1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 int sysctl_udp_rmem_min __read_mostly; 126 EXPORT_SYMBOL(sysctl_udp_rmem_min); 127 128 int sysctl_udp_wmem_min __read_mostly; 129 EXPORT_SYMBOL(sysctl_udp_wmem_min); 130 131 atomic_long_t udp_memory_allocated; 132 EXPORT_SYMBOL(udp_memory_allocated); 133 134 #define MAX_UDP_PORTS 65536 135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 136 137 /* IPCB reference means this can not be used from early demux */ 138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 139 { 140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 141 if (!net->ipv4.sysctl_udp_l3mdev_accept && 142 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 143 return true; 144 #endif 145 return false; 146 } 147 148 static int udp_lib_lport_inuse(struct net *net, __u16 num, 149 const struct udp_hslot *hslot, 150 unsigned long *bitmap, 151 struct sock *sk, unsigned int log) 152 { 153 struct sock *sk2; 154 kuid_t uid = sock_i_uid(sk); 155 156 sk_for_each(sk2, &hslot->head) { 157 if (net_eq(sock_net(sk2), net) && 158 sk2 != sk && 159 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 160 (!sk2->sk_reuse || !sk->sk_reuse) && 161 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 162 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 163 inet_rcv_saddr_equal(sk, sk2, true)) { 164 if (sk2->sk_reuseport && sk->sk_reuseport && 165 !rcu_access_pointer(sk->sk_reuseport_cb) && 166 uid_eq(uid, sock_i_uid(sk2))) { 167 if (!bitmap) 168 return 0; 169 } else { 170 if (!bitmap) 171 return 1; 172 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 173 bitmap); 174 } 175 } 176 } 177 return 0; 178 } 179 180 /* 181 * Note: we still hold spinlock of primary hash chain, so no other writer 182 * can insert/delete a socket with local_port == num 183 */ 184 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 185 struct udp_hslot *hslot2, 186 struct sock *sk) 187 { 188 struct sock *sk2; 189 kuid_t uid = sock_i_uid(sk); 190 int res = 0; 191 192 spin_lock(&hslot2->lock); 193 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 194 if (net_eq(sock_net(sk2), net) && 195 sk2 != sk && 196 (udp_sk(sk2)->udp_port_hash == num) && 197 (!sk2->sk_reuse || !sk->sk_reuse) && 198 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 199 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 200 inet_rcv_saddr_equal(sk, sk2, true)) { 201 if (sk2->sk_reuseport && sk->sk_reuseport && 202 !rcu_access_pointer(sk->sk_reuseport_cb) && 203 uid_eq(uid, sock_i_uid(sk2))) { 204 res = 0; 205 } else { 206 res = 1; 207 } 208 break; 209 } 210 } 211 spin_unlock(&hslot2->lock); 212 return res; 213 } 214 215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 216 { 217 struct net *net = sock_net(sk); 218 kuid_t uid = sock_i_uid(sk); 219 struct sock *sk2; 220 221 sk_for_each(sk2, &hslot->head) { 222 if (net_eq(sock_net(sk2), net) && 223 sk2 != sk && 224 sk2->sk_family == sk->sk_family && 225 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 226 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 227 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 228 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 229 inet_rcv_saddr_equal(sk, sk2, false)) { 230 return reuseport_add_sock(sk, sk2); 231 } 232 } 233 234 /* Initial allocation may have already happened via setsockopt */ 235 if (!rcu_access_pointer(sk->sk_reuseport_cb)) 236 return reuseport_alloc(sk); 237 return 0; 238 } 239 240 /** 241 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 242 * 243 * @sk: socket struct in question 244 * @snum: port number to look up 245 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 246 * with NULL address 247 */ 248 int udp_lib_get_port(struct sock *sk, unsigned short snum, 249 unsigned int hash2_nulladdr) 250 { 251 struct udp_hslot *hslot, *hslot2; 252 struct udp_table *udptable = sk->sk_prot->h.udp_table; 253 int error = 1; 254 struct net *net = sock_net(sk); 255 256 if (!snum) { 257 int low, high, remaining; 258 unsigned int rand; 259 unsigned short first, last; 260 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 261 262 inet_get_local_port_range(net, &low, &high); 263 remaining = (high - low) + 1; 264 265 rand = prandom_u32(); 266 first = reciprocal_scale(rand, remaining) + low; 267 /* 268 * force rand to be an odd multiple of UDP_HTABLE_SIZE 269 */ 270 rand = (rand | 1) * (udptable->mask + 1); 271 last = first + udptable->mask + 1; 272 do { 273 hslot = udp_hashslot(udptable, net, first); 274 bitmap_zero(bitmap, PORTS_PER_CHAIN); 275 spin_lock_bh(&hslot->lock); 276 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 277 udptable->log); 278 279 snum = first; 280 /* 281 * Iterate on all possible values of snum for this hash. 282 * Using steps of an odd multiple of UDP_HTABLE_SIZE 283 * give us randomization and full range coverage. 284 */ 285 do { 286 if (low <= snum && snum <= high && 287 !test_bit(snum >> udptable->log, bitmap) && 288 !inet_is_local_reserved_port(net, snum)) 289 goto found; 290 snum += rand; 291 } while (snum != first); 292 spin_unlock_bh(&hslot->lock); 293 cond_resched(); 294 } while (++first != last); 295 goto fail; 296 } else { 297 hslot = udp_hashslot(udptable, net, snum); 298 spin_lock_bh(&hslot->lock); 299 if (hslot->count > 10) { 300 int exist; 301 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 302 303 slot2 &= udptable->mask; 304 hash2_nulladdr &= udptable->mask; 305 306 hslot2 = udp_hashslot2(udptable, slot2); 307 if (hslot->count < hslot2->count) 308 goto scan_primary_hash; 309 310 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 311 if (!exist && (hash2_nulladdr != slot2)) { 312 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 313 exist = udp_lib_lport_inuse2(net, snum, hslot2, 314 sk); 315 } 316 if (exist) 317 goto fail_unlock; 318 else 319 goto found; 320 } 321 scan_primary_hash: 322 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 323 goto fail_unlock; 324 } 325 found: 326 inet_sk(sk)->inet_num = snum; 327 udp_sk(sk)->udp_port_hash = snum; 328 udp_sk(sk)->udp_portaddr_hash ^= snum; 329 if (sk_unhashed(sk)) { 330 if (sk->sk_reuseport && 331 udp_reuseport_add_sock(sk, hslot)) { 332 inet_sk(sk)->inet_num = 0; 333 udp_sk(sk)->udp_port_hash = 0; 334 udp_sk(sk)->udp_portaddr_hash ^= snum; 335 goto fail_unlock; 336 } 337 338 sk_add_node_rcu(sk, &hslot->head); 339 hslot->count++; 340 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 341 342 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 343 spin_lock(&hslot2->lock); 344 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 345 sk->sk_family == AF_INET6) 346 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 347 &hslot2->head); 348 else 349 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 350 &hslot2->head); 351 hslot2->count++; 352 spin_unlock(&hslot2->lock); 353 } 354 sock_set_flag(sk, SOCK_RCU_FREE); 355 error = 0; 356 fail_unlock: 357 spin_unlock_bh(&hslot->lock); 358 fail: 359 return error; 360 } 361 EXPORT_SYMBOL(udp_lib_get_port); 362 363 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr, 364 unsigned int port) 365 { 366 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; 367 } 368 369 int udp_v4_get_port(struct sock *sk, unsigned short snum) 370 { 371 unsigned int hash2_nulladdr = 372 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 373 unsigned int hash2_partial = 374 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 375 376 /* precompute partial secondary hash */ 377 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 378 return udp_lib_get_port(sk, snum, hash2_nulladdr); 379 } 380 381 static int compute_score(struct sock *sk, struct net *net, 382 __be32 saddr, __be16 sport, 383 __be32 daddr, unsigned short hnum, 384 int dif, int sdif, bool exact_dif) 385 { 386 int score; 387 struct inet_sock *inet; 388 389 if (!net_eq(sock_net(sk), net) || 390 udp_sk(sk)->udp_port_hash != hnum || 391 ipv6_only_sock(sk)) 392 return -1; 393 394 score = (sk->sk_family == PF_INET) ? 2 : 1; 395 inet = inet_sk(sk); 396 397 if (inet->inet_rcv_saddr) { 398 if (inet->inet_rcv_saddr != daddr) 399 return -1; 400 score += 4; 401 } 402 403 if (inet->inet_daddr) { 404 if (inet->inet_daddr != saddr) 405 return -1; 406 score += 4; 407 } 408 409 if (inet->inet_dport) { 410 if (inet->inet_dport != sport) 411 return -1; 412 score += 4; 413 } 414 415 if (sk->sk_bound_dev_if || exact_dif) { 416 bool dev_match = (sk->sk_bound_dev_if == dif || 417 sk->sk_bound_dev_if == sdif); 418 419 if (exact_dif && !dev_match) 420 return -1; 421 if (sk->sk_bound_dev_if && dev_match) 422 score += 4; 423 } 424 425 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 426 score++; 427 return score; 428 } 429 430 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 431 const __u16 lport, const __be32 faddr, 432 const __be16 fport) 433 { 434 static u32 udp_ehash_secret __read_mostly; 435 436 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 437 438 return __inet_ehashfn(laddr, lport, faddr, fport, 439 udp_ehash_secret + net_hash_mix(net)); 440 } 441 442 /* called with rcu_read_lock() */ 443 static struct sock *udp4_lib_lookup2(struct net *net, 444 __be32 saddr, __be16 sport, 445 __be32 daddr, unsigned int hnum, 446 int dif, int sdif, bool exact_dif, 447 struct udp_hslot *hslot2, 448 struct sk_buff *skb) 449 { 450 struct sock *sk, *result; 451 int score, badness, matches = 0, reuseport = 0; 452 u32 hash = 0; 453 454 result = NULL; 455 badness = 0; 456 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 457 score = compute_score(sk, net, saddr, sport, 458 daddr, hnum, dif, sdif, exact_dif); 459 if (score > badness) { 460 reuseport = sk->sk_reuseport; 461 if (reuseport) { 462 hash = udp_ehashfn(net, daddr, hnum, 463 saddr, sport); 464 result = reuseport_select_sock(sk, hash, skb, 465 sizeof(struct udphdr)); 466 if (result) 467 return result; 468 matches = 1; 469 } 470 badness = score; 471 result = sk; 472 } else if (score == badness && reuseport) { 473 matches++; 474 if (reciprocal_scale(hash, matches) == 0) 475 result = sk; 476 hash = next_pseudo_random32(hash); 477 } 478 } 479 return result; 480 } 481 482 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 483 * harder than this. -DaveM 484 */ 485 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 486 __be16 sport, __be32 daddr, __be16 dport, int dif, 487 int sdif, struct udp_table *udptable, struct sk_buff *skb) 488 { 489 struct sock *sk, *result; 490 unsigned short hnum = ntohs(dport); 491 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 492 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 493 bool exact_dif = udp_lib_exact_dif_match(net, skb); 494 int score, badness, matches = 0, reuseport = 0; 495 u32 hash = 0; 496 497 if (hslot->count > 10) { 498 hash2 = udp4_portaddr_hash(net, daddr, hnum); 499 slot2 = hash2 & udptable->mask; 500 hslot2 = &udptable->hash2[slot2]; 501 if (hslot->count < hslot2->count) 502 goto begin; 503 504 result = udp4_lib_lookup2(net, saddr, sport, 505 daddr, hnum, dif, sdif, 506 exact_dif, hslot2, skb); 507 if (!result) { 508 unsigned int old_slot2 = slot2; 509 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 510 slot2 = hash2 & udptable->mask; 511 /* avoid searching the same slot again. */ 512 if (unlikely(slot2 == old_slot2)) 513 return result; 514 515 hslot2 = &udptable->hash2[slot2]; 516 if (hslot->count < hslot2->count) 517 goto begin; 518 519 result = udp4_lib_lookup2(net, saddr, sport, 520 daddr, hnum, dif, sdif, 521 exact_dif, hslot2, skb); 522 } 523 return result; 524 } 525 begin: 526 result = NULL; 527 badness = 0; 528 sk_for_each_rcu(sk, &hslot->head) { 529 score = compute_score(sk, net, saddr, sport, 530 daddr, hnum, dif, sdif, exact_dif); 531 if (score > badness) { 532 reuseport = sk->sk_reuseport; 533 if (reuseport) { 534 hash = udp_ehashfn(net, daddr, hnum, 535 saddr, sport); 536 result = reuseport_select_sock(sk, hash, skb, 537 sizeof(struct udphdr)); 538 if (result) 539 return result; 540 matches = 1; 541 } 542 result = sk; 543 badness = score; 544 } else if (score == badness && reuseport) { 545 matches++; 546 if (reciprocal_scale(hash, matches) == 0) 547 result = sk; 548 hash = next_pseudo_random32(hash); 549 } 550 } 551 return result; 552 } 553 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 554 555 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 556 __be16 sport, __be16 dport, 557 struct udp_table *udptable) 558 { 559 const struct iphdr *iph = ip_hdr(skb); 560 561 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 562 iph->daddr, dport, inet_iif(skb), 563 inet_sdif(skb), udptable, skb); 564 } 565 566 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 567 __be16 sport, __be16 dport) 568 { 569 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 570 } 571 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 572 573 /* Must be called under rcu_read_lock(). 574 * Does increment socket refcount. 575 */ 576 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \ 577 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \ 578 IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 579 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 580 __be32 daddr, __be16 dport, int dif) 581 { 582 struct sock *sk; 583 584 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 585 dif, 0, &udp_table, NULL); 586 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 587 sk = NULL; 588 return sk; 589 } 590 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 591 #endif 592 593 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 594 __be16 loc_port, __be32 loc_addr, 595 __be16 rmt_port, __be32 rmt_addr, 596 int dif, int sdif, unsigned short hnum) 597 { 598 struct inet_sock *inet = inet_sk(sk); 599 600 if (!net_eq(sock_net(sk), net) || 601 udp_sk(sk)->udp_port_hash != hnum || 602 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 603 (inet->inet_dport != rmt_port && inet->inet_dport) || 604 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 605 ipv6_only_sock(sk) || 606 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 607 sk->sk_bound_dev_if != sdif)) 608 return false; 609 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 610 return false; 611 return true; 612 } 613 614 /* 615 * This routine is called by the ICMP module when it gets some 616 * sort of error condition. If err < 0 then the socket should 617 * be closed and the error returned to the user. If err > 0 618 * it's just the icmp type << 8 | icmp code. 619 * Header points to the ip header of the error packet. We move 620 * on past this. Then (as it used to claim before adjustment) 621 * header points to the first 8 bytes of the udp header. We need 622 * to find the appropriate port. 623 */ 624 625 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 626 { 627 struct inet_sock *inet; 628 const struct iphdr *iph = (const struct iphdr *)skb->data; 629 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 630 const int type = icmp_hdr(skb)->type; 631 const int code = icmp_hdr(skb)->code; 632 struct sock *sk; 633 int harderr; 634 int err; 635 struct net *net = dev_net(skb->dev); 636 637 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 638 iph->saddr, uh->source, skb->dev->ifindex, 0, 639 udptable, NULL); 640 if (!sk) { 641 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 642 return; /* No socket for error */ 643 } 644 645 err = 0; 646 harderr = 0; 647 inet = inet_sk(sk); 648 649 switch (type) { 650 default: 651 case ICMP_TIME_EXCEEDED: 652 err = EHOSTUNREACH; 653 break; 654 case ICMP_SOURCE_QUENCH: 655 goto out; 656 case ICMP_PARAMETERPROB: 657 err = EPROTO; 658 harderr = 1; 659 break; 660 case ICMP_DEST_UNREACH: 661 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 662 ipv4_sk_update_pmtu(skb, sk, info); 663 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 664 err = EMSGSIZE; 665 harderr = 1; 666 break; 667 } 668 goto out; 669 } 670 err = EHOSTUNREACH; 671 if (code <= NR_ICMP_UNREACH) { 672 harderr = icmp_err_convert[code].fatal; 673 err = icmp_err_convert[code].errno; 674 } 675 break; 676 case ICMP_REDIRECT: 677 ipv4_sk_redirect(skb, sk); 678 goto out; 679 } 680 681 /* 682 * RFC1122: OK. Passes ICMP errors back to application, as per 683 * 4.1.3.3. 684 */ 685 if (!inet->recverr) { 686 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 687 goto out; 688 } else 689 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 690 691 sk->sk_err = err; 692 sk->sk_error_report(sk); 693 out: 694 return; 695 } 696 697 void udp_err(struct sk_buff *skb, u32 info) 698 { 699 __udp4_lib_err(skb, info, &udp_table); 700 } 701 702 /* 703 * Throw away all pending data and cancel the corking. Socket is locked. 704 */ 705 void udp_flush_pending_frames(struct sock *sk) 706 { 707 struct udp_sock *up = udp_sk(sk); 708 709 if (up->pending) { 710 up->len = 0; 711 up->pending = 0; 712 ip_flush_pending_frames(sk); 713 } 714 } 715 EXPORT_SYMBOL(udp_flush_pending_frames); 716 717 /** 718 * udp4_hwcsum - handle outgoing HW checksumming 719 * @skb: sk_buff containing the filled-in UDP header 720 * (checksum field must be zeroed out) 721 * @src: source IP address 722 * @dst: destination IP address 723 */ 724 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 725 { 726 struct udphdr *uh = udp_hdr(skb); 727 int offset = skb_transport_offset(skb); 728 int len = skb->len - offset; 729 int hlen = len; 730 __wsum csum = 0; 731 732 if (!skb_has_frag_list(skb)) { 733 /* 734 * Only one fragment on the socket. 735 */ 736 skb->csum_start = skb_transport_header(skb) - skb->head; 737 skb->csum_offset = offsetof(struct udphdr, check); 738 uh->check = ~csum_tcpudp_magic(src, dst, len, 739 IPPROTO_UDP, 0); 740 } else { 741 struct sk_buff *frags; 742 743 /* 744 * HW-checksum won't work as there are two or more 745 * fragments on the socket so that all csums of sk_buffs 746 * should be together 747 */ 748 skb_walk_frags(skb, frags) { 749 csum = csum_add(csum, frags->csum); 750 hlen -= frags->len; 751 } 752 753 csum = skb_checksum(skb, offset, hlen, csum); 754 skb->ip_summed = CHECKSUM_NONE; 755 756 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 757 if (uh->check == 0) 758 uh->check = CSUM_MANGLED_0; 759 } 760 } 761 EXPORT_SYMBOL_GPL(udp4_hwcsum); 762 763 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 764 * for the simple case like when setting the checksum for a UDP tunnel. 765 */ 766 void udp_set_csum(bool nocheck, struct sk_buff *skb, 767 __be32 saddr, __be32 daddr, int len) 768 { 769 struct udphdr *uh = udp_hdr(skb); 770 771 if (nocheck) { 772 uh->check = 0; 773 } else if (skb_is_gso(skb)) { 774 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 775 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 776 uh->check = 0; 777 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 778 if (uh->check == 0) 779 uh->check = CSUM_MANGLED_0; 780 } else { 781 skb->ip_summed = CHECKSUM_PARTIAL; 782 skb->csum_start = skb_transport_header(skb) - skb->head; 783 skb->csum_offset = offsetof(struct udphdr, check); 784 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 785 } 786 } 787 EXPORT_SYMBOL(udp_set_csum); 788 789 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4) 790 { 791 struct sock *sk = skb->sk; 792 struct inet_sock *inet = inet_sk(sk); 793 struct udphdr *uh; 794 int err = 0; 795 int is_udplite = IS_UDPLITE(sk); 796 int offset = skb_transport_offset(skb); 797 int len = skb->len - offset; 798 __wsum csum = 0; 799 800 /* 801 * Create a UDP header 802 */ 803 uh = udp_hdr(skb); 804 uh->source = inet->inet_sport; 805 uh->dest = fl4->fl4_dport; 806 uh->len = htons(len); 807 uh->check = 0; 808 809 if (is_udplite) /* UDP-Lite */ 810 csum = udplite_csum(skb); 811 812 else if (sk->sk_no_check_tx) { /* UDP csum off */ 813 814 skb->ip_summed = CHECKSUM_NONE; 815 goto send; 816 817 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 818 819 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 820 goto send; 821 822 } else 823 csum = udp_csum(skb); 824 825 /* add protocol-dependent pseudo-header */ 826 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 827 sk->sk_protocol, csum); 828 if (uh->check == 0) 829 uh->check = CSUM_MANGLED_0; 830 831 send: 832 err = ip_send_skb(sock_net(sk), skb); 833 if (err) { 834 if (err == -ENOBUFS && !inet->recverr) { 835 UDP_INC_STATS(sock_net(sk), 836 UDP_MIB_SNDBUFERRORS, is_udplite); 837 err = 0; 838 } 839 } else 840 UDP_INC_STATS(sock_net(sk), 841 UDP_MIB_OUTDATAGRAMS, is_udplite); 842 return err; 843 } 844 845 /* 846 * Push out all pending data as one UDP datagram. Socket is locked. 847 */ 848 int udp_push_pending_frames(struct sock *sk) 849 { 850 struct udp_sock *up = udp_sk(sk); 851 struct inet_sock *inet = inet_sk(sk); 852 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 853 struct sk_buff *skb; 854 int err = 0; 855 856 skb = ip_finish_skb(sk, fl4); 857 if (!skb) 858 goto out; 859 860 err = udp_send_skb(skb, fl4); 861 862 out: 863 up->len = 0; 864 up->pending = 0; 865 return err; 866 } 867 EXPORT_SYMBOL(udp_push_pending_frames); 868 869 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 870 { 871 struct inet_sock *inet = inet_sk(sk); 872 struct udp_sock *up = udp_sk(sk); 873 struct flowi4 fl4_stack; 874 struct flowi4 *fl4; 875 int ulen = len; 876 struct ipcm_cookie ipc; 877 struct rtable *rt = NULL; 878 int free = 0; 879 int connected = 0; 880 __be32 daddr, faddr, saddr; 881 __be16 dport; 882 u8 tos; 883 int err, is_udplite = IS_UDPLITE(sk); 884 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 885 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 886 struct sk_buff *skb; 887 struct ip_options_data opt_copy; 888 889 if (len > 0xFFFF) 890 return -EMSGSIZE; 891 892 /* 893 * Check the flags. 894 */ 895 896 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 897 return -EOPNOTSUPP; 898 899 ipc.opt = NULL; 900 ipc.tx_flags = 0; 901 ipc.ttl = 0; 902 ipc.tos = -1; 903 904 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 905 906 fl4 = &inet->cork.fl.u.ip4; 907 if (up->pending) { 908 /* 909 * There are pending frames. 910 * The socket lock must be held while it's corked. 911 */ 912 lock_sock(sk); 913 if (likely(up->pending)) { 914 if (unlikely(up->pending != AF_INET)) { 915 release_sock(sk); 916 return -EINVAL; 917 } 918 goto do_append_data; 919 } 920 release_sock(sk); 921 } 922 ulen += sizeof(struct udphdr); 923 924 /* 925 * Get and verify the address. 926 */ 927 if (msg->msg_name) { 928 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 929 if (msg->msg_namelen < sizeof(*usin)) 930 return -EINVAL; 931 if (usin->sin_family != AF_INET) { 932 if (usin->sin_family != AF_UNSPEC) 933 return -EAFNOSUPPORT; 934 } 935 936 daddr = usin->sin_addr.s_addr; 937 dport = usin->sin_port; 938 if (dport == 0) 939 return -EINVAL; 940 } else { 941 if (sk->sk_state != TCP_ESTABLISHED) 942 return -EDESTADDRREQ; 943 daddr = inet->inet_daddr; 944 dport = inet->inet_dport; 945 /* Open fast path for connected socket. 946 Route will not be used, if at least one option is set. 947 */ 948 connected = 1; 949 } 950 951 ipc.sockc.tsflags = sk->sk_tsflags; 952 ipc.addr = inet->inet_saddr; 953 ipc.oif = sk->sk_bound_dev_if; 954 955 if (msg->msg_controllen) { 956 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6); 957 if (unlikely(err)) { 958 kfree(ipc.opt); 959 return err; 960 } 961 if (ipc.opt) 962 free = 1; 963 connected = 0; 964 } 965 if (!ipc.opt) { 966 struct ip_options_rcu *inet_opt; 967 968 rcu_read_lock(); 969 inet_opt = rcu_dereference(inet->inet_opt); 970 if (inet_opt) { 971 memcpy(&opt_copy, inet_opt, 972 sizeof(*inet_opt) + inet_opt->opt.optlen); 973 ipc.opt = &opt_copy.opt; 974 } 975 rcu_read_unlock(); 976 } 977 978 saddr = ipc.addr; 979 ipc.addr = faddr = daddr; 980 981 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 982 983 if (ipc.opt && ipc.opt->opt.srr) { 984 if (!daddr) 985 return -EINVAL; 986 faddr = ipc.opt->opt.faddr; 987 connected = 0; 988 } 989 tos = get_rttos(&ipc, inet); 990 if (sock_flag(sk, SOCK_LOCALROUTE) || 991 (msg->msg_flags & MSG_DONTROUTE) || 992 (ipc.opt && ipc.opt->opt.is_strictroute)) { 993 tos |= RTO_ONLINK; 994 connected = 0; 995 } 996 997 if (ipv4_is_multicast(daddr)) { 998 if (!ipc.oif) 999 ipc.oif = inet->mc_index; 1000 if (!saddr) 1001 saddr = inet->mc_addr; 1002 connected = 0; 1003 } else if (!ipc.oif) 1004 ipc.oif = inet->uc_index; 1005 1006 if (connected) 1007 rt = (struct rtable *)sk_dst_check(sk, 0); 1008 1009 if (!rt) { 1010 struct net *net = sock_net(sk); 1011 __u8 flow_flags = inet_sk_flowi_flags(sk); 1012 1013 fl4 = &fl4_stack; 1014 1015 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1016 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1017 flow_flags, 1018 faddr, saddr, dport, inet->inet_sport, 1019 sk->sk_uid); 1020 1021 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1022 rt = ip_route_output_flow(net, fl4, sk); 1023 if (IS_ERR(rt)) { 1024 err = PTR_ERR(rt); 1025 rt = NULL; 1026 if (err == -ENETUNREACH) 1027 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1028 goto out; 1029 } 1030 1031 err = -EACCES; 1032 if ((rt->rt_flags & RTCF_BROADCAST) && 1033 !sock_flag(sk, SOCK_BROADCAST)) 1034 goto out; 1035 if (connected) 1036 sk_dst_set(sk, dst_clone(&rt->dst)); 1037 } 1038 1039 if (msg->msg_flags&MSG_CONFIRM) 1040 goto do_confirm; 1041 back_from_confirm: 1042 1043 saddr = fl4->saddr; 1044 if (!ipc.addr) 1045 daddr = ipc.addr = fl4->daddr; 1046 1047 /* Lockless fast path for the non-corking case. */ 1048 if (!corkreq) { 1049 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1050 sizeof(struct udphdr), &ipc, &rt, 1051 msg->msg_flags); 1052 err = PTR_ERR(skb); 1053 if (!IS_ERR_OR_NULL(skb)) 1054 err = udp_send_skb(skb, fl4); 1055 goto out; 1056 } 1057 1058 lock_sock(sk); 1059 if (unlikely(up->pending)) { 1060 /* The socket is already corked while preparing it. */ 1061 /* ... which is an evident application bug. --ANK */ 1062 release_sock(sk); 1063 1064 net_dbg_ratelimited("cork app bug 2\n"); 1065 err = -EINVAL; 1066 goto out; 1067 } 1068 /* 1069 * Now cork the socket to pend data. 1070 */ 1071 fl4 = &inet->cork.fl.u.ip4; 1072 fl4->daddr = daddr; 1073 fl4->saddr = saddr; 1074 fl4->fl4_dport = dport; 1075 fl4->fl4_sport = inet->inet_sport; 1076 up->pending = AF_INET; 1077 1078 do_append_data: 1079 up->len += ulen; 1080 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1081 sizeof(struct udphdr), &ipc, &rt, 1082 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1083 if (err) 1084 udp_flush_pending_frames(sk); 1085 else if (!corkreq) 1086 err = udp_push_pending_frames(sk); 1087 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1088 up->pending = 0; 1089 release_sock(sk); 1090 1091 out: 1092 ip_rt_put(rt); 1093 if (free) 1094 kfree(ipc.opt); 1095 if (!err) 1096 return len; 1097 /* 1098 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1099 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1100 * we don't have a good statistic (IpOutDiscards but it can be too many 1101 * things). We could add another new stat but at least for now that 1102 * seems like overkill. 1103 */ 1104 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1105 UDP_INC_STATS(sock_net(sk), 1106 UDP_MIB_SNDBUFERRORS, is_udplite); 1107 } 1108 return err; 1109 1110 do_confirm: 1111 if (msg->msg_flags & MSG_PROBE) 1112 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1113 if (!(msg->msg_flags&MSG_PROBE) || len) 1114 goto back_from_confirm; 1115 err = 0; 1116 goto out; 1117 } 1118 EXPORT_SYMBOL(udp_sendmsg); 1119 1120 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1121 size_t size, int flags) 1122 { 1123 struct inet_sock *inet = inet_sk(sk); 1124 struct udp_sock *up = udp_sk(sk); 1125 int ret; 1126 1127 if (flags & MSG_SENDPAGE_NOTLAST) 1128 flags |= MSG_MORE; 1129 1130 if (!up->pending) { 1131 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1132 1133 /* Call udp_sendmsg to specify destination address which 1134 * sendpage interface can't pass. 1135 * This will succeed only when the socket is connected. 1136 */ 1137 ret = udp_sendmsg(sk, &msg, 0); 1138 if (ret < 0) 1139 return ret; 1140 } 1141 1142 lock_sock(sk); 1143 1144 if (unlikely(!up->pending)) { 1145 release_sock(sk); 1146 1147 net_dbg_ratelimited("udp cork app bug 3\n"); 1148 return -EINVAL; 1149 } 1150 1151 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1152 page, offset, size, flags); 1153 if (ret == -EOPNOTSUPP) { 1154 release_sock(sk); 1155 return sock_no_sendpage(sk->sk_socket, page, offset, 1156 size, flags); 1157 } 1158 if (ret < 0) { 1159 udp_flush_pending_frames(sk); 1160 goto out; 1161 } 1162 1163 up->len += size; 1164 if (!(up->corkflag || (flags&MSG_MORE))) 1165 ret = udp_push_pending_frames(sk); 1166 if (!ret) 1167 ret = size; 1168 out: 1169 release_sock(sk); 1170 return ret; 1171 } 1172 1173 #define UDP_SKB_IS_STATELESS 0x80000000 1174 1175 static void udp_set_dev_scratch(struct sk_buff *skb) 1176 { 1177 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1178 1179 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1180 scratch->_tsize_state = skb->truesize; 1181 #if BITS_PER_LONG == 64 1182 scratch->len = skb->len; 1183 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1184 scratch->is_linear = !skb_is_nonlinear(skb); 1185 #endif 1186 /* all head states execept sp (dst, sk, nf) are always cleared by 1187 * udp_rcv() and we need to preserve secpath, if present, to eventually 1188 * process IP_CMSG_PASSSEC at recvmsg() time 1189 */ 1190 if (likely(!skb_sec_path(skb))) 1191 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1192 } 1193 1194 static int udp_skb_truesize(struct sk_buff *skb) 1195 { 1196 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1197 } 1198 1199 static bool udp_skb_has_head_state(struct sk_buff *skb) 1200 { 1201 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1202 } 1203 1204 /* fully reclaim rmem/fwd memory allocated for skb */ 1205 static void udp_rmem_release(struct sock *sk, int size, int partial, 1206 bool rx_queue_lock_held) 1207 { 1208 struct udp_sock *up = udp_sk(sk); 1209 struct sk_buff_head *sk_queue; 1210 int amt; 1211 1212 if (likely(partial)) { 1213 up->forward_deficit += size; 1214 size = up->forward_deficit; 1215 if (size < (sk->sk_rcvbuf >> 2)) 1216 return; 1217 } else { 1218 size += up->forward_deficit; 1219 } 1220 up->forward_deficit = 0; 1221 1222 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1223 * if the called don't held it already 1224 */ 1225 sk_queue = &sk->sk_receive_queue; 1226 if (!rx_queue_lock_held) 1227 spin_lock(&sk_queue->lock); 1228 1229 1230 sk->sk_forward_alloc += size; 1231 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1232 sk->sk_forward_alloc -= amt; 1233 1234 if (amt) 1235 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1236 1237 atomic_sub(size, &sk->sk_rmem_alloc); 1238 1239 /* this can save us from acquiring the rx queue lock on next receive */ 1240 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1241 1242 if (!rx_queue_lock_held) 1243 spin_unlock(&sk_queue->lock); 1244 } 1245 1246 /* Note: called with reader_queue.lock held. 1247 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1248 * This avoids a cache line miss while receive_queue lock is held. 1249 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1250 */ 1251 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1252 { 1253 prefetch(&skb->data); 1254 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1255 } 1256 EXPORT_SYMBOL(udp_skb_destructor); 1257 1258 /* as above, but the caller held the rx queue lock, too */ 1259 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1260 { 1261 prefetch(&skb->data); 1262 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1263 } 1264 1265 /* Idea of busylocks is to let producers grab an extra spinlock 1266 * to relieve pressure on the receive_queue spinlock shared by consumer. 1267 * Under flood, this means that only one producer can be in line 1268 * trying to acquire the receive_queue spinlock. 1269 * These busylock can be allocated on a per cpu manner, instead of a 1270 * per socket one (that would consume a cache line per socket) 1271 */ 1272 static int udp_busylocks_log __read_mostly; 1273 static spinlock_t *udp_busylocks __read_mostly; 1274 1275 static spinlock_t *busylock_acquire(void *ptr) 1276 { 1277 spinlock_t *busy; 1278 1279 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1280 spin_lock(busy); 1281 return busy; 1282 } 1283 1284 static void busylock_release(spinlock_t *busy) 1285 { 1286 if (busy) 1287 spin_unlock(busy); 1288 } 1289 1290 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1291 { 1292 struct sk_buff_head *list = &sk->sk_receive_queue; 1293 int rmem, delta, amt, err = -ENOMEM; 1294 spinlock_t *busy = NULL; 1295 int size; 1296 1297 /* try to avoid the costly atomic add/sub pair when the receive 1298 * queue is full; always allow at least a packet 1299 */ 1300 rmem = atomic_read(&sk->sk_rmem_alloc); 1301 if (rmem > sk->sk_rcvbuf) 1302 goto drop; 1303 1304 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1305 * having linear skbs : 1306 * - Reduce memory overhead and thus increase receive queue capacity 1307 * - Less cache line misses at copyout() time 1308 * - Less work at consume_skb() (less alien page frag freeing) 1309 */ 1310 if (rmem > (sk->sk_rcvbuf >> 1)) { 1311 skb_condense(skb); 1312 1313 busy = busylock_acquire(sk); 1314 } 1315 size = skb->truesize; 1316 udp_set_dev_scratch(skb); 1317 1318 /* we drop only if the receive buf is full and the receive 1319 * queue contains some other skb 1320 */ 1321 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1322 if (rmem > (size + sk->sk_rcvbuf)) 1323 goto uncharge_drop; 1324 1325 spin_lock(&list->lock); 1326 if (size >= sk->sk_forward_alloc) { 1327 amt = sk_mem_pages(size); 1328 delta = amt << SK_MEM_QUANTUM_SHIFT; 1329 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1330 err = -ENOBUFS; 1331 spin_unlock(&list->lock); 1332 goto uncharge_drop; 1333 } 1334 1335 sk->sk_forward_alloc += delta; 1336 } 1337 1338 sk->sk_forward_alloc -= size; 1339 1340 /* no need to setup a destructor, we will explicitly release the 1341 * forward allocated memory on dequeue 1342 */ 1343 sock_skb_set_dropcount(sk, skb); 1344 1345 __skb_queue_tail(list, skb); 1346 spin_unlock(&list->lock); 1347 1348 if (!sock_flag(sk, SOCK_DEAD)) 1349 sk->sk_data_ready(sk); 1350 1351 busylock_release(busy); 1352 return 0; 1353 1354 uncharge_drop: 1355 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1356 1357 drop: 1358 atomic_inc(&sk->sk_drops); 1359 busylock_release(busy); 1360 return err; 1361 } 1362 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1363 1364 void udp_destruct_sock(struct sock *sk) 1365 { 1366 /* reclaim completely the forward allocated memory */ 1367 struct udp_sock *up = udp_sk(sk); 1368 unsigned int total = 0; 1369 struct sk_buff *skb; 1370 1371 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1372 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1373 total += skb->truesize; 1374 kfree_skb(skb); 1375 } 1376 udp_rmem_release(sk, total, 0, true); 1377 1378 inet_sock_destruct(sk); 1379 } 1380 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1381 1382 int udp_init_sock(struct sock *sk) 1383 { 1384 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1385 sk->sk_destruct = udp_destruct_sock; 1386 return 0; 1387 } 1388 EXPORT_SYMBOL_GPL(udp_init_sock); 1389 1390 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1391 { 1392 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1393 bool slow = lock_sock_fast(sk); 1394 1395 sk_peek_offset_bwd(sk, len); 1396 unlock_sock_fast(sk, slow); 1397 } 1398 1399 if (!skb_unref(skb)) 1400 return; 1401 1402 /* In the more common cases we cleared the head states previously, 1403 * see __udp_queue_rcv_skb(). 1404 */ 1405 if (unlikely(udp_skb_has_head_state(skb))) 1406 skb_release_head_state(skb); 1407 __consume_stateless_skb(skb); 1408 } 1409 EXPORT_SYMBOL_GPL(skb_consume_udp); 1410 1411 static struct sk_buff *__first_packet_length(struct sock *sk, 1412 struct sk_buff_head *rcvq, 1413 int *total) 1414 { 1415 struct sk_buff *skb; 1416 1417 while ((skb = skb_peek(rcvq)) != NULL) { 1418 if (udp_lib_checksum_complete(skb)) { 1419 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1420 IS_UDPLITE(sk)); 1421 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1422 IS_UDPLITE(sk)); 1423 atomic_inc(&sk->sk_drops); 1424 __skb_unlink(skb, rcvq); 1425 *total += skb->truesize; 1426 kfree_skb(skb); 1427 } else { 1428 /* the csum related bits could be changed, refresh 1429 * the scratch area 1430 */ 1431 udp_set_dev_scratch(skb); 1432 break; 1433 } 1434 } 1435 return skb; 1436 } 1437 1438 /** 1439 * first_packet_length - return length of first packet in receive queue 1440 * @sk: socket 1441 * 1442 * Drops all bad checksum frames, until a valid one is found. 1443 * Returns the length of found skb, or -1 if none is found. 1444 */ 1445 static int first_packet_length(struct sock *sk) 1446 { 1447 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1448 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1449 struct sk_buff *skb; 1450 int total = 0; 1451 int res; 1452 1453 spin_lock_bh(&rcvq->lock); 1454 skb = __first_packet_length(sk, rcvq, &total); 1455 if (!skb && !skb_queue_empty(sk_queue)) { 1456 spin_lock(&sk_queue->lock); 1457 skb_queue_splice_tail_init(sk_queue, rcvq); 1458 spin_unlock(&sk_queue->lock); 1459 1460 skb = __first_packet_length(sk, rcvq, &total); 1461 } 1462 res = skb ? skb->len : -1; 1463 if (total) 1464 udp_rmem_release(sk, total, 1, false); 1465 spin_unlock_bh(&rcvq->lock); 1466 return res; 1467 } 1468 1469 /* 1470 * IOCTL requests applicable to the UDP protocol 1471 */ 1472 1473 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1474 { 1475 switch (cmd) { 1476 case SIOCOUTQ: 1477 { 1478 int amount = sk_wmem_alloc_get(sk); 1479 1480 return put_user(amount, (int __user *)arg); 1481 } 1482 1483 case SIOCINQ: 1484 { 1485 int amount = max_t(int, 0, first_packet_length(sk)); 1486 1487 return put_user(amount, (int __user *)arg); 1488 } 1489 1490 default: 1491 return -ENOIOCTLCMD; 1492 } 1493 1494 return 0; 1495 } 1496 EXPORT_SYMBOL(udp_ioctl); 1497 1498 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1499 int noblock, int *peeked, int *off, int *err) 1500 { 1501 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1502 struct sk_buff_head *queue; 1503 struct sk_buff *last; 1504 long timeo; 1505 int error; 1506 1507 queue = &udp_sk(sk)->reader_queue; 1508 flags |= noblock ? MSG_DONTWAIT : 0; 1509 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1510 do { 1511 struct sk_buff *skb; 1512 1513 error = sock_error(sk); 1514 if (error) 1515 break; 1516 1517 error = -EAGAIN; 1518 *peeked = 0; 1519 do { 1520 spin_lock_bh(&queue->lock); 1521 skb = __skb_try_recv_from_queue(sk, queue, flags, 1522 udp_skb_destructor, 1523 peeked, off, err, 1524 &last); 1525 if (skb) { 1526 spin_unlock_bh(&queue->lock); 1527 return skb; 1528 } 1529 1530 if (skb_queue_empty(sk_queue)) { 1531 spin_unlock_bh(&queue->lock); 1532 goto busy_check; 1533 } 1534 1535 /* refill the reader queue and walk it again 1536 * keep both queues locked to avoid re-acquiring 1537 * the sk_receive_queue lock if fwd memory scheduling 1538 * is needed. 1539 */ 1540 spin_lock(&sk_queue->lock); 1541 skb_queue_splice_tail_init(sk_queue, queue); 1542 1543 skb = __skb_try_recv_from_queue(sk, queue, flags, 1544 udp_skb_dtor_locked, 1545 peeked, off, err, 1546 &last); 1547 spin_unlock(&sk_queue->lock); 1548 spin_unlock_bh(&queue->lock); 1549 if (skb) 1550 return skb; 1551 1552 busy_check: 1553 if (!sk_can_busy_loop(sk)) 1554 break; 1555 1556 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1557 } while (!skb_queue_empty(sk_queue)); 1558 1559 /* sk_queue is empty, reader_queue may contain peeked packets */ 1560 } while (timeo && 1561 !__skb_wait_for_more_packets(sk, &error, &timeo, 1562 (struct sk_buff *)sk_queue)); 1563 1564 *err = error; 1565 return NULL; 1566 } 1567 EXPORT_SYMBOL_GPL(__skb_recv_udp); 1568 1569 /* 1570 * This should be easy, if there is something there we 1571 * return it, otherwise we block. 1572 */ 1573 1574 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1575 int flags, int *addr_len) 1576 { 1577 struct inet_sock *inet = inet_sk(sk); 1578 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1579 struct sk_buff *skb; 1580 unsigned int ulen, copied; 1581 int peeked, peeking, off; 1582 int err; 1583 int is_udplite = IS_UDPLITE(sk); 1584 bool checksum_valid = false; 1585 1586 if (flags & MSG_ERRQUEUE) 1587 return ip_recv_error(sk, msg, len, addr_len); 1588 1589 try_again: 1590 peeking = flags & MSG_PEEK; 1591 off = sk_peek_offset(sk, flags); 1592 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1593 if (!skb) 1594 return err; 1595 1596 ulen = udp_skb_len(skb); 1597 copied = len; 1598 if (copied > ulen - off) 1599 copied = ulen - off; 1600 else if (copied < ulen) 1601 msg->msg_flags |= MSG_TRUNC; 1602 1603 /* 1604 * If checksum is needed at all, try to do it while copying the 1605 * data. If the data is truncated, or if we only want a partial 1606 * coverage checksum (UDP-Lite), do it before the copy. 1607 */ 1608 1609 if (copied < ulen || peeking || 1610 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1611 checksum_valid = udp_skb_csum_unnecessary(skb) || 1612 !__udp_lib_checksum_complete(skb); 1613 if (!checksum_valid) 1614 goto csum_copy_err; 1615 } 1616 1617 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1618 if (udp_skb_is_linear(skb)) 1619 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1620 else 1621 err = skb_copy_datagram_msg(skb, off, msg, copied); 1622 } else { 1623 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1624 1625 if (err == -EINVAL) 1626 goto csum_copy_err; 1627 } 1628 1629 if (unlikely(err)) { 1630 if (!peeked) { 1631 atomic_inc(&sk->sk_drops); 1632 UDP_INC_STATS(sock_net(sk), 1633 UDP_MIB_INERRORS, is_udplite); 1634 } 1635 kfree_skb(skb); 1636 return err; 1637 } 1638 1639 if (!peeked) 1640 UDP_INC_STATS(sock_net(sk), 1641 UDP_MIB_INDATAGRAMS, is_udplite); 1642 1643 sock_recv_ts_and_drops(msg, sk, skb); 1644 1645 /* Copy the address. */ 1646 if (sin) { 1647 sin->sin_family = AF_INET; 1648 sin->sin_port = udp_hdr(skb)->source; 1649 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1650 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1651 *addr_len = sizeof(*sin); 1652 } 1653 if (inet->cmsg_flags) 1654 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1655 1656 err = copied; 1657 if (flags & MSG_TRUNC) 1658 err = ulen; 1659 1660 skb_consume_udp(sk, skb, peeking ? -err : err); 1661 return err; 1662 1663 csum_copy_err: 1664 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1665 udp_skb_destructor)) { 1666 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1667 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1668 } 1669 kfree_skb(skb); 1670 1671 /* starting over for a new packet, but check if we need to yield */ 1672 cond_resched(); 1673 msg->msg_flags &= ~MSG_TRUNC; 1674 goto try_again; 1675 } 1676 1677 int __udp_disconnect(struct sock *sk, int flags) 1678 { 1679 struct inet_sock *inet = inet_sk(sk); 1680 /* 1681 * 1003.1g - break association. 1682 */ 1683 1684 sk->sk_state = TCP_CLOSE; 1685 inet->inet_daddr = 0; 1686 inet->inet_dport = 0; 1687 sock_rps_reset_rxhash(sk); 1688 sk->sk_bound_dev_if = 0; 1689 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1690 inet_reset_saddr(sk); 1691 1692 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1693 sk->sk_prot->unhash(sk); 1694 inet->inet_sport = 0; 1695 } 1696 sk_dst_reset(sk); 1697 return 0; 1698 } 1699 EXPORT_SYMBOL(__udp_disconnect); 1700 1701 int udp_disconnect(struct sock *sk, int flags) 1702 { 1703 lock_sock(sk); 1704 __udp_disconnect(sk, flags); 1705 release_sock(sk); 1706 return 0; 1707 } 1708 EXPORT_SYMBOL(udp_disconnect); 1709 1710 void udp_lib_unhash(struct sock *sk) 1711 { 1712 if (sk_hashed(sk)) { 1713 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1714 struct udp_hslot *hslot, *hslot2; 1715 1716 hslot = udp_hashslot(udptable, sock_net(sk), 1717 udp_sk(sk)->udp_port_hash); 1718 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1719 1720 spin_lock_bh(&hslot->lock); 1721 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1722 reuseport_detach_sock(sk); 1723 if (sk_del_node_init_rcu(sk)) { 1724 hslot->count--; 1725 inet_sk(sk)->inet_num = 0; 1726 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1727 1728 spin_lock(&hslot2->lock); 1729 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1730 hslot2->count--; 1731 spin_unlock(&hslot2->lock); 1732 } 1733 spin_unlock_bh(&hslot->lock); 1734 } 1735 } 1736 EXPORT_SYMBOL(udp_lib_unhash); 1737 1738 /* 1739 * inet_rcv_saddr was changed, we must rehash secondary hash 1740 */ 1741 void udp_lib_rehash(struct sock *sk, u16 newhash) 1742 { 1743 if (sk_hashed(sk)) { 1744 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1745 struct udp_hslot *hslot, *hslot2, *nhslot2; 1746 1747 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1748 nhslot2 = udp_hashslot2(udptable, newhash); 1749 udp_sk(sk)->udp_portaddr_hash = newhash; 1750 1751 if (hslot2 != nhslot2 || 1752 rcu_access_pointer(sk->sk_reuseport_cb)) { 1753 hslot = udp_hashslot(udptable, sock_net(sk), 1754 udp_sk(sk)->udp_port_hash); 1755 /* we must lock primary chain too */ 1756 spin_lock_bh(&hslot->lock); 1757 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1758 reuseport_detach_sock(sk); 1759 1760 if (hslot2 != nhslot2) { 1761 spin_lock(&hslot2->lock); 1762 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1763 hslot2->count--; 1764 spin_unlock(&hslot2->lock); 1765 1766 spin_lock(&nhslot2->lock); 1767 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1768 &nhslot2->head); 1769 nhslot2->count++; 1770 spin_unlock(&nhslot2->lock); 1771 } 1772 1773 spin_unlock_bh(&hslot->lock); 1774 } 1775 } 1776 } 1777 EXPORT_SYMBOL(udp_lib_rehash); 1778 1779 static void udp_v4_rehash(struct sock *sk) 1780 { 1781 u16 new_hash = udp4_portaddr_hash(sock_net(sk), 1782 inet_sk(sk)->inet_rcv_saddr, 1783 inet_sk(sk)->inet_num); 1784 udp_lib_rehash(sk, new_hash); 1785 } 1786 1787 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1788 { 1789 int rc; 1790 1791 if (inet_sk(sk)->inet_daddr) { 1792 sock_rps_save_rxhash(sk, skb); 1793 sk_mark_napi_id(sk, skb); 1794 sk_incoming_cpu_update(sk); 1795 } else { 1796 sk_mark_napi_id_once(sk, skb); 1797 } 1798 1799 rc = __udp_enqueue_schedule_skb(sk, skb); 1800 if (rc < 0) { 1801 int is_udplite = IS_UDPLITE(sk); 1802 1803 /* Note that an ENOMEM error is charged twice */ 1804 if (rc == -ENOMEM) 1805 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1806 is_udplite); 1807 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1808 kfree_skb(skb); 1809 trace_udp_fail_queue_rcv_skb(rc, sk); 1810 return -1; 1811 } 1812 1813 return 0; 1814 } 1815 1816 static struct static_key udp_encap_needed __read_mostly; 1817 void udp_encap_enable(void) 1818 { 1819 static_key_enable(&udp_encap_needed); 1820 } 1821 EXPORT_SYMBOL(udp_encap_enable); 1822 1823 /* returns: 1824 * -1: error 1825 * 0: success 1826 * >0: "udp encap" protocol resubmission 1827 * 1828 * Note that in the success and error cases, the skb is assumed to 1829 * have either been requeued or freed. 1830 */ 1831 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1832 { 1833 struct udp_sock *up = udp_sk(sk); 1834 int is_udplite = IS_UDPLITE(sk); 1835 1836 /* 1837 * Charge it to the socket, dropping if the queue is full. 1838 */ 1839 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1840 goto drop; 1841 nf_reset(skb); 1842 1843 if (static_key_false(&udp_encap_needed) && up->encap_type) { 1844 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1845 1846 /* 1847 * This is an encapsulation socket so pass the skb to 1848 * the socket's udp_encap_rcv() hook. Otherwise, just 1849 * fall through and pass this up the UDP socket. 1850 * up->encap_rcv() returns the following value: 1851 * =0 if skb was successfully passed to the encap 1852 * handler or was discarded by it. 1853 * >0 if skb should be passed on to UDP. 1854 * <0 if skb should be resubmitted as proto -N 1855 */ 1856 1857 /* if we're overly short, let UDP handle it */ 1858 encap_rcv = ACCESS_ONCE(up->encap_rcv); 1859 if (encap_rcv) { 1860 int ret; 1861 1862 /* Verify checksum before giving to encap */ 1863 if (udp_lib_checksum_complete(skb)) 1864 goto csum_error; 1865 1866 ret = encap_rcv(sk, skb); 1867 if (ret <= 0) { 1868 __UDP_INC_STATS(sock_net(sk), 1869 UDP_MIB_INDATAGRAMS, 1870 is_udplite); 1871 return -ret; 1872 } 1873 } 1874 1875 /* FALLTHROUGH -- it's a UDP Packet */ 1876 } 1877 1878 /* 1879 * UDP-Lite specific tests, ignored on UDP sockets 1880 */ 1881 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1882 1883 /* 1884 * MIB statistics other than incrementing the error count are 1885 * disabled for the following two types of errors: these depend 1886 * on the application settings, not on the functioning of the 1887 * protocol stack as such. 1888 * 1889 * RFC 3828 here recommends (sec 3.3): "There should also be a 1890 * way ... to ... at least let the receiving application block 1891 * delivery of packets with coverage values less than a value 1892 * provided by the application." 1893 */ 1894 if (up->pcrlen == 0) { /* full coverage was set */ 1895 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1896 UDP_SKB_CB(skb)->cscov, skb->len); 1897 goto drop; 1898 } 1899 /* The next case involves violating the min. coverage requested 1900 * by the receiver. This is subtle: if receiver wants x and x is 1901 * greater than the buffersize/MTU then receiver will complain 1902 * that it wants x while sender emits packets of smaller size y. 1903 * Therefore the above ...()->partial_cov statement is essential. 1904 */ 1905 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1906 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1907 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1908 goto drop; 1909 } 1910 } 1911 1912 prefetch(&sk->sk_rmem_alloc); 1913 if (rcu_access_pointer(sk->sk_filter) && 1914 udp_lib_checksum_complete(skb)) 1915 goto csum_error; 1916 1917 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1918 goto drop; 1919 1920 udp_csum_pull_header(skb); 1921 1922 ipv4_pktinfo_prepare(sk, skb); 1923 return __udp_queue_rcv_skb(sk, skb); 1924 1925 csum_error: 1926 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1927 drop: 1928 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1929 atomic_inc(&sk->sk_drops); 1930 kfree_skb(skb); 1931 return -1; 1932 } 1933 1934 /* For TCP sockets, sk_rx_dst is protected by socket lock 1935 * For UDP, we use xchg() to guard against concurrent changes. 1936 */ 1937 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 1938 { 1939 struct dst_entry *old; 1940 1941 if (dst_hold_safe(dst)) { 1942 old = xchg(&sk->sk_rx_dst, dst); 1943 dst_release(old); 1944 return old != dst; 1945 } 1946 return false; 1947 } 1948 EXPORT_SYMBOL(udp_sk_rx_dst_set); 1949 1950 /* 1951 * Multicasts and broadcasts go to each listener. 1952 * 1953 * Note: called only from the BH handler context. 1954 */ 1955 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 1956 struct udphdr *uh, 1957 __be32 saddr, __be32 daddr, 1958 struct udp_table *udptable, 1959 int proto) 1960 { 1961 struct sock *sk, *first = NULL; 1962 unsigned short hnum = ntohs(uh->dest); 1963 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 1964 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 1965 unsigned int offset = offsetof(typeof(*sk), sk_node); 1966 int dif = skb->dev->ifindex; 1967 int sdif = inet_sdif(skb); 1968 struct hlist_node *node; 1969 struct sk_buff *nskb; 1970 1971 if (use_hash2) { 1972 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 1973 udptable->mask; 1974 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask; 1975 start_lookup: 1976 hslot = &udptable->hash2[hash2]; 1977 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 1978 } 1979 1980 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 1981 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 1982 uh->source, saddr, dif, sdif, hnum)) 1983 continue; 1984 1985 if (!first) { 1986 first = sk; 1987 continue; 1988 } 1989 nskb = skb_clone(skb, GFP_ATOMIC); 1990 1991 if (unlikely(!nskb)) { 1992 atomic_inc(&sk->sk_drops); 1993 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 1994 IS_UDPLITE(sk)); 1995 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 1996 IS_UDPLITE(sk)); 1997 continue; 1998 } 1999 if (udp_queue_rcv_skb(sk, nskb) > 0) 2000 consume_skb(nskb); 2001 } 2002 2003 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2004 if (use_hash2 && hash2 != hash2_any) { 2005 hash2 = hash2_any; 2006 goto start_lookup; 2007 } 2008 2009 if (first) { 2010 if (udp_queue_rcv_skb(first, skb) > 0) 2011 consume_skb(skb); 2012 } else { 2013 kfree_skb(skb); 2014 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2015 proto == IPPROTO_UDPLITE); 2016 } 2017 return 0; 2018 } 2019 2020 /* Initialize UDP checksum. If exited with zero value (success), 2021 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2022 * Otherwise, csum completion requires chacksumming packet body, 2023 * including udp header and folding it to skb->csum. 2024 */ 2025 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2026 int proto) 2027 { 2028 int err; 2029 2030 UDP_SKB_CB(skb)->partial_cov = 0; 2031 UDP_SKB_CB(skb)->cscov = skb->len; 2032 2033 if (proto == IPPROTO_UDPLITE) { 2034 err = udplite_checksum_init(skb, uh); 2035 if (err) 2036 return err; 2037 } 2038 2039 /* Note, we are only interested in != 0 or == 0, thus the 2040 * force to int. 2041 */ 2042 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2043 inet_compute_pseudo); 2044 } 2045 2046 /* 2047 * All we need to do is get the socket, and then do a checksum. 2048 */ 2049 2050 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2051 int proto) 2052 { 2053 struct sock *sk; 2054 struct udphdr *uh; 2055 unsigned short ulen; 2056 struct rtable *rt = skb_rtable(skb); 2057 __be32 saddr, daddr; 2058 struct net *net = dev_net(skb->dev); 2059 2060 /* 2061 * Validate the packet. 2062 */ 2063 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2064 goto drop; /* No space for header. */ 2065 2066 uh = udp_hdr(skb); 2067 ulen = ntohs(uh->len); 2068 saddr = ip_hdr(skb)->saddr; 2069 daddr = ip_hdr(skb)->daddr; 2070 2071 if (ulen > skb->len) 2072 goto short_packet; 2073 2074 if (proto == IPPROTO_UDP) { 2075 /* UDP validates ulen. */ 2076 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2077 goto short_packet; 2078 uh = udp_hdr(skb); 2079 } 2080 2081 if (udp4_csum_init(skb, uh, proto)) 2082 goto csum_error; 2083 2084 sk = skb_steal_sock(skb); 2085 if (sk) { 2086 struct dst_entry *dst = skb_dst(skb); 2087 int ret; 2088 2089 if (unlikely(sk->sk_rx_dst != dst)) 2090 udp_sk_rx_dst_set(sk, dst); 2091 2092 ret = udp_queue_rcv_skb(sk, skb); 2093 sock_put(sk); 2094 /* a return value > 0 means to resubmit the input, but 2095 * it wants the return to be -protocol, or 0 2096 */ 2097 if (ret > 0) 2098 return -ret; 2099 return 0; 2100 } 2101 2102 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2103 return __udp4_lib_mcast_deliver(net, skb, uh, 2104 saddr, daddr, udptable, proto); 2105 2106 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2107 if (sk) { 2108 int ret; 2109 2110 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2111 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2112 inet_compute_pseudo); 2113 2114 ret = udp_queue_rcv_skb(sk, skb); 2115 2116 /* a return value > 0 means to resubmit the input, but 2117 * it wants the return to be -protocol, or 0 2118 */ 2119 if (ret > 0) 2120 return -ret; 2121 return 0; 2122 } 2123 2124 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2125 goto drop; 2126 nf_reset(skb); 2127 2128 /* No socket. Drop packet silently, if checksum is wrong */ 2129 if (udp_lib_checksum_complete(skb)) 2130 goto csum_error; 2131 2132 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2133 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2134 2135 /* 2136 * Hmm. We got an UDP packet to a port to which we 2137 * don't wanna listen. Ignore it. 2138 */ 2139 kfree_skb(skb); 2140 return 0; 2141 2142 short_packet: 2143 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2144 proto == IPPROTO_UDPLITE ? "Lite" : "", 2145 &saddr, ntohs(uh->source), 2146 ulen, skb->len, 2147 &daddr, ntohs(uh->dest)); 2148 goto drop; 2149 2150 csum_error: 2151 /* 2152 * RFC1122: OK. Discards the bad packet silently (as far as 2153 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2154 */ 2155 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2156 proto == IPPROTO_UDPLITE ? "Lite" : "", 2157 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2158 ulen); 2159 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2160 drop: 2161 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2162 kfree_skb(skb); 2163 return 0; 2164 } 2165 2166 /* We can only early demux multicast if there is a single matching socket. 2167 * If more than one socket found returns NULL 2168 */ 2169 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2170 __be16 loc_port, __be32 loc_addr, 2171 __be16 rmt_port, __be32 rmt_addr, 2172 int dif, int sdif) 2173 { 2174 struct sock *sk, *result; 2175 unsigned short hnum = ntohs(loc_port); 2176 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2177 struct udp_hslot *hslot = &udp_table.hash[slot]; 2178 2179 /* Do not bother scanning a too big list */ 2180 if (hslot->count > 10) 2181 return NULL; 2182 2183 result = NULL; 2184 sk_for_each_rcu(sk, &hslot->head) { 2185 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2186 rmt_port, rmt_addr, dif, sdif, hnum)) { 2187 if (result) 2188 return NULL; 2189 result = sk; 2190 } 2191 } 2192 2193 return result; 2194 } 2195 2196 /* For unicast we should only early demux connected sockets or we can 2197 * break forwarding setups. The chains here can be long so only check 2198 * if the first socket is an exact match and if not move on. 2199 */ 2200 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2201 __be16 loc_port, __be32 loc_addr, 2202 __be16 rmt_port, __be32 rmt_addr, 2203 int dif, int sdif) 2204 { 2205 unsigned short hnum = ntohs(loc_port); 2206 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum); 2207 unsigned int slot2 = hash2 & udp_table.mask; 2208 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2209 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2210 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2211 struct sock *sk; 2212 2213 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2214 if (INET_MATCH(sk, net, acookie, rmt_addr, 2215 loc_addr, ports, dif, sdif)) 2216 return sk; 2217 /* Only check first socket in chain */ 2218 break; 2219 } 2220 return NULL; 2221 } 2222 2223 void udp_v4_early_demux(struct sk_buff *skb) 2224 { 2225 struct net *net = dev_net(skb->dev); 2226 const struct iphdr *iph; 2227 const struct udphdr *uh; 2228 struct sock *sk = NULL; 2229 struct dst_entry *dst; 2230 int dif = skb->dev->ifindex; 2231 int sdif = inet_sdif(skb); 2232 int ours; 2233 2234 /* validate the packet */ 2235 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2236 return; 2237 2238 iph = ip_hdr(skb); 2239 uh = udp_hdr(skb); 2240 2241 if (skb->pkt_type == PACKET_BROADCAST || 2242 skb->pkt_type == PACKET_MULTICAST) { 2243 struct in_device *in_dev = __in_dev_get_rcu(skb->dev); 2244 2245 if (!in_dev) 2246 return; 2247 2248 /* we are supposed to accept bcast packets */ 2249 if (skb->pkt_type == PACKET_MULTICAST) { 2250 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2251 iph->protocol); 2252 if (!ours) 2253 return; 2254 } 2255 2256 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2257 uh->source, iph->saddr, 2258 dif, sdif); 2259 } else if (skb->pkt_type == PACKET_HOST) { 2260 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2261 uh->source, iph->saddr, dif, sdif); 2262 } 2263 2264 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2265 return; 2266 2267 skb->sk = sk; 2268 skb->destructor = sock_efree; 2269 dst = READ_ONCE(sk->sk_rx_dst); 2270 2271 if (dst) 2272 dst = dst_check(dst, 0); 2273 if (dst) { 2274 /* set noref for now. 2275 * any place which wants to hold dst has to call 2276 * dst_hold_safe() 2277 */ 2278 skb_dst_set_noref(skb, dst); 2279 } 2280 } 2281 2282 int udp_rcv(struct sk_buff *skb) 2283 { 2284 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2285 } 2286 2287 void udp_destroy_sock(struct sock *sk) 2288 { 2289 struct udp_sock *up = udp_sk(sk); 2290 bool slow = lock_sock_fast(sk); 2291 udp_flush_pending_frames(sk); 2292 unlock_sock_fast(sk, slow); 2293 if (static_key_false(&udp_encap_needed) && up->encap_type) { 2294 void (*encap_destroy)(struct sock *sk); 2295 encap_destroy = ACCESS_ONCE(up->encap_destroy); 2296 if (encap_destroy) 2297 encap_destroy(sk); 2298 } 2299 } 2300 2301 /* 2302 * Socket option code for UDP 2303 */ 2304 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2305 char __user *optval, unsigned int optlen, 2306 int (*push_pending_frames)(struct sock *)) 2307 { 2308 struct udp_sock *up = udp_sk(sk); 2309 int val, valbool; 2310 int err = 0; 2311 int is_udplite = IS_UDPLITE(sk); 2312 2313 if (optlen < sizeof(int)) 2314 return -EINVAL; 2315 2316 if (get_user(val, (int __user *)optval)) 2317 return -EFAULT; 2318 2319 valbool = val ? 1 : 0; 2320 2321 switch (optname) { 2322 case UDP_CORK: 2323 if (val != 0) { 2324 up->corkflag = 1; 2325 } else { 2326 up->corkflag = 0; 2327 lock_sock(sk); 2328 push_pending_frames(sk); 2329 release_sock(sk); 2330 } 2331 break; 2332 2333 case UDP_ENCAP: 2334 switch (val) { 2335 case 0: 2336 case UDP_ENCAP_ESPINUDP: 2337 case UDP_ENCAP_ESPINUDP_NON_IKE: 2338 up->encap_rcv = xfrm4_udp_encap_rcv; 2339 /* FALLTHROUGH */ 2340 case UDP_ENCAP_L2TPINUDP: 2341 up->encap_type = val; 2342 udp_encap_enable(); 2343 break; 2344 default: 2345 err = -ENOPROTOOPT; 2346 break; 2347 } 2348 break; 2349 2350 case UDP_NO_CHECK6_TX: 2351 up->no_check6_tx = valbool; 2352 break; 2353 2354 case UDP_NO_CHECK6_RX: 2355 up->no_check6_rx = valbool; 2356 break; 2357 2358 /* 2359 * UDP-Lite's partial checksum coverage (RFC 3828). 2360 */ 2361 /* The sender sets actual checksum coverage length via this option. 2362 * The case coverage > packet length is handled by send module. */ 2363 case UDPLITE_SEND_CSCOV: 2364 if (!is_udplite) /* Disable the option on UDP sockets */ 2365 return -ENOPROTOOPT; 2366 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2367 val = 8; 2368 else if (val > USHRT_MAX) 2369 val = USHRT_MAX; 2370 up->pcslen = val; 2371 up->pcflag |= UDPLITE_SEND_CC; 2372 break; 2373 2374 /* The receiver specifies a minimum checksum coverage value. To make 2375 * sense, this should be set to at least 8 (as done below). If zero is 2376 * used, this again means full checksum coverage. */ 2377 case UDPLITE_RECV_CSCOV: 2378 if (!is_udplite) /* Disable the option on UDP sockets */ 2379 return -ENOPROTOOPT; 2380 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2381 val = 8; 2382 else if (val > USHRT_MAX) 2383 val = USHRT_MAX; 2384 up->pcrlen = val; 2385 up->pcflag |= UDPLITE_RECV_CC; 2386 break; 2387 2388 default: 2389 err = -ENOPROTOOPT; 2390 break; 2391 } 2392 2393 return err; 2394 } 2395 EXPORT_SYMBOL(udp_lib_setsockopt); 2396 2397 int udp_setsockopt(struct sock *sk, int level, int optname, 2398 char __user *optval, unsigned int optlen) 2399 { 2400 if (level == SOL_UDP || level == SOL_UDPLITE) 2401 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2402 udp_push_pending_frames); 2403 return ip_setsockopt(sk, level, optname, optval, optlen); 2404 } 2405 2406 #ifdef CONFIG_COMPAT 2407 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2408 char __user *optval, unsigned int optlen) 2409 { 2410 if (level == SOL_UDP || level == SOL_UDPLITE) 2411 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2412 udp_push_pending_frames); 2413 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2414 } 2415 #endif 2416 2417 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2418 char __user *optval, int __user *optlen) 2419 { 2420 struct udp_sock *up = udp_sk(sk); 2421 int val, len; 2422 2423 if (get_user(len, optlen)) 2424 return -EFAULT; 2425 2426 len = min_t(unsigned int, len, sizeof(int)); 2427 2428 if (len < 0) 2429 return -EINVAL; 2430 2431 switch (optname) { 2432 case UDP_CORK: 2433 val = up->corkflag; 2434 break; 2435 2436 case UDP_ENCAP: 2437 val = up->encap_type; 2438 break; 2439 2440 case UDP_NO_CHECK6_TX: 2441 val = up->no_check6_tx; 2442 break; 2443 2444 case UDP_NO_CHECK6_RX: 2445 val = up->no_check6_rx; 2446 break; 2447 2448 /* The following two cannot be changed on UDP sockets, the return is 2449 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2450 case UDPLITE_SEND_CSCOV: 2451 val = up->pcslen; 2452 break; 2453 2454 case UDPLITE_RECV_CSCOV: 2455 val = up->pcrlen; 2456 break; 2457 2458 default: 2459 return -ENOPROTOOPT; 2460 } 2461 2462 if (put_user(len, optlen)) 2463 return -EFAULT; 2464 if (copy_to_user(optval, &val, len)) 2465 return -EFAULT; 2466 return 0; 2467 } 2468 EXPORT_SYMBOL(udp_lib_getsockopt); 2469 2470 int udp_getsockopt(struct sock *sk, int level, int optname, 2471 char __user *optval, int __user *optlen) 2472 { 2473 if (level == SOL_UDP || level == SOL_UDPLITE) 2474 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2475 return ip_getsockopt(sk, level, optname, optval, optlen); 2476 } 2477 2478 #ifdef CONFIG_COMPAT 2479 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2480 char __user *optval, int __user *optlen) 2481 { 2482 if (level == SOL_UDP || level == SOL_UDPLITE) 2483 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2484 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2485 } 2486 #endif 2487 /** 2488 * udp_poll - wait for a UDP event. 2489 * @file - file struct 2490 * @sock - socket 2491 * @wait - poll table 2492 * 2493 * This is same as datagram poll, except for the special case of 2494 * blocking sockets. If application is using a blocking fd 2495 * and a packet with checksum error is in the queue; 2496 * then it could get return from select indicating data available 2497 * but then block when reading it. Add special case code 2498 * to work around these arguably broken applications. 2499 */ 2500 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2501 { 2502 unsigned int mask = datagram_poll(file, sock, wait); 2503 struct sock *sk = sock->sk; 2504 2505 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2506 mask |= POLLIN | POLLRDNORM; 2507 2508 sock_rps_record_flow(sk); 2509 2510 /* Check for false positives due to checksum errors */ 2511 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2512 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2513 mask &= ~(POLLIN | POLLRDNORM); 2514 2515 return mask; 2516 2517 } 2518 EXPORT_SYMBOL(udp_poll); 2519 2520 int udp_abort(struct sock *sk, int err) 2521 { 2522 lock_sock(sk); 2523 2524 sk->sk_err = err; 2525 sk->sk_error_report(sk); 2526 __udp_disconnect(sk, 0); 2527 2528 release_sock(sk); 2529 2530 return 0; 2531 } 2532 EXPORT_SYMBOL_GPL(udp_abort); 2533 2534 struct proto udp_prot = { 2535 .name = "UDP", 2536 .owner = THIS_MODULE, 2537 .close = udp_lib_close, 2538 .connect = ip4_datagram_connect, 2539 .disconnect = udp_disconnect, 2540 .ioctl = udp_ioctl, 2541 .init = udp_init_sock, 2542 .destroy = udp_destroy_sock, 2543 .setsockopt = udp_setsockopt, 2544 .getsockopt = udp_getsockopt, 2545 .sendmsg = udp_sendmsg, 2546 .recvmsg = udp_recvmsg, 2547 .sendpage = udp_sendpage, 2548 .release_cb = ip4_datagram_release_cb, 2549 .hash = udp_lib_hash, 2550 .unhash = udp_lib_unhash, 2551 .rehash = udp_v4_rehash, 2552 .get_port = udp_v4_get_port, 2553 .memory_allocated = &udp_memory_allocated, 2554 .sysctl_mem = sysctl_udp_mem, 2555 .sysctl_wmem = &sysctl_udp_wmem_min, 2556 .sysctl_rmem = &sysctl_udp_rmem_min, 2557 .obj_size = sizeof(struct udp_sock), 2558 .h.udp_table = &udp_table, 2559 #ifdef CONFIG_COMPAT 2560 .compat_setsockopt = compat_udp_setsockopt, 2561 .compat_getsockopt = compat_udp_getsockopt, 2562 #endif 2563 .diag_destroy = udp_abort, 2564 }; 2565 EXPORT_SYMBOL(udp_prot); 2566 2567 /* ------------------------------------------------------------------------ */ 2568 #ifdef CONFIG_PROC_FS 2569 2570 static struct sock *udp_get_first(struct seq_file *seq, int start) 2571 { 2572 struct sock *sk; 2573 struct udp_iter_state *state = seq->private; 2574 struct net *net = seq_file_net(seq); 2575 2576 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2577 ++state->bucket) { 2578 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2579 2580 if (hlist_empty(&hslot->head)) 2581 continue; 2582 2583 spin_lock_bh(&hslot->lock); 2584 sk_for_each(sk, &hslot->head) { 2585 if (!net_eq(sock_net(sk), net)) 2586 continue; 2587 if (sk->sk_family == state->family) 2588 goto found; 2589 } 2590 spin_unlock_bh(&hslot->lock); 2591 } 2592 sk = NULL; 2593 found: 2594 return sk; 2595 } 2596 2597 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2598 { 2599 struct udp_iter_state *state = seq->private; 2600 struct net *net = seq_file_net(seq); 2601 2602 do { 2603 sk = sk_next(sk); 2604 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2605 2606 if (!sk) { 2607 if (state->bucket <= state->udp_table->mask) 2608 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2609 return udp_get_first(seq, state->bucket + 1); 2610 } 2611 return sk; 2612 } 2613 2614 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2615 { 2616 struct sock *sk = udp_get_first(seq, 0); 2617 2618 if (sk) 2619 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2620 --pos; 2621 return pos ? NULL : sk; 2622 } 2623 2624 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2625 { 2626 struct udp_iter_state *state = seq->private; 2627 state->bucket = MAX_UDP_PORTS; 2628 2629 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2630 } 2631 2632 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2633 { 2634 struct sock *sk; 2635 2636 if (v == SEQ_START_TOKEN) 2637 sk = udp_get_idx(seq, 0); 2638 else 2639 sk = udp_get_next(seq, v); 2640 2641 ++*pos; 2642 return sk; 2643 } 2644 2645 static void udp_seq_stop(struct seq_file *seq, void *v) 2646 { 2647 struct udp_iter_state *state = seq->private; 2648 2649 if (state->bucket <= state->udp_table->mask) 2650 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2651 } 2652 2653 int udp_seq_open(struct inode *inode, struct file *file) 2654 { 2655 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2656 struct udp_iter_state *s; 2657 int err; 2658 2659 err = seq_open_net(inode, file, &afinfo->seq_ops, 2660 sizeof(struct udp_iter_state)); 2661 if (err < 0) 2662 return err; 2663 2664 s = ((struct seq_file *)file->private_data)->private; 2665 s->family = afinfo->family; 2666 s->udp_table = afinfo->udp_table; 2667 return err; 2668 } 2669 EXPORT_SYMBOL(udp_seq_open); 2670 2671 /* ------------------------------------------------------------------------ */ 2672 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2673 { 2674 struct proc_dir_entry *p; 2675 int rc = 0; 2676 2677 afinfo->seq_ops.start = udp_seq_start; 2678 afinfo->seq_ops.next = udp_seq_next; 2679 afinfo->seq_ops.stop = udp_seq_stop; 2680 2681 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2682 afinfo->seq_fops, afinfo); 2683 if (!p) 2684 rc = -ENOMEM; 2685 return rc; 2686 } 2687 EXPORT_SYMBOL(udp_proc_register); 2688 2689 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2690 { 2691 remove_proc_entry(afinfo->name, net->proc_net); 2692 } 2693 EXPORT_SYMBOL(udp_proc_unregister); 2694 2695 /* ------------------------------------------------------------------------ */ 2696 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2697 int bucket) 2698 { 2699 struct inet_sock *inet = inet_sk(sp); 2700 __be32 dest = inet->inet_daddr; 2701 __be32 src = inet->inet_rcv_saddr; 2702 __u16 destp = ntohs(inet->inet_dport); 2703 __u16 srcp = ntohs(inet->inet_sport); 2704 2705 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2706 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2707 bucket, src, srcp, dest, destp, sp->sk_state, 2708 sk_wmem_alloc_get(sp), 2709 sk_rmem_alloc_get(sp), 2710 0, 0L, 0, 2711 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2712 0, sock_i_ino(sp), 2713 refcount_read(&sp->sk_refcnt), sp, 2714 atomic_read(&sp->sk_drops)); 2715 } 2716 2717 int udp4_seq_show(struct seq_file *seq, void *v) 2718 { 2719 seq_setwidth(seq, 127); 2720 if (v == SEQ_START_TOKEN) 2721 seq_puts(seq, " sl local_address rem_address st tx_queue " 2722 "rx_queue tr tm->when retrnsmt uid timeout " 2723 "inode ref pointer drops"); 2724 else { 2725 struct udp_iter_state *state = seq->private; 2726 2727 udp4_format_sock(v, seq, state->bucket); 2728 } 2729 seq_pad(seq, '\n'); 2730 return 0; 2731 } 2732 2733 static const struct file_operations udp_afinfo_seq_fops = { 2734 .owner = THIS_MODULE, 2735 .open = udp_seq_open, 2736 .read = seq_read, 2737 .llseek = seq_lseek, 2738 .release = seq_release_net 2739 }; 2740 2741 /* ------------------------------------------------------------------------ */ 2742 static struct udp_seq_afinfo udp4_seq_afinfo = { 2743 .name = "udp", 2744 .family = AF_INET, 2745 .udp_table = &udp_table, 2746 .seq_fops = &udp_afinfo_seq_fops, 2747 .seq_ops = { 2748 .show = udp4_seq_show, 2749 }, 2750 }; 2751 2752 static int __net_init udp4_proc_init_net(struct net *net) 2753 { 2754 return udp_proc_register(net, &udp4_seq_afinfo); 2755 } 2756 2757 static void __net_exit udp4_proc_exit_net(struct net *net) 2758 { 2759 udp_proc_unregister(net, &udp4_seq_afinfo); 2760 } 2761 2762 static struct pernet_operations udp4_net_ops = { 2763 .init = udp4_proc_init_net, 2764 .exit = udp4_proc_exit_net, 2765 }; 2766 2767 int __init udp4_proc_init(void) 2768 { 2769 return register_pernet_subsys(&udp4_net_ops); 2770 } 2771 2772 void udp4_proc_exit(void) 2773 { 2774 unregister_pernet_subsys(&udp4_net_ops); 2775 } 2776 #endif /* CONFIG_PROC_FS */ 2777 2778 static __initdata unsigned long uhash_entries; 2779 static int __init set_uhash_entries(char *str) 2780 { 2781 ssize_t ret; 2782 2783 if (!str) 2784 return 0; 2785 2786 ret = kstrtoul(str, 0, &uhash_entries); 2787 if (ret) 2788 return 0; 2789 2790 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2791 uhash_entries = UDP_HTABLE_SIZE_MIN; 2792 return 1; 2793 } 2794 __setup("uhash_entries=", set_uhash_entries); 2795 2796 void __init udp_table_init(struct udp_table *table, const char *name) 2797 { 2798 unsigned int i; 2799 2800 table->hash = alloc_large_system_hash(name, 2801 2 * sizeof(struct udp_hslot), 2802 uhash_entries, 2803 21, /* one slot per 2 MB */ 2804 0, 2805 &table->log, 2806 &table->mask, 2807 UDP_HTABLE_SIZE_MIN, 2808 64 * 1024); 2809 2810 table->hash2 = table->hash + (table->mask + 1); 2811 for (i = 0; i <= table->mask; i++) { 2812 INIT_HLIST_HEAD(&table->hash[i].head); 2813 table->hash[i].count = 0; 2814 spin_lock_init(&table->hash[i].lock); 2815 } 2816 for (i = 0; i <= table->mask; i++) { 2817 INIT_HLIST_HEAD(&table->hash2[i].head); 2818 table->hash2[i].count = 0; 2819 spin_lock_init(&table->hash2[i].lock); 2820 } 2821 } 2822 2823 u32 udp_flow_hashrnd(void) 2824 { 2825 static u32 hashrnd __read_mostly; 2826 2827 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2828 2829 return hashrnd; 2830 } 2831 EXPORT_SYMBOL(udp_flow_hashrnd); 2832 2833 void __init udp_init(void) 2834 { 2835 unsigned long limit; 2836 unsigned int i; 2837 2838 udp_table_init(&udp_table, "UDP"); 2839 limit = nr_free_buffer_pages() / 8; 2840 limit = max(limit, 128UL); 2841 sysctl_udp_mem[0] = limit / 4 * 3; 2842 sysctl_udp_mem[1] = limit; 2843 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2844 2845 sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2846 sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2847 2848 /* 16 spinlocks per cpu */ 2849 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2850 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2851 GFP_KERNEL); 2852 if (!udp_busylocks) 2853 panic("UDP: failed to alloc udp_busylocks\n"); 2854 for (i = 0; i < (1U << udp_busylocks_log); i++) 2855 spin_lock_init(udp_busylocks + i); 2856 } 2857