xref: /openbmc/linux/net/ipv4/udp.c (revision 22d55f02)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
115 
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118 
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121 
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124 
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127 
128 /* IPCB reference means this can not be used from early demux */
129 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
130 {
131 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
132 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
133 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
134 		return true;
135 #endif
136 	return false;
137 }
138 
139 static int udp_lib_lport_inuse(struct net *net, __u16 num,
140 			       const struct udp_hslot *hslot,
141 			       unsigned long *bitmap,
142 			       struct sock *sk, unsigned int log)
143 {
144 	struct sock *sk2;
145 	kuid_t uid = sock_i_uid(sk);
146 
147 	sk_for_each(sk2, &hslot->head) {
148 		if (net_eq(sock_net(sk2), net) &&
149 		    sk2 != sk &&
150 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
152 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 		    inet_rcv_saddr_equal(sk, sk2, true)) {
155 			if (sk2->sk_reuseport && sk->sk_reuseport &&
156 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
157 			    uid_eq(uid, sock_i_uid(sk2))) {
158 				if (!bitmap)
159 					return 0;
160 			} else {
161 				if (!bitmap)
162 					return 1;
163 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
164 					  bitmap);
165 			}
166 		}
167 	}
168 	return 0;
169 }
170 
171 /*
172  * Note: we still hold spinlock of primary hash chain, so no other writer
173  * can insert/delete a socket with local_port == num
174  */
175 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
176 				struct udp_hslot *hslot2,
177 				struct sock *sk)
178 {
179 	struct sock *sk2;
180 	kuid_t uid = sock_i_uid(sk);
181 	int res = 0;
182 
183 	spin_lock(&hslot2->lock);
184 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 		if (net_eq(sock_net(sk2), net) &&
186 		    sk2 != sk &&
187 		    (udp_sk(sk2)->udp_port_hash == num) &&
188 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
189 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 		    inet_rcv_saddr_equal(sk, sk2, true)) {
192 			if (sk2->sk_reuseport && sk->sk_reuseport &&
193 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
194 			    uid_eq(uid, sock_i_uid(sk2))) {
195 				res = 0;
196 			} else {
197 				res = 1;
198 			}
199 			break;
200 		}
201 	}
202 	spin_unlock(&hslot2->lock);
203 	return res;
204 }
205 
206 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
207 {
208 	struct net *net = sock_net(sk);
209 	kuid_t uid = sock_i_uid(sk);
210 	struct sock *sk2;
211 
212 	sk_for_each(sk2, &hslot->head) {
213 		if (net_eq(sock_net(sk2), net) &&
214 		    sk2 != sk &&
215 		    sk2->sk_family == sk->sk_family &&
216 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 		    inet_rcv_saddr_equal(sk, sk2, false)) {
221 			return reuseport_add_sock(sk, sk2,
222 						  inet_rcv_saddr_any(sk));
223 		}
224 	}
225 
226 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
227 }
228 
229 /**
230  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
231  *
232  *  @sk:          socket struct in question
233  *  @snum:        port number to look up
234  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
235  *                   with NULL address
236  */
237 int udp_lib_get_port(struct sock *sk, unsigned short snum,
238 		     unsigned int hash2_nulladdr)
239 {
240 	struct udp_hslot *hslot, *hslot2;
241 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
242 	int    error = 1;
243 	struct net *net = sock_net(sk);
244 
245 	if (!snum) {
246 		int low, high, remaining;
247 		unsigned int rand;
248 		unsigned short first, last;
249 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250 
251 		inet_get_local_port_range(net, &low, &high);
252 		remaining = (high - low) + 1;
253 
254 		rand = prandom_u32();
255 		first = reciprocal_scale(rand, remaining) + low;
256 		/*
257 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
258 		 */
259 		rand = (rand | 1) * (udptable->mask + 1);
260 		last = first + udptable->mask + 1;
261 		do {
262 			hslot = udp_hashslot(udptable, net, first);
263 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
264 			spin_lock_bh(&hslot->lock);
265 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
266 					    udptable->log);
267 
268 			snum = first;
269 			/*
270 			 * Iterate on all possible values of snum for this hash.
271 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
272 			 * give us randomization and full range coverage.
273 			 */
274 			do {
275 				if (low <= snum && snum <= high &&
276 				    !test_bit(snum >> udptable->log, bitmap) &&
277 				    !inet_is_local_reserved_port(net, snum))
278 					goto found;
279 				snum += rand;
280 			} while (snum != first);
281 			spin_unlock_bh(&hslot->lock);
282 			cond_resched();
283 		} while (++first != last);
284 		goto fail;
285 	} else {
286 		hslot = udp_hashslot(udptable, net, snum);
287 		spin_lock_bh(&hslot->lock);
288 		if (hslot->count > 10) {
289 			int exist;
290 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
291 
292 			slot2          &= udptable->mask;
293 			hash2_nulladdr &= udptable->mask;
294 
295 			hslot2 = udp_hashslot2(udptable, slot2);
296 			if (hslot->count < hslot2->count)
297 				goto scan_primary_hash;
298 
299 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
300 			if (!exist && (hash2_nulladdr != slot2)) {
301 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
302 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
303 							     sk);
304 			}
305 			if (exist)
306 				goto fail_unlock;
307 			else
308 				goto found;
309 		}
310 scan_primary_hash:
311 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
312 			goto fail_unlock;
313 	}
314 found:
315 	inet_sk(sk)->inet_num = snum;
316 	udp_sk(sk)->udp_port_hash = snum;
317 	udp_sk(sk)->udp_portaddr_hash ^= snum;
318 	if (sk_unhashed(sk)) {
319 		if (sk->sk_reuseport &&
320 		    udp_reuseport_add_sock(sk, hslot)) {
321 			inet_sk(sk)->inet_num = 0;
322 			udp_sk(sk)->udp_port_hash = 0;
323 			udp_sk(sk)->udp_portaddr_hash ^= snum;
324 			goto fail_unlock;
325 		}
326 
327 		sk_add_node_rcu(sk, &hslot->head);
328 		hslot->count++;
329 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
330 
331 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
332 		spin_lock(&hslot2->lock);
333 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
334 		    sk->sk_family == AF_INET6)
335 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
336 					   &hslot2->head);
337 		else
338 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
339 					   &hslot2->head);
340 		hslot2->count++;
341 		spin_unlock(&hslot2->lock);
342 	}
343 	sock_set_flag(sk, SOCK_RCU_FREE);
344 	error = 0;
345 fail_unlock:
346 	spin_unlock_bh(&hslot->lock);
347 fail:
348 	return error;
349 }
350 EXPORT_SYMBOL(udp_lib_get_port);
351 
352 int udp_v4_get_port(struct sock *sk, unsigned short snum)
353 {
354 	unsigned int hash2_nulladdr =
355 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
356 	unsigned int hash2_partial =
357 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
358 
359 	/* precompute partial secondary hash */
360 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
361 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
362 }
363 
364 static int compute_score(struct sock *sk, struct net *net,
365 			 __be32 saddr, __be16 sport,
366 			 __be32 daddr, unsigned short hnum,
367 			 int dif, int sdif, bool exact_dif)
368 {
369 	int score;
370 	struct inet_sock *inet;
371 	bool dev_match;
372 
373 	if (!net_eq(sock_net(sk), net) ||
374 	    udp_sk(sk)->udp_port_hash != hnum ||
375 	    ipv6_only_sock(sk))
376 		return -1;
377 
378 	if (sk->sk_rcv_saddr != daddr)
379 		return -1;
380 
381 	score = (sk->sk_family == PF_INET) ? 2 : 1;
382 
383 	inet = inet_sk(sk);
384 	if (inet->inet_daddr) {
385 		if (inet->inet_daddr != saddr)
386 			return -1;
387 		score += 4;
388 	}
389 
390 	if (inet->inet_dport) {
391 		if (inet->inet_dport != sport)
392 			return -1;
393 		score += 4;
394 	}
395 
396 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
397 					dif, sdif);
398 	if (!dev_match)
399 		return -1;
400 	score += 4;
401 
402 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
403 		score++;
404 	return score;
405 }
406 
407 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
408 		       const __u16 lport, const __be32 faddr,
409 		       const __be16 fport)
410 {
411 	static u32 udp_ehash_secret __read_mostly;
412 
413 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
414 
415 	return __inet_ehashfn(laddr, lport, faddr, fport,
416 			      udp_ehash_secret + net_hash_mix(net));
417 }
418 
419 /* called with rcu_read_lock() */
420 static struct sock *udp4_lib_lookup2(struct net *net,
421 				     __be32 saddr, __be16 sport,
422 				     __be32 daddr, unsigned int hnum,
423 				     int dif, int sdif, bool exact_dif,
424 				     struct udp_hslot *hslot2,
425 				     struct sk_buff *skb)
426 {
427 	struct sock *sk, *result;
428 	int score, badness;
429 	u32 hash = 0;
430 
431 	result = NULL;
432 	badness = 0;
433 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
434 		score = compute_score(sk, net, saddr, sport,
435 				      daddr, hnum, dif, sdif, exact_dif);
436 		if (score > badness) {
437 			if (sk->sk_reuseport) {
438 				hash = udp_ehashfn(net, daddr, hnum,
439 						   saddr, sport);
440 				result = reuseport_select_sock(sk, hash, skb,
441 							sizeof(struct udphdr));
442 				if (result)
443 					return result;
444 			}
445 			badness = score;
446 			result = sk;
447 		}
448 	}
449 	return result;
450 }
451 
452 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
453  * harder than this. -DaveM
454  */
455 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
456 		__be16 sport, __be32 daddr, __be16 dport, int dif,
457 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
458 {
459 	struct sock *result;
460 	unsigned short hnum = ntohs(dport);
461 	unsigned int hash2, slot2;
462 	struct udp_hslot *hslot2;
463 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
464 
465 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
466 	slot2 = hash2 & udptable->mask;
467 	hslot2 = &udptable->hash2[slot2];
468 
469 	result = udp4_lib_lookup2(net, saddr, sport,
470 				  daddr, hnum, dif, sdif,
471 				  exact_dif, hslot2, skb);
472 	if (!result) {
473 		hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
474 		slot2 = hash2 & udptable->mask;
475 		hslot2 = &udptable->hash2[slot2];
476 
477 		result = udp4_lib_lookup2(net, saddr, sport,
478 					  htonl(INADDR_ANY), hnum, dif, sdif,
479 					  exact_dif, hslot2, skb);
480 	}
481 	if (unlikely(IS_ERR(result)))
482 		return NULL;
483 	return result;
484 }
485 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
486 
487 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
488 						 __be16 sport, __be16 dport,
489 						 struct udp_table *udptable)
490 {
491 	const struct iphdr *iph = ip_hdr(skb);
492 
493 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
494 				 iph->daddr, dport, inet_iif(skb),
495 				 inet_sdif(skb), udptable, skb);
496 }
497 
498 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
499 				 __be16 sport, __be16 dport)
500 {
501 	const struct iphdr *iph = ip_hdr(skb);
502 
503 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
504 				 iph->daddr, dport, inet_iif(skb),
505 				 inet_sdif(skb), &udp_table, NULL);
506 }
507 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
508 
509 /* Must be called under rcu_read_lock().
510  * Does increment socket refcount.
511  */
512 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
513 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
514 			     __be32 daddr, __be16 dport, int dif)
515 {
516 	struct sock *sk;
517 
518 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
519 			       dif, 0, &udp_table, NULL);
520 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
521 		sk = NULL;
522 	return sk;
523 }
524 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
525 #endif
526 
527 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
528 				       __be16 loc_port, __be32 loc_addr,
529 				       __be16 rmt_port, __be32 rmt_addr,
530 				       int dif, int sdif, unsigned short hnum)
531 {
532 	struct inet_sock *inet = inet_sk(sk);
533 
534 	if (!net_eq(sock_net(sk), net) ||
535 	    udp_sk(sk)->udp_port_hash != hnum ||
536 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
537 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
538 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
539 	    ipv6_only_sock(sk) ||
540 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
541 		return false;
542 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
543 		return false;
544 	return true;
545 }
546 
547 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
548 void udp_encap_enable(void)
549 {
550 	static_branch_inc(&udp_encap_needed_key);
551 }
552 EXPORT_SYMBOL(udp_encap_enable);
553 
554 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
555  * through error handlers in encapsulations looking for a match.
556  */
557 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
558 {
559 	int i;
560 
561 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
562 		int (*handler)(struct sk_buff *skb, u32 info);
563 		const struct ip_tunnel_encap_ops *encap;
564 
565 		encap = rcu_dereference(iptun_encaps[i]);
566 		if (!encap)
567 			continue;
568 		handler = encap->err_handler;
569 		if (handler && !handler(skb, info))
570 			return 0;
571 	}
572 
573 	return -ENOENT;
574 }
575 
576 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
577  * reversing source and destination port: this will match tunnels that force the
578  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
579  * lwtunnels might actually break this assumption by being configured with
580  * different destination ports on endpoints, in this case we won't be able to
581  * trace ICMP messages back to them.
582  *
583  * If this doesn't match any socket, probe tunnels with arbitrary destination
584  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
585  * we've sent packets to won't necessarily match the local destination port.
586  *
587  * Then ask the tunnel implementation to match the error against a valid
588  * association.
589  *
590  * Return an error if we can't find a match, the socket if we need further
591  * processing, zero otherwise.
592  */
593 static struct sock *__udp4_lib_err_encap(struct net *net,
594 					 const struct iphdr *iph,
595 					 struct udphdr *uh,
596 					 struct udp_table *udptable,
597 					 struct sk_buff *skb, u32 info)
598 {
599 	int network_offset, transport_offset;
600 	struct sock *sk;
601 
602 	network_offset = skb_network_offset(skb);
603 	transport_offset = skb_transport_offset(skb);
604 
605 	/* Network header needs to point to the outer IPv4 header inside ICMP */
606 	skb_reset_network_header(skb);
607 
608 	/* Transport header needs to point to the UDP header */
609 	skb_set_transport_header(skb, iph->ihl << 2);
610 
611 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
612 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
613 			       udptable, NULL);
614 	if (sk) {
615 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
616 		struct udp_sock *up = udp_sk(sk);
617 
618 		lookup = READ_ONCE(up->encap_err_lookup);
619 		if (!lookup || lookup(sk, skb))
620 			sk = NULL;
621 	}
622 
623 	if (!sk)
624 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
625 
626 	skb_set_transport_header(skb, transport_offset);
627 	skb_set_network_header(skb, network_offset);
628 
629 	return sk;
630 }
631 
632 /*
633  * This routine is called by the ICMP module when it gets some
634  * sort of error condition.  If err < 0 then the socket should
635  * be closed and the error returned to the user.  If err > 0
636  * it's just the icmp type << 8 | icmp code.
637  * Header points to the ip header of the error packet. We move
638  * on past this. Then (as it used to claim before adjustment)
639  * header points to the first 8 bytes of the udp header.  We need
640  * to find the appropriate port.
641  */
642 
643 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
644 {
645 	struct inet_sock *inet;
646 	const struct iphdr *iph = (const struct iphdr *)skb->data;
647 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
648 	const int type = icmp_hdr(skb)->type;
649 	const int code = icmp_hdr(skb)->code;
650 	bool tunnel = false;
651 	struct sock *sk;
652 	int harderr;
653 	int err;
654 	struct net *net = dev_net(skb->dev);
655 
656 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
657 			       iph->saddr, uh->source, skb->dev->ifindex,
658 			       inet_sdif(skb), udptable, NULL);
659 	if (!sk) {
660 		/* No socket for error: try tunnels before discarding */
661 		sk = ERR_PTR(-ENOENT);
662 		if (static_branch_unlikely(&udp_encap_needed_key)) {
663 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
664 						  info);
665 			if (!sk)
666 				return 0;
667 		}
668 
669 		if (IS_ERR(sk)) {
670 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
671 			return PTR_ERR(sk);
672 		}
673 
674 		tunnel = true;
675 	}
676 
677 	err = 0;
678 	harderr = 0;
679 	inet = inet_sk(sk);
680 
681 	switch (type) {
682 	default:
683 	case ICMP_TIME_EXCEEDED:
684 		err = EHOSTUNREACH;
685 		break;
686 	case ICMP_SOURCE_QUENCH:
687 		goto out;
688 	case ICMP_PARAMETERPROB:
689 		err = EPROTO;
690 		harderr = 1;
691 		break;
692 	case ICMP_DEST_UNREACH:
693 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
694 			ipv4_sk_update_pmtu(skb, sk, info);
695 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
696 				err = EMSGSIZE;
697 				harderr = 1;
698 				break;
699 			}
700 			goto out;
701 		}
702 		err = EHOSTUNREACH;
703 		if (code <= NR_ICMP_UNREACH) {
704 			harderr = icmp_err_convert[code].fatal;
705 			err = icmp_err_convert[code].errno;
706 		}
707 		break;
708 	case ICMP_REDIRECT:
709 		ipv4_sk_redirect(skb, sk);
710 		goto out;
711 	}
712 
713 	/*
714 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
715 	 *	4.1.3.3.
716 	 */
717 	if (tunnel) {
718 		/* ...not for tunnels though: we don't have a sending socket */
719 		goto out;
720 	}
721 	if (!inet->recverr) {
722 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
723 			goto out;
724 	} else
725 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
726 
727 	sk->sk_err = err;
728 	sk->sk_error_report(sk);
729 out:
730 	return 0;
731 }
732 
733 int udp_err(struct sk_buff *skb, u32 info)
734 {
735 	return __udp4_lib_err(skb, info, &udp_table);
736 }
737 
738 /*
739  * Throw away all pending data and cancel the corking. Socket is locked.
740  */
741 void udp_flush_pending_frames(struct sock *sk)
742 {
743 	struct udp_sock *up = udp_sk(sk);
744 
745 	if (up->pending) {
746 		up->len = 0;
747 		up->pending = 0;
748 		ip_flush_pending_frames(sk);
749 	}
750 }
751 EXPORT_SYMBOL(udp_flush_pending_frames);
752 
753 /**
754  * 	udp4_hwcsum  -  handle outgoing HW checksumming
755  * 	@skb: 	sk_buff containing the filled-in UDP header
756  * 	        (checksum field must be zeroed out)
757  *	@src:	source IP address
758  *	@dst:	destination IP address
759  */
760 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
761 {
762 	struct udphdr *uh = udp_hdr(skb);
763 	int offset = skb_transport_offset(skb);
764 	int len = skb->len - offset;
765 	int hlen = len;
766 	__wsum csum = 0;
767 
768 	if (!skb_has_frag_list(skb)) {
769 		/*
770 		 * Only one fragment on the socket.
771 		 */
772 		skb->csum_start = skb_transport_header(skb) - skb->head;
773 		skb->csum_offset = offsetof(struct udphdr, check);
774 		uh->check = ~csum_tcpudp_magic(src, dst, len,
775 					       IPPROTO_UDP, 0);
776 	} else {
777 		struct sk_buff *frags;
778 
779 		/*
780 		 * HW-checksum won't work as there are two or more
781 		 * fragments on the socket so that all csums of sk_buffs
782 		 * should be together
783 		 */
784 		skb_walk_frags(skb, frags) {
785 			csum = csum_add(csum, frags->csum);
786 			hlen -= frags->len;
787 		}
788 
789 		csum = skb_checksum(skb, offset, hlen, csum);
790 		skb->ip_summed = CHECKSUM_NONE;
791 
792 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
793 		if (uh->check == 0)
794 			uh->check = CSUM_MANGLED_0;
795 	}
796 }
797 EXPORT_SYMBOL_GPL(udp4_hwcsum);
798 
799 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
800  * for the simple case like when setting the checksum for a UDP tunnel.
801  */
802 void udp_set_csum(bool nocheck, struct sk_buff *skb,
803 		  __be32 saddr, __be32 daddr, int len)
804 {
805 	struct udphdr *uh = udp_hdr(skb);
806 
807 	if (nocheck) {
808 		uh->check = 0;
809 	} else if (skb_is_gso(skb)) {
810 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
811 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
812 		uh->check = 0;
813 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
814 		if (uh->check == 0)
815 			uh->check = CSUM_MANGLED_0;
816 	} else {
817 		skb->ip_summed = CHECKSUM_PARTIAL;
818 		skb->csum_start = skb_transport_header(skb) - skb->head;
819 		skb->csum_offset = offsetof(struct udphdr, check);
820 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
821 	}
822 }
823 EXPORT_SYMBOL(udp_set_csum);
824 
825 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
826 			struct inet_cork *cork)
827 {
828 	struct sock *sk = skb->sk;
829 	struct inet_sock *inet = inet_sk(sk);
830 	struct udphdr *uh;
831 	int err = 0;
832 	int is_udplite = IS_UDPLITE(sk);
833 	int offset = skb_transport_offset(skb);
834 	int len = skb->len - offset;
835 	__wsum csum = 0;
836 
837 	/*
838 	 * Create a UDP header
839 	 */
840 	uh = udp_hdr(skb);
841 	uh->source = inet->inet_sport;
842 	uh->dest = fl4->fl4_dport;
843 	uh->len = htons(len);
844 	uh->check = 0;
845 
846 	if (cork->gso_size) {
847 		const int hlen = skb_network_header_len(skb) +
848 				 sizeof(struct udphdr);
849 
850 		if (hlen + cork->gso_size > cork->fragsize) {
851 			kfree_skb(skb);
852 			return -EINVAL;
853 		}
854 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
855 			kfree_skb(skb);
856 			return -EINVAL;
857 		}
858 		if (sk->sk_no_check_tx) {
859 			kfree_skb(skb);
860 			return -EINVAL;
861 		}
862 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
863 		    dst_xfrm(skb_dst(skb))) {
864 			kfree_skb(skb);
865 			return -EIO;
866 		}
867 
868 		skb_shinfo(skb)->gso_size = cork->gso_size;
869 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
870 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
871 							 cork->gso_size);
872 		goto csum_partial;
873 	}
874 
875 	if (is_udplite)  				 /*     UDP-Lite      */
876 		csum = udplite_csum(skb);
877 
878 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
879 
880 		skb->ip_summed = CHECKSUM_NONE;
881 		goto send;
882 
883 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
884 csum_partial:
885 
886 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
887 		goto send;
888 
889 	} else
890 		csum = udp_csum(skb);
891 
892 	/* add protocol-dependent pseudo-header */
893 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
894 				      sk->sk_protocol, csum);
895 	if (uh->check == 0)
896 		uh->check = CSUM_MANGLED_0;
897 
898 send:
899 	err = ip_send_skb(sock_net(sk), skb);
900 	if (err) {
901 		if (err == -ENOBUFS && !inet->recverr) {
902 			UDP_INC_STATS(sock_net(sk),
903 				      UDP_MIB_SNDBUFERRORS, is_udplite);
904 			err = 0;
905 		}
906 	} else
907 		UDP_INC_STATS(sock_net(sk),
908 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
909 	return err;
910 }
911 
912 /*
913  * Push out all pending data as one UDP datagram. Socket is locked.
914  */
915 int udp_push_pending_frames(struct sock *sk)
916 {
917 	struct udp_sock  *up = udp_sk(sk);
918 	struct inet_sock *inet = inet_sk(sk);
919 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
920 	struct sk_buff *skb;
921 	int err = 0;
922 
923 	skb = ip_finish_skb(sk, fl4);
924 	if (!skb)
925 		goto out;
926 
927 	err = udp_send_skb(skb, fl4, &inet->cork.base);
928 
929 out:
930 	up->len = 0;
931 	up->pending = 0;
932 	return err;
933 }
934 EXPORT_SYMBOL(udp_push_pending_frames);
935 
936 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
937 {
938 	switch (cmsg->cmsg_type) {
939 	case UDP_SEGMENT:
940 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
941 			return -EINVAL;
942 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
943 		return 0;
944 	default:
945 		return -EINVAL;
946 	}
947 }
948 
949 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
950 {
951 	struct cmsghdr *cmsg;
952 	bool need_ip = false;
953 	int err;
954 
955 	for_each_cmsghdr(cmsg, msg) {
956 		if (!CMSG_OK(msg, cmsg))
957 			return -EINVAL;
958 
959 		if (cmsg->cmsg_level != SOL_UDP) {
960 			need_ip = true;
961 			continue;
962 		}
963 
964 		err = __udp_cmsg_send(cmsg, gso_size);
965 		if (err)
966 			return err;
967 	}
968 
969 	return need_ip;
970 }
971 EXPORT_SYMBOL_GPL(udp_cmsg_send);
972 
973 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
974 {
975 	struct inet_sock *inet = inet_sk(sk);
976 	struct udp_sock *up = udp_sk(sk);
977 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
978 	struct flowi4 fl4_stack;
979 	struct flowi4 *fl4;
980 	int ulen = len;
981 	struct ipcm_cookie ipc;
982 	struct rtable *rt = NULL;
983 	int free = 0;
984 	int connected = 0;
985 	__be32 daddr, faddr, saddr;
986 	__be16 dport;
987 	u8  tos;
988 	int err, is_udplite = IS_UDPLITE(sk);
989 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
990 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
991 	struct sk_buff *skb;
992 	struct ip_options_data opt_copy;
993 
994 	if (len > 0xFFFF)
995 		return -EMSGSIZE;
996 
997 	/*
998 	 *	Check the flags.
999 	 */
1000 
1001 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1002 		return -EOPNOTSUPP;
1003 
1004 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1005 
1006 	fl4 = &inet->cork.fl.u.ip4;
1007 	if (up->pending) {
1008 		/*
1009 		 * There are pending frames.
1010 		 * The socket lock must be held while it's corked.
1011 		 */
1012 		lock_sock(sk);
1013 		if (likely(up->pending)) {
1014 			if (unlikely(up->pending != AF_INET)) {
1015 				release_sock(sk);
1016 				return -EINVAL;
1017 			}
1018 			goto do_append_data;
1019 		}
1020 		release_sock(sk);
1021 	}
1022 	ulen += sizeof(struct udphdr);
1023 
1024 	/*
1025 	 *	Get and verify the address.
1026 	 */
1027 	if (usin) {
1028 		if (msg->msg_namelen < sizeof(*usin))
1029 			return -EINVAL;
1030 		if (usin->sin_family != AF_INET) {
1031 			if (usin->sin_family != AF_UNSPEC)
1032 				return -EAFNOSUPPORT;
1033 		}
1034 
1035 		daddr = usin->sin_addr.s_addr;
1036 		dport = usin->sin_port;
1037 		if (dport == 0)
1038 			return -EINVAL;
1039 	} else {
1040 		if (sk->sk_state != TCP_ESTABLISHED)
1041 			return -EDESTADDRREQ;
1042 		daddr = inet->inet_daddr;
1043 		dport = inet->inet_dport;
1044 		/* Open fast path for connected socket.
1045 		   Route will not be used, if at least one option is set.
1046 		 */
1047 		connected = 1;
1048 	}
1049 
1050 	ipcm_init_sk(&ipc, inet);
1051 	ipc.gso_size = up->gso_size;
1052 
1053 	if (msg->msg_controllen) {
1054 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1055 		if (err > 0)
1056 			err = ip_cmsg_send(sk, msg, &ipc,
1057 					   sk->sk_family == AF_INET6);
1058 		if (unlikely(err < 0)) {
1059 			kfree(ipc.opt);
1060 			return err;
1061 		}
1062 		if (ipc.opt)
1063 			free = 1;
1064 		connected = 0;
1065 	}
1066 	if (!ipc.opt) {
1067 		struct ip_options_rcu *inet_opt;
1068 
1069 		rcu_read_lock();
1070 		inet_opt = rcu_dereference(inet->inet_opt);
1071 		if (inet_opt) {
1072 			memcpy(&opt_copy, inet_opt,
1073 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1074 			ipc.opt = &opt_copy.opt;
1075 		}
1076 		rcu_read_unlock();
1077 	}
1078 
1079 	if (cgroup_bpf_enabled && !connected) {
1080 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1081 					    (struct sockaddr *)usin, &ipc.addr);
1082 		if (err)
1083 			goto out_free;
1084 		if (usin) {
1085 			if (usin->sin_port == 0) {
1086 				/* BPF program set invalid port. Reject it. */
1087 				err = -EINVAL;
1088 				goto out_free;
1089 			}
1090 			daddr = usin->sin_addr.s_addr;
1091 			dport = usin->sin_port;
1092 		}
1093 	}
1094 
1095 	saddr = ipc.addr;
1096 	ipc.addr = faddr = daddr;
1097 
1098 	if (ipc.opt && ipc.opt->opt.srr) {
1099 		if (!daddr) {
1100 			err = -EINVAL;
1101 			goto out_free;
1102 		}
1103 		faddr = ipc.opt->opt.faddr;
1104 		connected = 0;
1105 	}
1106 	tos = get_rttos(&ipc, inet);
1107 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1108 	    (msg->msg_flags & MSG_DONTROUTE) ||
1109 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1110 		tos |= RTO_ONLINK;
1111 		connected = 0;
1112 	}
1113 
1114 	if (ipv4_is_multicast(daddr)) {
1115 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1116 			ipc.oif = inet->mc_index;
1117 		if (!saddr)
1118 			saddr = inet->mc_addr;
1119 		connected = 0;
1120 	} else if (!ipc.oif) {
1121 		ipc.oif = inet->uc_index;
1122 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1123 		/* oif is set, packet is to local broadcast and
1124 		 * and uc_index is set. oif is most likely set
1125 		 * by sk_bound_dev_if. If uc_index != oif check if the
1126 		 * oif is an L3 master and uc_index is an L3 slave.
1127 		 * If so, we want to allow the send using the uc_index.
1128 		 */
1129 		if (ipc.oif != inet->uc_index &&
1130 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1131 							      inet->uc_index)) {
1132 			ipc.oif = inet->uc_index;
1133 		}
1134 	}
1135 
1136 	if (connected)
1137 		rt = (struct rtable *)sk_dst_check(sk, 0);
1138 
1139 	if (!rt) {
1140 		struct net *net = sock_net(sk);
1141 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1142 
1143 		fl4 = &fl4_stack;
1144 
1145 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1146 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1147 				   flow_flags,
1148 				   faddr, saddr, dport, inet->inet_sport,
1149 				   sk->sk_uid);
1150 
1151 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1152 		rt = ip_route_output_flow(net, fl4, sk);
1153 		if (IS_ERR(rt)) {
1154 			err = PTR_ERR(rt);
1155 			rt = NULL;
1156 			if (err == -ENETUNREACH)
1157 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1158 			goto out;
1159 		}
1160 
1161 		err = -EACCES;
1162 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1163 		    !sock_flag(sk, SOCK_BROADCAST))
1164 			goto out;
1165 		if (connected)
1166 			sk_dst_set(sk, dst_clone(&rt->dst));
1167 	}
1168 
1169 	if (msg->msg_flags&MSG_CONFIRM)
1170 		goto do_confirm;
1171 back_from_confirm:
1172 
1173 	saddr = fl4->saddr;
1174 	if (!ipc.addr)
1175 		daddr = ipc.addr = fl4->daddr;
1176 
1177 	/* Lockless fast path for the non-corking case. */
1178 	if (!corkreq) {
1179 		struct inet_cork cork;
1180 
1181 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1182 				  sizeof(struct udphdr), &ipc, &rt,
1183 				  &cork, msg->msg_flags);
1184 		err = PTR_ERR(skb);
1185 		if (!IS_ERR_OR_NULL(skb))
1186 			err = udp_send_skb(skb, fl4, &cork);
1187 		goto out;
1188 	}
1189 
1190 	lock_sock(sk);
1191 	if (unlikely(up->pending)) {
1192 		/* The socket is already corked while preparing it. */
1193 		/* ... which is an evident application bug. --ANK */
1194 		release_sock(sk);
1195 
1196 		net_dbg_ratelimited("socket already corked\n");
1197 		err = -EINVAL;
1198 		goto out;
1199 	}
1200 	/*
1201 	 *	Now cork the socket to pend data.
1202 	 */
1203 	fl4 = &inet->cork.fl.u.ip4;
1204 	fl4->daddr = daddr;
1205 	fl4->saddr = saddr;
1206 	fl4->fl4_dport = dport;
1207 	fl4->fl4_sport = inet->inet_sport;
1208 	up->pending = AF_INET;
1209 
1210 do_append_data:
1211 	up->len += ulen;
1212 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1213 			     sizeof(struct udphdr), &ipc, &rt,
1214 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1215 	if (err)
1216 		udp_flush_pending_frames(sk);
1217 	else if (!corkreq)
1218 		err = udp_push_pending_frames(sk);
1219 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1220 		up->pending = 0;
1221 	release_sock(sk);
1222 
1223 out:
1224 	ip_rt_put(rt);
1225 out_free:
1226 	if (free)
1227 		kfree(ipc.opt);
1228 	if (!err)
1229 		return len;
1230 	/*
1231 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1232 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1233 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1234 	 * things).  We could add another new stat but at least for now that
1235 	 * seems like overkill.
1236 	 */
1237 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1238 		UDP_INC_STATS(sock_net(sk),
1239 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1240 	}
1241 	return err;
1242 
1243 do_confirm:
1244 	if (msg->msg_flags & MSG_PROBE)
1245 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1246 	if (!(msg->msg_flags&MSG_PROBE) || len)
1247 		goto back_from_confirm;
1248 	err = 0;
1249 	goto out;
1250 }
1251 EXPORT_SYMBOL(udp_sendmsg);
1252 
1253 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1254 		 size_t size, int flags)
1255 {
1256 	struct inet_sock *inet = inet_sk(sk);
1257 	struct udp_sock *up = udp_sk(sk);
1258 	int ret;
1259 
1260 	if (flags & MSG_SENDPAGE_NOTLAST)
1261 		flags |= MSG_MORE;
1262 
1263 	if (!up->pending) {
1264 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1265 
1266 		/* Call udp_sendmsg to specify destination address which
1267 		 * sendpage interface can't pass.
1268 		 * This will succeed only when the socket is connected.
1269 		 */
1270 		ret = udp_sendmsg(sk, &msg, 0);
1271 		if (ret < 0)
1272 			return ret;
1273 	}
1274 
1275 	lock_sock(sk);
1276 
1277 	if (unlikely(!up->pending)) {
1278 		release_sock(sk);
1279 
1280 		net_dbg_ratelimited("cork failed\n");
1281 		return -EINVAL;
1282 	}
1283 
1284 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1285 			     page, offset, size, flags);
1286 	if (ret == -EOPNOTSUPP) {
1287 		release_sock(sk);
1288 		return sock_no_sendpage(sk->sk_socket, page, offset,
1289 					size, flags);
1290 	}
1291 	if (ret < 0) {
1292 		udp_flush_pending_frames(sk);
1293 		goto out;
1294 	}
1295 
1296 	up->len += size;
1297 	if (!(up->corkflag || (flags&MSG_MORE)))
1298 		ret = udp_push_pending_frames(sk);
1299 	if (!ret)
1300 		ret = size;
1301 out:
1302 	release_sock(sk);
1303 	return ret;
1304 }
1305 
1306 #define UDP_SKB_IS_STATELESS 0x80000000
1307 
1308 static void udp_set_dev_scratch(struct sk_buff *skb)
1309 {
1310 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1311 
1312 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1313 	scratch->_tsize_state = skb->truesize;
1314 #if BITS_PER_LONG == 64
1315 	scratch->len = skb->len;
1316 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1317 	scratch->is_linear = !skb_is_nonlinear(skb);
1318 #endif
1319 	/* all head states execept sp (dst, sk, nf) are always cleared by
1320 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1321 	 * process IP_CMSG_PASSSEC at recvmsg() time
1322 	 */
1323 	if (likely(!skb_sec_path(skb)))
1324 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1325 }
1326 
1327 static int udp_skb_truesize(struct sk_buff *skb)
1328 {
1329 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1330 }
1331 
1332 static bool udp_skb_has_head_state(struct sk_buff *skb)
1333 {
1334 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1335 }
1336 
1337 /* fully reclaim rmem/fwd memory allocated for skb */
1338 static void udp_rmem_release(struct sock *sk, int size, int partial,
1339 			     bool rx_queue_lock_held)
1340 {
1341 	struct udp_sock *up = udp_sk(sk);
1342 	struct sk_buff_head *sk_queue;
1343 	int amt;
1344 
1345 	if (likely(partial)) {
1346 		up->forward_deficit += size;
1347 		size = up->forward_deficit;
1348 		if (size < (sk->sk_rcvbuf >> 2))
1349 			return;
1350 	} else {
1351 		size += up->forward_deficit;
1352 	}
1353 	up->forward_deficit = 0;
1354 
1355 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1356 	 * if the called don't held it already
1357 	 */
1358 	sk_queue = &sk->sk_receive_queue;
1359 	if (!rx_queue_lock_held)
1360 		spin_lock(&sk_queue->lock);
1361 
1362 
1363 	sk->sk_forward_alloc += size;
1364 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1365 	sk->sk_forward_alloc -= amt;
1366 
1367 	if (amt)
1368 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1369 
1370 	atomic_sub(size, &sk->sk_rmem_alloc);
1371 
1372 	/* this can save us from acquiring the rx queue lock on next receive */
1373 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1374 
1375 	if (!rx_queue_lock_held)
1376 		spin_unlock(&sk_queue->lock);
1377 }
1378 
1379 /* Note: called with reader_queue.lock held.
1380  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1381  * This avoids a cache line miss while receive_queue lock is held.
1382  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1383  */
1384 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1385 {
1386 	prefetch(&skb->data);
1387 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1388 }
1389 EXPORT_SYMBOL(udp_skb_destructor);
1390 
1391 /* as above, but the caller held the rx queue lock, too */
1392 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1393 {
1394 	prefetch(&skb->data);
1395 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1396 }
1397 
1398 /* Idea of busylocks is to let producers grab an extra spinlock
1399  * to relieve pressure on the receive_queue spinlock shared by consumer.
1400  * Under flood, this means that only one producer can be in line
1401  * trying to acquire the receive_queue spinlock.
1402  * These busylock can be allocated on a per cpu manner, instead of a
1403  * per socket one (that would consume a cache line per socket)
1404  */
1405 static int udp_busylocks_log __read_mostly;
1406 static spinlock_t *udp_busylocks __read_mostly;
1407 
1408 static spinlock_t *busylock_acquire(void *ptr)
1409 {
1410 	spinlock_t *busy;
1411 
1412 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1413 	spin_lock(busy);
1414 	return busy;
1415 }
1416 
1417 static void busylock_release(spinlock_t *busy)
1418 {
1419 	if (busy)
1420 		spin_unlock(busy);
1421 }
1422 
1423 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1424 {
1425 	struct sk_buff_head *list = &sk->sk_receive_queue;
1426 	int rmem, delta, amt, err = -ENOMEM;
1427 	spinlock_t *busy = NULL;
1428 	int size;
1429 
1430 	/* try to avoid the costly atomic add/sub pair when the receive
1431 	 * queue is full; always allow at least a packet
1432 	 */
1433 	rmem = atomic_read(&sk->sk_rmem_alloc);
1434 	if (rmem > sk->sk_rcvbuf)
1435 		goto drop;
1436 
1437 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1438 	 * having linear skbs :
1439 	 * - Reduce memory overhead and thus increase receive queue capacity
1440 	 * - Less cache line misses at copyout() time
1441 	 * - Less work at consume_skb() (less alien page frag freeing)
1442 	 */
1443 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1444 		skb_condense(skb);
1445 
1446 		busy = busylock_acquire(sk);
1447 	}
1448 	size = skb->truesize;
1449 	udp_set_dev_scratch(skb);
1450 
1451 	/* we drop only if the receive buf is full and the receive
1452 	 * queue contains some other skb
1453 	 */
1454 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1455 	if (rmem > (size + sk->sk_rcvbuf))
1456 		goto uncharge_drop;
1457 
1458 	spin_lock(&list->lock);
1459 	if (size >= sk->sk_forward_alloc) {
1460 		amt = sk_mem_pages(size);
1461 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1462 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1463 			err = -ENOBUFS;
1464 			spin_unlock(&list->lock);
1465 			goto uncharge_drop;
1466 		}
1467 
1468 		sk->sk_forward_alloc += delta;
1469 	}
1470 
1471 	sk->sk_forward_alloc -= size;
1472 
1473 	/* no need to setup a destructor, we will explicitly release the
1474 	 * forward allocated memory on dequeue
1475 	 */
1476 	sock_skb_set_dropcount(sk, skb);
1477 
1478 	__skb_queue_tail(list, skb);
1479 	spin_unlock(&list->lock);
1480 
1481 	if (!sock_flag(sk, SOCK_DEAD))
1482 		sk->sk_data_ready(sk);
1483 
1484 	busylock_release(busy);
1485 	return 0;
1486 
1487 uncharge_drop:
1488 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1489 
1490 drop:
1491 	atomic_inc(&sk->sk_drops);
1492 	busylock_release(busy);
1493 	return err;
1494 }
1495 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1496 
1497 void udp_destruct_sock(struct sock *sk)
1498 {
1499 	/* reclaim completely the forward allocated memory */
1500 	struct udp_sock *up = udp_sk(sk);
1501 	unsigned int total = 0;
1502 	struct sk_buff *skb;
1503 
1504 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1505 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1506 		total += skb->truesize;
1507 		kfree_skb(skb);
1508 	}
1509 	udp_rmem_release(sk, total, 0, true);
1510 
1511 	inet_sock_destruct(sk);
1512 }
1513 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1514 
1515 int udp_init_sock(struct sock *sk)
1516 {
1517 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1518 	sk->sk_destruct = udp_destruct_sock;
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(udp_init_sock);
1522 
1523 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1524 {
1525 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1526 		bool slow = lock_sock_fast(sk);
1527 
1528 		sk_peek_offset_bwd(sk, len);
1529 		unlock_sock_fast(sk, slow);
1530 	}
1531 
1532 	if (!skb_unref(skb))
1533 		return;
1534 
1535 	/* In the more common cases we cleared the head states previously,
1536 	 * see __udp_queue_rcv_skb().
1537 	 */
1538 	if (unlikely(udp_skb_has_head_state(skb)))
1539 		skb_release_head_state(skb);
1540 	__consume_stateless_skb(skb);
1541 }
1542 EXPORT_SYMBOL_GPL(skb_consume_udp);
1543 
1544 static struct sk_buff *__first_packet_length(struct sock *sk,
1545 					     struct sk_buff_head *rcvq,
1546 					     int *total)
1547 {
1548 	struct sk_buff *skb;
1549 
1550 	while ((skb = skb_peek(rcvq)) != NULL) {
1551 		if (udp_lib_checksum_complete(skb)) {
1552 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1553 					IS_UDPLITE(sk));
1554 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1555 					IS_UDPLITE(sk));
1556 			atomic_inc(&sk->sk_drops);
1557 			__skb_unlink(skb, rcvq);
1558 			*total += skb->truesize;
1559 			kfree_skb(skb);
1560 		} else {
1561 			/* the csum related bits could be changed, refresh
1562 			 * the scratch area
1563 			 */
1564 			udp_set_dev_scratch(skb);
1565 			break;
1566 		}
1567 	}
1568 	return skb;
1569 }
1570 
1571 /**
1572  *	first_packet_length	- return length of first packet in receive queue
1573  *	@sk: socket
1574  *
1575  *	Drops all bad checksum frames, until a valid one is found.
1576  *	Returns the length of found skb, or -1 if none is found.
1577  */
1578 static int first_packet_length(struct sock *sk)
1579 {
1580 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1581 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1582 	struct sk_buff *skb;
1583 	int total = 0;
1584 	int res;
1585 
1586 	spin_lock_bh(&rcvq->lock);
1587 	skb = __first_packet_length(sk, rcvq, &total);
1588 	if (!skb && !skb_queue_empty(sk_queue)) {
1589 		spin_lock(&sk_queue->lock);
1590 		skb_queue_splice_tail_init(sk_queue, rcvq);
1591 		spin_unlock(&sk_queue->lock);
1592 
1593 		skb = __first_packet_length(sk, rcvq, &total);
1594 	}
1595 	res = skb ? skb->len : -1;
1596 	if (total)
1597 		udp_rmem_release(sk, total, 1, false);
1598 	spin_unlock_bh(&rcvq->lock);
1599 	return res;
1600 }
1601 
1602 /*
1603  *	IOCTL requests applicable to the UDP protocol
1604  */
1605 
1606 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1607 {
1608 	switch (cmd) {
1609 	case SIOCOUTQ:
1610 	{
1611 		int amount = sk_wmem_alloc_get(sk);
1612 
1613 		return put_user(amount, (int __user *)arg);
1614 	}
1615 
1616 	case SIOCINQ:
1617 	{
1618 		int amount = max_t(int, 0, first_packet_length(sk));
1619 
1620 		return put_user(amount, (int __user *)arg);
1621 	}
1622 
1623 	default:
1624 		return -ENOIOCTLCMD;
1625 	}
1626 
1627 	return 0;
1628 }
1629 EXPORT_SYMBOL(udp_ioctl);
1630 
1631 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1632 			       int noblock, int *off, int *err)
1633 {
1634 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1635 	struct sk_buff_head *queue;
1636 	struct sk_buff *last;
1637 	long timeo;
1638 	int error;
1639 
1640 	queue = &udp_sk(sk)->reader_queue;
1641 	flags |= noblock ? MSG_DONTWAIT : 0;
1642 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1643 	do {
1644 		struct sk_buff *skb;
1645 
1646 		error = sock_error(sk);
1647 		if (error)
1648 			break;
1649 
1650 		error = -EAGAIN;
1651 		do {
1652 			spin_lock_bh(&queue->lock);
1653 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1654 							udp_skb_destructor,
1655 							off, err, &last);
1656 			if (skb) {
1657 				spin_unlock_bh(&queue->lock);
1658 				return skb;
1659 			}
1660 
1661 			if (skb_queue_empty(sk_queue)) {
1662 				spin_unlock_bh(&queue->lock);
1663 				goto busy_check;
1664 			}
1665 
1666 			/* refill the reader queue and walk it again
1667 			 * keep both queues locked to avoid re-acquiring
1668 			 * the sk_receive_queue lock if fwd memory scheduling
1669 			 * is needed.
1670 			 */
1671 			spin_lock(&sk_queue->lock);
1672 			skb_queue_splice_tail_init(sk_queue, queue);
1673 
1674 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1675 							udp_skb_dtor_locked,
1676 							off, err, &last);
1677 			spin_unlock(&sk_queue->lock);
1678 			spin_unlock_bh(&queue->lock);
1679 			if (skb)
1680 				return skb;
1681 
1682 busy_check:
1683 			if (!sk_can_busy_loop(sk))
1684 				break;
1685 
1686 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1687 		} while (!skb_queue_empty(sk_queue));
1688 
1689 		/* sk_queue is empty, reader_queue may contain peeked packets */
1690 	} while (timeo &&
1691 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1692 					      (struct sk_buff *)sk_queue));
1693 
1694 	*err = error;
1695 	return NULL;
1696 }
1697 EXPORT_SYMBOL(__skb_recv_udp);
1698 
1699 /*
1700  * 	This should be easy, if there is something there we
1701  * 	return it, otherwise we block.
1702  */
1703 
1704 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1705 		int flags, int *addr_len)
1706 {
1707 	struct inet_sock *inet = inet_sk(sk);
1708 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1709 	struct sk_buff *skb;
1710 	unsigned int ulen, copied;
1711 	int off, err, peeking = flags & MSG_PEEK;
1712 	int is_udplite = IS_UDPLITE(sk);
1713 	bool checksum_valid = false;
1714 
1715 	if (flags & MSG_ERRQUEUE)
1716 		return ip_recv_error(sk, msg, len, addr_len);
1717 
1718 try_again:
1719 	off = sk_peek_offset(sk, flags);
1720 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1721 	if (!skb)
1722 		return err;
1723 
1724 	ulen = udp_skb_len(skb);
1725 	copied = len;
1726 	if (copied > ulen - off)
1727 		copied = ulen - off;
1728 	else if (copied < ulen)
1729 		msg->msg_flags |= MSG_TRUNC;
1730 
1731 	/*
1732 	 * If checksum is needed at all, try to do it while copying the
1733 	 * data.  If the data is truncated, or if we only want a partial
1734 	 * coverage checksum (UDP-Lite), do it before the copy.
1735 	 */
1736 
1737 	if (copied < ulen || peeking ||
1738 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1739 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1740 				!__udp_lib_checksum_complete(skb);
1741 		if (!checksum_valid)
1742 			goto csum_copy_err;
1743 	}
1744 
1745 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1746 		if (udp_skb_is_linear(skb))
1747 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1748 		else
1749 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1750 	} else {
1751 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1752 
1753 		if (err == -EINVAL)
1754 			goto csum_copy_err;
1755 	}
1756 
1757 	if (unlikely(err)) {
1758 		if (!peeking) {
1759 			atomic_inc(&sk->sk_drops);
1760 			UDP_INC_STATS(sock_net(sk),
1761 				      UDP_MIB_INERRORS, is_udplite);
1762 		}
1763 		kfree_skb(skb);
1764 		return err;
1765 	}
1766 
1767 	if (!peeking)
1768 		UDP_INC_STATS(sock_net(sk),
1769 			      UDP_MIB_INDATAGRAMS, is_udplite);
1770 
1771 	sock_recv_ts_and_drops(msg, sk, skb);
1772 
1773 	/* Copy the address. */
1774 	if (sin) {
1775 		sin->sin_family = AF_INET;
1776 		sin->sin_port = udp_hdr(skb)->source;
1777 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1778 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1779 		*addr_len = sizeof(*sin);
1780 
1781 		if (cgroup_bpf_enabled)
1782 			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1783 							(struct sockaddr *)sin);
1784 	}
1785 
1786 	if (udp_sk(sk)->gro_enabled)
1787 		udp_cmsg_recv(msg, sk, skb);
1788 
1789 	if (inet->cmsg_flags)
1790 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1791 
1792 	err = copied;
1793 	if (flags & MSG_TRUNC)
1794 		err = ulen;
1795 
1796 	skb_consume_udp(sk, skb, peeking ? -err : err);
1797 	return err;
1798 
1799 csum_copy_err:
1800 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1801 				 udp_skb_destructor)) {
1802 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1803 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1804 	}
1805 	kfree_skb(skb);
1806 
1807 	/* starting over for a new packet, but check if we need to yield */
1808 	cond_resched();
1809 	msg->msg_flags &= ~MSG_TRUNC;
1810 	goto try_again;
1811 }
1812 
1813 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1814 {
1815 	/* This check is replicated from __ip4_datagram_connect() and
1816 	 * intended to prevent BPF program called below from accessing bytes
1817 	 * that are out of the bound specified by user in addr_len.
1818 	 */
1819 	if (addr_len < sizeof(struct sockaddr_in))
1820 		return -EINVAL;
1821 
1822 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1823 }
1824 EXPORT_SYMBOL(udp_pre_connect);
1825 
1826 int __udp_disconnect(struct sock *sk, int flags)
1827 {
1828 	struct inet_sock *inet = inet_sk(sk);
1829 	/*
1830 	 *	1003.1g - break association.
1831 	 */
1832 
1833 	sk->sk_state = TCP_CLOSE;
1834 	inet->inet_daddr = 0;
1835 	inet->inet_dport = 0;
1836 	sock_rps_reset_rxhash(sk);
1837 	sk->sk_bound_dev_if = 0;
1838 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1839 		inet_reset_saddr(sk);
1840 
1841 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1842 		sk->sk_prot->unhash(sk);
1843 		inet->inet_sport = 0;
1844 	}
1845 	sk_dst_reset(sk);
1846 	return 0;
1847 }
1848 EXPORT_SYMBOL(__udp_disconnect);
1849 
1850 int udp_disconnect(struct sock *sk, int flags)
1851 {
1852 	lock_sock(sk);
1853 	__udp_disconnect(sk, flags);
1854 	release_sock(sk);
1855 	return 0;
1856 }
1857 EXPORT_SYMBOL(udp_disconnect);
1858 
1859 void udp_lib_unhash(struct sock *sk)
1860 {
1861 	if (sk_hashed(sk)) {
1862 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1863 		struct udp_hslot *hslot, *hslot2;
1864 
1865 		hslot  = udp_hashslot(udptable, sock_net(sk),
1866 				      udp_sk(sk)->udp_port_hash);
1867 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1868 
1869 		spin_lock_bh(&hslot->lock);
1870 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1871 			reuseport_detach_sock(sk);
1872 		if (sk_del_node_init_rcu(sk)) {
1873 			hslot->count--;
1874 			inet_sk(sk)->inet_num = 0;
1875 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1876 
1877 			spin_lock(&hslot2->lock);
1878 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1879 			hslot2->count--;
1880 			spin_unlock(&hslot2->lock);
1881 		}
1882 		spin_unlock_bh(&hslot->lock);
1883 	}
1884 }
1885 EXPORT_SYMBOL(udp_lib_unhash);
1886 
1887 /*
1888  * inet_rcv_saddr was changed, we must rehash secondary hash
1889  */
1890 void udp_lib_rehash(struct sock *sk, u16 newhash)
1891 {
1892 	if (sk_hashed(sk)) {
1893 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1894 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1895 
1896 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1897 		nhslot2 = udp_hashslot2(udptable, newhash);
1898 		udp_sk(sk)->udp_portaddr_hash = newhash;
1899 
1900 		if (hslot2 != nhslot2 ||
1901 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1902 			hslot = udp_hashslot(udptable, sock_net(sk),
1903 					     udp_sk(sk)->udp_port_hash);
1904 			/* we must lock primary chain too */
1905 			spin_lock_bh(&hslot->lock);
1906 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1907 				reuseport_detach_sock(sk);
1908 
1909 			if (hslot2 != nhslot2) {
1910 				spin_lock(&hslot2->lock);
1911 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1912 				hslot2->count--;
1913 				spin_unlock(&hslot2->lock);
1914 
1915 				spin_lock(&nhslot2->lock);
1916 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1917 							 &nhslot2->head);
1918 				nhslot2->count++;
1919 				spin_unlock(&nhslot2->lock);
1920 			}
1921 
1922 			spin_unlock_bh(&hslot->lock);
1923 		}
1924 	}
1925 }
1926 EXPORT_SYMBOL(udp_lib_rehash);
1927 
1928 void udp_v4_rehash(struct sock *sk)
1929 {
1930 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1931 					  inet_sk(sk)->inet_rcv_saddr,
1932 					  inet_sk(sk)->inet_num);
1933 	udp_lib_rehash(sk, new_hash);
1934 }
1935 
1936 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1937 {
1938 	int rc;
1939 
1940 	if (inet_sk(sk)->inet_daddr) {
1941 		sock_rps_save_rxhash(sk, skb);
1942 		sk_mark_napi_id(sk, skb);
1943 		sk_incoming_cpu_update(sk);
1944 	} else {
1945 		sk_mark_napi_id_once(sk, skb);
1946 	}
1947 
1948 	rc = __udp_enqueue_schedule_skb(sk, skb);
1949 	if (rc < 0) {
1950 		int is_udplite = IS_UDPLITE(sk);
1951 
1952 		/* Note that an ENOMEM error is charged twice */
1953 		if (rc == -ENOMEM)
1954 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1955 					is_udplite);
1956 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1957 		kfree_skb(skb);
1958 		trace_udp_fail_queue_rcv_skb(rc, sk);
1959 		return -1;
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 /* returns:
1966  *  -1: error
1967  *   0: success
1968  *  >0: "udp encap" protocol resubmission
1969  *
1970  * Note that in the success and error cases, the skb is assumed to
1971  * have either been requeued or freed.
1972  */
1973 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
1974 {
1975 	struct udp_sock *up = udp_sk(sk);
1976 	int is_udplite = IS_UDPLITE(sk);
1977 
1978 	/*
1979 	 *	Charge it to the socket, dropping if the queue is full.
1980 	 */
1981 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1982 		goto drop;
1983 	nf_reset(skb);
1984 
1985 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1986 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1987 
1988 		/*
1989 		 * This is an encapsulation socket so pass the skb to
1990 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1991 		 * fall through and pass this up the UDP socket.
1992 		 * up->encap_rcv() returns the following value:
1993 		 * =0 if skb was successfully passed to the encap
1994 		 *    handler or was discarded by it.
1995 		 * >0 if skb should be passed on to UDP.
1996 		 * <0 if skb should be resubmitted as proto -N
1997 		 */
1998 
1999 		/* if we're overly short, let UDP handle it */
2000 		encap_rcv = READ_ONCE(up->encap_rcv);
2001 		if (encap_rcv) {
2002 			int ret;
2003 
2004 			/* Verify checksum before giving to encap */
2005 			if (udp_lib_checksum_complete(skb))
2006 				goto csum_error;
2007 
2008 			ret = encap_rcv(sk, skb);
2009 			if (ret <= 0) {
2010 				__UDP_INC_STATS(sock_net(sk),
2011 						UDP_MIB_INDATAGRAMS,
2012 						is_udplite);
2013 				return -ret;
2014 			}
2015 		}
2016 
2017 		/* FALLTHROUGH -- it's a UDP Packet */
2018 	}
2019 
2020 	/*
2021 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2022 	 */
2023 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2024 
2025 		/*
2026 		 * MIB statistics other than incrementing the error count are
2027 		 * disabled for the following two types of errors: these depend
2028 		 * on the application settings, not on the functioning of the
2029 		 * protocol stack as such.
2030 		 *
2031 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2032 		 * way ... to ... at least let the receiving application block
2033 		 * delivery of packets with coverage values less than a value
2034 		 * provided by the application."
2035 		 */
2036 		if (up->pcrlen == 0) {          /* full coverage was set  */
2037 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2038 					    UDP_SKB_CB(skb)->cscov, skb->len);
2039 			goto drop;
2040 		}
2041 		/* The next case involves violating the min. coverage requested
2042 		 * by the receiver. This is subtle: if receiver wants x and x is
2043 		 * greater than the buffersize/MTU then receiver will complain
2044 		 * that it wants x while sender emits packets of smaller size y.
2045 		 * Therefore the above ...()->partial_cov statement is essential.
2046 		 */
2047 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2048 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2049 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2050 			goto drop;
2051 		}
2052 	}
2053 
2054 	prefetch(&sk->sk_rmem_alloc);
2055 	if (rcu_access_pointer(sk->sk_filter) &&
2056 	    udp_lib_checksum_complete(skb))
2057 			goto csum_error;
2058 
2059 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2060 		goto drop;
2061 
2062 	udp_csum_pull_header(skb);
2063 
2064 	ipv4_pktinfo_prepare(sk, skb);
2065 	return __udp_queue_rcv_skb(sk, skb);
2066 
2067 csum_error:
2068 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2069 drop:
2070 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2071 	atomic_inc(&sk->sk_drops);
2072 	kfree_skb(skb);
2073 	return -1;
2074 }
2075 
2076 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2077 {
2078 	struct sk_buff *next, *segs;
2079 	int ret;
2080 
2081 	if (likely(!udp_unexpected_gso(sk, skb)))
2082 		return udp_queue_rcv_one_skb(sk, skb);
2083 
2084 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2085 	__skb_push(skb, -skb_mac_offset(skb));
2086 	segs = udp_rcv_segment(sk, skb, true);
2087 	for (skb = segs; skb; skb = next) {
2088 		next = skb->next;
2089 		__skb_pull(skb, skb_transport_offset(skb));
2090 		ret = udp_queue_rcv_one_skb(sk, skb);
2091 		if (ret > 0)
2092 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2093 	}
2094 	return 0;
2095 }
2096 
2097 /* For TCP sockets, sk_rx_dst is protected by socket lock
2098  * For UDP, we use xchg() to guard against concurrent changes.
2099  */
2100 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2101 {
2102 	struct dst_entry *old;
2103 
2104 	if (dst_hold_safe(dst)) {
2105 		old = xchg(&sk->sk_rx_dst, dst);
2106 		dst_release(old);
2107 		return old != dst;
2108 	}
2109 	return false;
2110 }
2111 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2112 
2113 /*
2114  *	Multicasts and broadcasts go to each listener.
2115  *
2116  *	Note: called only from the BH handler context.
2117  */
2118 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2119 				    struct udphdr  *uh,
2120 				    __be32 saddr, __be32 daddr,
2121 				    struct udp_table *udptable,
2122 				    int proto)
2123 {
2124 	struct sock *sk, *first = NULL;
2125 	unsigned short hnum = ntohs(uh->dest);
2126 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2127 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2128 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2129 	int dif = skb->dev->ifindex;
2130 	int sdif = inet_sdif(skb);
2131 	struct hlist_node *node;
2132 	struct sk_buff *nskb;
2133 
2134 	if (use_hash2) {
2135 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2136 			    udptable->mask;
2137 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2138 start_lookup:
2139 		hslot = &udptable->hash2[hash2];
2140 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2141 	}
2142 
2143 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2144 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2145 					 uh->source, saddr, dif, sdif, hnum))
2146 			continue;
2147 
2148 		if (!first) {
2149 			first = sk;
2150 			continue;
2151 		}
2152 		nskb = skb_clone(skb, GFP_ATOMIC);
2153 
2154 		if (unlikely(!nskb)) {
2155 			atomic_inc(&sk->sk_drops);
2156 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2157 					IS_UDPLITE(sk));
2158 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2159 					IS_UDPLITE(sk));
2160 			continue;
2161 		}
2162 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2163 			consume_skb(nskb);
2164 	}
2165 
2166 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2167 	if (use_hash2 && hash2 != hash2_any) {
2168 		hash2 = hash2_any;
2169 		goto start_lookup;
2170 	}
2171 
2172 	if (first) {
2173 		if (udp_queue_rcv_skb(first, skb) > 0)
2174 			consume_skb(skb);
2175 	} else {
2176 		kfree_skb(skb);
2177 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2178 				proto == IPPROTO_UDPLITE);
2179 	}
2180 	return 0;
2181 }
2182 
2183 /* Initialize UDP checksum. If exited with zero value (success),
2184  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2185  * Otherwise, csum completion requires chacksumming packet body,
2186  * including udp header and folding it to skb->csum.
2187  */
2188 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2189 				 int proto)
2190 {
2191 	int err;
2192 
2193 	UDP_SKB_CB(skb)->partial_cov = 0;
2194 	UDP_SKB_CB(skb)->cscov = skb->len;
2195 
2196 	if (proto == IPPROTO_UDPLITE) {
2197 		err = udplite_checksum_init(skb, uh);
2198 		if (err)
2199 			return err;
2200 
2201 		if (UDP_SKB_CB(skb)->partial_cov) {
2202 			skb->csum = inet_compute_pseudo(skb, proto);
2203 			return 0;
2204 		}
2205 	}
2206 
2207 	/* Note, we are only interested in != 0 or == 0, thus the
2208 	 * force to int.
2209 	 */
2210 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2211 							inet_compute_pseudo);
2212 	if (err)
2213 		return err;
2214 
2215 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2216 		/* If SW calculated the value, we know it's bad */
2217 		if (skb->csum_complete_sw)
2218 			return 1;
2219 
2220 		/* HW says the value is bad. Let's validate that.
2221 		 * skb->csum is no longer the full packet checksum,
2222 		 * so don't treat it as such.
2223 		 */
2224 		skb_checksum_complete_unset(skb);
2225 	}
2226 
2227 	return 0;
2228 }
2229 
2230 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2231  * return code conversion for ip layer consumption
2232  */
2233 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2234 			       struct udphdr *uh)
2235 {
2236 	int ret;
2237 
2238 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2239 		skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2240 					 inet_compute_pseudo);
2241 
2242 	ret = udp_queue_rcv_skb(sk, skb);
2243 
2244 	/* a return value > 0 means to resubmit the input, but
2245 	 * it wants the return to be -protocol, or 0
2246 	 */
2247 	if (ret > 0)
2248 		return -ret;
2249 	return 0;
2250 }
2251 
2252 /*
2253  *	All we need to do is get the socket, and then do a checksum.
2254  */
2255 
2256 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2257 		   int proto)
2258 {
2259 	struct sock *sk;
2260 	struct udphdr *uh;
2261 	unsigned short ulen;
2262 	struct rtable *rt = skb_rtable(skb);
2263 	__be32 saddr, daddr;
2264 	struct net *net = dev_net(skb->dev);
2265 
2266 	/*
2267 	 *  Validate the packet.
2268 	 */
2269 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2270 		goto drop;		/* No space for header. */
2271 
2272 	uh   = udp_hdr(skb);
2273 	ulen = ntohs(uh->len);
2274 	saddr = ip_hdr(skb)->saddr;
2275 	daddr = ip_hdr(skb)->daddr;
2276 
2277 	if (ulen > skb->len)
2278 		goto short_packet;
2279 
2280 	if (proto == IPPROTO_UDP) {
2281 		/* UDP validates ulen. */
2282 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2283 			goto short_packet;
2284 		uh = udp_hdr(skb);
2285 	}
2286 
2287 	if (udp4_csum_init(skb, uh, proto))
2288 		goto csum_error;
2289 
2290 	sk = skb_steal_sock(skb);
2291 	if (sk) {
2292 		struct dst_entry *dst = skb_dst(skb);
2293 		int ret;
2294 
2295 		if (unlikely(sk->sk_rx_dst != dst))
2296 			udp_sk_rx_dst_set(sk, dst);
2297 
2298 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2299 		sock_put(sk);
2300 		return ret;
2301 	}
2302 
2303 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2304 		return __udp4_lib_mcast_deliver(net, skb, uh,
2305 						saddr, daddr, udptable, proto);
2306 
2307 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2308 	if (sk)
2309 		return udp_unicast_rcv_skb(sk, skb, uh);
2310 
2311 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2312 		goto drop;
2313 	nf_reset(skb);
2314 
2315 	/* No socket. Drop packet silently, if checksum is wrong */
2316 	if (udp_lib_checksum_complete(skb))
2317 		goto csum_error;
2318 
2319 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2320 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2321 
2322 	/*
2323 	 * Hmm.  We got an UDP packet to a port to which we
2324 	 * don't wanna listen.  Ignore it.
2325 	 */
2326 	kfree_skb(skb);
2327 	return 0;
2328 
2329 short_packet:
2330 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2331 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2332 			    &saddr, ntohs(uh->source),
2333 			    ulen, skb->len,
2334 			    &daddr, ntohs(uh->dest));
2335 	goto drop;
2336 
2337 csum_error:
2338 	/*
2339 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2340 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2341 	 */
2342 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2343 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2344 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2345 			    ulen);
2346 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2347 drop:
2348 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2349 	kfree_skb(skb);
2350 	return 0;
2351 }
2352 
2353 /* We can only early demux multicast if there is a single matching socket.
2354  * If more than one socket found returns NULL
2355  */
2356 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2357 						  __be16 loc_port, __be32 loc_addr,
2358 						  __be16 rmt_port, __be32 rmt_addr,
2359 						  int dif, int sdif)
2360 {
2361 	struct sock *sk, *result;
2362 	unsigned short hnum = ntohs(loc_port);
2363 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2364 	struct udp_hslot *hslot = &udp_table.hash[slot];
2365 
2366 	/* Do not bother scanning a too big list */
2367 	if (hslot->count > 10)
2368 		return NULL;
2369 
2370 	result = NULL;
2371 	sk_for_each_rcu(sk, &hslot->head) {
2372 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2373 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2374 			if (result)
2375 				return NULL;
2376 			result = sk;
2377 		}
2378 	}
2379 
2380 	return result;
2381 }
2382 
2383 /* For unicast we should only early demux connected sockets or we can
2384  * break forwarding setups.  The chains here can be long so only check
2385  * if the first socket is an exact match and if not move on.
2386  */
2387 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2388 					    __be16 loc_port, __be32 loc_addr,
2389 					    __be16 rmt_port, __be32 rmt_addr,
2390 					    int dif, int sdif)
2391 {
2392 	unsigned short hnum = ntohs(loc_port);
2393 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2394 	unsigned int slot2 = hash2 & udp_table.mask;
2395 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2396 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2397 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2398 	struct sock *sk;
2399 
2400 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2401 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2402 			       loc_addr, ports, dif, sdif))
2403 			return sk;
2404 		/* Only check first socket in chain */
2405 		break;
2406 	}
2407 	return NULL;
2408 }
2409 
2410 int udp_v4_early_demux(struct sk_buff *skb)
2411 {
2412 	struct net *net = dev_net(skb->dev);
2413 	struct in_device *in_dev = NULL;
2414 	const struct iphdr *iph;
2415 	const struct udphdr *uh;
2416 	struct sock *sk = NULL;
2417 	struct dst_entry *dst;
2418 	int dif = skb->dev->ifindex;
2419 	int sdif = inet_sdif(skb);
2420 	int ours;
2421 
2422 	/* validate the packet */
2423 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2424 		return 0;
2425 
2426 	iph = ip_hdr(skb);
2427 	uh = udp_hdr(skb);
2428 
2429 	if (skb->pkt_type == PACKET_MULTICAST) {
2430 		in_dev = __in_dev_get_rcu(skb->dev);
2431 
2432 		if (!in_dev)
2433 			return 0;
2434 
2435 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2436 				       iph->protocol);
2437 		if (!ours)
2438 			return 0;
2439 
2440 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2441 						   uh->source, iph->saddr,
2442 						   dif, sdif);
2443 	} else if (skb->pkt_type == PACKET_HOST) {
2444 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2445 					     uh->source, iph->saddr, dif, sdif);
2446 	}
2447 
2448 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2449 		return 0;
2450 
2451 	skb->sk = sk;
2452 	skb->destructor = sock_efree;
2453 	dst = READ_ONCE(sk->sk_rx_dst);
2454 
2455 	if (dst)
2456 		dst = dst_check(dst, 0);
2457 	if (dst) {
2458 		u32 itag = 0;
2459 
2460 		/* set noref for now.
2461 		 * any place which wants to hold dst has to call
2462 		 * dst_hold_safe()
2463 		 */
2464 		skb_dst_set_noref(skb, dst);
2465 
2466 		/* for unconnected multicast sockets we need to validate
2467 		 * the source on each packet
2468 		 */
2469 		if (!inet_sk(sk)->inet_daddr && in_dev)
2470 			return ip_mc_validate_source(skb, iph->daddr,
2471 						     iph->saddr, iph->tos,
2472 						     skb->dev, in_dev, &itag);
2473 	}
2474 	return 0;
2475 }
2476 
2477 int udp_rcv(struct sk_buff *skb)
2478 {
2479 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2480 }
2481 
2482 void udp_destroy_sock(struct sock *sk)
2483 {
2484 	struct udp_sock *up = udp_sk(sk);
2485 	bool slow = lock_sock_fast(sk);
2486 	udp_flush_pending_frames(sk);
2487 	unlock_sock_fast(sk, slow);
2488 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2489 		if (up->encap_type) {
2490 			void (*encap_destroy)(struct sock *sk);
2491 			encap_destroy = READ_ONCE(up->encap_destroy);
2492 			if (encap_destroy)
2493 				encap_destroy(sk);
2494 		}
2495 		if (up->encap_enabled)
2496 			static_branch_dec(&udp_encap_needed_key);
2497 	}
2498 }
2499 
2500 /*
2501  *	Socket option code for UDP
2502  */
2503 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2504 		       char __user *optval, unsigned int optlen,
2505 		       int (*push_pending_frames)(struct sock *))
2506 {
2507 	struct udp_sock *up = udp_sk(sk);
2508 	int val, valbool;
2509 	int err = 0;
2510 	int is_udplite = IS_UDPLITE(sk);
2511 
2512 	if (optlen < sizeof(int))
2513 		return -EINVAL;
2514 
2515 	if (get_user(val, (int __user *)optval))
2516 		return -EFAULT;
2517 
2518 	valbool = val ? 1 : 0;
2519 
2520 	switch (optname) {
2521 	case UDP_CORK:
2522 		if (val != 0) {
2523 			up->corkflag = 1;
2524 		} else {
2525 			up->corkflag = 0;
2526 			lock_sock(sk);
2527 			push_pending_frames(sk);
2528 			release_sock(sk);
2529 		}
2530 		break;
2531 
2532 	case UDP_ENCAP:
2533 		switch (val) {
2534 		case 0:
2535 		case UDP_ENCAP_ESPINUDP:
2536 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2537 			up->encap_rcv = xfrm4_udp_encap_rcv;
2538 			/* FALLTHROUGH */
2539 		case UDP_ENCAP_L2TPINUDP:
2540 			up->encap_type = val;
2541 			lock_sock(sk);
2542 			udp_tunnel_encap_enable(sk->sk_socket);
2543 			release_sock(sk);
2544 			break;
2545 		default:
2546 			err = -ENOPROTOOPT;
2547 			break;
2548 		}
2549 		break;
2550 
2551 	case UDP_NO_CHECK6_TX:
2552 		up->no_check6_tx = valbool;
2553 		break;
2554 
2555 	case UDP_NO_CHECK6_RX:
2556 		up->no_check6_rx = valbool;
2557 		break;
2558 
2559 	case UDP_SEGMENT:
2560 		if (val < 0 || val > USHRT_MAX)
2561 			return -EINVAL;
2562 		up->gso_size = val;
2563 		break;
2564 
2565 	case UDP_GRO:
2566 		lock_sock(sk);
2567 		if (valbool)
2568 			udp_tunnel_encap_enable(sk->sk_socket);
2569 		up->gro_enabled = valbool;
2570 		release_sock(sk);
2571 		break;
2572 
2573 	/*
2574 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2575 	 */
2576 	/* The sender sets actual checksum coverage length via this option.
2577 	 * The case coverage > packet length is handled by send module. */
2578 	case UDPLITE_SEND_CSCOV:
2579 		if (!is_udplite)         /* Disable the option on UDP sockets */
2580 			return -ENOPROTOOPT;
2581 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2582 			val = 8;
2583 		else if (val > USHRT_MAX)
2584 			val = USHRT_MAX;
2585 		up->pcslen = val;
2586 		up->pcflag |= UDPLITE_SEND_CC;
2587 		break;
2588 
2589 	/* The receiver specifies a minimum checksum coverage value. To make
2590 	 * sense, this should be set to at least 8 (as done below). If zero is
2591 	 * used, this again means full checksum coverage.                     */
2592 	case UDPLITE_RECV_CSCOV:
2593 		if (!is_udplite)         /* Disable the option on UDP sockets */
2594 			return -ENOPROTOOPT;
2595 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2596 			val = 8;
2597 		else if (val > USHRT_MAX)
2598 			val = USHRT_MAX;
2599 		up->pcrlen = val;
2600 		up->pcflag |= UDPLITE_RECV_CC;
2601 		break;
2602 
2603 	default:
2604 		err = -ENOPROTOOPT;
2605 		break;
2606 	}
2607 
2608 	return err;
2609 }
2610 EXPORT_SYMBOL(udp_lib_setsockopt);
2611 
2612 int udp_setsockopt(struct sock *sk, int level, int optname,
2613 		   char __user *optval, unsigned int optlen)
2614 {
2615 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2616 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2617 					  udp_push_pending_frames);
2618 	return ip_setsockopt(sk, level, optname, optval, optlen);
2619 }
2620 
2621 #ifdef CONFIG_COMPAT
2622 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2623 			  char __user *optval, unsigned int optlen)
2624 {
2625 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2626 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2627 					  udp_push_pending_frames);
2628 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2629 }
2630 #endif
2631 
2632 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2633 		       char __user *optval, int __user *optlen)
2634 {
2635 	struct udp_sock *up = udp_sk(sk);
2636 	int val, len;
2637 
2638 	if (get_user(len, optlen))
2639 		return -EFAULT;
2640 
2641 	len = min_t(unsigned int, len, sizeof(int));
2642 
2643 	if (len < 0)
2644 		return -EINVAL;
2645 
2646 	switch (optname) {
2647 	case UDP_CORK:
2648 		val = up->corkflag;
2649 		break;
2650 
2651 	case UDP_ENCAP:
2652 		val = up->encap_type;
2653 		break;
2654 
2655 	case UDP_NO_CHECK6_TX:
2656 		val = up->no_check6_tx;
2657 		break;
2658 
2659 	case UDP_NO_CHECK6_RX:
2660 		val = up->no_check6_rx;
2661 		break;
2662 
2663 	case UDP_SEGMENT:
2664 		val = up->gso_size;
2665 		break;
2666 
2667 	/* The following two cannot be changed on UDP sockets, the return is
2668 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2669 	case UDPLITE_SEND_CSCOV:
2670 		val = up->pcslen;
2671 		break;
2672 
2673 	case UDPLITE_RECV_CSCOV:
2674 		val = up->pcrlen;
2675 		break;
2676 
2677 	default:
2678 		return -ENOPROTOOPT;
2679 	}
2680 
2681 	if (put_user(len, optlen))
2682 		return -EFAULT;
2683 	if (copy_to_user(optval, &val, len))
2684 		return -EFAULT;
2685 	return 0;
2686 }
2687 EXPORT_SYMBOL(udp_lib_getsockopt);
2688 
2689 int udp_getsockopt(struct sock *sk, int level, int optname,
2690 		   char __user *optval, int __user *optlen)
2691 {
2692 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2693 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2694 	return ip_getsockopt(sk, level, optname, optval, optlen);
2695 }
2696 
2697 #ifdef CONFIG_COMPAT
2698 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2699 				 char __user *optval, int __user *optlen)
2700 {
2701 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2702 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2703 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2704 }
2705 #endif
2706 /**
2707  * 	udp_poll - wait for a UDP event.
2708  *	@file - file struct
2709  *	@sock - socket
2710  *	@wait - poll table
2711  *
2712  *	This is same as datagram poll, except for the special case of
2713  *	blocking sockets. If application is using a blocking fd
2714  *	and a packet with checksum error is in the queue;
2715  *	then it could get return from select indicating data available
2716  *	but then block when reading it. Add special case code
2717  *	to work around these arguably broken applications.
2718  */
2719 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2720 {
2721 	__poll_t mask = datagram_poll(file, sock, wait);
2722 	struct sock *sk = sock->sk;
2723 
2724 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2725 		mask |= EPOLLIN | EPOLLRDNORM;
2726 
2727 	/* Check for false positives due to checksum errors */
2728 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2729 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2730 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2731 
2732 	return mask;
2733 
2734 }
2735 EXPORT_SYMBOL(udp_poll);
2736 
2737 int udp_abort(struct sock *sk, int err)
2738 {
2739 	lock_sock(sk);
2740 
2741 	sk->sk_err = err;
2742 	sk->sk_error_report(sk);
2743 	__udp_disconnect(sk, 0);
2744 
2745 	release_sock(sk);
2746 
2747 	return 0;
2748 }
2749 EXPORT_SYMBOL_GPL(udp_abort);
2750 
2751 struct proto udp_prot = {
2752 	.name			= "UDP",
2753 	.owner			= THIS_MODULE,
2754 	.close			= udp_lib_close,
2755 	.pre_connect		= udp_pre_connect,
2756 	.connect		= ip4_datagram_connect,
2757 	.disconnect		= udp_disconnect,
2758 	.ioctl			= udp_ioctl,
2759 	.init			= udp_init_sock,
2760 	.destroy		= udp_destroy_sock,
2761 	.setsockopt		= udp_setsockopt,
2762 	.getsockopt		= udp_getsockopt,
2763 	.sendmsg		= udp_sendmsg,
2764 	.recvmsg		= udp_recvmsg,
2765 	.sendpage		= udp_sendpage,
2766 	.release_cb		= ip4_datagram_release_cb,
2767 	.hash			= udp_lib_hash,
2768 	.unhash			= udp_lib_unhash,
2769 	.rehash			= udp_v4_rehash,
2770 	.get_port		= udp_v4_get_port,
2771 	.memory_allocated	= &udp_memory_allocated,
2772 	.sysctl_mem		= sysctl_udp_mem,
2773 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2774 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2775 	.obj_size		= sizeof(struct udp_sock),
2776 	.h.udp_table		= &udp_table,
2777 #ifdef CONFIG_COMPAT
2778 	.compat_setsockopt	= compat_udp_setsockopt,
2779 	.compat_getsockopt	= compat_udp_getsockopt,
2780 #endif
2781 	.diag_destroy		= udp_abort,
2782 };
2783 EXPORT_SYMBOL(udp_prot);
2784 
2785 /* ------------------------------------------------------------------------ */
2786 #ifdef CONFIG_PROC_FS
2787 
2788 static struct sock *udp_get_first(struct seq_file *seq, int start)
2789 {
2790 	struct sock *sk;
2791 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2792 	struct udp_iter_state *state = seq->private;
2793 	struct net *net = seq_file_net(seq);
2794 
2795 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2796 	     ++state->bucket) {
2797 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2798 
2799 		if (hlist_empty(&hslot->head))
2800 			continue;
2801 
2802 		spin_lock_bh(&hslot->lock);
2803 		sk_for_each(sk, &hslot->head) {
2804 			if (!net_eq(sock_net(sk), net))
2805 				continue;
2806 			if (sk->sk_family == afinfo->family)
2807 				goto found;
2808 		}
2809 		spin_unlock_bh(&hslot->lock);
2810 	}
2811 	sk = NULL;
2812 found:
2813 	return sk;
2814 }
2815 
2816 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2817 {
2818 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2819 	struct udp_iter_state *state = seq->private;
2820 	struct net *net = seq_file_net(seq);
2821 
2822 	do {
2823 		sk = sk_next(sk);
2824 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2825 
2826 	if (!sk) {
2827 		if (state->bucket <= afinfo->udp_table->mask)
2828 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2829 		return udp_get_first(seq, state->bucket + 1);
2830 	}
2831 	return sk;
2832 }
2833 
2834 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2835 {
2836 	struct sock *sk = udp_get_first(seq, 0);
2837 
2838 	if (sk)
2839 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2840 			--pos;
2841 	return pos ? NULL : sk;
2842 }
2843 
2844 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2845 {
2846 	struct udp_iter_state *state = seq->private;
2847 	state->bucket = MAX_UDP_PORTS;
2848 
2849 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2850 }
2851 EXPORT_SYMBOL(udp_seq_start);
2852 
2853 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2854 {
2855 	struct sock *sk;
2856 
2857 	if (v == SEQ_START_TOKEN)
2858 		sk = udp_get_idx(seq, 0);
2859 	else
2860 		sk = udp_get_next(seq, v);
2861 
2862 	++*pos;
2863 	return sk;
2864 }
2865 EXPORT_SYMBOL(udp_seq_next);
2866 
2867 void udp_seq_stop(struct seq_file *seq, void *v)
2868 {
2869 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2870 	struct udp_iter_state *state = seq->private;
2871 
2872 	if (state->bucket <= afinfo->udp_table->mask)
2873 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2874 }
2875 EXPORT_SYMBOL(udp_seq_stop);
2876 
2877 /* ------------------------------------------------------------------------ */
2878 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2879 		int bucket)
2880 {
2881 	struct inet_sock *inet = inet_sk(sp);
2882 	__be32 dest = inet->inet_daddr;
2883 	__be32 src  = inet->inet_rcv_saddr;
2884 	__u16 destp	  = ntohs(inet->inet_dport);
2885 	__u16 srcp	  = ntohs(inet->inet_sport);
2886 
2887 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2888 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2889 		bucket, src, srcp, dest, destp, sp->sk_state,
2890 		sk_wmem_alloc_get(sp),
2891 		udp_rqueue_get(sp),
2892 		0, 0L, 0,
2893 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2894 		0, sock_i_ino(sp),
2895 		refcount_read(&sp->sk_refcnt), sp,
2896 		atomic_read(&sp->sk_drops));
2897 }
2898 
2899 int udp4_seq_show(struct seq_file *seq, void *v)
2900 {
2901 	seq_setwidth(seq, 127);
2902 	if (v == SEQ_START_TOKEN)
2903 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2904 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2905 			   "inode ref pointer drops");
2906 	else {
2907 		struct udp_iter_state *state = seq->private;
2908 
2909 		udp4_format_sock(v, seq, state->bucket);
2910 	}
2911 	seq_pad(seq, '\n');
2912 	return 0;
2913 }
2914 
2915 const struct seq_operations udp_seq_ops = {
2916 	.start		= udp_seq_start,
2917 	.next		= udp_seq_next,
2918 	.stop		= udp_seq_stop,
2919 	.show		= udp4_seq_show,
2920 };
2921 EXPORT_SYMBOL(udp_seq_ops);
2922 
2923 static struct udp_seq_afinfo udp4_seq_afinfo = {
2924 	.family		= AF_INET,
2925 	.udp_table	= &udp_table,
2926 };
2927 
2928 static int __net_init udp4_proc_init_net(struct net *net)
2929 {
2930 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2931 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2932 		return -ENOMEM;
2933 	return 0;
2934 }
2935 
2936 static void __net_exit udp4_proc_exit_net(struct net *net)
2937 {
2938 	remove_proc_entry("udp", net->proc_net);
2939 }
2940 
2941 static struct pernet_operations udp4_net_ops = {
2942 	.init = udp4_proc_init_net,
2943 	.exit = udp4_proc_exit_net,
2944 };
2945 
2946 int __init udp4_proc_init(void)
2947 {
2948 	return register_pernet_subsys(&udp4_net_ops);
2949 }
2950 
2951 void udp4_proc_exit(void)
2952 {
2953 	unregister_pernet_subsys(&udp4_net_ops);
2954 }
2955 #endif /* CONFIG_PROC_FS */
2956 
2957 static __initdata unsigned long uhash_entries;
2958 static int __init set_uhash_entries(char *str)
2959 {
2960 	ssize_t ret;
2961 
2962 	if (!str)
2963 		return 0;
2964 
2965 	ret = kstrtoul(str, 0, &uhash_entries);
2966 	if (ret)
2967 		return 0;
2968 
2969 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2970 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2971 	return 1;
2972 }
2973 __setup("uhash_entries=", set_uhash_entries);
2974 
2975 void __init udp_table_init(struct udp_table *table, const char *name)
2976 {
2977 	unsigned int i;
2978 
2979 	table->hash = alloc_large_system_hash(name,
2980 					      2 * sizeof(struct udp_hslot),
2981 					      uhash_entries,
2982 					      21, /* one slot per 2 MB */
2983 					      0,
2984 					      &table->log,
2985 					      &table->mask,
2986 					      UDP_HTABLE_SIZE_MIN,
2987 					      64 * 1024);
2988 
2989 	table->hash2 = table->hash + (table->mask + 1);
2990 	for (i = 0; i <= table->mask; i++) {
2991 		INIT_HLIST_HEAD(&table->hash[i].head);
2992 		table->hash[i].count = 0;
2993 		spin_lock_init(&table->hash[i].lock);
2994 	}
2995 	for (i = 0; i <= table->mask; i++) {
2996 		INIT_HLIST_HEAD(&table->hash2[i].head);
2997 		table->hash2[i].count = 0;
2998 		spin_lock_init(&table->hash2[i].lock);
2999 	}
3000 }
3001 
3002 u32 udp_flow_hashrnd(void)
3003 {
3004 	static u32 hashrnd __read_mostly;
3005 
3006 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3007 
3008 	return hashrnd;
3009 }
3010 EXPORT_SYMBOL(udp_flow_hashrnd);
3011 
3012 static void __udp_sysctl_init(struct net *net)
3013 {
3014 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3015 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3016 
3017 #ifdef CONFIG_NET_L3_MASTER_DEV
3018 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3019 #endif
3020 }
3021 
3022 static int __net_init udp_sysctl_init(struct net *net)
3023 {
3024 	__udp_sysctl_init(net);
3025 	return 0;
3026 }
3027 
3028 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3029 	.init	= udp_sysctl_init,
3030 };
3031 
3032 void __init udp_init(void)
3033 {
3034 	unsigned long limit;
3035 	unsigned int i;
3036 
3037 	udp_table_init(&udp_table, "UDP");
3038 	limit = nr_free_buffer_pages() / 8;
3039 	limit = max(limit, 128UL);
3040 	sysctl_udp_mem[0] = limit / 4 * 3;
3041 	sysctl_udp_mem[1] = limit;
3042 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3043 
3044 	__udp_sysctl_init(&init_net);
3045 
3046 	/* 16 spinlocks per cpu */
3047 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3048 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3049 				GFP_KERNEL);
3050 	if (!udp_busylocks)
3051 		panic("UDP: failed to alloc udp_busylocks\n");
3052 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3053 		spin_lock_init(udp_busylocks + i);
3054 
3055 	if (register_pernet_subsys(&udp_sysctl_ops))
3056 		panic("UDP: failed to init sysctl parameters.\n");
3057 }
3058