;
122 
123 	sk_for_each(sk, node, &udptable[num & (UDP_HTABLE_SIZE - 1)])
124 		if (sk->sk_hash == num)
125 			return 1;
126 	return 0;
127 }
128 
129 /**
130  *  __udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
131  *
132  *  @sk:          socket struct in question
133  *  @snum:        port number to look up
134  *  @udptable:    hash list table, must be of UDP_HTABLE_SIZE
135  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
136  */
137 int __udp_lib_get_port(struct sock *sk, unsigned short snum,
138 		       struct hlist_head udptable[],
139 		       int (*saddr_comp)(const struct sock *sk1,
140 					 const struct sock *sk2 )    )
141 {
142 	struct hlist_node *node;
143 	struct hlist_head *head;
144 	struct sock *sk2;
145 	int    error = 1;
146 
147 	write_lock_bh(&udp_hash_lock);
148 
149 	if (!snum) {
150 		int i, low, high;
151 		unsigned rover, best, best_size_so_far;
152 
153 		inet_get_local_port_range(&low, &high);
154 
155 		best_size_so_far = UINT_MAX;
156 		best = rover = net_random() % (high - low) + low;
157 
158 		/* 1st pass: look for empty (or shortest) hash chain */
159 		for (i = 0; i < UDP_HTABLE_SIZE; i++) {
160 			int size = 0;
161 
162 			head = &udptable[rover & (UDP_HTABLE_SIZE - 1)];
163 			if (hlist_empty(head))
164 				goto gotit;
165 
166 			sk_for_each(sk2, node, head) {
167 				if (++size >= best_size_so_far)
168 					goto next;
169 			}
170 			best_size_so_far = size;
171 			best = rover;
172 		next:
173 			/* fold back if end of range */
174 			if (++rover > high)
175 				rover = low + ((rover - low)
176 					       & (UDP_HTABLE_SIZE - 1));
177 
178 
179 		}
180 
181 		/* 2nd pass: find hole in shortest hash chain */
182 		rover = best;
183 		for (i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++) {
184 			if (! __udp_lib_lport_inuse(rover, udptable))
185 				goto gotit;
186 			rover += UDP_HTABLE_SIZE;
187 			if (rover > high)
188 				rover = low + ((rover - low)
189 					       & (UDP_HTABLE_SIZE - 1));
190 		}
191 
192 
193 		/* All ports in use! */
194 		goto fail;
195 
196 gotit:
197 		snum = rover;
198 	} else {
199 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
200 
201 		sk_for_each(sk2, node, head)
202 			if (sk2->sk_hash == snum                             &&
203 			    sk2 != sk                                        &&
204 			    (!sk2->sk_reuse        || !sk->sk_reuse)         &&
205 			    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
206 			     || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
207 			    (*saddr_comp)(sk, sk2)                             )
208 				goto fail;
209 	}
210 
211 	inet_sk(sk)->num = snum;
212 	sk->sk_hash = snum;
213 	if (sk_unhashed(sk)) {
214 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
215 		sk_add_node(sk, head);
216 		sock_prot_inc_use(sk->sk_prot);
217 	}
218 	error = 0;
219 fail:
220 	write_unlock_bh(&udp_hash_lock);
221 	return error;
222 }
223 
224 int udp_get_port(struct sock *sk, unsigned short snum,
225 			int (*scmp)(const struct sock *, const struct sock *))
226 {
227 	return  __udp_lib_get_port(sk, snum, udp_hash, scmp);
228 }
229 
230 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
231 {
232 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
233 
234 	return 	( !ipv6_only_sock(sk2)  &&
235 		  (!inet1->rcv_saddr || !inet2->rcv_saddr ||
236 		   inet1->rcv_saddr == inet2->rcv_saddr      ));
237 }
238 
239 static inline int udp_v4_get_port(struct sock *sk, unsigned short snum)
240 {
241 	return udp_get_port(sk, snum, ipv4_rcv_saddr_equal);
242 }
243 
244 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
245  * harder than this. -DaveM
246  */
247 static struct sock *__udp4_lib_lookup(__be32 saddr, __be16 sport,
248 				      __be32 daddr, __be16 dport,
249 				      int dif, struct hlist_head udptable[])
250 {
251 	struct sock *sk, *result = NULL;
252 	struct hlist_node *node;
253 	unsigned short hnum = ntohs(dport);
254 	int badness = -1;
255 
256 	read_lock(&udp_hash_lock);
257 	sk_for_each(sk, node, &udptable[hnum & (UDP_HTABLE_SIZE - 1)]) {
258 		struct inet_sock *inet = inet_sk(sk);
259 
260 		if (sk->sk_hash == hnum && !ipv6_only_sock(sk)) {
261 			int score = (sk->sk_family == PF_INET ? 1 : 0);
262 			if (inet->rcv_saddr) {
263 				if (inet->rcv_saddr != daddr)
264 					continue;
265 				score+=2;
266 			}
267 			if (inet->daddr) {
268 				if (inet->daddr != saddr)
269 					continue;
270 				score+=2;
271 			}
272 			if (inet->dport) {
273 				if (inet->dport != sport)
274 					continue;
275 				score+=2;
276 			}
277 			if (sk->sk_bound_dev_if) {
278 				if (sk->sk_bound_dev_if != dif)
279 					continue;
280 				score+=2;
281 			}
282 			if (score == 9) {
283 				result = sk;
284 				break;
285 			} else if (score > badness) {
286 				result = sk;
287 				badness = score;
288 			}
289 		}
290 	}
291 	if (result)
292 		sock_hold(result);
293 	read_unlock(&udp_hash_lock);
294 	return result;
295 }
296 
297 static inline struct sock *udp_v4_mcast_next(struct sock *sk,
298 					     __be16 loc_port, __be32 loc_addr,
299 					     __be16 rmt_port, __be32 rmt_addr,
300 					     int dif)
301 {
302 	struct hlist_node *node;
303 	struct sock *s = sk;
304 	unsigned short hnum = ntohs(loc_port);
305 
306 	sk_for_each_from(s, node) {
307 		struct inet_sock *inet = inet_sk(s);
308 
309 		if (s->sk_hash != hnum					||
310 		    (inet->daddr && inet->daddr != rmt_addr)		||
311 		    (inet->dport != rmt_port && inet->dport)		||
312 		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
313 		    ipv6_only_sock(s)					||
314 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
315 			continue;
316 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
317 			continue;
318 		goto found;
319 	}
320 	s = NULL;
321 found:
322 	return s;
323 }
324 
325 /*
326  * This routine is called by the ICMP module when it gets some
327  * sort of error condition.  If err < 0 then the socket should
328  * be closed and the error returned to the user.  If err > 0
329  * it's just the icmp type << 8 | icmp code.
330  * Header points to the ip header of the error packet. We move
331  * on past this. Then (as it used to claim before adjustment)
332  * header points to the first 8 bytes of the udp header.  We need
333  * to find the appropriate port.
334  */
335 
336 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
337 {
338 	struct inet_sock *inet;
339 	struct iphdr *iph = (struct iphdr*)skb->data;
340 	struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
341 	const int type = icmp_hdr(skb)->type;
342 	const int code = icmp_hdr(skb)->code;
343 	struct sock *sk;
344 	int harderr;
345 	int err;
346 
347 	sk = __udp4_lib_lookup(iph->daddr, uh->dest, iph->saddr, uh->source,
348 			       skb->dev->ifindex, udptable		    );
349 	if (sk == NULL) {
350 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
351 		return;	/* No socket for error */
352 	}
353 
354 	err = 0;
355 	harderr = 0;
356 	inet = inet_sk(sk);
357 
358 	switch (type) {
359 	default:
360 	case ICMP_TIME_EXCEEDED:
361 		err = EHOSTUNREACH;
362 		break;
363 	case ICMP_SOURCE_QUENCH:
364 		goto out;
365 	case ICMP_PARAMETERPROB:
366 		err = EPROTO;
367 		harderr = 1;
368 		break;
369 	case ICMP_DEST_UNREACH:
370 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
371 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
372 				err = EMSGSIZE;
373 				harderr = 1;
374 				break;
375 			}
376 			goto out;
377 		}
378 		err = EHOSTUNREACH;
379 		if (code <= NR_ICMP_UNREACH) {
380 			harderr = icmp_err_convert[code].fatal;
381 			err = icmp_err_convert[code].errno;
382 		}
383 		break;
384 	}
385 
386 	/*
387 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
388 	 *	4.1.3.3.
389 	 */
390 	if (!inet->recverr) {
391 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
392 			goto out;
393 	} else {
394 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
395 	}
396 	sk->sk_err = err;
397 	sk->sk_error_report(sk);
398 out:
399 	sock_put(sk);
400 }
401 
402 void udp_err(struct sk_buff *skb, u32 info)
403 {
404 	return __udp4_lib_err(skb, info, udp_hash);
405 }
406 
407 /*
408  * Throw away all pending data and cancel the corking. Socket is locked.
409  */
410 static void udp_flush_pending_frames(struct sock *sk)
411 {
412 	struct udp_sock *up = udp_sk(sk);
413 
414 	if (up->pending) {
415 		up->len = 0;
416 		up->pending = 0;
417 		ip_flush_pending_frames(sk);
418 	}
419 }
420 
421 /**
422  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
423  * 	@sk: 	socket we are sending on
424  * 	@skb: 	sk_buff containing the filled-in UDP header
425  * 	        (checksum field must be zeroed out)
426  */
427 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
428 				 __be32 src, __be32 dst, int len      )
429 {
430 	unsigned int offset;
431 	struct udphdr *uh = udp_hdr(skb);
432 	__wsum csum = 0;
433 
434 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
435 		/*
436 		 * Only one fragment on the socket.
437 		 */
438 		skb->csum_start = skb_transport_header(skb) - skb->head;
439 		skb->csum_offset = offsetof(struct udphdr, check);
440 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
441 	} else {
442 		/*
443 		 * HW-checksum won't work as there are two or more
444 		 * fragments on the socket so that all csums of sk_buffs
445 		 * should be together
446 		 */
447 		offset = skb_transport_offset(skb);
448 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
449 
450 		skb->ip_summed = CHECKSUM_NONE;
451 
452 		skb_queue_walk(&sk->sk_write_queue, skb) {
453 			csum = csum_add(csum, skb->csum);
454 		}
455 
456 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
457 		if (uh->check == 0)
458 			uh->check = CSUM_MANGLED_0;
459 	}
460 }
461 
462 /*
463  * Push out all pending data as one UDP datagram. Socket is locked.
464  */
465 static int udp_push_pending_frames(struct sock *sk)
466 {
467 	struct udp_sock  *up = udp_sk(sk);
468 	struct inet_sock *inet = inet_sk(sk);
469 	struct flowi *fl = &inet->cork.fl;
470 	struct sk_buff *skb;
471 	struct udphdr *uh;
472 	int err = 0;
473 	__wsum csum = 0;
474 
475 	/* Grab the skbuff where UDP header space exists. */
476 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
477 		goto out;
478 
479 	/*
480 	 * Create a UDP header
481 	 */
482 	uh = udp_hdr(skb);
483 	uh->source = fl->fl_ip_sport;
484 	uh->dest = fl->fl_ip_dport;
485 	uh->len = htons(up->len);
486 	uh->check = 0;
487 
488 	if (up->pcflag)  				 /*     UDP-Lite      */
489 		csum  = udplite_csum_outgoing(sk, skb);
490 
491 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
492 
493 		skb->ip_summed = CHECKSUM_NONE;
494 		goto send;
495 
496 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
497 
498 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
499 		goto send;
500 
501 	} else						 /*   `normal' UDP    */
502 		csum = udp_csum_outgoing(sk, skb);
503 
504 	/* add protocol-dependent pseudo-header */
505 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
506 				      sk->sk_protocol, csum             );
507 	if (uh->check == 0)
508 		uh->check = CSUM_MANGLED_0;
509 
510 send:
511 	err = ip_push_pending_frames(sk);
512 out:
513 	up->len = 0;
514 	up->pending = 0;
515 	if (!err)
516 		UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS, up->pcflag);
517 	return err;
518 }
519 
520 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
521 		size_t len)
522 {
523 	struct inet_sock *inet = inet_sk(sk);
524 	struct udp_sock *up = udp_sk(sk);
525 	int ulen = len;
526 	struct ipcm_cookie ipc;
527 	struct rtable *rt = NULL;
528 	int free = 0;
529 	int connected = 0;
530 	__be32 daddr, faddr, saddr;
531 	__be16 dport;
532 	u8  tos;
533 	int err, is_udplite = up->pcflag;
534 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
535 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
536 
537 	if (len > 0xFFFF)
538 		return -EMSGSIZE;
539 
540 	/*
541 	 *	Check the flags.
542 	 */
543 
544 	if (msg->msg_flags&MSG_OOB)	/* Mirror BSD error message compatibility */
545 		return -EOPNOTSUPP;
546 
547 	ipc.opt = NULL;
548 
549 	if (up->pending) {
550 		/*
551 		 * There are pending frames.
552 		 * The socket lock must be held while it's corked.
553 		 */
554 		lock_sock(sk);
555 		if (likely(up->pending)) {
556 			if (unlikely(up->pending != AF_INET)) {
557 				release_sock(sk);
558 				return -EINVAL;
559 			}
560 			goto do_append_data;
561 		}
562 		release_sock(sk);
563 	}
564 	ulen += sizeof(struct udphdr);
565 
566 	/*
567 	 *	Get and verify the address.
568 	 */
569 	if (msg->msg_name) {
570 		struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
571 		if (msg->msg_namelen < sizeof(*usin))
572 			return -EINVAL;
573 		if (usin->sin_family != AF_INET) {
574 			if (usin->sin_family != AF_UNSPEC)
575 				return -EAFNOSUPPORT;
576 		}
577 
578 		daddr = usin->sin_addr.s_addr;
579 		dport = usin->sin_port;
580 		if (dport == 0)
581 			return -EINVAL;
582 	} else {
583 		if (sk->sk_state != TCP_ESTABLISHED)
584 			return -EDESTADDRREQ;
585 		daddr = inet->daddr;
586 		dport = inet->dport;
587 		/* Open fast path for connected socket.
588 		   Route will not be used, if at least one option is set.
589 		 */
590 		connected = 1;
591 	}
592 	ipc.addr = inet->saddr;
593 
594 	ipc.oif = sk->sk_bound_dev_if;
595 	if (msg->msg_controllen) {
596 		err = ip_cmsg_send(msg, &ipc);
597 		if (err)
598 			return err;
599 		if (ipc.opt)
600 			free = 1;
601 		connected = 0;
602 	}
603 	if (!ipc.opt)
604 		ipc.opt = inet->opt;
605 
606 	saddr = ipc.addr;
607 	ipc.addr = faddr = daddr;
608 
609 	if (ipc.opt && ipc.opt->srr) {
610 		if (!daddr)
611 			return -EINVAL;
612 		faddr = ipc.opt->faddr;
613 		connected = 0;
614 	}
615 	tos = RT_TOS(inet->tos);
616 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
617 	    (msg->msg_flags & MSG_DONTROUTE) ||
618 	    (ipc.opt && ipc.opt->is_strictroute)) {
619 		tos |= RTO_ONLINK;
620 		connected = 0;
621 	}
622 
623 	if (MULTICAST(daddr)) {
624 		if (!ipc.oif)
625 			ipc.oif = inet->mc_index;
626 		if (!saddr)
627 			saddr = inet->mc_addr;
628 		connected = 0;
629 	}
630 
631 	if (connected)
632 		rt = (struct rtable*)sk_dst_check(sk, 0);
633 
634 	if (rt == NULL) {
635 		struct flowi fl = { .oif = ipc.oif,
636 				    .nl_u = { .ip4_u =
637 					      { .daddr = faddr,
638 						.saddr = saddr,
639 						.tos = tos } },
640 				    .proto = sk->sk_protocol,
641 				    .uli_u = { .ports =
642 					       { .sport = inet->sport,
643 						 .dport = dport } } };
644 		security_sk_classify_flow(sk, &fl);
645 		err = ip_route_output_flow(&rt, &fl, sk, 1);
646 		if (err) {
647 			if (err == -ENETUNREACH)
648 				IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
649 			goto out;
650 		}
651 
652 		err = -EACCES;
653 		if ((rt->rt_flags & RTCF_BROADCAST) &&
654 		    !sock_flag(sk, SOCK_BROADCAST))
655 			goto out;
656 		if (connected)
657 			sk_dst_set(sk, dst_clone(&rt->u.dst));
658 	}
659 
660 	if (msg->msg_flags&MSG_CONFIRM)
661 		goto do_confirm;
662 back_from_confirm:
663 
664 	saddr = rt->rt_src;
665 	if (!ipc.addr)
666 		daddr = ipc.addr = rt->rt_dst;
667 
668 	lock_sock(sk);
669 	if (unlikely(up->pending)) {
670 		/* The socket is already corked while preparing it. */
671 		/* ... which is an evident application bug. --ANK */
672 		release_sock(sk);
673 
674 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
675 		err = -EINVAL;
676 		goto out;
677 	}
678 	/*
679 	 *	Now cork the socket to pend data.
680 	 */
681 	inet->cork.fl.fl4_dst = daddr;
682 	inet->cork.fl.fl_ip_dport = dport;
683 	inet->cork.fl.fl4_src = saddr;
684 	inet->cork.fl.fl_ip_sport = inet->sport;
685 	up->pending = AF_INET;
686 
687 do_append_data:
688 	up->len += ulen;
689 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
690 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
691 			sizeof(struct udphdr), &ipc, rt,
692 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
693 	if (err)
694 		udp_flush_pending_frames(sk);
695 	else if (!corkreq)
696 		err = udp_push_pending_frames(sk);
697 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
698 		up->pending = 0;
699 	release_sock(sk);
700 
701 out:
702 	ip_rt_put(rt);
703 	if (free)
704 		kfree(ipc.opt);
705 	if (!err)
706 		return len;
707 	/*
708 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
709 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
710 	 * we don't have a good statistic (IpOutDiscards but it can be too many
711 	 * things).  We could add another new stat but at least for now that
712 	 * seems like overkill.
713 	 */
714 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
715 		UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite);
716 	}
717 	return err;
718 
719 do_confirm:
720 	dst_confirm(&rt->u.dst);
721 	if (!(msg->msg_flags&MSG_PROBE) || len)
722 		goto back_from_confirm;
723 	err = 0;
724 	goto out;
725 }
726 
727 int udp_sendpage(struct sock *sk, struct page *page, int offset,
728 		 size_t size, int flags)
729 {
730 	struct udp_sock *up = udp_sk(sk);
731 	int ret;
732 
733 	if (!up->pending) {
734 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
735 
736 		/* Call udp_sendmsg to specify destination address which
737 		 * sendpage interface can't pass.
738 		 * This will succeed only when the socket is connected.
739 		 */
740 		ret = udp_sendmsg(NULL, sk, &msg, 0);
741 		if (ret < 0)
742 			return ret;
743 	}
744 
745 	lock_sock(sk);
746 
747 	if (unlikely(!up->pending)) {
748 		release_sock(sk);
749 
750 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
751 		return -EINVAL;
752 	}
753 
754 	ret = ip_append_page(sk, page, offset, size, flags);
755 	if (ret == -EOPNOTSUPP) {
756 		release_sock(sk);
757 		return sock_no_sendpage(sk->sk_socket, page, offset,
758 					size, flags);
759 	}
760 	if (ret < 0) {
761 		udp_flush_pending_frames(sk);
762 		goto out;
763 	}
764 
765 	up->len += size;
766 	if (!(up->corkflag || (flags&MSG_MORE)))
767 		ret = udp_push_pending_frames(sk);
768 	if (!ret)
769 		ret = size;
770 out:
771 	release_sock(sk);
772 	return ret;
773 }
774 
775 /*
776  *	IOCTL requests applicable to the UDP protocol
777  */
778 
779 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
780 {
781 	switch (cmd) {
782 	case SIOCOUTQ:
783 	{
784 		int amount = atomic_read(&sk->sk_wmem_alloc);
785 		return put_user(amount, (int __user *)arg);
786 	}
787 
788 	case SIOCINQ:
789 	{
790 		struct sk_buff *skb;
791 		unsigned long amount;
792 
793 		amount = 0;
794 		spin_lock_bh(&sk->sk_receive_queue.lock);
795 		skb = skb_peek(&sk->sk_receive_queue);
796 		if (skb != NULL) {
797 			/*
798 			 * We will only return the amount
799 			 * of this packet since that is all
800 			 * that will be read.
801 			 */
802 			amount = skb->len - sizeof(struct udphdr);
803 		}
804 		spin_unlock_bh(&sk->sk_receive_queue.lock);
805 		return put_user(amount, (int __user *)arg);
806 	}
807 
808 	default:
809 		return -ENOIOCTLCMD;
810 	}
811 
812 	return 0;
813 }
814 
815 /*
816  * 	This should be easy, if there is something there we
817  * 	return it, otherwise we block.
818  */
819 
820 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
821 		size_t len, int noblock, int flags, int *addr_len)
822 {
823 	struct inet_sock *inet = inet_sk(sk);
824 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
825 	struct sk_buff *skb;
826 	unsigned int ulen, copied;
827 	int err;
828 	int is_udplite = IS_UDPLITE(sk);
829 
830 	/*
831 	 *	Check any passed addresses
832 	 */
833 	if (addr_len)
834 		*addr_len=sizeof(*sin);
835 
836 	if (flags & MSG_ERRQUEUE)
837 		return ip_recv_error(sk, msg, len);
838 
839 try_again:
840 	skb = skb_recv_datagram(sk, flags, noblock, &err);
841 	if (!skb)
842 		goto out;
843 
844 	ulen = skb->len - sizeof(struct udphdr);
845 	copied = len;
846 	if (copied > ulen)
847 		copied = ulen;
848 	else if (copied < ulen)
849 		msg->msg_flags |= MSG_TRUNC;
850 
851 	/*
852 	 * If checksum is needed at all, try to do it while copying the
853 	 * data.  If the data is truncated, or if we only want a partial
854 	 * coverage checksum (UDP-Lite), do it before the copy.
855 	 */
856 
857 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
858 		if (udp_lib_checksum_complete(skb))
859 			goto csum_copy_err;
860 	}
861 
862 	if (skb_csum_unnecessary(skb))
863 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
864 					      msg->msg_iov, copied       );
865 	else {
866 		err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
867 
868 		if (err == -EINVAL)
869 			goto csum_copy_err;
870 	}
871 
872 	if (err)
873 		goto out_free;
874 
875 	sock_recv_timestamp(msg, sk, skb);
876 
877 	/* Copy the address. */
878 	if (sin)
879 	{
880 		sin->sin_family = AF_INET;
881 		sin->sin_port = udp_hdr(skb)->source;
882 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
883 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
884 	}
885 	if (inet->cmsg_flags)
886 		ip_cmsg_recv(msg, skb);
887 
888 	err = copied;
889 	if (flags & MSG_TRUNC)
890 		err = ulen;
891 
892 out_free:
893 	skb_free_datagram(sk, skb);
894 out:
895 	return err;
896 
897 csum_copy_err:
898 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
899 
900 	skb_kill_datagram(sk, skb, flags);
901 
902 	if (noblock)
903 		return -EAGAIN;
904 	goto try_again;
905 }
906 
907 
908 int udp_disconnect(struct sock *sk, int flags)
909 {
910 	struct inet_sock *inet = inet_sk(sk);
911 	/*
912 	 *	1003.1g - break association.
913 	 */
914 
915 	sk->sk_state = TCP_CLOSE;
916 	inet->daddr = 0;
917 	inet->dport = 0;
918 	sk->sk_bound_dev_if = 0;
919 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
920 		inet_reset_saddr(sk);
921 
922 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
923 		sk->sk_prot->unhash(sk);
924 		inet->sport = 0;
925 	}
926 	sk_dst_reset(sk);
927 	return 0;
928 }
929 
930 /* returns:
931  *  -1: error
932  *   0: success
933  *  >0: "udp encap" protocol resubmission
934  *
935  * Note that in the success and error cases, the skb is assumed to
936  * have either been requeued or freed.
937  */
938 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
939 {
940 	struct udp_sock *up = udp_sk(sk);
941 	int rc;
942 
943 	/*
944 	 *	Charge it to the socket, dropping if the queue is full.
945 	 */
946 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
947 		goto drop;
948 	nf_reset(skb);
949 
950 	if (up->encap_type) {
951 		/*
952 		 * This is an encapsulation socket so pass the skb to
953 		 * the socket's udp_encap_rcv() hook. Otherwise, just
954 		 * fall through and pass this up the UDP socket.
955 		 * up->encap_rcv() returns the following value:
956 		 * =0 if skb was successfully passed to the encap
957 		 *    handler or was discarded by it.
958 		 * >0 if skb should be passed on to UDP.
959 		 * <0 if skb should be resubmitted as proto -N
960 		 */
961 
962 		/* if we're overly short, let UDP handle it */
963 		if (skb->len > sizeof(struct udphdr) &&
964 		    up->encap_rcv != NULL) {
965 			int ret;
966 
967 			ret = (*up->encap_rcv)(sk, skb);
968 			if (ret <= 0) {
969 				UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
970 				return -ret;
971 			}
972 		}
973 
974 		/* FALLTHROUGH -- it's a UDP Packet */
975 	}
976 
977 	/*
978 	 * 	UDP-Lite specific tests, ignored on UDP sockets
979 	 */
980 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
981 
982 		/*
983 		 * MIB statistics other than incrementing the error count are
984 		 * disabled for the following two types of errors: these depend
985 		 * on the application settings, not on the functioning of the
986 		 * protocol stack as such.
987 		 *
988 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
989 		 * way ... to ... at least let the receiving application block
990 		 * delivery of packets with coverage values less than a value
991 		 * provided by the application."
992 		 */
993 		if (up->pcrlen == 0) {          /* full coverage was set  */
994 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
995 				"%d while full coverage %d requested\n",
996 				UDP_SKB_CB(skb)->cscov, skb->len);
997 			goto drop;
998 		}
999 		/* The next case involves violating the min. coverage requested
1000 		 * by the receiver. This is subtle: if receiver wants x and x is
1001 		 * greater than the buffersize/MTU then receiver will complain
1002 		 * that it wants x while sender emits packets of smaller size y.
1003 		 * Therefore the above ...()->partial_cov statement is essential.
1004 		 */
1005 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1006 			LIMIT_NETDEBUG(KERN_WARNING
1007 				"UDPLITE: coverage %d too small, need min %d\n",
1008 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1009 			goto drop;
1010 		}
1011 	}
1012 
1013 	if (sk->sk_filter) {
1014 		if (udp_lib_checksum_complete(skb))
1015 			goto drop;
1016 	}
1017 
1018 	if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
1019 		/* Note that an ENOMEM error is charged twice */
1020 		if (rc == -ENOMEM)
1021 			UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, up->pcflag);
1022 		goto drop;
1023 	}
1024 
1025 	UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1026 	return 0;
1027 
1028 drop:
1029 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, up->pcflag);
1030 	kfree_skb(skb);
1031 	return -1;
1032 }
1033 
1034 /*
1035  *	Multicasts and broadcasts go to each listener.
1036  *
1037  *	Note: called only from the BH handler context,
1038  *	so we don't need to lock the hashes.
1039  */
1040 static int __udp4_lib_mcast_deliver(struct sk_buff *skb,
1041 				    struct udphdr  *uh,
1042 				    __be32 saddr, __be32 daddr,
1043 				    struct hlist_head udptable[])
1044 {
1045 	struct sock *sk;
1046 	int dif;
1047 
1048 	read_lock(&udp_hash_lock);
1049 	sk = sk_head(&udptable[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]);
1050 	dif = skb->dev->ifindex;
1051 	sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1052 	if (sk) {
1053 		struct sock *sknext = NULL;
1054 
1055 		do {
1056 			struct sk_buff *skb1 = skb;
1057 
1058 			sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1059 						   uh->source, saddr, dif);
1060 			if (sknext)
1061 				skb1 = skb_clone(skb, GFP_ATOMIC);
1062 
1063 			if (skb1) {
1064 				int ret = udp_queue_rcv_skb(sk, skb1);
1065 				if (ret > 0)
1066 					/* we should probably re-process instead
1067 					 * of dropping packets here. */
1068 					kfree_skb(skb1);
1069 			}
1070 			sk = sknext;
1071 		} while (sknext);
1072 	} else
1073 		kfree_skb(skb);
1074 	read_unlock(&udp_hash_lock);
1075 	return 0;
1076 }
1077 
1078 /* Initialize UDP checksum. If exited with zero value (success),
1079  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1080  * Otherwise, csum completion requires chacksumming packet body,
1081  * including udp header and folding it to skb->csum.
1082  */
1083 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1084 				 int proto)
1085 {
1086 	const struct iphdr *iph;
1087 	int err;
1088 
1089 	UDP_SKB_CB(skb)->partial_cov = 0;
1090 	UDP_SKB_CB(skb)->cscov = skb->len;
1091 
1092 	if (proto == IPPROTO_UDPLITE) {
1093 		err = udplite_checksum_init(skb, uh);
1094 		if (err)
1095 			return err;
1096 	}
1097 
1098 	iph = ip_hdr(skb);
1099 	if (uh->check == 0) {
1100 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1101 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1102 	       if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1103 				      proto, skb->csum))
1104 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1105 	}
1106 	if (!skb_csum_unnecessary(skb))
1107 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1108 					       skb->len, proto, 0);
1109 	/* Probably, we should checksum udp header (it should be in cache
1110 	 * in any case) and data in tiny packets (< rx copybreak).
1111 	 */
1112 
1113 	return 0;
1114 }
1115 
1116 /*
1117  *	All we need to do is get the socket, and then do a checksum.
1118  */
1119 
1120 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1121 		   int proto)
1122 {
1123 	struct sock *sk;
1124 	struct udphdr *uh = udp_hdr(skb);
1125 	unsigned short ulen;
1126 	struct rtable *rt = (struct rtable*)skb->dst;
1127 	__be32 saddr = ip_hdr(skb)->saddr;
1128 	__be32 daddr = ip_hdr(skb)->daddr;
1129 
1130 	/*
1131 	 *  Validate the packet.
1132 	 */
1133 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1134 		goto drop;		/* No space for header. */
1135 
1136 	ulen = ntohs(uh->len);
1137 	if (ulen > skb->len)
1138 		goto short_packet;
1139 
1140 	if (proto == IPPROTO_UDP) {
1141 		/* UDP validates ulen. */
1142 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1143 			goto short_packet;
1144 		uh = udp_hdr(skb);
1145 	}
1146 
1147 	if (udp4_csum_init(skb, uh, proto))
1148 		goto csum_error;
1149 
1150 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1151 		return __udp4_lib_mcast_deliver(skb, uh, saddr, daddr, udptable);
1152 
1153 	sk = __udp4_lib_lookup(saddr, uh->source, daddr, uh->dest,
1154 			       skb->dev->ifindex, udptable        );
1155 
1156 	if (sk != NULL) {
1157 		int ret = udp_queue_rcv_skb(sk, skb);
1158 		sock_put(sk);
1159 
1160 		/* a return value > 0 means to resubmit the input, but
1161 		 * it wants the return to be -protocol, or 0
1162 		 */
1163 		if (ret > 0)
1164 			return -ret;
1165 		return 0;
1166 	}
1167 
1168 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1169 		goto drop;
1170 	nf_reset(skb);
1171 
1172 	/* No socket. Drop packet silently, if checksum is wrong */
1173 	if (udp_lib_checksum_complete(skb))
1174 		goto csum_error;
1175 
1176 	UDP_INC_STATS_BH(UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1177 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1178 
1179 	/*
1180 	 * Hmm.  We got an UDP packet to a port to which we
1181 	 * don't wanna listen.  Ignore it.
1182 	 */
1183 	kfree_skb(skb);
1184 	return 0;
1185 
1186 short_packet:
1187 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n",
1188 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1189 		       NIPQUAD(saddr),
1190 		       ntohs(uh->source),
1191 		       ulen,
1192 		       skb->len,
1193 		       NIPQUAD(daddr),
1194 		       ntohs(uh->dest));
1195 	goto drop;
1196 
1197 csum_error:
1198 	/*
1199 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1200 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1201 	 */
1202 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n",
1203 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1204 		       NIPQUAD(saddr),
1205 		       ntohs(uh->source),
1206 		       NIPQUAD(daddr),
1207 		       ntohs(uh->dest),
1208 		       ulen);
1209 drop:
1210 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1211 	kfree_skb(skb);
1212 	return 0;
1213 }
1214 
1215 int udp_rcv(struct sk_buff *skb)
1216 {
1217 	return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP);
1218 }
1219 
1220 int udp_destroy_sock(struct sock *sk)
1221 {
1222 	lock_sock(sk);
1223 	udp_flush_pending_frames(sk);
1224 	release_sock(sk);
1225 	return 0;
1226 }
1227 
1228 /*
1229  *	Socket option code for UDP
1230  */
1231 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1232 		       char __user *optval, int optlen,
1233 		       int (*push_pending_frames)(struct sock *))
1234 {
1235 	struct udp_sock *up = udp_sk(sk);
1236 	int val;
1237 	int err = 0;
1238 
1239 	if (optlen<sizeof(int))
1240 		return -EINVAL;
1241 
1242 	if (get_user(val, (int __user *)optval))
1243 		return -EFAULT;
1244 
1245 	switch (optname) {
1246 	case UDP_CORK:
1247 		if (val != 0) {
1248 			up->corkflag = 1;
1249 		} else {
1250 			up->corkflag = 0;
1251 			lock_sock(sk);
1252 			(*push_pending_frames)(sk);
1253 			release_sock(sk);
1254 		}
1255 		break;
1256 
1257 	case UDP_ENCAP:
1258 		switch (val) {
1259 		case 0:
1260 		case UDP_ENCAP_ESPINUDP:
1261 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1262 			up->encap_rcv = xfrm4_udp_encap_rcv;
1263 			/* FALLTHROUGH */
1264 		case UDP_ENCAP_L2TPINUDP:
1265 			up->encap_type = val;
1266 			break;
1267 		default:
1268 			err = -ENOPROTOOPT;
1269 			break;
1270 		}
1271 		break;
1272 
1273 	/*
1274 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1275 	 */
1276 	/* The sender sets actual checksum coverage length via this option.
1277 	 * The case coverage > packet length is handled by send module. */
1278 	case UDPLITE_SEND_CSCOV:
1279 		if (!up->pcflag)         /* Disable the option on UDP sockets */
1280 			return -ENOPROTOOPT;
1281 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1282 			val = 8;
1283 		up->pcslen = val;
1284 		up->pcflag |= UDPLITE_SEND_CC;
1285 		break;
1286 
1287 	/* The receiver specifies a minimum checksum coverage value. To make
1288 	 * sense, this should be set to at least 8 (as done below). If zero is
1289 	 * used, this again means full checksum coverage.                     */
1290 	case UDPLITE_RECV_CSCOV:
1291 		if (!up->pcflag)         /* Disable the option on UDP sockets */
1292 			return -ENOPROTOOPT;
1293 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1294 			val = 8;
1295 		up->pcrlen = val;
1296 		up->pcflag |= UDPLITE_RECV_CC;
1297 		break;
1298 
1299 	default:
1300 		err = -ENOPROTOOPT;
1301 		break;
1302 	}
1303 
1304 	return err;
1305 }
1306 
1307 int udp_setsockopt(struct sock *sk, int level, int optname,
1308 		   char __user *optval, int optlen)
1309 {
1310 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1311 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1312 					  udp_push_pending_frames);
1313 	return ip_setsockopt(sk, level, optname, optval, optlen);
1314 }
1315 
1316 #ifdef CONFIG_COMPAT
1317 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1318 			  char __user *optval, int optlen)
1319 {
1320 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1321 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1322 					  udp_push_pending_frames);
1323 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1324 }
1325 #endif
1326 
1327 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1328 		       char __user *optval, int __user *optlen)
1329 {
1330 	struct udp_sock *up = udp_sk(sk);
1331 	int val, len;
1332 
1333 	if (get_user(len,optlen))
1334 		return -EFAULT;
1335 
1336 	len = min_t(unsigned int, len, sizeof(int));
1337 
1338 	if (len < 0)
1339 		return -EINVAL;
1340 
1341 	switch (optname) {
1342 	case UDP_CORK:
1343 		val = up->corkflag;
1344 		break;
1345 
1346 	case UDP_ENCAP:
1347 		val = up->encap_type;
1348 		break;
1349 
1350 	/* The following two cannot be changed on UDP sockets, the return is
1351 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1352 	case UDPLITE_SEND_CSCOV:
1353 		val = up->pcslen;
1354 		break;
1355 
1356 	case UDPLITE_RECV_CSCOV:
1357 		val = up->pcrlen;
1358 		break;
1359 
1360 	default:
1361 		return -ENOPROTOOPT;
1362 	}
1363 
1364 	if (put_user(len, optlen))
1365 		return -EFAULT;
1366 	if (copy_to_user(optval, &val,len))
1367 		return -EFAULT;
1368 	return 0;
1369 }
1370 
1371 int udp_getsockopt(struct sock *sk, int level, int optname,
1372 		   char __user *optval, int __user *optlen)
1373 {
1374 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1375 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1376 	return ip_getsockopt(sk, level, optname, optval, optlen);
1377 }
1378 
1379 #ifdef CONFIG_COMPAT
1380 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1381 				 char __user *optval, int __user *optlen)
1382 {
1383 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1384 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1385 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1386 }
1387 #endif
1388 /**
1389  * 	udp_poll - wait for a UDP event.
1390  *	@file - file struct
1391  *	@sock - socket
1392  *	@wait - poll table
1393  *
1394  *	This is same as datagram poll, except for the special case of
1395  *	blocking sockets. If application is using a blocking fd
1396  *	and a packet with checksum error is in the queue;
1397  *	then it could get return from select indicating data available
1398  *	but then block when reading it. Add special case code
1399  *	to work around these arguably broken applications.
1400  */
1401 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1402 {
1403 	unsigned int mask = datagram_poll(file, sock, wait);
1404 	struct sock *sk = sock->sk;
1405 	int 	is_lite = IS_UDPLITE(sk);
1406 
1407 	/* Check for false positives due to checksum errors */
1408 	if ( (mask & POLLRDNORM) &&
1409 	     !(file->f_flags & O_NONBLOCK) &&
1410 	     !(sk->sk_shutdown & RCV_SHUTDOWN)){
1411 		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1412 		struct sk_buff *skb;
1413 
1414 		spin_lock_bh(&rcvq->lock);
1415 		while ((skb = skb_peek(rcvq)) != NULL &&
1416 		       udp_lib_checksum_complete(skb)) {
1417 			UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_lite);
1418 			__skb_unlink(skb, rcvq);
1419 			kfree_skb(skb);
1420 		}
1421 		spin_unlock_bh(&rcvq->lock);
1422 
1423 		/* nothing to see, move along */
1424 		if (skb == NULL)
1425 			mask &= ~(POLLIN | POLLRDNORM);
1426 	}
1427 
1428 	return mask;
1429 
1430 }
1431 
1432 struct proto udp_prot = {
1433 	.name		   = "UDP",
1434 	.owner		   = THIS_MODULE,
1435 	.close		   = udp_lib_close,
1436 	.connect	   = ip4_datagram_connect,
1437 	.disconnect	   = udp_disconnect,
1438 	.ioctl		   = udp_ioctl,
1439 	.destroy	   = udp_destroy_sock,
1440 	.setsockopt	   = udp_setsockopt,
1441 	.getsockopt	   = udp_getsockopt,
1442 	.sendmsg	   = udp_sendmsg,
1443 	.recvmsg	   = udp_recvmsg,
1444 	.sendpage	   = udp_sendpage,
1445 	.backlog_rcv	   = udp_queue_rcv_skb,
1446 	.hash		   = udp_lib_hash,
1447 	.unhash		   = udp_lib_unhash,
1448 	.get_port	   = udp_v4_get_port,
1449 	.obj_size	   = sizeof(struct udp_sock),
1450 #ifdef CONFIG_COMPAT
1451 	.compat_setsockopt = compat_udp_setsockopt,
1452 	.compat_getsockopt = compat_udp_getsockopt,
1453 #endif
1454 };
1455 
1456 /* ------------------------------------------------------------------------ */
1457 #ifdef CONFIG_PROC_FS
1458 
1459 static struct sock *udp_get_first(struct seq_file *seq)
1460 {
1461 	struct sock *sk;
1462 	struct udp_iter_state *state = seq->private;
1463 
1464 	for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1465 		struct hlist_node *node;
1466 		sk_for_each(sk, node, state->hashtable + state->bucket) {
1467 			if (sk->sk_family == state->family)
1468 				goto found;
1469 		}
1470 	}
1471 	sk = NULL;
1472 found:
1473 	return sk;
1474 }
1475 
1476 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1477 {
1478 	struct udp_iter_state *state = seq->private;
1479 
1480 	do {
1481 		sk = sk_next(sk);
1482 try_again:
1483 		;
1484 	} while (sk && sk->sk_family != state->family);
1485 
1486 	if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1487 		sk = sk_head(state->hashtable + state->bucket);
1488 		goto try_again;
1489 	}
1490 	return sk;
1491 }
1492 
1493 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1494 {
1495 	struct sock *sk = udp_get_first(seq);
1496 
1497 	if (sk)
1498 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1499 			--pos;
1500 	return pos ? NULL : sk;
1501 }
1502 
1503 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1504 {
1505 	read_lock(&udp_hash_lock);
1506 	return *pos ? udp_get_idx(seq, *pos-1) : (void *)1;
1507 }
1508 
1509 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1510 {
1511 	struct sock *sk;
1512 
1513 	if (v == (void *)1)
1514 		sk = udp_get_idx(seq, 0);
1515 	else
1516 		sk = udp_get_next(seq, v);
1517 
1518 	++*pos;
1519 	return sk;
1520 }
1521 
1522 static void udp_seq_stop(struct seq_file *seq, void *v)
1523 {
1524 	read_unlock(&udp_hash_lock);
1525 }
1526 
1527 static int udp_seq_open(struct inode *inode, struct file *file)
1528 {
1529 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1530 	struct seq_file *seq;
1531 	int rc = -ENOMEM;
1532 	struct udp_iter_state *s = kzalloc(sizeof(*s), GFP_KERNEL);
1533 
1534 	if (!s)
1535 		goto out;
1536 	s->family		= afinfo->family;
1537 	s->hashtable		= afinfo->hashtable;
1538 	s->seq_ops.start	= udp_seq_start;
1539 	s->seq_ops.next		= udp_seq_next;
1540 	s->seq_ops.show		= afinfo->seq_show;
1541 	s->seq_ops.stop		= udp_seq_stop;
1542 
1543 	rc = seq_open(file, &s->seq_ops);
1544 	if (rc)
1545 		goto out_kfree;
1546 
1547 	seq	     = file->private_data;
1548 	seq->private = s;
1549 out:
1550 	return rc;
1551 out_kfree:
1552 	kfree(s);
1553 	goto out;
1554 }
1555 
1556 /* ------------------------------------------------------------------------ */
1557 int udp_proc_register(struct udp_seq_afinfo *afinfo)
1558 {
1559 	struct proc_dir_entry *p;
1560 	int rc = 0;
1561 
1562 	if (!afinfo)
1563 		return -EINVAL;
1564 	afinfo->seq_fops->owner		= afinfo->owner;
1565 	afinfo->seq_fops->open		= udp_seq_open;
1566 	afinfo->seq_fops->read		= seq_read;
1567 	afinfo->seq_fops->llseek	= seq_lseek;
1568 	afinfo->seq_fops->release	= seq_release_private;
1569 
1570 	p = proc_net_fops_create(&init_net, afinfo->name, S_IRUGO, afinfo->seq_fops);
1571 	if (p)
1572 		p->data = afinfo;
1573 	else
1574 		rc = -ENOMEM;
1575 	return rc;
1576 }
1577 
1578 void udp_proc_unregister(struct udp_seq_afinfo *afinfo)
1579 {
1580 	if (!afinfo)
1581 		return;
1582 	proc_net_remove(&init_net, afinfo->name);
1583 	memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1584 }
1585 
1586 /* ------------------------------------------------------------------------ */
1587 static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket)
1588 {
1589 	struct inet_sock *inet = inet_sk(sp);
1590 	__be32 dest = inet->daddr;
1591 	__be32 src  = inet->rcv_saddr;
1592 	__u16 destp	  = ntohs(inet->dport);
1593 	__u16 srcp	  = ntohs(inet->sport);
1594 
1595 	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1596 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p",
1597 		bucket, src, srcp, dest, destp, sp->sk_state,
1598 		atomic_read(&sp->sk_wmem_alloc),
1599 		atomic_read(&sp->sk_rmem_alloc),
1600 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1601 		atomic_read(&sp->sk_refcnt), sp);
1602 }
1603 
1604 int udp4_seq_show(struct seq_file *seq, void *v)
1605 {
1606 	if (v == SEQ_START_TOKEN)
1607 		seq_printf(seq, "%-127s\n",
1608 			   "  sl  local_address rem_address   st tx_queue "
1609 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1610 			   "inode");
1611 	else {
1612 		char tmpbuf[129];
1613 		struct udp_iter_state *state = seq->private;
1614 
1615 		udp4_format_sock(v, tmpbuf, state->bucket);
1616 		seq_printf(seq, "%-127s\n", tmpbuf);
1617 	}
1618 	return 0;
1619 }
1620 
1621 /* ------------------------------------------------------------------------ */
1622 static struct file_operations udp4_seq_fops;
1623 static struct udp_seq_afinfo udp4_seq_afinfo = {
1624 	.owner		= THIS_MODULE,
1625 	.name		= "udp",
1626 	.family		= AF_INET,
1627 	.hashtable	= udp_hash,
1628 	.seq_show	= udp4_seq_show,
1629 	.seq_fops	= &udp4_seq_fops,
1630 };
1631 
1632 int __init udp4_proc_init(void)
1633 {
1634 	return udp_proc_register(&udp4_seq_afinfo);
1635 }
1636 
1637 void udp4_proc_exit(void)
1638 {
1639 	udp_proc_unregister(&udp4_seq_afinfo);
1640 }
1641 #endif /* CONFIG_PROC_FS */
1642 
1643 EXPORT_SYMBOL(udp_disconnect);
1644 EXPORT_SYMBOL(udp_hash);
1645 EXPORT_SYMBOL(udp_hash_lock);
1646 EXPORT_SYMBOL(udp_ioctl);
1647 EXPORT_SYMBOL(udp_get_port);
1648 EXPORT_SYMBOL(udp_prot);
1649 EXPORT_SYMBOL(udp_sendmsg);
1650 EXPORT_SYMBOL(udp_lib_getsockopt);
1651 EXPORT_SYMBOL(udp_lib_setsockopt);
1652 EXPORT_SYMBOL(udp_poll);
1653 
1654 #ifdef CONFIG_PROC_FS
1655 EXPORT_SYMBOL(udp_proc_register);
1656 EXPORT_SYMBOL(udp_proc_unregister);
1657 #endif
1658