xref: /openbmc/linux/net/ipv4/udp.c (revision 206204a1)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/inet_hashtables.h>
107 #include <net/route.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115 
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118 
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121 
122 int sysctl_udp_rmem_min __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_rmem_min);
124 
125 int sysctl_udp_wmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_wmem_min);
127 
128 atomic_long_t udp_memory_allocated;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133 
134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 			       const struct udp_hslot *hslot,
136 			       unsigned long *bitmap,
137 			       struct sock *sk,
138 			       int (*saddr_comp)(const struct sock *sk1,
139 						 const struct sock *sk2),
140 			       unsigned int log)
141 {
142 	struct sock *sk2;
143 	struct hlist_nulls_node *node;
144 	kuid_t uid = sock_i_uid(sk);
145 
146 	sk_nulls_for_each(sk2, node, &hslot->head)
147 		if (net_eq(sock_net(sk2), net) &&
148 		    sk2 != sk &&
149 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
150 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
151 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
152 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
153 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
154 		      !uid_eq(uid, sock_i_uid(sk2))) &&
155 		    (*saddr_comp)(sk, sk2)) {
156 			if (bitmap)
157 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 					  bitmap);
159 			else
160 				return 1;
161 		}
162 	return 0;
163 }
164 
165 /*
166  * Note: we still hold spinlock of primary hash chain, so no other writer
167  * can insert/delete a socket with local_port == num
168  */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 			       struct udp_hslot *hslot2,
171 			       struct sock *sk,
172 			       int (*saddr_comp)(const struct sock *sk1,
173 						 const struct sock *sk2))
174 {
175 	struct sock *sk2;
176 	struct hlist_nulls_node *node;
177 	kuid_t uid = sock_i_uid(sk);
178 	int res = 0;
179 
180 	spin_lock(&hslot2->lock);
181 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
182 		if (net_eq(sock_net(sk2), net) &&
183 		    sk2 != sk &&
184 		    (udp_sk(sk2)->udp_port_hash == num) &&
185 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
186 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 		      !uid_eq(uid, sock_i_uid(sk2))) &&
190 		    (*saddr_comp)(sk, sk2)) {
191 			res = 1;
192 			break;
193 		}
194 	spin_unlock(&hslot2->lock);
195 	return res;
196 }
197 
198 /**
199  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
200  *
201  *  @sk:          socket struct in question
202  *  @snum:        port number to look up
203  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
204  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
205  *                   with NULL address
206  */
207 int udp_lib_get_port(struct sock *sk, unsigned short snum,
208 		       int (*saddr_comp)(const struct sock *sk1,
209 					 const struct sock *sk2),
210 		     unsigned int hash2_nulladdr)
211 {
212 	struct udp_hslot *hslot, *hslot2;
213 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
214 	int    error = 1;
215 	struct net *net = sock_net(sk);
216 
217 	if (!snum) {
218 		int low, high, remaining;
219 		unsigned int rand;
220 		unsigned short first, last;
221 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
222 
223 		inet_get_local_port_range(net, &low, &high);
224 		remaining = (high - low) + 1;
225 
226 		rand = prandom_u32();
227 		first = (((u64)rand * remaining) >> 32) + low;
228 		/*
229 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
230 		 */
231 		rand = (rand | 1) * (udptable->mask + 1);
232 		last = first + udptable->mask + 1;
233 		do {
234 			hslot = udp_hashslot(udptable, net, first);
235 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
236 			spin_lock_bh(&hslot->lock);
237 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
238 					    saddr_comp, udptable->log);
239 
240 			snum = first;
241 			/*
242 			 * Iterate on all possible values of snum for this hash.
243 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
244 			 * give us randomization and full range coverage.
245 			 */
246 			do {
247 				if (low <= snum && snum <= high &&
248 				    !test_bit(snum >> udptable->log, bitmap) &&
249 				    !inet_is_local_reserved_port(net, snum))
250 					goto found;
251 				snum += rand;
252 			} while (snum != first);
253 			spin_unlock_bh(&hslot->lock);
254 		} while (++first != last);
255 		goto fail;
256 	} else {
257 		hslot = udp_hashslot(udptable, net, snum);
258 		spin_lock_bh(&hslot->lock);
259 		if (hslot->count > 10) {
260 			int exist;
261 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
262 
263 			slot2          &= udptable->mask;
264 			hash2_nulladdr &= udptable->mask;
265 
266 			hslot2 = udp_hashslot2(udptable, slot2);
267 			if (hslot->count < hslot2->count)
268 				goto scan_primary_hash;
269 
270 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
271 						     sk, saddr_comp);
272 			if (!exist && (hash2_nulladdr != slot2)) {
273 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
274 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
275 							     sk, saddr_comp);
276 			}
277 			if (exist)
278 				goto fail_unlock;
279 			else
280 				goto found;
281 		}
282 scan_primary_hash:
283 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
284 					saddr_comp, 0))
285 			goto fail_unlock;
286 	}
287 found:
288 	inet_sk(sk)->inet_num = snum;
289 	udp_sk(sk)->udp_port_hash = snum;
290 	udp_sk(sk)->udp_portaddr_hash ^= snum;
291 	if (sk_unhashed(sk)) {
292 		sk_nulls_add_node_rcu(sk, &hslot->head);
293 		hslot->count++;
294 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
295 
296 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
297 		spin_lock(&hslot2->lock);
298 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
299 					 &hslot2->head);
300 		hslot2->count++;
301 		spin_unlock(&hslot2->lock);
302 	}
303 	error = 0;
304 fail_unlock:
305 	spin_unlock_bh(&hslot->lock);
306 fail:
307 	return error;
308 }
309 EXPORT_SYMBOL(udp_lib_get_port);
310 
311 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
312 {
313 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
314 
315 	return 	(!ipv6_only_sock(sk2)  &&
316 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
317 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
318 }
319 
320 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
321 				       unsigned int port)
322 {
323 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
324 }
325 
326 int udp_v4_get_port(struct sock *sk, unsigned short snum)
327 {
328 	unsigned int hash2_nulladdr =
329 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
330 	unsigned int hash2_partial =
331 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
332 
333 	/* precompute partial secondary hash */
334 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
335 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
336 }
337 
338 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
339 			 unsigned short hnum,
340 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
341 {
342 	int score = -1;
343 
344 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
345 			!ipv6_only_sock(sk)) {
346 		struct inet_sock *inet = inet_sk(sk);
347 
348 		score = (sk->sk_family == PF_INET ? 2 : 1);
349 		if (inet->inet_rcv_saddr) {
350 			if (inet->inet_rcv_saddr != daddr)
351 				return -1;
352 			score += 4;
353 		}
354 		if (inet->inet_daddr) {
355 			if (inet->inet_daddr != saddr)
356 				return -1;
357 			score += 4;
358 		}
359 		if (inet->inet_dport) {
360 			if (inet->inet_dport != sport)
361 				return -1;
362 			score += 4;
363 		}
364 		if (sk->sk_bound_dev_if) {
365 			if (sk->sk_bound_dev_if != dif)
366 				return -1;
367 			score += 4;
368 		}
369 	}
370 	return score;
371 }
372 
373 /*
374  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
375  */
376 static inline int compute_score2(struct sock *sk, struct net *net,
377 				 __be32 saddr, __be16 sport,
378 				 __be32 daddr, unsigned int hnum, int dif)
379 {
380 	int score = -1;
381 
382 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
383 		struct inet_sock *inet = inet_sk(sk);
384 
385 		if (inet->inet_rcv_saddr != daddr)
386 			return -1;
387 		if (inet->inet_num != hnum)
388 			return -1;
389 
390 		score = (sk->sk_family == PF_INET ? 2 : 1);
391 		if (inet->inet_daddr) {
392 			if (inet->inet_daddr != saddr)
393 				return -1;
394 			score += 4;
395 		}
396 		if (inet->inet_dport) {
397 			if (inet->inet_dport != sport)
398 				return -1;
399 			score += 4;
400 		}
401 		if (sk->sk_bound_dev_if) {
402 			if (sk->sk_bound_dev_if != dif)
403 				return -1;
404 			score += 4;
405 		}
406 	}
407 	return score;
408 }
409 
410 static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
411 				 const __u16 lport, const __be32 faddr,
412 				 const __be16 fport)
413 {
414 	static u32 udp_ehash_secret __read_mostly;
415 
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 
422 
423 /* called with read_rcu_lock() */
424 static struct sock *udp4_lib_lookup2(struct net *net,
425 		__be32 saddr, __be16 sport,
426 		__be32 daddr, unsigned int hnum, int dif,
427 		struct udp_hslot *hslot2, unsigned int slot2)
428 {
429 	struct sock *sk, *result;
430 	struct hlist_nulls_node *node;
431 	int score, badness, matches = 0, reuseport = 0;
432 	u32 hash = 0;
433 
434 begin:
435 	result = NULL;
436 	badness = 0;
437 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
438 		score = compute_score2(sk, net, saddr, sport,
439 				      daddr, hnum, dif);
440 		if (score > badness) {
441 			result = sk;
442 			badness = score;
443 			reuseport = sk->sk_reuseport;
444 			if (reuseport) {
445 				hash = udp_ehashfn(net, daddr, hnum,
446 						   saddr, sport);
447 				matches = 1;
448 			}
449 		} else if (score == badness && reuseport) {
450 			matches++;
451 			if (((u64)hash * matches) >> 32 == 0)
452 				result = sk;
453 			hash = next_pseudo_random32(hash);
454 		}
455 	}
456 	/*
457 	 * if the nulls value we got at the end of this lookup is
458 	 * not the expected one, we must restart lookup.
459 	 * We probably met an item that was moved to another chain.
460 	 */
461 	if (get_nulls_value(node) != slot2)
462 		goto begin;
463 	if (result) {
464 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
465 			result = NULL;
466 		else if (unlikely(compute_score2(result, net, saddr, sport,
467 				  daddr, hnum, dif) < badness)) {
468 			sock_put(result);
469 			goto begin;
470 		}
471 	}
472 	return result;
473 }
474 
475 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
476  * harder than this. -DaveM
477  */
478 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
479 		__be16 sport, __be32 daddr, __be16 dport,
480 		int dif, struct udp_table *udptable)
481 {
482 	struct sock *sk, *result;
483 	struct hlist_nulls_node *node;
484 	unsigned short hnum = ntohs(dport);
485 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
486 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
487 	int score, badness, matches = 0, reuseport = 0;
488 	u32 hash = 0;
489 
490 	rcu_read_lock();
491 	if (hslot->count > 10) {
492 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
493 		slot2 = hash2 & udptable->mask;
494 		hslot2 = &udptable->hash2[slot2];
495 		if (hslot->count < hslot2->count)
496 			goto begin;
497 
498 		result = udp4_lib_lookup2(net, saddr, sport,
499 					  daddr, hnum, dif,
500 					  hslot2, slot2);
501 		if (!result) {
502 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
503 			slot2 = hash2 & udptable->mask;
504 			hslot2 = &udptable->hash2[slot2];
505 			if (hslot->count < hslot2->count)
506 				goto begin;
507 
508 			result = udp4_lib_lookup2(net, saddr, sport,
509 						  htonl(INADDR_ANY), hnum, dif,
510 						  hslot2, slot2);
511 		}
512 		rcu_read_unlock();
513 		return result;
514 	}
515 begin:
516 	result = NULL;
517 	badness = 0;
518 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
519 		score = compute_score(sk, net, saddr, hnum, sport,
520 				      daddr, dport, dif);
521 		if (score > badness) {
522 			result = sk;
523 			badness = score;
524 			reuseport = sk->sk_reuseport;
525 			if (reuseport) {
526 				hash = udp_ehashfn(net, daddr, hnum,
527 						   saddr, sport);
528 				matches = 1;
529 			}
530 		} else if (score == badness && reuseport) {
531 			matches++;
532 			if (((u64)hash * matches) >> 32 == 0)
533 				result = sk;
534 			hash = next_pseudo_random32(hash);
535 		}
536 	}
537 	/*
538 	 * if the nulls value we got at the end of this lookup is
539 	 * not the expected one, we must restart lookup.
540 	 * We probably met an item that was moved to another chain.
541 	 */
542 	if (get_nulls_value(node) != slot)
543 		goto begin;
544 
545 	if (result) {
546 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
547 			result = NULL;
548 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
549 				  daddr, dport, dif) < badness)) {
550 			sock_put(result);
551 			goto begin;
552 		}
553 	}
554 	rcu_read_unlock();
555 	return result;
556 }
557 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
558 
559 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
560 						 __be16 sport, __be16 dport,
561 						 struct udp_table *udptable)
562 {
563 	const struct iphdr *iph = ip_hdr(skb);
564 
565 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
566 				 iph->daddr, dport, inet_iif(skb),
567 				 udptable);
568 }
569 
570 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
571 			     __be32 daddr, __be16 dport, int dif)
572 {
573 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
574 }
575 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
576 
577 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
578 				       __be16 loc_port, __be32 loc_addr,
579 				       __be16 rmt_port, __be32 rmt_addr,
580 				       int dif, unsigned short hnum)
581 {
582 	struct inet_sock *inet = inet_sk(sk);
583 
584 	if (!net_eq(sock_net(sk), net) ||
585 	    udp_sk(sk)->udp_port_hash != hnum ||
586 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
587 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
588 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
589 	    ipv6_only_sock(sk) ||
590 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
591 		return false;
592 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
593 		return false;
594 	return true;
595 }
596 
597 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
598 					     __be16 loc_port, __be32 loc_addr,
599 					     __be16 rmt_port, __be32 rmt_addr,
600 					     int dif)
601 {
602 	struct hlist_nulls_node *node;
603 	struct sock *s = sk;
604 	unsigned short hnum = ntohs(loc_port);
605 
606 	sk_nulls_for_each_from(s, node) {
607 		if (__udp_is_mcast_sock(net, s,
608 					loc_port, loc_addr,
609 					rmt_port, rmt_addr,
610 					dif, hnum))
611 			goto found;
612 	}
613 	s = NULL;
614 found:
615 	return s;
616 }
617 
618 /*
619  * This routine is called by the ICMP module when it gets some
620  * sort of error condition.  If err < 0 then the socket should
621  * be closed and the error returned to the user.  If err > 0
622  * it's just the icmp type << 8 | icmp code.
623  * Header points to the ip header of the error packet. We move
624  * on past this. Then (as it used to claim before adjustment)
625  * header points to the first 8 bytes of the udp header.  We need
626  * to find the appropriate port.
627  */
628 
629 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
630 {
631 	struct inet_sock *inet;
632 	const struct iphdr *iph = (const struct iphdr *)skb->data;
633 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
634 	const int type = icmp_hdr(skb)->type;
635 	const int code = icmp_hdr(skb)->code;
636 	struct sock *sk;
637 	int harderr;
638 	int err;
639 	struct net *net = dev_net(skb->dev);
640 
641 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
642 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
643 	if (sk == NULL) {
644 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
645 		return;	/* No socket for error */
646 	}
647 
648 	err = 0;
649 	harderr = 0;
650 	inet = inet_sk(sk);
651 
652 	switch (type) {
653 	default:
654 	case ICMP_TIME_EXCEEDED:
655 		err = EHOSTUNREACH;
656 		break;
657 	case ICMP_SOURCE_QUENCH:
658 		goto out;
659 	case ICMP_PARAMETERPROB:
660 		err = EPROTO;
661 		harderr = 1;
662 		break;
663 	case ICMP_DEST_UNREACH:
664 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
665 			ipv4_sk_update_pmtu(skb, sk, info);
666 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
667 				err = EMSGSIZE;
668 				harderr = 1;
669 				break;
670 			}
671 			goto out;
672 		}
673 		err = EHOSTUNREACH;
674 		if (code <= NR_ICMP_UNREACH) {
675 			harderr = icmp_err_convert[code].fatal;
676 			err = icmp_err_convert[code].errno;
677 		}
678 		break;
679 	case ICMP_REDIRECT:
680 		ipv4_sk_redirect(skb, sk);
681 		goto out;
682 	}
683 
684 	/*
685 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
686 	 *	4.1.3.3.
687 	 */
688 	if (!inet->recverr) {
689 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
690 			goto out;
691 	} else
692 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
693 
694 	sk->sk_err = err;
695 	sk->sk_error_report(sk);
696 out:
697 	sock_put(sk);
698 }
699 
700 void udp_err(struct sk_buff *skb, u32 info)
701 {
702 	__udp4_lib_err(skb, info, &udp_table);
703 }
704 
705 /*
706  * Throw away all pending data and cancel the corking. Socket is locked.
707  */
708 void udp_flush_pending_frames(struct sock *sk)
709 {
710 	struct udp_sock *up = udp_sk(sk);
711 
712 	if (up->pending) {
713 		up->len = 0;
714 		up->pending = 0;
715 		ip_flush_pending_frames(sk);
716 	}
717 }
718 EXPORT_SYMBOL(udp_flush_pending_frames);
719 
720 /**
721  * 	udp4_hwcsum  -  handle outgoing HW checksumming
722  * 	@skb: 	sk_buff containing the filled-in UDP header
723  * 	        (checksum field must be zeroed out)
724  *	@src:	source IP address
725  *	@dst:	destination IP address
726  */
727 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
728 {
729 	struct udphdr *uh = udp_hdr(skb);
730 	int offset = skb_transport_offset(skb);
731 	int len = skb->len - offset;
732 	int hlen = len;
733 	__wsum csum = 0;
734 
735 	if (!skb_has_frag_list(skb)) {
736 		/*
737 		 * Only one fragment on the socket.
738 		 */
739 		skb->csum_start = skb_transport_header(skb) - skb->head;
740 		skb->csum_offset = offsetof(struct udphdr, check);
741 		uh->check = ~csum_tcpudp_magic(src, dst, len,
742 					       IPPROTO_UDP, 0);
743 	} else {
744 		struct sk_buff *frags;
745 
746 		/*
747 		 * HW-checksum won't work as there are two or more
748 		 * fragments on the socket so that all csums of sk_buffs
749 		 * should be together
750 		 */
751 		skb_walk_frags(skb, frags) {
752 			csum = csum_add(csum, frags->csum);
753 			hlen -= frags->len;
754 		}
755 
756 		csum = skb_checksum(skb, offset, hlen, csum);
757 		skb->ip_summed = CHECKSUM_NONE;
758 
759 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
760 		if (uh->check == 0)
761 			uh->check = CSUM_MANGLED_0;
762 	}
763 }
764 EXPORT_SYMBOL_GPL(udp4_hwcsum);
765 
766 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
767  * for the simple case like when setting the checksum for a UDP tunnel.
768  */
769 void udp_set_csum(bool nocheck, struct sk_buff *skb,
770 		  __be32 saddr, __be32 daddr, int len)
771 {
772 	struct udphdr *uh = udp_hdr(skb);
773 
774 	if (nocheck)
775 		uh->check = 0;
776 	else if (skb_is_gso(skb))
777 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
778 	else if (skb_dst(skb) && skb_dst(skb)->dev &&
779 		 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
780 
781 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
782 
783 		skb->ip_summed = CHECKSUM_PARTIAL;
784 		skb->csum_start = skb_transport_header(skb) - skb->head;
785 		skb->csum_offset = offsetof(struct udphdr, check);
786 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
787 	} else {
788 		__wsum csum;
789 
790 		BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
791 
792 		uh->check = 0;
793 		csum = skb_checksum(skb, 0, len, 0);
794 		uh->check = udp_v4_check(len, saddr, daddr, csum);
795 		if (uh->check == 0)
796 			uh->check = CSUM_MANGLED_0;
797 
798 		skb->ip_summed = CHECKSUM_UNNECESSARY;
799 	}
800 }
801 EXPORT_SYMBOL(udp_set_csum);
802 
803 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
804 {
805 	struct sock *sk = skb->sk;
806 	struct inet_sock *inet = inet_sk(sk);
807 	struct udphdr *uh;
808 	int err = 0;
809 	int is_udplite = IS_UDPLITE(sk);
810 	int offset = skb_transport_offset(skb);
811 	int len = skb->len - offset;
812 	__wsum csum = 0;
813 
814 	/*
815 	 * Create a UDP header
816 	 */
817 	uh = udp_hdr(skb);
818 	uh->source = inet->inet_sport;
819 	uh->dest = fl4->fl4_dport;
820 	uh->len = htons(len);
821 	uh->check = 0;
822 
823 	if (is_udplite)  				 /*     UDP-Lite      */
824 		csum = udplite_csum(skb);
825 
826 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
827 
828 		skb->ip_summed = CHECKSUM_NONE;
829 		goto send;
830 
831 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
832 
833 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
834 		goto send;
835 
836 	} else
837 		csum = udp_csum(skb);
838 
839 	/* add protocol-dependent pseudo-header */
840 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
841 				      sk->sk_protocol, csum);
842 	if (uh->check == 0)
843 		uh->check = CSUM_MANGLED_0;
844 
845 send:
846 	err = ip_send_skb(sock_net(sk), skb);
847 	if (err) {
848 		if (err == -ENOBUFS && !inet->recverr) {
849 			UDP_INC_STATS_USER(sock_net(sk),
850 					   UDP_MIB_SNDBUFERRORS, is_udplite);
851 			err = 0;
852 		}
853 	} else
854 		UDP_INC_STATS_USER(sock_net(sk),
855 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
856 	return err;
857 }
858 
859 /*
860  * Push out all pending data as one UDP datagram. Socket is locked.
861  */
862 int udp_push_pending_frames(struct sock *sk)
863 {
864 	struct udp_sock  *up = udp_sk(sk);
865 	struct inet_sock *inet = inet_sk(sk);
866 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
867 	struct sk_buff *skb;
868 	int err = 0;
869 
870 	skb = ip_finish_skb(sk, fl4);
871 	if (!skb)
872 		goto out;
873 
874 	err = udp_send_skb(skb, fl4);
875 
876 out:
877 	up->len = 0;
878 	up->pending = 0;
879 	return err;
880 }
881 EXPORT_SYMBOL(udp_push_pending_frames);
882 
883 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
884 		size_t len)
885 {
886 	struct inet_sock *inet = inet_sk(sk);
887 	struct udp_sock *up = udp_sk(sk);
888 	struct flowi4 fl4_stack;
889 	struct flowi4 *fl4;
890 	int ulen = len;
891 	struct ipcm_cookie ipc;
892 	struct rtable *rt = NULL;
893 	int free = 0;
894 	int connected = 0;
895 	__be32 daddr, faddr, saddr;
896 	__be16 dport;
897 	u8  tos;
898 	int err, is_udplite = IS_UDPLITE(sk);
899 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
900 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
901 	struct sk_buff *skb;
902 	struct ip_options_data opt_copy;
903 
904 	if (len > 0xFFFF)
905 		return -EMSGSIZE;
906 
907 	/*
908 	 *	Check the flags.
909 	 */
910 
911 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
912 		return -EOPNOTSUPP;
913 
914 	ipc.opt = NULL;
915 	ipc.tx_flags = 0;
916 	ipc.ttl = 0;
917 	ipc.tos = -1;
918 
919 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
920 
921 	fl4 = &inet->cork.fl.u.ip4;
922 	if (up->pending) {
923 		/*
924 		 * There are pending frames.
925 		 * The socket lock must be held while it's corked.
926 		 */
927 		lock_sock(sk);
928 		if (likely(up->pending)) {
929 			if (unlikely(up->pending != AF_INET)) {
930 				release_sock(sk);
931 				return -EINVAL;
932 			}
933 			goto do_append_data;
934 		}
935 		release_sock(sk);
936 	}
937 	ulen += sizeof(struct udphdr);
938 
939 	/*
940 	 *	Get and verify the address.
941 	 */
942 	if (msg->msg_name) {
943 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
944 		if (msg->msg_namelen < sizeof(*usin))
945 			return -EINVAL;
946 		if (usin->sin_family != AF_INET) {
947 			if (usin->sin_family != AF_UNSPEC)
948 				return -EAFNOSUPPORT;
949 		}
950 
951 		daddr = usin->sin_addr.s_addr;
952 		dport = usin->sin_port;
953 		if (dport == 0)
954 			return -EINVAL;
955 	} else {
956 		if (sk->sk_state != TCP_ESTABLISHED)
957 			return -EDESTADDRREQ;
958 		daddr = inet->inet_daddr;
959 		dport = inet->inet_dport;
960 		/* Open fast path for connected socket.
961 		   Route will not be used, if at least one option is set.
962 		 */
963 		connected = 1;
964 	}
965 	ipc.addr = inet->inet_saddr;
966 
967 	ipc.oif = sk->sk_bound_dev_if;
968 
969 	sock_tx_timestamp(sk, &ipc.tx_flags);
970 
971 	if (msg->msg_controllen) {
972 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
973 				   sk->sk_family == AF_INET6);
974 		if (err)
975 			return err;
976 		if (ipc.opt)
977 			free = 1;
978 		connected = 0;
979 	}
980 	if (!ipc.opt) {
981 		struct ip_options_rcu *inet_opt;
982 
983 		rcu_read_lock();
984 		inet_opt = rcu_dereference(inet->inet_opt);
985 		if (inet_opt) {
986 			memcpy(&opt_copy, inet_opt,
987 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
988 			ipc.opt = &opt_copy.opt;
989 		}
990 		rcu_read_unlock();
991 	}
992 
993 	saddr = ipc.addr;
994 	ipc.addr = faddr = daddr;
995 
996 	if (ipc.opt && ipc.opt->opt.srr) {
997 		if (!daddr)
998 			return -EINVAL;
999 		faddr = ipc.opt->opt.faddr;
1000 		connected = 0;
1001 	}
1002 	tos = get_rttos(&ipc, inet);
1003 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1004 	    (msg->msg_flags & MSG_DONTROUTE) ||
1005 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1006 		tos |= RTO_ONLINK;
1007 		connected = 0;
1008 	}
1009 
1010 	if (ipv4_is_multicast(daddr)) {
1011 		if (!ipc.oif)
1012 			ipc.oif = inet->mc_index;
1013 		if (!saddr)
1014 			saddr = inet->mc_addr;
1015 		connected = 0;
1016 	} else if (!ipc.oif)
1017 		ipc.oif = inet->uc_index;
1018 
1019 	if (connected)
1020 		rt = (struct rtable *)sk_dst_check(sk, 0);
1021 
1022 	if (rt == NULL) {
1023 		struct net *net = sock_net(sk);
1024 
1025 		fl4 = &fl4_stack;
1026 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1027 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1028 				   inet_sk_flowi_flags(sk),
1029 				   faddr, saddr, dport, inet->inet_sport);
1030 
1031 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1032 		rt = ip_route_output_flow(net, fl4, sk);
1033 		if (IS_ERR(rt)) {
1034 			err = PTR_ERR(rt);
1035 			rt = NULL;
1036 			if (err == -ENETUNREACH)
1037 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1038 			goto out;
1039 		}
1040 
1041 		err = -EACCES;
1042 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1043 		    !sock_flag(sk, SOCK_BROADCAST))
1044 			goto out;
1045 		if (connected)
1046 			sk_dst_set(sk, dst_clone(&rt->dst));
1047 	}
1048 
1049 	if (msg->msg_flags&MSG_CONFIRM)
1050 		goto do_confirm;
1051 back_from_confirm:
1052 
1053 	saddr = fl4->saddr;
1054 	if (!ipc.addr)
1055 		daddr = ipc.addr = fl4->daddr;
1056 
1057 	/* Lockless fast path for the non-corking case. */
1058 	if (!corkreq) {
1059 		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
1060 				  sizeof(struct udphdr), &ipc, &rt,
1061 				  msg->msg_flags);
1062 		err = PTR_ERR(skb);
1063 		if (!IS_ERR_OR_NULL(skb))
1064 			err = udp_send_skb(skb, fl4);
1065 		goto out;
1066 	}
1067 
1068 	lock_sock(sk);
1069 	if (unlikely(up->pending)) {
1070 		/* The socket is already corked while preparing it. */
1071 		/* ... which is an evident application bug. --ANK */
1072 		release_sock(sk);
1073 
1074 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1075 		err = -EINVAL;
1076 		goto out;
1077 	}
1078 	/*
1079 	 *	Now cork the socket to pend data.
1080 	 */
1081 	fl4 = &inet->cork.fl.u.ip4;
1082 	fl4->daddr = daddr;
1083 	fl4->saddr = saddr;
1084 	fl4->fl4_dport = dport;
1085 	fl4->fl4_sport = inet->inet_sport;
1086 	up->pending = AF_INET;
1087 
1088 do_append_data:
1089 	up->len += ulen;
1090 	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1091 			     sizeof(struct udphdr), &ipc, &rt,
1092 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1093 	if (err)
1094 		udp_flush_pending_frames(sk);
1095 	else if (!corkreq)
1096 		err = udp_push_pending_frames(sk);
1097 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1098 		up->pending = 0;
1099 	release_sock(sk);
1100 
1101 out:
1102 	ip_rt_put(rt);
1103 	if (free)
1104 		kfree(ipc.opt);
1105 	if (!err)
1106 		return len;
1107 	/*
1108 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1109 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1110 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1111 	 * things).  We could add another new stat but at least for now that
1112 	 * seems like overkill.
1113 	 */
1114 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1115 		UDP_INC_STATS_USER(sock_net(sk),
1116 				UDP_MIB_SNDBUFERRORS, is_udplite);
1117 	}
1118 	return err;
1119 
1120 do_confirm:
1121 	dst_confirm(&rt->dst);
1122 	if (!(msg->msg_flags&MSG_PROBE) || len)
1123 		goto back_from_confirm;
1124 	err = 0;
1125 	goto out;
1126 }
1127 EXPORT_SYMBOL(udp_sendmsg);
1128 
1129 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1130 		 size_t size, int flags)
1131 {
1132 	struct inet_sock *inet = inet_sk(sk);
1133 	struct udp_sock *up = udp_sk(sk);
1134 	int ret;
1135 
1136 	if (flags & MSG_SENDPAGE_NOTLAST)
1137 		flags |= MSG_MORE;
1138 
1139 	if (!up->pending) {
1140 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1141 
1142 		/* Call udp_sendmsg to specify destination address which
1143 		 * sendpage interface can't pass.
1144 		 * This will succeed only when the socket is connected.
1145 		 */
1146 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1147 		if (ret < 0)
1148 			return ret;
1149 	}
1150 
1151 	lock_sock(sk);
1152 
1153 	if (unlikely(!up->pending)) {
1154 		release_sock(sk);
1155 
1156 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1157 		return -EINVAL;
1158 	}
1159 
1160 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1161 			     page, offset, size, flags);
1162 	if (ret == -EOPNOTSUPP) {
1163 		release_sock(sk);
1164 		return sock_no_sendpage(sk->sk_socket, page, offset,
1165 					size, flags);
1166 	}
1167 	if (ret < 0) {
1168 		udp_flush_pending_frames(sk);
1169 		goto out;
1170 	}
1171 
1172 	up->len += size;
1173 	if (!(up->corkflag || (flags&MSG_MORE)))
1174 		ret = udp_push_pending_frames(sk);
1175 	if (!ret)
1176 		ret = size;
1177 out:
1178 	release_sock(sk);
1179 	return ret;
1180 }
1181 
1182 
1183 /**
1184  *	first_packet_length	- return length of first packet in receive queue
1185  *	@sk: socket
1186  *
1187  *	Drops all bad checksum frames, until a valid one is found.
1188  *	Returns the length of found skb, or 0 if none is found.
1189  */
1190 static unsigned int first_packet_length(struct sock *sk)
1191 {
1192 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1193 	struct sk_buff *skb;
1194 	unsigned int res;
1195 
1196 	__skb_queue_head_init(&list_kill);
1197 
1198 	spin_lock_bh(&rcvq->lock);
1199 	while ((skb = skb_peek(rcvq)) != NULL &&
1200 		udp_lib_checksum_complete(skb)) {
1201 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1202 				 IS_UDPLITE(sk));
1203 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1204 				 IS_UDPLITE(sk));
1205 		atomic_inc(&sk->sk_drops);
1206 		__skb_unlink(skb, rcvq);
1207 		__skb_queue_tail(&list_kill, skb);
1208 	}
1209 	res = skb ? skb->len : 0;
1210 	spin_unlock_bh(&rcvq->lock);
1211 
1212 	if (!skb_queue_empty(&list_kill)) {
1213 		bool slow = lock_sock_fast(sk);
1214 
1215 		__skb_queue_purge(&list_kill);
1216 		sk_mem_reclaim_partial(sk);
1217 		unlock_sock_fast(sk, slow);
1218 	}
1219 	return res;
1220 }
1221 
1222 /*
1223  *	IOCTL requests applicable to the UDP protocol
1224  */
1225 
1226 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1227 {
1228 	switch (cmd) {
1229 	case SIOCOUTQ:
1230 	{
1231 		int amount = sk_wmem_alloc_get(sk);
1232 
1233 		return put_user(amount, (int __user *)arg);
1234 	}
1235 
1236 	case SIOCINQ:
1237 	{
1238 		unsigned int amount = first_packet_length(sk);
1239 
1240 		if (amount)
1241 			/*
1242 			 * We will only return the amount
1243 			 * of this packet since that is all
1244 			 * that will be read.
1245 			 */
1246 			amount -= sizeof(struct udphdr);
1247 
1248 		return put_user(amount, (int __user *)arg);
1249 	}
1250 
1251 	default:
1252 		return -ENOIOCTLCMD;
1253 	}
1254 
1255 	return 0;
1256 }
1257 EXPORT_SYMBOL(udp_ioctl);
1258 
1259 /*
1260  * 	This should be easy, if there is something there we
1261  * 	return it, otherwise we block.
1262  */
1263 
1264 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1265 		size_t len, int noblock, int flags, int *addr_len)
1266 {
1267 	struct inet_sock *inet = inet_sk(sk);
1268 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1269 	struct sk_buff *skb;
1270 	unsigned int ulen, copied;
1271 	int peeked, off = 0;
1272 	int err;
1273 	int is_udplite = IS_UDPLITE(sk);
1274 	bool slow;
1275 
1276 	if (flags & MSG_ERRQUEUE)
1277 		return ip_recv_error(sk, msg, len, addr_len);
1278 
1279 try_again:
1280 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1281 				  &peeked, &off, &err);
1282 	if (!skb)
1283 		goto out;
1284 
1285 	ulen = skb->len - sizeof(struct udphdr);
1286 	copied = len;
1287 	if (copied > ulen)
1288 		copied = ulen;
1289 	else if (copied < ulen)
1290 		msg->msg_flags |= MSG_TRUNC;
1291 
1292 	/*
1293 	 * If checksum is needed at all, try to do it while copying the
1294 	 * data.  If the data is truncated, or if we only want a partial
1295 	 * coverage checksum (UDP-Lite), do it before the copy.
1296 	 */
1297 
1298 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1299 		if (udp_lib_checksum_complete(skb))
1300 			goto csum_copy_err;
1301 	}
1302 
1303 	if (skb_csum_unnecessary(skb))
1304 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1305 					      msg->msg_iov, copied);
1306 	else {
1307 		err = skb_copy_and_csum_datagram_iovec(skb,
1308 						       sizeof(struct udphdr),
1309 						       msg->msg_iov);
1310 
1311 		if (err == -EINVAL)
1312 			goto csum_copy_err;
1313 	}
1314 
1315 	if (unlikely(err)) {
1316 		trace_kfree_skb(skb, udp_recvmsg);
1317 		if (!peeked) {
1318 			atomic_inc(&sk->sk_drops);
1319 			UDP_INC_STATS_USER(sock_net(sk),
1320 					   UDP_MIB_INERRORS, is_udplite);
1321 		}
1322 		goto out_free;
1323 	}
1324 
1325 	if (!peeked)
1326 		UDP_INC_STATS_USER(sock_net(sk),
1327 				UDP_MIB_INDATAGRAMS, is_udplite);
1328 
1329 	sock_recv_ts_and_drops(msg, sk, skb);
1330 
1331 	/* Copy the address. */
1332 	if (sin) {
1333 		sin->sin_family = AF_INET;
1334 		sin->sin_port = udp_hdr(skb)->source;
1335 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1336 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1337 		*addr_len = sizeof(*sin);
1338 	}
1339 	if (inet->cmsg_flags)
1340 		ip_cmsg_recv(msg, skb);
1341 
1342 	err = copied;
1343 	if (flags & MSG_TRUNC)
1344 		err = ulen;
1345 
1346 out_free:
1347 	skb_free_datagram_locked(sk, skb);
1348 out:
1349 	return err;
1350 
1351 csum_copy_err:
1352 	slow = lock_sock_fast(sk);
1353 	if (!skb_kill_datagram(sk, skb, flags)) {
1354 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1355 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1356 	}
1357 	unlock_sock_fast(sk, slow);
1358 
1359 	if (noblock)
1360 		return -EAGAIN;
1361 
1362 	/* starting over for a new packet */
1363 	msg->msg_flags &= ~MSG_TRUNC;
1364 	goto try_again;
1365 }
1366 
1367 
1368 int udp_disconnect(struct sock *sk, int flags)
1369 {
1370 	struct inet_sock *inet = inet_sk(sk);
1371 	/*
1372 	 *	1003.1g - break association.
1373 	 */
1374 
1375 	sk->sk_state = TCP_CLOSE;
1376 	inet->inet_daddr = 0;
1377 	inet->inet_dport = 0;
1378 	sock_rps_reset_rxhash(sk);
1379 	sk->sk_bound_dev_if = 0;
1380 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1381 		inet_reset_saddr(sk);
1382 
1383 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1384 		sk->sk_prot->unhash(sk);
1385 		inet->inet_sport = 0;
1386 	}
1387 	sk_dst_reset(sk);
1388 	return 0;
1389 }
1390 EXPORT_SYMBOL(udp_disconnect);
1391 
1392 void udp_lib_unhash(struct sock *sk)
1393 {
1394 	if (sk_hashed(sk)) {
1395 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1396 		struct udp_hslot *hslot, *hslot2;
1397 
1398 		hslot  = udp_hashslot(udptable, sock_net(sk),
1399 				      udp_sk(sk)->udp_port_hash);
1400 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1401 
1402 		spin_lock_bh(&hslot->lock);
1403 		if (sk_nulls_del_node_init_rcu(sk)) {
1404 			hslot->count--;
1405 			inet_sk(sk)->inet_num = 0;
1406 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1407 
1408 			spin_lock(&hslot2->lock);
1409 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1410 			hslot2->count--;
1411 			spin_unlock(&hslot2->lock);
1412 		}
1413 		spin_unlock_bh(&hslot->lock);
1414 	}
1415 }
1416 EXPORT_SYMBOL(udp_lib_unhash);
1417 
1418 /*
1419  * inet_rcv_saddr was changed, we must rehash secondary hash
1420  */
1421 void udp_lib_rehash(struct sock *sk, u16 newhash)
1422 {
1423 	if (sk_hashed(sk)) {
1424 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1425 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1426 
1427 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1428 		nhslot2 = udp_hashslot2(udptable, newhash);
1429 		udp_sk(sk)->udp_portaddr_hash = newhash;
1430 		if (hslot2 != nhslot2) {
1431 			hslot = udp_hashslot(udptable, sock_net(sk),
1432 					     udp_sk(sk)->udp_port_hash);
1433 			/* we must lock primary chain too */
1434 			spin_lock_bh(&hslot->lock);
1435 
1436 			spin_lock(&hslot2->lock);
1437 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1438 			hslot2->count--;
1439 			spin_unlock(&hslot2->lock);
1440 
1441 			spin_lock(&nhslot2->lock);
1442 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1443 						 &nhslot2->head);
1444 			nhslot2->count++;
1445 			spin_unlock(&nhslot2->lock);
1446 
1447 			spin_unlock_bh(&hslot->lock);
1448 		}
1449 	}
1450 }
1451 EXPORT_SYMBOL(udp_lib_rehash);
1452 
1453 static void udp_v4_rehash(struct sock *sk)
1454 {
1455 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1456 					  inet_sk(sk)->inet_rcv_saddr,
1457 					  inet_sk(sk)->inet_num);
1458 	udp_lib_rehash(sk, new_hash);
1459 }
1460 
1461 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1462 {
1463 	int rc;
1464 
1465 	if (inet_sk(sk)->inet_daddr) {
1466 		sock_rps_save_rxhash(sk, skb);
1467 		sk_mark_napi_id(sk, skb);
1468 	}
1469 
1470 	rc = sock_queue_rcv_skb(sk, skb);
1471 	if (rc < 0) {
1472 		int is_udplite = IS_UDPLITE(sk);
1473 
1474 		/* Note that an ENOMEM error is charged twice */
1475 		if (rc == -ENOMEM)
1476 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1477 					 is_udplite);
1478 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1479 		kfree_skb(skb);
1480 		trace_udp_fail_queue_rcv_skb(rc, sk);
1481 		return -1;
1482 	}
1483 
1484 	return 0;
1485 
1486 }
1487 
1488 static struct static_key udp_encap_needed __read_mostly;
1489 void udp_encap_enable(void)
1490 {
1491 	if (!static_key_enabled(&udp_encap_needed))
1492 		static_key_slow_inc(&udp_encap_needed);
1493 }
1494 EXPORT_SYMBOL(udp_encap_enable);
1495 
1496 /* returns:
1497  *  -1: error
1498  *   0: success
1499  *  >0: "udp encap" protocol resubmission
1500  *
1501  * Note that in the success and error cases, the skb is assumed to
1502  * have either been requeued or freed.
1503  */
1504 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1505 {
1506 	struct udp_sock *up = udp_sk(sk);
1507 	int rc;
1508 	int is_udplite = IS_UDPLITE(sk);
1509 
1510 	/*
1511 	 *	Charge it to the socket, dropping if the queue is full.
1512 	 */
1513 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1514 		goto drop;
1515 	nf_reset(skb);
1516 
1517 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1518 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1519 
1520 		/*
1521 		 * This is an encapsulation socket so pass the skb to
1522 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1523 		 * fall through and pass this up the UDP socket.
1524 		 * up->encap_rcv() returns the following value:
1525 		 * =0 if skb was successfully passed to the encap
1526 		 *    handler or was discarded by it.
1527 		 * >0 if skb should be passed on to UDP.
1528 		 * <0 if skb should be resubmitted as proto -N
1529 		 */
1530 
1531 		/* if we're overly short, let UDP handle it */
1532 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1533 		if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1534 			int ret;
1535 
1536 			/* Verify checksum before giving to encap */
1537 			if (udp_lib_checksum_complete(skb))
1538 				goto csum_error;
1539 
1540 			ret = encap_rcv(sk, skb);
1541 			if (ret <= 0) {
1542 				UDP_INC_STATS_BH(sock_net(sk),
1543 						 UDP_MIB_INDATAGRAMS,
1544 						 is_udplite);
1545 				return -ret;
1546 			}
1547 		}
1548 
1549 		/* FALLTHROUGH -- it's a UDP Packet */
1550 	}
1551 
1552 	/*
1553 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1554 	 */
1555 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1556 
1557 		/*
1558 		 * MIB statistics other than incrementing the error count are
1559 		 * disabled for the following two types of errors: these depend
1560 		 * on the application settings, not on the functioning of the
1561 		 * protocol stack as such.
1562 		 *
1563 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1564 		 * way ... to ... at least let the receiving application block
1565 		 * delivery of packets with coverage values less than a value
1566 		 * provided by the application."
1567 		 */
1568 		if (up->pcrlen == 0) {          /* full coverage was set  */
1569 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1570 				       UDP_SKB_CB(skb)->cscov, skb->len);
1571 			goto drop;
1572 		}
1573 		/* The next case involves violating the min. coverage requested
1574 		 * by the receiver. This is subtle: if receiver wants x and x is
1575 		 * greater than the buffersize/MTU then receiver will complain
1576 		 * that it wants x while sender emits packets of smaller size y.
1577 		 * Therefore the above ...()->partial_cov statement is essential.
1578 		 */
1579 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1580 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1581 				       UDP_SKB_CB(skb)->cscov, up->pcrlen);
1582 			goto drop;
1583 		}
1584 	}
1585 
1586 	if (rcu_access_pointer(sk->sk_filter) &&
1587 	    udp_lib_checksum_complete(skb))
1588 		goto csum_error;
1589 
1590 
1591 	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1592 		goto drop;
1593 
1594 	rc = 0;
1595 
1596 	ipv4_pktinfo_prepare(sk, skb);
1597 	bh_lock_sock(sk);
1598 	if (!sock_owned_by_user(sk))
1599 		rc = __udp_queue_rcv_skb(sk, skb);
1600 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1601 		bh_unlock_sock(sk);
1602 		goto drop;
1603 	}
1604 	bh_unlock_sock(sk);
1605 
1606 	return rc;
1607 
1608 csum_error:
1609 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1610 drop:
1611 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1612 	atomic_inc(&sk->sk_drops);
1613 	kfree_skb(skb);
1614 	return -1;
1615 }
1616 
1617 
1618 static void flush_stack(struct sock **stack, unsigned int count,
1619 			struct sk_buff *skb, unsigned int final)
1620 {
1621 	unsigned int i;
1622 	struct sk_buff *skb1 = NULL;
1623 	struct sock *sk;
1624 
1625 	for (i = 0; i < count; i++) {
1626 		sk = stack[i];
1627 		if (likely(skb1 == NULL))
1628 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1629 
1630 		if (!skb1) {
1631 			atomic_inc(&sk->sk_drops);
1632 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1633 					 IS_UDPLITE(sk));
1634 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1635 					 IS_UDPLITE(sk));
1636 		}
1637 
1638 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1639 			skb1 = NULL;
1640 	}
1641 	if (unlikely(skb1))
1642 		kfree_skb(skb1);
1643 }
1644 
1645 /* For TCP sockets, sk_rx_dst is protected by socket lock
1646  * For UDP, we use xchg() to guard against concurrent changes.
1647  */
1648 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1649 {
1650 	struct dst_entry *old;
1651 
1652 	dst_hold(dst);
1653 	old = xchg(&sk->sk_rx_dst, dst);
1654 	dst_release(old);
1655 }
1656 
1657 /*
1658  *	Multicasts and broadcasts go to each listener.
1659  *
1660  *	Note: called only from the BH handler context.
1661  */
1662 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1663 				    struct udphdr  *uh,
1664 				    __be32 saddr, __be32 daddr,
1665 				    struct udp_table *udptable)
1666 {
1667 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1668 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1669 	int dif;
1670 	unsigned int i, count = 0;
1671 
1672 	spin_lock(&hslot->lock);
1673 	sk = sk_nulls_head(&hslot->head);
1674 	dif = skb->dev->ifindex;
1675 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1676 	while (sk) {
1677 		stack[count++] = sk;
1678 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1679 				       daddr, uh->source, saddr, dif);
1680 		if (unlikely(count == ARRAY_SIZE(stack))) {
1681 			if (!sk)
1682 				break;
1683 			flush_stack(stack, count, skb, ~0);
1684 			count = 0;
1685 		}
1686 	}
1687 	/*
1688 	 * before releasing chain lock, we must take a reference on sockets
1689 	 */
1690 	for (i = 0; i < count; i++)
1691 		sock_hold(stack[i]);
1692 
1693 	spin_unlock(&hslot->lock);
1694 
1695 	/*
1696 	 * do the slow work with no lock held
1697 	 */
1698 	if (count) {
1699 		flush_stack(stack, count, skb, count - 1);
1700 
1701 		for (i = 0; i < count; i++)
1702 			sock_put(stack[i]);
1703 	} else {
1704 		kfree_skb(skb);
1705 	}
1706 	return 0;
1707 }
1708 
1709 /* Initialize UDP checksum. If exited with zero value (success),
1710  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1711  * Otherwise, csum completion requires chacksumming packet body,
1712  * including udp header and folding it to skb->csum.
1713  */
1714 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1715 				 int proto)
1716 {
1717 	int err;
1718 
1719 	UDP_SKB_CB(skb)->partial_cov = 0;
1720 	UDP_SKB_CB(skb)->cscov = skb->len;
1721 
1722 	if (proto == IPPROTO_UDPLITE) {
1723 		err = udplite_checksum_init(skb, uh);
1724 		if (err)
1725 			return err;
1726 	}
1727 
1728 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1729 					    inet_compute_pseudo);
1730 }
1731 
1732 /*
1733  *	All we need to do is get the socket, and then do a checksum.
1734  */
1735 
1736 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1737 		   int proto)
1738 {
1739 	struct sock *sk;
1740 	struct udphdr *uh;
1741 	unsigned short ulen;
1742 	struct rtable *rt = skb_rtable(skb);
1743 	__be32 saddr, daddr;
1744 	struct net *net = dev_net(skb->dev);
1745 
1746 	/*
1747 	 *  Validate the packet.
1748 	 */
1749 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1750 		goto drop;		/* No space for header. */
1751 
1752 	uh   = udp_hdr(skb);
1753 	ulen = ntohs(uh->len);
1754 	saddr = ip_hdr(skb)->saddr;
1755 	daddr = ip_hdr(skb)->daddr;
1756 
1757 	if (ulen > skb->len)
1758 		goto short_packet;
1759 
1760 	if (proto == IPPROTO_UDP) {
1761 		/* UDP validates ulen. */
1762 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1763 			goto short_packet;
1764 		uh = udp_hdr(skb);
1765 	}
1766 
1767 	if (udp4_csum_init(skb, uh, proto))
1768 		goto csum_error;
1769 
1770 	sk = skb_steal_sock(skb);
1771 	if (sk) {
1772 		struct dst_entry *dst = skb_dst(skb);
1773 		int ret;
1774 
1775 		if (unlikely(sk->sk_rx_dst != dst))
1776 			udp_sk_rx_dst_set(sk, dst);
1777 
1778 		ret = udp_queue_rcv_skb(sk, skb);
1779 		sock_put(sk);
1780 		/* a return value > 0 means to resubmit the input, but
1781 		 * it wants the return to be -protocol, or 0
1782 		 */
1783 		if (ret > 0)
1784 			return -ret;
1785 		return 0;
1786 	} else {
1787 		if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1788 			return __udp4_lib_mcast_deliver(net, skb, uh,
1789 					saddr, daddr, udptable);
1790 
1791 		sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1792 	}
1793 
1794 	if (sk != NULL) {
1795 		int ret;
1796 
1797 		ret = udp_queue_rcv_skb(sk, skb);
1798 		sock_put(sk);
1799 
1800 		/* a return value > 0 means to resubmit the input, but
1801 		 * it wants the return to be -protocol, or 0
1802 		 */
1803 		if (ret > 0)
1804 			return -ret;
1805 		return 0;
1806 	}
1807 
1808 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1809 		goto drop;
1810 	nf_reset(skb);
1811 
1812 	/* No socket. Drop packet silently, if checksum is wrong */
1813 	if (udp_lib_checksum_complete(skb))
1814 		goto csum_error;
1815 
1816 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1817 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1818 
1819 	/*
1820 	 * Hmm.  We got an UDP packet to a port to which we
1821 	 * don't wanna listen.  Ignore it.
1822 	 */
1823 	kfree_skb(skb);
1824 	return 0;
1825 
1826 short_packet:
1827 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1828 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1829 		       &saddr, ntohs(uh->source),
1830 		       ulen, skb->len,
1831 		       &daddr, ntohs(uh->dest));
1832 	goto drop;
1833 
1834 csum_error:
1835 	/*
1836 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1837 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1838 	 */
1839 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1840 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1841 		       &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1842 		       ulen);
1843 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1844 drop:
1845 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1846 	kfree_skb(skb);
1847 	return 0;
1848 }
1849 
1850 /* We can only early demux multicast if there is a single matching socket.
1851  * If more than one socket found returns NULL
1852  */
1853 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1854 						  __be16 loc_port, __be32 loc_addr,
1855 						  __be16 rmt_port, __be32 rmt_addr,
1856 						  int dif)
1857 {
1858 	struct sock *sk, *result;
1859 	struct hlist_nulls_node *node;
1860 	unsigned short hnum = ntohs(loc_port);
1861 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1862 	struct udp_hslot *hslot = &udp_table.hash[slot];
1863 
1864 	/* Do not bother scanning a too big list */
1865 	if (hslot->count > 10)
1866 		return NULL;
1867 
1868 	rcu_read_lock();
1869 begin:
1870 	count = 0;
1871 	result = NULL;
1872 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1873 		if (__udp_is_mcast_sock(net, sk,
1874 					loc_port, loc_addr,
1875 					rmt_port, rmt_addr,
1876 					dif, hnum)) {
1877 			result = sk;
1878 			++count;
1879 		}
1880 	}
1881 	/*
1882 	 * if the nulls value we got at the end of this lookup is
1883 	 * not the expected one, we must restart lookup.
1884 	 * We probably met an item that was moved to another chain.
1885 	 */
1886 	if (get_nulls_value(node) != slot)
1887 		goto begin;
1888 
1889 	if (result) {
1890 		if (count != 1 ||
1891 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1892 			result = NULL;
1893 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1894 						       loc_port, loc_addr,
1895 						       rmt_port, rmt_addr,
1896 						       dif, hnum))) {
1897 			sock_put(result);
1898 			result = NULL;
1899 		}
1900 	}
1901 	rcu_read_unlock();
1902 	return result;
1903 }
1904 
1905 /* For unicast we should only early demux connected sockets or we can
1906  * break forwarding setups.  The chains here can be long so only check
1907  * if the first socket is an exact match and if not move on.
1908  */
1909 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1910 					    __be16 loc_port, __be32 loc_addr,
1911 					    __be16 rmt_port, __be32 rmt_addr,
1912 					    int dif)
1913 {
1914 	struct sock *sk, *result;
1915 	struct hlist_nulls_node *node;
1916 	unsigned short hnum = ntohs(loc_port);
1917 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1918 	unsigned int slot2 = hash2 & udp_table.mask;
1919 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1920 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1921 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1922 
1923 	rcu_read_lock();
1924 	result = NULL;
1925 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1926 		if (INET_MATCH(sk, net, acookie,
1927 			       rmt_addr, loc_addr, ports, dif))
1928 			result = sk;
1929 		/* Only check first socket in chain */
1930 		break;
1931 	}
1932 
1933 	if (result) {
1934 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1935 			result = NULL;
1936 		else if (unlikely(!INET_MATCH(sk, net, acookie,
1937 					      rmt_addr, loc_addr,
1938 					      ports, dif))) {
1939 			sock_put(result);
1940 			result = NULL;
1941 		}
1942 	}
1943 	rcu_read_unlock();
1944 	return result;
1945 }
1946 
1947 void udp_v4_early_demux(struct sk_buff *skb)
1948 {
1949 	struct net *net = dev_net(skb->dev);
1950 	const struct iphdr *iph;
1951 	const struct udphdr *uh;
1952 	struct sock *sk;
1953 	struct dst_entry *dst;
1954 	int dif = skb->dev->ifindex;
1955 
1956 	/* validate the packet */
1957 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1958 		return;
1959 
1960 	iph = ip_hdr(skb);
1961 	uh = udp_hdr(skb);
1962 
1963 	if (skb->pkt_type == PACKET_BROADCAST ||
1964 	    skb->pkt_type == PACKET_MULTICAST)
1965 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1966 						   uh->source, iph->saddr, dif);
1967 	else if (skb->pkt_type == PACKET_HOST)
1968 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1969 					     uh->source, iph->saddr, dif);
1970 	else
1971 		return;
1972 
1973 	if (!sk)
1974 		return;
1975 
1976 	skb->sk = sk;
1977 	skb->destructor = sock_edemux;
1978 	dst = sk->sk_rx_dst;
1979 
1980 	if (dst)
1981 		dst = dst_check(dst, 0);
1982 	if (dst)
1983 		skb_dst_set_noref(skb, dst);
1984 }
1985 
1986 int udp_rcv(struct sk_buff *skb)
1987 {
1988 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1989 }
1990 
1991 void udp_destroy_sock(struct sock *sk)
1992 {
1993 	struct udp_sock *up = udp_sk(sk);
1994 	bool slow = lock_sock_fast(sk);
1995 	udp_flush_pending_frames(sk);
1996 	unlock_sock_fast(sk, slow);
1997 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1998 		void (*encap_destroy)(struct sock *sk);
1999 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2000 		if (encap_destroy)
2001 			encap_destroy(sk);
2002 	}
2003 }
2004 
2005 /*
2006  *	Socket option code for UDP
2007  */
2008 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2009 		       char __user *optval, unsigned int optlen,
2010 		       int (*push_pending_frames)(struct sock *))
2011 {
2012 	struct udp_sock *up = udp_sk(sk);
2013 	int val, valbool;
2014 	int err = 0;
2015 	int is_udplite = IS_UDPLITE(sk);
2016 
2017 	if (optlen < sizeof(int))
2018 		return -EINVAL;
2019 
2020 	if (get_user(val, (int __user *)optval))
2021 		return -EFAULT;
2022 
2023 	valbool = val ? 1 : 0;
2024 
2025 	switch (optname) {
2026 	case UDP_CORK:
2027 		if (val != 0) {
2028 			up->corkflag = 1;
2029 		} else {
2030 			up->corkflag = 0;
2031 			lock_sock(sk);
2032 			(*push_pending_frames)(sk);
2033 			release_sock(sk);
2034 		}
2035 		break;
2036 
2037 	case UDP_ENCAP:
2038 		switch (val) {
2039 		case 0:
2040 		case UDP_ENCAP_ESPINUDP:
2041 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2042 			up->encap_rcv = xfrm4_udp_encap_rcv;
2043 			/* FALLTHROUGH */
2044 		case UDP_ENCAP_L2TPINUDP:
2045 			up->encap_type = val;
2046 			udp_encap_enable();
2047 			break;
2048 		default:
2049 			err = -ENOPROTOOPT;
2050 			break;
2051 		}
2052 		break;
2053 
2054 	case UDP_NO_CHECK6_TX:
2055 		up->no_check6_tx = valbool;
2056 		break;
2057 
2058 	case UDP_NO_CHECK6_RX:
2059 		up->no_check6_rx = valbool;
2060 		break;
2061 
2062 	/*
2063 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2064 	 */
2065 	/* The sender sets actual checksum coverage length via this option.
2066 	 * The case coverage > packet length is handled by send module. */
2067 	case UDPLITE_SEND_CSCOV:
2068 		if (!is_udplite)         /* Disable the option on UDP sockets */
2069 			return -ENOPROTOOPT;
2070 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2071 			val = 8;
2072 		else if (val > USHRT_MAX)
2073 			val = USHRT_MAX;
2074 		up->pcslen = val;
2075 		up->pcflag |= UDPLITE_SEND_CC;
2076 		break;
2077 
2078 	/* The receiver specifies a minimum checksum coverage value. To make
2079 	 * sense, this should be set to at least 8 (as done below). If zero is
2080 	 * used, this again means full checksum coverage.                     */
2081 	case UDPLITE_RECV_CSCOV:
2082 		if (!is_udplite)         /* Disable the option on UDP sockets */
2083 			return -ENOPROTOOPT;
2084 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2085 			val = 8;
2086 		else if (val > USHRT_MAX)
2087 			val = USHRT_MAX;
2088 		up->pcrlen = val;
2089 		up->pcflag |= UDPLITE_RECV_CC;
2090 		break;
2091 
2092 	default:
2093 		err = -ENOPROTOOPT;
2094 		break;
2095 	}
2096 
2097 	return err;
2098 }
2099 EXPORT_SYMBOL(udp_lib_setsockopt);
2100 
2101 int udp_setsockopt(struct sock *sk, int level, int optname,
2102 		   char __user *optval, unsigned int optlen)
2103 {
2104 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2105 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2106 					  udp_push_pending_frames);
2107 	return ip_setsockopt(sk, level, optname, optval, optlen);
2108 }
2109 
2110 #ifdef CONFIG_COMPAT
2111 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2112 			  char __user *optval, unsigned int optlen)
2113 {
2114 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2115 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2116 					  udp_push_pending_frames);
2117 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2118 }
2119 #endif
2120 
2121 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2122 		       char __user *optval, int __user *optlen)
2123 {
2124 	struct udp_sock *up = udp_sk(sk);
2125 	int val, len;
2126 
2127 	if (get_user(len, optlen))
2128 		return -EFAULT;
2129 
2130 	len = min_t(unsigned int, len, sizeof(int));
2131 
2132 	if (len < 0)
2133 		return -EINVAL;
2134 
2135 	switch (optname) {
2136 	case UDP_CORK:
2137 		val = up->corkflag;
2138 		break;
2139 
2140 	case UDP_ENCAP:
2141 		val = up->encap_type;
2142 		break;
2143 
2144 	case UDP_NO_CHECK6_TX:
2145 		val = up->no_check6_tx;
2146 		break;
2147 
2148 	case UDP_NO_CHECK6_RX:
2149 		val = up->no_check6_rx;
2150 		break;
2151 
2152 	/* The following two cannot be changed on UDP sockets, the return is
2153 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2154 	case UDPLITE_SEND_CSCOV:
2155 		val = up->pcslen;
2156 		break;
2157 
2158 	case UDPLITE_RECV_CSCOV:
2159 		val = up->pcrlen;
2160 		break;
2161 
2162 	default:
2163 		return -ENOPROTOOPT;
2164 	}
2165 
2166 	if (put_user(len, optlen))
2167 		return -EFAULT;
2168 	if (copy_to_user(optval, &val, len))
2169 		return -EFAULT;
2170 	return 0;
2171 }
2172 EXPORT_SYMBOL(udp_lib_getsockopt);
2173 
2174 int udp_getsockopt(struct sock *sk, int level, int optname,
2175 		   char __user *optval, int __user *optlen)
2176 {
2177 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2178 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2179 	return ip_getsockopt(sk, level, optname, optval, optlen);
2180 }
2181 
2182 #ifdef CONFIG_COMPAT
2183 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2184 				 char __user *optval, int __user *optlen)
2185 {
2186 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2187 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2188 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2189 }
2190 #endif
2191 /**
2192  * 	udp_poll - wait for a UDP event.
2193  *	@file - file struct
2194  *	@sock - socket
2195  *	@wait - poll table
2196  *
2197  *	This is same as datagram poll, except for the special case of
2198  *	blocking sockets. If application is using a blocking fd
2199  *	and a packet with checksum error is in the queue;
2200  *	then it could get return from select indicating data available
2201  *	but then block when reading it. Add special case code
2202  *	to work around these arguably broken applications.
2203  */
2204 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2205 {
2206 	unsigned int mask = datagram_poll(file, sock, wait);
2207 	struct sock *sk = sock->sk;
2208 
2209 	sock_rps_record_flow(sk);
2210 
2211 	/* Check for false positives due to checksum errors */
2212 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2213 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2214 		mask &= ~(POLLIN | POLLRDNORM);
2215 
2216 	return mask;
2217 
2218 }
2219 EXPORT_SYMBOL(udp_poll);
2220 
2221 struct proto udp_prot = {
2222 	.name		   = "UDP",
2223 	.owner		   = THIS_MODULE,
2224 	.close		   = udp_lib_close,
2225 	.connect	   = ip4_datagram_connect,
2226 	.disconnect	   = udp_disconnect,
2227 	.ioctl		   = udp_ioctl,
2228 	.destroy	   = udp_destroy_sock,
2229 	.setsockopt	   = udp_setsockopt,
2230 	.getsockopt	   = udp_getsockopt,
2231 	.sendmsg	   = udp_sendmsg,
2232 	.recvmsg	   = udp_recvmsg,
2233 	.sendpage	   = udp_sendpage,
2234 	.backlog_rcv	   = __udp_queue_rcv_skb,
2235 	.release_cb	   = ip4_datagram_release_cb,
2236 	.hash		   = udp_lib_hash,
2237 	.unhash		   = udp_lib_unhash,
2238 	.rehash		   = udp_v4_rehash,
2239 	.get_port	   = udp_v4_get_port,
2240 	.memory_allocated  = &udp_memory_allocated,
2241 	.sysctl_mem	   = sysctl_udp_mem,
2242 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2243 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2244 	.obj_size	   = sizeof(struct udp_sock),
2245 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2246 	.h.udp_table	   = &udp_table,
2247 #ifdef CONFIG_COMPAT
2248 	.compat_setsockopt = compat_udp_setsockopt,
2249 	.compat_getsockopt = compat_udp_getsockopt,
2250 #endif
2251 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2252 };
2253 EXPORT_SYMBOL(udp_prot);
2254 
2255 /* ------------------------------------------------------------------------ */
2256 #ifdef CONFIG_PROC_FS
2257 
2258 static struct sock *udp_get_first(struct seq_file *seq, int start)
2259 {
2260 	struct sock *sk;
2261 	struct udp_iter_state *state = seq->private;
2262 	struct net *net = seq_file_net(seq);
2263 
2264 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2265 	     ++state->bucket) {
2266 		struct hlist_nulls_node *node;
2267 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2268 
2269 		if (hlist_nulls_empty(&hslot->head))
2270 			continue;
2271 
2272 		spin_lock_bh(&hslot->lock);
2273 		sk_nulls_for_each(sk, node, &hslot->head) {
2274 			if (!net_eq(sock_net(sk), net))
2275 				continue;
2276 			if (sk->sk_family == state->family)
2277 				goto found;
2278 		}
2279 		spin_unlock_bh(&hslot->lock);
2280 	}
2281 	sk = NULL;
2282 found:
2283 	return sk;
2284 }
2285 
2286 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2287 {
2288 	struct udp_iter_state *state = seq->private;
2289 	struct net *net = seq_file_net(seq);
2290 
2291 	do {
2292 		sk = sk_nulls_next(sk);
2293 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2294 
2295 	if (!sk) {
2296 		if (state->bucket <= state->udp_table->mask)
2297 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2298 		return udp_get_first(seq, state->bucket + 1);
2299 	}
2300 	return sk;
2301 }
2302 
2303 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2304 {
2305 	struct sock *sk = udp_get_first(seq, 0);
2306 
2307 	if (sk)
2308 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2309 			--pos;
2310 	return pos ? NULL : sk;
2311 }
2312 
2313 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2314 {
2315 	struct udp_iter_state *state = seq->private;
2316 	state->bucket = MAX_UDP_PORTS;
2317 
2318 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2319 }
2320 
2321 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2322 {
2323 	struct sock *sk;
2324 
2325 	if (v == SEQ_START_TOKEN)
2326 		sk = udp_get_idx(seq, 0);
2327 	else
2328 		sk = udp_get_next(seq, v);
2329 
2330 	++*pos;
2331 	return sk;
2332 }
2333 
2334 static void udp_seq_stop(struct seq_file *seq, void *v)
2335 {
2336 	struct udp_iter_state *state = seq->private;
2337 
2338 	if (state->bucket <= state->udp_table->mask)
2339 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2340 }
2341 
2342 int udp_seq_open(struct inode *inode, struct file *file)
2343 {
2344 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2345 	struct udp_iter_state *s;
2346 	int err;
2347 
2348 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2349 			   sizeof(struct udp_iter_state));
2350 	if (err < 0)
2351 		return err;
2352 
2353 	s = ((struct seq_file *)file->private_data)->private;
2354 	s->family		= afinfo->family;
2355 	s->udp_table		= afinfo->udp_table;
2356 	return err;
2357 }
2358 EXPORT_SYMBOL(udp_seq_open);
2359 
2360 /* ------------------------------------------------------------------------ */
2361 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2362 {
2363 	struct proc_dir_entry *p;
2364 	int rc = 0;
2365 
2366 	afinfo->seq_ops.start		= udp_seq_start;
2367 	afinfo->seq_ops.next		= udp_seq_next;
2368 	afinfo->seq_ops.stop		= udp_seq_stop;
2369 
2370 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2371 			     afinfo->seq_fops, afinfo);
2372 	if (!p)
2373 		rc = -ENOMEM;
2374 	return rc;
2375 }
2376 EXPORT_SYMBOL(udp_proc_register);
2377 
2378 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2379 {
2380 	remove_proc_entry(afinfo->name, net->proc_net);
2381 }
2382 EXPORT_SYMBOL(udp_proc_unregister);
2383 
2384 /* ------------------------------------------------------------------------ */
2385 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2386 		int bucket)
2387 {
2388 	struct inet_sock *inet = inet_sk(sp);
2389 	__be32 dest = inet->inet_daddr;
2390 	__be32 src  = inet->inet_rcv_saddr;
2391 	__u16 destp	  = ntohs(inet->inet_dport);
2392 	__u16 srcp	  = ntohs(inet->inet_sport);
2393 
2394 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2395 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2396 		bucket, src, srcp, dest, destp, sp->sk_state,
2397 		sk_wmem_alloc_get(sp),
2398 		sk_rmem_alloc_get(sp),
2399 		0, 0L, 0,
2400 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2401 		0, sock_i_ino(sp),
2402 		atomic_read(&sp->sk_refcnt), sp,
2403 		atomic_read(&sp->sk_drops));
2404 }
2405 
2406 int udp4_seq_show(struct seq_file *seq, void *v)
2407 {
2408 	seq_setwidth(seq, 127);
2409 	if (v == SEQ_START_TOKEN)
2410 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2411 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2412 			   "inode ref pointer drops");
2413 	else {
2414 		struct udp_iter_state *state = seq->private;
2415 
2416 		udp4_format_sock(v, seq, state->bucket);
2417 	}
2418 	seq_pad(seq, '\n');
2419 	return 0;
2420 }
2421 
2422 static const struct file_operations udp_afinfo_seq_fops = {
2423 	.owner    = THIS_MODULE,
2424 	.open     = udp_seq_open,
2425 	.read     = seq_read,
2426 	.llseek   = seq_lseek,
2427 	.release  = seq_release_net
2428 };
2429 
2430 /* ------------------------------------------------------------------------ */
2431 static struct udp_seq_afinfo udp4_seq_afinfo = {
2432 	.name		= "udp",
2433 	.family		= AF_INET,
2434 	.udp_table	= &udp_table,
2435 	.seq_fops	= &udp_afinfo_seq_fops,
2436 	.seq_ops	= {
2437 		.show		= udp4_seq_show,
2438 	},
2439 };
2440 
2441 static int __net_init udp4_proc_init_net(struct net *net)
2442 {
2443 	return udp_proc_register(net, &udp4_seq_afinfo);
2444 }
2445 
2446 static void __net_exit udp4_proc_exit_net(struct net *net)
2447 {
2448 	udp_proc_unregister(net, &udp4_seq_afinfo);
2449 }
2450 
2451 static struct pernet_operations udp4_net_ops = {
2452 	.init = udp4_proc_init_net,
2453 	.exit = udp4_proc_exit_net,
2454 };
2455 
2456 int __init udp4_proc_init(void)
2457 {
2458 	return register_pernet_subsys(&udp4_net_ops);
2459 }
2460 
2461 void udp4_proc_exit(void)
2462 {
2463 	unregister_pernet_subsys(&udp4_net_ops);
2464 }
2465 #endif /* CONFIG_PROC_FS */
2466 
2467 static __initdata unsigned long uhash_entries;
2468 static int __init set_uhash_entries(char *str)
2469 {
2470 	ssize_t ret;
2471 
2472 	if (!str)
2473 		return 0;
2474 
2475 	ret = kstrtoul(str, 0, &uhash_entries);
2476 	if (ret)
2477 		return 0;
2478 
2479 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2480 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2481 	return 1;
2482 }
2483 __setup("uhash_entries=", set_uhash_entries);
2484 
2485 void __init udp_table_init(struct udp_table *table, const char *name)
2486 {
2487 	unsigned int i;
2488 
2489 	table->hash = alloc_large_system_hash(name,
2490 					      2 * sizeof(struct udp_hslot),
2491 					      uhash_entries,
2492 					      21, /* one slot per 2 MB */
2493 					      0,
2494 					      &table->log,
2495 					      &table->mask,
2496 					      UDP_HTABLE_SIZE_MIN,
2497 					      64 * 1024);
2498 
2499 	table->hash2 = table->hash + (table->mask + 1);
2500 	for (i = 0; i <= table->mask; i++) {
2501 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2502 		table->hash[i].count = 0;
2503 		spin_lock_init(&table->hash[i].lock);
2504 	}
2505 	for (i = 0; i <= table->mask; i++) {
2506 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2507 		table->hash2[i].count = 0;
2508 		spin_lock_init(&table->hash2[i].lock);
2509 	}
2510 }
2511 
2512 void __init udp_init(void)
2513 {
2514 	unsigned long limit;
2515 
2516 	udp_table_init(&udp_table, "UDP");
2517 	limit = nr_free_buffer_pages() / 8;
2518 	limit = max(limit, 128UL);
2519 	sysctl_udp_mem[0] = limit / 4 * 3;
2520 	sysctl_udp_mem[1] = limit;
2521 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2522 
2523 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2524 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2525 }
2526 
2527 struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
2528 				       netdev_features_t features)
2529 {
2530 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2531 	u16 mac_offset = skb->mac_header;
2532 	int mac_len = skb->mac_len;
2533 	int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
2534 	__be16 protocol = skb->protocol;
2535 	netdev_features_t enc_features;
2536 	int udp_offset, outer_hlen;
2537 	unsigned int oldlen;
2538 	bool need_csum;
2539 
2540 	oldlen = (u16)~skb->len;
2541 
2542 	if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
2543 		goto out;
2544 
2545 	skb->encapsulation = 0;
2546 	__skb_pull(skb, tnl_hlen);
2547 	skb_reset_mac_header(skb);
2548 	skb_set_network_header(skb, skb_inner_network_offset(skb));
2549 	skb->mac_len = skb_inner_network_offset(skb);
2550 	skb->protocol = htons(ETH_P_TEB);
2551 
2552 	need_csum = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM);
2553 	if (need_csum)
2554 		skb->encap_hdr_csum = 1;
2555 
2556 	/* segment inner packet. */
2557 	enc_features = skb->dev->hw_enc_features & netif_skb_features(skb);
2558 	segs = skb_mac_gso_segment(skb, enc_features);
2559 	if (!segs || IS_ERR(segs)) {
2560 		skb_gso_error_unwind(skb, protocol, tnl_hlen, mac_offset,
2561 				     mac_len);
2562 		goto out;
2563 	}
2564 
2565 	outer_hlen = skb_tnl_header_len(skb);
2566 	udp_offset = outer_hlen - tnl_hlen;
2567 	skb = segs;
2568 	do {
2569 		struct udphdr *uh;
2570 		int len;
2571 
2572 		skb_reset_inner_headers(skb);
2573 		skb->encapsulation = 1;
2574 
2575 		skb->mac_len = mac_len;
2576 
2577 		skb_push(skb, outer_hlen);
2578 		skb_reset_mac_header(skb);
2579 		skb_set_network_header(skb, mac_len);
2580 		skb_set_transport_header(skb, udp_offset);
2581 		len = skb->len - udp_offset;
2582 		uh = udp_hdr(skb);
2583 		uh->len = htons(len);
2584 
2585 		if (need_csum) {
2586 			__be32 delta = htonl(oldlen + len);
2587 
2588 			uh->check = ~csum_fold((__force __wsum)
2589 					       ((__force u32)uh->check +
2590 						(__force u32)delta));
2591 			uh->check = gso_make_checksum(skb, ~uh->check);
2592 
2593 			if (uh->check == 0)
2594 				uh->check = CSUM_MANGLED_0;
2595 		}
2596 
2597 		skb->protocol = protocol;
2598 	} while ((skb = skb->next));
2599 out:
2600 	return segs;
2601 }
2602