xref: /openbmc/linux/net/ipv4/udp.c (revision 22246614)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Version:	$Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Hirokazu Takahashi, <taka@valinux.co.jp>
15  *
16  * Fixes:
17  *		Alan Cox	:	verify_area() calls
18  *		Alan Cox	: 	stopped close while in use off icmp
19  *					messages. Not a fix but a botch that
20  *					for udp at least is 'valid'.
21  *		Alan Cox	:	Fixed icmp handling properly
22  *		Alan Cox	: 	Correct error for oversized datagrams
23  *		Alan Cox	:	Tidied select() semantics.
24  *		Alan Cox	:	udp_err() fixed properly, also now
25  *					select and read wake correctly on errors
26  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
27  *		Alan Cox	:	UDP can count its memory
28  *		Alan Cox	:	send to an unknown connection causes
29  *					an ECONNREFUSED off the icmp, but
30  *					does NOT close.
31  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
32  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
33  *					bug no longer crashes it.
34  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
35  *		Alan Cox	:	Uses skb_free_datagram
36  *		Alan Cox	:	Added get/set sockopt support.
37  *		Alan Cox	:	Broadcasting without option set returns EACCES.
38  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
39  *		Alan Cox	:	Use ip_tos and ip_ttl
40  *		Alan Cox	:	SNMP Mibs
41  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
42  *		Matt Dillon	:	UDP length checks.
43  *		Alan Cox	:	Smarter af_inet used properly.
44  *		Alan Cox	:	Use new kernel side addressing.
45  *		Alan Cox	:	Incorrect return on truncated datagram receive.
46  *	Arnt Gulbrandsen 	:	New udp_send and stuff
47  *		Alan Cox	:	Cache last socket
48  *		Alan Cox	:	Route cache
49  *		Jon Peatfield	:	Minor efficiency fix to sendto().
50  *		Mike Shaver	:	RFC1122 checks.
51  *		Alan Cox	:	Nonblocking error fix.
52  *	Willy Konynenberg	:	Transparent proxying support.
53  *		Mike McLagan	:	Routing by source
54  *		David S. Miller	:	New socket lookup architecture.
55  *					Last socket cache retained as it
56  *					does have a high hit rate.
57  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
58  *		Andi Kleen	:	Some cleanups, cache destination entry
59  *					for connect.
60  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
61  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
62  *					return ENOTCONN for unconnected sockets (POSIX)
63  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
64  *					bound-to-device socket
65  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
66  *					datagrams.
67  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
68  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
69  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
70  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
71  *					a single port at the same time.
72  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
73  *	James Chapman		:	Add L2TP encapsulation type.
74  *
75  *
76  *		This program is free software; you can redistribute it and/or
77  *		modify it under the terms of the GNU General Public License
78  *		as published by the Free Software Foundation; either version
79  *		2 of the License, or (at your option) any later version.
80  */
81 
82 #include <asm/system.h>
83 #include <asm/uaccess.h>
84 #include <asm/ioctls.h>
85 #include <linux/bootmem.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <net/tcp_states.h>
99 #include <linux/skbuff.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <net/net_namespace.h>
103 #include <net/icmp.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include "udp_impl.h"
108 
109 /*
110  *	Snmp MIB for the UDP layer
111  */
112 
113 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly;
114 EXPORT_SYMBOL(udp_statistics);
115 
116 DEFINE_SNMP_STAT(struct udp_mib, udp_stats_in6) __read_mostly;
117 EXPORT_SYMBOL(udp_stats_in6);
118 
119 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
120 DEFINE_RWLOCK(udp_hash_lock);
121 
122 int sysctl_udp_mem[3] __read_mostly;
123 int sysctl_udp_rmem_min __read_mostly;
124 int sysctl_udp_wmem_min __read_mostly;
125 
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 EXPORT_SYMBOL(sysctl_udp_rmem_min);
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129 
130 atomic_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132 
133 static inline int __udp_lib_lport_inuse(struct net *net, __u16 num,
134 					const struct hlist_head udptable[])
135 {
136 	struct sock *sk;
137 	struct hlist_node *node;
138 
139 	sk_for_each(sk, node, &udptable[num & (UDP_HTABLE_SIZE - 1)])
140 		if (net_eq(sock_net(sk), net) && sk->sk_hash == num)
141 			return 1;
142 	return 0;
143 }
144 
145 /**
146  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
147  *
148  *  @sk:          socket struct in question
149  *  @snum:        port number to look up
150  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
151  */
152 int udp_lib_get_port(struct sock *sk, unsigned short snum,
153 		       int (*saddr_comp)(const struct sock *sk1,
154 					 const struct sock *sk2 )    )
155 {
156 	struct hlist_head *udptable = sk->sk_prot->h.udp_hash;
157 	struct hlist_node *node;
158 	struct hlist_head *head;
159 	struct sock *sk2;
160 	int    error = 1;
161 	struct net *net = sock_net(sk);
162 
163 	write_lock_bh(&udp_hash_lock);
164 
165 	if (!snum) {
166 		int i, low, high, remaining;
167 		unsigned rover, best, best_size_so_far;
168 
169 		inet_get_local_port_range(&low, &high);
170 		remaining = (high - low) + 1;
171 
172 		best_size_so_far = UINT_MAX;
173 		best = rover = net_random() % remaining + low;
174 
175 		/* 1st pass: look for empty (or shortest) hash chain */
176 		for (i = 0; i < UDP_HTABLE_SIZE; i++) {
177 			int size = 0;
178 
179 			head = &udptable[rover & (UDP_HTABLE_SIZE - 1)];
180 			if (hlist_empty(head))
181 				goto gotit;
182 
183 			sk_for_each(sk2, node, head) {
184 				if (++size >= best_size_so_far)
185 					goto next;
186 			}
187 			best_size_so_far = size;
188 			best = rover;
189 		next:
190 			/* fold back if end of range */
191 			if (++rover > high)
192 				rover = low + ((rover - low)
193 					       & (UDP_HTABLE_SIZE - 1));
194 
195 
196 		}
197 
198 		/* 2nd pass: find hole in shortest hash chain */
199 		rover = best;
200 		for (i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++) {
201 			if (! __udp_lib_lport_inuse(net, rover, udptable))
202 				goto gotit;
203 			rover += UDP_HTABLE_SIZE;
204 			if (rover > high)
205 				rover = low + ((rover - low)
206 					       & (UDP_HTABLE_SIZE - 1));
207 		}
208 
209 
210 		/* All ports in use! */
211 		goto fail;
212 
213 gotit:
214 		snum = rover;
215 	} else {
216 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
217 
218 		sk_for_each(sk2, node, head)
219 			if (sk2->sk_hash == snum                             &&
220 			    sk2 != sk                                        &&
221 			    net_eq(sock_net(sk2), net)			     &&
222 			    (!sk2->sk_reuse        || !sk->sk_reuse)         &&
223 			    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
224 			     || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
225 			    (*saddr_comp)(sk, sk2)                             )
226 				goto fail;
227 	}
228 
229 	inet_sk(sk)->num = snum;
230 	sk->sk_hash = snum;
231 	if (sk_unhashed(sk)) {
232 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
233 		sk_add_node(sk, head);
234 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
235 	}
236 	error = 0;
237 fail:
238 	write_unlock_bh(&udp_hash_lock);
239 	return error;
240 }
241 
242 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
243 {
244 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
245 
246 	return 	( !ipv6_only_sock(sk2)  &&
247 		  (!inet1->rcv_saddr || !inet2->rcv_saddr ||
248 		   inet1->rcv_saddr == inet2->rcv_saddr      ));
249 }
250 
251 int udp_v4_get_port(struct sock *sk, unsigned short snum)
252 {
253 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal);
254 }
255 
256 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
257  * harder than this. -DaveM
258  */
259 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
260 		__be16 sport, __be32 daddr, __be16 dport,
261 		int dif, struct hlist_head udptable[])
262 {
263 	struct sock *sk, *result = NULL;
264 	struct hlist_node *node;
265 	unsigned short hnum = ntohs(dport);
266 	int badness = -1;
267 
268 	read_lock(&udp_hash_lock);
269 	sk_for_each(sk, node, &udptable[hnum & (UDP_HTABLE_SIZE - 1)]) {
270 		struct inet_sock *inet = inet_sk(sk);
271 
272 		if (net_eq(sock_net(sk), net) && sk->sk_hash == hnum &&
273 				!ipv6_only_sock(sk)) {
274 			int score = (sk->sk_family == PF_INET ? 1 : 0);
275 			if (inet->rcv_saddr) {
276 				if (inet->rcv_saddr != daddr)
277 					continue;
278 				score+=2;
279 			}
280 			if (inet->daddr) {
281 				if (inet->daddr != saddr)
282 					continue;
283 				score+=2;
284 			}
285 			if (inet->dport) {
286 				if (inet->dport != sport)
287 					continue;
288 				score+=2;
289 			}
290 			if (sk->sk_bound_dev_if) {
291 				if (sk->sk_bound_dev_if != dif)
292 					continue;
293 				score+=2;
294 			}
295 			if (score == 9) {
296 				result = sk;
297 				break;
298 			} else if (score > badness) {
299 				result = sk;
300 				badness = score;
301 			}
302 		}
303 	}
304 	if (result)
305 		sock_hold(result);
306 	read_unlock(&udp_hash_lock);
307 	return result;
308 }
309 
310 static inline struct sock *udp_v4_mcast_next(struct sock *sk,
311 					     __be16 loc_port, __be32 loc_addr,
312 					     __be16 rmt_port, __be32 rmt_addr,
313 					     int dif)
314 {
315 	struct hlist_node *node;
316 	struct sock *s = sk;
317 	unsigned short hnum = ntohs(loc_port);
318 
319 	sk_for_each_from(s, node) {
320 		struct inet_sock *inet = inet_sk(s);
321 
322 		if (s->sk_hash != hnum					||
323 		    (inet->daddr && inet->daddr != rmt_addr)		||
324 		    (inet->dport != rmt_port && inet->dport)		||
325 		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
326 		    ipv6_only_sock(s)					||
327 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
328 			continue;
329 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
330 			continue;
331 		goto found;
332 	}
333 	s = NULL;
334 found:
335 	return s;
336 }
337 
338 /*
339  * This routine is called by the ICMP module when it gets some
340  * sort of error condition.  If err < 0 then the socket should
341  * be closed and the error returned to the user.  If err > 0
342  * it's just the icmp type << 8 | icmp code.
343  * Header points to the ip header of the error packet. We move
344  * on past this. Then (as it used to claim before adjustment)
345  * header points to the first 8 bytes of the udp header.  We need
346  * to find the appropriate port.
347  */
348 
349 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
350 {
351 	struct inet_sock *inet;
352 	struct iphdr *iph = (struct iphdr*)skb->data;
353 	struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
354 	const int type = icmp_hdr(skb)->type;
355 	const int code = icmp_hdr(skb)->code;
356 	struct sock *sk;
357 	int harderr;
358 	int err;
359 
360 	sk = __udp4_lib_lookup(dev_net(skb->dev), iph->daddr, uh->dest,
361 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
362 	if (sk == NULL) {
363 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
364 		return;	/* No socket for error */
365 	}
366 
367 	err = 0;
368 	harderr = 0;
369 	inet = inet_sk(sk);
370 
371 	switch (type) {
372 	default:
373 	case ICMP_TIME_EXCEEDED:
374 		err = EHOSTUNREACH;
375 		break;
376 	case ICMP_SOURCE_QUENCH:
377 		goto out;
378 	case ICMP_PARAMETERPROB:
379 		err = EPROTO;
380 		harderr = 1;
381 		break;
382 	case ICMP_DEST_UNREACH:
383 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
384 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
385 				err = EMSGSIZE;
386 				harderr = 1;
387 				break;
388 			}
389 			goto out;
390 		}
391 		err = EHOSTUNREACH;
392 		if (code <= NR_ICMP_UNREACH) {
393 			harderr = icmp_err_convert[code].fatal;
394 			err = icmp_err_convert[code].errno;
395 		}
396 		break;
397 	}
398 
399 	/*
400 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
401 	 *	4.1.3.3.
402 	 */
403 	if (!inet->recverr) {
404 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
405 			goto out;
406 	} else {
407 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
408 	}
409 	sk->sk_err = err;
410 	sk->sk_error_report(sk);
411 out:
412 	sock_put(sk);
413 }
414 
415 void udp_err(struct sk_buff *skb, u32 info)
416 {
417 	__udp4_lib_err(skb, info, udp_hash);
418 }
419 
420 /*
421  * Throw away all pending data and cancel the corking. Socket is locked.
422  */
423 static void udp_flush_pending_frames(struct sock *sk)
424 {
425 	struct udp_sock *up = udp_sk(sk);
426 
427 	if (up->pending) {
428 		up->len = 0;
429 		up->pending = 0;
430 		ip_flush_pending_frames(sk);
431 	}
432 }
433 
434 /**
435  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
436  * 	@sk: 	socket we are sending on
437  * 	@skb: 	sk_buff containing the filled-in UDP header
438  * 	        (checksum field must be zeroed out)
439  */
440 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
441 				 __be32 src, __be32 dst, int len      )
442 {
443 	unsigned int offset;
444 	struct udphdr *uh = udp_hdr(skb);
445 	__wsum csum = 0;
446 
447 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
448 		/*
449 		 * Only one fragment on the socket.
450 		 */
451 		skb->csum_start = skb_transport_header(skb) - skb->head;
452 		skb->csum_offset = offsetof(struct udphdr, check);
453 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
454 	} else {
455 		/*
456 		 * HW-checksum won't work as there are two or more
457 		 * fragments on the socket so that all csums of sk_buffs
458 		 * should be together
459 		 */
460 		offset = skb_transport_offset(skb);
461 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
462 
463 		skb->ip_summed = CHECKSUM_NONE;
464 
465 		skb_queue_walk(&sk->sk_write_queue, skb) {
466 			csum = csum_add(csum, skb->csum);
467 		}
468 
469 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
470 		if (uh->check == 0)
471 			uh->check = CSUM_MANGLED_0;
472 	}
473 }
474 
475 /*
476  * Push out all pending data as one UDP datagram. Socket is locked.
477  */
478 static int udp_push_pending_frames(struct sock *sk)
479 {
480 	struct udp_sock  *up = udp_sk(sk);
481 	struct inet_sock *inet = inet_sk(sk);
482 	struct flowi *fl = &inet->cork.fl;
483 	struct sk_buff *skb;
484 	struct udphdr *uh;
485 	int err = 0;
486 	int is_udplite = IS_UDPLITE(sk);
487 	__wsum csum = 0;
488 
489 	/* Grab the skbuff where UDP header space exists. */
490 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
491 		goto out;
492 
493 	/*
494 	 * Create a UDP header
495 	 */
496 	uh = udp_hdr(skb);
497 	uh->source = fl->fl_ip_sport;
498 	uh->dest = fl->fl_ip_dport;
499 	uh->len = htons(up->len);
500 	uh->check = 0;
501 
502 	if (is_udplite)  				 /*     UDP-Lite      */
503 		csum  = udplite_csum_outgoing(sk, skb);
504 
505 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
506 
507 		skb->ip_summed = CHECKSUM_NONE;
508 		goto send;
509 
510 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
511 
512 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
513 		goto send;
514 
515 	} else						 /*   `normal' UDP    */
516 		csum = udp_csum_outgoing(sk, skb);
517 
518 	/* add protocol-dependent pseudo-header */
519 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
520 				      sk->sk_protocol, csum             );
521 	if (uh->check == 0)
522 		uh->check = CSUM_MANGLED_0;
523 
524 send:
525 	err = ip_push_pending_frames(sk);
526 out:
527 	up->len = 0;
528 	up->pending = 0;
529 	if (!err)
530 		UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS, is_udplite);
531 	return err;
532 }
533 
534 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
535 		size_t len)
536 {
537 	struct inet_sock *inet = inet_sk(sk);
538 	struct udp_sock *up = udp_sk(sk);
539 	int ulen = len;
540 	struct ipcm_cookie ipc;
541 	struct rtable *rt = NULL;
542 	int free = 0;
543 	int connected = 0;
544 	__be32 daddr, faddr, saddr;
545 	__be16 dport;
546 	u8  tos;
547 	int err, is_udplite = IS_UDPLITE(sk);
548 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
549 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
550 
551 	if (len > 0xFFFF)
552 		return -EMSGSIZE;
553 
554 	/*
555 	 *	Check the flags.
556 	 */
557 
558 	if (msg->msg_flags&MSG_OOB)	/* Mirror BSD error message compatibility */
559 		return -EOPNOTSUPP;
560 
561 	ipc.opt = NULL;
562 
563 	if (up->pending) {
564 		/*
565 		 * There are pending frames.
566 		 * The socket lock must be held while it's corked.
567 		 */
568 		lock_sock(sk);
569 		if (likely(up->pending)) {
570 			if (unlikely(up->pending != AF_INET)) {
571 				release_sock(sk);
572 				return -EINVAL;
573 			}
574 			goto do_append_data;
575 		}
576 		release_sock(sk);
577 	}
578 	ulen += sizeof(struct udphdr);
579 
580 	/*
581 	 *	Get and verify the address.
582 	 */
583 	if (msg->msg_name) {
584 		struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
585 		if (msg->msg_namelen < sizeof(*usin))
586 			return -EINVAL;
587 		if (usin->sin_family != AF_INET) {
588 			if (usin->sin_family != AF_UNSPEC)
589 				return -EAFNOSUPPORT;
590 		}
591 
592 		daddr = usin->sin_addr.s_addr;
593 		dport = usin->sin_port;
594 		if (dport == 0)
595 			return -EINVAL;
596 	} else {
597 		if (sk->sk_state != TCP_ESTABLISHED)
598 			return -EDESTADDRREQ;
599 		daddr = inet->daddr;
600 		dport = inet->dport;
601 		/* Open fast path for connected socket.
602 		   Route will not be used, if at least one option is set.
603 		 */
604 		connected = 1;
605 	}
606 	ipc.addr = inet->saddr;
607 
608 	ipc.oif = sk->sk_bound_dev_if;
609 	if (msg->msg_controllen) {
610 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
611 		if (err)
612 			return err;
613 		if (ipc.opt)
614 			free = 1;
615 		connected = 0;
616 	}
617 	if (!ipc.opt)
618 		ipc.opt = inet->opt;
619 
620 	saddr = ipc.addr;
621 	ipc.addr = faddr = daddr;
622 
623 	if (ipc.opt && ipc.opt->srr) {
624 		if (!daddr)
625 			return -EINVAL;
626 		faddr = ipc.opt->faddr;
627 		connected = 0;
628 	}
629 	tos = RT_TOS(inet->tos);
630 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
631 	    (msg->msg_flags & MSG_DONTROUTE) ||
632 	    (ipc.opt && ipc.opt->is_strictroute)) {
633 		tos |= RTO_ONLINK;
634 		connected = 0;
635 	}
636 
637 	if (ipv4_is_multicast(daddr)) {
638 		if (!ipc.oif)
639 			ipc.oif = inet->mc_index;
640 		if (!saddr)
641 			saddr = inet->mc_addr;
642 		connected = 0;
643 	}
644 
645 	if (connected)
646 		rt = (struct rtable*)sk_dst_check(sk, 0);
647 
648 	if (rt == NULL) {
649 		struct flowi fl = { .oif = ipc.oif,
650 				    .nl_u = { .ip4_u =
651 					      { .daddr = faddr,
652 						.saddr = saddr,
653 						.tos = tos } },
654 				    .proto = sk->sk_protocol,
655 				    .uli_u = { .ports =
656 					       { .sport = inet->sport,
657 						 .dport = dport } } };
658 		security_sk_classify_flow(sk, &fl);
659 		err = ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 1);
660 		if (err) {
661 			if (err == -ENETUNREACH)
662 				IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
663 			goto out;
664 		}
665 
666 		err = -EACCES;
667 		if ((rt->rt_flags & RTCF_BROADCAST) &&
668 		    !sock_flag(sk, SOCK_BROADCAST))
669 			goto out;
670 		if (connected)
671 			sk_dst_set(sk, dst_clone(&rt->u.dst));
672 	}
673 
674 	if (msg->msg_flags&MSG_CONFIRM)
675 		goto do_confirm;
676 back_from_confirm:
677 
678 	saddr = rt->rt_src;
679 	if (!ipc.addr)
680 		daddr = ipc.addr = rt->rt_dst;
681 
682 	lock_sock(sk);
683 	if (unlikely(up->pending)) {
684 		/* The socket is already corked while preparing it. */
685 		/* ... which is an evident application bug. --ANK */
686 		release_sock(sk);
687 
688 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
689 		err = -EINVAL;
690 		goto out;
691 	}
692 	/*
693 	 *	Now cork the socket to pend data.
694 	 */
695 	inet->cork.fl.fl4_dst = daddr;
696 	inet->cork.fl.fl_ip_dport = dport;
697 	inet->cork.fl.fl4_src = saddr;
698 	inet->cork.fl.fl_ip_sport = inet->sport;
699 	up->pending = AF_INET;
700 
701 do_append_data:
702 	up->len += ulen;
703 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
704 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
705 			sizeof(struct udphdr), &ipc, rt,
706 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
707 	if (err)
708 		udp_flush_pending_frames(sk);
709 	else if (!corkreq)
710 		err = udp_push_pending_frames(sk);
711 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
712 		up->pending = 0;
713 	release_sock(sk);
714 
715 out:
716 	ip_rt_put(rt);
717 	if (free)
718 		kfree(ipc.opt);
719 	if (!err)
720 		return len;
721 	/*
722 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
723 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
724 	 * we don't have a good statistic (IpOutDiscards but it can be too many
725 	 * things).  We could add another new stat but at least for now that
726 	 * seems like overkill.
727 	 */
728 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
729 		UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite);
730 	}
731 	return err;
732 
733 do_confirm:
734 	dst_confirm(&rt->u.dst);
735 	if (!(msg->msg_flags&MSG_PROBE) || len)
736 		goto back_from_confirm;
737 	err = 0;
738 	goto out;
739 }
740 
741 int udp_sendpage(struct sock *sk, struct page *page, int offset,
742 		 size_t size, int flags)
743 {
744 	struct udp_sock *up = udp_sk(sk);
745 	int ret;
746 
747 	if (!up->pending) {
748 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
749 
750 		/* Call udp_sendmsg to specify destination address which
751 		 * sendpage interface can't pass.
752 		 * This will succeed only when the socket is connected.
753 		 */
754 		ret = udp_sendmsg(NULL, sk, &msg, 0);
755 		if (ret < 0)
756 			return ret;
757 	}
758 
759 	lock_sock(sk);
760 
761 	if (unlikely(!up->pending)) {
762 		release_sock(sk);
763 
764 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
765 		return -EINVAL;
766 	}
767 
768 	ret = ip_append_page(sk, page, offset, size, flags);
769 	if (ret == -EOPNOTSUPP) {
770 		release_sock(sk);
771 		return sock_no_sendpage(sk->sk_socket, page, offset,
772 					size, flags);
773 	}
774 	if (ret < 0) {
775 		udp_flush_pending_frames(sk);
776 		goto out;
777 	}
778 
779 	up->len += size;
780 	if (!(up->corkflag || (flags&MSG_MORE)))
781 		ret = udp_push_pending_frames(sk);
782 	if (!ret)
783 		ret = size;
784 out:
785 	release_sock(sk);
786 	return ret;
787 }
788 
789 /*
790  *	IOCTL requests applicable to the UDP protocol
791  */
792 
793 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
794 {
795 	switch (cmd) {
796 	case SIOCOUTQ:
797 	{
798 		int amount = atomic_read(&sk->sk_wmem_alloc);
799 		return put_user(amount, (int __user *)arg);
800 	}
801 
802 	case SIOCINQ:
803 	{
804 		struct sk_buff *skb;
805 		unsigned long amount;
806 
807 		amount = 0;
808 		spin_lock_bh(&sk->sk_receive_queue.lock);
809 		skb = skb_peek(&sk->sk_receive_queue);
810 		if (skb != NULL) {
811 			/*
812 			 * We will only return the amount
813 			 * of this packet since that is all
814 			 * that will be read.
815 			 */
816 			amount = skb->len - sizeof(struct udphdr);
817 		}
818 		spin_unlock_bh(&sk->sk_receive_queue.lock);
819 		return put_user(amount, (int __user *)arg);
820 	}
821 
822 	default:
823 		return -ENOIOCTLCMD;
824 	}
825 
826 	return 0;
827 }
828 
829 /*
830  * 	This should be easy, if there is something there we
831  * 	return it, otherwise we block.
832  */
833 
834 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
835 		size_t len, int noblock, int flags, int *addr_len)
836 {
837 	struct inet_sock *inet = inet_sk(sk);
838 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
839 	struct sk_buff *skb;
840 	unsigned int ulen, copied;
841 	int peeked;
842 	int err;
843 	int is_udplite = IS_UDPLITE(sk);
844 
845 	/*
846 	 *	Check any passed addresses
847 	 */
848 	if (addr_len)
849 		*addr_len=sizeof(*sin);
850 
851 	if (flags & MSG_ERRQUEUE)
852 		return ip_recv_error(sk, msg, len);
853 
854 try_again:
855 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
856 				  &peeked, &err);
857 	if (!skb)
858 		goto out;
859 
860 	ulen = skb->len - sizeof(struct udphdr);
861 	copied = len;
862 	if (copied > ulen)
863 		copied = ulen;
864 	else if (copied < ulen)
865 		msg->msg_flags |= MSG_TRUNC;
866 
867 	/*
868 	 * If checksum is needed at all, try to do it while copying the
869 	 * data.  If the data is truncated, or if we only want a partial
870 	 * coverage checksum (UDP-Lite), do it before the copy.
871 	 */
872 
873 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
874 		if (udp_lib_checksum_complete(skb))
875 			goto csum_copy_err;
876 	}
877 
878 	if (skb_csum_unnecessary(skb))
879 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
880 					      msg->msg_iov, copied       );
881 	else {
882 		err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
883 
884 		if (err == -EINVAL)
885 			goto csum_copy_err;
886 	}
887 
888 	if (err)
889 		goto out_free;
890 
891 	if (!peeked)
892 		UDP_INC_STATS_USER(UDP_MIB_INDATAGRAMS, is_udplite);
893 
894 	sock_recv_timestamp(msg, sk, skb);
895 
896 	/* Copy the address. */
897 	if (sin)
898 	{
899 		sin->sin_family = AF_INET;
900 		sin->sin_port = udp_hdr(skb)->source;
901 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
902 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
903 	}
904 	if (inet->cmsg_flags)
905 		ip_cmsg_recv(msg, skb);
906 
907 	err = copied;
908 	if (flags & MSG_TRUNC)
909 		err = ulen;
910 
911 out_free:
912 	lock_sock(sk);
913 	skb_free_datagram(sk, skb);
914 	release_sock(sk);
915 out:
916 	return err;
917 
918 csum_copy_err:
919 	lock_sock(sk);
920 	if (!skb_kill_datagram(sk, skb, flags))
921 		UDP_INC_STATS_USER(UDP_MIB_INERRORS, is_udplite);
922 	release_sock(sk);
923 
924 	if (noblock)
925 		return -EAGAIN;
926 	goto try_again;
927 }
928 
929 
930 int udp_disconnect(struct sock *sk, int flags)
931 {
932 	struct inet_sock *inet = inet_sk(sk);
933 	/*
934 	 *	1003.1g - break association.
935 	 */
936 
937 	sk->sk_state = TCP_CLOSE;
938 	inet->daddr = 0;
939 	inet->dport = 0;
940 	sk->sk_bound_dev_if = 0;
941 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
942 		inet_reset_saddr(sk);
943 
944 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
945 		sk->sk_prot->unhash(sk);
946 		inet->sport = 0;
947 	}
948 	sk_dst_reset(sk);
949 	return 0;
950 }
951 
952 /* returns:
953  *  -1: error
954  *   0: success
955  *  >0: "udp encap" protocol resubmission
956  *
957  * Note that in the success and error cases, the skb is assumed to
958  * have either been requeued or freed.
959  */
960 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
961 {
962 	struct udp_sock *up = udp_sk(sk);
963 	int rc;
964 	int is_udplite = IS_UDPLITE(sk);
965 
966 	/*
967 	 *	Charge it to the socket, dropping if the queue is full.
968 	 */
969 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
970 		goto drop;
971 	nf_reset(skb);
972 
973 	if (up->encap_type) {
974 		/*
975 		 * This is an encapsulation socket so pass the skb to
976 		 * the socket's udp_encap_rcv() hook. Otherwise, just
977 		 * fall through and pass this up the UDP socket.
978 		 * up->encap_rcv() returns the following value:
979 		 * =0 if skb was successfully passed to the encap
980 		 *    handler or was discarded by it.
981 		 * >0 if skb should be passed on to UDP.
982 		 * <0 if skb should be resubmitted as proto -N
983 		 */
984 
985 		/* if we're overly short, let UDP handle it */
986 		if (skb->len > sizeof(struct udphdr) &&
987 		    up->encap_rcv != NULL) {
988 			int ret;
989 
990 			ret = (*up->encap_rcv)(sk, skb);
991 			if (ret <= 0) {
992 				UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS,
993 						 is_udplite);
994 				return -ret;
995 			}
996 		}
997 
998 		/* FALLTHROUGH -- it's a UDP Packet */
999 	}
1000 
1001 	/*
1002 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1003 	 */
1004 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1005 
1006 		/*
1007 		 * MIB statistics other than incrementing the error count are
1008 		 * disabled for the following two types of errors: these depend
1009 		 * on the application settings, not on the functioning of the
1010 		 * protocol stack as such.
1011 		 *
1012 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1013 		 * way ... to ... at least let the receiving application block
1014 		 * delivery of packets with coverage values less than a value
1015 		 * provided by the application."
1016 		 */
1017 		if (up->pcrlen == 0) {          /* full coverage was set  */
1018 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1019 				"%d while full coverage %d requested\n",
1020 				UDP_SKB_CB(skb)->cscov, skb->len);
1021 			goto drop;
1022 		}
1023 		/* The next case involves violating the min. coverage requested
1024 		 * by the receiver. This is subtle: if receiver wants x and x is
1025 		 * greater than the buffersize/MTU then receiver will complain
1026 		 * that it wants x while sender emits packets of smaller size y.
1027 		 * Therefore the above ...()->partial_cov statement is essential.
1028 		 */
1029 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1030 			LIMIT_NETDEBUG(KERN_WARNING
1031 				"UDPLITE: coverage %d too small, need min %d\n",
1032 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1033 			goto drop;
1034 		}
1035 	}
1036 
1037 	if (sk->sk_filter) {
1038 		if (udp_lib_checksum_complete(skb))
1039 			goto drop;
1040 	}
1041 
1042 	if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
1043 		/* Note that an ENOMEM error is charged twice */
1044 		if (rc == -ENOMEM)
1045 			UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, is_udplite);
1046 		goto drop;
1047 	}
1048 
1049 	return 0;
1050 
1051 drop:
1052 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
1053 	kfree_skb(skb);
1054 	return -1;
1055 }
1056 
1057 /*
1058  *	Multicasts and broadcasts go to each listener.
1059  *
1060  *	Note: called only from the BH handler context,
1061  *	so we don't need to lock the hashes.
1062  */
1063 static int __udp4_lib_mcast_deliver(struct sk_buff *skb,
1064 				    struct udphdr  *uh,
1065 				    __be32 saddr, __be32 daddr,
1066 				    struct hlist_head udptable[])
1067 {
1068 	struct sock *sk;
1069 	int dif;
1070 
1071 	read_lock(&udp_hash_lock);
1072 	sk = sk_head(&udptable[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]);
1073 	dif = skb->dev->ifindex;
1074 	sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1075 	if (sk) {
1076 		struct sock *sknext = NULL;
1077 
1078 		do {
1079 			struct sk_buff *skb1 = skb;
1080 
1081 			sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1082 						   uh->source, saddr, dif);
1083 			if (sknext)
1084 				skb1 = skb_clone(skb, GFP_ATOMIC);
1085 
1086 			if (skb1) {
1087 				int ret = 0;
1088 
1089 				bh_lock_sock_nested(sk);
1090 				if (!sock_owned_by_user(sk))
1091 					ret = udp_queue_rcv_skb(sk, skb1);
1092 				else
1093 					sk_add_backlog(sk, skb1);
1094 				bh_unlock_sock(sk);
1095 
1096 				if (ret > 0)
1097 					/* we should probably re-process instead
1098 					 * of dropping packets here. */
1099 					kfree_skb(skb1);
1100 			}
1101 			sk = sknext;
1102 		} while (sknext);
1103 	} else
1104 		kfree_skb(skb);
1105 	read_unlock(&udp_hash_lock);
1106 	return 0;
1107 }
1108 
1109 /* Initialize UDP checksum. If exited with zero value (success),
1110  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1111  * Otherwise, csum completion requires chacksumming packet body,
1112  * including udp header and folding it to skb->csum.
1113  */
1114 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1115 				 int proto)
1116 {
1117 	const struct iphdr *iph;
1118 	int err;
1119 
1120 	UDP_SKB_CB(skb)->partial_cov = 0;
1121 	UDP_SKB_CB(skb)->cscov = skb->len;
1122 
1123 	if (proto == IPPROTO_UDPLITE) {
1124 		err = udplite_checksum_init(skb, uh);
1125 		if (err)
1126 			return err;
1127 	}
1128 
1129 	iph = ip_hdr(skb);
1130 	if (uh->check == 0) {
1131 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1132 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1133 	       if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1134 				      proto, skb->csum))
1135 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1136 	}
1137 	if (!skb_csum_unnecessary(skb))
1138 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1139 					       skb->len, proto, 0);
1140 	/* Probably, we should checksum udp header (it should be in cache
1141 	 * in any case) and data in tiny packets (< rx copybreak).
1142 	 */
1143 
1144 	return 0;
1145 }
1146 
1147 /*
1148  *	All we need to do is get the socket, and then do a checksum.
1149  */
1150 
1151 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1152 		   int proto)
1153 {
1154 	struct sock *sk;
1155 	struct udphdr *uh = udp_hdr(skb);
1156 	unsigned short ulen;
1157 	struct rtable *rt = (struct rtable*)skb->dst;
1158 	__be32 saddr = ip_hdr(skb)->saddr;
1159 	__be32 daddr = ip_hdr(skb)->daddr;
1160 
1161 	/*
1162 	 *  Validate the packet.
1163 	 */
1164 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1165 		goto drop;		/* No space for header. */
1166 
1167 	ulen = ntohs(uh->len);
1168 	if (ulen > skb->len)
1169 		goto short_packet;
1170 
1171 	if (proto == IPPROTO_UDP) {
1172 		/* UDP validates ulen. */
1173 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1174 			goto short_packet;
1175 		uh = udp_hdr(skb);
1176 	}
1177 
1178 	if (udp4_csum_init(skb, uh, proto))
1179 		goto csum_error;
1180 
1181 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1182 		return __udp4_lib_mcast_deliver(skb, uh, saddr, daddr, udptable);
1183 
1184 	sk = __udp4_lib_lookup(dev_net(skb->dev), saddr, uh->source, daddr,
1185 			uh->dest, inet_iif(skb), udptable);
1186 
1187 	if (sk != NULL) {
1188 		int ret = 0;
1189 		bh_lock_sock_nested(sk);
1190 		if (!sock_owned_by_user(sk))
1191 			ret = udp_queue_rcv_skb(sk, skb);
1192 		else
1193 			sk_add_backlog(sk, skb);
1194 		bh_unlock_sock(sk);
1195 		sock_put(sk);
1196 
1197 		/* a return value > 0 means to resubmit the input, but
1198 		 * it wants the return to be -protocol, or 0
1199 		 */
1200 		if (ret > 0)
1201 			return -ret;
1202 		return 0;
1203 	}
1204 
1205 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1206 		goto drop;
1207 	nf_reset(skb);
1208 
1209 	/* No socket. Drop packet silently, if checksum is wrong */
1210 	if (udp_lib_checksum_complete(skb))
1211 		goto csum_error;
1212 
1213 	UDP_INC_STATS_BH(UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1214 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1215 
1216 	/*
1217 	 * Hmm.  We got an UDP packet to a port to which we
1218 	 * don't wanna listen.  Ignore it.
1219 	 */
1220 	kfree_skb(skb);
1221 	return 0;
1222 
1223 short_packet:
1224 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From " NIPQUAD_FMT ":%u %d/%d to " NIPQUAD_FMT ":%u\n",
1225 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1226 		       NIPQUAD(saddr),
1227 		       ntohs(uh->source),
1228 		       ulen,
1229 		       skb->len,
1230 		       NIPQUAD(daddr),
1231 		       ntohs(uh->dest));
1232 	goto drop;
1233 
1234 csum_error:
1235 	/*
1236 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1237 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1238 	 */
1239 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From " NIPQUAD_FMT ":%u to " NIPQUAD_FMT ":%u ulen %d\n",
1240 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1241 		       NIPQUAD(saddr),
1242 		       ntohs(uh->source),
1243 		       NIPQUAD(daddr),
1244 		       ntohs(uh->dest),
1245 		       ulen);
1246 drop:
1247 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1248 	kfree_skb(skb);
1249 	return 0;
1250 }
1251 
1252 int udp_rcv(struct sk_buff *skb)
1253 {
1254 	return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP);
1255 }
1256 
1257 int udp_destroy_sock(struct sock *sk)
1258 {
1259 	lock_sock(sk);
1260 	udp_flush_pending_frames(sk);
1261 	release_sock(sk);
1262 	return 0;
1263 }
1264 
1265 /*
1266  *	Socket option code for UDP
1267  */
1268 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1269 		       char __user *optval, int optlen,
1270 		       int (*push_pending_frames)(struct sock *))
1271 {
1272 	struct udp_sock *up = udp_sk(sk);
1273 	int val;
1274 	int err = 0;
1275 	int is_udplite = IS_UDPLITE(sk);
1276 
1277 	if (optlen<sizeof(int))
1278 		return -EINVAL;
1279 
1280 	if (get_user(val, (int __user *)optval))
1281 		return -EFAULT;
1282 
1283 	switch (optname) {
1284 	case UDP_CORK:
1285 		if (val != 0) {
1286 			up->corkflag = 1;
1287 		} else {
1288 			up->corkflag = 0;
1289 			lock_sock(sk);
1290 			(*push_pending_frames)(sk);
1291 			release_sock(sk);
1292 		}
1293 		break;
1294 
1295 	case UDP_ENCAP:
1296 		switch (val) {
1297 		case 0:
1298 		case UDP_ENCAP_ESPINUDP:
1299 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1300 			up->encap_rcv = xfrm4_udp_encap_rcv;
1301 			/* FALLTHROUGH */
1302 		case UDP_ENCAP_L2TPINUDP:
1303 			up->encap_type = val;
1304 			break;
1305 		default:
1306 			err = -ENOPROTOOPT;
1307 			break;
1308 		}
1309 		break;
1310 
1311 	/*
1312 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1313 	 */
1314 	/* The sender sets actual checksum coverage length via this option.
1315 	 * The case coverage > packet length is handled by send module. */
1316 	case UDPLITE_SEND_CSCOV:
1317 		if (!is_udplite)         /* Disable the option on UDP sockets */
1318 			return -ENOPROTOOPT;
1319 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1320 			val = 8;
1321 		up->pcslen = val;
1322 		up->pcflag |= UDPLITE_SEND_CC;
1323 		break;
1324 
1325 	/* The receiver specifies a minimum checksum coverage value. To make
1326 	 * sense, this should be set to at least 8 (as done below). If zero is
1327 	 * used, this again means full checksum coverage.                     */
1328 	case UDPLITE_RECV_CSCOV:
1329 		if (!is_udplite)         /* Disable the option on UDP sockets */
1330 			return -ENOPROTOOPT;
1331 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1332 			val = 8;
1333 		up->pcrlen = val;
1334 		up->pcflag |= UDPLITE_RECV_CC;
1335 		break;
1336 
1337 	default:
1338 		err = -ENOPROTOOPT;
1339 		break;
1340 	}
1341 
1342 	return err;
1343 }
1344 
1345 int udp_setsockopt(struct sock *sk, int level, int optname,
1346 		   char __user *optval, int optlen)
1347 {
1348 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1349 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1350 					  udp_push_pending_frames);
1351 	return ip_setsockopt(sk, level, optname, optval, optlen);
1352 }
1353 
1354 #ifdef CONFIG_COMPAT
1355 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1356 			  char __user *optval, int optlen)
1357 {
1358 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1359 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1360 					  udp_push_pending_frames);
1361 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1362 }
1363 #endif
1364 
1365 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1366 		       char __user *optval, int __user *optlen)
1367 {
1368 	struct udp_sock *up = udp_sk(sk);
1369 	int val, len;
1370 
1371 	if (get_user(len,optlen))
1372 		return -EFAULT;
1373 
1374 	len = min_t(unsigned int, len, sizeof(int));
1375 
1376 	if (len < 0)
1377 		return -EINVAL;
1378 
1379 	switch (optname) {
1380 	case UDP_CORK:
1381 		val = up->corkflag;
1382 		break;
1383 
1384 	case UDP_ENCAP:
1385 		val = up->encap_type;
1386 		break;
1387 
1388 	/* The following two cannot be changed on UDP sockets, the return is
1389 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1390 	case UDPLITE_SEND_CSCOV:
1391 		val = up->pcslen;
1392 		break;
1393 
1394 	case UDPLITE_RECV_CSCOV:
1395 		val = up->pcrlen;
1396 		break;
1397 
1398 	default:
1399 		return -ENOPROTOOPT;
1400 	}
1401 
1402 	if (put_user(len, optlen))
1403 		return -EFAULT;
1404 	if (copy_to_user(optval, &val,len))
1405 		return -EFAULT;
1406 	return 0;
1407 }
1408 
1409 int udp_getsockopt(struct sock *sk, int level, int optname,
1410 		   char __user *optval, int __user *optlen)
1411 {
1412 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1413 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1414 	return ip_getsockopt(sk, level, optname, optval, optlen);
1415 }
1416 
1417 #ifdef CONFIG_COMPAT
1418 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1419 				 char __user *optval, int __user *optlen)
1420 {
1421 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1422 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1423 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1424 }
1425 #endif
1426 /**
1427  * 	udp_poll - wait for a UDP event.
1428  *	@file - file struct
1429  *	@sock - socket
1430  *	@wait - poll table
1431  *
1432  *	This is same as datagram poll, except for the special case of
1433  *	blocking sockets. If application is using a blocking fd
1434  *	and a packet with checksum error is in the queue;
1435  *	then it could get return from select indicating data available
1436  *	but then block when reading it. Add special case code
1437  *	to work around these arguably broken applications.
1438  */
1439 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1440 {
1441 	unsigned int mask = datagram_poll(file, sock, wait);
1442 	struct sock *sk = sock->sk;
1443 	int 	is_lite = IS_UDPLITE(sk);
1444 
1445 	/* Check for false positives due to checksum errors */
1446 	if ( (mask & POLLRDNORM) &&
1447 	     !(file->f_flags & O_NONBLOCK) &&
1448 	     !(sk->sk_shutdown & RCV_SHUTDOWN)){
1449 		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1450 		struct sk_buff *skb;
1451 
1452 		spin_lock_bh(&rcvq->lock);
1453 		while ((skb = skb_peek(rcvq)) != NULL &&
1454 		       udp_lib_checksum_complete(skb)) {
1455 			UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_lite);
1456 			__skb_unlink(skb, rcvq);
1457 			kfree_skb(skb);
1458 		}
1459 		spin_unlock_bh(&rcvq->lock);
1460 
1461 		/* nothing to see, move along */
1462 		if (skb == NULL)
1463 			mask &= ~(POLLIN | POLLRDNORM);
1464 	}
1465 
1466 	return mask;
1467 
1468 }
1469 
1470 struct proto udp_prot = {
1471 	.name		   = "UDP",
1472 	.owner		   = THIS_MODULE,
1473 	.close		   = udp_lib_close,
1474 	.connect	   = ip4_datagram_connect,
1475 	.disconnect	   = udp_disconnect,
1476 	.ioctl		   = udp_ioctl,
1477 	.destroy	   = udp_destroy_sock,
1478 	.setsockopt	   = udp_setsockopt,
1479 	.getsockopt	   = udp_getsockopt,
1480 	.sendmsg	   = udp_sendmsg,
1481 	.recvmsg	   = udp_recvmsg,
1482 	.sendpage	   = udp_sendpage,
1483 	.backlog_rcv	   = udp_queue_rcv_skb,
1484 	.hash		   = udp_lib_hash,
1485 	.unhash		   = udp_lib_unhash,
1486 	.get_port	   = udp_v4_get_port,
1487 	.memory_allocated  = &udp_memory_allocated,
1488 	.sysctl_mem	   = sysctl_udp_mem,
1489 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1490 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1491 	.obj_size	   = sizeof(struct udp_sock),
1492 	.h.udp_hash	   = udp_hash,
1493 #ifdef CONFIG_COMPAT
1494 	.compat_setsockopt = compat_udp_setsockopt,
1495 	.compat_getsockopt = compat_udp_getsockopt,
1496 #endif
1497 };
1498 
1499 /* ------------------------------------------------------------------------ */
1500 #ifdef CONFIG_PROC_FS
1501 
1502 static struct sock *udp_get_first(struct seq_file *seq)
1503 {
1504 	struct sock *sk;
1505 	struct udp_iter_state *state = seq->private;
1506 	struct net *net = seq_file_net(seq);
1507 
1508 	for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1509 		struct hlist_node *node;
1510 		sk_for_each(sk, node, state->hashtable + state->bucket) {
1511 			if (!net_eq(sock_net(sk), net))
1512 				continue;
1513 			if (sk->sk_family == state->family)
1514 				goto found;
1515 		}
1516 	}
1517 	sk = NULL;
1518 found:
1519 	return sk;
1520 }
1521 
1522 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1523 {
1524 	struct udp_iter_state *state = seq->private;
1525 	struct net *net = seq_file_net(seq);
1526 
1527 	do {
1528 		sk = sk_next(sk);
1529 try_again:
1530 		;
1531 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1532 
1533 	if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1534 		sk = sk_head(state->hashtable + state->bucket);
1535 		goto try_again;
1536 	}
1537 	return sk;
1538 }
1539 
1540 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1541 {
1542 	struct sock *sk = udp_get_first(seq);
1543 
1544 	if (sk)
1545 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1546 			--pos;
1547 	return pos ? NULL : sk;
1548 }
1549 
1550 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1551 	__acquires(udp_hash_lock)
1552 {
1553 	read_lock(&udp_hash_lock);
1554 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1555 }
1556 
1557 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1558 {
1559 	struct sock *sk;
1560 
1561 	if (v == SEQ_START_TOKEN)
1562 		sk = udp_get_idx(seq, 0);
1563 	else
1564 		sk = udp_get_next(seq, v);
1565 
1566 	++*pos;
1567 	return sk;
1568 }
1569 
1570 static void udp_seq_stop(struct seq_file *seq, void *v)
1571 	__releases(udp_hash_lock)
1572 {
1573 	read_unlock(&udp_hash_lock);
1574 }
1575 
1576 static int udp_seq_open(struct inode *inode, struct file *file)
1577 {
1578 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1579 	struct udp_iter_state *s;
1580 	int err;
1581 
1582 	err = seq_open_net(inode, file, &afinfo->seq_ops,
1583 			   sizeof(struct udp_iter_state));
1584 	if (err < 0)
1585 		return err;
1586 
1587 	s = ((struct seq_file *)file->private_data)->private;
1588 	s->family		= afinfo->family;
1589 	s->hashtable		= afinfo->hashtable;
1590 	return err;
1591 }
1592 
1593 /* ------------------------------------------------------------------------ */
1594 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1595 {
1596 	struct proc_dir_entry *p;
1597 	int rc = 0;
1598 
1599 	afinfo->seq_fops.open		= udp_seq_open;
1600 	afinfo->seq_fops.read		= seq_read;
1601 	afinfo->seq_fops.llseek		= seq_lseek;
1602 	afinfo->seq_fops.release	= seq_release_net;
1603 
1604 	afinfo->seq_ops.start		= udp_seq_start;
1605 	afinfo->seq_ops.next		= udp_seq_next;
1606 	afinfo->seq_ops.stop		= udp_seq_stop;
1607 
1608 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1609 			     &afinfo->seq_fops, afinfo);
1610 	if (!p)
1611 		rc = -ENOMEM;
1612 	return rc;
1613 }
1614 
1615 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1616 {
1617 	proc_net_remove(net, afinfo->name);
1618 }
1619 
1620 /* ------------------------------------------------------------------------ */
1621 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1622 		int bucket, int *len)
1623 {
1624 	struct inet_sock *inet = inet_sk(sp);
1625 	__be32 dest = inet->daddr;
1626 	__be32 src  = inet->rcv_saddr;
1627 	__u16 destp	  = ntohs(inet->dport);
1628 	__u16 srcp	  = ntohs(inet->sport);
1629 
1630 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
1631 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p%n",
1632 		bucket, src, srcp, dest, destp, sp->sk_state,
1633 		atomic_read(&sp->sk_wmem_alloc),
1634 		atomic_read(&sp->sk_rmem_alloc),
1635 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1636 		atomic_read(&sp->sk_refcnt), sp, len);
1637 }
1638 
1639 int udp4_seq_show(struct seq_file *seq, void *v)
1640 {
1641 	if (v == SEQ_START_TOKEN)
1642 		seq_printf(seq, "%-127s\n",
1643 			   "  sl  local_address rem_address   st tx_queue "
1644 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1645 			   "inode");
1646 	else {
1647 		struct udp_iter_state *state = seq->private;
1648 		int len;
1649 
1650 		udp4_format_sock(v, seq, state->bucket, &len);
1651 		seq_printf(seq, "%*s\n", 127 - len ,"");
1652 	}
1653 	return 0;
1654 }
1655 
1656 /* ------------------------------------------------------------------------ */
1657 static struct udp_seq_afinfo udp4_seq_afinfo = {
1658 	.name		= "udp",
1659 	.family		= AF_INET,
1660 	.hashtable	= udp_hash,
1661 	.seq_fops	= {
1662 		.owner	=	THIS_MODULE,
1663 	},
1664 	.seq_ops	= {
1665 		.show		= udp4_seq_show,
1666 	},
1667 };
1668 
1669 static int udp4_proc_init_net(struct net *net)
1670 {
1671 	return udp_proc_register(net, &udp4_seq_afinfo);
1672 }
1673 
1674 static void udp4_proc_exit_net(struct net *net)
1675 {
1676 	udp_proc_unregister(net, &udp4_seq_afinfo);
1677 }
1678 
1679 static struct pernet_operations udp4_net_ops = {
1680 	.init = udp4_proc_init_net,
1681 	.exit = udp4_proc_exit_net,
1682 };
1683 
1684 int __init udp4_proc_init(void)
1685 {
1686 	return register_pernet_subsys(&udp4_net_ops);
1687 }
1688 
1689 void udp4_proc_exit(void)
1690 {
1691 	unregister_pernet_subsys(&udp4_net_ops);
1692 }
1693 #endif /* CONFIG_PROC_FS */
1694 
1695 void __init udp_init(void)
1696 {
1697 	unsigned long limit;
1698 
1699 	/* Set the pressure threshold up by the same strategy of TCP. It is a
1700 	 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
1701 	 * toward zero with the amount of memory, with a floor of 128 pages.
1702 	 */
1703 	limit = min(nr_all_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
1704 	limit = (limit * (nr_all_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
1705 	limit = max(limit, 128UL);
1706 	sysctl_udp_mem[0] = limit / 4 * 3;
1707 	sysctl_udp_mem[1] = limit;
1708 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
1709 
1710 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
1711 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
1712 }
1713 
1714 EXPORT_SYMBOL(udp_disconnect);
1715 EXPORT_SYMBOL(udp_hash);
1716 EXPORT_SYMBOL(udp_hash_lock);
1717 EXPORT_SYMBOL(udp_ioctl);
1718 EXPORT_SYMBOL(udp_prot);
1719 EXPORT_SYMBOL(udp_sendmsg);
1720 EXPORT_SYMBOL(udp_lib_getsockopt);
1721 EXPORT_SYMBOL(udp_lib_setsockopt);
1722 EXPORT_SYMBOL(udp_poll);
1723 EXPORT_SYMBOL(udp_lib_get_port);
1724 
1725 #ifdef CONFIG_PROC_FS
1726 EXPORT_SYMBOL(udp_proc_register);
1727 EXPORT_SYMBOL(udp_proc_unregister);
1728 #endif
1729