xref: /openbmc/linux/net/ipv4/udp.c (revision 2359ccdd)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
127 
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
130 
131 /* IPCB reference means this can not be used from early demux */
132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
133 {
134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
135 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
136 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
137 		return true;
138 #endif
139 	return false;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2);
225 		}
226 	}
227 
228 	return reuseport_alloc(sk);
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_hslot *hslot, *hslot2;
243 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
244 	int    error = 1;
245 	struct net *net = sock_net(sk);
246 
247 	if (!snum) {
248 		int low, high, remaining;
249 		unsigned int rand;
250 		unsigned short first, last;
251 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
252 
253 		inet_get_local_port_range(net, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = prandom_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif, bool exact_dif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 
374 	if (!net_eq(sock_net(sk), net) ||
375 	    udp_sk(sk)->udp_port_hash != hnum ||
376 	    ipv6_only_sock(sk))
377 		return -1;
378 
379 	score = (sk->sk_family == PF_INET) ? 2 : 1;
380 	inet = inet_sk(sk);
381 
382 	if (inet->inet_rcv_saddr) {
383 		if (inet->inet_rcv_saddr != daddr)
384 			return -1;
385 		score += 4;
386 	}
387 
388 	if (inet->inet_daddr) {
389 		if (inet->inet_daddr != saddr)
390 			return -1;
391 		score += 4;
392 	}
393 
394 	if (inet->inet_dport) {
395 		if (inet->inet_dport != sport)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	if (sk->sk_bound_dev_if || exact_dif) {
401 		bool dev_match = (sk->sk_bound_dev_if == dif ||
402 				  sk->sk_bound_dev_if == sdif);
403 
404 		if (exact_dif && !dev_match)
405 			return -1;
406 		if (sk->sk_bound_dev_if && dev_match)
407 			score += 4;
408 	}
409 
410 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
411 		score++;
412 	return score;
413 }
414 
415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
416 		       const __u16 lport, const __be32 faddr,
417 		       const __be16 fport)
418 {
419 	static u32 udp_ehash_secret __read_mostly;
420 
421 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
422 
423 	return __inet_ehashfn(laddr, lport, faddr, fport,
424 			      udp_ehash_secret + net_hash_mix(net));
425 }
426 
427 /* called with rcu_read_lock() */
428 static struct sock *udp4_lib_lookup2(struct net *net,
429 				     __be32 saddr, __be16 sport,
430 				     __be32 daddr, unsigned int hnum,
431 				     int dif, int sdif, bool exact_dif,
432 				     struct udp_hslot *hslot2,
433 				     struct sk_buff *skb)
434 {
435 	struct sock *sk, *result;
436 	int score, badness;
437 	u32 hash = 0;
438 
439 	result = NULL;
440 	badness = 0;
441 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
442 		score = compute_score(sk, net, saddr, sport,
443 				      daddr, hnum, dif, sdif, exact_dif);
444 		if (score > badness) {
445 			if (sk->sk_reuseport) {
446 				hash = udp_ehashfn(net, daddr, hnum,
447 						   saddr, sport);
448 				result = reuseport_select_sock(sk, hash, skb,
449 							sizeof(struct udphdr));
450 				if (result)
451 					return result;
452 			}
453 			badness = score;
454 			result = sk;
455 		}
456 	}
457 	return result;
458 }
459 
460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
461  * harder than this. -DaveM
462  */
463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
464 		__be16 sport, __be32 daddr, __be16 dport, int dif,
465 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
466 {
467 	struct sock *sk, *result;
468 	unsigned short hnum = ntohs(dport);
469 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
470 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
471 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
472 	int score, badness;
473 	u32 hash = 0;
474 
475 	if (hslot->count > 10) {
476 		hash2 = ipv4_portaddr_hash(net, daddr, hnum);
477 		slot2 = hash2 & udptable->mask;
478 		hslot2 = &udptable->hash2[slot2];
479 		if (hslot->count < hslot2->count)
480 			goto begin;
481 
482 		result = udp4_lib_lookup2(net, saddr, sport,
483 					  daddr, hnum, dif, sdif,
484 					  exact_dif, hslot2, skb);
485 		if (!result) {
486 			unsigned int old_slot2 = slot2;
487 			hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
488 			slot2 = hash2 & udptable->mask;
489 			/* avoid searching the same slot again. */
490 			if (unlikely(slot2 == old_slot2))
491 				return result;
492 
493 			hslot2 = &udptable->hash2[slot2];
494 			if (hslot->count < hslot2->count)
495 				goto begin;
496 
497 			result = udp4_lib_lookup2(net, saddr, sport,
498 						  daddr, hnum, dif, sdif,
499 						  exact_dif, hslot2, skb);
500 		}
501 		return result;
502 	}
503 begin:
504 	result = NULL;
505 	badness = 0;
506 	sk_for_each_rcu(sk, &hslot->head) {
507 		score = compute_score(sk, net, saddr, sport,
508 				      daddr, hnum, dif, sdif, exact_dif);
509 		if (score > badness) {
510 			if (sk->sk_reuseport) {
511 				hash = udp_ehashfn(net, daddr, hnum,
512 						   saddr, sport);
513 				result = reuseport_select_sock(sk, hash, skb,
514 							sizeof(struct udphdr));
515 				if (result)
516 					return result;
517 			}
518 			result = sk;
519 			badness = score;
520 		}
521 	}
522 	return result;
523 }
524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
525 
526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
527 						 __be16 sport, __be16 dport,
528 						 struct udp_table *udptable)
529 {
530 	const struct iphdr *iph = ip_hdr(skb);
531 
532 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
533 				 iph->daddr, dport, inet_iif(skb),
534 				 inet_sdif(skb), udptable, skb);
535 }
536 
537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
538 				 __be16 sport, __be16 dport)
539 {
540 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
541 }
542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
543 
544 /* Must be called under rcu_read_lock().
545  * Does increment socket refcount.
546  */
547 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
548     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
549     IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
550 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
551 			     __be32 daddr, __be16 dport, int dif)
552 {
553 	struct sock *sk;
554 
555 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
556 			       dif, 0, &udp_table, NULL);
557 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
558 		sk = NULL;
559 	return sk;
560 }
561 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
562 #endif
563 
564 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
565 				       __be16 loc_port, __be32 loc_addr,
566 				       __be16 rmt_port, __be32 rmt_addr,
567 				       int dif, int sdif, unsigned short hnum)
568 {
569 	struct inet_sock *inet = inet_sk(sk);
570 
571 	if (!net_eq(sock_net(sk), net) ||
572 	    udp_sk(sk)->udp_port_hash != hnum ||
573 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
574 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
575 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
576 	    ipv6_only_sock(sk) ||
577 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
578 	     sk->sk_bound_dev_if != sdif))
579 		return false;
580 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
581 		return false;
582 	return true;
583 }
584 
585 /*
586  * This routine is called by the ICMP module when it gets some
587  * sort of error condition.  If err < 0 then the socket should
588  * be closed and the error returned to the user.  If err > 0
589  * it's just the icmp type << 8 | icmp code.
590  * Header points to the ip header of the error packet. We move
591  * on past this. Then (as it used to claim before adjustment)
592  * header points to the first 8 bytes of the udp header.  We need
593  * to find the appropriate port.
594  */
595 
596 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
597 {
598 	struct inet_sock *inet;
599 	const struct iphdr *iph = (const struct iphdr *)skb->data;
600 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
601 	const int type = icmp_hdr(skb)->type;
602 	const int code = icmp_hdr(skb)->code;
603 	struct sock *sk;
604 	int harderr;
605 	int err;
606 	struct net *net = dev_net(skb->dev);
607 
608 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
609 			       iph->saddr, uh->source, skb->dev->ifindex, 0,
610 			       udptable, NULL);
611 	if (!sk) {
612 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
613 		return;	/* No socket for error */
614 	}
615 
616 	err = 0;
617 	harderr = 0;
618 	inet = inet_sk(sk);
619 
620 	switch (type) {
621 	default:
622 	case ICMP_TIME_EXCEEDED:
623 		err = EHOSTUNREACH;
624 		break;
625 	case ICMP_SOURCE_QUENCH:
626 		goto out;
627 	case ICMP_PARAMETERPROB:
628 		err = EPROTO;
629 		harderr = 1;
630 		break;
631 	case ICMP_DEST_UNREACH:
632 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
633 			ipv4_sk_update_pmtu(skb, sk, info);
634 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
635 				err = EMSGSIZE;
636 				harderr = 1;
637 				break;
638 			}
639 			goto out;
640 		}
641 		err = EHOSTUNREACH;
642 		if (code <= NR_ICMP_UNREACH) {
643 			harderr = icmp_err_convert[code].fatal;
644 			err = icmp_err_convert[code].errno;
645 		}
646 		break;
647 	case ICMP_REDIRECT:
648 		ipv4_sk_redirect(skb, sk);
649 		goto out;
650 	}
651 
652 	/*
653 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
654 	 *	4.1.3.3.
655 	 */
656 	if (!inet->recverr) {
657 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
658 			goto out;
659 	} else
660 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
661 
662 	sk->sk_err = err;
663 	sk->sk_error_report(sk);
664 out:
665 	return;
666 }
667 
668 void udp_err(struct sk_buff *skb, u32 info)
669 {
670 	__udp4_lib_err(skb, info, &udp_table);
671 }
672 
673 /*
674  * Throw away all pending data and cancel the corking. Socket is locked.
675  */
676 void udp_flush_pending_frames(struct sock *sk)
677 {
678 	struct udp_sock *up = udp_sk(sk);
679 
680 	if (up->pending) {
681 		up->len = 0;
682 		up->pending = 0;
683 		ip_flush_pending_frames(sk);
684 	}
685 }
686 EXPORT_SYMBOL(udp_flush_pending_frames);
687 
688 /**
689  * 	udp4_hwcsum  -  handle outgoing HW checksumming
690  * 	@skb: 	sk_buff containing the filled-in UDP header
691  * 	        (checksum field must be zeroed out)
692  *	@src:	source IP address
693  *	@dst:	destination IP address
694  */
695 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
696 {
697 	struct udphdr *uh = udp_hdr(skb);
698 	int offset = skb_transport_offset(skb);
699 	int len = skb->len - offset;
700 	int hlen = len;
701 	__wsum csum = 0;
702 
703 	if (!skb_has_frag_list(skb)) {
704 		/*
705 		 * Only one fragment on the socket.
706 		 */
707 		skb->csum_start = skb_transport_header(skb) - skb->head;
708 		skb->csum_offset = offsetof(struct udphdr, check);
709 		uh->check = ~csum_tcpudp_magic(src, dst, len,
710 					       IPPROTO_UDP, 0);
711 	} else {
712 		struct sk_buff *frags;
713 
714 		/*
715 		 * HW-checksum won't work as there are two or more
716 		 * fragments on the socket so that all csums of sk_buffs
717 		 * should be together
718 		 */
719 		skb_walk_frags(skb, frags) {
720 			csum = csum_add(csum, frags->csum);
721 			hlen -= frags->len;
722 		}
723 
724 		csum = skb_checksum(skb, offset, hlen, csum);
725 		skb->ip_summed = CHECKSUM_NONE;
726 
727 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
728 		if (uh->check == 0)
729 			uh->check = CSUM_MANGLED_0;
730 	}
731 }
732 EXPORT_SYMBOL_GPL(udp4_hwcsum);
733 
734 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
735  * for the simple case like when setting the checksum for a UDP tunnel.
736  */
737 void udp_set_csum(bool nocheck, struct sk_buff *skb,
738 		  __be32 saddr, __be32 daddr, int len)
739 {
740 	struct udphdr *uh = udp_hdr(skb);
741 
742 	if (nocheck) {
743 		uh->check = 0;
744 	} else if (skb_is_gso(skb)) {
745 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
746 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
747 		uh->check = 0;
748 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
749 		if (uh->check == 0)
750 			uh->check = CSUM_MANGLED_0;
751 	} else {
752 		skb->ip_summed = CHECKSUM_PARTIAL;
753 		skb->csum_start = skb_transport_header(skb) - skb->head;
754 		skb->csum_offset = offsetof(struct udphdr, check);
755 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
756 	}
757 }
758 EXPORT_SYMBOL(udp_set_csum);
759 
760 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
761 {
762 	struct sock *sk = skb->sk;
763 	struct inet_sock *inet = inet_sk(sk);
764 	struct udphdr *uh;
765 	int err = 0;
766 	int is_udplite = IS_UDPLITE(sk);
767 	int offset = skb_transport_offset(skb);
768 	int len = skb->len - offset;
769 	__wsum csum = 0;
770 
771 	/*
772 	 * Create a UDP header
773 	 */
774 	uh = udp_hdr(skb);
775 	uh->source = inet->inet_sport;
776 	uh->dest = fl4->fl4_dport;
777 	uh->len = htons(len);
778 	uh->check = 0;
779 
780 	if (is_udplite)  				 /*     UDP-Lite      */
781 		csum = udplite_csum(skb);
782 
783 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
784 
785 		skb->ip_summed = CHECKSUM_NONE;
786 		goto send;
787 
788 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
789 
790 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
791 		goto send;
792 
793 	} else
794 		csum = udp_csum(skb);
795 
796 	/* add protocol-dependent pseudo-header */
797 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
798 				      sk->sk_protocol, csum);
799 	if (uh->check == 0)
800 		uh->check = CSUM_MANGLED_0;
801 
802 send:
803 	err = ip_send_skb(sock_net(sk), skb);
804 	if (err) {
805 		if (err == -ENOBUFS && !inet->recverr) {
806 			UDP_INC_STATS(sock_net(sk),
807 				      UDP_MIB_SNDBUFERRORS, is_udplite);
808 			err = 0;
809 		}
810 	} else
811 		UDP_INC_STATS(sock_net(sk),
812 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
813 	return err;
814 }
815 
816 /*
817  * Push out all pending data as one UDP datagram. Socket is locked.
818  */
819 int udp_push_pending_frames(struct sock *sk)
820 {
821 	struct udp_sock  *up = udp_sk(sk);
822 	struct inet_sock *inet = inet_sk(sk);
823 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
824 	struct sk_buff *skb;
825 	int err = 0;
826 
827 	skb = ip_finish_skb(sk, fl4);
828 	if (!skb)
829 		goto out;
830 
831 	err = udp_send_skb(skb, fl4);
832 
833 out:
834 	up->len = 0;
835 	up->pending = 0;
836 	return err;
837 }
838 EXPORT_SYMBOL(udp_push_pending_frames);
839 
840 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
841 {
842 	struct inet_sock *inet = inet_sk(sk);
843 	struct udp_sock *up = udp_sk(sk);
844 	struct flowi4 fl4_stack;
845 	struct flowi4 *fl4;
846 	int ulen = len;
847 	struct ipcm_cookie ipc;
848 	struct rtable *rt = NULL;
849 	int free = 0;
850 	int connected = 0;
851 	__be32 daddr, faddr, saddr;
852 	__be16 dport;
853 	u8  tos;
854 	int err, is_udplite = IS_UDPLITE(sk);
855 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
856 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
857 	struct sk_buff *skb;
858 	struct ip_options_data opt_copy;
859 
860 	if (len > 0xFFFF)
861 		return -EMSGSIZE;
862 
863 	/*
864 	 *	Check the flags.
865 	 */
866 
867 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
868 		return -EOPNOTSUPP;
869 
870 	ipc.opt = NULL;
871 	ipc.tx_flags = 0;
872 	ipc.ttl = 0;
873 	ipc.tos = -1;
874 
875 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
876 
877 	fl4 = &inet->cork.fl.u.ip4;
878 	if (up->pending) {
879 		/*
880 		 * There are pending frames.
881 		 * The socket lock must be held while it's corked.
882 		 */
883 		lock_sock(sk);
884 		if (likely(up->pending)) {
885 			if (unlikely(up->pending != AF_INET)) {
886 				release_sock(sk);
887 				return -EINVAL;
888 			}
889 			goto do_append_data;
890 		}
891 		release_sock(sk);
892 	}
893 	ulen += sizeof(struct udphdr);
894 
895 	/*
896 	 *	Get and verify the address.
897 	 */
898 	if (msg->msg_name) {
899 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
900 		if (msg->msg_namelen < sizeof(*usin))
901 			return -EINVAL;
902 		if (usin->sin_family != AF_INET) {
903 			if (usin->sin_family != AF_UNSPEC)
904 				return -EAFNOSUPPORT;
905 		}
906 
907 		daddr = usin->sin_addr.s_addr;
908 		dport = usin->sin_port;
909 		if (dport == 0)
910 			return -EINVAL;
911 	} else {
912 		if (sk->sk_state != TCP_ESTABLISHED)
913 			return -EDESTADDRREQ;
914 		daddr = inet->inet_daddr;
915 		dport = inet->inet_dport;
916 		/* Open fast path for connected socket.
917 		   Route will not be used, if at least one option is set.
918 		 */
919 		connected = 1;
920 	}
921 
922 	ipc.sockc.tsflags = sk->sk_tsflags;
923 	ipc.addr = inet->inet_saddr;
924 	ipc.oif = sk->sk_bound_dev_if;
925 
926 	if (msg->msg_controllen) {
927 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
928 		if (unlikely(err)) {
929 			kfree(ipc.opt);
930 			return err;
931 		}
932 		if (ipc.opt)
933 			free = 1;
934 		connected = 0;
935 	}
936 	if (!ipc.opt) {
937 		struct ip_options_rcu *inet_opt;
938 
939 		rcu_read_lock();
940 		inet_opt = rcu_dereference(inet->inet_opt);
941 		if (inet_opt) {
942 			memcpy(&opt_copy, inet_opt,
943 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
944 			ipc.opt = &opt_copy.opt;
945 		}
946 		rcu_read_unlock();
947 	}
948 
949 	saddr = ipc.addr;
950 	ipc.addr = faddr = daddr;
951 
952 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
953 
954 	if (ipc.opt && ipc.opt->opt.srr) {
955 		if (!daddr)
956 			return -EINVAL;
957 		faddr = ipc.opt->opt.faddr;
958 		connected = 0;
959 	}
960 	tos = get_rttos(&ipc, inet);
961 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
962 	    (msg->msg_flags & MSG_DONTROUTE) ||
963 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
964 		tos |= RTO_ONLINK;
965 		connected = 0;
966 	}
967 
968 	if (ipv4_is_multicast(daddr)) {
969 		if (!ipc.oif)
970 			ipc.oif = inet->mc_index;
971 		if (!saddr)
972 			saddr = inet->mc_addr;
973 		connected = 0;
974 	} else if (!ipc.oif) {
975 		ipc.oif = inet->uc_index;
976 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
977 		/* oif is set, packet is to local broadcast and
978 		 * and uc_index is set. oif is most likely set
979 		 * by sk_bound_dev_if. If uc_index != oif check if the
980 		 * oif is an L3 master and uc_index is an L3 slave.
981 		 * If so, we want to allow the send using the uc_index.
982 		 */
983 		if (ipc.oif != inet->uc_index &&
984 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
985 							      inet->uc_index)) {
986 			ipc.oif = inet->uc_index;
987 		}
988 	}
989 
990 	if (connected)
991 		rt = (struct rtable *)sk_dst_check(sk, 0);
992 
993 	if (!rt) {
994 		struct net *net = sock_net(sk);
995 		__u8 flow_flags = inet_sk_flowi_flags(sk);
996 
997 		fl4 = &fl4_stack;
998 
999 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1000 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1001 				   flow_flags,
1002 				   faddr, saddr, dport, inet->inet_sport,
1003 				   sk->sk_uid);
1004 
1005 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1006 		rt = ip_route_output_flow(net, fl4, sk);
1007 		if (IS_ERR(rt)) {
1008 			err = PTR_ERR(rt);
1009 			rt = NULL;
1010 			if (err == -ENETUNREACH)
1011 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1012 			goto out;
1013 		}
1014 
1015 		err = -EACCES;
1016 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1017 		    !sock_flag(sk, SOCK_BROADCAST))
1018 			goto out;
1019 		if (connected)
1020 			sk_dst_set(sk, dst_clone(&rt->dst));
1021 	}
1022 
1023 	if (msg->msg_flags&MSG_CONFIRM)
1024 		goto do_confirm;
1025 back_from_confirm:
1026 
1027 	saddr = fl4->saddr;
1028 	if (!ipc.addr)
1029 		daddr = ipc.addr = fl4->daddr;
1030 
1031 	/* Lockless fast path for the non-corking case. */
1032 	if (!corkreq) {
1033 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1034 				  sizeof(struct udphdr), &ipc, &rt,
1035 				  msg->msg_flags);
1036 		err = PTR_ERR(skb);
1037 		if (!IS_ERR_OR_NULL(skb))
1038 			err = udp_send_skb(skb, fl4);
1039 		goto out;
1040 	}
1041 
1042 	lock_sock(sk);
1043 	if (unlikely(up->pending)) {
1044 		/* The socket is already corked while preparing it. */
1045 		/* ... which is an evident application bug. --ANK */
1046 		release_sock(sk);
1047 
1048 		net_dbg_ratelimited("socket already corked\n");
1049 		err = -EINVAL;
1050 		goto out;
1051 	}
1052 	/*
1053 	 *	Now cork the socket to pend data.
1054 	 */
1055 	fl4 = &inet->cork.fl.u.ip4;
1056 	fl4->daddr = daddr;
1057 	fl4->saddr = saddr;
1058 	fl4->fl4_dport = dport;
1059 	fl4->fl4_sport = inet->inet_sport;
1060 	up->pending = AF_INET;
1061 
1062 do_append_data:
1063 	up->len += ulen;
1064 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1065 			     sizeof(struct udphdr), &ipc, &rt,
1066 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1067 	if (err)
1068 		udp_flush_pending_frames(sk);
1069 	else if (!corkreq)
1070 		err = udp_push_pending_frames(sk);
1071 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1072 		up->pending = 0;
1073 	release_sock(sk);
1074 
1075 out:
1076 	ip_rt_put(rt);
1077 	if (free)
1078 		kfree(ipc.opt);
1079 	if (!err)
1080 		return len;
1081 	/*
1082 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1083 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1084 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1085 	 * things).  We could add another new stat but at least for now that
1086 	 * seems like overkill.
1087 	 */
1088 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1089 		UDP_INC_STATS(sock_net(sk),
1090 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1091 	}
1092 	return err;
1093 
1094 do_confirm:
1095 	if (msg->msg_flags & MSG_PROBE)
1096 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1097 	if (!(msg->msg_flags&MSG_PROBE) || len)
1098 		goto back_from_confirm;
1099 	err = 0;
1100 	goto out;
1101 }
1102 EXPORT_SYMBOL(udp_sendmsg);
1103 
1104 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1105 		 size_t size, int flags)
1106 {
1107 	struct inet_sock *inet = inet_sk(sk);
1108 	struct udp_sock *up = udp_sk(sk);
1109 	int ret;
1110 
1111 	if (flags & MSG_SENDPAGE_NOTLAST)
1112 		flags |= MSG_MORE;
1113 
1114 	if (!up->pending) {
1115 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1116 
1117 		/* Call udp_sendmsg to specify destination address which
1118 		 * sendpage interface can't pass.
1119 		 * This will succeed only when the socket is connected.
1120 		 */
1121 		ret = udp_sendmsg(sk, &msg, 0);
1122 		if (ret < 0)
1123 			return ret;
1124 	}
1125 
1126 	lock_sock(sk);
1127 
1128 	if (unlikely(!up->pending)) {
1129 		release_sock(sk);
1130 
1131 		net_dbg_ratelimited("cork failed\n");
1132 		return -EINVAL;
1133 	}
1134 
1135 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1136 			     page, offset, size, flags);
1137 	if (ret == -EOPNOTSUPP) {
1138 		release_sock(sk);
1139 		return sock_no_sendpage(sk->sk_socket, page, offset,
1140 					size, flags);
1141 	}
1142 	if (ret < 0) {
1143 		udp_flush_pending_frames(sk);
1144 		goto out;
1145 	}
1146 
1147 	up->len += size;
1148 	if (!(up->corkflag || (flags&MSG_MORE)))
1149 		ret = udp_push_pending_frames(sk);
1150 	if (!ret)
1151 		ret = size;
1152 out:
1153 	release_sock(sk);
1154 	return ret;
1155 }
1156 
1157 #define UDP_SKB_IS_STATELESS 0x80000000
1158 
1159 static void udp_set_dev_scratch(struct sk_buff *skb)
1160 {
1161 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1162 
1163 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1164 	scratch->_tsize_state = skb->truesize;
1165 #if BITS_PER_LONG == 64
1166 	scratch->len = skb->len;
1167 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1168 	scratch->is_linear = !skb_is_nonlinear(skb);
1169 #endif
1170 	/* all head states execept sp (dst, sk, nf) are always cleared by
1171 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1172 	 * process IP_CMSG_PASSSEC at recvmsg() time
1173 	 */
1174 	if (likely(!skb_sec_path(skb)))
1175 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1176 }
1177 
1178 static int udp_skb_truesize(struct sk_buff *skb)
1179 {
1180 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1181 }
1182 
1183 static bool udp_skb_has_head_state(struct sk_buff *skb)
1184 {
1185 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1186 }
1187 
1188 /* fully reclaim rmem/fwd memory allocated for skb */
1189 static void udp_rmem_release(struct sock *sk, int size, int partial,
1190 			     bool rx_queue_lock_held)
1191 {
1192 	struct udp_sock *up = udp_sk(sk);
1193 	struct sk_buff_head *sk_queue;
1194 	int amt;
1195 
1196 	if (likely(partial)) {
1197 		up->forward_deficit += size;
1198 		size = up->forward_deficit;
1199 		if (size < (sk->sk_rcvbuf >> 2))
1200 			return;
1201 	} else {
1202 		size += up->forward_deficit;
1203 	}
1204 	up->forward_deficit = 0;
1205 
1206 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1207 	 * if the called don't held it already
1208 	 */
1209 	sk_queue = &sk->sk_receive_queue;
1210 	if (!rx_queue_lock_held)
1211 		spin_lock(&sk_queue->lock);
1212 
1213 
1214 	sk->sk_forward_alloc += size;
1215 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1216 	sk->sk_forward_alloc -= amt;
1217 
1218 	if (amt)
1219 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1220 
1221 	atomic_sub(size, &sk->sk_rmem_alloc);
1222 
1223 	/* this can save us from acquiring the rx queue lock on next receive */
1224 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1225 
1226 	if (!rx_queue_lock_held)
1227 		spin_unlock(&sk_queue->lock);
1228 }
1229 
1230 /* Note: called with reader_queue.lock held.
1231  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1232  * This avoids a cache line miss while receive_queue lock is held.
1233  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1234  */
1235 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1236 {
1237 	prefetch(&skb->data);
1238 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1239 }
1240 EXPORT_SYMBOL(udp_skb_destructor);
1241 
1242 /* as above, but the caller held the rx queue lock, too */
1243 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1244 {
1245 	prefetch(&skb->data);
1246 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1247 }
1248 
1249 /* Idea of busylocks is to let producers grab an extra spinlock
1250  * to relieve pressure on the receive_queue spinlock shared by consumer.
1251  * Under flood, this means that only one producer can be in line
1252  * trying to acquire the receive_queue spinlock.
1253  * These busylock can be allocated on a per cpu manner, instead of a
1254  * per socket one (that would consume a cache line per socket)
1255  */
1256 static int udp_busylocks_log __read_mostly;
1257 static spinlock_t *udp_busylocks __read_mostly;
1258 
1259 static spinlock_t *busylock_acquire(void *ptr)
1260 {
1261 	spinlock_t *busy;
1262 
1263 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1264 	spin_lock(busy);
1265 	return busy;
1266 }
1267 
1268 static void busylock_release(spinlock_t *busy)
1269 {
1270 	if (busy)
1271 		spin_unlock(busy);
1272 }
1273 
1274 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1275 {
1276 	struct sk_buff_head *list = &sk->sk_receive_queue;
1277 	int rmem, delta, amt, err = -ENOMEM;
1278 	spinlock_t *busy = NULL;
1279 	int size;
1280 
1281 	/* try to avoid the costly atomic add/sub pair when the receive
1282 	 * queue is full; always allow at least a packet
1283 	 */
1284 	rmem = atomic_read(&sk->sk_rmem_alloc);
1285 	if (rmem > sk->sk_rcvbuf)
1286 		goto drop;
1287 
1288 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1289 	 * having linear skbs :
1290 	 * - Reduce memory overhead and thus increase receive queue capacity
1291 	 * - Less cache line misses at copyout() time
1292 	 * - Less work at consume_skb() (less alien page frag freeing)
1293 	 */
1294 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1295 		skb_condense(skb);
1296 
1297 		busy = busylock_acquire(sk);
1298 	}
1299 	size = skb->truesize;
1300 	udp_set_dev_scratch(skb);
1301 
1302 	/* we drop only if the receive buf is full and the receive
1303 	 * queue contains some other skb
1304 	 */
1305 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1306 	if (rmem > (size + sk->sk_rcvbuf))
1307 		goto uncharge_drop;
1308 
1309 	spin_lock(&list->lock);
1310 	if (size >= sk->sk_forward_alloc) {
1311 		amt = sk_mem_pages(size);
1312 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1313 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1314 			err = -ENOBUFS;
1315 			spin_unlock(&list->lock);
1316 			goto uncharge_drop;
1317 		}
1318 
1319 		sk->sk_forward_alloc += delta;
1320 	}
1321 
1322 	sk->sk_forward_alloc -= size;
1323 
1324 	/* no need to setup a destructor, we will explicitly release the
1325 	 * forward allocated memory on dequeue
1326 	 */
1327 	sock_skb_set_dropcount(sk, skb);
1328 
1329 	__skb_queue_tail(list, skb);
1330 	spin_unlock(&list->lock);
1331 
1332 	if (!sock_flag(sk, SOCK_DEAD))
1333 		sk->sk_data_ready(sk);
1334 
1335 	busylock_release(busy);
1336 	return 0;
1337 
1338 uncharge_drop:
1339 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1340 
1341 drop:
1342 	atomic_inc(&sk->sk_drops);
1343 	busylock_release(busy);
1344 	return err;
1345 }
1346 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1347 
1348 void udp_destruct_sock(struct sock *sk)
1349 {
1350 	/* reclaim completely the forward allocated memory */
1351 	struct udp_sock *up = udp_sk(sk);
1352 	unsigned int total = 0;
1353 	struct sk_buff *skb;
1354 
1355 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1356 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1357 		total += skb->truesize;
1358 		kfree_skb(skb);
1359 	}
1360 	udp_rmem_release(sk, total, 0, true);
1361 
1362 	inet_sock_destruct(sk);
1363 }
1364 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1365 
1366 int udp_init_sock(struct sock *sk)
1367 {
1368 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1369 	sk->sk_destruct = udp_destruct_sock;
1370 	return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(udp_init_sock);
1373 
1374 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1375 {
1376 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1377 		bool slow = lock_sock_fast(sk);
1378 
1379 		sk_peek_offset_bwd(sk, len);
1380 		unlock_sock_fast(sk, slow);
1381 	}
1382 
1383 	if (!skb_unref(skb))
1384 		return;
1385 
1386 	/* In the more common cases we cleared the head states previously,
1387 	 * see __udp_queue_rcv_skb().
1388 	 */
1389 	if (unlikely(udp_skb_has_head_state(skb)))
1390 		skb_release_head_state(skb);
1391 	__consume_stateless_skb(skb);
1392 }
1393 EXPORT_SYMBOL_GPL(skb_consume_udp);
1394 
1395 static struct sk_buff *__first_packet_length(struct sock *sk,
1396 					     struct sk_buff_head *rcvq,
1397 					     int *total)
1398 {
1399 	struct sk_buff *skb;
1400 
1401 	while ((skb = skb_peek(rcvq)) != NULL) {
1402 		if (udp_lib_checksum_complete(skb)) {
1403 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1404 					IS_UDPLITE(sk));
1405 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1406 					IS_UDPLITE(sk));
1407 			atomic_inc(&sk->sk_drops);
1408 			__skb_unlink(skb, rcvq);
1409 			*total += skb->truesize;
1410 			kfree_skb(skb);
1411 		} else {
1412 			/* the csum related bits could be changed, refresh
1413 			 * the scratch area
1414 			 */
1415 			udp_set_dev_scratch(skb);
1416 			break;
1417 		}
1418 	}
1419 	return skb;
1420 }
1421 
1422 /**
1423  *	first_packet_length	- return length of first packet in receive queue
1424  *	@sk: socket
1425  *
1426  *	Drops all bad checksum frames, until a valid one is found.
1427  *	Returns the length of found skb, or -1 if none is found.
1428  */
1429 static int first_packet_length(struct sock *sk)
1430 {
1431 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1432 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1433 	struct sk_buff *skb;
1434 	int total = 0;
1435 	int res;
1436 
1437 	spin_lock_bh(&rcvq->lock);
1438 	skb = __first_packet_length(sk, rcvq, &total);
1439 	if (!skb && !skb_queue_empty(sk_queue)) {
1440 		spin_lock(&sk_queue->lock);
1441 		skb_queue_splice_tail_init(sk_queue, rcvq);
1442 		spin_unlock(&sk_queue->lock);
1443 
1444 		skb = __first_packet_length(sk, rcvq, &total);
1445 	}
1446 	res = skb ? skb->len : -1;
1447 	if (total)
1448 		udp_rmem_release(sk, total, 1, false);
1449 	spin_unlock_bh(&rcvq->lock);
1450 	return res;
1451 }
1452 
1453 /*
1454  *	IOCTL requests applicable to the UDP protocol
1455  */
1456 
1457 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1458 {
1459 	switch (cmd) {
1460 	case SIOCOUTQ:
1461 	{
1462 		int amount = sk_wmem_alloc_get(sk);
1463 
1464 		return put_user(amount, (int __user *)arg);
1465 	}
1466 
1467 	case SIOCINQ:
1468 	{
1469 		int amount = max_t(int, 0, first_packet_length(sk));
1470 
1471 		return put_user(amount, (int __user *)arg);
1472 	}
1473 
1474 	default:
1475 		return -ENOIOCTLCMD;
1476 	}
1477 
1478 	return 0;
1479 }
1480 EXPORT_SYMBOL(udp_ioctl);
1481 
1482 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1483 			       int noblock, int *peeked, int *off, int *err)
1484 {
1485 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1486 	struct sk_buff_head *queue;
1487 	struct sk_buff *last;
1488 	long timeo;
1489 	int error;
1490 
1491 	queue = &udp_sk(sk)->reader_queue;
1492 	flags |= noblock ? MSG_DONTWAIT : 0;
1493 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1494 	do {
1495 		struct sk_buff *skb;
1496 
1497 		error = sock_error(sk);
1498 		if (error)
1499 			break;
1500 
1501 		error = -EAGAIN;
1502 		*peeked = 0;
1503 		do {
1504 			spin_lock_bh(&queue->lock);
1505 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1506 							udp_skb_destructor,
1507 							peeked, off, err,
1508 							&last);
1509 			if (skb) {
1510 				spin_unlock_bh(&queue->lock);
1511 				return skb;
1512 			}
1513 
1514 			if (skb_queue_empty(sk_queue)) {
1515 				spin_unlock_bh(&queue->lock);
1516 				goto busy_check;
1517 			}
1518 
1519 			/* refill the reader queue and walk it again
1520 			 * keep both queues locked to avoid re-acquiring
1521 			 * the sk_receive_queue lock if fwd memory scheduling
1522 			 * is needed.
1523 			 */
1524 			spin_lock(&sk_queue->lock);
1525 			skb_queue_splice_tail_init(sk_queue, queue);
1526 
1527 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1528 							udp_skb_dtor_locked,
1529 							peeked, off, err,
1530 							&last);
1531 			spin_unlock(&sk_queue->lock);
1532 			spin_unlock_bh(&queue->lock);
1533 			if (skb)
1534 				return skb;
1535 
1536 busy_check:
1537 			if (!sk_can_busy_loop(sk))
1538 				break;
1539 
1540 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1541 		} while (!skb_queue_empty(sk_queue));
1542 
1543 		/* sk_queue is empty, reader_queue may contain peeked packets */
1544 	} while (timeo &&
1545 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1546 					      (struct sk_buff *)sk_queue));
1547 
1548 	*err = error;
1549 	return NULL;
1550 }
1551 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1552 
1553 /*
1554  * 	This should be easy, if there is something there we
1555  * 	return it, otherwise we block.
1556  */
1557 
1558 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1559 		int flags, int *addr_len)
1560 {
1561 	struct inet_sock *inet = inet_sk(sk);
1562 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1563 	struct sk_buff *skb;
1564 	unsigned int ulen, copied;
1565 	int peeked, peeking, off;
1566 	int err;
1567 	int is_udplite = IS_UDPLITE(sk);
1568 	bool checksum_valid = false;
1569 
1570 	if (flags & MSG_ERRQUEUE)
1571 		return ip_recv_error(sk, msg, len, addr_len);
1572 
1573 try_again:
1574 	peeking = flags & MSG_PEEK;
1575 	off = sk_peek_offset(sk, flags);
1576 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1577 	if (!skb)
1578 		return err;
1579 
1580 	ulen = udp_skb_len(skb);
1581 	copied = len;
1582 	if (copied > ulen - off)
1583 		copied = ulen - off;
1584 	else if (copied < ulen)
1585 		msg->msg_flags |= MSG_TRUNC;
1586 
1587 	/*
1588 	 * If checksum is needed at all, try to do it while copying the
1589 	 * data.  If the data is truncated, or if we only want a partial
1590 	 * coverage checksum (UDP-Lite), do it before the copy.
1591 	 */
1592 
1593 	if (copied < ulen || peeking ||
1594 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1595 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1596 				!__udp_lib_checksum_complete(skb);
1597 		if (!checksum_valid)
1598 			goto csum_copy_err;
1599 	}
1600 
1601 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1602 		if (udp_skb_is_linear(skb))
1603 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1604 		else
1605 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1606 	} else {
1607 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1608 
1609 		if (err == -EINVAL)
1610 			goto csum_copy_err;
1611 	}
1612 
1613 	if (unlikely(err)) {
1614 		if (!peeked) {
1615 			atomic_inc(&sk->sk_drops);
1616 			UDP_INC_STATS(sock_net(sk),
1617 				      UDP_MIB_INERRORS, is_udplite);
1618 		}
1619 		kfree_skb(skb);
1620 		return err;
1621 	}
1622 
1623 	if (!peeked)
1624 		UDP_INC_STATS(sock_net(sk),
1625 			      UDP_MIB_INDATAGRAMS, is_udplite);
1626 
1627 	sock_recv_ts_and_drops(msg, sk, skb);
1628 
1629 	/* Copy the address. */
1630 	if (sin) {
1631 		sin->sin_family = AF_INET;
1632 		sin->sin_port = udp_hdr(skb)->source;
1633 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1634 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1635 		*addr_len = sizeof(*sin);
1636 	}
1637 	if (inet->cmsg_flags)
1638 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1639 
1640 	err = copied;
1641 	if (flags & MSG_TRUNC)
1642 		err = ulen;
1643 
1644 	skb_consume_udp(sk, skb, peeking ? -err : err);
1645 	return err;
1646 
1647 csum_copy_err:
1648 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1649 				 udp_skb_destructor)) {
1650 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1651 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1652 	}
1653 	kfree_skb(skb);
1654 
1655 	/* starting over for a new packet, but check if we need to yield */
1656 	cond_resched();
1657 	msg->msg_flags &= ~MSG_TRUNC;
1658 	goto try_again;
1659 }
1660 
1661 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1662 {
1663 	/* This check is replicated from __ip4_datagram_connect() and
1664 	 * intended to prevent BPF program called below from accessing bytes
1665 	 * that are out of the bound specified by user in addr_len.
1666 	 */
1667 	if (addr_len < sizeof(struct sockaddr_in))
1668 		return -EINVAL;
1669 
1670 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1671 }
1672 EXPORT_SYMBOL(udp_pre_connect);
1673 
1674 int __udp_disconnect(struct sock *sk, int flags)
1675 {
1676 	struct inet_sock *inet = inet_sk(sk);
1677 	/*
1678 	 *	1003.1g - break association.
1679 	 */
1680 
1681 	sk->sk_state = TCP_CLOSE;
1682 	inet->inet_daddr = 0;
1683 	inet->inet_dport = 0;
1684 	sock_rps_reset_rxhash(sk);
1685 	sk->sk_bound_dev_if = 0;
1686 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1687 		inet_reset_saddr(sk);
1688 
1689 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1690 		sk->sk_prot->unhash(sk);
1691 		inet->inet_sport = 0;
1692 	}
1693 	sk_dst_reset(sk);
1694 	return 0;
1695 }
1696 EXPORT_SYMBOL(__udp_disconnect);
1697 
1698 int udp_disconnect(struct sock *sk, int flags)
1699 {
1700 	lock_sock(sk);
1701 	__udp_disconnect(sk, flags);
1702 	release_sock(sk);
1703 	return 0;
1704 }
1705 EXPORT_SYMBOL(udp_disconnect);
1706 
1707 void udp_lib_unhash(struct sock *sk)
1708 {
1709 	if (sk_hashed(sk)) {
1710 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1711 		struct udp_hslot *hslot, *hslot2;
1712 
1713 		hslot  = udp_hashslot(udptable, sock_net(sk),
1714 				      udp_sk(sk)->udp_port_hash);
1715 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1716 
1717 		spin_lock_bh(&hslot->lock);
1718 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1719 			reuseport_detach_sock(sk);
1720 		if (sk_del_node_init_rcu(sk)) {
1721 			hslot->count--;
1722 			inet_sk(sk)->inet_num = 0;
1723 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1724 
1725 			spin_lock(&hslot2->lock);
1726 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1727 			hslot2->count--;
1728 			spin_unlock(&hslot2->lock);
1729 		}
1730 		spin_unlock_bh(&hslot->lock);
1731 	}
1732 }
1733 EXPORT_SYMBOL(udp_lib_unhash);
1734 
1735 /*
1736  * inet_rcv_saddr was changed, we must rehash secondary hash
1737  */
1738 void udp_lib_rehash(struct sock *sk, u16 newhash)
1739 {
1740 	if (sk_hashed(sk)) {
1741 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1742 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1743 
1744 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1745 		nhslot2 = udp_hashslot2(udptable, newhash);
1746 		udp_sk(sk)->udp_portaddr_hash = newhash;
1747 
1748 		if (hslot2 != nhslot2 ||
1749 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1750 			hslot = udp_hashslot(udptable, sock_net(sk),
1751 					     udp_sk(sk)->udp_port_hash);
1752 			/* we must lock primary chain too */
1753 			spin_lock_bh(&hslot->lock);
1754 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1755 				reuseport_detach_sock(sk);
1756 
1757 			if (hslot2 != nhslot2) {
1758 				spin_lock(&hslot2->lock);
1759 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1760 				hslot2->count--;
1761 				spin_unlock(&hslot2->lock);
1762 
1763 				spin_lock(&nhslot2->lock);
1764 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1765 							 &nhslot2->head);
1766 				nhslot2->count++;
1767 				spin_unlock(&nhslot2->lock);
1768 			}
1769 
1770 			spin_unlock_bh(&hslot->lock);
1771 		}
1772 	}
1773 }
1774 EXPORT_SYMBOL(udp_lib_rehash);
1775 
1776 static void udp_v4_rehash(struct sock *sk)
1777 {
1778 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1779 					  inet_sk(sk)->inet_rcv_saddr,
1780 					  inet_sk(sk)->inet_num);
1781 	udp_lib_rehash(sk, new_hash);
1782 }
1783 
1784 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1785 {
1786 	int rc;
1787 
1788 	if (inet_sk(sk)->inet_daddr) {
1789 		sock_rps_save_rxhash(sk, skb);
1790 		sk_mark_napi_id(sk, skb);
1791 		sk_incoming_cpu_update(sk);
1792 	} else {
1793 		sk_mark_napi_id_once(sk, skb);
1794 	}
1795 
1796 	rc = __udp_enqueue_schedule_skb(sk, skb);
1797 	if (rc < 0) {
1798 		int is_udplite = IS_UDPLITE(sk);
1799 
1800 		/* Note that an ENOMEM error is charged twice */
1801 		if (rc == -ENOMEM)
1802 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1803 					is_udplite);
1804 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1805 		kfree_skb(skb);
1806 		trace_udp_fail_queue_rcv_skb(rc, sk);
1807 		return -1;
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 static struct static_key udp_encap_needed __read_mostly;
1814 void udp_encap_enable(void)
1815 {
1816 	static_key_enable(&udp_encap_needed);
1817 }
1818 EXPORT_SYMBOL(udp_encap_enable);
1819 
1820 /* returns:
1821  *  -1: error
1822  *   0: success
1823  *  >0: "udp encap" protocol resubmission
1824  *
1825  * Note that in the success and error cases, the skb is assumed to
1826  * have either been requeued or freed.
1827  */
1828 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1829 {
1830 	struct udp_sock *up = udp_sk(sk);
1831 	int is_udplite = IS_UDPLITE(sk);
1832 
1833 	/*
1834 	 *	Charge it to the socket, dropping if the queue is full.
1835 	 */
1836 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1837 		goto drop;
1838 	nf_reset(skb);
1839 
1840 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1841 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1842 
1843 		/*
1844 		 * This is an encapsulation socket so pass the skb to
1845 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1846 		 * fall through and pass this up the UDP socket.
1847 		 * up->encap_rcv() returns the following value:
1848 		 * =0 if skb was successfully passed to the encap
1849 		 *    handler or was discarded by it.
1850 		 * >0 if skb should be passed on to UDP.
1851 		 * <0 if skb should be resubmitted as proto -N
1852 		 */
1853 
1854 		/* if we're overly short, let UDP handle it */
1855 		encap_rcv = READ_ONCE(up->encap_rcv);
1856 		if (encap_rcv) {
1857 			int ret;
1858 
1859 			/* Verify checksum before giving to encap */
1860 			if (udp_lib_checksum_complete(skb))
1861 				goto csum_error;
1862 
1863 			ret = encap_rcv(sk, skb);
1864 			if (ret <= 0) {
1865 				__UDP_INC_STATS(sock_net(sk),
1866 						UDP_MIB_INDATAGRAMS,
1867 						is_udplite);
1868 				return -ret;
1869 			}
1870 		}
1871 
1872 		/* FALLTHROUGH -- it's a UDP Packet */
1873 	}
1874 
1875 	/*
1876 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1877 	 */
1878 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1879 
1880 		/*
1881 		 * MIB statistics other than incrementing the error count are
1882 		 * disabled for the following two types of errors: these depend
1883 		 * on the application settings, not on the functioning of the
1884 		 * protocol stack as such.
1885 		 *
1886 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1887 		 * way ... to ... at least let the receiving application block
1888 		 * delivery of packets with coverage values less than a value
1889 		 * provided by the application."
1890 		 */
1891 		if (up->pcrlen == 0) {          /* full coverage was set  */
1892 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1893 					    UDP_SKB_CB(skb)->cscov, skb->len);
1894 			goto drop;
1895 		}
1896 		/* The next case involves violating the min. coverage requested
1897 		 * by the receiver. This is subtle: if receiver wants x and x is
1898 		 * greater than the buffersize/MTU then receiver will complain
1899 		 * that it wants x while sender emits packets of smaller size y.
1900 		 * Therefore the above ...()->partial_cov statement is essential.
1901 		 */
1902 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1903 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1904 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1905 			goto drop;
1906 		}
1907 	}
1908 
1909 	prefetch(&sk->sk_rmem_alloc);
1910 	if (rcu_access_pointer(sk->sk_filter) &&
1911 	    udp_lib_checksum_complete(skb))
1912 			goto csum_error;
1913 
1914 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1915 		goto drop;
1916 
1917 	udp_csum_pull_header(skb);
1918 
1919 	ipv4_pktinfo_prepare(sk, skb);
1920 	return __udp_queue_rcv_skb(sk, skb);
1921 
1922 csum_error:
1923 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1924 drop:
1925 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1926 	atomic_inc(&sk->sk_drops);
1927 	kfree_skb(skb);
1928 	return -1;
1929 }
1930 
1931 /* For TCP sockets, sk_rx_dst is protected by socket lock
1932  * For UDP, we use xchg() to guard against concurrent changes.
1933  */
1934 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1935 {
1936 	struct dst_entry *old;
1937 
1938 	if (dst_hold_safe(dst)) {
1939 		old = xchg(&sk->sk_rx_dst, dst);
1940 		dst_release(old);
1941 		return old != dst;
1942 	}
1943 	return false;
1944 }
1945 EXPORT_SYMBOL(udp_sk_rx_dst_set);
1946 
1947 /*
1948  *	Multicasts and broadcasts go to each listener.
1949  *
1950  *	Note: called only from the BH handler context.
1951  */
1952 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1953 				    struct udphdr  *uh,
1954 				    __be32 saddr, __be32 daddr,
1955 				    struct udp_table *udptable,
1956 				    int proto)
1957 {
1958 	struct sock *sk, *first = NULL;
1959 	unsigned short hnum = ntohs(uh->dest);
1960 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1961 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1962 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1963 	int dif = skb->dev->ifindex;
1964 	int sdif = inet_sdif(skb);
1965 	struct hlist_node *node;
1966 	struct sk_buff *nskb;
1967 
1968 	if (use_hash2) {
1969 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1970 			    udptable->mask;
1971 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1972 start_lookup:
1973 		hslot = &udptable->hash2[hash2];
1974 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1975 	}
1976 
1977 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1978 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1979 					 uh->source, saddr, dif, sdif, hnum))
1980 			continue;
1981 
1982 		if (!first) {
1983 			first = sk;
1984 			continue;
1985 		}
1986 		nskb = skb_clone(skb, GFP_ATOMIC);
1987 
1988 		if (unlikely(!nskb)) {
1989 			atomic_inc(&sk->sk_drops);
1990 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1991 					IS_UDPLITE(sk));
1992 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1993 					IS_UDPLITE(sk));
1994 			continue;
1995 		}
1996 		if (udp_queue_rcv_skb(sk, nskb) > 0)
1997 			consume_skb(nskb);
1998 	}
1999 
2000 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2001 	if (use_hash2 && hash2 != hash2_any) {
2002 		hash2 = hash2_any;
2003 		goto start_lookup;
2004 	}
2005 
2006 	if (first) {
2007 		if (udp_queue_rcv_skb(first, skb) > 0)
2008 			consume_skb(skb);
2009 	} else {
2010 		kfree_skb(skb);
2011 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2012 				proto == IPPROTO_UDPLITE);
2013 	}
2014 	return 0;
2015 }
2016 
2017 /* Initialize UDP checksum. If exited with zero value (success),
2018  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2019  * Otherwise, csum completion requires chacksumming packet body,
2020  * including udp header and folding it to skb->csum.
2021  */
2022 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2023 				 int proto)
2024 {
2025 	int err;
2026 
2027 	UDP_SKB_CB(skb)->partial_cov = 0;
2028 	UDP_SKB_CB(skb)->cscov = skb->len;
2029 
2030 	if (proto == IPPROTO_UDPLITE) {
2031 		err = udplite_checksum_init(skb, uh);
2032 		if (err)
2033 			return err;
2034 
2035 		if (UDP_SKB_CB(skb)->partial_cov) {
2036 			skb->csum = inet_compute_pseudo(skb, proto);
2037 			return 0;
2038 		}
2039 	}
2040 
2041 	/* Note, we are only interested in != 0 or == 0, thus the
2042 	 * force to int.
2043 	 */
2044 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2045 							 inet_compute_pseudo);
2046 }
2047 
2048 /*
2049  *	All we need to do is get the socket, and then do a checksum.
2050  */
2051 
2052 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2053 		   int proto)
2054 {
2055 	struct sock *sk;
2056 	struct udphdr *uh;
2057 	unsigned short ulen;
2058 	struct rtable *rt = skb_rtable(skb);
2059 	__be32 saddr, daddr;
2060 	struct net *net = dev_net(skb->dev);
2061 
2062 	/*
2063 	 *  Validate the packet.
2064 	 */
2065 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2066 		goto drop;		/* No space for header. */
2067 
2068 	uh   = udp_hdr(skb);
2069 	ulen = ntohs(uh->len);
2070 	saddr = ip_hdr(skb)->saddr;
2071 	daddr = ip_hdr(skb)->daddr;
2072 
2073 	if (ulen > skb->len)
2074 		goto short_packet;
2075 
2076 	if (proto == IPPROTO_UDP) {
2077 		/* UDP validates ulen. */
2078 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2079 			goto short_packet;
2080 		uh = udp_hdr(skb);
2081 	}
2082 
2083 	if (udp4_csum_init(skb, uh, proto))
2084 		goto csum_error;
2085 
2086 	sk = skb_steal_sock(skb);
2087 	if (sk) {
2088 		struct dst_entry *dst = skb_dst(skb);
2089 		int ret;
2090 
2091 		if (unlikely(sk->sk_rx_dst != dst))
2092 			udp_sk_rx_dst_set(sk, dst);
2093 
2094 		ret = udp_queue_rcv_skb(sk, skb);
2095 		sock_put(sk);
2096 		/* a return value > 0 means to resubmit the input, but
2097 		 * it wants the return to be -protocol, or 0
2098 		 */
2099 		if (ret > 0)
2100 			return -ret;
2101 		return 0;
2102 	}
2103 
2104 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2105 		return __udp4_lib_mcast_deliver(net, skb, uh,
2106 						saddr, daddr, udptable, proto);
2107 
2108 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2109 	if (sk) {
2110 		int ret;
2111 
2112 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2113 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2114 						 inet_compute_pseudo);
2115 
2116 		ret = udp_queue_rcv_skb(sk, skb);
2117 
2118 		/* a return value > 0 means to resubmit the input, but
2119 		 * it wants the return to be -protocol, or 0
2120 		 */
2121 		if (ret > 0)
2122 			return -ret;
2123 		return 0;
2124 	}
2125 
2126 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2127 		goto drop;
2128 	nf_reset(skb);
2129 
2130 	/* No socket. Drop packet silently, if checksum is wrong */
2131 	if (udp_lib_checksum_complete(skb))
2132 		goto csum_error;
2133 
2134 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2135 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2136 
2137 	/*
2138 	 * Hmm.  We got an UDP packet to a port to which we
2139 	 * don't wanna listen.  Ignore it.
2140 	 */
2141 	kfree_skb(skb);
2142 	return 0;
2143 
2144 short_packet:
2145 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2146 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2147 			    &saddr, ntohs(uh->source),
2148 			    ulen, skb->len,
2149 			    &daddr, ntohs(uh->dest));
2150 	goto drop;
2151 
2152 csum_error:
2153 	/*
2154 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2155 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2156 	 */
2157 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2158 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2159 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2160 			    ulen);
2161 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2162 drop:
2163 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2164 	kfree_skb(skb);
2165 	return 0;
2166 }
2167 
2168 /* We can only early demux multicast if there is a single matching socket.
2169  * If more than one socket found returns NULL
2170  */
2171 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2172 						  __be16 loc_port, __be32 loc_addr,
2173 						  __be16 rmt_port, __be32 rmt_addr,
2174 						  int dif, int sdif)
2175 {
2176 	struct sock *sk, *result;
2177 	unsigned short hnum = ntohs(loc_port);
2178 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2179 	struct udp_hslot *hslot = &udp_table.hash[slot];
2180 
2181 	/* Do not bother scanning a too big list */
2182 	if (hslot->count > 10)
2183 		return NULL;
2184 
2185 	result = NULL;
2186 	sk_for_each_rcu(sk, &hslot->head) {
2187 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2188 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2189 			if (result)
2190 				return NULL;
2191 			result = sk;
2192 		}
2193 	}
2194 
2195 	return result;
2196 }
2197 
2198 /* For unicast we should only early demux connected sockets or we can
2199  * break forwarding setups.  The chains here can be long so only check
2200  * if the first socket is an exact match and if not move on.
2201  */
2202 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2203 					    __be16 loc_port, __be32 loc_addr,
2204 					    __be16 rmt_port, __be32 rmt_addr,
2205 					    int dif, int sdif)
2206 {
2207 	unsigned short hnum = ntohs(loc_port);
2208 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2209 	unsigned int slot2 = hash2 & udp_table.mask;
2210 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2211 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2212 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2213 	struct sock *sk;
2214 
2215 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2216 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2217 			       loc_addr, ports, dif, sdif))
2218 			return sk;
2219 		/* Only check first socket in chain */
2220 		break;
2221 	}
2222 	return NULL;
2223 }
2224 
2225 int udp_v4_early_demux(struct sk_buff *skb)
2226 {
2227 	struct net *net = dev_net(skb->dev);
2228 	struct in_device *in_dev = NULL;
2229 	const struct iphdr *iph;
2230 	const struct udphdr *uh;
2231 	struct sock *sk = NULL;
2232 	struct dst_entry *dst;
2233 	int dif = skb->dev->ifindex;
2234 	int sdif = inet_sdif(skb);
2235 	int ours;
2236 
2237 	/* validate the packet */
2238 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2239 		return 0;
2240 
2241 	iph = ip_hdr(skb);
2242 	uh = udp_hdr(skb);
2243 
2244 	if (skb->pkt_type == PACKET_MULTICAST) {
2245 		in_dev = __in_dev_get_rcu(skb->dev);
2246 
2247 		if (!in_dev)
2248 			return 0;
2249 
2250 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2251 				       iph->protocol);
2252 		if (!ours)
2253 			return 0;
2254 
2255 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2256 						   uh->source, iph->saddr,
2257 						   dif, sdif);
2258 	} else if (skb->pkt_type == PACKET_HOST) {
2259 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2260 					     uh->source, iph->saddr, dif, sdif);
2261 	}
2262 
2263 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2264 		return 0;
2265 
2266 	skb->sk = sk;
2267 	skb->destructor = sock_efree;
2268 	dst = READ_ONCE(sk->sk_rx_dst);
2269 
2270 	if (dst)
2271 		dst = dst_check(dst, 0);
2272 	if (dst) {
2273 		u32 itag = 0;
2274 
2275 		/* set noref for now.
2276 		 * any place which wants to hold dst has to call
2277 		 * dst_hold_safe()
2278 		 */
2279 		skb_dst_set_noref(skb, dst);
2280 
2281 		/* for unconnected multicast sockets we need to validate
2282 		 * the source on each packet
2283 		 */
2284 		if (!inet_sk(sk)->inet_daddr && in_dev)
2285 			return ip_mc_validate_source(skb, iph->daddr,
2286 						     iph->saddr, iph->tos,
2287 						     skb->dev, in_dev, &itag);
2288 	}
2289 	return 0;
2290 }
2291 
2292 int udp_rcv(struct sk_buff *skb)
2293 {
2294 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2295 }
2296 
2297 void udp_destroy_sock(struct sock *sk)
2298 {
2299 	struct udp_sock *up = udp_sk(sk);
2300 	bool slow = lock_sock_fast(sk);
2301 	udp_flush_pending_frames(sk);
2302 	unlock_sock_fast(sk, slow);
2303 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2304 		void (*encap_destroy)(struct sock *sk);
2305 		encap_destroy = READ_ONCE(up->encap_destroy);
2306 		if (encap_destroy)
2307 			encap_destroy(sk);
2308 	}
2309 }
2310 
2311 /*
2312  *	Socket option code for UDP
2313  */
2314 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2315 		       char __user *optval, unsigned int optlen,
2316 		       int (*push_pending_frames)(struct sock *))
2317 {
2318 	struct udp_sock *up = udp_sk(sk);
2319 	int val, valbool;
2320 	int err = 0;
2321 	int is_udplite = IS_UDPLITE(sk);
2322 
2323 	if (optlen < sizeof(int))
2324 		return -EINVAL;
2325 
2326 	if (get_user(val, (int __user *)optval))
2327 		return -EFAULT;
2328 
2329 	valbool = val ? 1 : 0;
2330 
2331 	switch (optname) {
2332 	case UDP_CORK:
2333 		if (val != 0) {
2334 			up->corkflag = 1;
2335 		} else {
2336 			up->corkflag = 0;
2337 			lock_sock(sk);
2338 			push_pending_frames(sk);
2339 			release_sock(sk);
2340 		}
2341 		break;
2342 
2343 	case UDP_ENCAP:
2344 		switch (val) {
2345 		case 0:
2346 		case UDP_ENCAP_ESPINUDP:
2347 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2348 			up->encap_rcv = xfrm4_udp_encap_rcv;
2349 			/* FALLTHROUGH */
2350 		case UDP_ENCAP_L2TPINUDP:
2351 			up->encap_type = val;
2352 			udp_encap_enable();
2353 			break;
2354 		default:
2355 			err = -ENOPROTOOPT;
2356 			break;
2357 		}
2358 		break;
2359 
2360 	case UDP_NO_CHECK6_TX:
2361 		up->no_check6_tx = valbool;
2362 		break;
2363 
2364 	case UDP_NO_CHECK6_RX:
2365 		up->no_check6_rx = valbool;
2366 		break;
2367 
2368 	/*
2369 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2370 	 */
2371 	/* The sender sets actual checksum coverage length via this option.
2372 	 * The case coverage > packet length is handled by send module. */
2373 	case UDPLITE_SEND_CSCOV:
2374 		if (!is_udplite)         /* Disable the option on UDP sockets */
2375 			return -ENOPROTOOPT;
2376 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2377 			val = 8;
2378 		else if (val > USHRT_MAX)
2379 			val = USHRT_MAX;
2380 		up->pcslen = val;
2381 		up->pcflag |= UDPLITE_SEND_CC;
2382 		break;
2383 
2384 	/* The receiver specifies a minimum checksum coverage value. To make
2385 	 * sense, this should be set to at least 8 (as done below). If zero is
2386 	 * used, this again means full checksum coverage.                     */
2387 	case UDPLITE_RECV_CSCOV:
2388 		if (!is_udplite)         /* Disable the option on UDP sockets */
2389 			return -ENOPROTOOPT;
2390 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2391 			val = 8;
2392 		else if (val > USHRT_MAX)
2393 			val = USHRT_MAX;
2394 		up->pcrlen = val;
2395 		up->pcflag |= UDPLITE_RECV_CC;
2396 		break;
2397 
2398 	default:
2399 		err = -ENOPROTOOPT;
2400 		break;
2401 	}
2402 
2403 	return err;
2404 }
2405 EXPORT_SYMBOL(udp_lib_setsockopt);
2406 
2407 int udp_setsockopt(struct sock *sk, int level, int optname,
2408 		   char __user *optval, unsigned int optlen)
2409 {
2410 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2411 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2412 					  udp_push_pending_frames);
2413 	return ip_setsockopt(sk, level, optname, optval, optlen);
2414 }
2415 
2416 #ifdef CONFIG_COMPAT
2417 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2418 			  char __user *optval, unsigned int optlen)
2419 {
2420 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2421 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2422 					  udp_push_pending_frames);
2423 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2424 }
2425 #endif
2426 
2427 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2428 		       char __user *optval, int __user *optlen)
2429 {
2430 	struct udp_sock *up = udp_sk(sk);
2431 	int val, len;
2432 
2433 	if (get_user(len, optlen))
2434 		return -EFAULT;
2435 
2436 	len = min_t(unsigned int, len, sizeof(int));
2437 
2438 	if (len < 0)
2439 		return -EINVAL;
2440 
2441 	switch (optname) {
2442 	case UDP_CORK:
2443 		val = up->corkflag;
2444 		break;
2445 
2446 	case UDP_ENCAP:
2447 		val = up->encap_type;
2448 		break;
2449 
2450 	case UDP_NO_CHECK6_TX:
2451 		val = up->no_check6_tx;
2452 		break;
2453 
2454 	case UDP_NO_CHECK6_RX:
2455 		val = up->no_check6_rx;
2456 		break;
2457 
2458 	/* The following two cannot be changed on UDP sockets, the return is
2459 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2460 	case UDPLITE_SEND_CSCOV:
2461 		val = up->pcslen;
2462 		break;
2463 
2464 	case UDPLITE_RECV_CSCOV:
2465 		val = up->pcrlen;
2466 		break;
2467 
2468 	default:
2469 		return -ENOPROTOOPT;
2470 	}
2471 
2472 	if (put_user(len, optlen))
2473 		return -EFAULT;
2474 	if (copy_to_user(optval, &val, len))
2475 		return -EFAULT;
2476 	return 0;
2477 }
2478 EXPORT_SYMBOL(udp_lib_getsockopt);
2479 
2480 int udp_getsockopt(struct sock *sk, int level, int optname,
2481 		   char __user *optval, int __user *optlen)
2482 {
2483 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2484 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2485 	return ip_getsockopt(sk, level, optname, optval, optlen);
2486 }
2487 
2488 #ifdef CONFIG_COMPAT
2489 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2490 				 char __user *optval, int __user *optlen)
2491 {
2492 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2493 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2494 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2495 }
2496 #endif
2497 /**
2498  * 	udp_poll - wait for a UDP event.
2499  *	@file - file struct
2500  *	@sock - socket
2501  *	@wait - poll table
2502  *
2503  *	This is same as datagram poll, except for the special case of
2504  *	blocking sockets. If application is using a blocking fd
2505  *	and a packet with checksum error is in the queue;
2506  *	then it could get return from select indicating data available
2507  *	but then block when reading it. Add special case code
2508  *	to work around these arguably broken applications.
2509  */
2510 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2511 {
2512 	__poll_t mask = datagram_poll(file, sock, wait);
2513 	struct sock *sk = sock->sk;
2514 
2515 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2516 		mask |= EPOLLIN | EPOLLRDNORM;
2517 
2518 	/* Check for false positives due to checksum errors */
2519 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2520 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2521 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2522 
2523 	return mask;
2524 
2525 }
2526 EXPORT_SYMBOL(udp_poll);
2527 
2528 int udp_abort(struct sock *sk, int err)
2529 {
2530 	lock_sock(sk);
2531 
2532 	sk->sk_err = err;
2533 	sk->sk_error_report(sk);
2534 	__udp_disconnect(sk, 0);
2535 
2536 	release_sock(sk);
2537 
2538 	return 0;
2539 }
2540 EXPORT_SYMBOL_GPL(udp_abort);
2541 
2542 struct proto udp_prot = {
2543 	.name			= "UDP",
2544 	.owner			= THIS_MODULE,
2545 	.close			= udp_lib_close,
2546 	.pre_connect		= udp_pre_connect,
2547 	.connect		= ip4_datagram_connect,
2548 	.disconnect		= udp_disconnect,
2549 	.ioctl			= udp_ioctl,
2550 	.init			= udp_init_sock,
2551 	.destroy		= udp_destroy_sock,
2552 	.setsockopt		= udp_setsockopt,
2553 	.getsockopt		= udp_getsockopt,
2554 	.sendmsg		= udp_sendmsg,
2555 	.recvmsg		= udp_recvmsg,
2556 	.sendpage		= udp_sendpage,
2557 	.release_cb		= ip4_datagram_release_cb,
2558 	.hash			= udp_lib_hash,
2559 	.unhash			= udp_lib_unhash,
2560 	.rehash			= udp_v4_rehash,
2561 	.get_port		= udp_v4_get_port,
2562 	.memory_allocated	= &udp_memory_allocated,
2563 	.sysctl_mem		= sysctl_udp_mem,
2564 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2565 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2566 	.obj_size		= sizeof(struct udp_sock),
2567 	.h.udp_table		= &udp_table,
2568 #ifdef CONFIG_COMPAT
2569 	.compat_setsockopt	= compat_udp_setsockopt,
2570 	.compat_getsockopt	= compat_udp_getsockopt,
2571 #endif
2572 	.diag_destroy		= udp_abort,
2573 };
2574 EXPORT_SYMBOL(udp_prot);
2575 
2576 /* ------------------------------------------------------------------------ */
2577 #ifdef CONFIG_PROC_FS
2578 
2579 static struct sock *udp_get_first(struct seq_file *seq, int start)
2580 {
2581 	struct sock *sk;
2582 	struct udp_iter_state *state = seq->private;
2583 	struct net *net = seq_file_net(seq);
2584 
2585 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2586 	     ++state->bucket) {
2587 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2588 
2589 		if (hlist_empty(&hslot->head))
2590 			continue;
2591 
2592 		spin_lock_bh(&hslot->lock);
2593 		sk_for_each(sk, &hslot->head) {
2594 			if (!net_eq(sock_net(sk), net))
2595 				continue;
2596 			if (sk->sk_family == state->family)
2597 				goto found;
2598 		}
2599 		spin_unlock_bh(&hslot->lock);
2600 	}
2601 	sk = NULL;
2602 found:
2603 	return sk;
2604 }
2605 
2606 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2607 {
2608 	struct udp_iter_state *state = seq->private;
2609 	struct net *net = seq_file_net(seq);
2610 
2611 	do {
2612 		sk = sk_next(sk);
2613 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2614 
2615 	if (!sk) {
2616 		if (state->bucket <= state->udp_table->mask)
2617 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2618 		return udp_get_first(seq, state->bucket + 1);
2619 	}
2620 	return sk;
2621 }
2622 
2623 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2624 {
2625 	struct sock *sk = udp_get_first(seq, 0);
2626 
2627 	if (sk)
2628 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2629 			--pos;
2630 	return pos ? NULL : sk;
2631 }
2632 
2633 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2634 {
2635 	struct udp_iter_state *state = seq->private;
2636 	state->bucket = MAX_UDP_PORTS;
2637 
2638 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2639 }
2640 
2641 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2642 {
2643 	struct sock *sk;
2644 
2645 	if (v == SEQ_START_TOKEN)
2646 		sk = udp_get_idx(seq, 0);
2647 	else
2648 		sk = udp_get_next(seq, v);
2649 
2650 	++*pos;
2651 	return sk;
2652 }
2653 
2654 static void udp_seq_stop(struct seq_file *seq, void *v)
2655 {
2656 	struct udp_iter_state *state = seq->private;
2657 
2658 	if (state->bucket <= state->udp_table->mask)
2659 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2660 }
2661 
2662 int udp_seq_open(struct inode *inode, struct file *file)
2663 {
2664 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2665 	struct udp_iter_state *s;
2666 	int err;
2667 
2668 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2669 			   sizeof(struct udp_iter_state));
2670 	if (err < 0)
2671 		return err;
2672 
2673 	s = ((struct seq_file *)file->private_data)->private;
2674 	s->family		= afinfo->family;
2675 	s->udp_table		= afinfo->udp_table;
2676 	return err;
2677 }
2678 EXPORT_SYMBOL(udp_seq_open);
2679 
2680 /* ------------------------------------------------------------------------ */
2681 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2682 {
2683 	struct proc_dir_entry *p;
2684 	int rc = 0;
2685 
2686 	afinfo->seq_ops.start		= udp_seq_start;
2687 	afinfo->seq_ops.next		= udp_seq_next;
2688 	afinfo->seq_ops.stop		= udp_seq_stop;
2689 
2690 	p = proc_create_data(afinfo->name, 0444, net->proc_net,
2691 			     afinfo->seq_fops, afinfo);
2692 	if (!p)
2693 		rc = -ENOMEM;
2694 	return rc;
2695 }
2696 EXPORT_SYMBOL(udp_proc_register);
2697 
2698 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2699 {
2700 	remove_proc_entry(afinfo->name, net->proc_net);
2701 }
2702 EXPORT_SYMBOL(udp_proc_unregister);
2703 
2704 /* ------------------------------------------------------------------------ */
2705 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2706 		int bucket)
2707 {
2708 	struct inet_sock *inet = inet_sk(sp);
2709 	__be32 dest = inet->inet_daddr;
2710 	__be32 src  = inet->inet_rcv_saddr;
2711 	__u16 destp	  = ntohs(inet->inet_dport);
2712 	__u16 srcp	  = ntohs(inet->inet_sport);
2713 
2714 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2715 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2716 		bucket, src, srcp, dest, destp, sp->sk_state,
2717 		sk_wmem_alloc_get(sp),
2718 		sk_rmem_alloc_get(sp),
2719 		0, 0L, 0,
2720 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2721 		0, sock_i_ino(sp),
2722 		refcount_read(&sp->sk_refcnt), sp,
2723 		atomic_read(&sp->sk_drops));
2724 }
2725 
2726 int udp4_seq_show(struct seq_file *seq, void *v)
2727 {
2728 	seq_setwidth(seq, 127);
2729 	if (v == SEQ_START_TOKEN)
2730 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2731 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2732 			   "inode ref pointer drops");
2733 	else {
2734 		struct udp_iter_state *state = seq->private;
2735 
2736 		udp4_format_sock(v, seq, state->bucket);
2737 	}
2738 	seq_pad(seq, '\n');
2739 	return 0;
2740 }
2741 
2742 static const struct file_operations udp_afinfo_seq_fops = {
2743 	.open     = udp_seq_open,
2744 	.read     = seq_read,
2745 	.llseek   = seq_lseek,
2746 	.release  = seq_release_net
2747 };
2748 
2749 /* ------------------------------------------------------------------------ */
2750 static struct udp_seq_afinfo udp4_seq_afinfo = {
2751 	.name		= "udp",
2752 	.family		= AF_INET,
2753 	.udp_table	= &udp_table,
2754 	.seq_fops	= &udp_afinfo_seq_fops,
2755 	.seq_ops	= {
2756 		.show		= udp4_seq_show,
2757 	},
2758 };
2759 
2760 static int __net_init udp4_proc_init_net(struct net *net)
2761 {
2762 	return udp_proc_register(net, &udp4_seq_afinfo);
2763 }
2764 
2765 static void __net_exit udp4_proc_exit_net(struct net *net)
2766 {
2767 	udp_proc_unregister(net, &udp4_seq_afinfo);
2768 }
2769 
2770 static struct pernet_operations udp4_net_ops = {
2771 	.init = udp4_proc_init_net,
2772 	.exit = udp4_proc_exit_net,
2773 };
2774 
2775 int __init udp4_proc_init(void)
2776 {
2777 	return register_pernet_subsys(&udp4_net_ops);
2778 }
2779 
2780 void udp4_proc_exit(void)
2781 {
2782 	unregister_pernet_subsys(&udp4_net_ops);
2783 }
2784 #endif /* CONFIG_PROC_FS */
2785 
2786 static __initdata unsigned long uhash_entries;
2787 static int __init set_uhash_entries(char *str)
2788 {
2789 	ssize_t ret;
2790 
2791 	if (!str)
2792 		return 0;
2793 
2794 	ret = kstrtoul(str, 0, &uhash_entries);
2795 	if (ret)
2796 		return 0;
2797 
2798 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2799 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2800 	return 1;
2801 }
2802 __setup("uhash_entries=", set_uhash_entries);
2803 
2804 void __init udp_table_init(struct udp_table *table, const char *name)
2805 {
2806 	unsigned int i;
2807 
2808 	table->hash = alloc_large_system_hash(name,
2809 					      2 * sizeof(struct udp_hslot),
2810 					      uhash_entries,
2811 					      21, /* one slot per 2 MB */
2812 					      0,
2813 					      &table->log,
2814 					      &table->mask,
2815 					      UDP_HTABLE_SIZE_MIN,
2816 					      64 * 1024);
2817 
2818 	table->hash2 = table->hash + (table->mask + 1);
2819 	for (i = 0; i <= table->mask; i++) {
2820 		INIT_HLIST_HEAD(&table->hash[i].head);
2821 		table->hash[i].count = 0;
2822 		spin_lock_init(&table->hash[i].lock);
2823 	}
2824 	for (i = 0; i <= table->mask; i++) {
2825 		INIT_HLIST_HEAD(&table->hash2[i].head);
2826 		table->hash2[i].count = 0;
2827 		spin_lock_init(&table->hash2[i].lock);
2828 	}
2829 }
2830 
2831 u32 udp_flow_hashrnd(void)
2832 {
2833 	static u32 hashrnd __read_mostly;
2834 
2835 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2836 
2837 	return hashrnd;
2838 }
2839 EXPORT_SYMBOL(udp_flow_hashrnd);
2840 
2841 static void __udp_sysctl_init(struct net *net)
2842 {
2843 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2844 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2845 
2846 #ifdef CONFIG_NET_L3_MASTER_DEV
2847 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
2848 #endif
2849 }
2850 
2851 static int __net_init udp_sysctl_init(struct net *net)
2852 {
2853 	__udp_sysctl_init(net);
2854 	return 0;
2855 }
2856 
2857 static struct pernet_operations __net_initdata udp_sysctl_ops = {
2858 	.init	= udp_sysctl_init,
2859 };
2860 
2861 void __init udp_init(void)
2862 {
2863 	unsigned long limit;
2864 	unsigned int i;
2865 
2866 	udp_table_init(&udp_table, "UDP");
2867 	limit = nr_free_buffer_pages() / 8;
2868 	limit = max(limit, 128UL);
2869 	sysctl_udp_mem[0] = limit / 4 * 3;
2870 	sysctl_udp_mem[1] = limit;
2871 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2872 
2873 	__udp_sysctl_init(&init_net);
2874 
2875 	/* 16 spinlocks per cpu */
2876 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2877 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2878 				GFP_KERNEL);
2879 	if (!udp_busylocks)
2880 		panic("UDP: failed to alloc udp_busylocks\n");
2881 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2882 		spin_lock_init(udp_busylocks + i);
2883 
2884 	if (register_pernet_subsys(&udp_sysctl_ops))
2885 		panic("UDP: failed to init sysctl parameters.\n");
2886 }
2887