1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/gso.h> 107 #include <net/xfrm.h> 108 #include <trace/events/udp.h> 109 #include <linux/static_key.h> 110 #include <linux/btf_ids.h> 111 #include <trace/events/skb.h> 112 #include <net/busy_poll.h> 113 #include "udp_impl.h" 114 #include <net/sock_reuseport.h> 115 #include <net/addrconf.h> 116 #include <net/udp_tunnel.h> 117 #include <net/gro.h> 118 #if IS_ENABLED(CONFIG_IPV6) 119 #include <net/ipv6_stubs.h> 120 #endif 121 122 struct udp_table udp_table __read_mostly; 123 EXPORT_SYMBOL(udp_table); 124 125 long sysctl_udp_mem[3] __read_mostly; 126 EXPORT_SYMBOL(sysctl_udp_mem); 127 128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 129 EXPORT_SYMBOL(udp_memory_allocated); 130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 135 136 static struct udp_table *udp_get_table_prot(struct sock *sk) 137 { 138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 139 } 140 141 static int udp_lib_lport_inuse(struct net *net, __u16 num, 142 const struct udp_hslot *hslot, 143 unsigned long *bitmap, 144 struct sock *sk, unsigned int log) 145 { 146 struct sock *sk2; 147 kuid_t uid = sock_i_uid(sk); 148 149 sk_for_each(sk2, &hslot->head) { 150 if (net_eq(sock_net(sk2), net) && 151 sk2 != sk && 152 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 153 (!sk2->sk_reuse || !sk->sk_reuse) && 154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 156 inet_rcv_saddr_equal(sk, sk2, true)) { 157 if (sk2->sk_reuseport && sk->sk_reuseport && 158 !rcu_access_pointer(sk->sk_reuseport_cb) && 159 uid_eq(uid, sock_i_uid(sk2))) { 160 if (!bitmap) 161 return 0; 162 } else { 163 if (!bitmap) 164 return 1; 165 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 166 bitmap); 167 } 168 } 169 } 170 return 0; 171 } 172 173 /* 174 * Note: we still hold spinlock of primary hash chain, so no other writer 175 * can insert/delete a socket with local_port == num 176 */ 177 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 178 struct udp_hslot *hslot2, 179 struct sock *sk) 180 { 181 struct sock *sk2; 182 kuid_t uid = sock_i_uid(sk); 183 int res = 0; 184 185 spin_lock(&hslot2->lock); 186 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 187 if (net_eq(sock_net(sk2), net) && 188 sk2 != sk && 189 (udp_sk(sk2)->udp_port_hash == num) && 190 (!sk2->sk_reuse || !sk->sk_reuse) && 191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 193 inet_rcv_saddr_equal(sk, sk2, true)) { 194 if (sk2->sk_reuseport && sk->sk_reuseport && 195 !rcu_access_pointer(sk->sk_reuseport_cb) && 196 uid_eq(uid, sock_i_uid(sk2))) { 197 res = 0; 198 } else { 199 res = 1; 200 } 201 break; 202 } 203 } 204 spin_unlock(&hslot2->lock); 205 return res; 206 } 207 208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 209 { 210 struct net *net = sock_net(sk); 211 kuid_t uid = sock_i_uid(sk); 212 struct sock *sk2; 213 214 sk_for_each(sk2, &hslot->head) { 215 if (net_eq(sock_net(sk2), net) && 216 sk2 != sk && 217 sk2->sk_family == sk->sk_family && 218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 222 inet_rcv_saddr_equal(sk, sk2, false)) { 223 return reuseport_add_sock(sk, sk2, 224 inet_rcv_saddr_any(sk)); 225 } 226 } 227 228 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_table *udptable = udp_get_table_prot(sk); 243 struct udp_hslot *hslot, *hslot2; 244 struct net *net = sock_net(sk); 245 int error = -EADDRINUSE; 246 247 if (!snum) { 248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 249 unsigned short first, last; 250 int low, high, remaining; 251 unsigned int rand; 252 253 inet_sk_get_local_port_range(sk, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = get_random_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif) 370 { 371 int score; 372 struct inet_sock *inet; 373 bool dev_match; 374 375 if (!net_eq(sock_net(sk), net) || 376 udp_sk(sk)->udp_port_hash != hnum || 377 ipv6_only_sock(sk)) 378 return -1; 379 380 if (sk->sk_rcv_saddr != daddr) 381 return -1; 382 383 score = (sk->sk_family == PF_INET) ? 2 : 1; 384 385 inet = inet_sk(sk); 386 if (inet->inet_daddr) { 387 if (inet->inet_daddr != saddr) 388 return -1; 389 score += 4; 390 } 391 392 if (inet->inet_dport) { 393 if (inet->inet_dport != sport) 394 return -1; 395 score += 4; 396 } 397 398 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 399 dif, sdif); 400 if (!dev_match) 401 return -1; 402 if (sk->sk_bound_dev_if) 403 score += 4; 404 405 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 406 score++; 407 return score; 408 } 409 410 INDIRECT_CALLABLE_SCOPE 411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 412 const __be32 faddr, const __be16 fport) 413 { 414 static u32 udp_ehash_secret __read_mostly; 415 416 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 417 418 return __inet_ehashfn(laddr, lport, faddr, fport, 419 udp_ehash_secret + net_hash_mix(net)); 420 } 421 422 /* called with rcu_read_lock() */ 423 static struct sock *udp4_lib_lookup2(struct net *net, 424 __be32 saddr, __be16 sport, 425 __be32 daddr, unsigned int hnum, 426 int dif, int sdif, 427 struct udp_hslot *hslot2, 428 struct sk_buff *skb) 429 { 430 struct sock *sk, *result; 431 int score, badness; 432 433 result = NULL; 434 badness = 0; 435 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 436 score = compute_score(sk, net, saddr, sport, 437 daddr, hnum, dif, sdif); 438 if (score > badness) { 439 badness = score; 440 441 if (sk->sk_state == TCP_ESTABLISHED) { 442 result = sk; 443 continue; 444 } 445 446 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 447 saddr, sport, daddr, hnum, udp_ehashfn); 448 if (!result) { 449 result = sk; 450 continue; 451 } 452 453 /* Fall back to scoring if group has connections */ 454 if (!reuseport_has_conns(sk)) 455 return result; 456 457 /* Reuseport logic returned an error, keep original score. */ 458 if (IS_ERR(result)) 459 continue; 460 461 badness = compute_score(result, net, saddr, sport, 462 daddr, hnum, dif, sdif); 463 464 } 465 } 466 return result; 467 } 468 469 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 470 * harder than this. -DaveM 471 */ 472 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 473 __be16 sport, __be32 daddr, __be16 dport, int dif, 474 int sdif, struct udp_table *udptable, struct sk_buff *skb) 475 { 476 unsigned short hnum = ntohs(dport); 477 unsigned int hash2, slot2; 478 struct udp_hslot *hslot2; 479 struct sock *result, *sk; 480 481 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 482 slot2 = hash2 & udptable->mask; 483 hslot2 = &udptable->hash2[slot2]; 484 485 /* Lookup connected or non-wildcard socket */ 486 result = udp4_lib_lookup2(net, saddr, sport, 487 daddr, hnum, dif, sdif, 488 hslot2, skb); 489 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 490 goto done; 491 492 /* Lookup redirect from BPF */ 493 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 494 udptable == net->ipv4.udp_table) { 495 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 496 saddr, sport, daddr, hnum, dif, 497 udp_ehashfn); 498 if (sk) { 499 result = sk; 500 goto done; 501 } 502 } 503 504 /* Got non-wildcard socket or error on first lookup */ 505 if (result) 506 goto done; 507 508 /* Lookup wildcard sockets */ 509 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 510 slot2 = hash2 & udptable->mask; 511 hslot2 = &udptable->hash2[slot2]; 512 513 result = udp4_lib_lookup2(net, saddr, sport, 514 htonl(INADDR_ANY), hnum, dif, sdif, 515 hslot2, skb); 516 done: 517 if (IS_ERR(result)) 518 return NULL; 519 return result; 520 } 521 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 522 523 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 524 __be16 sport, __be16 dport, 525 struct udp_table *udptable) 526 { 527 const struct iphdr *iph = ip_hdr(skb); 528 529 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 530 iph->daddr, dport, inet_iif(skb), 531 inet_sdif(skb), udptable, skb); 532 } 533 534 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 535 __be16 sport, __be16 dport) 536 { 537 const struct iphdr *iph = ip_hdr(skb); 538 struct net *net = dev_net(skb->dev); 539 int iif, sdif; 540 541 inet_get_iif_sdif(skb, &iif, &sdif); 542 543 return __udp4_lib_lookup(net, iph->saddr, sport, 544 iph->daddr, dport, iif, 545 sdif, net->ipv4.udp_table, NULL); 546 } 547 548 /* Must be called under rcu_read_lock(). 549 * Does increment socket refcount. 550 */ 551 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 552 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 553 __be32 daddr, __be16 dport, int dif) 554 { 555 struct sock *sk; 556 557 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 558 dif, 0, net->ipv4.udp_table, NULL); 559 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 560 sk = NULL; 561 return sk; 562 } 563 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 564 #endif 565 566 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 567 __be16 loc_port, __be32 loc_addr, 568 __be16 rmt_port, __be32 rmt_addr, 569 int dif, int sdif, unsigned short hnum) 570 { 571 const struct inet_sock *inet = inet_sk(sk); 572 573 if (!net_eq(sock_net(sk), net) || 574 udp_sk(sk)->udp_port_hash != hnum || 575 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 576 (inet->inet_dport != rmt_port && inet->inet_dport) || 577 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 578 ipv6_only_sock(sk) || 579 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 580 return false; 581 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 582 return false; 583 return true; 584 } 585 586 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 587 void udp_encap_enable(void) 588 { 589 static_branch_inc(&udp_encap_needed_key); 590 } 591 EXPORT_SYMBOL(udp_encap_enable); 592 593 void udp_encap_disable(void) 594 { 595 static_branch_dec(&udp_encap_needed_key); 596 } 597 EXPORT_SYMBOL(udp_encap_disable); 598 599 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 600 * through error handlers in encapsulations looking for a match. 601 */ 602 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 603 { 604 int i; 605 606 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 607 int (*handler)(struct sk_buff *skb, u32 info); 608 const struct ip_tunnel_encap_ops *encap; 609 610 encap = rcu_dereference(iptun_encaps[i]); 611 if (!encap) 612 continue; 613 handler = encap->err_handler; 614 if (handler && !handler(skb, info)) 615 return 0; 616 } 617 618 return -ENOENT; 619 } 620 621 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 622 * reversing source and destination port: this will match tunnels that force the 623 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 624 * lwtunnels might actually break this assumption by being configured with 625 * different destination ports on endpoints, in this case we won't be able to 626 * trace ICMP messages back to them. 627 * 628 * If this doesn't match any socket, probe tunnels with arbitrary destination 629 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 630 * we've sent packets to won't necessarily match the local destination port. 631 * 632 * Then ask the tunnel implementation to match the error against a valid 633 * association. 634 * 635 * Return an error if we can't find a match, the socket if we need further 636 * processing, zero otherwise. 637 */ 638 static struct sock *__udp4_lib_err_encap(struct net *net, 639 const struct iphdr *iph, 640 struct udphdr *uh, 641 struct udp_table *udptable, 642 struct sock *sk, 643 struct sk_buff *skb, u32 info) 644 { 645 int (*lookup)(struct sock *sk, struct sk_buff *skb); 646 int network_offset, transport_offset; 647 struct udp_sock *up; 648 649 network_offset = skb_network_offset(skb); 650 transport_offset = skb_transport_offset(skb); 651 652 /* Network header needs to point to the outer IPv4 header inside ICMP */ 653 skb_reset_network_header(skb); 654 655 /* Transport header needs to point to the UDP header */ 656 skb_set_transport_header(skb, iph->ihl << 2); 657 658 if (sk) { 659 up = udp_sk(sk); 660 661 lookup = READ_ONCE(up->encap_err_lookup); 662 if (lookup && lookup(sk, skb)) 663 sk = NULL; 664 665 goto out; 666 } 667 668 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 669 iph->saddr, uh->dest, skb->dev->ifindex, 0, 670 udptable, NULL); 671 if (sk) { 672 up = udp_sk(sk); 673 674 lookup = READ_ONCE(up->encap_err_lookup); 675 if (!lookup || lookup(sk, skb)) 676 sk = NULL; 677 } 678 679 out: 680 if (!sk) 681 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 682 683 skb_set_transport_header(skb, transport_offset); 684 skb_set_network_header(skb, network_offset); 685 686 return sk; 687 } 688 689 /* 690 * This routine is called by the ICMP module when it gets some 691 * sort of error condition. If err < 0 then the socket should 692 * be closed and the error returned to the user. If err > 0 693 * it's just the icmp type << 8 | icmp code. 694 * Header points to the ip header of the error packet. We move 695 * on past this. Then (as it used to claim before adjustment) 696 * header points to the first 8 bytes of the udp header. We need 697 * to find the appropriate port. 698 */ 699 700 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 701 { 702 struct inet_sock *inet; 703 const struct iphdr *iph = (const struct iphdr *)skb->data; 704 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 705 const int type = icmp_hdr(skb)->type; 706 const int code = icmp_hdr(skb)->code; 707 bool tunnel = false; 708 struct sock *sk; 709 int harderr; 710 int err; 711 struct net *net = dev_net(skb->dev); 712 713 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 714 iph->saddr, uh->source, skb->dev->ifindex, 715 inet_sdif(skb), udptable, NULL); 716 717 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 718 /* No socket for error: try tunnels before discarding */ 719 if (static_branch_unlikely(&udp_encap_needed_key)) { 720 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 721 info); 722 if (!sk) 723 return 0; 724 } else 725 sk = ERR_PTR(-ENOENT); 726 727 if (IS_ERR(sk)) { 728 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 729 return PTR_ERR(sk); 730 } 731 732 tunnel = true; 733 } 734 735 err = 0; 736 harderr = 0; 737 inet = inet_sk(sk); 738 739 switch (type) { 740 default: 741 case ICMP_TIME_EXCEEDED: 742 err = EHOSTUNREACH; 743 break; 744 case ICMP_SOURCE_QUENCH: 745 goto out; 746 case ICMP_PARAMETERPROB: 747 err = EPROTO; 748 harderr = 1; 749 break; 750 case ICMP_DEST_UNREACH: 751 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 752 ipv4_sk_update_pmtu(skb, sk, info); 753 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 754 err = EMSGSIZE; 755 harderr = 1; 756 break; 757 } 758 goto out; 759 } 760 err = EHOSTUNREACH; 761 if (code <= NR_ICMP_UNREACH) { 762 harderr = icmp_err_convert[code].fatal; 763 err = icmp_err_convert[code].errno; 764 } 765 break; 766 case ICMP_REDIRECT: 767 ipv4_sk_redirect(skb, sk); 768 goto out; 769 } 770 771 /* 772 * RFC1122: OK. Passes ICMP errors back to application, as per 773 * 4.1.3.3. 774 */ 775 if (tunnel) { 776 /* ...not for tunnels though: we don't have a sending socket */ 777 if (udp_sk(sk)->encap_err_rcv) 778 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 779 (u8 *)(uh+1)); 780 goto out; 781 } 782 if (!inet_test_bit(RECVERR, sk)) { 783 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 784 goto out; 785 } else 786 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 787 788 sk->sk_err = err; 789 sk_error_report(sk); 790 out: 791 return 0; 792 } 793 794 int udp_err(struct sk_buff *skb, u32 info) 795 { 796 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 797 } 798 799 /* 800 * Throw away all pending data and cancel the corking. Socket is locked. 801 */ 802 void udp_flush_pending_frames(struct sock *sk) 803 { 804 struct udp_sock *up = udp_sk(sk); 805 806 if (up->pending) { 807 up->len = 0; 808 WRITE_ONCE(up->pending, 0); 809 ip_flush_pending_frames(sk); 810 } 811 } 812 EXPORT_SYMBOL(udp_flush_pending_frames); 813 814 /** 815 * udp4_hwcsum - handle outgoing HW checksumming 816 * @skb: sk_buff containing the filled-in UDP header 817 * (checksum field must be zeroed out) 818 * @src: source IP address 819 * @dst: destination IP address 820 */ 821 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 822 { 823 struct udphdr *uh = udp_hdr(skb); 824 int offset = skb_transport_offset(skb); 825 int len = skb->len - offset; 826 int hlen = len; 827 __wsum csum = 0; 828 829 if (!skb_has_frag_list(skb)) { 830 /* 831 * Only one fragment on the socket. 832 */ 833 skb->csum_start = skb_transport_header(skb) - skb->head; 834 skb->csum_offset = offsetof(struct udphdr, check); 835 uh->check = ~csum_tcpudp_magic(src, dst, len, 836 IPPROTO_UDP, 0); 837 } else { 838 struct sk_buff *frags; 839 840 /* 841 * HW-checksum won't work as there are two or more 842 * fragments on the socket so that all csums of sk_buffs 843 * should be together 844 */ 845 skb_walk_frags(skb, frags) { 846 csum = csum_add(csum, frags->csum); 847 hlen -= frags->len; 848 } 849 850 csum = skb_checksum(skb, offset, hlen, csum); 851 skb->ip_summed = CHECKSUM_NONE; 852 853 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 854 if (uh->check == 0) 855 uh->check = CSUM_MANGLED_0; 856 } 857 } 858 EXPORT_SYMBOL_GPL(udp4_hwcsum); 859 860 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 861 * for the simple case like when setting the checksum for a UDP tunnel. 862 */ 863 void udp_set_csum(bool nocheck, struct sk_buff *skb, 864 __be32 saddr, __be32 daddr, int len) 865 { 866 struct udphdr *uh = udp_hdr(skb); 867 868 if (nocheck) { 869 uh->check = 0; 870 } else if (skb_is_gso(skb)) { 871 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 872 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 873 uh->check = 0; 874 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 875 if (uh->check == 0) 876 uh->check = CSUM_MANGLED_0; 877 } else { 878 skb->ip_summed = CHECKSUM_PARTIAL; 879 skb->csum_start = skb_transport_header(skb) - skb->head; 880 skb->csum_offset = offsetof(struct udphdr, check); 881 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 882 } 883 } 884 EXPORT_SYMBOL(udp_set_csum); 885 886 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 887 struct inet_cork *cork) 888 { 889 struct sock *sk = skb->sk; 890 struct inet_sock *inet = inet_sk(sk); 891 struct udphdr *uh; 892 int err; 893 int is_udplite = IS_UDPLITE(sk); 894 int offset = skb_transport_offset(skb); 895 int len = skb->len - offset; 896 int datalen = len - sizeof(*uh); 897 __wsum csum = 0; 898 899 /* 900 * Create a UDP header 901 */ 902 uh = udp_hdr(skb); 903 uh->source = inet->inet_sport; 904 uh->dest = fl4->fl4_dport; 905 uh->len = htons(len); 906 uh->check = 0; 907 908 if (cork->gso_size) { 909 const int hlen = skb_network_header_len(skb) + 910 sizeof(struct udphdr); 911 912 if (hlen + cork->gso_size > cork->fragsize) { 913 kfree_skb(skb); 914 return -EINVAL; 915 } 916 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 917 kfree_skb(skb); 918 return -EINVAL; 919 } 920 if (sk->sk_no_check_tx) { 921 kfree_skb(skb); 922 return -EINVAL; 923 } 924 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 925 dst_xfrm(skb_dst(skb))) { 926 kfree_skb(skb); 927 return -EIO; 928 } 929 930 if (datalen > cork->gso_size) { 931 skb_shinfo(skb)->gso_size = cork->gso_size; 932 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 933 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 934 cork->gso_size); 935 } 936 goto csum_partial; 937 } 938 939 if (is_udplite) /* UDP-Lite */ 940 csum = udplite_csum(skb); 941 942 else if (sk->sk_no_check_tx) { /* UDP csum off */ 943 944 skb->ip_summed = CHECKSUM_NONE; 945 goto send; 946 947 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 948 csum_partial: 949 950 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 951 goto send; 952 953 } else 954 csum = udp_csum(skb); 955 956 /* add protocol-dependent pseudo-header */ 957 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 958 sk->sk_protocol, csum); 959 if (uh->check == 0) 960 uh->check = CSUM_MANGLED_0; 961 962 send: 963 err = ip_send_skb(sock_net(sk), skb); 964 if (err) { 965 if (err == -ENOBUFS && 966 !inet_test_bit(RECVERR, sk)) { 967 UDP_INC_STATS(sock_net(sk), 968 UDP_MIB_SNDBUFERRORS, is_udplite); 969 err = 0; 970 } 971 } else 972 UDP_INC_STATS(sock_net(sk), 973 UDP_MIB_OUTDATAGRAMS, is_udplite); 974 return err; 975 } 976 977 /* 978 * Push out all pending data as one UDP datagram. Socket is locked. 979 */ 980 int udp_push_pending_frames(struct sock *sk) 981 { 982 struct udp_sock *up = udp_sk(sk); 983 struct inet_sock *inet = inet_sk(sk); 984 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 985 struct sk_buff *skb; 986 int err = 0; 987 988 skb = ip_finish_skb(sk, fl4); 989 if (!skb) 990 goto out; 991 992 err = udp_send_skb(skb, fl4, &inet->cork.base); 993 994 out: 995 up->len = 0; 996 WRITE_ONCE(up->pending, 0); 997 return err; 998 } 999 EXPORT_SYMBOL(udp_push_pending_frames); 1000 1001 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1002 { 1003 switch (cmsg->cmsg_type) { 1004 case UDP_SEGMENT: 1005 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1006 return -EINVAL; 1007 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1008 return 0; 1009 default: 1010 return -EINVAL; 1011 } 1012 } 1013 1014 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1015 { 1016 struct cmsghdr *cmsg; 1017 bool need_ip = false; 1018 int err; 1019 1020 for_each_cmsghdr(cmsg, msg) { 1021 if (!CMSG_OK(msg, cmsg)) 1022 return -EINVAL; 1023 1024 if (cmsg->cmsg_level != SOL_UDP) { 1025 need_ip = true; 1026 continue; 1027 } 1028 1029 err = __udp_cmsg_send(cmsg, gso_size); 1030 if (err) 1031 return err; 1032 } 1033 1034 return need_ip; 1035 } 1036 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1037 1038 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1039 { 1040 struct inet_sock *inet = inet_sk(sk); 1041 struct udp_sock *up = udp_sk(sk); 1042 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1043 struct flowi4 fl4_stack; 1044 struct flowi4 *fl4; 1045 int ulen = len; 1046 struct ipcm_cookie ipc; 1047 struct rtable *rt = NULL; 1048 int free = 0; 1049 int connected = 0; 1050 __be32 daddr, faddr, saddr; 1051 u8 tos, scope; 1052 __be16 dport; 1053 int err, is_udplite = IS_UDPLITE(sk); 1054 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1055 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1056 struct sk_buff *skb; 1057 struct ip_options_data opt_copy; 1058 1059 if (len > 0xFFFF) 1060 return -EMSGSIZE; 1061 1062 /* 1063 * Check the flags. 1064 */ 1065 1066 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1067 return -EOPNOTSUPP; 1068 1069 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1070 1071 fl4 = &inet->cork.fl.u.ip4; 1072 if (READ_ONCE(up->pending)) { 1073 /* 1074 * There are pending frames. 1075 * The socket lock must be held while it's corked. 1076 */ 1077 lock_sock(sk); 1078 if (likely(up->pending)) { 1079 if (unlikely(up->pending != AF_INET)) { 1080 release_sock(sk); 1081 return -EINVAL; 1082 } 1083 goto do_append_data; 1084 } 1085 release_sock(sk); 1086 } 1087 ulen += sizeof(struct udphdr); 1088 1089 /* 1090 * Get and verify the address. 1091 */ 1092 if (usin) { 1093 if (msg->msg_namelen < sizeof(*usin)) 1094 return -EINVAL; 1095 if (usin->sin_family != AF_INET) { 1096 if (usin->sin_family != AF_UNSPEC) 1097 return -EAFNOSUPPORT; 1098 } 1099 1100 daddr = usin->sin_addr.s_addr; 1101 dport = usin->sin_port; 1102 if (dport == 0) 1103 return -EINVAL; 1104 } else { 1105 if (sk->sk_state != TCP_ESTABLISHED) 1106 return -EDESTADDRREQ; 1107 daddr = inet->inet_daddr; 1108 dport = inet->inet_dport; 1109 /* Open fast path for connected socket. 1110 Route will not be used, if at least one option is set. 1111 */ 1112 connected = 1; 1113 } 1114 1115 ipcm_init_sk(&ipc, inet); 1116 ipc.gso_size = READ_ONCE(up->gso_size); 1117 1118 if (msg->msg_controllen) { 1119 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1120 if (err > 0) 1121 err = ip_cmsg_send(sk, msg, &ipc, 1122 sk->sk_family == AF_INET6); 1123 if (unlikely(err < 0)) { 1124 kfree(ipc.opt); 1125 return err; 1126 } 1127 if (ipc.opt) 1128 free = 1; 1129 connected = 0; 1130 } 1131 if (!ipc.opt) { 1132 struct ip_options_rcu *inet_opt; 1133 1134 rcu_read_lock(); 1135 inet_opt = rcu_dereference(inet->inet_opt); 1136 if (inet_opt) { 1137 memcpy(&opt_copy, inet_opt, 1138 sizeof(*inet_opt) + inet_opt->opt.optlen); 1139 ipc.opt = &opt_copy.opt; 1140 } 1141 rcu_read_unlock(); 1142 } 1143 1144 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1145 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1146 (struct sockaddr *)usin, 1147 &msg->msg_namelen, 1148 &ipc.addr); 1149 if (err) 1150 goto out_free; 1151 if (usin) { 1152 if (usin->sin_port == 0) { 1153 /* BPF program set invalid port. Reject it. */ 1154 err = -EINVAL; 1155 goto out_free; 1156 } 1157 daddr = usin->sin_addr.s_addr; 1158 dport = usin->sin_port; 1159 } 1160 } 1161 1162 saddr = ipc.addr; 1163 ipc.addr = faddr = daddr; 1164 1165 if (ipc.opt && ipc.opt->opt.srr) { 1166 if (!daddr) { 1167 err = -EINVAL; 1168 goto out_free; 1169 } 1170 faddr = ipc.opt->opt.faddr; 1171 connected = 0; 1172 } 1173 tos = get_rttos(&ipc, inet); 1174 scope = ip_sendmsg_scope(inet, &ipc, msg); 1175 if (scope == RT_SCOPE_LINK) 1176 connected = 0; 1177 1178 if (ipv4_is_multicast(daddr)) { 1179 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1180 ipc.oif = inet->mc_index; 1181 if (!saddr) 1182 saddr = inet->mc_addr; 1183 connected = 0; 1184 } else if (!ipc.oif) { 1185 ipc.oif = inet->uc_index; 1186 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1187 /* oif is set, packet is to local broadcast and 1188 * uc_index is set. oif is most likely set 1189 * by sk_bound_dev_if. If uc_index != oif check if the 1190 * oif is an L3 master and uc_index is an L3 slave. 1191 * If so, we want to allow the send using the uc_index. 1192 */ 1193 if (ipc.oif != inet->uc_index && 1194 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1195 inet->uc_index)) { 1196 ipc.oif = inet->uc_index; 1197 } 1198 } 1199 1200 if (connected) 1201 rt = (struct rtable *)sk_dst_check(sk, 0); 1202 1203 if (!rt) { 1204 struct net *net = sock_net(sk); 1205 __u8 flow_flags = inet_sk_flowi_flags(sk); 1206 1207 fl4 = &fl4_stack; 1208 1209 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1210 sk->sk_protocol, flow_flags, faddr, saddr, 1211 dport, inet->inet_sport, sk->sk_uid); 1212 1213 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1214 rt = ip_route_output_flow(net, fl4, sk); 1215 if (IS_ERR(rt)) { 1216 err = PTR_ERR(rt); 1217 rt = NULL; 1218 if (err == -ENETUNREACH) 1219 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1220 goto out; 1221 } 1222 1223 err = -EACCES; 1224 if ((rt->rt_flags & RTCF_BROADCAST) && 1225 !sock_flag(sk, SOCK_BROADCAST)) 1226 goto out; 1227 if (connected) 1228 sk_dst_set(sk, dst_clone(&rt->dst)); 1229 } 1230 1231 if (msg->msg_flags&MSG_CONFIRM) 1232 goto do_confirm; 1233 back_from_confirm: 1234 1235 saddr = fl4->saddr; 1236 if (!ipc.addr) 1237 daddr = ipc.addr = fl4->daddr; 1238 1239 /* Lockless fast path for the non-corking case. */ 1240 if (!corkreq) { 1241 struct inet_cork cork; 1242 1243 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1244 sizeof(struct udphdr), &ipc, &rt, 1245 &cork, msg->msg_flags); 1246 err = PTR_ERR(skb); 1247 if (!IS_ERR_OR_NULL(skb)) 1248 err = udp_send_skb(skb, fl4, &cork); 1249 goto out; 1250 } 1251 1252 lock_sock(sk); 1253 if (unlikely(up->pending)) { 1254 /* The socket is already corked while preparing it. */ 1255 /* ... which is an evident application bug. --ANK */ 1256 release_sock(sk); 1257 1258 net_dbg_ratelimited("socket already corked\n"); 1259 err = -EINVAL; 1260 goto out; 1261 } 1262 /* 1263 * Now cork the socket to pend data. 1264 */ 1265 fl4 = &inet->cork.fl.u.ip4; 1266 fl4->daddr = daddr; 1267 fl4->saddr = saddr; 1268 fl4->fl4_dport = dport; 1269 fl4->fl4_sport = inet->inet_sport; 1270 WRITE_ONCE(up->pending, AF_INET); 1271 1272 do_append_data: 1273 up->len += ulen; 1274 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1275 sizeof(struct udphdr), &ipc, &rt, 1276 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1277 if (err) 1278 udp_flush_pending_frames(sk); 1279 else if (!corkreq) 1280 err = udp_push_pending_frames(sk); 1281 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1282 WRITE_ONCE(up->pending, 0); 1283 release_sock(sk); 1284 1285 out: 1286 ip_rt_put(rt); 1287 out_free: 1288 if (free) 1289 kfree(ipc.opt); 1290 if (!err) 1291 return len; 1292 /* 1293 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1294 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1295 * we don't have a good statistic (IpOutDiscards but it can be too many 1296 * things). We could add another new stat but at least for now that 1297 * seems like overkill. 1298 */ 1299 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1300 UDP_INC_STATS(sock_net(sk), 1301 UDP_MIB_SNDBUFERRORS, is_udplite); 1302 } 1303 return err; 1304 1305 do_confirm: 1306 if (msg->msg_flags & MSG_PROBE) 1307 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1308 if (!(msg->msg_flags&MSG_PROBE) || len) 1309 goto back_from_confirm; 1310 err = 0; 1311 goto out; 1312 } 1313 EXPORT_SYMBOL(udp_sendmsg); 1314 1315 void udp_splice_eof(struct socket *sock) 1316 { 1317 struct sock *sk = sock->sk; 1318 struct udp_sock *up = udp_sk(sk); 1319 1320 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1321 return; 1322 1323 lock_sock(sk); 1324 if (up->pending && !udp_test_bit(CORK, sk)) 1325 udp_push_pending_frames(sk); 1326 release_sock(sk); 1327 } 1328 EXPORT_SYMBOL_GPL(udp_splice_eof); 1329 1330 #define UDP_SKB_IS_STATELESS 0x80000000 1331 1332 /* all head states (dst, sk, nf conntrack) except skb extensions are 1333 * cleared by udp_rcv(). 1334 * 1335 * We need to preserve secpath, if present, to eventually process 1336 * IP_CMSG_PASSSEC at recvmsg() time. 1337 * 1338 * Other extensions can be cleared. 1339 */ 1340 static bool udp_try_make_stateless(struct sk_buff *skb) 1341 { 1342 if (!skb_has_extensions(skb)) 1343 return true; 1344 1345 if (!secpath_exists(skb)) { 1346 skb_ext_reset(skb); 1347 return true; 1348 } 1349 1350 return false; 1351 } 1352 1353 static void udp_set_dev_scratch(struct sk_buff *skb) 1354 { 1355 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1356 1357 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1358 scratch->_tsize_state = skb->truesize; 1359 #if BITS_PER_LONG == 64 1360 scratch->len = skb->len; 1361 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1362 scratch->is_linear = !skb_is_nonlinear(skb); 1363 #endif 1364 if (udp_try_make_stateless(skb)) 1365 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1366 } 1367 1368 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1369 { 1370 /* We come here after udp_lib_checksum_complete() returned 0. 1371 * This means that __skb_checksum_complete() might have 1372 * set skb->csum_valid to 1. 1373 * On 64bit platforms, we can set csum_unnecessary 1374 * to true, but only if the skb is not shared. 1375 */ 1376 #if BITS_PER_LONG == 64 1377 if (!skb_shared(skb)) 1378 udp_skb_scratch(skb)->csum_unnecessary = true; 1379 #endif 1380 } 1381 1382 static int udp_skb_truesize(struct sk_buff *skb) 1383 { 1384 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1385 } 1386 1387 static bool udp_skb_has_head_state(struct sk_buff *skb) 1388 { 1389 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1390 } 1391 1392 /* fully reclaim rmem/fwd memory allocated for skb */ 1393 static void udp_rmem_release(struct sock *sk, int size, int partial, 1394 bool rx_queue_lock_held) 1395 { 1396 struct udp_sock *up = udp_sk(sk); 1397 struct sk_buff_head *sk_queue; 1398 int amt; 1399 1400 if (likely(partial)) { 1401 up->forward_deficit += size; 1402 size = up->forward_deficit; 1403 if (size < READ_ONCE(up->forward_threshold) && 1404 !skb_queue_empty(&up->reader_queue)) 1405 return; 1406 } else { 1407 size += up->forward_deficit; 1408 } 1409 up->forward_deficit = 0; 1410 1411 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1412 * if the called don't held it already 1413 */ 1414 sk_queue = &sk->sk_receive_queue; 1415 if (!rx_queue_lock_held) 1416 spin_lock(&sk_queue->lock); 1417 1418 1419 sk_forward_alloc_add(sk, size); 1420 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1421 sk_forward_alloc_add(sk, -amt); 1422 1423 if (amt) 1424 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1425 1426 atomic_sub(size, &sk->sk_rmem_alloc); 1427 1428 /* this can save us from acquiring the rx queue lock on next receive */ 1429 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1430 1431 if (!rx_queue_lock_held) 1432 spin_unlock(&sk_queue->lock); 1433 } 1434 1435 /* Note: called with reader_queue.lock held. 1436 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1437 * This avoids a cache line miss while receive_queue lock is held. 1438 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1439 */ 1440 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1441 { 1442 prefetch(&skb->data); 1443 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1444 } 1445 EXPORT_SYMBOL(udp_skb_destructor); 1446 1447 /* as above, but the caller held the rx queue lock, too */ 1448 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1449 { 1450 prefetch(&skb->data); 1451 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1452 } 1453 1454 /* Idea of busylocks is to let producers grab an extra spinlock 1455 * to relieve pressure on the receive_queue spinlock shared by consumer. 1456 * Under flood, this means that only one producer can be in line 1457 * trying to acquire the receive_queue spinlock. 1458 * These busylock can be allocated on a per cpu manner, instead of a 1459 * per socket one (that would consume a cache line per socket) 1460 */ 1461 static int udp_busylocks_log __read_mostly; 1462 static spinlock_t *udp_busylocks __read_mostly; 1463 1464 static spinlock_t *busylock_acquire(void *ptr) 1465 { 1466 spinlock_t *busy; 1467 1468 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1469 spin_lock(busy); 1470 return busy; 1471 } 1472 1473 static void busylock_release(spinlock_t *busy) 1474 { 1475 if (busy) 1476 spin_unlock(busy); 1477 } 1478 1479 static int udp_rmem_schedule(struct sock *sk, int size) 1480 { 1481 int delta; 1482 1483 delta = size - sk->sk_forward_alloc; 1484 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1485 return -ENOBUFS; 1486 1487 return 0; 1488 } 1489 1490 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1491 { 1492 struct sk_buff_head *list = &sk->sk_receive_queue; 1493 int rmem, err = -ENOMEM; 1494 spinlock_t *busy = NULL; 1495 int size; 1496 1497 /* try to avoid the costly atomic add/sub pair when the receive 1498 * queue is full; always allow at least a packet 1499 */ 1500 rmem = atomic_read(&sk->sk_rmem_alloc); 1501 if (rmem > sk->sk_rcvbuf) 1502 goto drop; 1503 1504 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1505 * having linear skbs : 1506 * - Reduce memory overhead and thus increase receive queue capacity 1507 * - Less cache line misses at copyout() time 1508 * - Less work at consume_skb() (less alien page frag freeing) 1509 */ 1510 if (rmem > (sk->sk_rcvbuf >> 1)) { 1511 skb_condense(skb); 1512 1513 busy = busylock_acquire(sk); 1514 } 1515 size = skb->truesize; 1516 udp_set_dev_scratch(skb); 1517 1518 /* we drop only if the receive buf is full and the receive 1519 * queue contains some other skb 1520 */ 1521 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1522 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1523 goto uncharge_drop; 1524 1525 spin_lock(&list->lock); 1526 err = udp_rmem_schedule(sk, size); 1527 if (err) { 1528 spin_unlock(&list->lock); 1529 goto uncharge_drop; 1530 } 1531 1532 sk_forward_alloc_add(sk, -size); 1533 1534 /* no need to setup a destructor, we will explicitly release the 1535 * forward allocated memory on dequeue 1536 */ 1537 sock_skb_set_dropcount(sk, skb); 1538 1539 __skb_queue_tail(list, skb); 1540 spin_unlock(&list->lock); 1541 1542 if (!sock_flag(sk, SOCK_DEAD)) 1543 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); 1544 1545 busylock_release(busy); 1546 return 0; 1547 1548 uncharge_drop: 1549 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1550 1551 drop: 1552 atomic_inc(&sk->sk_drops); 1553 busylock_release(busy); 1554 return err; 1555 } 1556 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1557 1558 void udp_destruct_common(struct sock *sk) 1559 { 1560 /* reclaim completely the forward allocated memory */ 1561 struct udp_sock *up = udp_sk(sk); 1562 unsigned int total = 0; 1563 struct sk_buff *skb; 1564 1565 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1566 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1567 total += skb->truesize; 1568 kfree_skb(skb); 1569 } 1570 udp_rmem_release(sk, total, 0, true); 1571 } 1572 EXPORT_SYMBOL_GPL(udp_destruct_common); 1573 1574 static void udp_destruct_sock(struct sock *sk) 1575 { 1576 udp_destruct_common(sk); 1577 inet_sock_destruct(sk); 1578 } 1579 1580 int udp_init_sock(struct sock *sk) 1581 { 1582 udp_lib_init_sock(sk); 1583 sk->sk_destruct = udp_destruct_sock; 1584 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1585 return 0; 1586 } 1587 1588 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1589 { 1590 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1591 bool slow = lock_sock_fast(sk); 1592 1593 sk_peek_offset_bwd(sk, len); 1594 unlock_sock_fast(sk, slow); 1595 } 1596 1597 if (!skb_unref(skb)) 1598 return; 1599 1600 /* In the more common cases we cleared the head states previously, 1601 * see __udp_queue_rcv_skb(). 1602 */ 1603 if (unlikely(udp_skb_has_head_state(skb))) 1604 skb_release_head_state(skb); 1605 __consume_stateless_skb(skb); 1606 } 1607 EXPORT_SYMBOL_GPL(skb_consume_udp); 1608 1609 static struct sk_buff *__first_packet_length(struct sock *sk, 1610 struct sk_buff_head *rcvq, 1611 int *total) 1612 { 1613 struct sk_buff *skb; 1614 1615 while ((skb = skb_peek(rcvq)) != NULL) { 1616 if (udp_lib_checksum_complete(skb)) { 1617 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1618 IS_UDPLITE(sk)); 1619 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1620 IS_UDPLITE(sk)); 1621 atomic_inc(&sk->sk_drops); 1622 __skb_unlink(skb, rcvq); 1623 *total += skb->truesize; 1624 kfree_skb(skb); 1625 } else { 1626 udp_skb_csum_unnecessary_set(skb); 1627 break; 1628 } 1629 } 1630 return skb; 1631 } 1632 1633 /** 1634 * first_packet_length - return length of first packet in receive queue 1635 * @sk: socket 1636 * 1637 * Drops all bad checksum frames, until a valid one is found. 1638 * Returns the length of found skb, or -1 if none is found. 1639 */ 1640 static int first_packet_length(struct sock *sk) 1641 { 1642 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1643 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1644 struct sk_buff *skb; 1645 int total = 0; 1646 int res; 1647 1648 spin_lock_bh(&rcvq->lock); 1649 skb = __first_packet_length(sk, rcvq, &total); 1650 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1651 spin_lock(&sk_queue->lock); 1652 skb_queue_splice_tail_init(sk_queue, rcvq); 1653 spin_unlock(&sk_queue->lock); 1654 1655 skb = __first_packet_length(sk, rcvq, &total); 1656 } 1657 res = skb ? skb->len : -1; 1658 if (total) 1659 udp_rmem_release(sk, total, 1, false); 1660 spin_unlock_bh(&rcvq->lock); 1661 return res; 1662 } 1663 1664 /* 1665 * IOCTL requests applicable to the UDP protocol 1666 */ 1667 1668 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1669 { 1670 switch (cmd) { 1671 case SIOCOUTQ: 1672 { 1673 *karg = sk_wmem_alloc_get(sk); 1674 return 0; 1675 } 1676 1677 case SIOCINQ: 1678 { 1679 *karg = max_t(int, 0, first_packet_length(sk)); 1680 return 0; 1681 } 1682 1683 default: 1684 return -ENOIOCTLCMD; 1685 } 1686 1687 return 0; 1688 } 1689 EXPORT_SYMBOL(udp_ioctl); 1690 1691 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1692 int *off, int *err) 1693 { 1694 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1695 struct sk_buff_head *queue; 1696 struct sk_buff *last; 1697 long timeo; 1698 int error; 1699 1700 queue = &udp_sk(sk)->reader_queue; 1701 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1702 do { 1703 struct sk_buff *skb; 1704 1705 error = sock_error(sk); 1706 if (error) 1707 break; 1708 1709 error = -EAGAIN; 1710 do { 1711 spin_lock_bh(&queue->lock); 1712 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1713 err, &last); 1714 if (skb) { 1715 if (!(flags & MSG_PEEK)) 1716 udp_skb_destructor(sk, skb); 1717 spin_unlock_bh(&queue->lock); 1718 return skb; 1719 } 1720 1721 if (skb_queue_empty_lockless(sk_queue)) { 1722 spin_unlock_bh(&queue->lock); 1723 goto busy_check; 1724 } 1725 1726 /* refill the reader queue and walk it again 1727 * keep both queues locked to avoid re-acquiring 1728 * the sk_receive_queue lock if fwd memory scheduling 1729 * is needed. 1730 */ 1731 spin_lock(&sk_queue->lock); 1732 skb_queue_splice_tail_init(sk_queue, queue); 1733 1734 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1735 err, &last); 1736 if (skb && !(flags & MSG_PEEK)) 1737 udp_skb_dtor_locked(sk, skb); 1738 spin_unlock(&sk_queue->lock); 1739 spin_unlock_bh(&queue->lock); 1740 if (skb) 1741 return skb; 1742 1743 busy_check: 1744 if (!sk_can_busy_loop(sk)) 1745 break; 1746 1747 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1748 } while (!skb_queue_empty_lockless(sk_queue)); 1749 1750 /* sk_queue is empty, reader_queue may contain peeked packets */ 1751 } while (timeo && 1752 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1753 &error, &timeo, 1754 (struct sk_buff *)sk_queue)); 1755 1756 *err = error; 1757 return NULL; 1758 } 1759 EXPORT_SYMBOL(__skb_recv_udp); 1760 1761 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1762 { 1763 struct sk_buff *skb; 1764 int err; 1765 1766 try_again: 1767 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1768 if (!skb) 1769 return err; 1770 1771 if (udp_lib_checksum_complete(skb)) { 1772 int is_udplite = IS_UDPLITE(sk); 1773 struct net *net = sock_net(sk); 1774 1775 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1776 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1777 atomic_inc(&sk->sk_drops); 1778 kfree_skb(skb); 1779 goto try_again; 1780 } 1781 1782 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1783 return recv_actor(sk, skb); 1784 } 1785 EXPORT_SYMBOL(udp_read_skb); 1786 1787 /* 1788 * This should be easy, if there is something there we 1789 * return it, otherwise we block. 1790 */ 1791 1792 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1793 int *addr_len) 1794 { 1795 struct inet_sock *inet = inet_sk(sk); 1796 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1797 struct sk_buff *skb; 1798 unsigned int ulen, copied; 1799 int off, err, peeking = flags & MSG_PEEK; 1800 int is_udplite = IS_UDPLITE(sk); 1801 bool checksum_valid = false; 1802 1803 if (flags & MSG_ERRQUEUE) 1804 return ip_recv_error(sk, msg, len, addr_len); 1805 1806 try_again: 1807 off = sk_peek_offset(sk, flags); 1808 skb = __skb_recv_udp(sk, flags, &off, &err); 1809 if (!skb) 1810 return err; 1811 1812 ulen = udp_skb_len(skb); 1813 copied = len; 1814 if (copied > ulen - off) 1815 copied = ulen - off; 1816 else if (copied < ulen) 1817 msg->msg_flags |= MSG_TRUNC; 1818 1819 /* 1820 * If checksum is needed at all, try to do it while copying the 1821 * data. If the data is truncated, or if we only want a partial 1822 * coverage checksum (UDP-Lite), do it before the copy. 1823 */ 1824 1825 if (copied < ulen || peeking || 1826 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1827 checksum_valid = udp_skb_csum_unnecessary(skb) || 1828 !__udp_lib_checksum_complete(skb); 1829 if (!checksum_valid) 1830 goto csum_copy_err; 1831 } 1832 1833 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1834 if (udp_skb_is_linear(skb)) 1835 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1836 else 1837 err = skb_copy_datagram_msg(skb, off, msg, copied); 1838 } else { 1839 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1840 1841 if (err == -EINVAL) 1842 goto csum_copy_err; 1843 } 1844 1845 if (unlikely(err)) { 1846 if (!peeking) { 1847 atomic_inc(&sk->sk_drops); 1848 UDP_INC_STATS(sock_net(sk), 1849 UDP_MIB_INERRORS, is_udplite); 1850 } 1851 kfree_skb(skb); 1852 return err; 1853 } 1854 1855 if (!peeking) 1856 UDP_INC_STATS(sock_net(sk), 1857 UDP_MIB_INDATAGRAMS, is_udplite); 1858 1859 sock_recv_cmsgs(msg, sk, skb); 1860 1861 /* Copy the address. */ 1862 if (sin) { 1863 sin->sin_family = AF_INET; 1864 sin->sin_port = udp_hdr(skb)->source; 1865 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1866 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1867 *addr_len = sizeof(*sin); 1868 1869 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1870 (struct sockaddr *)sin, 1871 addr_len); 1872 } 1873 1874 if (udp_test_bit(GRO_ENABLED, sk)) 1875 udp_cmsg_recv(msg, sk, skb); 1876 1877 if (inet_cmsg_flags(inet)) 1878 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1879 1880 err = copied; 1881 if (flags & MSG_TRUNC) 1882 err = ulen; 1883 1884 skb_consume_udp(sk, skb, peeking ? -err : err); 1885 return err; 1886 1887 csum_copy_err: 1888 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1889 udp_skb_destructor)) { 1890 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1891 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1892 } 1893 kfree_skb(skb); 1894 1895 /* starting over for a new packet, but check if we need to yield */ 1896 cond_resched(); 1897 msg->msg_flags &= ~MSG_TRUNC; 1898 goto try_again; 1899 } 1900 1901 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1902 { 1903 /* This check is replicated from __ip4_datagram_connect() and 1904 * intended to prevent BPF program called below from accessing bytes 1905 * that are out of the bound specified by user in addr_len. 1906 */ 1907 if (addr_len < sizeof(struct sockaddr_in)) 1908 return -EINVAL; 1909 1910 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 1911 } 1912 EXPORT_SYMBOL(udp_pre_connect); 1913 1914 int __udp_disconnect(struct sock *sk, int flags) 1915 { 1916 struct inet_sock *inet = inet_sk(sk); 1917 /* 1918 * 1003.1g - break association. 1919 */ 1920 1921 sk->sk_state = TCP_CLOSE; 1922 inet->inet_daddr = 0; 1923 inet->inet_dport = 0; 1924 sock_rps_reset_rxhash(sk); 1925 sk->sk_bound_dev_if = 0; 1926 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1927 inet_reset_saddr(sk); 1928 if (sk->sk_prot->rehash && 1929 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1930 sk->sk_prot->rehash(sk); 1931 } 1932 1933 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1934 sk->sk_prot->unhash(sk); 1935 inet->inet_sport = 0; 1936 } 1937 sk_dst_reset(sk); 1938 return 0; 1939 } 1940 EXPORT_SYMBOL(__udp_disconnect); 1941 1942 int udp_disconnect(struct sock *sk, int flags) 1943 { 1944 lock_sock(sk); 1945 __udp_disconnect(sk, flags); 1946 release_sock(sk); 1947 return 0; 1948 } 1949 EXPORT_SYMBOL(udp_disconnect); 1950 1951 void udp_lib_unhash(struct sock *sk) 1952 { 1953 if (sk_hashed(sk)) { 1954 struct udp_table *udptable = udp_get_table_prot(sk); 1955 struct udp_hslot *hslot, *hslot2; 1956 1957 hslot = udp_hashslot(udptable, sock_net(sk), 1958 udp_sk(sk)->udp_port_hash); 1959 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1960 1961 spin_lock_bh(&hslot->lock); 1962 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1963 reuseport_detach_sock(sk); 1964 if (sk_del_node_init_rcu(sk)) { 1965 hslot->count--; 1966 inet_sk(sk)->inet_num = 0; 1967 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1968 1969 spin_lock(&hslot2->lock); 1970 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1971 hslot2->count--; 1972 spin_unlock(&hslot2->lock); 1973 } 1974 spin_unlock_bh(&hslot->lock); 1975 } 1976 } 1977 EXPORT_SYMBOL(udp_lib_unhash); 1978 1979 /* 1980 * inet_rcv_saddr was changed, we must rehash secondary hash 1981 */ 1982 void udp_lib_rehash(struct sock *sk, u16 newhash) 1983 { 1984 if (sk_hashed(sk)) { 1985 struct udp_table *udptable = udp_get_table_prot(sk); 1986 struct udp_hslot *hslot, *hslot2, *nhslot2; 1987 1988 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1989 nhslot2 = udp_hashslot2(udptable, newhash); 1990 udp_sk(sk)->udp_portaddr_hash = newhash; 1991 1992 if (hslot2 != nhslot2 || 1993 rcu_access_pointer(sk->sk_reuseport_cb)) { 1994 hslot = udp_hashslot(udptable, sock_net(sk), 1995 udp_sk(sk)->udp_port_hash); 1996 /* we must lock primary chain too */ 1997 spin_lock_bh(&hslot->lock); 1998 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1999 reuseport_detach_sock(sk); 2000 2001 if (hslot2 != nhslot2) { 2002 spin_lock(&hslot2->lock); 2003 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2004 hslot2->count--; 2005 spin_unlock(&hslot2->lock); 2006 2007 spin_lock(&nhslot2->lock); 2008 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2009 &nhslot2->head); 2010 nhslot2->count++; 2011 spin_unlock(&nhslot2->lock); 2012 } 2013 2014 spin_unlock_bh(&hslot->lock); 2015 } 2016 } 2017 } 2018 EXPORT_SYMBOL(udp_lib_rehash); 2019 2020 void udp_v4_rehash(struct sock *sk) 2021 { 2022 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2023 inet_sk(sk)->inet_rcv_saddr, 2024 inet_sk(sk)->inet_num); 2025 udp_lib_rehash(sk, new_hash); 2026 } 2027 2028 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2029 { 2030 int rc; 2031 2032 if (inet_sk(sk)->inet_daddr) { 2033 sock_rps_save_rxhash(sk, skb); 2034 sk_mark_napi_id(sk, skb); 2035 sk_incoming_cpu_update(sk); 2036 } else { 2037 sk_mark_napi_id_once(sk, skb); 2038 } 2039 2040 rc = __udp_enqueue_schedule_skb(sk, skb); 2041 if (rc < 0) { 2042 int is_udplite = IS_UDPLITE(sk); 2043 int drop_reason; 2044 2045 /* Note that an ENOMEM error is charged twice */ 2046 if (rc == -ENOMEM) { 2047 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2048 is_udplite); 2049 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2050 } else { 2051 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2052 is_udplite); 2053 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2054 } 2055 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2056 kfree_skb_reason(skb, drop_reason); 2057 trace_udp_fail_queue_rcv_skb(rc, sk); 2058 return -1; 2059 } 2060 2061 return 0; 2062 } 2063 2064 /* returns: 2065 * -1: error 2066 * 0: success 2067 * >0: "udp encap" protocol resubmission 2068 * 2069 * Note that in the success and error cases, the skb is assumed to 2070 * have either been requeued or freed. 2071 */ 2072 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2073 { 2074 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2075 struct udp_sock *up = udp_sk(sk); 2076 int is_udplite = IS_UDPLITE(sk); 2077 2078 /* 2079 * Charge it to the socket, dropping if the queue is full. 2080 */ 2081 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2082 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2083 goto drop; 2084 } 2085 nf_reset_ct(skb); 2086 2087 if (static_branch_unlikely(&udp_encap_needed_key) && 2088 READ_ONCE(up->encap_type)) { 2089 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2090 2091 /* 2092 * This is an encapsulation socket so pass the skb to 2093 * the socket's udp_encap_rcv() hook. Otherwise, just 2094 * fall through and pass this up the UDP socket. 2095 * up->encap_rcv() returns the following value: 2096 * =0 if skb was successfully passed to the encap 2097 * handler or was discarded by it. 2098 * >0 if skb should be passed on to UDP. 2099 * <0 if skb should be resubmitted as proto -N 2100 */ 2101 2102 /* if we're overly short, let UDP handle it */ 2103 encap_rcv = READ_ONCE(up->encap_rcv); 2104 if (encap_rcv) { 2105 int ret; 2106 2107 /* Verify checksum before giving to encap */ 2108 if (udp_lib_checksum_complete(skb)) 2109 goto csum_error; 2110 2111 ret = encap_rcv(sk, skb); 2112 if (ret <= 0) { 2113 __UDP_INC_STATS(sock_net(sk), 2114 UDP_MIB_INDATAGRAMS, 2115 is_udplite); 2116 return -ret; 2117 } 2118 } 2119 2120 /* FALLTHROUGH -- it's a UDP Packet */ 2121 } 2122 2123 /* 2124 * UDP-Lite specific tests, ignored on UDP sockets 2125 */ 2126 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2127 u16 pcrlen = READ_ONCE(up->pcrlen); 2128 2129 /* 2130 * MIB statistics other than incrementing the error count are 2131 * disabled for the following two types of errors: these depend 2132 * on the application settings, not on the functioning of the 2133 * protocol stack as such. 2134 * 2135 * RFC 3828 here recommends (sec 3.3): "There should also be a 2136 * way ... to ... at least let the receiving application block 2137 * delivery of packets with coverage values less than a value 2138 * provided by the application." 2139 */ 2140 if (pcrlen == 0) { /* full coverage was set */ 2141 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2142 UDP_SKB_CB(skb)->cscov, skb->len); 2143 goto drop; 2144 } 2145 /* The next case involves violating the min. coverage requested 2146 * by the receiver. This is subtle: if receiver wants x and x is 2147 * greater than the buffersize/MTU then receiver will complain 2148 * that it wants x while sender emits packets of smaller size y. 2149 * Therefore the above ...()->partial_cov statement is essential. 2150 */ 2151 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2152 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2153 UDP_SKB_CB(skb)->cscov, pcrlen); 2154 goto drop; 2155 } 2156 } 2157 2158 prefetch(&sk->sk_rmem_alloc); 2159 if (rcu_access_pointer(sk->sk_filter) && 2160 udp_lib_checksum_complete(skb)) 2161 goto csum_error; 2162 2163 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2164 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2165 goto drop; 2166 } 2167 2168 udp_csum_pull_header(skb); 2169 2170 ipv4_pktinfo_prepare(sk, skb); 2171 return __udp_queue_rcv_skb(sk, skb); 2172 2173 csum_error: 2174 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2175 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2176 drop: 2177 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2178 atomic_inc(&sk->sk_drops); 2179 kfree_skb_reason(skb, drop_reason); 2180 return -1; 2181 } 2182 2183 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2184 { 2185 struct sk_buff *next, *segs; 2186 int ret; 2187 2188 if (likely(!udp_unexpected_gso(sk, skb))) 2189 return udp_queue_rcv_one_skb(sk, skb); 2190 2191 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2192 __skb_push(skb, -skb_mac_offset(skb)); 2193 segs = udp_rcv_segment(sk, skb, true); 2194 skb_list_walk_safe(segs, skb, next) { 2195 __skb_pull(skb, skb_transport_offset(skb)); 2196 2197 udp_post_segment_fix_csum(skb); 2198 ret = udp_queue_rcv_one_skb(sk, skb); 2199 if (ret > 0) 2200 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2201 } 2202 return 0; 2203 } 2204 2205 /* For TCP sockets, sk_rx_dst is protected by socket lock 2206 * For UDP, we use xchg() to guard against concurrent changes. 2207 */ 2208 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2209 { 2210 struct dst_entry *old; 2211 2212 if (dst_hold_safe(dst)) { 2213 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst); 2214 dst_release(old); 2215 return old != dst; 2216 } 2217 return false; 2218 } 2219 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2220 2221 /* 2222 * Multicasts and broadcasts go to each listener. 2223 * 2224 * Note: called only from the BH handler context. 2225 */ 2226 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2227 struct udphdr *uh, 2228 __be32 saddr, __be32 daddr, 2229 struct udp_table *udptable, 2230 int proto) 2231 { 2232 struct sock *sk, *first = NULL; 2233 unsigned short hnum = ntohs(uh->dest); 2234 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2235 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2236 unsigned int offset = offsetof(typeof(*sk), sk_node); 2237 int dif = skb->dev->ifindex; 2238 int sdif = inet_sdif(skb); 2239 struct hlist_node *node; 2240 struct sk_buff *nskb; 2241 2242 if (use_hash2) { 2243 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2244 udptable->mask; 2245 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2246 start_lookup: 2247 hslot = &udptable->hash2[hash2]; 2248 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2249 } 2250 2251 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2252 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2253 uh->source, saddr, dif, sdif, hnum)) 2254 continue; 2255 2256 if (!first) { 2257 first = sk; 2258 continue; 2259 } 2260 nskb = skb_clone(skb, GFP_ATOMIC); 2261 2262 if (unlikely(!nskb)) { 2263 atomic_inc(&sk->sk_drops); 2264 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2265 IS_UDPLITE(sk)); 2266 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2267 IS_UDPLITE(sk)); 2268 continue; 2269 } 2270 if (udp_queue_rcv_skb(sk, nskb) > 0) 2271 consume_skb(nskb); 2272 } 2273 2274 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2275 if (use_hash2 && hash2 != hash2_any) { 2276 hash2 = hash2_any; 2277 goto start_lookup; 2278 } 2279 2280 if (first) { 2281 if (udp_queue_rcv_skb(first, skb) > 0) 2282 consume_skb(skb); 2283 } else { 2284 kfree_skb(skb); 2285 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2286 proto == IPPROTO_UDPLITE); 2287 } 2288 return 0; 2289 } 2290 2291 /* Initialize UDP checksum. If exited with zero value (success), 2292 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2293 * Otherwise, csum completion requires checksumming packet body, 2294 * including udp header and folding it to skb->csum. 2295 */ 2296 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2297 int proto) 2298 { 2299 int err; 2300 2301 UDP_SKB_CB(skb)->partial_cov = 0; 2302 UDP_SKB_CB(skb)->cscov = skb->len; 2303 2304 if (proto == IPPROTO_UDPLITE) { 2305 err = udplite_checksum_init(skb, uh); 2306 if (err) 2307 return err; 2308 2309 if (UDP_SKB_CB(skb)->partial_cov) { 2310 skb->csum = inet_compute_pseudo(skb, proto); 2311 return 0; 2312 } 2313 } 2314 2315 /* Note, we are only interested in != 0 or == 0, thus the 2316 * force to int. 2317 */ 2318 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2319 inet_compute_pseudo); 2320 if (err) 2321 return err; 2322 2323 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2324 /* If SW calculated the value, we know it's bad */ 2325 if (skb->csum_complete_sw) 2326 return 1; 2327 2328 /* HW says the value is bad. Let's validate that. 2329 * skb->csum is no longer the full packet checksum, 2330 * so don't treat it as such. 2331 */ 2332 skb_checksum_complete_unset(skb); 2333 } 2334 2335 return 0; 2336 } 2337 2338 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2339 * return code conversion for ip layer consumption 2340 */ 2341 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2342 struct udphdr *uh) 2343 { 2344 int ret; 2345 2346 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2347 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2348 2349 ret = udp_queue_rcv_skb(sk, skb); 2350 2351 /* a return value > 0 means to resubmit the input, but 2352 * it wants the return to be -protocol, or 0 2353 */ 2354 if (ret > 0) 2355 return -ret; 2356 return 0; 2357 } 2358 2359 /* 2360 * All we need to do is get the socket, and then do a checksum. 2361 */ 2362 2363 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2364 int proto) 2365 { 2366 struct sock *sk; 2367 struct udphdr *uh; 2368 unsigned short ulen; 2369 struct rtable *rt = skb_rtable(skb); 2370 __be32 saddr, daddr; 2371 struct net *net = dev_net(skb->dev); 2372 bool refcounted; 2373 int drop_reason; 2374 2375 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2376 2377 /* 2378 * Validate the packet. 2379 */ 2380 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2381 goto drop; /* No space for header. */ 2382 2383 uh = udp_hdr(skb); 2384 ulen = ntohs(uh->len); 2385 saddr = ip_hdr(skb)->saddr; 2386 daddr = ip_hdr(skb)->daddr; 2387 2388 if (ulen > skb->len) 2389 goto short_packet; 2390 2391 if (proto == IPPROTO_UDP) { 2392 /* UDP validates ulen. */ 2393 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2394 goto short_packet; 2395 uh = udp_hdr(skb); 2396 } 2397 2398 if (udp4_csum_init(skb, uh, proto)) 2399 goto csum_error; 2400 2401 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2402 &refcounted, udp_ehashfn); 2403 if (IS_ERR(sk)) 2404 goto no_sk; 2405 2406 if (sk) { 2407 struct dst_entry *dst = skb_dst(skb); 2408 int ret; 2409 2410 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2411 udp_sk_rx_dst_set(sk, dst); 2412 2413 ret = udp_unicast_rcv_skb(sk, skb, uh); 2414 if (refcounted) 2415 sock_put(sk); 2416 return ret; 2417 } 2418 2419 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2420 return __udp4_lib_mcast_deliver(net, skb, uh, 2421 saddr, daddr, udptable, proto); 2422 2423 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2424 if (sk) 2425 return udp_unicast_rcv_skb(sk, skb, uh); 2426 no_sk: 2427 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2428 goto drop; 2429 nf_reset_ct(skb); 2430 2431 /* No socket. Drop packet silently, if checksum is wrong */ 2432 if (udp_lib_checksum_complete(skb)) 2433 goto csum_error; 2434 2435 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2436 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2437 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2438 2439 /* 2440 * Hmm. We got an UDP packet to a port to which we 2441 * don't wanna listen. Ignore it. 2442 */ 2443 kfree_skb_reason(skb, drop_reason); 2444 return 0; 2445 2446 short_packet: 2447 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2448 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2449 proto == IPPROTO_UDPLITE ? "Lite" : "", 2450 &saddr, ntohs(uh->source), 2451 ulen, skb->len, 2452 &daddr, ntohs(uh->dest)); 2453 goto drop; 2454 2455 csum_error: 2456 /* 2457 * RFC1122: OK. Discards the bad packet silently (as far as 2458 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2459 */ 2460 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2461 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2462 proto == IPPROTO_UDPLITE ? "Lite" : "", 2463 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2464 ulen); 2465 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2466 drop: 2467 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2468 kfree_skb_reason(skb, drop_reason); 2469 return 0; 2470 } 2471 2472 /* We can only early demux multicast if there is a single matching socket. 2473 * If more than one socket found returns NULL 2474 */ 2475 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2476 __be16 loc_port, __be32 loc_addr, 2477 __be16 rmt_port, __be32 rmt_addr, 2478 int dif, int sdif) 2479 { 2480 struct udp_table *udptable = net->ipv4.udp_table; 2481 unsigned short hnum = ntohs(loc_port); 2482 struct sock *sk, *result; 2483 struct udp_hslot *hslot; 2484 unsigned int slot; 2485 2486 slot = udp_hashfn(net, hnum, udptable->mask); 2487 hslot = &udptable->hash[slot]; 2488 2489 /* Do not bother scanning a too big list */ 2490 if (hslot->count > 10) 2491 return NULL; 2492 2493 result = NULL; 2494 sk_for_each_rcu(sk, &hslot->head) { 2495 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2496 rmt_port, rmt_addr, dif, sdif, hnum)) { 2497 if (result) 2498 return NULL; 2499 result = sk; 2500 } 2501 } 2502 2503 return result; 2504 } 2505 2506 /* For unicast we should only early demux connected sockets or we can 2507 * break forwarding setups. The chains here can be long so only check 2508 * if the first socket is an exact match and if not move on. 2509 */ 2510 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2511 __be16 loc_port, __be32 loc_addr, 2512 __be16 rmt_port, __be32 rmt_addr, 2513 int dif, int sdif) 2514 { 2515 struct udp_table *udptable = net->ipv4.udp_table; 2516 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2517 unsigned short hnum = ntohs(loc_port); 2518 unsigned int hash2, slot2; 2519 struct udp_hslot *hslot2; 2520 __portpair ports; 2521 struct sock *sk; 2522 2523 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2524 slot2 = hash2 & udptable->mask; 2525 hslot2 = &udptable->hash2[slot2]; 2526 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2527 2528 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2529 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2530 return sk; 2531 /* Only check first socket in chain */ 2532 break; 2533 } 2534 return NULL; 2535 } 2536 2537 int udp_v4_early_demux(struct sk_buff *skb) 2538 { 2539 struct net *net = dev_net(skb->dev); 2540 struct in_device *in_dev = NULL; 2541 const struct iphdr *iph; 2542 const struct udphdr *uh; 2543 struct sock *sk = NULL; 2544 struct dst_entry *dst; 2545 int dif = skb->dev->ifindex; 2546 int sdif = inet_sdif(skb); 2547 int ours; 2548 2549 /* validate the packet */ 2550 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2551 return 0; 2552 2553 iph = ip_hdr(skb); 2554 uh = udp_hdr(skb); 2555 2556 if (skb->pkt_type == PACKET_MULTICAST) { 2557 in_dev = __in_dev_get_rcu(skb->dev); 2558 2559 if (!in_dev) 2560 return 0; 2561 2562 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2563 iph->protocol); 2564 if (!ours) 2565 return 0; 2566 2567 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2568 uh->source, iph->saddr, 2569 dif, sdif); 2570 } else if (skb->pkt_type == PACKET_HOST) { 2571 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2572 uh->source, iph->saddr, dif, sdif); 2573 } 2574 2575 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2576 return 0; 2577 2578 skb->sk = sk; 2579 skb->destructor = sock_efree; 2580 dst = rcu_dereference(sk->sk_rx_dst); 2581 2582 if (dst) 2583 dst = dst_check(dst, 0); 2584 if (dst) { 2585 u32 itag = 0; 2586 2587 /* set noref for now. 2588 * any place which wants to hold dst has to call 2589 * dst_hold_safe() 2590 */ 2591 skb_dst_set_noref(skb, dst); 2592 2593 /* for unconnected multicast sockets we need to validate 2594 * the source on each packet 2595 */ 2596 if (!inet_sk(sk)->inet_daddr && in_dev) 2597 return ip_mc_validate_source(skb, iph->daddr, 2598 iph->saddr, 2599 iph->tos & IPTOS_RT_MASK, 2600 skb->dev, in_dev, &itag); 2601 } 2602 return 0; 2603 } 2604 2605 int udp_rcv(struct sk_buff *skb) 2606 { 2607 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2608 } 2609 2610 void udp_destroy_sock(struct sock *sk) 2611 { 2612 struct udp_sock *up = udp_sk(sk); 2613 bool slow = lock_sock_fast(sk); 2614 2615 /* protects from races with udp_abort() */ 2616 sock_set_flag(sk, SOCK_DEAD); 2617 udp_flush_pending_frames(sk); 2618 unlock_sock_fast(sk, slow); 2619 if (static_branch_unlikely(&udp_encap_needed_key)) { 2620 if (up->encap_type) { 2621 void (*encap_destroy)(struct sock *sk); 2622 encap_destroy = READ_ONCE(up->encap_destroy); 2623 if (encap_destroy) 2624 encap_destroy(sk); 2625 } 2626 if (udp_test_bit(ENCAP_ENABLED, sk)) 2627 static_branch_dec(&udp_encap_needed_key); 2628 } 2629 } 2630 2631 /* 2632 * Socket option code for UDP 2633 */ 2634 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2635 sockptr_t optval, unsigned int optlen, 2636 int (*push_pending_frames)(struct sock *)) 2637 { 2638 struct udp_sock *up = udp_sk(sk); 2639 int val, valbool; 2640 int err = 0; 2641 int is_udplite = IS_UDPLITE(sk); 2642 2643 if (level == SOL_SOCKET) { 2644 err = sk_setsockopt(sk, level, optname, optval, optlen); 2645 2646 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2647 sockopt_lock_sock(sk); 2648 /* paired with READ_ONCE in udp_rmem_release() */ 2649 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2650 sockopt_release_sock(sk); 2651 } 2652 return err; 2653 } 2654 2655 if (optlen < sizeof(int)) 2656 return -EINVAL; 2657 2658 if (copy_from_sockptr(&val, optval, sizeof(val))) 2659 return -EFAULT; 2660 2661 valbool = val ? 1 : 0; 2662 2663 switch (optname) { 2664 case UDP_CORK: 2665 if (val != 0) { 2666 udp_set_bit(CORK, sk); 2667 } else { 2668 udp_clear_bit(CORK, sk); 2669 lock_sock(sk); 2670 push_pending_frames(sk); 2671 release_sock(sk); 2672 } 2673 break; 2674 2675 case UDP_ENCAP: 2676 switch (val) { 2677 case 0: 2678 #ifdef CONFIG_XFRM 2679 case UDP_ENCAP_ESPINUDP: 2680 case UDP_ENCAP_ESPINUDP_NON_IKE: 2681 #if IS_ENABLED(CONFIG_IPV6) 2682 if (sk->sk_family == AF_INET6) 2683 WRITE_ONCE(up->encap_rcv, 2684 ipv6_stub->xfrm6_udp_encap_rcv); 2685 else 2686 #endif 2687 WRITE_ONCE(up->encap_rcv, 2688 xfrm4_udp_encap_rcv); 2689 #endif 2690 fallthrough; 2691 case UDP_ENCAP_L2TPINUDP: 2692 WRITE_ONCE(up->encap_type, val); 2693 udp_tunnel_encap_enable(sk); 2694 break; 2695 default: 2696 err = -ENOPROTOOPT; 2697 break; 2698 } 2699 break; 2700 2701 case UDP_NO_CHECK6_TX: 2702 udp_set_no_check6_tx(sk, valbool); 2703 break; 2704 2705 case UDP_NO_CHECK6_RX: 2706 udp_set_no_check6_rx(sk, valbool); 2707 break; 2708 2709 case UDP_SEGMENT: 2710 if (val < 0 || val > USHRT_MAX) 2711 return -EINVAL; 2712 WRITE_ONCE(up->gso_size, val); 2713 break; 2714 2715 case UDP_GRO: 2716 2717 /* when enabling GRO, accept the related GSO packet type */ 2718 if (valbool) 2719 udp_tunnel_encap_enable(sk); 2720 udp_assign_bit(GRO_ENABLED, sk, valbool); 2721 udp_assign_bit(ACCEPT_L4, sk, valbool); 2722 break; 2723 2724 /* 2725 * UDP-Lite's partial checksum coverage (RFC 3828). 2726 */ 2727 /* The sender sets actual checksum coverage length via this option. 2728 * The case coverage > packet length is handled by send module. */ 2729 case UDPLITE_SEND_CSCOV: 2730 if (!is_udplite) /* Disable the option on UDP sockets */ 2731 return -ENOPROTOOPT; 2732 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2733 val = 8; 2734 else if (val > USHRT_MAX) 2735 val = USHRT_MAX; 2736 WRITE_ONCE(up->pcslen, val); 2737 udp_set_bit(UDPLITE_SEND_CC, sk); 2738 break; 2739 2740 /* The receiver specifies a minimum checksum coverage value. To make 2741 * sense, this should be set to at least 8 (as done below). If zero is 2742 * used, this again means full checksum coverage. */ 2743 case UDPLITE_RECV_CSCOV: 2744 if (!is_udplite) /* Disable the option on UDP sockets */ 2745 return -ENOPROTOOPT; 2746 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2747 val = 8; 2748 else if (val > USHRT_MAX) 2749 val = USHRT_MAX; 2750 WRITE_ONCE(up->pcrlen, val); 2751 udp_set_bit(UDPLITE_RECV_CC, sk); 2752 break; 2753 2754 default: 2755 err = -ENOPROTOOPT; 2756 break; 2757 } 2758 2759 return err; 2760 } 2761 EXPORT_SYMBOL(udp_lib_setsockopt); 2762 2763 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2764 unsigned int optlen) 2765 { 2766 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2767 return udp_lib_setsockopt(sk, level, optname, 2768 optval, optlen, 2769 udp_push_pending_frames); 2770 return ip_setsockopt(sk, level, optname, optval, optlen); 2771 } 2772 2773 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2774 char __user *optval, int __user *optlen) 2775 { 2776 struct udp_sock *up = udp_sk(sk); 2777 int val, len; 2778 2779 if (get_user(len, optlen)) 2780 return -EFAULT; 2781 2782 len = min_t(unsigned int, len, sizeof(int)); 2783 2784 if (len < 0) 2785 return -EINVAL; 2786 2787 switch (optname) { 2788 case UDP_CORK: 2789 val = udp_test_bit(CORK, sk); 2790 break; 2791 2792 case UDP_ENCAP: 2793 val = READ_ONCE(up->encap_type); 2794 break; 2795 2796 case UDP_NO_CHECK6_TX: 2797 val = udp_get_no_check6_tx(sk); 2798 break; 2799 2800 case UDP_NO_CHECK6_RX: 2801 val = udp_get_no_check6_rx(sk); 2802 break; 2803 2804 case UDP_SEGMENT: 2805 val = READ_ONCE(up->gso_size); 2806 break; 2807 2808 case UDP_GRO: 2809 val = udp_test_bit(GRO_ENABLED, sk); 2810 break; 2811 2812 /* The following two cannot be changed on UDP sockets, the return is 2813 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2814 case UDPLITE_SEND_CSCOV: 2815 val = READ_ONCE(up->pcslen); 2816 break; 2817 2818 case UDPLITE_RECV_CSCOV: 2819 val = READ_ONCE(up->pcrlen); 2820 break; 2821 2822 default: 2823 return -ENOPROTOOPT; 2824 } 2825 2826 if (put_user(len, optlen)) 2827 return -EFAULT; 2828 if (copy_to_user(optval, &val, len)) 2829 return -EFAULT; 2830 return 0; 2831 } 2832 EXPORT_SYMBOL(udp_lib_getsockopt); 2833 2834 int udp_getsockopt(struct sock *sk, int level, int optname, 2835 char __user *optval, int __user *optlen) 2836 { 2837 if (level == SOL_UDP || level == SOL_UDPLITE) 2838 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2839 return ip_getsockopt(sk, level, optname, optval, optlen); 2840 } 2841 2842 /** 2843 * udp_poll - wait for a UDP event. 2844 * @file: - file struct 2845 * @sock: - socket 2846 * @wait: - poll table 2847 * 2848 * This is same as datagram poll, except for the special case of 2849 * blocking sockets. If application is using a blocking fd 2850 * and a packet with checksum error is in the queue; 2851 * then it could get return from select indicating data available 2852 * but then block when reading it. Add special case code 2853 * to work around these arguably broken applications. 2854 */ 2855 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2856 { 2857 __poll_t mask = datagram_poll(file, sock, wait); 2858 struct sock *sk = sock->sk; 2859 2860 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2861 mask |= EPOLLIN | EPOLLRDNORM; 2862 2863 /* Check for false positives due to checksum errors */ 2864 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2865 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2866 mask &= ~(EPOLLIN | EPOLLRDNORM); 2867 2868 /* psock ingress_msg queue should not contain any bad checksum frames */ 2869 if (sk_is_readable(sk)) 2870 mask |= EPOLLIN | EPOLLRDNORM; 2871 return mask; 2872 2873 } 2874 EXPORT_SYMBOL(udp_poll); 2875 2876 int udp_abort(struct sock *sk, int err) 2877 { 2878 if (!has_current_bpf_ctx()) 2879 lock_sock(sk); 2880 2881 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2882 * with close() 2883 */ 2884 if (sock_flag(sk, SOCK_DEAD)) 2885 goto out; 2886 2887 sk->sk_err = err; 2888 sk_error_report(sk); 2889 __udp_disconnect(sk, 0); 2890 2891 out: 2892 if (!has_current_bpf_ctx()) 2893 release_sock(sk); 2894 2895 return 0; 2896 } 2897 EXPORT_SYMBOL_GPL(udp_abort); 2898 2899 struct proto udp_prot = { 2900 .name = "UDP", 2901 .owner = THIS_MODULE, 2902 .close = udp_lib_close, 2903 .pre_connect = udp_pre_connect, 2904 .connect = ip4_datagram_connect, 2905 .disconnect = udp_disconnect, 2906 .ioctl = udp_ioctl, 2907 .init = udp_init_sock, 2908 .destroy = udp_destroy_sock, 2909 .setsockopt = udp_setsockopt, 2910 .getsockopt = udp_getsockopt, 2911 .sendmsg = udp_sendmsg, 2912 .recvmsg = udp_recvmsg, 2913 .splice_eof = udp_splice_eof, 2914 .release_cb = ip4_datagram_release_cb, 2915 .hash = udp_lib_hash, 2916 .unhash = udp_lib_unhash, 2917 .rehash = udp_v4_rehash, 2918 .get_port = udp_v4_get_port, 2919 .put_port = udp_lib_unhash, 2920 #ifdef CONFIG_BPF_SYSCALL 2921 .psock_update_sk_prot = udp_bpf_update_proto, 2922 #endif 2923 .memory_allocated = &udp_memory_allocated, 2924 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 2925 2926 .sysctl_mem = sysctl_udp_mem, 2927 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2928 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2929 .obj_size = sizeof(struct udp_sock), 2930 .h.udp_table = NULL, 2931 .diag_destroy = udp_abort, 2932 }; 2933 EXPORT_SYMBOL(udp_prot); 2934 2935 /* ------------------------------------------------------------------------ */ 2936 #ifdef CONFIG_PROC_FS 2937 2938 static unsigned short seq_file_family(const struct seq_file *seq); 2939 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2940 { 2941 unsigned short family = seq_file_family(seq); 2942 2943 /* AF_UNSPEC is used as a match all */ 2944 return ((family == AF_UNSPEC || family == sk->sk_family) && 2945 net_eq(sock_net(sk), seq_file_net(seq))); 2946 } 2947 2948 #ifdef CONFIG_BPF_SYSCALL 2949 static const struct seq_operations bpf_iter_udp_seq_ops; 2950 #endif 2951 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 2952 struct net *net) 2953 { 2954 const struct udp_seq_afinfo *afinfo; 2955 2956 #ifdef CONFIG_BPF_SYSCALL 2957 if (seq->op == &bpf_iter_udp_seq_ops) 2958 return net->ipv4.udp_table; 2959 #endif 2960 2961 afinfo = pde_data(file_inode(seq->file)); 2962 return afinfo->udp_table ? : net->ipv4.udp_table; 2963 } 2964 2965 static struct sock *udp_get_first(struct seq_file *seq, int start) 2966 { 2967 struct udp_iter_state *state = seq->private; 2968 struct net *net = seq_file_net(seq); 2969 struct udp_table *udptable; 2970 struct sock *sk; 2971 2972 udptable = udp_get_table_seq(seq, net); 2973 2974 for (state->bucket = start; state->bucket <= udptable->mask; 2975 ++state->bucket) { 2976 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 2977 2978 if (hlist_empty(&hslot->head)) 2979 continue; 2980 2981 spin_lock_bh(&hslot->lock); 2982 sk_for_each(sk, &hslot->head) { 2983 if (seq_sk_match(seq, sk)) 2984 goto found; 2985 } 2986 spin_unlock_bh(&hslot->lock); 2987 } 2988 sk = NULL; 2989 found: 2990 return sk; 2991 } 2992 2993 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2994 { 2995 struct udp_iter_state *state = seq->private; 2996 struct net *net = seq_file_net(seq); 2997 struct udp_table *udptable; 2998 2999 do { 3000 sk = sk_next(sk); 3001 } while (sk && !seq_sk_match(seq, sk)); 3002 3003 if (!sk) { 3004 udptable = udp_get_table_seq(seq, net); 3005 3006 if (state->bucket <= udptable->mask) 3007 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3008 3009 return udp_get_first(seq, state->bucket + 1); 3010 } 3011 return sk; 3012 } 3013 3014 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3015 { 3016 struct sock *sk = udp_get_first(seq, 0); 3017 3018 if (sk) 3019 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3020 --pos; 3021 return pos ? NULL : sk; 3022 } 3023 3024 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3025 { 3026 struct udp_iter_state *state = seq->private; 3027 state->bucket = MAX_UDP_PORTS; 3028 3029 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3030 } 3031 EXPORT_SYMBOL(udp_seq_start); 3032 3033 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3034 { 3035 struct sock *sk; 3036 3037 if (v == SEQ_START_TOKEN) 3038 sk = udp_get_idx(seq, 0); 3039 else 3040 sk = udp_get_next(seq, v); 3041 3042 ++*pos; 3043 return sk; 3044 } 3045 EXPORT_SYMBOL(udp_seq_next); 3046 3047 void udp_seq_stop(struct seq_file *seq, void *v) 3048 { 3049 struct udp_iter_state *state = seq->private; 3050 struct udp_table *udptable; 3051 3052 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3053 3054 if (state->bucket <= udptable->mask) 3055 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3056 } 3057 EXPORT_SYMBOL(udp_seq_stop); 3058 3059 /* ------------------------------------------------------------------------ */ 3060 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3061 int bucket) 3062 { 3063 struct inet_sock *inet = inet_sk(sp); 3064 __be32 dest = inet->inet_daddr; 3065 __be32 src = inet->inet_rcv_saddr; 3066 __u16 destp = ntohs(inet->inet_dport); 3067 __u16 srcp = ntohs(inet->inet_sport); 3068 3069 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3070 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3071 bucket, src, srcp, dest, destp, sp->sk_state, 3072 sk_wmem_alloc_get(sp), 3073 udp_rqueue_get(sp), 3074 0, 0L, 0, 3075 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3076 0, sock_i_ino(sp), 3077 refcount_read(&sp->sk_refcnt), sp, 3078 atomic_read(&sp->sk_drops)); 3079 } 3080 3081 int udp4_seq_show(struct seq_file *seq, void *v) 3082 { 3083 seq_setwidth(seq, 127); 3084 if (v == SEQ_START_TOKEN) 3085 seq_puts(seq, " sl local_address rem_address st tx_queue " 3086 "rx_queue tr tm->when retrnsmt uid timeout " 3087 "inode ref pointer drops"); 3088 else { 3089 struct udp_iter_state *state = seq->private; 3090 3091 udp4_format_sock(v, seq, state->bucket); 3092 } 3093 seq_pad(seq, '\n'); 3094 return 0; 3095 } 3096 3097 #ifdef CONFIG_BPF_SYSCALL 3098 struct bpf_iter__udp { 3099 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3100 __bpf_md_ptr(struct udp_sock *, udp_sk); 3101 uid_t uid __aligned(8); 3102 int bucket __aligned(8); 3103 }; 3104 3105 struct bpf_udp_iter_state { 3106 struct udp_iter_state state; 3107 unsigned int cur_sk; 3108 unsigned int end_sk; 3109 unsigned int max_sk; 3110 int offset; 3111 struct sock **batch; 3112 bool st_bucket_done; 3113 }; 3114 3115 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3116 unsigned int new_batch_sz); 3117 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3118 { 3119 struct bpf_udp_iter_state *iter = seq->private; 3120 struct udp_iter_state *state = &iter->state; 3121 struct net *net = seq_file_net(seq); 3122 int resume_bucket, resume_offset; 3123 struct udp_table *udptable; 3124 unsigned int batch_sks = 0; 3125 bool resized = false; 3126 struct sock *sk; 3127 3128 resume_bucket = state->bucket; 3129 resume_offset = iter->offset; 3130 3131 /* The current batch is done, so advance the bucket. */ 3132 if (iter->st_bucket_done) 3133 state->bucket++; 3134 3135 udptable = udp_get_table_seq(seq, net); 3136 3137 again: 3138 /* New batch for the next bucket. 3139 * Iterate over the hash table to find a bucket with sockets matching 3140 * the iterator attributes, and return the first matching socket from 3141 * the bucket. The remaining matched sockets from the bucket are batched 3142 * before releasing the bucket lock. This allows BPF programs that are 3143 * called in seq_show to acquire the bucket lock if needed. 3144 */ 3145 iter->cur_sk = 0; 3146 iter->end_sk = 0; 3147 iter->st_bucket_done = false; 3148 batch_sks = 0; 3149 3150 for (; state->bucket <= udptable->mask; state->bucket++) { 3151 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket]; 3152 3153 if (hlist_empty(&hslot2->head)) 3154 continue; 3155 3156 iter->offset = 0; 3157 spin_lock_bh(&hslot2->lock); 3158 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3159 if (seq_sk_match(seq, sk)) { 3160 /* Resume from the last iterated socket at the 3161 * offset in the bucket before iterator was stopped. 3162 */ 3163 if (state->bucket == resume_bucket && 3164 iter->offset < resume_offset) { 3165 ++iter->offset; 3166 continue; 3167 } 3168 if (iter->end_sk < iter->max_sk) { 3169 sock_hold(sk); 3170 iter->batch[iter->end_sk++] = sk; 3171 } 3172 batch_sks++; 3173 } 3174 } 3175 spin_unlock_bh(&hslot2->lock); 3176 3177 if (iter->end_sk) 3178 break; 3179 } 3180 3181 /* All done: no batch made. */ 3182 if (!iter->end_sk) 3183 return NULL; 3184 3185 if (iter->end_sk == batch_sks) { 3186 /* Batching is done for the current bucket; return the first 3187 * socket to be iterated from the batch. 3188 */ 3189 iter->st_bucket_done = true; 3190 goto done; 3191 } 3192 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3193 resized = true; 3194 /* After allocating a larger batch, retry one more time to grab 3195 * the whole bucket. 3196 */ 3197 goto again; 3198 } 3199 done: 3200 return iter->batch[0]; 3201 } 3202 3203 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3204 { 3205 struct bpf_udp_iter_state *iter = seq->private; 3206 struct sock *sk; 3207 3208 /* Whenever seq_next() is called, the iter->cur_sk is 3209 * done with seq_show(), so unref the iter->cur_sk. 3210 */ 3211 if (iter->cur_sk < iter->end_sk) { 3212 sock_put(iter->batch[iter->cur_sk++]); 3213 ++iter->offset; 3214 } 3215 3216 /* After updating iter->cur_sk, check if there are more sockets 3217 * available in the current bucket batch. 3218 */ 3219 if (iter->cur_sk < iter->end_sk) 3220 sk = iter->batch[iter->cur_sk]; 3221 else 3222 /* Prepare a new batch. */ 3223 sk = bpf_iter_udp_batch(seq); 3224 3225 ++*pos; 3226 return sk; 3227 } 3228 3229 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3230 { 3231 /* bpf iter does not support lseek, so it always 3232 * continue from where it was stop()-ped. 3233 */ 3234 if (*pos) 3235 return bpf_iter_udp_batch(seq); 3236 3237 return SEQ_START_TOKEN; 3238 } 3239 3240 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3241 struct udp_sock *udp_sk, uid_t uid, int bucket) 3242 { 3243 struct bpf_iter__udp ctx; 3244 3245 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3246 ctx.meta = meta; 3247 ctx.udp_sk = udp_sk; 3248 ctx.uid = uid; 3249 ctx.bucket = bucket; 3250 return bpf_iter_run_prog(prog, &ctx); 3251 } 3252 3253 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3254 { 3255 struct udp_iter_state *state = seq->private; 3256 struct bpf_iter_meta meta; 3257 struct bpf_prog *prog; 3258 struct sock *sk = v; 3259 uid_t uid; 3260 int ret; 3261 3262 if (v == SEQ_START_TOKEN) 3263 return 0; 3264 3265 lock_sock(sk); 3266 3267 if (unlikely(sk_unhashed(sk))) { 3268 ret = SEQ_SKIP; 3269 goto unlock; 3270 } 3271 3272 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3273 meta.seq = seq; 3274 prog = bpf_iter_get_info(&meta, false); 3275 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3276 3277 unlock: 3278 release_sock(sk); 3279 return ret; 3280 } 3281 3282 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3283 { 3284 while (iter->cur_sk < iter->end_sk) 3285 sock_put(iter->batch[iter->cur_sk++]); 3286 } 3287 3288 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3289 { 3290 struct bpf_udp_iter_state *iter = seq->private; 3291 struct bpf_iter_meta meta; 3292 struct bpf_prog *prog; 3293 3294 if (!v) { 3295 meta.seq = seq; 3296 prog = bpf_iter_get_info(&meta, true); 3297 if (prog) 3298 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3299 } 3300 3301 if (iter->cur_sk < iter->end_sk) { 3302 bpf_iter_udp_put_batch(iter); 3303 iter->st_bucket_done = false; 3304 } 3305 } 3306 3307 static const struct seq_operations bpf_iter_udp_seq_ops = { 3308 .start = bpf_iter_udp_seq_start, 3309 .next = bpf_iter_udp_seq_next, 3310 .stop = bpf_iter_udp_seq_stop, 3311 .show = bpf_iter_udp_seq_show, 3312 }; 3313 #endif 3314 3315 static unsigned short seq_file_family(const struct seq_file *seq) 3316 { 3317 const struct udp_seq_afinfo *afinfo; 3318 3319 #ifdef CONFIG_BPF_SYSCALL 3320 /* BPF iterator: bpf programs to filter sockets. */ 3321 if (seq->op == &bpf_iter_udp_seq_ops) 3322 return AF_UNSPEC; 3323 #endif 3324 3325 /* Proc fs iterator */ 3326 afinfo = pde_data(file_inode(seq->file)); 3327 return afinfo->family; 3328 } 3329 3330 const struct seq_operations udp_seq_ops = { 3331 .start = udp_seq_start, 3332 .next = udp_seq_next, 3333 .stop = udp_seq_stop, 3334 .show = udp4_seq_show, 3335 }; 3336 EXPORT_SYMBOL(udp_seq_ops); 3337 3338 static struct udp_seq_afinfo udp4_seq_afinfo = { 3339 .family = AF_INET, 3340 .udp_table = NULL, 3341 }; 3342 3343 static int __net_init udp4_proc_init_net(struct net *net) 3344 { 3345 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3346 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3347 return -ENOMEM; 3348 return 0; 3349 } 3350 3351 static void __net_exit udp4_proc_exit_net(struct net *net) 3352 { 3353 remove_proc_entry("udp", net->proc_net); 3354 } 3355 3356 static struct pernet_operations udp4_net_ops = { 3357 .init = udp4_proc_init_net, 3358 .exit = udp4_proc_exit_net, 3359 }; 3360 3361 int __init udp4_proc_init(void) 3362 { 3363 return register_pernet_subsys(&udp4_net_ops); 3364 } 3365 3366 void udp4_proc_exit(void) 3367 { 3368 unregister_pernet_subsys(&udp4_net_ops); 3369 } 3370 #endif /* CONFIG_PROC_FS */ 3371 3372 static __initdata unsigned long uhash_entries; 3373 static int __init set_uhash_entries(char *str) 3374 { 3375 ssize_t ret; 3376 3377 if (!str) 3378 return 0; 3379 3380 ret = kstrtoul(str, 0, &uhash_entries); 3381 if (ret) 3382 return 0; 3383 3384 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3385 uhash_entries = UDP_HTABLE_SIZE_MIN; 3386 return 1; 3387 } 3388 __setup("uhash_entries=", set_uhash_entries); 3389 3390 void __init udp_table_init(struct udp_table *table, const char *name) 3391 { 3392 unsigned int i; 3393 3394 table->hash = alloc_large_system_hash(name, 3395 2 * sizeof(struct udp_hslot), 3396 uhash_entries, 3397 21, /* one slot per 2 MB */ 3398 0, 3399 &table->log, 3400 &table->mask, 3401 UDP_HTABLE_SIZE_MIN, 3402 UDP_HTABLE_SIZE_MAX); 3403 3404 table->hash2 = table->hash + (table->mask + 1); 3405 for (i = 0; i <= table->mask; i++) { 3406 INIT_HLIST_HEAD(&table->hash[i].head); 3407 table->hash[i].count = 0; 3408 spin_lock_init(&table->hash[i].lock); 3409 } 3410 for (i = 0; i <= table->mask; i++) { 3411 INIT_HLIST_HEAD(&table->hash2[i].head); 3412 table->hash2[i].count = 0; 3413 spin_lock_init(&table->hash2[i].lock); 3414 } 3415 } 3416 3417 u32 udp_flow_hashrnd(void) 3418 { 3419 static u32 hashrnd __read_mostly; 3420 3421 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3422 3423 return hashrnd; 3424 } 3425 EXPORT_SYMBOL(udp_flow_hashrnd); 3426 3427 static void __net_init udp_sysctl_init(struct net *net) 3428 { 3429 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3430 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3431 3432 #ifdef CONFIG_NET_L3_MASTER_DEV 3433 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3434 #endif 3435 } 3436 3437 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3438 { 3439 struct udp_table *udptable; 3440 int i; 3441 3442 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3443 if (!udptable) 3444 goto out; 3445 3446 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot), 3447 GFP_KERNEL_ACCOUNT); 3448 if (!udptable->hash) 3449 goto free_table; 3450 3451 udptable->hash2 = udptable->hash + hash_entries; 3452 udptable->mask = hash_entries - 1; 3453 udptable->log = ilog2(hash_entries); 3454 3455 for (i = 0; i < hash_entries; i++) { 3456 INIT_HLIST_HEAD(&udptable->hash[i].head); 3457 udptable->hash[i].count = 0; 3458 spin_lock_init(&udptable->hash[i].lock); 3459 3460 INIT_HLIST_HEAD(&udptable->hash2[i].head); 3461 udptable->hash2[i].count = 0; 3462 spin_lock_init(&udptable->hash2[i].lock); 3463 } 3464 3465 return udptable; 3466 3467 free_table: 3468 kfree(udptable); 3469 out: 3470 return NULL; 3471 } 3472 3473 static void __net_exit udp_pernet_table_free(struct net *net) 3474 { 3475 struct udp_table *udptable = net->ipv4.udp_table; 3476 3477 if (udptable == &udp_table) 3478 return; 3479 3480 kvfree(udptable->hash); 3481 kfree(udptable); 3482 } 3483 3484 static void __net_init udp_set_table(struct net *net) 3485 { 3486 struct udp_table *udptable; 3487 unsigned int hash_entries; 3488 struct net *old_net; 3489 3490 if (net_eq(net, &init_net)) 3491 goto fallback; 3492 3493 old_net = current->nsproxy->net_ns; 3494 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3495 if (!hash_entries) 3496 goto fallback; 3497 3498 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3499 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3500 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3501 else 3502 hash_entries = roundup_pow_of_two(hash_entries); 3503 3504 udptable = udp_pernet_table_alloc(hash_entries); 3505 if (udptable) { 3506 net->ipv4.udp_table = udptable; 3507 } else { 3508 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3509 "for a netns, fallback to the global one\n", 3510 hash_entries); 3511 fallback: 3512 net->ipv4.udp_table = &udp_table; 3513 } 3514 } 3515 3516 static int __net_init udp_pernet_init(struct net *net) 3517 { 3518 udp_sysctl_init(net); 3519 udp_set_table(net); 3520 3521 return 0; 3522 } 3523 3524 static void __net_exit udp_pernet_exit(struct net *net) 3525 { 3526 udp_pernet_table_free(net); 3527 } 3528 3529 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3530 .init = udp_pernet_init, 3531 .exit = udp_pernet_exit, 3532 }; 3533 3534 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3535 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3536 struct udp_sock *udp_sk, uid_t uid, int bucket) 3537 3538 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3539 unsigned int new_batch_sz) 3540 { 3541 struct sock **new_batch; 3542 3543 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3544 GFP_USER | __GFP_NOWARN); 3545 if (!new_batch) 3546 return -ENOMEM; 3547 3548 bpf_iter_udp_put_batch(iter); 3549 kvfree(iter->batch); 3550 iter->batch = new_batch; 3551 iter->max_sk = new_batch_sz; 3552 3553 return 0; 3554 } 3555 3556 #define INIT_BATCH_SZ 16 3557 3558 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3559 { 3560 struct bpf_udp_iter_state *iter = priv_data; 3561 int ret; 3562 3563 ret = bpf_iter_init_seq_net(priv_data, aux); 3564 if (ret) 3565 return ret; 3566 3567 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3568 if (ret) 3569 bpf_iter_fini_seq_net(priv_data); 3570 3571 return ret; 3572 } 3573 3574 static void bpf_iter_fini_udp(void *priv_data) 3575 { 3576 struct bpf_udp_iter_state *iter = priv_data; 3577 3578 bpf_iter_fini_seq_net(priv_data); 3579 kvfree(iter->batch); 3580 } 3581 3582 static const struct bpf_iter_seq_info udp_seq_info = { 3583 .seq_ops = &bpf_iter_udp_seq_ops, 3584 .init_seq_private = bpf_iter_init_udp, 3585 .fini_seq_private = bpf_iter_fini_udp, 3586 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3587 }; 3588 3589 static struct bpf_iter_reg udp_reg_info = { 3590 .target = "udp", 3591 .ctx_arg_info_size = 1, 3592 .ctx_arg_info = { 3593 { offsetof(struct bpf_iter__udp, udp_sk), 3594 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3595 }, 3596 .seq_info = &udp_seq_info, 3597 }; 3598 3599 static void __init bpf_iter_register(void) 3600 { 3601 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3602 if (bpf_iter_reg_target(&udp_reg_info)) 3603 pr_warn("Warning: could not register bpf iterator udp\n"); 3604 } 3605 #endif 3606 3607 void __init udp_init(void) 3608 { 3609 unsigned long limit; 3610 unsigned int i; 3611 3612 udp_table_init(&udp_table, "UDP"); 3613 limit = nr_free_buffer_pages() / 8; 3614 limit = max(limit, 128UL); 3615 sysctl_udp_mem[0] = limit / 4 * 3; 3616 sysctl_udp_mem[1] = limit; 3617 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3618 3619 /* 16 spinlocks per cpu */ 3620 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3621 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3622 GFP_KERNEL); 3623 if (!udp_busylocks) 3624 panic("UDP: failed to alloc udp_busylocks\n"); 3625 for (i = 0; i < (1U << udp_busylocks_log); i++) 3626 spin_lock_init(udp_busylocks + i); 3627 3628 if (register_pernet_subsys(&udp_sysctl_ops)) 3629 panic("UDP: failed to init sysctl parameters.\n"); 3630 3631 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3632 bpf_iter_register(); 3633 #endif 3634 } 3635