xref: /openbmc/linux/net/ipv4/udp.c (revision 18afb028)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sock_i_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	struct sock *sk2;
182 	kuid_t uid = sock_i_uid(sk);
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sock_i_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 	bool dev_match;
374 
375 	if (!net_eq(sock_net(sk), net) ||
376 	    udp_sk(sk)->udp_port_hash != hnum ||
377 	    ipv6_only_sock(sk))
378 		return -1;
379 
380 	if (sk->sk_rcv_saddr != daddr)
381 		return -1;
382 
383 	score = (sk->sk_family == PF_INET) ? 2 : 1;
384 
385 	inet = inet_sk(sk);
386 	if (inet->inet_daddr) {
387 		if (inet->inet_daddr != saddr)
388 			return -1;
389 		score += 4;
390 	}
391 
392 	if (inet->inet_dport) {
393 		if (inet->inet_dport != sport)
394 			return -1;
395 		score += 4;
396 	}
397 
398 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
399 					dif, sdif);
400 	if (!dev_match)
401 		return -1;
402 	if (sk->sk_bound_dev_if)
403 		score += 4;
404 
405 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406 		score++;
407 	return score;
408 }
409 
410 INDIRECT_CALLABLE_SCOPE
411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
412 		const __be32 faddr, const __be16 fport)
413 {
414 	static u32 udp_ehash_secret __read_mostly;
415 
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 
422 /* called with rcu_read_lock() */
423 static struct sock *udp4_lib_lookup2(struct net *net,
424 				     __be32 saddr, __be16 sport,
425 				     __be32 daddr, unsigned int hnum,
426 				     int dif, int sdif,
427 				     struct udp_hslot *hslot2,
428 				     struct sk_buff *skb)
429 {
430 	struct sock *sk, *result;
431 	int score, badness;
432 
433 	result = NULL;
434 	badness = 0;
435 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
436 		score = compute_score(sk, net, saddr, sport,
437 				      daddr, hnum, dif, sdif);
438 		if (score > badness) {
439 			badness = score;
440 
441 			if (sk->sk_state == TCP_ESTABLISHED) {
442 				result = sk;
443 				continue;
444 			}
445 
446 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
447 						       saddr, sport, daddr, hnum, udp_ehashfn);
448 			if (!result) {
449 				result = sk;
450 				continue;
451 			}
452 
453 			/* Fall back to scoring if group has connections */
454 			if (!reuseport_has_conns(sk))
455 				return result;
456 
457 			/* Reuseport logic returned an error, keep original score. */
458 			if (IS_ERR(result))
459 				continue;
460 
461 			badness = compute_score(result, net, saddr, sport,
462 						daddr, hnum, dif, sdif);
463 
464 		}
465 	}
466 	return result;
467 }
468 
469 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
470  * harder than this. -DaveM
471  */
472 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
473 		__be16 sport, __be32 daddr, __be16 dport, int dif,
474 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
475 {
476 	unsigned short hnum = ntohs(dport);
477 	unsigned int hash2, slot2;
478 	struct udp_hslot *hslot2;
479 	struct sock *result, *sk;
480 
481 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
482 	slot2 = hash2 & udptable->mask;
483 	hslot2 = &udptable->hash2[slot2];
484 
485 	/* Lookup connected or non-wildcard socket */
486 	result = udp4_lib_lookup2(net, saddr, sport,
487 				  daddr, hnum, dif, sdif,
488 				  hslot2, skb);
489 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
490 		goto done;
491 
492 	/* Lookup redirect from BPF */
493 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
494 	    udptable == net->ipv4.udp_table) {
495 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
496 					       saddr, sport, daddr, hnum, dif,
497 					       udp_ehashfn);
498 		if (sk) {
499 			result = sk;
500 			goto done;
501 		}
502 	}
503 
504 	/* Got non-wildcard socket or error on first lookup */
505 	if (result)
506 		goto done;
507 
508 	/* Lookup wildcard sockets */
509 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
510 	slot2 = hash2 & udptable->mask;
511 	hslot2 = &udptable->hash2[slot2];
512 
513 	result = udp4_lib_lookup2(net, saddr, sport,
514 				  htonl(INADDR_ANY), hnum, dif, sdif,
515 				  hslot2, skb);
516 done:
517 	if (IS_ERR(result))
518 		return NULL;
519 	return result;
520 }
521 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
522 
523 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
524 						 __be16 sport, __be16 dport,
525 						 struct udp_table *udptable)
526 {
527 	const struct iphdr *iph = ip_hdr(skb);
528 
529 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
530 				 iph->daddr, dport, inet_iif(skb),
531 				 inet_sdif(skb), udptable, skb);
532 }
533 
534 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
535 				 __be16 sport, __be16 dport)
536 {
537 	const struct iphdr *iph = ip_hdr(skb);
538 	struct net *net = dev_net(skb->dev);
539 	int iif, sdif;
540 
541 	inet_get_iif_sdif(skb, &iif, &sdif);
542 
543 	return __udp4_lib_lookup(net, iph->saddr, sport,
544 				 iph->daddr, dport, iif,
545 				 sdif, net->ipv4.udp_table, NULL);
546 }
547 
548 /* Must be called under rcu_read_lock().
549  * Does increment socket refcount.
550  */
551 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
552 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
553 			     __be32 daddr, __be16 dport, int dif)
554 {
555 	struct sock *sk;
556 
557 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
558 			       dif, 0, net->ipv4.udp_table, NULL);
559 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
560 		sk = NULL;
561 	return sk;
562 }
563 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
564 #endif
565 
566 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
567 				       __be16 loc_port, __be32 loc_addr,
568 				       __be16 rmt_port, __be32 rmt_addr,
569 				       int dif, int sdif, unsigned short hnum)
570 {
571 	const struct inet_sock *inet = inet_sk(sk);
572 
573 	if (!net_eq(sock_net(sk), net) ||
574 	    udp_sk(sk)->udp_port_hash != hnum ||
575 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
576 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
577 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
578 	    ipv6_only_sock(sk) ||
579 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
580 		return false;
581 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
582 		return false;
583 	return true;
584 }
585 
586 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
587 void udp_encap_enable(void)
588 {
589 	static_branch_inc(&udp_encap_needed_key);
590 }
591 EXPORT_SYMBOL(udp_encap_enable);
592 
593 void udp_encap_disable(void)
594 {
595 	static_branch_dec(&udp_encap_needed_key);
596 }
597 EXPORT_SYMBOL(udp_encap_disable);
598 
599 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
600  * through error handlers in encapsulations looking for a match.
601  */
602 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
603 {
604 	int i;
605 
606 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
607 		int (*handler)(struct sk_buff *skb, u32 info);
608 		const struct ip_tunnel_encap_ops *encap;
609 
610 		encap = rcu_dereference(iptun_encaps[i]);
611 		if (!encap)
612 			continue;
613 		handler = encap->err_handler;
614 		if (handler && !handler(skb, info))
615 			return 0;
616 	}
617 
618 	return -ENOENT;
619 }
620 
621 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
622  * reversing source and destination port: this will match tunnels that force the
623  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
624  * lwtunnels might actually break this assumption by being configured with
625  * different destination ports on endpoints, in this case we won't be able to
626  * trace ICMP messages back to them.
627  *
628  * If this doesn't match any socket, probe tunnels with arbitrary destination
629  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
630  * we've sent packets to won't necessarily match the local destination port.
631  *
632  * Then ask the tunnel implementation to match the error against a valid
633  * association.
634  *
635  * Return an error if we can't find a match, the socket if we need further
636  * processing, zero otherwise.
637  */
638 static struct sock *__udp4_lib_err_encap(struct net *net,
639 					 const struct iphdr *iph,
640 					 struct udphdr *uh,
641 					 struct udp_table *udptable,
642 					 struct sock *sk,
643 					 struct sk_buff *skb, u32 info)
644 {
645 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
646 	int network_offset, transport_offset;
647 	struct udp_sock *up;
648 
649 	network_offset = skb_network_offset(skb);
650 	transport_offset = skb_transport_offset(skb);
651 
652 	/* Network header needs to point to the outer IPv4 header inside ICMP */
653 	skb_reset_network_header(skb);
654 
655 	/* Transport header needs to point to the UDP header */
656 	skb_set_transport_header(skb, iph->ihl << 2);
657 
658 	if (sk) {
659 		up = udp_sk(sk);
660 
661 		lookup = READ_ONCE(up->encap_err_lookup);
662 		if (lookup && lookup(sk, skb))
663 			sk = NULL;
664 
665 		goto out;
666 	}
667 
668 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
669 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
670 			       udptable, NULL);
671 	if (sk) {
672 		up = udp_sk(sk);
673 
674 		lookup = READ_ONCE(up->encap_err_lookup);
675 		if (!lookup || lookup(sk, skb))
676 			sk = NULL;
677 	}
678 
679 out:
680 	if (!sk)
681 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
682 
683 	skb_set_transport_header(skb, transport_offset);
684 	skb_set_network_header(skb, network_offset);
685 
686 	return sk;
687 }
688 
689 /*
690  * This routine is called by the ICMP module when it gets some
691  * sort of error condition.  If err < 0 then the socket should
692  * be closed and the error returned to the user.  If err > 0
693  * it's just the icmp type << 8 | icmp code.
694  * Header points to the ip header of the error packet. We move
695  * on past this. Then (as it used to claim before adjustment)
696  * header points to the first 8 bytes of the udp header.  We need
697  * to find the appropriate port.
698  */
699 
700 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
701 {
702 	struct inet_sock *inet;
703 	const struct iphdr *iph = (const struct iphdr *)skb->data;
704 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
705 	const int type = icmp_hdr(skb)->type;
706 	const int code = icmp_hdr(skb)->code;
707 	bool tunnel = false;
708 	struct sock *sk;
709 	int harderr;
710 	int err;
711 	struct net *net = dev_net(skb->dev);
712 
713 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
714 			       iph->saddr, uh->source, skb->dev->ifindex,
715 			       inet_sdif(skb), udptable, NULL);
716 
717 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
718 		/* No socket for error: try tunnels before discarding */
719 		if (static_branch_unlikely(&udp_encap_needed_key)) {
720 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
721 						  info);
722 			if (!sk)
723 				return 0;
724 		} else
725 			sk = ERR_PTR(-ENOENT);
726 
727 		if (IS_ERR(sk)) {
728 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
729 			return PTR_ERR(sk);
730 		}
731 
732 		tunnel = true;
733 	}
734 
735 	err = 0;
736 	harderr = 0;
737 	inet = inet_sk(sk);
738 
739 	switch (type) {
740 	default:
741 	case ICMP_TIME_EXCEEDED:
742 		err = EHOSTUNREACH;
743 		break;
744 	case ICMP_SOURCE_QUENCH:
745 		goto out;
746 	case ICMP_PARAMETERPROB:
747 		err = EPROTO;
748 		harderr = 1;
749 		break;
750 	case ICMP_DEST_UNREACH:
751 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
752 			ipv4_sk_update_pmtu(skb, sk, info);
753 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
754 				err = EMSGSIZE;
755 				harderr = 1;
756 				break;
757 			}
758 			goto out;
759 		}
760 		err = EHOSTUNREACH;
761 		if (code <= NR_ICMP_UNREACH) {
762 			harderr = icmp_err_convert[code].fatal;
763 			err = icmp_err_convert[code].errno;
764 		}
765 		break;
766 	case ICMP_REDIRECT:
767 		ipv4_sk_redirect(skb, sk);
768 		goto out;
769 	}
770 
771 	/*
772 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
773 	 *	4.1.3.3.
774 	 */
775 	if (tunnel) {
776 		/* ...not for tunnels though: we don't have a sending socket */
777 		if (udp_sk(sk)->encap_err_rcv)
778 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
779 						  (u8 *)(uh+1));
780 		goto out;
781 	}
782 	if (!inet_test_bit(RECVERR, sk)) {
783 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
784 			goto out;
785 	} else
786 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
787 
788 	sk->sk_err = err;
789 	sk_error_report(sk);
790 out:
791 	return 0;
792 }
793 
794 int udp_err(struct sk_buff *skb, u32 info)
795 {
796 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
797 }
798 
799 /*
800  * Throw away all pending data and cancel the corking. Socket is locked.
801  */
802 void udp_flush_pending_frames(struct sock *sk)
803 {
804 	struct udp_sock *up = udp_sk(sk);
805 
806 	if (up->pending) {
807 		up->len = 0;
808 		up->pending = 0;
809 		ip_flush_pending_frames(sk);
810 	}
811 }
812 EXPORT_SYMBOL(udp_flush_pending_frames);
813 
814 /**
815  * 	udp4_hwcsum  -  handle outgoing HW checksumming
816  * 	@skb: 	sk_buff containing the filled-in UDP header
817  * 	        (checksum field must be zeroed out)
818  *	@src:	source IP address
819  *	@dst:	destination IP address
820  */
821 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
822 {
823 	struct udphdr *uh = udp_hdr(skb);
824 	int offset = skb_transport_offset(skb);
825 	int len = skb->len - offset;
826 	int hlen = len;
827 	__wsum csum = 0;
828 
829 	if (!skb_has_frag_list(skb)) {
830 		/*
831 		 * Only one fragment on the socket.
832 		 */
833 		skb->csum_start = skb_transport_header(skb) - skb->head;
834 		skb->csum_offset = offsetof(struct udphdr, check);
835 		uh->check = ~csum_tcpudp_magic(src, dst, len,
836 					       IPPROTO_UDP, 0);
837 	} else {
838 		struct sk_buff *frags;
839 
840 		/*
841 		 * HW-checksum won't work as there are two or more
842 		 * fragments on the socket so that all csums of sk_buffs
843 		 * should be together
844 		 */
845 		skb_walk_frags(skb, frags) {
846 			csum = csum_add(csum, frags->csum);
847 			hlen -= frags->len;
848 		}
849 
850 		csum = skb_checksum(skb, offset, hlen, csum);
851 		skb->ip_summed = CHECKSUM_NONE;
852 
853 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
854 		if (uh->check == 0)
855 			uh->check = CSUM_MANGLED_0;
856 	}
857 }
858 EXPORT_SYMBOL_GPL(udp4_hwcsum);
859 
860 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
861  * for the simple case like when setting the checksum for a UDP tunnel.
862  */
863 void udp_set_csum(bool nocheck, struct sk_buff *skb,
864 		  __be32 saddr, __be32 daddr, int len)
865 {
866 	struct udphdr *uh = udp_hdr(skb);
867 
868 	if (nocheck) {
869 		uh->check = 0;
870 	} else if (skb_is_gso(skb)) {
871 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
872 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
873 		uh->check = 0;
874 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
875 		if (uh->check == 0)
876 			uh->check = CSUM_MANGLED_0;
877 	} else {
878 		skb->ip_summed = CHECKSUM_PARTIAL;
879 		skb->csum_start = skb_transport_header(skb) - skb->head;
880 		skb->csum_offset = offsetof(struct udphdr, check);
881 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
882 	}
883 }
884 EXPORT_SYMBOL(udp_set_csum);
885 
886 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
887 			struct inet_cork *cork)
888 {
889 	struct sock *sk = skb->sk;
890 	struct inet_sock *inet = inet_sk(sk);
891 	struct udphdr *uh;
892 	int err;
893 	int is_udplite = IS_UDPLITE(sk);
894 	int offset = skb_transport_offset(skb);
895 	int len = skb->len - offset;
896 	int datalen = len - sizeof(*uh);
897 	__wsum csum = 0;
898 
899 	/*
900 	 * Create a UDP header
901 	 */
902 	uh = udp_hdr(skb);
903 	uh->source = inet->inet_sport;
904 	uh->dest = fl4->fl4_dport;
905 	uh->len = htons(len);
906 	uh->check = 0;
907 
908 	if (cork->gso_size) {
909 		const int hlen = skb_network_header_len(skb) +
910 				 sizeof(struct udphdr);
911 
912 		if (hlen + cork->gso_size > cork->fragsize) {
913 			kfree_skb(skb);
914 			return -EINVAL;
915 		}
916 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
917 			kfree_skb(skb);
918 			return -EINVAL;
919 		}
920 		if (sk->sk_no_check_tx) {
921 			kfree_skb(skb);
922 			return -EINVAL;
923 		}
924 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
925 		    dst_xfrm(skb_dst(skb))) {
926 			kfree_skb(skb);
927 			return -EIO;
928 		}
929 
930 		if (datalen > cork->gso_size) {
931 			skb_shinfo(skb)->gso_size = cork->gso_size;
932 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
933 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
934 								 cork->gso_size);
935 		}
936 		goto csum_partial;
937 	}
938 
939 	if (is_udplite)  				 /*     UDP-Lite      */
940 		csum = udplite_csum(skb);
941 
942 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
943 
944 		skb->ip_summed = CHECKSUM_NONE;
945 		goto send;
946 
947 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
948 csum_partial:
949 
950 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
951 		goto send;
952 
953 	} else
954 		csum = udp_csum(skb);
955 
956 	/* add protocol-dependent pseudo-header */
957 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
958 				      sk->sk_protocol, csum);
959 	if (uh->check == 0)
960 		uh->check = CSUM_MANGLED_0;
961 
962 send:
963 	err = ip_send_skb(sock_net(sk), skb);
964 	if (err) {
965 		if (err == -ENOBUFS &&
966 		    !inet_test_bit(RECVERR, sk)) {
967 			UDP_INC_STATS(sock_net(sk),
968 				      UDP_MIB_SNDBUFERRORS, is_udplite);
969 			err = 0;
970 		}
971 	} else
972 		UDP_INC_STATS(sock_net(sk),
973 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
974 	return err;
975 }
976 
977 /*
978  * Push out all pending data as one UDP datagram. Socket is locked.
979  */
980 int udp_push_pending_frames(struct sock *sk)
981 {
982 	struct udp_sock  *up = udp_sk(sk);
983 	struct inet_sock *inet = inet_sk(sk);
984 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
985 	struct sk_buff *skb;
986 	int err = 0;
987 
988 	skb = ip_finish_skb(sk, fl4);
989 	if (!skb)
990 		goto out;
991 
992 	err = udp_send_skb(skb, fl4, &inet->cork.base);
993 
994 out:
995 	up->len = 0;
996 	up->pending = 0;
997 	return err;
998 }
999 EXPORT_SYMBOL(udp_push_pending_frames);
1000 
1001 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1002 {
1003 	switch (cmsg->cmsg_type) {
1004 	case UDP_SEGMENT:
1005 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1006 			return -EINVAL;
1007 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1008 		return 0;
1009 	default:
1010 		return -EINVAL;
1011 	}
1012 }
1013 
1014 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1015 {
1016 	struct cmsghdr *cmsg;
1017 	bool need_ip = false;
1018 	int err;
1019 
1020 	for_each_cmsghdr(cmsg, msg) {
1021 		if (!CMSG_OK(msg, cmsg))
1022 			return -EINVAL;
1023 
1024 		if (cmsg->cmsg_level != SOL_UDP) {
1025 			need_ip = true;
1026 			continue;
1027 		}
1028 
1029 		err = __udp_cmsg_send(cmsg, gso_size);
1030 		if (err)
1031 			return err;
1032 	}
1033 
1034 	return need_ip;
1035 }
1036 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1037 
1038 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1039 {
1040 	struct inet_sock *inet = inet_sk(sk);
1041 	struct udp_sock *up = udp_sk(sk);
1042 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1043 	struct flowi4 fl4_stack;
1044 	struct flowi4 *fl4;
1045 	int ulen = len;
1046 	struct ipcm_cookie ipc;
1047 	struct rtable *rt = NULL;
1048 	int free = 0;
1049 	int connected = 0;
1050 	__be32 daddr, faddr, saddr;
1051 	u8 tos, scope;
1052 	__be16 dport;
1053 	int err, is_udplite = IS_UDPLITE(sk);
1054 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1055 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1056 	struct sk_buff *skb;
1057 	struct ip_options_data opt_copy;
1058 
1059 	if (len > 0xFFFF)
1060 		return -EMSGSIZE;
1061 
1062 	/*
1063 	 *	Check the flags.
1064 	 */
1065 
1066 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1067 		return -EOPNOTSUPP;
1068 
1069 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1070 
1071 	fl4 = &inet->cork.fl.u.ip4;
1072 	if (up->pending) {
1073 		/*
1074 		 * There are pending frames.
1075 		 * The socket lock must be held while it's corked.
1076 		 */
1077 		lock_sock(sk);
1078 		if (likely(up->pending)) {
1079 			if (unlikely(up->pending != AF_INET)) {
1080 				release_sock(sk);
1081 				return -EINVAL;
1082 			}
1083 			goto do_append_data;
1084 		}
1085 		release_sock(sk);
1086 	}
1087 	ulen += sizeof(struct udphdr);
1088 
1089 	/*
1090 	 *	Get and verify the address.
1091 	 */
1092 	if (usin) {
1093 		if (msg->msg_namelen < sizeof(*usin))
1094 			return -EINVAL;
1095 		if (usin->sin_family != AF_INET) {
1096 			if (usin->sin_family != AF_UNSPEC)
1097 				return -EAFNOSUPPORT;
1098 		}
1099 
1100 		daddr = usin->sin_addr.s_addr;
1101 		dport = usin->sin_port;
1102 		if (dport == 0)
1103 			return -EINVAL;
1104 	} else {
1105 		if (sk->sk_state != TCP_ESTABLISHED)
1106 			return -EDESTADDRREQ;
1107 		daddr = inet->inet_daddr;
1108 		dport = inet->inet_dport;
1109 		/* Open fast path for connected socket.
1110 		   Route will not be used, if at least one option is set.
1111 		 */
1112 		connected = 1;
1113 	}
1114 
1115 	ipcm_init_sk(&ipc, inet);
1116 	ipc.gso_size = READ_ONCE(up->gso_size);
1117 
1118 	if (msg->msg_controllen) {
1119 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1120 		if (err > 0)
1121 			err = ip_cmsg_send(sk, msg, &ipc,
1122 					   sk->sk_family == AF_INET6);
1123 		if (unlikely(err < 0)) {
1124 			kfree(ipc.opt);
1125 			return err;
1126 		}
1127 		if (ipc.opt)
1128 			free = 1;
1129 		connected = 0;
1130 	}
1131 	if (!ipc.opt) {
1132 		struct ip_options_rcu *inet_opt;
1133 
1134 		rcu_read_lock();
1135 		inet_opt = rcu_dereference(inet->inet_opt);
1136 		if (inet_opt) {
1137 			memcpy(&opt_copy, inet_opt,
1138 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1139 			ipc.opt = &opt_copy.opt;
1140 		}
1141 		rcu_read_unlock();
1142 	}
1143 
1144 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1145 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1146 					    (struct sockaddr *)usin, &ipc.addr);
1147 		if (err)
1148 			goto out_free;
1149 		if (usin) {
1150 			if (usin->sin_port == 0) {
1151 				/* BPF program set invalid port. Reject it. */
1152 				err = -EINVAL;
1153 				goto out_free;
1154 			}
1155 			daddr = usin->sin_addr.s_addr;
1156 			dport = usin->sin_port;
1157 		}
1158 	}
1159 
1160 	saddr = ipc.addr;
1161 	ipc.addr = faddr = daddr;
1162 
1163 	if (ipc.opt && ipc.opt->opt.srr) {
1164 		if (!daddr) {
1165 			err = -EINVAL;
1166 			goto out_free;
1167 		}
1168 		faddr = ipc.opt->opt.faddr;
1169 		connected = 0;
1170 	}
1171 	tos = get_rttos(&ipc, inet);
1172 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1173 	if (scope == RT_SCOPE_LINK)
1174 		connected = 0;
1175 
1176 	if (ipv4_is_multicast(daddr)) {
1177 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1178 			ipc.oif = inet->mc_index;
1179 		if (!saddr)
1180 			saddr = inet->mc_addr;
1181 		connected = 0;
1182 	} else if (!ipc.oif) {
1183 		ipc.oif = inet->uc_index;
1184 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1185 		/* oif is set, packet is to local broadcast and
1186 		 * uc_index is set. oif is most likely set
1187 		 * by sk_bound_dev_if. If uc_index != oif check if the
1188 		 * oif is an L3 master and uc_index is an L3 slave.
1189 		 * If so, we want to allow the send using the uc_index.
1190 		 */
1191 		if (ipc.oif != inet->uc_index &&
1192 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1193 							      inet->uc_index)) {
1194 			ipc.oif = inet->uc_index;
1195 		}
1196 	}
1197 
1198 	if (connected)
1199 		rt = (struct rtable *)sk_dst_check(sk, 0);
1200 
1201 	if (!rt) {
1202 		struct net *net = sock_net(sk);
1203 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1204 
1205 		fl4 = &fl4_stack;
1206 
1207 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1208 				   sk->sk_protocol, flow_flags, faddr, saddr,
1209 				   dport, inet->inet_sport, sk->sk_uid);
1210 
1211 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1212 		rt = ip_route_output_flow(net, fl4, sk);
1213 		if (IS_ERR(rt)) {
1214 			err = PTR_ERR(rt);
1215 			rt = NULL;
1216 			if (err == -ENETUNREACH)
1217 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1218 			goto out;
1219 		}
1220 
1221 		err = -EACCES;
1222 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1223 		    !sock_flag(sk, SOCK_BROADCAST))
1224 			goto out;
1225 		if (connected)
1226 			sk_dst_set(sk, dst_clone(&rt->dst));
1227 	}
1228 
1229 	if (msg->msg_flags&MSG_CONFIRM)
1230 		goto do_confirm;
1231 back_from_confirm:
1232 
1233 	saddr = fl4->saddr;
1234 	if (!ipc.addr)
1235 		daddr = ipc.addr = fl4->daddr;
1236 
1237 	/* Lockless fast path for the non-corking case. */
1238 	if (!corkreq) {
1239 		struct inet_cork cork;
1240 
1241 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1242 				  sizeof(struct udphdr), &ipc, &rt,
1243 				  &cork, msg->msg_flags);
1244 		err = PTR_ERR(skb);
1245 		if (!IS_ERR_OR_NULL(skb))
1246 			err = udp_send_skb(skb, fl4, &cork);
1247 		goto out;
1248 	}
1249 
1250 	lock_sock(sk);
1251 	if (unlikely(up->pending)) {
1252 		/* The socket is already corked while preparing it. */
1253 		/* ... which is an evident application bug. --ANK */
1254 		release_sock(sk);
1255 
1256 		net_dbg_ratelimited("socket already corked\n");
1257 		err = -EINVAL;
1258 		goto out;
1259 	}
1260 	/*
1261 	 *	Now cork the socket to pend data.
1262 	 */
1263 	fl4 = &inet->cork.fl.u.ip4;
1264 	fl4->daddr = daddr;
1265 	fl4->saddr = saddr;
1266 	fl4->fl4_dport = dport;
1267 	fl4->fl4_sport = inet->inet_sport;
1268 	up->pending = AF_INET;
1269 
1270 do_append_data:
1271 	up->len += ulen;
1272 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1273 			     sizeof(struct udphdr), &ipc, &rt,
1274 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1275 	if (err)
1276 		udp_flush_pending_frames(sk);
1277 	else if (!corkreq)
1278 		err = udp_push_pending_frames(sk);
1279 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1280 		up->pending = 0;
1281 	release_sock(sk);
1282 
1283 out:
1284 	ip_rt_put(rt);
1285 out_free:
1286 	if (free)
1287 		kfree(ipc.opt);
1288 	if (!err)
1289 		return len;
1290 	/*
1291 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1292 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1293 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1294 	 * things).  We could add another new stat but at least for now that
1295 	 * seems like overkill.
1296 	 */
1297 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1298 		UDP_INC_STATS(sock_net(sk),
1299 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1300 	}
1301 	return err;
1302 
1303 do_confirm:
1304 	if (msg->msg_flags & MSG_PROBE)
1305 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1306 	if (!(msg->msg_flags&MSG_PROBE) || len)
1307 		goto back_from_confirm;
1308 	err = 0;
1309 	goto out;
1310 }
1311 EXPORT_SYMBOL(udp_sendmsg);
1312 
1313 void udp_splice_eof(struct socket *sock)
1314 {
1315 	struct sock *sk = sock->sk;
1316 	struct udp_sock *up = udp_sk(sk);
1317 
1318 	if (!up->pending || udp_test_bit(CORK, sk))
1319 		return;
1320 
1321 	lock_sock(sk);
1322 	if (up->pending && !udp_test_bit(CORK, sk))
1323 		udp_push_pending_frames(sk);
1324 	release_sock(sk);
1325 }
1326 EXPORT_SYMBOL_GPL(udp_splice_eof);
1327 
1328 #define UDP_SKB_IS_STATELESS 0x80000000
1329 
1330 /* all head states (dst, sk, nf conntrack) except skb extensions are
1331  * cleared by udp_rcv().
1332  *
1333  * We need to preserve secpath, if present, to eventually process
1334  * IP_CMSG_PASSSEC at recvmsg() time.
1335  *
1336  * Other extensions can be cleared.
1337  */
1338 static bool udp_try_make_stateless(struct sk_buff *skb)
1339 {
1340 	if (!skb_has_extensions(skb))
1341 		return true;
1342 
1343 	if (!secpath_exists(skb)) {
1344 		skb_ext_reset(skb);
1345 		return true;
1346 	}
1347 
1348 	return false;
1349 }
1350 
1351 static void udp_set_dev_scratch(struct sk_buff *skb)
1352 {
1353 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1354 
1355 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1356 	scratch->_tsize_state = skb->truesize;
1357 #if BITS_PER_LONG == 64
1358 	scratch->len = skb->len;
1359 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1360 	scratch->is_linear = !skb_is_nonlinear(skb);
1361 #endif
1362 	if (udp_try_make_stateless(skb))
1363 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1364 }
1365 
1366 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1367 {
1368 	/* We come here after udp_lib_checksum_complete() returned 0.
1369 	 * This means that __skb_checksum_complete() might have
1370 	 * set skb->csum_valid to 1.
1371 	 * On 64bit platforms, we can set csum_unnecessary
1372 	 * to true, but only if the skb is not shared.
1373 	 */
1374 #if BITS_PER_LONG == 64
1375 	if (!skb_shared(skb))
1376 		udp_skb_scratch(skb)->csum_unnecessary = true;
1377 #endif
1378 }
1379 
1380 static int udp_skb_truesize(struct sk_buff *skb)
1381 {
1382 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1383 }
1384 
1385 static bool udp_skb_has_head_state(struct sk_buff *skb)
1386 {
1387 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1388 }
1389 
1390 /* fully reclaim rmem/fwd memory allocated for skb */
1391 static void udp_rmem_release(struct sock *sk, int size, int partial,
1392 			     bool rx_queue_lock_held)
1393 {
1394 	struct udp_sock *up = udp_sk(sk);
1395 	struct sk_buff_head *sk_queue;
1396 	int amt;
1397 
1398 	if (likely(partial)) {
1399 		up->forward_deficit += size;
1400 		size = up->forward_deficit;
1401 		if (size < READ_ONCE(up->forward_threshold) &&
1402 		    !skb_queue_empty(&up->reader_queue))
1403 			return;
1404 	} else {
1405 		size += up->forward_deficit;
1406 	}
1407 	up->forward_deficit = 0;
1408 
1409 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1410 	 * if the called don't held it already
1411 	 */
1412 	sk_queue = &sk->sk_receive_queue;
1413 	if (!rx_queue_lock_held)
1414 		spin_lock(&sk_queue->lock);
1415 
1416 
1417 	sk_forward_alloc_add(sk, size);
1418 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1419 	sk_forward_alloc_add(sk, -amt);
1420 
1421 	if (amt)
1422 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1423 
1424 	atomic_sub(size, &sk->sk_rmem_alloc);
1425 
1426 	/* this can save us from acquiring the rx queue lock on next receive */
1427 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1428 
1429 	if (!rx_queue_lock_held)
1430 		spin_unlock(&sk_queue->lock);
1431 }
1432 
1433 /* Note: called with reader_queue.lock held.
1434  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1435  * This avoids a cache line miss while receive_queue lock is held.
1436  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1437  */
1438 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1439 {
1440 	prefetch(&skb->data);
1441 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1442 }
1443 EXPORT_SYMBOL(udp_skb_destructor);
1444 
1445 /* as above, but the caller held the rx queue lock, too */
1446 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1447 {
1448 	prefetch(&skb->data);
1449 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1450 }
1451 
1452 /* Idea of busylocks is to let producers grab an extra spinlock
1453  * to relieve pressure on the receive_queue spinlock shared by consumer.
1454  * Under flood, this means that only one producer can be in line
1455  * trying to acquire the receive_queue spinlock.
1456  * These busylock can be allocated on a per cpu manner, instead of a
1457  * per socket one (that would consume a cache line per socket)
1458  */
1459 static int udp_busylocks_log __read_mostly;
1460 static spinlock_t *udp_busylocks __read_mostly;
1461 
1462 static spinlock_t *busylock_acquire(void *ptr)
1463 {
1464 	spinlock_t *busy;
1465 
1466 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1467 	spin_lock(busy);
1468 	return busy;
1469 }
1470 
1471 static void busylock_release(spinlock_t *busy)
1472 {
1473 	if (busy)
1474 		spin_unlock(busy);
1475 }
1476 
1477 static int udp_rmem_schedule(struct sock *sk, int size)
1478 {
1479 	int delta;
1480 
1481 	delta = size - sk->sk_forward_alloc;
1482 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1483 		return -ENOBUFS;
1484 
1485 	return 0;
1486 }
1487 
1488 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1489 {
1490 	struct sk_buff_head *list = &sk->sk_receive_queue;
1491 	int rmem, err = -ENOMEM;
1492 	spinlock_t *busy = NULL;
1493 	int size;
1494 
1495 	/* try to avoid the costly atomic add/sub pair when the receive
1496 	 * queue is full; always allow at least a packet
1497 	 */
1498 	rmem = atomic_read(&sk->sk_rmem_alloc);
1499 	if (rmem > sk->sk_rcvbuf)
1500 		goto drop;
1501 
1502 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1503 	 * having linear skbs :
1504 	 * - Reduce memory overhead and thus increase receive queue capacity
1505 	 * - Less cache line misses at copyout() time
1506 	 * - Less work at consume_skb() (less alien page frag freeing)
1507 	 */
1508 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1509 		skb_condense(skb);
1510 
1511 		busy = busylock_acquire(sk);
1512 	}
1513 	size = skb->truesize;
1514 	udp_set_dev_scratch(skb);
1515 
1516 	/* we drop only if the receive buf is full and the receive
1517 	 * queue contains some other skb
1518 	 */
1519 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1520 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1521 		goto uncharge_drop;
1522 
1523 	spin_lock(&list->lock);
1524 	err = udp_rmem_schedule(sk, size);
1525 	if (err) {
1526 		spin_unlock(&list->lock);
1527 		goto uncharge_drop;
1528 	}
1529 
1530 	sk_forward_alloc_add(sk, -size);
1531 
1532 	/* no need to setup a destructor, we will explicitly release the
1533 	 * forward allocated memory on dequeue
1534 	 */
1535 	sock_skb_set_dropcount(sk, skb);
1536 
1537 	__skb_queue_tail(list, skb);
1538 	spin_unlock(&list->lock);
1539 
1540 	if (!sock_flag(sk, SOCK_DEAD))
1541 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1542 
1543 	busylock_release(busy);
1544 	return 0;
1545 
1546 uncharge_drop:
1547 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1548 
1549 drop:
1550 	atomic_inc(&sk->sk_drops);
1551 	busylock_release(busy);
1552 	return err;
1553 }
1554 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1555 
1556 void udp_destruct_common(struct sock *sk)
1557 {
1558 	/* reclaim completely the forward allocated memory */
1559 	struct udp_sock *up = udp_sk(sk);
1560 	unsigned int total = 0;
1561 	struct sk_buff *skb;
1562 
1563 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1564 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1565 		total += skb->truesize;
1566 		kfree_skb(skb);
1567 	}
1568 	udp_rmem_release(sk, total, 0, true);
1569 }
1570 EXPORT_SYMBOL_GPL(udp_destruct_common);
1571 
1572 static void udp_destruct_sock(struct sock *sk)
1573 {
1574 	udp_destruct_common(sk);
1575 	inet_sock_destruct(sk);
1576 }
1577 
1578 int udp_init_sock(struct sock *sk)
1579 {
1580 	udp_lib_init_sock(sk);
1581 	sk->sk_destruct = udp_destruct_sock;
1582 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1583 	return 0;
1584 }
1585 
1586 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1587 {
1588 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1589 		bool slow = lock_sock_fast(sk);
1590 
1591 		sk_peek_offset_bwd(sk, len);
1592 		unlock_sock_fast(sk, slow);
1593 	}
1594 
1595 	if (!skb_unref(skb))
1596 		return;
1597 
1598 	/* In the more common cases we cleared the head states previously,
1599 	 * see __udp_queue_rcv_skb().
1600 	 */
1601 	if (unlikely(udp_skb_has_head_state(skb)))
1602 		skb_release_head_state(skb);
1603 	__consume_stateless_skb(skb);
1604 }
1605 EXPORT_SYMBOL_GPL(skb_consume_udp);
1606 
1607 static struct sk_buff *__first_packet_length(struct sock *sk,
1608 					     struct sk_buff_head *rcvq,
1609 					     int *total)
1610 {
1611 	struct sk_buff *skb;
1612 
1613 	while ((skb = skb_peek(rcvq)) != NULL) {
1614 		if (udp_lib_checksum_complete(skb)) {
1615 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1616 					IS_UDPLITE(sk));
1617 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1618 					IS_UDPLITE(sk));
1619 			atomic_inc(&sk->sk_drops);
1620 			__skb_unlink(skb, rcvq);
1621 			*total += skb->truesize;
1622 			kfree_skb(skb);
1623 		} else {
1624 			udp_skb_csum_unnecessary_set(skb);
1625 			break;
1626 		}
1627 	}
1628 	return skb;
1629 }
1630 
1631 /**
1632  *	first_packet_length	- return length of first packet in receive queue
1633  *	@sk: socket
1634  *
1635  *	Drops all bad checksum frames, until a valid one is found.
1636  *	Returns the length of found skb, or -1 if none is found.
1637  */
1638 static int first_packet_length(struct sock *sk)
1639 {
1640 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1641 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1642 	struct sk_buff *skb;
1643 	int total = 0;
1644 	int res;
1645 
1646 	spin_lock_bh(&rcvq->lock);
1647 	skb = __first_packet_length(sk, rcvq, &total);
1648 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1649 		spin_lock(&sk_queue->lock);
1650 		skb_queue_splice_tail_init(sk_queue, rcvq);
1651 		spin_unlock(&sk_queue->lock);
1652 
1653 		skb = __first_packet_length(sk, rcvq, &total);
1654 	}
1655 	res = skb ? skb->len : -1;
1656 	if (total)
1657 		udp_rmem_release(sk, total, 1, false);
1658 	spin_unlock_bh(&rcvq->lock);
1659 	return res;
1660 }
1661 
1662 /*
1663  *	IOCTL requests applicable to the UDP protocol
1664  */
1665 
1666 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1667 {
1668 	switch (cmd) {
1669 	case SIOCOUTQ:
1670 	{
1671 		*karg = sk_wmem_alloc_get(sk);
1672 		return 0;
1673 	}
1674 
1675 	case SIOCINQ:
1676 	{
1677 		*karg = max_t(int, 0, first_packet_length(sk));
1678 		return 0;
1679 	}
1680 
1681 	default:
1682 		return -ENOIOCTLCMD;
1683 	}
1684 
1685 	return 0;
1686 }
1687 EXPORT_SYMBOL(udp_ioctl);
1688 
1689 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1690 			       int *off, int *err)
1691 {
1692 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1693 	struct sk_buff_head *queue;
1694 	struct sk_buff *last;
1695 	long timeo;
1696 	int error;
1697 
1698 	queue = &udp_sk(sk)->reader_queue;
1699 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1700 	do {
1701 		struct sk_buff *skb;
1702 
1703 		error = sock_error(sk);
1704 		if (error)
1705 			break;
1706 
1707 		error = -EAGAIN;
1708 		do {
1709 			spin_lock_bh(&queue->lock);
1710 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1711 							err, &last);
1712 			if (skb) {
1713 				if (!(flags & MSG_PEEK))
1714 					udp_skb_destructor(sk, skb);
1715 				spin_unlock_bh(&queue->lock);
1716 				return skb;
1717 			}
1718 
1719 			if (skb_queue_empty_lockless(sk_queue)) {
1720 				spin_unlock_bh(&queue->lock);
1721 				goto busy_check;
1722 			}
1723 
1724 			/* refill the reader queue and walk it again
1725 			 * keep both queues locked to avoid re-acquiring
1726 			 * the sk_receive_queue lock if fwd memory scheduling
1727 			 * is needed.
1728 			 */
1729 			spin_lock(&sk_queue->lock);
1730 			skb_queue_splice_tail_init(sk_queue, queue);
1731 
1732 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1733 							err, &last);
1734 			if (skb && !(flags & MSG_PEEK))
1735 				udp_skb_dtor_locked(sk, skb);
1736 			spin_unlock(&sk_queue->lock);
1737 			spin_unlock_bh(&queue->lock);
1738 			if (skb)
1739 				return skb;
1740 
1741 busy_check:
1742 			if (!sk_can_busy_loop(sk))
1743 				break;
1744 
1745 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1746 		} while (!skb_queue_empty_lockless(sk_queue));
1747 
1748 		/* sk_queue is empty, reader_queue may contain peeked packets */
1749 	} while (timeo &&
1750 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1751 					      &error, &timeo,
1752 					      (struct sk_buff *)sk_queue));
1753 
1754 	*err = error;
1755 	return NULL;
1756 }
1757 EXPORT_SYMBOL(__skb_recv_udp);
1758 
1759 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1760 {
1761 	struct sk_buff *skb;
1762 	int err;
1763 
1764 try_again:
1765 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1766 	if (!skb)
1767 		return err;
1768 
1769 	if (udp_lib_checksum_complete(skb)) {
1770 		int is_udplite = IS_UDPLITE(sk);
1771 		struct net *net = sock_net(sk);
1772 
1773 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1774 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1775 		atomic_inc(&sk->sk_drops);
1776 		kfree_skb(skb);
1777 		goto try_again;
1778 	}
1779 
1780 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1781 	return recv_actor(sk, skb);
1782 }
1783 EXPORT_SYMBOL(udp_read_skb);
1784 
1785 /*
1786  * 	This should be easy, if there is something there we
1787  * 	return it, otherwise we block.
1788  */
1789 
1790 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1791 		int *addr_len)
1792 {
1793 	struct inet_sock *inet = inet_sk(sk);
1794 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1795 	struct sk_buff *skb;
1796 	unsigned int ulen, copied;
1797 	int off, err, peeking = flags & MSG_PEEK;
1798 	int is_udplite = IS_UDPLITE(sk);
1799 	bool checksum_valid = false;
1800 
1801 	if (flags & MSG_ERRQUEUE)
1802 		return ip_recv_error(sk, msg, len, addr_len);
1803 
1804 try_again:
1805 	off = sk_peek_offset(sk, flags);
1806 	skb = __skb_recv_udp(sk, flags, &off, &err);
1807 	if (!skb)
1808 		return err;
1809 
1810 	ulen = udp_skb_len(skb);
1811 	copied = len;
1812 	if (copied > ulen - off)
1813 		copied = ulen - off;
1814 	else if (copied < ulen)
1815 		msg->msg_flags |= MSG_TRUNC;
1816 
1817 	/*
1818 	 * If checksum is needed at all, try to do it while copying the
1819 	 * data.  If the data is truncated, or if we only want a partial
1820 	 * coverage checksum (UDP-Lite), do it before the copy.
1821 	 */
1822 
1823 	if (copied < ulen || peeking ||
1824 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1825 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1826 				!__udp_lib_checksum_complete(skb);
1827 		if (!checksum_valid)
1828 			goto csum_copy_err;
1829 	}
1830 
1831 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1832 		if (udp_skb_is_linear(skb))
1833 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1834 		else
1835 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1836 	} else {
1837 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1838 
1839 		if (err == -EINVAL)
1840 			goto csum_copy_err;
1841 	}
1842 
1843 	if (unlikely(err)) {
1844 		if (!peeking) {
1845 			atomic_inc(&sk->sk_drops);
1846 			UDP_INC_STATS(sock_net(sk),
1847 				      UDP_MIB_INERRORS, is_udplite);
1848 		}
1849 		kfree_skb(skb);
1850 		return err;
1851 	}
1852 
1853 	if (!peeking)
1854 		UDP_INC_STATS(sock_net(sk),
1855 			      UDP_MIB_INDATAGRAMS, is_udplite);
1856 
1857 	sock_recv_cmsgs(msg, sk, skb);
1858 
1859 	/* Copy the address. */
1860 	if (sin) {
1861 		sin->sin_family = AF_INET;
1862 		sin->sin_port = udp_hdr(skb)->source;
1863 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1864 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1865 		*addr_len = sizeof(*sin);
1866 
1867 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1868 						      (struct sockaddr *)sin);
1869 	}
1870 
1871 	if (udp_test_bit(GRO_ENABLED, sk))
1872 		udp_cmsg_recv(msg, sk, skb);
1873 
1874 	if (inet_cmsg_flags(inet))
1875 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1876 
1877 	err = copied;
1878 	if (flags & MSG_TRUNC)
1879 		err = ulen;
1880 
1881 	skb_consume_udp(sk, skb, peeking ? -err : err);
1882 	return err;
1883 
1884 csum_copy_err:
1885 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1886 				 udp_skb_destructor)) {
1887 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1888 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1889 	}
1890 	kfree_skb(skb);
1891 
1892 	/* starting over for a new packet, but check if we need to yield */
1893 	cond_resched();
1894 	msg->msg_flags &= ~MSG_TRUNC;
1895 	goto try_again;
1896 }
1897 
1898 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1899 {
1900 	/* This check is replicated from __ip4_datagram_connect() and
1901 	 * intended to prevent BPF program called below from accessing bytes
1902 	 * that are out of the bound specified by user in addr_len.
1903 	 */
1904 	if (addr_len < sizeof(struct sockaddr_in))
1905 		return -EINVAL;
1906 
1907 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1908 }
1909 EXPORT_SYMBOL(udp_pre_connect);
1910 
1911 int __udp_disconnect(struct sock *sk, int flags)
1912 {
1913 	struct inet_sock *inet = inet_sk(sk);
1914 	/*
1915 	 *	1003.1g - break association.
1916 	 */
1917 
1918 	sk->sk_state = TCP_CLOSE;
1919 	inet->inet_daddr = 0;
1920 	inet->inet_dport = 0;
1921 	sock_rps_reset_rxhash(sk);
1922 	sk->sk_bound_dev_if = 0;
1923 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1924 		inet_reset_saddr(sk);
1925 		if (sk->sk_prot->rehash &&
1926 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1927 			sk->sk_prot->rehash(sk);
1928 	}
1929 
1930 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1931 		sk->sk_prot->unhash(sk);
1932 		inet->inet_sport = 0;
1933 	}
1934 	sk_dst_reset(sk);
1935 	return 0;
1936 }
1937 EXPORT_SYMBOL(__udp_disconnect);
1938 
1939 int udp_disconnect(struct sock *sk, int flags)
1940 {
1941 	lock_sock(sk);
1942 	__udp_disconnect(sk, flags);
1943 	release_sock(sk);
1944 	return 0;
1945 }
1946 EXPORT_SYMBOL(udp_disconnect);
1947 
1948 void udp_lib_unhash(struct sock *sk)
1949 {
1950 	if (sk_hashed(sk)) {
1951 		struct udp_table *udptable = udp_get_table_prot(sk);
1952 		struct udp_hslot *hslot, *hslot2;
1953 
1954 		hslot  = udp_hashslot(udptable, sock_net(sk),
1955 				      udp_sk(sk)->udp_port_hash);
1956 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1957 
1958 		spin_lock_bh(&hslot->lock);
1959 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1960 			reuseport_detach_sock(sk);
1961 		if (sk_del_node_init_rcu(sk)) {
1962 			hslot->count--;
1963 			inet_sk(sk)->inet_num = 0;
1964 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1965 
1966 			spin_lock(&hslot2->lock);
1967 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1968 			hslot2->count--;
1969 			spin_unlock(&hslot2->lock);
1970 		}
1971 		spin_unlock_bh(&hslot->lock);
1972 	}
1973 }
1974 EXPORT_SYMBOL(udp_lib_unhash);
1975 
1976 /*
1977  * inet_rcv_saddr was changed, we must rehash secondary hash
1978  */
1979 void udp_lib_rehash(struct sock *sk, u16 newhash)
1980 {
1981 	if (sk_hashed(sk)) {
1982 		struct udp_table *udptable = udp_get_table_prot(sk);
1983 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1984 
1985 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1986 		nhslot2 = udp_hashslot2(udptable, newhash);
1987 		udp_sk(sk)->udp_portaddr_hash = newhash;
1988 
1989 		if (hslot2 != nhslot2 ||
1990 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1991 			hslot = udp_hashslot(udptable, sock_net(sk),
1992 					     udp_sk(sk)->udp_port_hash);
1993 			/* we must lock primary chain too */
1994 			spin_lock_bh(&hslot->lock);
1995 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1996 				reuseport_detach_sock(sk);
1997 
1998 			if (hslot2 != nhslot2) {
1999 				spin_lock(&hslot2->lock);
2000 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2001 				hslot2->count--;
2002 				spin_unlock(&hslot2->lock);
2003 
2004 				spin_lock(&nhslot2->lock);
2005 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2006 							 &nhslot2->head);
2007 				nhslot2->count++;
2008 				spin_unlock(&nhslot2->lock);
2009 			}
2010 
2011 			spin_unlock_bh(&hslot->lock);
2012 		}
2013 	}
2014 }
2015 EXPORT_SYMBOL(udp_lib_rehash);
2016 
2017 void udp_v4_rehash(struct sock *sk)
2018 {
2019 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2020 					  inet_sk(sk)->inet_rcv_saddr,
2021 					  inet_sk(sk)->inet_num);
2022 	udp_lib_rehash(sk, new_hash);
2023 }
2024 
2025 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2026 {
2027 	int rc;
2028 
2029 	if (inet_sk(sk)->inet_daddr) {
2030 		sock_rps_save_rxhash(sk, skb);
2031 		sk_mark_napi_id(sk, skb);
2032 		sk_incoming_cpu_update(sk);
2033 	} else {
2034 		sk_mark_napi_id_once(sk, skb);
2035 	}
2036 
2037 	rc = __udp_enqueue_schedule_skb(sk, skb);
2038 	if (rc < 0) {
2039 		int is_udplite = IS_UDPLITE(sk);
2040 		int drop_reason;
2041 
2042 		/* Note that an ENOMEM error is charged twice */
2043 		if (rc == -ENOMEM) {
2044 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2045 					is_udplite);
2046 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2047 		} else {
2048 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2049 				      is_udplite);
2050 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2051 		}
2052 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2053 		kfree_skb_reason(skb, drop_reason);
2054 		trace_udp_fail_queue_rcv_skb(rc, sk);
2055 		return -1;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 /* returns:
2062  *  -1: error
2063  *   0: success
2064  *  >0: "udp encap" protocol resubmission
2065  *
2066  * Note that in the success and error cases, the skb is assumed to
2067  * have either been requeued or freed.
2068  */
2069 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2070 {
2071 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2072 	struct udp_sock *up = udp_sk(sk);
2073 	int is_udplite = IS_UDPLITE(sk);
2074 
2075 	/*
2076 	 *	Charge it to the socket, dropping if the queue is full.
2077 	 */
2078 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2079 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2080 		goto drop;
2081 	}
2082 	nf_reset_ct(skb);
2083 
2084 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2085 	    READ_ONCE(up->encap_type)) {
2086 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2087 
2088 		/*
2089 		 * This is an encapsulation socket so pass the skb to
2090 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2091 		 * fall through and pass this up the UDP socket.
2092 		 * up->encap_rcv() returns the following value:
2093 		 * =0 if skb was successfully passed to the encap
2094 		 *    handler or was discarded by it.
2095 		 * >0 if skb should be passed on to UDP.
2096 		 * <0 if skb should be resubmitted as proto -N
2097 		 */
2098 
2099 		/* if we're overly short, let UDP handle it */
2100 		encap_rcv = READ_ONCE(up->encap_rcv);
2101 		if (encap_rcv) {
2102 			int ret;
2103 
2104 			/* Verify checksum before giving to encap */
2105 			if (udp_lib_checksum_complete(skb))
2106 				goto csum_error;
2107 
2108 			ret = encap_rcv(sk, skb);
2109 			if (ret <= 0) {
2110 				__UDP_INC_STATS(sock_net(sk),
2111 						UDP_MIB_INDATAGRAMS,
2112 						is_udplite);
2113 				return -ret;
2114 			}
2115 		}
2116 
2117 		/* FALLTHROUGH -- it's a UDP Packet */
2118 	}
2119 
2120 	/*
2121 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2122 	 */
2123 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2124 		u16 pcrlen = READ_ONCE(up->pcrlen);
2125 
2126 		/*
2127 		 * MIB statistics other than incrementing the error count are
2128 		 * disabled for the following two types of errors: these depend
2129 		 * on the application settings, not on the functioning of the
2130 		 * protocol stack as such.
2131 		 *
2132 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2133 		 * way ... to ... at least let the receiving application block
2134 		 * delivery of packets with coverage values less than a value
2135 		 * provided by the application."
2136 		 */
2137 		if (pcrlen == 0) {          /* full coverage was set  */
2138 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2139 					    UDP_SKB_CB(skb)->cscov, skb->len);
2140 			goto drop;
2141 		}
2142 		/* The next case involves violating the min. coverage requested
2143 		 * by the receiver. This is subtle: if receiver wants x and x is
2144 		 * greater than the buffersize/MTU then receiver will complain
2145 		 * that it wants x while sender emits packets of smaller size y.
2146 		 * Therefore the above ...()->partial_cov statement is essential.
2147 		 */
2148 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2149 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2150 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2151 			goto drop;
2152 		}
2153 	}
2154 
2155 	prefetch(&sk->sk_rmem_alloc);
2156 	if (rcu_access_pointer(sk->sk_filter) &&
2157 	    udp_lib_checksum_complete(skb))
2158 			goto csum_error;
2159 
2160 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2161 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2162 		goto drop;
2163 	}
2164 
2165 	udp_csum_pull_header(skb);
2166 
2167 	ipv4_pktinfo_prepare(sk, skb);
2168 	return __udp_queue_rcv_skb(sk, skb);
2169 
2170 csum_error:
2171 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2172 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2173 drop:
2174 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2175 	atomic_inc(&sk->sk_drops);
2176 	kfree_skb_reason(skb, drop_reason);
2177 	return -1;
2178 }
2179 
2180 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2181 {
2182 	struct sk_buff *next, *segs;
2183 	int ret;
2184 
2185 	if (likely(!udp_unexpected_gso(sk, skb)))
2186 		return udp_queue_rcv_one_skb(sk, skb);
2187 
2188 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2189 	__skb_push(skb, -skb_mac_offset(skb));
2190 	segs = udp_rcv_segment(sk, skb, true);
2191 	skb_list_walk_safe(segs, skb, next) {
2192 		__skb_pull(skb, skb_transport_offset(skb));
2193 
2194 		udp_post_segment_fix_csum(skb);
2195 		ret = udp_queue_rcv_one_skb(sk, skb);
2196 		if (ret > 0)
2197 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2198 	}
2199 	return 0;
2200 }
2201 
2202 /* For TCP sockets, sk_rx_dst is protected by socket lock
2203  * For UDP, we use xchg() to guard against concurrent changes.
2204  */
2205 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2206 {
2207 	struct dst_entry *old;
2208 
2209 	if (dst_hold_safe(dst)) {
2210 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2211 		dst_release(old);
2212 		return old != dst;
2213 	}
2214 	return false;
2215 }
2216 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2217 
2218 /*
2219  *	Multicasts and broadcasts go to each listener.
2220  *
2221  *	Note: called only from the BH handler context.
2222  */
2223 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2224 				    struct udphdr  *uh,
2225 				    __be32 saddr, __be32 daddr,
2226 				    struct udp_table *udptable,
2227 				    int proto)
2228 {
2229 	struct sock *sk, *first = NULL;
2230 	unsigned short hnum = ntohs(uh->dest);
2231 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2232 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2233 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2234 	int dif = skb->dev->ifindex;
2235 	int sdif = inet_sdif(skb);
2236 	struct hlist_node *node;
2237 	struct sk_buff *nskb;
2238 
2239 	if (use_hash2) {
2240 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2241 			    udptable->mask;
2242 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2243 start_lookup:
2244 		hslot = &udptable->hash2[hash2];
2245 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2246 	}
2247 
2248 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2249 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2250 					 uh->source, saddr, dif, sdif, hnum))
2251 			continue;
2252 
2253 		if (!first) {
2254 			first = sk;
2255 			continue;
2256 		}
2257 		nskb = skb_clone(skb, GFP_ATOMIC);
2258 
2259 		if (unlikely(!nskb)) {
2260 			atomic_inc(&sk->sk_drops);
2261 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2262 					IS_UDPLITE(sk));
2263 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2264 					IS_UDPLITE(sk));
2265 			continue;
2266 		}
2267 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2268 			consume_skb(nskb);
2269 	}
2270 
2271 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2272 	if (use_hash2 && hash2 != hash2_any) {
2273 		hash2 = hash2_any;
2274 		goto start_lookup;
2275 	}
2276 
2277 	if (first) {
2278 		if (udp_queue_rcv_skb(first, skb) > 0)
2279 			consume_skb(skb);
2280 	} else {
2281 		kfree_skb(skb);
2282 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2283 				proto == IPPROTO_UDPLITE);
2284 	}
2285 	return 0;
2286 }
2287 
2288 /* Initialize UDP checksum. If exited with zero value (success),
2289  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2290  * Otherwise, csum completion requires checksumming packet body,
2291  * including udp header and folding it to skb->csum.
2292  */
2293 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2294 				 int proto)
2295 {
2296 	int err;
2297 
2298 	UDP_SKB_CB(skb)->partial_cov = 0;
2299 	UDP_SKB_CB(skb)->cscov = skb->len;
2300 
2301 	if (proto == IPPROTO_UDPLITE) {
2302 		err = udplite_checksum_init(skb, uh);
2303 		if (err)
2304 			return err;
2305 
2306 		if (UDP_SKB_CB(skb)->partial_cov) {
2307 			skb->csum = inet_compute_pseudo(skb, proto);
2308 			return 0;
2309 		}
2310 	}
2311 
2312 	/* Note, we are only interested in != 0 or == 0, thus the
2313 	 * force to int.
2314 	 */
2315 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2316 							inet_compute_pseudo);
2317 	if (err)
2318 		return err;
2319 
2320 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2321 		/* If SW calculated the value, we know it's bad */
2322 		if (skb->csum_complete_sw)
2323 			return 1;
2324 
2325 		/* HW says the value is bad. Let's validate that.
2326 		 * skb->csum is no longer the full packet checksum,
2327 		 * so don't treat it as such.
2328 		 */
2329 		skb_checksum_complete_unset(skb);
2330 	}
2331 
2332 	return 0;
2333 }
2334 
2335 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2336  * return code conversion for ip layer consumption
2337  */
2338 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2339 			       struct udphdr *uh)
2340 {
2341 	int ret;
2342 
2343 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2344 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2345 
2346 	ret = udp_queue_rcv_skb(sk, skb);
2347 
2348 	/* a return value > 0 means to resubmit the input, but
2349 	 * it wants the return to be -protocol, or 0
2350 	 */
2351 	if (ret > 0)
2352 		return -ret;
2353 	return 0;
2354 }
2355 
2356 /*
2357  *	All we need to do is get the socket, and then do a checksum.
2358  */
2359 
2360 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2361 		   int proto)
2362 {
2363 	struct sock *sk;
2364 	struct udphdr *uh;
2365 	unsigned short ulen;
2366 	struct rtable *rt = skb_rtable(skb);
2367 	__be32 saddr, daddr;
2368 	struct net *net = dev_net(skb->dev);
2369 	bool refcounted;
2370 	int drop_reason;
2371 
2372 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2373 
2374 	/*
2375 	 *  Validate the packet.
2376 	 */
2377 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2378 		goto drop;		/* No space for header. */
2379 
2380 	uh   = udp_hdr(skb);
2381 	ulen = ntohs(uh->len);
2382 	saddr = ip_hdr(skb)->saddr;
2383 	daddr = ip_hdr(skb)->daddr;
2384 
2385 	if (ulen > skb->len)
2386 		goto short_packet;
2387 
2388 	if (proto == IPPROTO_UDP) {
2389 		/* UDP validates ulen. */
2390 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2391 			goto short_packet;
2392 		uh = udp_hdr(skb);
2393 	}
2394 
2395 	if (udp4_csum_init(skb, uh, proto))
2396 		goto csum_error;
2397 
2398 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2399 			     &refcounted, udp_ehashfn);
2400 	if (IS_ERR(sk))
2401 		goto no_sk;
2402 
2403 	if (sk) {
2404 		struct dst_entry *dst = skb_dst(skb);
2405 		int ret;
2406 
2407 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2408 			udp_sk_rx_dst_set(sk, dst);
2409 
2410 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2411 		if (refcounted)
2412 			sock_put(sk);
2413 		return ret;
2414 	}
2415 
2416 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2417 		return __udp4_lib_mcast_deliver(net, skb, uh,
2418 						saddr, daddr, udptable, proto);
2419 
2420 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2421 	if (sk)
2422 		return udp_unicast_rcv_skb(sk, skb, uh);
2423 no_sk:
2424 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2425 		goto drop;
2426 	nf_reset_ct(skb);
2427 
2428 	/* No socket. Drop packet silently, if checksum is wrong */
2429 	if (udp_lib_checksum_complete(skb))
2430 		goto csum_error;
2431 
2432 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2433 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2434 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2435 
2436 	/*
2437 	 * Hmm.  We got an UDP packet to a port to which we
2438 	 * don't wanna listen.  Ignore it.
2439 	 */
2440 	kfree_skb_reason(skb, drop_reason);
2441 	return 0;
2442 
2443 short_packet:
2444 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2445 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2446 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2447 			    &saddr, ntohs(uh->source),
2448 			    ulen, skb->len,
2449 			    &daddr, ntohs(uh->dest));
2450 	goto drop;
2451 
2452 csum_error:
2453 	/*
2454 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2455 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2456 	 */
2457 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2458 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2459 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2460 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2461 			    ulen);
2462 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2463 drop:
2464 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2465 	kfree_skb_reason(skb, drop_reason);
2466 	return 0;
2467 }
2468 
2469 /* We can only early demux multicast if there is a single matching socket.
2470  * If more than one socket found returns NULL
2471  */
2472 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2473 						  __be16 loc_port, __be32 loc_addr,
2474 						  __be16 rmt_port, __be32 rmt_addr,
2475 						  int dif, int sdif)
2476 {
2477 	struct udp_table *udptable = net->ipv4.udp_table;
2478 	unsigned short hnum = ntohs(loc_port);
2479 	struct sock *sk, *result;
2480 	struct udp_hslot *hslot;
2481 	unsigned int slot;
2482 
2483 	slot = udp_hashfn(net, hnum, udptable->mask);
2484 	hslot = &udptable->hash[slot];
2485 
2486 	/* Do not bother scanning a too big list */
2487 	if (hslot->count > 10)
2488 		return NULL;
2489 
2490 	result = NULL;
2491 	sk_for_each_rcu(sk, &hslot->head) {
2492 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2493 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2494 			if (result)
2495 				return NULL;
2496 			result = sk;
2497 		}
2498 	}
2499 
2500 	return result;
2501 }
2502 
2503 /* For unicast we should only early demux connected sockets or we can
2504  * break forwarding setups.  The chains here can be long so only check
2505  * if the first socket is an exact match and if not move on.
2506  */
2507 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2508 					    __be16 loc_port, __be32 loc_addr,
2509 					    __be16 rmt_port, __be32 rmt_addr,
2510 					    int dif, int sdif)
2511 {
2512 	struct udp_table *udptable = net->ipv4.udp_table;
2513 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2514 	unsigned short hnum = ntohs(loc_port);
2515 	unsigned int hash2, slot2;
2516 	struct udp_hslot *hslot2;
2517 	__portpair ports;
2518 	struct sock *sk;
2519 
2520 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2521 	slot2 = hash2 & udptable->mask;
2522 	hslot2 = &udptable->hash2[slot2];
2523 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2524 
2525 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2526 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2527 			return sk;
2528 		/* Only check first socket in chain */
2529 		break;
2530 	}
2531 	return NULL;
2532 }
2533 
2534 int udp_v4_early_demux(struct sk_buff *skb)
2535 {
2536 	struct net *net = dev_net(skb->dev);
2537 	struct in_device *in_dev = NULL;
2538 	const struct iphdr *iph;
2539 	const struct udphdr *uh;
2540 	struct sock *sk = NULL;
2541 	struct dst_entry *dst;
2542 	int dif = skb->dev->ifindex;
2543 	int sdif = inet_sdif(skb);
2544 	int ours;
2545 
2546 	/* validate the packet */
2547 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2548 		return 0;
2549 
2550 	iph = ip_hdr(skb);
2551 	uh = udp_hdr(skb);
2552 
2553 	if (skb->pkt_type == PACKET_MULTICAST) {
2554 		in_dev = __in_dev_get_rcu(skb->dev);
2555 
2556 		if (!in_dev)
2557 			return 0;
2558 
2559 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2560 				       iph->protocol);
2561 		if (!ours)
2562 			return 0;
2563 
2564 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2565 						   uh->source, iph->saddr,
2566 						   dif, sdif);
2567 	} else if (skb->pkt_type == PACKET_HOST) {
2568 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2569 					     uh->source, iph->saddr, dif, sdif);
2570 	}
2571 
2572 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2573 		return 0;
2574 
2575 	skb->sk = sk;
2576 	skb->destructor = sock_efree;
2577 	dst = rcu_dereference(sk->sk_rx_dst);
2578 
2579 	if (dst)
2580 		dst = dst_check(dst, 0);
2581 	if (dst) {
2582 		u32 itag = 0;
2583 
2584 		/* set noref for now.
2585 		 * any place which wants to hold dst has to call
2586 		 * dst_hold_safe()
2587 		 */
2588 		skb_dst_set_noref(skb, dst);
2589 
2590 		/* for unconnected multicast sockets we need to validate
2591 		 * the source on each packet
2592 		 */
2593 		if (!inet_sk(sk)->inet_daddr && in_dev)
2594 			return ip_mc_validate_source(skb, iph->daddr,
2595 						     iph->saddr,
2596 						     iph->tos & IPTOS_RT_MASK,
2597 						     skb->dev, in_dev, &itag);
2598 	}
2599 	return 0;
2600 }
2601 
2602 int udp_rcv(struct sk_buff *skb)
2603 {
2604 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2605 }
2606 
2607 void udp_destroy_sock(struct sock *sk)
2608 {
2609 	struct udp_sock *up = udp_sk(sk);
2610 	bool slow = lock_sock_fast(sk);
2611 
2612 	/* protects from races with udp_abort() */
2613 	sock_set_flag(sk, SOCK_DEAD);
2614 	udp_flush_pending_frames(sk);
2615 	unlock_sock_fast(sk, slow);
2616 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2617 		if (up->encap_type) {
2618 			void (*encap_destroy)(struct sock *sk);
2619 			encap_destroy = READ_ONCE(up->encap_destroy);
2620 			if (encap_destroy)
2621 				encap_destroy(sk);
2622 		}
2623 		if (udp_test_bit(ENCAP_ENABLED, sk))
2624 			static_branch_dec(&udp_encap_needed_key);
2625 	}
2626 }
2627 
2628 /*
2629  *	Socket option code for UDP
2630  */
2631 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2632 		       sockptr_t optval, unsigned int optlen,
2633 		       int (*push_pending_frames)(struct sock *))
2634 {
2635 	struct udp_sock *up = udp_sk(sk);
2636 	int val, valbool;
2637 	int err = 0;
2638 	int is_udplite = IS_UDPLITE(sk);
2639 
2640 	if (level == SOL_SOCKET) {
2641 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2642 
2643 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2644 			sockopt_lock_sock(sk);
2645 			/* paired with READ_ONCE in udp_rmem_release() */
2646 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2647 			sockopt_release_sock(sk);
2648 		}
2649 		return err;
2650 	}
2651 
2652 	if (optlen < sizeof(int))
2653 		return -EINVAL;
2654 
2655 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2656 		return -EFAULT;
2657 
2658 	valbool = val ? 1 : 0;
2659 
2660 	switch (optname) {
2661 	case UDP_CORK:
2662 		if (val != 0) {
2663 			udp_set_bit(CORK, sk);
2664 		} else {
2665 			udp_clear_bit(CORK, sk);
2666 			lock_sock(sk);
2667 			push_pending_frames(sk);
2668 			release_sock(sk);
2669 		}
2670 		break;
2671 
2672 	case UDP_ENCAP:
2673 		switch (val) {
2674 		case 0:
2675 #ifdef CONFIG_XFRM
2676 		case UDP_ENCAP_ESPINUDP:
2677 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2678 #if IS_ENABLED(CONFIG_IPV6)
2679 			if (sk->sk_family == AF_INET6)
2680 				WRITE_ONCE(up->encap_rcv,
2681 					   ipv6_stub->xfrm6_udp_encap_rcv);
2682 			else
2683 #endif
2684 				WRITE_ONCE(up->encap_rcv,
2685 					   xfrm4_udp_encap_rcv);
2686 #endif
2687 			fallthrough;
2688 		case UDP_ENCAP_L2TPINUDP:
2689 			WRITE_ONCE(up->encap_type, val);
2690 			udp_tunnel_encap_enable(sk);
2691 			break;
2692 		default:
2693 			err = -ENOPROTOOPT;
2694 			break;
2695 		}
2696 		break;
2697 
2698 	case UDP_NO_CHECK6_TX:
2699 		udp_set_no_check6_tx(sk, valbool);
2700 		break;
2701 
2702 	case UDP_NO_CHECK6_RX:
2703 		udp_set_no_check6_rx(sk, valbool);
2704 		break;
2705 
2706 	case UDP_SEGMENT:
2707 		if (val < 0 || val > USHRT_MAX)
2708 			return -EINVAL;
2709 		WRITE_ONCE(up->gso_size, val);
2710 		break;
2711 
2712 	case UDP_GRO:
2713 
2714 		/* when enabling GRO, accept the related GSO packet type */
2715 		if (valbool)
2716 			udp_tunnel_encap_enable(sk);
2717 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2718 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2719 		break;
2720 
2721 	/*
2722 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2723 	 */
2724 	/* The sender sets actual checksum coverage length via this option.
2725 	 * The case coverage > packet length is handled by send module. */
2726 	case UDPLITE_SEND_CSCOV:
2727 		if (!is_udplite)         /* Disable the option on UDP sockets */
2728 			return -ENOPROTOOPT;
2729 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2730 			val = 8;
2731 		else if (val > USHRT_MAX)
2732 			val = USHRT_MAX;
2733 		WRITE_ONCE(up->pcslen, val);
2734 		udp_set_bit(UDPLITE_SEND_CC, sk);
2735 		break;
2736 
2737 	/* The receiver specifies a minimum checksum coverage value. To make
2738 	 * sense, this should be set to at least 8 (as done below). If zero is
2739 	 * used, this again means full checksum coverage.                     */
2740 	case UDPLITE_RECV_CSCOV:
2741 		if (!is_udplite)         /* Disable the option on UDP sockets */
2742 			return -ENOPROTOOPT;
2743 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2744 			val = 8;
2745 		else if (val > USHRT_MAX)
2746 			val = USHRT_MAX;
2747 		WRITE_ONCE(up->pcrlen, val);
2748 		udp_set_bit(UDPLITE_RECV_CC, sk);
2749 		break;
2750 
2751 	default:
2752 		err = -ENOPROTOOPT;
2753 		break;
2754 	}
2755 
2756 	return err;
2757 }
2758 EXPORT_SYMBOL(udp_lib_setsockopt);
2759 
2760 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2761 		   unsigned int optlen)
2762 {
2763 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2764 		return udp_lib_setsockopt(sk, level, optname,
2765 					  optval, optlen,
2766 					  udp_push_pending_frames);
2767 	return ip_setsockopt(sk, level, optname, optval, optlen);
2768 }
2769 
2770 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2771 		       char __user *optval, int __user *optlen)
2772 {
2773 	struct udp_sock *up = udp_sk(sk);
2774 	int val, len;
2775 
2776 	if (get_user(len, optlen))
2777 		return -EFAULT;
2778 
2779 	len = min_t(unsigned int, len, sizeof(int));
2780 
2781 	if (len < 0)
2782 		return -EINVAL;
2783 
2784 	switch (optname) {
2785 	case UDP_CORK:
2786 		val = udp_test_bit(CORK, sk);
2787 		break;
2788 
2789 	case UDP_ENCAP:
2790 		val = READ_ONCE(up->encap_type);
2791 		break;
2792 
2793 	case UDP_NO_CHECK6_TX:
2794 		val = udp_get_no_check6_tx(sk);
2795 		break;
2796 
2797 	case UDP_NO_CHECK6_RX:
2798 		val = udp_get_no_check6_rx(sk);
2799 		break;
2800 
2801 	case UDP_SEGMENT:
2802 		val = READ_ONCE(up->gso_size);
2803 		break;
2804 
2805 	case UDP_GRO:
2806 		val = udp_test_bit(GRO_ENABLED, sk);
2807 		break;
2808 
2809 	/* The following two cannot be changed on UDP sockets, the return is
2810 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2811 	case UDPLITE_SEND_CSCOV:
2812 		val = READ_ONCE(up->pcslen);
2813 		break;
2814 
2815 	case UDPLITE_RECV_CSCOV:
2816 		val = READ_ONCE(up->pcrlen);
2817 		break;
2818 
2819 	default:
2820 		return -ENOPROTOOPT;
2821 	}
2822 
2823 	if (put_user(len, optlen))
2824 		return -EFAULT;
2825 	if (copy_to_user(optval, &val, len))
2826 		return -EFAULT;
2827 	return 0;
2828 }
2829 EXPORT_SYMBOL(udp_lib_getsockopt);
2830 
2831 int udp_getsockopt(struct sock *sk, int level, int optname,
2832 		   char __user *optval, int __user *optlen)
2833 {
2834 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2835 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2836 	return ip_getsockopt(sk, level, optname, optval, optlen);
2837 }
2838 
2839 /**
2840  * 	udp_poll - wait for a UDP event.
2841  *	@file: - file struct
2842  *	@sock: - socket
2843  *	@wait: - poll table
2844  *
2845  *	This is same as datagram poll, except for the special case of
2846  *	blocking sockets. If application is using a blocking fd
2847  *	and a packet with checksum error is in the queue;
2848  *	then it could get return from select indicating data available
2849  *	but then block when reading it. Add special case code
2850  *	to work around these arguably broken applications.
2851  */
2852 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2853 {
2854 	__poll_t mask = datagram_poll(file, sock, wait);
2855 	struct sock *sk = sock->sk;
2856 
2857 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2858 		mask |= EPOLLIN | EPOLLRDNORM;
2859 
2860 	/* Check for false positives due to checksum errors */
2861 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2862 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2863 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2864 
2865 	/* psock ingress_msg queue should not contain any bad checksum frames */
2866 	if (sk_is_readable(sk))
2867 		mask |= EPOLLIN | EPOLLRDNORM;
2868 	return mask;
2869 
2870 }
2871 EXPORT_SYMBOL(udp_poll);
2872 
2873 int udp_abort(struct sock *sk, int err)
2874 {
2875 	if (!has_current_bpf_ctx())
2876 		lock_sock(sk);
2877 
2878 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2879 	 * with close()
2880 	 */
2881 	if (sock_flag(sk, SOCK_DEAD))
2882 		goto out;
2883 
2884 	sk->sk_err = err;
2885 	sk_error_report(sk);
2886 	__udp_disconnect(sk, 0);
2887 
2888 out:
2889 	if (!has_current_bpf_ctx())
2890 		release_sock(sk);
2891 
2892 	return 0;
2893 }
2894 EXPORT_SYMBOL_GPL(udp_abort);
2895 
2896 struct proto udp_prot = {
2897 	.name			= "UDP",
2898 	.owner			= THIS_MODULE,
2899 	.close			= udp_lib_close,
2900 	.pre_connect		= udp_pre_connect,
2901 	.connect		= ip4_datagram_connect,
2902 	.disconnect		= udp_disconnect,
2903 	.ioctl			= udp_ioctl,
2904 	.init			= udp_init_sock,
2905 	.destroy		= udp_destroy_sock,
2906 	.setsockopt		= udp_setsockopt,
2907 	.getsockopt		= udp_getsockopt,
2908 	.sendmsg		= udp_sendmsg,
2909 	.recvmsg		= udp_recvmsg,
2910 	.splice_eof		= udp_splice_eof,
2911 	.release_cb		= ip4_datagram_release_cb,
2912 	.hash			= udp_lib_hash,
2913 	.unhash			= udp_lib_unhash,
2914 	.rehash			= udp_v4_rehash,
2915 	.get_port		= udp_v4_get_port,
2916 	.put_port		= udp_lib_unhash,
2917 #ifdef CONFIG_BPF_SYSCALL
2918 	.psock_update_sk_prot	= udp_bpf_update_proto,
2919 #endif
2920 	.memory_allocated	= &udp_memory_allocated,
2921 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2922 
2923 	.sysctl_mem		= sysctl_udp_mem,
2924 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2925 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2926 	.obj_size		= sizeof(struct udp_sock),
2927 	.h.udp_table		= NULL,
2928 	.diag_destroy		= udp_abort,
2929 };
2930 EXPORT_SYMBOL(udp_prot);
2931 
2932 /* ------------------------------------------------------------------------ */
2933 #ifdef CONFIG_PROC_FS
2934 
2935 static unsigned short seq_file_family(const struct seq_file *seq);
2936 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2937 {
2938 	unsigned short family = seq_file_family(seq);
2939 
2940 	/* AF_UNSPEC is used as a match all */
2941 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2942 		net_eq(sock_net(sk), seq_file_net(seq)));
2943 }
2944 
2945 #ifdef CONFIG_BPF_SYSCALL
2946 static const struct seq_operations bpf_iter_udp_seq_ops;
2947 #endif
2948 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2949 					   struct net *net)
2950 {
2951 	const struct udp_seq_afinfo *afinfo;
2952 
2953 #ifdef CONFIG_BPF_SYSCALL
2954 	if (seq->op == &bpf_iter_udp_seq_ops)
2955 		return net->ipv4.udp_table;
2956 #endif
2957 
2958 	afinfo = pde_data(file_inode(seq->file));
2959 	return afinfo->udp_table ? : net->ipv4.udp_table;
2960 }
2961 
2962 static struct sock *udp_get_first(struct seq_file *seq, int start)
2963 {
2964 	struct udp_iter_state *state = seq->private;
2965 	struct net *net = seq_file_net(seq);
2966 	struct udp_table *udptable;
2967 	struct sock *sk;
2968 
2969 	udptable = udp_get_table_seq(seq, net);
2970 
2971 	for (state->bucket = start; state->bucket <= udptable->mask;
2972 	     ++state->bucket) {
2973 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
2974 
2975 		if (hlist_empty(&hslot->head))
2976 			continue;
2977 
2978 		spin_lock_bh(&hslot->lock);
2979 		sk_for_each(sk, &hslot->head) {
2980 			if (seq_sk_match(seq, sk))
2981 				goto found;
2982 		}
2983 		spin_unlock_bh(&hslot->lock);
2984 	}
2985 	sk = NULL;
2986 found:
2987 	return sk;
2988 }
2989 
2990 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2991 {
2992 	struct udp_iter_state *state = seq->private;
2993 	struct net *net = seq_file_net(seq);
2994 	struct udp_table *udptable;
2995 
2996 	do {
2997 		sk = sk_next(sk);
2998 	} while (sk && !seq_sk_match(seq, sk));
2999 
3000 	if (!sk) {
3001 		udptable = udp_get_table_seq(seq, net);
3002 
3003 		if (state->bucket <= udptable->mask)
3004 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3005 
3006 		return udp_get_first(seq, state->bucket + 1);
3007 	}
3008 	return sk;
3009 }
3010 
3011 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3012 {
3013 	struct sock *sk = udp_get_first(seq, 0);
3014 
3015 	if (sk)
3016 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3017 			--pos;
3018 	return pos ? NULL : sk;
3019 }
3020 
3021 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3022 {
3023 	struct udp_iter_state *state = seq->private;
3024 	state->bucket = MAX_UDP_PORTS;
3025 
3026 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3027 }
3028 EXPORT_SYMBOL(udp_seq_start);
3029 
3030 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3031 {
3032 	struct sock *sk;
3033 
3034 	if (v == SEQ_START_TOKEN)
3035 		sk = udp_get_idx(seq, 0);
3036 	else
3037 		sk = udp_get_next(seq, v);
3038 
3039 	++*pos;
3040 	return sk;
3041 }
3042 EXPORT_SYMBOL(udp_seq_next);
3043 
3044 void udp_seq_stop(struct seq_file *seq, void *v)
3045 {
3046 	struct udp_iter_state *state = seq->private;
3047 	struct udp_table *udptable;
3048 
3049 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3050 
3051 	if (state->bucket <= udptable->mask)
3052 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3053 }
3054 EXPORT_SYMBOL(udp_seq_stop);
3055 
3056 /* ------------------------------------------------------------------------ */
3057 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3058 		int bucket)
3059 {
3060 	struct inet_sock *inet = inet_sk(sp);
3061 	__be32 dest = inet->inet_daddr;
3062 	__be32 src  = inet->inet_rcv_saddr;
3063 	__u16 destp	  = ntohs(inet->inet_dport);
3064 	__u16 srcp	  = ntohs(inet->inet_sport);
3065 
3066 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3067 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3068 		bucket, src, srcp, dest, destp, sp->sk_state,
3069 		sk_wmem_alloc_get(sp),
3070 		udp_rqueue_get(sp),
3071 		0, 0L, 0,
3072 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3073 		0, sock_i_ino(sp),
3074 		refcount_read(&sp->sk_refcnt), sp,
3075 		atomic_read(&sp->sk_drops));
3076 }
3077 
3078 int udp4_seq_show(struct seq_file *seq, void *v)
3079 {
3080 	seq_setwidth(seq, 127);
3081 	if (v == SEQ_START_TOKEN)
3082 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3083 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3084 			   "inode ref pointer drops");
3085 	else {
3086 		struct udp_iter_state *state = seq->private;
3087 
3088 		udp4_format_sock(v, seq, state->bucket);
3089 	}
3090 	seq_pad(seq, '\n');
3091 	return 0;
3092 }
3093 
3094 #ifdef CONFIG_BPF_SYSCALL
3095 struct bpf_iter__udp {
3096 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3097 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3098 	uid_t uid __aligned(8);
3099 	int bucket __aligned(8);
3100 };
3101 
3102 struct bpf_udp_iter_state {
3103 	struct udp_iter_state state;
3104 	unsigned int cur_sk;
3105 	unsigned int end_sk;
3106 	unsigned int max_sk;
3107 	int offset;
3108 	struct sock **batch;
3109 	bool st_bucket_done;
3110 };
3111 
3112 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3113 				      unsigned int new_batch_sz);
3114 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3115 {
3116 	struct bpf_udp_iter_state *iter = seq->private;
3117 	struct udp_iter_state *state = &iter->state;
3118 	struct net *net = seq_file_net(seq);
3119 	struct udp_table *udptable;
3120 	unsigned int batch_sks = 0;
3121 	bool resized = false;
3122 	struct sock *sk;
3123 
3124 	/* The current batch is done, so advance the bucket. */
3125 	if (iter->st_bucket_done) {
3126 		state->bucket++;
3127 		iter->offset = 0;
3128 	}
3129 
3130 	udptable = udp_get_table_seq(seq, net);
3131 
3132 again:
3133 	/* New batch for the next bucket.
3134 	 * Iterate over the hash table to find a bucket with sockets matching
3135 	 * the iterator attributes, and return the first matching socket from
3136 	 * the bucket. The remaining matched sockets from the bucket are batched
3137 	 * before releasing the bucket lock. This allows BPF programs that are
3138 	 * called in seq_show to acquire the bucket lock if needed.
3139 	 */
3140 	iter->cur_sk = 0;
3141 	iter->end_sk = 0;
3142 	iter->st_bucket_done = false;
3143 	batch_sks = 0;
3144 
3145 	for (; state->bucket <= udptable->mask; state->bucket++) {
3146 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3147 
3148 		if (hlist_empty(&hslot2->head)) {
3149 			iter->offset = 0;
3150 			continue;
3151 		}
3152 
3153 		spin_lock_bh(&hslot2->lock);
3154 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3155 			if (seq_sk_match(seq, sk)) {
3156 				/* Resume from the last iterated socket at the
3157 				 * offset in the bucket before iterator was stopped.
3158 				 */
3159 				if (iter->offset) {
3160 					--iter->offset;
3161 					continue;
3162 				}
3163 				if (iter->end_sk < iter->max_sk) {
3164 					sock_hold(sk);
3165 					iter->batch[iter->end_sk++] = sk;
3166 				}
3167 				batch_sks++;
3168 			}
3169 		}
3170 		spin_unlock_bh(&hslot2->lock);
3171 
3172 		if (iter->end_sk)
3173 			break;
3174 
3175 		/* Reset the current bucket's offset before moving to the next bucket. */
3176 		iter->offset = 0;
3177 	}
3178 
3179 	/* All done: no batch made. */
3180 	if (!iter->end_sk)
3181 		return NULL;
3182 
3183 	if (iter->end_sk == batch_sks) {
3184 		/* Batching is done for the current bucket; return the first
3185 		 * socket to be iterated from the batch.
3186 		 */
3187 		iter->st_bucket_done = true;
3188 		goto done;
3189 	}
3190 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3191 		resized = true;
3192 		/* After allocating a larger batch, retry one more time to grab
3193 		 * the whole bucket.
3194 		 */
3195 		state->bucket--;
3196 		goto again;
3197 	}
3198 done:
3199 	return iter->batch[0];
3200 }
3201 
3202 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3203 {
3204 	struct bpf_udp_iter_state *iter = seq->private;
3205 	struct sock *sk;
3206 
3207 	/* Whenever seq_next() is called, the iter->cur_sk is
3208 	 * done with seq_show(), so unref the iter->cur_sk.
3209 	 */
3210 	if (iter->cur_sk < iter->end_sk) {
3211 		sock_put(iter->batch[iter->cur_sk++]);
3212 		++iter->offset;
3213 	}
3214 
3215 	/* After updating iter->cur_sk, check if there are more sockets
3216 	 * available in the current bucket batch.
3217 	 */
3218 	if (iter->cur_sk < iter->end_sk)
3219 		sk = iter->batch[iter->cur_sk];
3220 	else
3221 		/* Prepare a new batch. */
3222 		sk = bpf_iter_udp_batch(seq);
3223 
3224 	++*pos;
3225 	return sk;
3226 }
3227 
3228 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3229 {
3230 	/* bpf iter does not support lseek, so it always
3231 	 * continue from where it was stop()-ped.
3232 	 */
3233 	if (*pos)
3234 		return bpf_iter_udp_batch(seq);
3235 
3236 	return SEQ_START_TOKEN;
3237 }
3238 
3239 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3240 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3241 {
3242 	struct bpf_iter__udp ctx;
3243 
3244 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3245 	ctx.meta = meta;
3246 	ctx.udp_sk = udp_sk;
3247 	ctx.uid = uid;
3248 	ctx.bucket = bucket;
3249 	return bpf_iter_run_prog(prog, &ctx);
3250 }
3251 
3252 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3253 {
3254 	struct udp_iter_state *state = seq->private;
3255 	struct bpf_iter_meta meta;
3256 	struct bpf_prog *prog;
3257 	struct sock *sk = v;
3258 	uid_t uid;
3259 	int ret;
3260 
3261 	if (v == SEQ_START_TOKEN)
3262 		return 0;
3263 
3264 	lock_sock(sk);
3265 
3266 	if (unlikely(sk_unhashed(sk))) {
3267 		ret = SEQ_SKIP;
3268 		goto unlock;
3269 	}
3270 
3271 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3272 	meta.seq = seq;
3273 	prog = bpf_iter_get_info(&meta, false);
3274 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3275 
3276 unlock:
3277 	release_sock(sk);
3278 	return ret;
3279 }
3280 
3281 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3282 {
3283 	while (iter->cur_sk < iter->end_sk)
3284 		sock_put(iter->batch[iter->cur_sk++]);
3285 }
3286 
3287 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3288 {
3289 	struct bpf_udp_iter_state *iter = seq->private;
3290 	struct bpf_iter_meta meta;
3291 	struct bpf_prog *prog;
3292 
3293 	if (!v) {
3294 		meta.seq = seq;
3295 		prog = bpf_iter_get_info(&meta, true);
3296 		if (prog)
3297 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3298 	}
3299 
3300 	if (iter->cur_sk < iter->end_sk) {
3301 		bpf_iter_udp_put_batch(iter);
3302 		iter->st_bucket_done = false;
3303 	}
3304 }
3305 
3306 static const struct seq_operations bpf_iter_udp_seq_ops = {
3307 	.start		= bpf_iter_udp_seq_start,
3308 	.next		= bpf_iter_udp_seq_next,
3309 	.stop		= bpf_iter_udp_seq_stop,
3310 	.show		= bpf_iter_udp_seq_show,
3311 };
3312 #endif
3313 
3314 static unsigned short seq_file_family(const struct seq_file *seq)
3315 {
3316 	const struct udp_seq_afinfo *afinfo;
3317 
3318 #ifdef CONFIG_BPF_SYSCALL
3319 	/* BPF iterator: bpf programs to filter sockets. */
3320 	if (seq->op == &bpf_iter_udp_seq_ops)
3321 		return AF_UNSPEC;
3322 #endif
3323 
3324 	/* Proc fs iterator */
3325 	afinfo = pde_data(file_inode(seq->file));
3326 	return afinfo->family;
3327 }
3328 
3329 const struct seq_operations udp_seq_ops = {
3330 	.start		= udp_seq_start,
3331 	.next		= udp_seq_next,
3332 	.stop		= udp_seq_stop,
3333 	.show		= udp4_seq_show,
3334 };
3335 EXPORT_SYMBOL(udp_seq_ops);
3336 
3337 static struct udp_seq_afinfo udp4_seq_afinfo = {
3338 	.family		= AF_INET,
3339 	.udp_table	= NULL,
3340 };
3341 
3342 static int __net_init udp4_proc_init_net(struct net *net)
3343 {
3344 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3345 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3346 		return -ENOMEM;
3347 	return 0;
3348 }
3349 
3350 static void __net_exit udp4_proc_exit_net(struct net *net)
3351 {
3352 	remove_proc_entry("udp", net->proc_net);
3353 }
3354 
3355 static struct pernet_operations udp4_net_ops = {
3356 	.init = udp4_proc_init_net,
3357 	.exit = udp4_proc_exit_net,
3358 };
3359 
3360 int __init udp4_proc_init(void)
3361 {
3362 	return register_pernet_subsys(&udp4_net_ops);
3363 }
3364 
3365 void udp4_proc_exit(void)
3366 {
3367 	unregister_pernet_subsys(&udp4_net_ops);
3368 }
3369 #endif /* CONFIG_PROC_FS */
3370 
3371 static __initdata unsigned long uhash_entries;
3372 static int __init set_uhash_entries(char *str)
3373 {
3374 	ssize_t ret;
3375 
3376 	if (!str)
3377 		return 0;
3378 
3379 	ret = kstrtoul(str, 0, &uhash_entries);
3380 	if (ret)
3381 		return 0;
3382 
3383 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3384 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3385 	return 1;
3386 }
3387 __setup("uhash_entries=", set_uhash_entries);
3388 
3389 void __init udp_table_init(struct udp_table *table, const char *name)
3390 {
3391 	unsigned int i;
3392 
3393 	table->hash = alloc_large_system_hash(name,
3394 					      2 * sizeof(struct udp_hslot),
3395 					      uhash_entries,
3396 					      21, /* one slot per 2 MB */
3397 					      0,
3398 					      &table->log,
3399 					      &table->mask,
3400 					      UDP_HTABLE_SIZE_MIN,
3401 					      UDP_HTABLE_SIZE_MAX);
3402 
3403 	table->hash2 = table->hash + (table->mask + 1);
3404 	for (i = 0; i <= table->mask; i++) {
3405 		INIT_HLIST_HEAD(&table->hash[i].head);
3406 		table->hash[i].count = 0;
3407 		spin_lock_init(&table->hash[i].lock);
3408 	}
3409 	for (i = 0; i <= table->mask; i++) {
3410 		INIT_HLIST_HEAD(&table->hash2[i].head);
3411 		table->hash2[i].count = 0;
3412 		spin_lock_init(&table->hash2[i].lock);
3413 	}
3414 }
3415 
3416 u32 udp_flow_hashrnd(void)
3417 {
3418 	static u32 hashrnd __read_mostly;
3419 
3420 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3421 
3422 	return hashrnd;
3423 }
3424 EXPORT_SYMBOL(udp_flow_hashrnd);
3425 
3426 static void __net_init udp_sysctl_init(struct net *net)
3427 {
3428 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3429 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3430 
3431 #ifdef CONFIG_NET_L3_MASTER_DEV
3432 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3433 #endif
3434 }
3435 
3436 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3437 {
3438 	struct udp_table *udptable;
3439 	int i;
3440 
3441 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3442 	if (!udptable)
3443 		goto out;
3444 
3445 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3446 				      GFP_KERNEL_ACCOUNT);
3447 	if (!udptable->hash)
3448 		goto free_table;
3449 
3450 	udptable->hash2 = udptable->hash + hash_entries;
3451 	udptable->mask = hash_entries - 1;
3452 	udptable->log = ilog2(hash_entries);
3453 
3454 	for (i = 0; i < hash_entries; i++) {
3455 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3456 		udptable->hash[i].count = 0;
3457 		spin_lock_init(&udptable->hash[i].lock);
3458 
3459 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3460 		udptable->hash2[i].count = 0;
3461 		spin_lock_init(&udptable->hash2[i].lock);
3462 	}
3463 
3464 	return udptable;
3465 
3466 free_table:
3467 	kfree(udptable);
3468 out:
3469 	return NULL;
3470 }
3471 
3472 static void __net_exit udp_pernet_table_free(struct net *net)
3473 {
3474 	struct udp_table *udptable = net->ipv4.udp_table;
3475 
3476 	if (udptable == &udp_table)
3477 		return;
3478 
3479 	kvfree(udptable->hash);
3480 	kfree(udptable);
3481 }
3482 
3483 static void __net_init udp_set_table(struct net *net)
3484 {
3485 	struct udp_table *udptable;
3486 	unsigned int hash_entries;
3487 	struct net *old_net;
3488 
3489 	if (net_eq(net, &init_net))
3490 		goto fallback;
3491 
3492 	old_net = current->nsproxy->net_ns;
3493 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3494 	if (!hash_entries)
3495 		goto fallback;
3496 
3497 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3498 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3499 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3500 	else
3501 		hash_entries = roundup_pow_of_two(hash_entries);
3502 
3503 	udptable = udp_pernet_table_alloc(hash_entries);
3504 	if (udptable) {
3505 		net->ipv4.udp_table = udptable;
3506 	} else {
3507 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3508 			"for a netns, fallback to the global one\n",
3509 			hash_entries);
3510 fallback:
3511 		net->ipv4.udp_table = &udp_table;
3512 	}
3513 }
3514 
3515 static int __net_init udp_pernet_init(struct net *net)
3516 {
3517 	udp_sysctl_init(net);
3518 	udp_set_table(net);
3519 
3520 	return 0;
3521 }
3522 
3523 static void __net_exit udp_pernet_exit(struct net *net)
3524 {
3525 	udp_pernet_table_free(net);
3526 }
3527 
3528 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3529 	.init	= udp_pernet_init,
3530 	.exit	= udp_pernet_exit,
3531 };
3532 
3533 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3534 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3535 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3536 
3537 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3538 				      unsigned int new_batch_sz)
3539 {
3540 	struct sock **new_batch;
3541 
3542 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3543 				   GFP_USER | __GFP_NOWARN);
3544 	if (!new_batch)
3545 		return -ENOMEM;
3546 
3547 	bpf_iter_udp_put_batch(iter);
3548 	kvfree(iter->batch);
3549 	iter->batch = new_batch;
3550 	iter->max_sk = new_batch_sz;
3551 
3552 	return 0;
3553 }
3554 
3555 #define INIT_BATCH_SZ 16
3556 
3557 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3558 {
3559 	struct bpf_udp_iter_state *iter = priv_data;
3560 	int ret;
3561 
3562 	ret = bpf_iter_init_seq_net(priv_data, aux);
3563 	if (ret)
3564 		return ret;
3565 
3566 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3567 	if (ret)
3568 		bpf_iter_fini_seq_net(priv_data);
3569 
3570 	return ret;
3571 }
3572 
3573 static void bpf_iter_fini_udp(void *priv_data)
3574 {
3575 	struct bpf_udp_iter_state *iter = priv_data;
3576 
3577 	bpf_iter_fini_seq_net(priv_data);
3578 	kvfree(iter->batch);
3579 }
3580 
3581 static const struct bpf_iter_seq_info udp_seq_info = {
3582 	.seq_ops		= &bpf_iter_udp_seq_ops,
3583 	.init_seq_private	= bpf_iter_init_udp,
3584 	.fini_seq_private	= bpf_iter_fini_udp,
3585 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3586 };
3587 
3588 static struct bpf_iter_reg udp_reg_info = {
3589 	.target			= "udp",
3590 	.ctx_arg_info_size	= 1,
3591 	.ctx_arg_info		= {
3592 		{ offsetof(struct bpf_iter__udp, udp_sk),
3593 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3594 	},
3595 	.seq_info		= &udp_seq_info,
3596 };
3597 
3598 static void __init bpf_iter_register(void)
3599 {
3600 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3601 	if (bpf_iter_reg_target(&udp_reg_info))
3602 		pr_warn("Warning: could not register bpf iterator udp\n");
3603 }
3604 #endif
3605 
3606 void __init udp_init(void)
3607 {
3608 	unsigned long limit;
3609 	unsigned int i;
3610 
3611 	udp_table_init(&udp_table, "UDP");
3612 	limit = nr_free_buffer_pages() / 8;
3613 	limit = max(limit, 128UL);
3614 	sysctl_udp_mem[0] = limit / 4 * 3;
3615 	sysctl_udp_mem[1] = limit;
3616 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3617 
3618 	/* 16 spinlocks per cpu */
3619 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3620 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3621 				GFP_KERNEL);
3622 	if (!udp_busylocks)
3623 		panic("UDP: failed to alloc udp_busylocks\n");
3624 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3625 		spin_lock_init(udp_busylocks + i);
3626 
3627 	if (register_pernet_subsys(&udp_sysctl_ops))
3628 		panic("UDP: failed to init sysctl parameters.\n");
3629 
3630 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3631 	bpf_iter_register();
3632 #endif
3633 }
3634