xref: /openbmc/linux/net/ipv4/udp.c (revision 160b8e75)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127 
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130 
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136 
137 /* IPCB reference means this can not be used from early demux */
138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
139 {
140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
141 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
142 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
143 		return true;
144 #endif
145 	return false;
146 }
147 
148 static int udp_lib_lport_inuse(struct net *net, __u16 num,
149 			       const struct udp_hslot *hslot,
150 			       unsigned long *bitmap,
151 			       struct sock *sk, unsigned int log)
152 {
153 	struct sock *sk2;
154 	kuid_t uid = sock_i_uid(sk);
155 
156 	sk_for_each(sk2, &hslot->head) {
157 		if (net_eq(sock_net(sk2), net) &&
158 		    sk2 != sk &&
159 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
160 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
161 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
162 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
163 		    inet_rcv_saddr_equal(sk, sk2, true)) {
164 			if (sk2->sk_reuseport && sk->sk_reuseport &&
165 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
166 			    uid_eq(uid, sock_i_uid(sk2))) {
167 				if (!bitmap)
168 					return 0;
169 			} else {
170 				if (!bitmap)
171 					return 1;
172 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
173 					  bitmap);
174 			}
175 		}
176 	}
177 	return 0;
178 }
179 
180 /*
181  * Note: we still hold spinlock of primary hash chain, so no other writer
182  * can insert/delete a socket with local_port == num
183  */
184 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
185 				struct udp_hslot *hslot2,
186 				struct sock *sk)
187 {
188 	struct sock *sk2;
189 	kuid_t uid = sock_i_uid(sk);
190 	int res = 0;
191 
192 	spin_lock(&hslot2->lock);
193 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
194 		if (net_eq(sock_net(sk2), net) &&
195 		    sk2 != sk &&
196 		    (udp_sk(sk2)->udp_port_hash == num) &&
197 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
198 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
199 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200 		    inet_rcv_saddr_equal(sk, sk2, true)) {
201 			if (sk2->sk_reuseport && sk->sk_reuseport &&
202 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
203 			    uid_eq(uid, sock_i_uid(sk2))) {
204 				res = 0;
205 			} else {
206 				res = 1;
207 			}
208 			break;
209 		}
210 	}
211 	spin_unlock(&hslot2->lock);
212 	return res;
213 }
214 
215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
216 {
217 	struct net *net = sock_net(sk);
218 	kuid_t uid = sock_i_uid(sk);
219 	struct sock *sk2;
220 
221 	sk_for_each(sk2, &hslot->head) {
222 		if (net_eq(sock_net(sk2), net) &&
223 		    sk2 != sk &&
224 		    sk2->sk_family == sk->sk_family &&
225 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
226 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
227 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
228 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
229 		    inet_rcv_saddr_equal(sk, sk2, false)) {
230 			return reuseport_add_sock(sk, sk2);
231 		}
232 	}
233 
234 	return reuseport_alloc(sk);
235 }
236 
237 /**
238  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
239  *
240  *  @sk:          socket struct in question
241  *  @snum:        port number to look up
242  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
243  *                   with NULL address
244  */
245 int udp_lib_get_port(struct sock *sk, unsigned short snum,
246 		     unsigned int hash2_nulladdr)
247 {
248 	struct udp_hslot *hslot, *hslot2;
249 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
250 	int    error = 1;
251 	struct net *net = sock_net(sk);
252 
253 	if (!snum) {
254 		int low, high, remaining;
255 		unsigned int rand;
256 		unsigned short first, last;
257 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
258 
259 		inet_get_local_port_range(net, &low, &high);
260 		remaining = (high - low) + 1;
261 
262 		rand = prandom_u32();
263 		first = reciprocal_scale(rand, remaining) + low;
264 		/*
265 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
266 		 */
267 		rand = (rand | 1) * (udptable->mask + 1);
268 		last = first + udptable->mask + 1;
269 		do {
270 			hslot = udp_hashslot(udptable, net, first);
271 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
272 			spin_lock_bh(&hslot->lock);
273 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
274 					    udptable->log);
275 
276 			snum = first;
277 			/*
278 			 * Iterate on all possible values of snum for this hash.
279 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
280 			 * give us randomization and full range coverage.
281 			 */
282 			do {
283 				if (low <= snum && snum <= high &&
284 				    !test_bit(snum >> udptable->log, bitmap) &&
285 				    !inet_is_local_reserved_port(net, snum))
286 					goto found;
287 				snum += rand;
288 			} while (snum != first);
289 			spin_unlock_bh(&hslot->lock);
290 			cond_resched();
291 		} while (++first != last);
292 		goto fail;
293 	} else {
294 		hslot = udp_hashslot(udptable, net, snum);
295 		spin_lock_bh(&hslot->lock);
296 		if (hslot->count > 10) {
297 			int exist;
298 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
299 
300 			slot2          &= udptable->mask;
301 			hash2_nulladdr &= udptable->mask;
302 
303 			hslot2 = udp_hashslot2(udptable, slot2);
304 			if (hslot->count < hslot2->count)
305 				goto scan_primary_hash;
306 
307 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
308 			if (!exist && (hash2_nulladdr != slot2)) {
309 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
310 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
311 							     sk);
312 			}
313 			if (exist)
314 				goto fail_unlock;
315 			else
316 				goto found;
317 		}
318 scan_primary_hash:
319 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
320 			goto fail_unlock;
321 	}
322 found:
323 	inet_sk(sk)->inet_num = snum;
324 	udp_sk(sk)->udp_port_hash = snum;
325 	udp_sk(sk)->udp_portaddr_hash ^= snum;
326 	if (sk_unhashed(sk)) {
327 		if (sk->sk_reuseport &&
328 		    udp_reuseport_add_sock(sk, hslot)) {
329 			inet_sk(sk)->inet_num = 0;
330 			udp_sk(sk)->udp_port_hash = 0;
331 			udp_sk(sk)->udp_portaddr_hash ^= snum;
332 			goto fail_unlock;
333 		}
334 
335 		sk_add_node_rcu(sk, &hslot->head);
336 		hslot->count++;
337 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
338 
339 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
340 		spin_lock(&hslot2->lock);
341 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
342 		    sk->sk_family == AF_INET6)
343 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		else
346 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
347 					   &hslot2->head);
348 		hslot2->count++;
349 		spin_unlock(&hslot2->lock);
350 	}
351 	sock_set_flag(sk, SOCK_RCU_FREE);
352 	error = 0;
353 fail_unlock:
354 	spin_unlock_bh(&hslot->lock);
355 fail:
356 	return error;
357 }
358 EXPORT_SYMBOL(udp_lib_get_port);
359 
360 int udp_v4_get_port(struct sock *sk, unsigned short snum)
361 {
362 	unsigned int hash2_nulladdr =
363 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
364 	unsigned int hash2_partial =
365 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
366 
367 	/* precompute partial secondary hash */
368 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
369 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
370 }
371 
372 static int compute_score(struct sock *sk, struct net *net,
373 			 __be32 saddr, __be16 sport,
374 			 __be32 daddr, unsigned short hnum,
375 			 int dif, int sdif, bool exact_dif)
376 {
377 	int score;
378 	struct inet_sock *inet;
379 
380 	if (!net_eq(sock_net(sk), net) ||
381 	    udp_sk(sk)->udp_port_hash != hnum ||
382 	    ipv6_only_sock(sk))
383 		return -1;
384 
385 	score = (sk->sk_family == PF_INET) ? 2 : 1;
386 	inet = inet_sk(sk);
387 
388 	if (inet->inet_rcv_saddr) {
389 		if (inet->inet_rcv_saddr != daddr)
390 			return -1;
391 		score += 4;
392 	}
393 
394 	if (inet->inet_daddr) {
395 		if (inet->inet_daddr != saddr)
396 			return -1;
397 		score += 4;
398 	}
399 
400 	if (inet->inet_dport) {
401 		if (inet->inet_dport != sport)
402 			return -1;
403 		score += 4;
404 	}
405 
406 	if (sk->sk_bound_dev_if || exact_dif) {
407 		bool dev_match = (sk->sk_bound_dev_if == dif ||
408 				  sk->sk_bound_dev_if == sdif);
409 
410 		if (exact_dif && !dev_match)
411 			return -1;
412 		if (sk->sk_bound_dev_if && dev_match)
413 			score += 4;
414 	}
415 
416 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
417 		score++;
418 	return score;
419 }
420 
421 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
422 		       const __u16 lport, const __be32 faddr,
423 		       const __be16 fport)
424 {
425 	static u32 udp_ehash_secret __read_mostly;
426 
427 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
428 
429 	return __inet_ehashfn(laddr, lport, faddr, fport,
430 			      udp_ehash_secret + net_hash_mix(net));
431 }
432 
433 /* called with rcu_read_lock() */
434 static struct sock *udp4_lib_lookup2(struct net *net,
435 				     __be32 saddr, __be16 sport,
436 				     __be32 daddr, unsigned int hnum,
437 				     int dif, int sdif, bool exact_dif,
438 				     struct udp_hslot *hslot2,
439 				     struct sk_buff *skb)
440 {
441 	struct sock *sk, *result;
442 	int score, badness;
443 	u32 hash = 0;
444 
445 	result = NULL;
446 	badness = 0;
447 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
448 		score = compute_score(sk, net, saddr, sport,
449 				      daddr, hnum, dif, sdif, exact_dif);
450 		if (score > badness) {
451 			if (sk->sk_reuseport) {
452 				hash = udp_ehashfn(net, daddr, hnum,
453 						   saddr, sport);
454 				result = reuseport_select_sock(sk, hash, skb,
455 							sizeof(struct udphdr));
456 				if (result)
457 					return result;
458 			}
459 			badness = score;
460 			result = sk;
461 		}
462 	}
463 	return result;
464 }
465 
466 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
467  * harder than this. -DaveM
468  */
469 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
470 		__be16 sport, __be32 daddr, __be16 dport, int dif,
471 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
472 {
473 	struct sock *sk, *result;
474 	unsigned short hnum = ntohs(dport);
475 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
476 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
477 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
478 	int score, badness;
479 	u32 hash = 0;
480 
481 	if (hslot->count > 10) {
482 		hash2 = ipv4_portaddr_hash(net, daddr, hnum);
483 		slot2 = hash2 & udptable->mask;
484 		hslot2 = &udptable->hash2[slot2];
485 		if (hslot->count < hslot2->count)
486 			goto begin;
487 
488 		result = udp4_lib_lookup2(net, saddr, sport,
489 					  daddr, hnum, dif, sdif,
490 					  exact_dif, hslot2, skb);
491 		if (!result) {
492 			unsigned int old_slot2 = slot2;
493 			hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
494 			slot2 = hash2 & udptable->mask;
495 			/* avoid searching the same slot again. */
496 			if (unlikely(slot2 == old_slot2))
497 				return result;
498 
499 			hslot2 = &udptable->hash2[slot2];
500 			if (hslot->count < hslot2->count)
501 				goto begin;
502 
503 			result = udp4_lib_lookup2(net, saddr, sport,
504 						  daddr, hnum, dif, sdif,
505 						  exact_dif, hslot2, skb);
506 		}
507 		return result;
508 	}
509 begin:
510 	result = NULL;
511 	badness = 0;
512 	sk_for_each_rcu(sk, &hslot->head) {
513 		score = compute_score(sk, net, saddr, sport,
514 				      daddr, hnum, dif, sdif, exact_dif);
515 		if (score > badness) {
516 			if (sk->sk_reuseport) {
517 				hash = udp_ehashfn(net, daddr, hnum,
518 						   saddr, sport);
519 				result = reuseport_select_sock(sk, hash, skb,
520 							sizeof(struct udphdr));
521 				if (result)
522 					return result;
523 			}
524 			result = sk;
525 			badness = score;
526 		}
527 	}
528 	return result;
529 }
530 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
531 
532 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
533 						 __be16 sport, __be16 dport,
534 						 struct udp_table *udptable)
535 {
536 	const struct iphdr *iph = ip_hdr(skb);
537 
538 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
539 				 iph->daddr, dport, inet_iif(skb),
540 				 inet_sdif(skb), udptable, skb);
541 }
542 
543 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
544 				 __be16 sport, __be16 dport)
545 {
546 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
547 }
548 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
549 
550 /* Must be called under rcu_read_lock().
551  * Does increment socket refcount.
552  */
553 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
554     IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
555     IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
556 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
557 			     __be32 daddr, __be16 dport, int dif)
558 {
559 	struct sock *sk;
560 
561 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
562 			       dif, 0, &udp_table, NULL);
563 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
564 		sk = NULL;
565 	return sk;
566 }
567 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
568 #endif
569 
570 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
571 				       __be16 loc_port, __be32 loc_addr,
572 				       __be16 rmt_port, __be32 rmt_addr,
573 				       int dif, int sdif, unsigned short hnum)
574 {
575 	struct inet_sock *inet = inet_sk(sk);
576 
577 	if (!net_eq(sock_net(sk), net) ||
578 	    udp_sk(sk)->udp_port_hash != hnum ||
579 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
580 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
581 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
582 	    ipv6_only_sock(sk) ||
583 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
584 	     sk->sk_bound_dev_if != sdif))
585 		return false;
586 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
587 		return false;
588 	return true;
589 }
590 
591 /*
592  * This routine is called by the ICMP module when it gets some
593  * sort of error condition.  If err < 0 then the socket should
594  * be closed and the error returned to the user.  If err > 0
595  * it's just the icmp type << 8 | icmp code.
596  * Header points to the ip header of the error packet. We move
597  * on past this. Then (as it used to claim before adjustment)
598  * header points to the first 8 bytes of the udp header.  We need
599  * to find the appropriate port.
600  */
601 
602 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
603 {
604 	struct inet_sock *inet;
605 	const struct iphdr *iph = (const struct iphdr *)skb->data;
606 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
607 	const int type = icmp_hdr(skb)->type;
608 	const int code = icmp_hdr(skb)->code;
609 	struct sock *sk;
610 	int harderr;
611 	int err;
612 	struct net *net = dev_net(skb->dev);
613 
614 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
615 			       iph->saddr, uh->source, skb->dev->ifindex, 0,
616 			       udptable, NULL);
617 	if (!sk) {
618 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
619 		return;	/* No socket for error */
620 	}
621 
622 	err = 0;
623 	harderr = 0;
624 	inet = inet_sk(sk);
625 
626 	switch (type) {
627 	default:
628 	case ICMP_TIME_EXCEEDED:
629 		err = EHOSTUNREACH;
630 		break;
631 	case ICMP_SOURCE_QUENCH:
632 		goto out;
633 	case ICMP_PARAMETERPROB:
634 		err = EPROTO;
635 		harderr = 1;
636 		break;
637 	case ICMP_DEST_UNREACH:
638 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
639 			ipv4_sk_update_pmtu(skb, sk, info);
640 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
641 				err = EMSGSIZE;
642 				harderr = 1;
643 				break;
644 			}
645 			goto out;
646 		}
647 		err = EHOSTUNREACH;
648 		if (code <= NR_ICMP_UNREACH) {
649 			harderr = icmp_err_convert[code].fatal;
650 			err = icmp_err_convert[code].errno;
651 		}
652 		break;
653 	case ICMP_REDIRECT:
654 		ipv4_sk_redirect(skb, sk);
655 		goto out;
656 	}
657 
658 	/*
659 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
660 	 *	4.1.3.3.
661 	 */
662 	if (!inet->recverr) {
663 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
664 			goto out;
665 	} else
666 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
667 
668 	sk->sk_err = err;
669 	sk->sk_error_report(sk);
670 out:
671 	return;
672 }
673 
674 void udp_err(struct sk_buff *skb, u32 info)
675 {
676 	__udp4_lib_err(skb, info, &udp_table);
677 }
678 
679 /*
680  * Throw away all pending data and cancel the corking. Socket is locked.
681  */
682 void udp_flush_pending_frames(struct sock *sk)
683 {
684 	struct udp_sock *up = udp_sk(sk);
685 
686 	if (up->pending) {
687 		up->len = 0;
688 		up->pending = 0;
689 		ip_flush_pending_frames(sk);
690 	}
691 }
692 EXPORT_SYMBOL(udp_flush_pending_frames);
693 
694 /**
695  * 	udp4_hwcsum  -  handle outgoing HW checksumming
696  * 	@skb: 	sk_buff containing the filled-in UDP header
697  * 	        (checksum field must be zeroed out)
698  *	@src:	source IP address
699  *	@dst:	destination IP address
700  */
701 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
702 {
703 	struct udphdr *uh = udp_hdr(skb);
704 	int offset = skb_transport_offset(skb);
705 	int len = skb->len - offset;
706 	int hlen = len;
707 	__wsum csum = 0;
708 
709 	if (!skb_has_frag_list(skb)) {
710 		/*
711 		 * Only one fragment on the socket.
712 		 */
713 		skb->csum_start = skb_transport_header(skb) - skb->head;
714 		skb->csum_offset = offsetof(struct udphdr, check);
715 		uh->check = ~csum_tcpudp_magic(src, dst, len,
716 					       IPPROTO_UDP, 0);
717 	} else {
718 		struct sk_buff *frags;
719 
720 		/*
721 		 * HW-checksum won't work as there are two or more
722 		 * fragments on the socket so that all csums of sk_buffs
723 		 * should be together
724 		 */
725 		skb_walk_frags(skb, frags) {
726 			csum = csum_add(csum, frags->csum);
727 			hlen -= frags->len;
728 		}
729 
730 		csum = skb_checksum(skb, offset, hlen, csum);
731 		skb->ip_summed = CHECKSUM_NONE;
732 
733 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
734 		if (uh->check == 0)
735 			uh->check = CSUM_MANGLED_0;
736 	}
737 }
738 EXPORT_SYMBOL_GPL(udp4_hwcsum);
739 
740 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
741  * for the simple case like when setting the checksum for a UDP tunnel.
742  */
743 void udp_set_csum(bool nocheck, struct sk_buff *skb,
744 		  __be32 saddr, __be32 daddr, int len)
745 {
746 	struct udphdr *uh = udp_hdr(skb);
747 
748 	if (nocheck) {
749 		uh->check = 0;
750 	} else if (skb_is_gso(skb)) {
751 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
752 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
753 		uh->check = 0;
754 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
755 		if (uh->check == 0)
756 			uh->check = CSUM_MANGLED_0;
757 	} else {
758 		skb->ip_summed = CHECKSUM_PARTIAL;
759 		skb->csum_start = skb_transport_header(skb) - skb->head;
760 		skb->csum_offset = offsetof(struct udphdr, check);
761 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
762 	}
763 }
764 EXPORT_SYMBOL(udp_set_csum);
765 
766 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
767 {
768 	struct sock *sk = skb->sk;
769 	struct inet_sock *inet = inet_sk(sk);
770 	struct udphdr *uh;
771 	int err = 0;
772 	int is_udplite = IS_UDPLITE(sk);
773 	int offset = skb_transport_offset(skb);
774 	int len = skb->len - offset;
775 	__wsum csum = 0;
776 
777 	/*
778 	 * Create a UDP header
779 	 */
780 	uh = udp_hdr(skb);
781 	uh->source = inet->inet_sport;
782 	uh->dest = fl4->fl4_dport;
783 	uh->len = htons(len);
784 	uh->check = 0;
785 
786 	if (is_udplite)  				 /*     UDP-Lite      */
787 		csum = udplite_csum(skb);
788 
789 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
790 
791 		skb->ip_summed = CHECKSUM_NONE;
792 		goto send;
793 
794 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
795 
796 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
797 		goto send;
798 
799 	} else
800 		csum = udp_csum(skb);
801 
802 	/* add protocol-dependent pseudo-header */
803 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
804 				      sk->sk_protocol, csum);
805 	if (uh->check == 0)
806 		uh->check = CSUM_MANGLED_0;
807 
808 send:
809 	err = ip_send_skb(sock_net(sk), skb);
810 	if (err) {
811 		if (err == -ENOBUFS && !inet->recverr) {
812 			UDP_INC_STATS(sock_net(sk),
813 				      UDP_MIB_SNDBUFERRORS, is_udplite);
814 			err = 0;
815 		}
816 	} else
817 		UDP_INC_STATS(sock_net(sk),
818 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
819 	return err;
820 }
821 
822 /*
823  * Push out all pending data as one UDP datagram. Socket is locked.
824  */
825 int udp_push_pending_frames(struct sock *sk)
826 {
827 	struct udp_sock  *up = udp_sk(sk);
828 	struct inet_sock *inet = inet_sk(sk);
829 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
830 	struct sk_buff *skb;
831 	int err = 0;
832 
833 	skb = ip_finish_skb(sk, fl4);
834 	if (!skb)
835 		goto out;
836 
837 	err = udp_send_skb(skb, fl4);
838 
839 out:
840 	up->len = 0;
841 	up->pending = 0;
842 	return err;
843 }
844 EXPORT_SYMBOL(udp_push_pending_frames);
845 
846 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
847 {
848 	struct inet_sock *inet = inet_sk(sk);
849 	struct udp_sock *up = udp_sk(sk);
850 	struct flowi4 fl4_stack;
851 	struct flowi4 *fl4;
852 	int ulen = len;
853 	struct ipcm_cookie ipc;
854 	struct rtable *rt = NULL;
855 	int free = 0;
856 	int connected = 0;
857 	__be32 daddr, faddr, saddr;
858 	__be16 dport;
859 	u8  tos;
860 	int err, is_udplite = IS_UDPLITE(sk);
861 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
862 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
863 	struct sk_buff *skb;
864 	struct ip_options_data opt_copy;
865 
866 	if (len > 0xFFFF)
867 		return -EMSGSIZE;
868 
869 	/*
870 	 *	Check the flags.
871 	 */
872 
873 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
874 		return -EOPNOTSUPP;
875 
876 	ipc.opt = NULL;
877 	ipc.tx_flags = 0;
878 	ipc.ttl = 0;
879 	ipc.tos = -1;
880 
881 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
882 
883 	fl4 = &inet->cork.fl.u.ip4;
884 	if (up->pending) {
885 		/*
886 		 * There are pending frames.
887 		 * The socket lock must be held while it's corked.
888 		 */
889 		lock_sock(sk);
890 		if (likely(up->pending)) {
891 			if (unlikely(up->pending != AF_INET)) {
892 				release_sock(sk);
893 				return -EINVAL;
894 			}
895 			goto do_append_data;
896 		}
897 		release_sock(sk);
898 	}
899 	ulen += sizeof(struct udphdr);
900 
901 	/*
902 	 *	Get and verify the address.
903 	 */
904 	if (msg->msg_name) {
905 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
906 		if (msg->msg_namelen < sizeof(*usin))
907 			return -EINVAL;
908 		if (usin->sin_family != AF_INET) {
909 			if (usin->sin_family != AF_UNSPEC)
910 				return -EAFNOSUPPORT;
911 		}
912 
913 		daddr = usin->sin_addr.s_addr;
914 		dport = usin->sin_port;
915 		if (dport == 0)
916 			return -EINVAL;
917 	} else {
918 		if (sk->sk_state != TCP_ESTABLISHED)
919 			return -EDESTADDRREQ;
920 		daddr = inet->inet_daddr;
921 		dport = inet->inet_dport;
922 		/* Open fast path for connected socket.
923 		   Route will not be used, if at least one option is set.
924 		 */
925 		connected = 1;
926 	}
927 
928 	ipc.sockc.tsflags = sk->sk_tsflags;
929 	ipc.addr = inet->inet_saddr;
930 	ipc.oif = sk->sk_bound_dev_if;
931 
932 	if (msg->msg_controllen) {
933 		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
934 		if (unlikely(err)) {
935 			kfree(ipc.opt);
936 			return err;
937 		}
938 		if (ipc.opt)
939 			free = 1;
940 		connected = 0;
941 	}
942 	if (!ipc.opt) {
943 		struct ip_options_rcu *inet_opt;
944 
945 		rcu_read_lock();
946 		inet_opt = rcu_dereference(inet->inet_opt);
947 		if (inet_opt) {
948 			memcpy(&opt_copy, inet_opt,
949 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
950 			ipc.opt = &opt_copy.opt;
951 		}
952 		rcu_read_unlock();
953 	}
954 
955 	saddr = ipc.addr;
956 	ipc.addr = faddr = daddr;
957 
958 	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
959 
960 	if (ipc.opt && ipc.opt->opt.srr) {
961 		if (!daddr)
962 			return -EINVAL;
963 		faddr = ipc.opt->opt.faddr;
964 		connected = 0;
965 	}
966 	tos = get_rttos(&ipc, inet);
967 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
968 	    (msg->msg_flags & MSG_DONTROUTE) ||
969 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
970 		tos |= RTO_ONLINK;
971 		connected = 0;
972 	}
973 
974 	if (ipv4_is_multicast(daddr)) {
975 		if (!ipc.oif)
976 			ipc.oif = inet->mc_index;
977 		if (!saddr)
978 			saddr = inet->mc_addr;
979 		connected = 0;
980 	} else if (!ipc.oif) {
981 		ipc.oif = inet->uc_index;
982 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
983 		/* oif is set, packet is to local broadcast and
984 		 * and uc_index is set. oif is most likely set
985 		 * by sk_bound_dev_if. If uc_index != oif check if the
986 		 * oif is an L3 master and uc_index is an L3 slave.
987 		 * If so, we want to allow the send using the uc_index.
988 		 */
989 		if (ipc.oif != inet->uc_index &&
990 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
991 							      inet->uc_index)) {
992 			ipc.oif = inet->uc_index;
993 		}
994 	}
995 
996 	if (connected)
997 		rt = (struct rtable *)sk_dst_check(sk, 0);
998 
999 	if (!rt) {
1000 		struct net *net = sock_net(sk);
1001 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1002 
1003 		fl4 = &fl4_stack;
1004 
1005 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1006 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1007 				   flow_flags,
1008 				   faddr, saddr, dport, inet->inet_sport,
1009 				   sk->sk_uid);
1010 
1011 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1012 		rt = ip_route_output_flow(net, fl4, sk);
1013 		if (IS_ERR(rt)) {
1014 			err = PTR_ERR(rt);
1015 			rt = NULL;
1016 			if (err == -ENETUNREACH)
1017 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1018 			goto out;
1019 		}
1020 
1021 		err = -EACCES;
1022 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1023 		    !sock_flag(sk, SOCK_BROADCAST))
1024 			goto out;
1025 		if (connected)
1026 			sk_dst_set(sk, dst_clone(&rt->dst));
1027 	}
1028 
1029 	if (msg->msg_flags&MSG_CONFIRM)
1030 		goto do_confirm;
1031 back_from_confirm:
1032 
1033 	saddr = fl4->saddr;
1034 	if (!ipc.addr)
1035 		daddr = ipc.addr = fl4->daddr;
1036 
1037 	/* Lockless fast path for the non-corking case. */
1038 	if (!corkreq) {
1039 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1040 				  sizeof(struct udphdr), &ipc, &rt,
1041 				  msg->msg_flags);
1042 		err = PTR_ERR(skb);
1043 		if (!IS_ERR_OR_NULL(skb))
1044 			err = udp_send_skb(skb, fl4);
1045 		goto out;
1046 	}
1047 
1048 	lock_sock(sk);
1049 	if (unlikely(up->pending)) {
1050 		/* The socket is already corked while preparing it. */
1051 		/* ... which is an evident application bug. --ANK */
1052 		release_sock(sk);
1053 
1054 		net_dbg_ratelimited("socket already corked\n");
1055 		err = -EINVAL;
1056 		goto out;
1057 	}
1058 	/*
1059 	 *	Now cork the socket to pend data.
1060 	 */
1061 	fl4 = &inet->cork.fl.u.ip4;
1062 	fl4->daddr = daddr;
1063 	fl4->saddr = saddr;
1064 	fl4->fl4_dport = dport;
1065 	fl4->fl4_sport = inet->inet_sport;
1066 	up->pending = AF_INET;
1067 
1068 do_append_data:
1069 	up->len += ulen;
1070 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1071 			     sizeof(struct udphdr), &ipc, &rt,
1072 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1073 	if (err)
1074 		udp_flush_pending_frames(sk);
1075 	else if (!corkreq)
1076 		err = udp_push_pending_frames(sk);
1077 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1078 		up->pending = 0;
1079 	release_sock(sk);
1080 
1081 out:
1082 	ip_rt_put(rt);
1083 	if (free)
1084 		kfree(ipc.opt);
1085 	if (!err)
1086 		return len;
1087 	/*
1088 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1089 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1090 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1091 	 * things).  We could add another new stat but at least for now that
1092 	 * seems like overkill.
1093 	 */
1094 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1095 		UDP_INC_STATS(sock_net(sk),
1096 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1097 	}
1098 	return err;
1099 
1100 do_confirm:
1101 	if (msg->msg_flags & MSG_PROBE)
1102 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1103 	if (!(msg->msg_flags&MSG_PROBE) || len)
1104 		goto back_from_confirm;
1105 	err = 0;
1106 	goto out;
1107 }
1108 EXPORT_SYMBOL(udp_sendmsg);
1109 
1110 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1111 		 size_t size, int flags)
1112 {
1113 	struct inet_sock *inet = inet_sk(sk);
1114 	struct udp_sock *up = udp_sk(sk);
1115 	int ret;
1116 
1117 	if (flags & MSG_SENDPAGE_NOTLAST)
1118 		flags |= MSG_MORE;
1119 
1120 	if (!up->pending) {
1121 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1122 
1123 		/* Call udp_sendmsg to specify destination address which
1124 		 * sendpage interface can't pass.
1125 		 * This will succeed only when the socket is connected.
1126 		 */
1127 		ret = udp_sendmsg(sk, &msg, 0);
1128 		if (ret < 0)
1129 			return ret;
1130 	}
1131 
1132 	lock_sock(sk);
1133 
1134 	if (unlikely(!up->pending)) {
1135 		release_sock(sk);
1136 
1137 		net_dbg_ratelimited("cork failed\n");
1138 		return -EINVAL;
1139 	}
1140 
1141 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1142 			     page, offset, size, flags);
1143 	if (ret == -EOPNOTSUPP) {
1144 		release_sock(sk);
1145 		return sock_no_sendpage(sk->sk_socket, page, offset,
1146 					size, flags);
1147 	}
1148 	if (ret < 0) {
1149 		udp_flush_pending_frames(sk);
1150 		goto out;
1151 	}
1152 
1153 	up->len += size;
1154 	if (!(up->corkflag || (flags&MSG_MORE)))
1155 		ret = udp_push_pending_frames(sk);
1156 	if (!ret)
1157 		ret = size;
1158 out:
1159 	release_sock(sk);
1160 	return ret;
1161 }
1162 
1163 #define UDP_SKB_IS_STATELESS 0x80000000
1164 
1165 static void udp_set_dev_scratch(struct sk_buff *skb)
1166 {
1167 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1168 
1169 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1170 	scratch->_tsize_state = skb->truesize;
1171 #if BITS_PER_LONG == 64
1172 	scratch->len = skb->len;
1173 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1174 	scratch->is_linear = !skb_is_nonlinear(skb);
1175 #endif
1176 	/* all head states execept sp (dst, sk, nf) are always cleared by
1177 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1178 	 * process IP_CMSG_PASSSEC at recvmsg() time
1179 	 */
1180 	if (likely(!skb_sec_path(skb)))
1181 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1182 }
1183 
1184 static int udp_skb_truesize(struct sk_buff *skb)
1185 {
1186 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1187 }
1188 
1189 static bool udp_skb_has_head_state(struct sk_buff *skb)
1190 {
1191 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1192 }
1193 
1194 /* fully reclaim rmem/fwd memory allocated for skb */
1195 static void udp_rmem_release(struct sock *sk, int size, int partial,
1196 			     bool rx_queue_lock_held)
1197 {
1198 	struct udp_sock *up = udp_sk(sk);
1199 	struct sk_buff_head *sk_queue;
1200 	int amt;
1201 
1202 	if (likely(partial)) {
1203 		up->forward_deficit += size;
1204 		size = up->forward_deficit;
1205 		if (size < (sk->sk_rcvbuf >> 2))
1206 			return;
1207 	} else {
1208 		size += up->forward_deficit;
1209 	}
1210 	up->forward_deficit = 0;
1211 
1212 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1213 	 * if the called don't held it already
1214 	 */
1215 	sk_queue = &sk->sk_receive_queue;
1216 	if (!rx_queue_lock_held)
1217 		spin_lock(&sk_queue->lock);
1218 
1219 
1220 	sk->sk_forward_alloc += size;
1221 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1222 	sk->sk_forward_alloc -= amt;
1223 
1224 	if (amt)
1225 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1226 
1227 	atomic_sub(size, &sk->sk_rmem_alloc);
1228 
1229 	/* this can save us from acquiring the rx queue lock on next receive */
1230 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1231 
1232 	if (!rx_queue_lock_held)
1233 		spin_unlock(&sk_queue->lock);
1234 }
1235 
1236 /* Note: called with reader_queue.lock held.
1237  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1238  * This avoids a cache line miss while receive_queue lock is held.
1239  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1240  */
1241 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1242 {
1243 	prefetch(&skb->data);
1244 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1245 }
1246 EXPORT_SYMBOL(udp_skb_destructor);
1247 
1248 /* as above, but the caller held the rx queue lock, too */
1249 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1250 {
1251 	prefetch(&skb->data);
1252 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1253 }
1254 
1255 /* Idea of busylocks is to let producers grab an extra spinlock
1256  * to relieve pressure on the receive_queue spinlock shared by consumer.
1257  * Under flood, this means that only one producer can be in line
1258  * trying to acquire the receive_queue spinlock.
1259  * These busylock can be allocated on a per cpu manner, instead of a
1260  * per socket one (that would consume a cache line per socket)
1261  */
1262 static int udp_busylocks_log __read_mostly;
1263 static spinlock_t *udp_busylocks __read_mostly;
1264 
1265 static spinlock_t *busylock_acquire(void *ptr)
1266 {
1267 	spinlock_t *busy;
1268 
1269 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1270 	spin_lock(busy);
1271 	return busy;
1272 }
1273 
1274 static void busylock_release(spinlock_t *busy)
1275 {
1276 	if (busy)
1277 		spin_unlock(busy);
1278 }
1279 
1280 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1281 {
1282 	struct sk_buff_head *list = &sk->sk_receive_queue;
1283 	int rmem, delta, amt, err = -ENOMEM;
1284 	spinlock_t *busy = NULL;
1285 	int size;
1286 
1287 	/* try to avoid the costly atomic add/sub pair when the receive
1288 	 * queue is full; always allow at least a packet
1289 	 */
1290 	rmem = atomic_read(&sk->sk_rmem_alloc);
1291 	if (rmem > sk->sk_rcvbuf)
1292 		goto drop;
1293 
1294 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1295 	 * having linear skbs :
1296 	 * - Reduce memory overhead and thus increase receive queue capacity
1297 	 * - Less cache line misses at copyout() time
1298 	 * - Less work at consume_skb() (less alien page frag freeing)
1299 	 */
1300 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1301 		skb_condense(skb);
1302 
1303 		busy = busylock_acquire(sk);
1304 	}
1305 	size = skb->truesize;
1306 	udp_set_dev_scratch(skb);
1307 
1308 	/* we drop only if the receive buf is full and the receive
1309 	 * queue contains some other skb
1310 	 */
1311 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1312 	if (rmem > (size + sk->sk_rcvbuf))
1313 		goto uncharge_drop;
1314 
1315 	spin_lock(&list->lock);
1316 	if (size >= sk->sk_forward_alloc) {
1317 		amt = sk_mem_pages(size);
1318 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1319 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1320 			err = -ENOBUFS;
1321 			spin_unlock(&list->lock);
1322 			goto uncharge_drop;
1323 		}
1324 
1325 		sk->sk_forward_alloc += delta;
1326 	}
1327 
1328 	sk->sk_forward_alloc -= size;
1329 
1330 	/* no need to setup a destructor, we will explicitly release the
1331 	 * forward allocated memory on dequeue
1332 	 */
1333 	sock_skb_set_dropcount(sk, skb);
1334 
1335 	__skb_queue_tail(list, skb);
1336 	spin_unlock(&list->lock);
1337 
1338 	if (!sock_flag(sk, SOCK_DEAD))
1339 		sk->sk_data_ready(sk);
1340 
1341 	busylock_release(busy);
1342 	return 0;
1343 
1344 uncharge_drop:
1345 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1346 
1347 drop:
1348 	atomic_inc(&sk->sk_drops);
1349 	busylock_release(busy);
1350 	return err;
1351 }
1352 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1353 
1354 void udp_destruct_sock(struct sock *sk)
1355 {
1356 	/* reclaim completely the forward allocated memory */
1357 	struct udp_sock *up = udp_sk(sk);
1358 	unsigned int total = 0;
1359 	struct sk_buff *skb;
1360 
1361 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1362 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1363 		total += skb->truesize;
1364 		kfree_skb(skb);
1365 	}
1366 	udp_rmem_release(sk, total, 0, true);
1367 
1368 	inet_sock_destruct(sk);
1369 }
1370 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1371 
1372 int udp_init_sock(struct sock *sk)
1373 {
1374 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1375 	sk->sk_destruct = udp_destruct_sock;
1376 	return 0;
1377 }
1378 EXPORT_SYMBOL_GPL(udp_init_sock);
1379 
1380 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1381 {
1382 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1383 		bool slow = lock_sock_fast(sk);
1384 
1385 		sk_peek_offset_bwd(sk, len);
1386 		unlock_sock_fast(sk, slow);
1387 	}
1388 
1389 	if (!skb_unref(skb))
1390 		return;
1391 
1392 	/* In the more common cases we cleared the head states previously,
1393 	 * see __udp_queue_rcv_skb().
1394 	 */
1395 	if (unlikely(udp_skb_has_head_state(skb)))
1396 		skb_release_head_state(skb);
1397 	__consume_stateless_skb(skb);
1398 }
1399 EXPORT_SYMBOL_GPL(skb_consume_udp);
1400 
1401 static struct sk_buff *__first_packet_length(struct sock *sk,
1402 					     struct sk_buff_head *rcvq,
1403 					     int *total)
1404 {
1405 	struct sk_buff *skb;
1406 
1407 	while ((skb = skb_peek(rcvq)) != NULL) {
1408 		if (udp_lib_checksum_complete(skb)) {
1409 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1410 					IS_UDPLITE(sk));
1411 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1412 					IS_UDPLITE(sk));
1413 			atomic_inc(&sk->sk_drops);
1414 			__skb_unlink(skb, rcvq);
1415 			*total += skb->truesize;
1416 			kfree_skb(skb);
1417 		} else {
1418 			/* the csum related bits could be changed, refresh
1419 			 * the scratch area
1420 			 */
1421 			udp_set_dev_scratch(skb);
1422 			break;
1423 		}
1424 	}
1425 	return skb;
1426 }
1427 
1428 /**
1429  *	first_packet_length	- return length of first packet in receive queue
1430  *	@sk: socket
1431  *
1432  *	Drops all bad checksum frames, until a valid one is found.
1433  *	Returns the length of found skb, or -1 if none is found.
1434  */
1435 static int first_packet_length(struct sock *sk)
1436 {
1437 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1438 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1439 	struct sk_buff *skb;
1440 	int total = 0;
1441 	int res;
1442 
1443 	spin_lock_bh(&rcvq->lock);
1444 	skb = __first_packet_length(sk, rcvq, &total);
1445 	if (!skb && !skb_queue_empty(sk_queue)) {
1446 		spin_lock(&sk_queue->lock);
1447 		skb_queue_splice_tail_init(sk_queue, rcvq);
1448 		spin_unlock(&sk_queue->lock);
1449 
1450 		skb = __first_packet_length(sk, rcvq, &total);
1451 	}
1452 	res = skb ? skb->len : -1;
1453 	if (total)
1454 		udp_rmem_release(sk, total, 1, false);
1455 	spin_unlock_bh(&rcvq->lock);
1456 	return res;
1457 }
1458 
1459 /*
1460  *	IOCTL requests applicable to the UDP protocol
1461  */
1462 
1463 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1464 {
1465 	switch (cmd) {
1466 	case SIOCOUTQ:
1467 	{
1468 		int amount = sk_wmem_alloc_get(sk);
1469 
1470 		return put_user(amount, (int __user *)arg);
1471 	}
1472 
1473 	case SIOCINQ:
1474 	{
1475 		int amount = max_t(int, 0, first_packet_length(sk));
1476 
1477 		return put_user(amount, (int __user *)arg);
1478 	}
1479 
1480 	default:
1481 		return -ENOIOCTLCMD;
1482 	}
1483 
1484 	return 0;
1485 }
1486 EXPORT_SYMBOL(udp_ioctl);
1487 
1488 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1489 			       int noblock, int *peeked, int *off, int *err)
1490 {
1491 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1492 	struct sk_buff_head *queue;
1493 	struct sk_buff *last;
1494 	long timeo;
1495 	int error;
1496 
1497 	queue = &udp_sk(sk)->reader_queue;
1498 	flags |= noblock ? MSG_DONTWAIT : 0;
1499 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1500 	do {
1501 		struct sk_buff *skb;
1502 
1503 		error = sock_error(sk);
1504 		if (error)
1505 			break;
1506 
1507 		error = -EAGAIN;
1508 		*peeked = 0;
1509 		do {
1510 			spin_lock_bh(&queue->lock);
1511 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1512 							udp_skb_destructor,
1513 							peeked, off, err,
1514 							&last);
1515 			if (skb) {
1516 				spin_unlock_bh(&queue->lock);
1517 				return skb;
1518 			}
1519 
1520 			if (skb_queue_empty(sk_queue)) {
1521 				spin_unlock_bh(&queue->lock);
1522 				goto busy_check;
1523 			}
1524 
1525 			/* refill the reader queue and walk it again
1526 			 * keep both queues locked to avoid re-acquiring
1527 			 * the sk_receive_queue lock if fwd memory scheduling
1528 			 * is needed.
1529 			 */
1530 			spin_lock(&sk_queue->lock);
1531 			skb_queue_splice_tail_init(sk_queue, queue);
1532 
1533 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1534 							udp_skb_dtor_locked,
1535 							peeked, off, err,
1536 							&last);
1537 			spin_unlock(&sk_queue->lock);
1538 			spin_unlock_bh(&queue->lock);
1539 			if (skb)
1540 				return skb;
1541 
1542 busy_check:
1543 			if (!sk_can_busy_loop(sk))
1544 				break;
1545 
1546 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1547 		} while (!skb_queue_empty(sk_queue));
1548 
1549 		/* sk_queue is empty, reader_queue may contain peeked packets */
1550 	} while (timeo &&
1551 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1552 					      (struct sk_buff *)sk_queue));
1553 
1554 	*err = error;
1555 	return NULL;
1556 }
1557 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1558 
1559 /*
1560  * 	This should be easy, if there is something there we
1561  * 	return it, otherwise we block.
1562  */
1563 
1564 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1565 		int flags, int *addr_len)
1566 {
1567 	struct inet_sock *inet = inet_sk(sk);
1568 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1569 	struct sk_buff *skb;
1570 	unsigned int ulen, copied;
1571 	int peeked, peeking, off;
1572 	int err;
1573 	int is_udplite = IS_UDPLITE(sk);
1574 	bool checksum_valid = false;
1575 
1576 	if (flags & MSG_ERRQUEUE)
1577 		return ip_recv_error(sk, msg, len, addr_len);
1578 
1579 try_again:
1580 	peeking = flags & MSG_PEEK;
1581 	off = sk_peek_offset(sk, flags);
1582 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1583 	if (!skb)
1584 		return err;
1585 
1586 	ulen = udp_skb_len(skb);
1587 	copied = len;
1588 	if (copied > ulen - off)
1589 		copied = ulen - off;
1590 	else if (copied < ulen)
1591 		msg->msg_flags |= MSG_TRUNC;
1592 
1593 	/*
1594 	 * If checksum is needed at all, try to do it while copying the
1595 	 * data.  If the data is truncated, or if we only want a partial
1596 	 * coverage checksum (UDP-Lite), do it before the copy.
1597 	 */
1598 
1599 	if (copied < ulen || peeking ||
1600 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1601 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1602 				!__udp_lib_checksum_complete(skb);
1603 		if (!checksum_valid)
1604 			goto csum_copy_err;
1605 	}
1606 
1607 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1608 		if (udp_skb_is_linear(skb))
1609 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1610 		else
1611 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1612 	} else {
1613 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1614 
1615 		if (err == -EINVAL)
1616 			goto csum_copy_err;
1617 	}
1618 
1619 	if (unlikely(err)) {
1620 		if (!peeked) {
1621 			atomic_inc(&sk->sk_drops);
1622 			UDP_INC_STATS(sock_net(sk),
1623 				      UDP_MIB_INERRORS, is_udplite);
1624 		}
1625 		kfree_skb(skb);
1626 		return err;
1627 	}
1628 
1629 	if (!peeked)
1630 		UDP_INC_STATS(sock_net(sk),
1631 			      UDP_MIB_INDATAGRAMS, is_udplite);
1632 
1633 	sock_recv_ts_and_drops(msg, sk, skb);
1634 
1635 	/* Copy the address. */
1636 	if (sin) {
1637 		sin->sin_family = AF_INET;
1638 		sin->sin_port = udp_hdr(skb)->source;
1639 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1640 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1641 		*addr_len = sizeof(*sin);
1642 	}
1643 	if (inet->cmsg_flags)
1644 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1645 
1646 	err = copied;
1647 	if (flags & MSG_TRUNC)
1648 		err = ulen;
1649 
1650 	skb_consume_udp(sk, skb, peeking ? -err : err);
1651 	return err;
1652 
1653 csum_copy_err:
1654 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1655 				 udp_skb_destructor)) {
1656 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1657 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1658 	}
1659 	kfree_skb(skb);
1660 
1661 	/* starting over for a new packet, but check if we need to yield */
1662 	cond_resched();
1663 	msg->msg_flags &= ~MSG_TRUNC;
1664 	goto try_again;
1665 }
1666 
1667 int __udp_disconnect(struct sock *sk, int flags)
1668 {
1669 	struct inet_sock *inet = inet_sk(sk);
1670 	/*
1671 	 *	1003.1g - break association.
1672 	 */
1673 
1674 	sk->sk_state = TCP_CLOSE;
1675 	inet->inet_daddr = 0;
1676 	inet->inet_dport = 0;
1677 	sock_rps_reset_rxhash(sk);
1678 	sk->sk_bound_dev_if = 0;
1679 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1680 		inet_reset_saddr(sk);
1681 
1682 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1683 		sk->sk_prot->unhash(sk);
1684 		inet->inet_sport = 0;
1685 	}
1686 	sk_dst_reset(sk);
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL(__udp_disconnect);
1690 
1691 int udp_disconnect(struct sock *sk, int flags)
1692 {
1693 	lock_sock(sk);
1694 	__udp_disconnect(sk, flags);
1695 	release_sock(sk);
1696 	return 0;
1697 }
1698 EXPORT_SYMBOL(udp_disconnect);
1699 
1700 void udp_lib_unhash(struct sock *sk)
1701 {
1702 	if (sk_hashed(sk)) {
1703 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1704 		struct udp_hslot *hslot, *hslot2;
1705 
1706 		hslot  = udp_hashslot(udptable, sock_net(sk),
1707 				      udp_sk(sk)->udp_port_hash);
1708 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1709 
1710 		spin_lock_bh(&hslot->lock);
1711 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1712 			reuseport_detach_sock(sk);
1713 		if (sk_del_node_init_rcu(sk)) {
1714 			hslot->count--;
1715 			inet_sk(sk)->inet_num = 0;
1716 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1717 
1718 			spin_lock(&hslot2->lock);
1719 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1720 			hslot2->count--;
1721 			spin_unlock(&hslot2->lock);
1722 		}
1723 		spin_unlock_bh(&hslot->lock);
1724 	}
1725 }
1726 EXPORT_SYMBOL(udp_lib_unhash);
1727 
1728 /*
1729  * inet_rcv_saddr was changed, we must rehash secondary hash
1730  */
1731 void udp_lib_rehash(struct sock *sk, u16 newhash)
1732 {
1733 	if (sk_hashed(sk)) {
1734 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1735 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1736 
1737 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1738 		nhslot2 = udp_hashslot2(udptable, newhash);
1739 		udp_sk(sk)->udp_portaddr_hash = newhash;
1740 
1741 		if (hslot2 != nhslot2 ||
1742 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1743 			hslot = udp_hashslot(udptable, sock_net(sk),
1744 					     udp_sk(sk)->udp_port_hash);
1745 			/* we must lock primary chain too */
1746 			spin_lock_bh(&hslot->lock);
1747 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1748 				reuseport_detach_sock(sk);
1749 
1750 			if (hslot2 != nhslot2) {
1751 				spin_lock(&hslot2->lock);
1752 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1753 				hslot2->count--;
1754 				spin_unlock(&hslot2->lock);
1755 
1756 				spin_lock(&nhslot2->lock);
1757 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1758 							 &nhslot2->head);
1759 				nhslot2->count++;
1760 				spin_unlock(&nhslot2->lock);
1761 			}
1762 
1763 			spin_unlock_bh(&hslot->lock);
1764 		}
1765 	}
1766 }
1767 EXPORT_SYMBOL(udp_lib_rehash);
1768 
1769 static void udp_v4_rehash(struct sock *sk)
1770 {
1771 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1772 					  inet_sk(sk)->inet_rcv_saddr,
1773 					  inet_sk(sk)->inet_num);
1774 	udp_lib_rehash(sk, new_hash);
1775 }
1776 
1777 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1778 {
1779 	int rc;
1780 
1781 	if (inet_sk(sk)->inet_daddr) {
1782 		sock_rps_save_rxhash(sk, skb);
1783 		sk_mark_napi_id(sk, skb);
1784 		sk_incoming_cpu_update(sk);
1785 	} else {
1786 		sk_mark_napi_id_once(sk, skb);
1787 	}
1788 
1789 	rc = __udp_enqueue_schedule_skb(sk, skb);
1790 	if (rc < 0) {
1791 		int is_udplite = IS_UDPLITE(sk);
1792 
1793 		/* Note that an ENOMEM error is charged twice */
1794 		if (rc == -ENOMEM)
1795 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1796 					is_udplite);
1797 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1798 		kfree_skb(skb);
1799 		trace_udp_fail_queue_rcv_skb(rc, sk);
1800 		return -1;
1801 	}
1802 
1803 	return 0;
1804 }
1805 
1806 static struct static_key udp_encap_needed __read_mostly;
1807 void udp_encap_enable(void)
1808 {
1809 	static_key_enable(&udp_encap_needed);
1810 }
1811 EXPORT_SYMBOL(udp_encap_enable);
1812 
1813 /* returns:
1814  *  -1: error
1815  *   0: success
1816  *  >0: "udp encap" protocol resubmission
1817  *
1818  * Note that in the success and error cases, the skb is assumed to
1819  * have either been requeued or freed.
1820  */
1821 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1822 {
1823 	struct udp_sock *up = udp_sk(sk);
1824 	int is_udplite = IS_UDPLITE(sk);
1825 
1826 	/*
1827 	 *	Charge it to the socket, dropping if the queue is full.
1828 	 */
1829 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1830 		goto drop;
1831 	nf_reset(skb);
1832 
1833 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1834 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1835 
1836 		/*
1837 		 * This is an encapsulation socket so pass the skb to
1838 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1839 		 * fall through and pass this up the UDP socket.
1840 		 * up->encap_rcv() returns the following value:
1841 		 * =0 if skb was successfully passed to the encap
1842 		 *    handler or was discarded by it.
1843 		 * >0 if skb should be passed on to UDP.
1844 		 * <0 if skb should be resubmitted as proto -N
1845 		 */
1846 
1847 		/* if we're overly short, let UDP handle it */
1848 		encap_rcv = READ_ONCE(up->encap_rcv);
1849 		if (encap_rcv) {
1850 			int ret;
1851 
1852 			/* Verify checksum before giving to encap */
1853 			if (udp_lib_checksum_complete(skb))
1854 				goto csum_error;
1855 
1856 			ret = encap_rcv(sk, skb);
1857 			if (ret <= 0) {
1858 				__UDP_INC_STATS(sock_net(sk),
1859 						UDP_MIB_INDATAGRAMS,
1860 						is_udplite);
1861 				return -ret;
1862 			}
1863 		}
1864 
1865 		/* FALLTHROUGH -- it's a UDP Packet */
1866 	}
1867 
1868 	/*
1869 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1870 	 */
1871 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1872 
1873 		/*
1874 		 * MIB statistics other than incrementing the error count are
1875 		 * disabled for the following two types of errors: these depend
1876 		 * on the application settings, not on the functioning of the
1877 		 * protocol stack as such.
1878 		 *
1879 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1880 		 * way ... to ... at least let the receiving application block
1881 		 * delivery of packets with coverage values less than a value
1882 		 * provided by the application."
1883 		 */
1884 		if (up->pcrlen == 0) {          /* full coverage was set  */
1885 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1886 					    UDP_SKB_CB(skb)->cscov, skb->len);
1887 			goto drop;
1888 		}
1889 		/* The next case involves violating the min. coverage requested
1890 		 * by the receiver. This is subtle: if receiver wants x and x is
1891 		 * greater than the buffersize/MTU then receiver will complain
1892 		 * that it wants x while sender emits packets of smaller size y.
1893 		 * Therefore the above ...()->partial_cov statement is essential.
1894 		 */
1895 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1896 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1897 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1898 			goto drop;
1899 		}
1900 	}
1901 
1902 	prefetch(&sk->sk_rmem_alloc);
1903 	if (rcu_access_pointer(sk->sk_filter) &&
1904 	    udp_lib_checksum_complete(skb))
1905 			goto csum_error;
1906 
1907 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1908 		goto drop;
1909 
1910 	udp_csum_pull_header(skb);
1911 
1912 	ipv4_pktinfo_prepare(sk, skb);
1913 	return __udp_queue_rcv_skb(sk, skb);
1914 
1915 csum_error:
1916 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1917 drop:
1918 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1919 	atomic_inc(&sk->sk_drops);
1920 	kfree_skb(skb);
1921 	return -1;
1922 }
1923 
1924 /* For TCP sockets, sk_rx_dst is protected by socket lock
1925  * For UDP, we use xchg() to guard against concurrent changes.
1926  */
1927 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1928 {
1929 	struct dst_entry *old;
1930 
1931 	if (dst_hold_safe(dst)) {
1932 		old = xchg(&sk->sk_rx_dst, dst);
1933 		dst_release(old);
1934 		return old != dst;
1935 	}
1936 	return false;
1937 }
1938 EXPORT_SYMBOL(udp_sk_rx_dst_set);
1939 
1940 /*
1941  *	Multicasts and broadcasts go to each listener.
1942  *
1943  *	Note: called only from the BH handler context.
1944  */
1945 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1946 				    struct udphdr  *uh,
1947 				    __be32 saddr, __be32 daddr,
1948 				    struct udp_table *udptable,
1949 				    int proto)
1950 {
1951 	struct sock *sk, *first = NULL;
1952 	unsigned short hnum = ntohs(uh->dest);
1953 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1954 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1955 	unsigned int offset = offsetof(typeof(*sk), sk_node);
1956 	int dif = skb->dev->ifindex;
1957 	int sdif = inet_sdif(skb);
1958 	struct hlist_node *node;
1959 	struct sk_buff *nskb;
1960 
1961 	if (use_hash2) {
1962 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1963 			    udptable->mask;
1964 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1965 start_lookup:
1966 		hslot = &udptable->hash2[hash2];
1967 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1968 	}
1969 
1970 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1971 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1972 					 uh->source, saddr, dif, sdif, hnum))
1973 			continue;
1974 
1975 		if (!first) {
1976 			first = sk;
1977 			continue;
1978 		}
1979 		nskb = skb_clone(skb, GFP_ATOMIC);
1980 
1981 		if (unlikely(!nskb)) {
1982 			atomic_inc(&sk->sk_drops);
1983 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1984 					IS_UDPLITE(sk));
1985 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1986 					IS_UDPLITE(sk));
1987 			continue;
1988 		}
1989 		if (udp_queue_rcv_skb(sk, nskb) > 0)
1990 			consume_skb(nskb);
1991 	}
1992 
1993 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1994 	if (use_hash2 && hash2 != hash2_any) {
1995 		hash2 = hash2_any;
1996 		goto start_lookup;
1997 	}
1998 
1999 	if (first) {
2000 		if (udp_queue_rcv_skb(first, skb) > 0)
2001 			consume_skb(skb);
2002 	} else {
2003 		kfree_skb(skb);
2004 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2005 				proto == IPPROTO_UDPLITE);
2006 	}
2007 	return 0;
2008 }
2009 
2010 /* Initialize UDP checksum. If exited with zero value (success),
2011  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2012  * Otherwise, csum completion requires chacksumming packet body,
2013  * including udp header and folding it to skb->csum.
2014  */
2015 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2016 				 int proto)
2017 {
2018 	int err;
2019 
2020 	UDP_SKB_CB(skb)->partial_cov = 0;
2021 	UDP_SKB_CB(skb)->cscov = skb->len;
2022 
2023 	if (proto == IPPROTO_UDPLITE) {
2024 		err = udplite_checksum_init(skb, uh);
2025 		if (err)
2026 			return err;
2027 	}
2028 
2029 	/* Note, we are only interested in != 0 or == 0, thus the
2030 	 * force to int.
2031 	 */
2032 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2033 							 inet_compute_pseudo);
2034 }
2035 
2036 /*
2037  *	All we need to do is get the socket, and then do a checksum.
2038  */
2039 
2040 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2041 		   int proto)
2042 {
2043 	struct sock *sk;
2044 	struct udphdr *uh;
2045 	unsigned short ulen;
2046 	struct rtable *rt = skb_rtable(skb);
2047 	__be32 saddr, daddr;
2048 	struct net *net = dev_net(skb->dev);
2049 
2050 	/*
2051 	 *  Validate the packet.
2052 	 */
2053 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2054 		goto drop;		/* No space for header. */
2055 
2056 	uh   = udp_hdr(skb);
2057 	ulen = ntohs(uh->len);
2058 	saddr = ip_hdr(skb)->saddr;
2059 	daddr = ip_hdr(skb)->daddr;
2060 
2061 	if (ulen > skb->len)
2062 		goto short_packet;
2063 
2064 	if (proto == IPPROTO_UDP) {
2065 		/* UDP validates ulen. */
2066 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2067 			goto short_packet;
2068 		uh = udp_hdr(skb);
2069 	}
2070 
2071 	if (udp4_csum_init(skb, uh, proto))
2072 		goto csum_error;
2073 
2074 	sk = skb_steal_sock(skb);
2075 	if (sk) {
2076 		struct dst_entry *dst = skb_dst(skb);
2077 		int ret;
2078 
2079 		if (unlikely(sk->sk_rx_dst != dst))
2080 			udp_sk_rx_dst_set(sk, dst);
2081 
2082 		ret = udp_queue_rcv_skb(sk, skb);
2083 		sock_put(sk);
2084 		/* a return value > 0 means to resubmit the input, but
2085 		 * it wants the return to be -protocol, or 0
2086 		 */
2087 		if (ret > 0)
2088 			return -ret;
2089 		return 0;
2090 	}
2091 
2092 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2093 		return __udp4_lib_mcast_deliver(net, skb, uh,
2094 						saddr, daddr, udptable, proto);
2095 
2096 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2097 	if (sk) {
2098 		int ret;
2099 
2100 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2101 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2102 						 inet_compute_pseudo);
2103 
2104 		ret = udp_queue_rcv_skb(sk, skb);
2105 
2106 		/* a return value > 0 means to resubmit the input, but
2107 		 * it wants the return to be -protocol, or 0
2108 		 */
2109 		if (ret > 0)
2110 			return -ret;
2111 		return 0;
2112 	}
2113 
2114 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2115 		goto drop;
2116 	nf_reset(skb);
2117 
2118 	/* No socket. Drop packet silently, if checksum is wrong */
2119 	if (udp_lib_checksum_complete(skb))
2120 		goto csum_error;
2121 
2122 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2123 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2124 
2125 	/*
2126 	 * Hmm.  We got an UDP packet to a port to which we
2127 	 * don't wanna listen.  Ignore it.
2128 	 */
2129 	kfree_skb(skb);
2130 	return 0;
2131 
2132 short_packet:
2133 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2134 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2135 			    &saddr, ntohs(uh->source),
2136 			    ulen, skb->len,
2137 			    &daddr, ntohs(uh->dest));
2138 	goto drop;
2139 
2140 csum_error:
2141 	/*
2142 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2143 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2144 	 */
2145 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2146 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2147 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2148 			    ulen);
2149 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2150 drop:
2151 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2152 	kfree_skb(skb);
2153 	return 0;
2154 }
2155 
2156 /* We can only early demux multicast if there is a single matching socket.
2157  * If more than one socket found returns NULL
2158  */
2159 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2160 						  __be16 loc_port, __be32 loc_addr,
2161 						  __be16 rmt_port, __be32 rmt_addr,
2162 						  int dif, int sdif)
2163 {
2164 	struct sock *sk, *result;
2165 	unsigned short hnum = ntohs(loc_port);
2166 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2167 	struct udp_hslot *hslot = &udp_table.hash[slot];
2168 
2169 	/* Do not bother scanning a too big list */
2170 	if (hslot->count > 10)
2171 		return NULL;
2172 
2173 	result = NULL;
2174 	sk_for_each_rcu(sk, &hslot->head) {
2175 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2176 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2177 			if (result)
2178 				return NULL;
2179 			result = sk;
2180 		}
2181 	}
2182 
2183 	return result;
2184 }
2185 
2186 /* For unicast we should only early demux connected sockets or we can
2187  * break forwarding setups.  The chains here can be long so only check
2188  * if the first socket is an exact match and if not move on.
2189  */
2190 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2191 					    __be16 loc_port, __be32 loc_addr,
2192 					    __be16 rmt_port, __be32 rmt_addr,
2193 					    int dif, int sdif)
2194 {
2195 	unsigned short hnum = ntohs(loc_port);
2196 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2197 	unsigned int slot2 = hash2 & udp_table.mask;
2198 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2199 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2200 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2201 	struct sock *sk;
2202 
2203 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2204 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2205 			       loc_addr, ports, dif, sdif))
2206 			return sk;
2207 		/* Only check first socket in chain */
2208 		break;
2209 	}
2210 	return NULL;
2211 }
2212 
2213 int udp_v4_early_demux(struct sk_buff *skb)
2214 {
2215 	struct net *net = dev_net(skb->dev);
2216 	struct in_device *in_dev = NULL;
2217 	const struct iphdr *iph;
2218 	const struct udphdr *uh;
2219 	struct sock *sk = NULL;
2220 	struct dst_entry *dst;
2221 	int dif = skb->dev->ifindex;
2222 	int sdif = inet_sdif(skb);
2223 	int ours;
2224 
2225 	/* validate the packet */
2226 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2227 		return 0;
2228 
2229 	iph = ip_hdr(skb);
2230 	uh = udp_hdr(skb);
2231 
2232 	if (skb->pkt_type == PACKET_MULTICAST) {
2233 		in_dev = __in_dev_get_rcu(skb->dev);
2234 
2235 		if (!in_dev)
2236 			return 0;
2237 
2238 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2239 				       iph->protocol);
2240 		if (!ours)
2241 			return 0;
2242 
2243 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2244 						   uh->source, iph->saddr,
2245 						   dif, sdif);
2246 	} else if (skb->pkt_type == PACKET_HOST) {
2247 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2248 					     uh->source, iph->saddr, dif, sdif);
2249 	}
2250 
2251 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2252 		return 0;
2253 
2254 	skb->sk = sk;
2255 	skb->destructor = sock_efree;
2256 	dst = READ_ONCE(sk->sk_rx_dst);
2257 
2258 	if (dst)
2259 		dst = dst_check(dst, 0);
2260 	if (dst) {
2261 		u32 itag = 0;
2262 
2263 		/* set noref for now.
2264 		 * any place which wants to hold dst has to call
2265 		 * dst_hold_safe()
2266 		 */
2267 		skb_dst_set_noref(skb, dst);
2268 
2269 		/* for unconnected multicast sockets we need to validate
2270 		 * the source on each packet
2271 		 */
2272 		if (!inet_sk(sk)->inet_daddr && in_dev)
2273 			return ip_mc_validate_source(skb, iph->daddr,
2274 						     iph->saddr, iph->tos,
2275 						     skb->dev, in_dev, &itag);
2276 	}
2277 	return 0;
2278 }
2279 
2280 int udp_rcv(struct sk_buff *skb)
2281 {
2282 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2283 }
2284 
2285 void udp_destroy_sock(struct sock *sk)
2286 {
2287 	struct udp_sock *up = udp_sk(sk);
2288 	bool slow = lock_sock_fast(sk);
2289 	udp_flush_pending_frames(sk);
2290 	unlock_sock_fast(sk, slow);
2291 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2292 		void (*encap_destroy)(struct sock *sk);
2293 		encap_destroy = READ_ONCE(up->encap_destroy);
2294 		if (encap_destroy)
2295 			encap_destroy(sk);
2296 	}
2297 }
2298 
2299 /*
2300  *	Socket option code for UDP
2301  */
2302 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2303 		       char __user *optval, unsigned int optlen,
2304 		       int (*push_pending_frames)(struct sock *))
2305 {
2306 	struct udp_sock *up = udp_sk(sk);
2307 	int val, valbool;
2308 	int err = 0;
2309 	int is_udplite = IS_UDPLITE(sk);
2310 
2311 	if (optlen < sizeof(int))
2312 		return -EINVAL;
2313 
2314 	if (get_user(val, (int __user *)optval))
2315 		return -EFAULT;
2316 
2317 	valbool = val ? 1 : 0;
2318 
2319 	switch (optname) {
2320 	case UDP_CORK:
2321 		if (val != 0) {
2322 			up->corkflag = 1;
2323 		} else {
2324 			up->corkflag = 0;
2325 			lock_sock(sk);
2326 			push_pending_frames(sk);
2327 			release_sock(sk);
2328 		}
2329 		break;
2330 
2331 	case UDP_ENCAP:
2332 		switch (val) {
2333 		case 0:
2334 		case UDP_ENCAP_ESPINUDP:
2335 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2336 			up->encap_rcv = xfrm4_udp_encap_rcv;
2337 			/* FALLTHROUGH */
2338 		case UDP_ENCAP_L2TPINUDP:
2339 			up->encap_type = val;
2340 			udp_encap_enable();
2341 			break;
2342 		default:
2343 			err = -ENOPROTOOPT;
2344 			break;
2345 		}
2346 		break;
2347 
2348 	case UDP_NO_CHECK6_TX:
2349 		up->no_check6_tx = valbool;
2350 		break;
2351 
2352 	case UDP_NO_CHECK6_RX:
2353 		up->no_check6_rx = valbool;
2354 		break;
2355 
2356 	/*
2357 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2358 	 */
2359 	/* The sender sets actual checksum coverage length via this option.
2360 	 * The case coverage > packet length is handled by send module. */
2361 	case UDPLITE_SEND_CSCOV:
2362 		if (!is_udplite)         /* Disable the option on UDP sockets */
2363 			return -ENOPROTOOPT;
2364 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2365 			val = 8;
2366 		else if (val > USHRT_MAX)
2367 			val = USHRT_MAX;
2368 		up->pcslen = val;
2369 		up->pcflag |= UDPLITE_SEND_CC;
2370 		break;
2371 
2372 	/* The receiver specifies a minimum checksum coverage value. To make
2373 	 * sense, this should be set to at least 8 (as done below). If zero is
2374 	 * used, this again means full checksum coverage.                     */
2375 	case UDPLITE_RECV_CSCOV:
2376 		if (!is_udplite)         /* Disable the option on UDP sockets */
2377 			return -ENOPROTOOPT;
2378 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2379 			val = 8;
2380 		else if (val > USHRT_MAX)
2381 			val = USHRT_MAX;
2382 		up->pcrlen = val;
2383 		up->pcflag |= UDPLITE_RECV_CC;
2384 		break;
2385 
2386 	default:
2387 		err = -ENOPROTOOPT;
2388 		break;
2389 	}
2390 
2391 	return err;
2392 }
2393 EXPORT_SYMBOL(udp_lib_setsockopt);
2394 
2395 int udp_setsockopt(struct sock *sk, int level, int optname,
2396 		   char __user *optval, unsigned int optlen)
2397 {
2398 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2399 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2400 					  udp_push_pending_frames);
2401 	return ip_setsockopt(sk, level, optname, optval, optlen);
2402 }
2403 
2404 #ifdef CONFIG_COMPAT
2405 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2406 			  char __user *optval, unsigned int optlen)
2407 {
2408 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2409 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2410 					  udp_push_pending_frames);
2411 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2412 }
2413 #endif
2414 
2415 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2416 		       char __user *optval, int __user *optlen)
2417 {
2418 	struct udp_sock *up = udp_sk(sk);
2419 	int val, len;
2420 
2421 	if (get_user(len, optlen))
2422 		return -EFAULT;
2423 
2424 	len = min_t(unsigned int, len, sizeof(int));
2425 
2426 	if (len < 0)
2427 		return -EINVAL;
2428 
2429 	switch (optname) {
2430 	case UDP_CORK:
2431 		val = up->corkflag;
2432 		break;
2433 
2434 	case UDP_ENCAP:
2435 		val = up->encap_type;
2436 		break;
2437 
2438 	case UDP_NO_CHECK6_TX:
2439 		val = up->no_check6_tx;
2440 		break;
2441 
2442 	case UDP_NO_CHECK6_RX:
2443 		val = up->no_check6_rx;
2444 		break;
2445 
2446 	/* The following two cannot be changed on UDP sockets, the return is
2447 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2448 	case UDPLITE_SEND_CSCOV:
2449 		val = up->pcslen;
2450 		break;
2451 
2452 	case UDPLITE_RECV_CSCOV:
2453 		val = up->pcrlen;
2454 		break;
2455 
2456 	default:
2457 		return -ENOPROTOOPT;
2458 	}
2459 
2460 	if (put_user(len, optlen))
2461 		return -EFAULT;
2462 	if (copy_to_user(optval, &val, len))
2463 		return -EFAULT;
2464 	return 0;
2465 }
2466 EXPORT_SYMBOL(udp_lib_getsockopt);
2467 
2468 int udp_getsockopt(struct sock *sk, int level, int optname,
2469 		   char __user *optval, int __user *optlen)
2470 {
2471 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2472 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2473 	return ip_getsockopt(sk, level, optname, optval, optlen);
2474 }
2475 
2476 #ifdef CONFIG_COMPAT
2477 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2478 				 char __user *optval, int __user *optlen)
2479 {
2480 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2481 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2482 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2483 }
2484 #endif
2485 /**
2486  * 	udp_poll - wait for a UDP event.
2487  *	@file - file struct
2488  *	@sock - socket
2489  *	@wait - poll table
2490  *
2491  *	This is same as datagram poll, except for the special case of
2492  *	blocking sockets. If application is using a blocking fd
2493  *	and a packet with checksum error is in the queue;
2494  *	then it could get return from select indicating data available
2495  *	but then block when reading it. Add special case code
2496  *	to work around these arguably broken applications.
2497  */
2498 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2499 {
2500 	__poll_t mask = datagram_poll(file, sock, wait);
2501 	struct sock *sk = sock->sk;
2502 
2503 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2504 		mask |= EPOLLIN | EPOLLRDNORM;
2505 
2506 	/* Check for false positives due to checksum errors */
2507 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2508 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2509 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2510 
2511 	return mask;
2512 
2513 }
2514 EXPORT_SYMBOL(udp_poll);
2515 
2516 int udp_abort(struct sock *sk, int err)
2517 {
2518 	lock_sock(sk);
2519 
2520 	sk->sk_err = err;
2521 	sk->sk_error_report(sk);
2522 	__udp_disconnect(sk, 0);
2523 
2524 	release_sock(sk);
2525 
2526 	return 0;
2527 }
2528 EXPORT_SYMBOL_GPL(udp_abort);
2529 
2530 struct proto udp_prot = {
2531 	.name		   = "UDP",
2532 	.owner		   = THIS_MODULE,
2533 	.close		   = udp_lib_close,
2534 	.connect	   = ip4_datagram_connect,
2535 	.disconnect	   = udp_disconnect,
2536 	.ioctl		   = udp_ioctl,
2537 	.init		   = udp_init_sock,
2538 	.destroy	   = udp_destroy_sock,
2539 	.setsockopt	   = udp_setsockopt,
2540 	.getsockopt	   = udp_getsockopt,
2541 	.sendmsg	   = udp_sendmsg,
2542 	.recvmsg	   = udp_recvmsg,
2543 	.sendpage	   = udp_sendpage,
2544 	.release_cb	   = ip4_datagram_release_cb,
2545 	.hash		   = udp_lib_hash,
2546 	.unhash		   = udp_lib_unhash,
2547 	.rehash		   = udp_v4_rehash,
2548 	.get_port	   = udp_v4_get_port,
2549 	.memory_allocated  = &udp_memory_allocated,
2550 	.sysctl_mem	   = sysctl_udp_mem,
2551 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2552 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2553 	.obj_size	   = sizeof(struct udp_sock),
2554 	.h.udp_table	   = &udp_table,
2555 #ifdef CONFIG_COMPAT
2556 	.compat_setsockopt = compat_udp_setsockopt,
2557 	.compat_getsockopt = compat_udp_getsockopt,
2558 #endif
2559 	.diag_destroy	   = udp_abort,
2560 };
2561 EXPORT_SYMBOL(udp_prot);
2562 
2563 /* ------------------------------------------------------------------------ */
2564 #ifdef CONFIG_PROC_FS
2565 
2566 static struct sock *udp_get_first(struct seq_file *seq, int start)
2567 {
2568 	struct sock *sk;
2569 	struct udp_iter_state *state = seq->private;
2570 	struct net *net = seq_file_net(seq);
2571 
2572 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2573 	     ++state->bucket) {
2574 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2575 
2576 		if (hlist_empty(&hslot->head))
2577 			continue;
2578 
2579 		spin_lock_bh(&hslot->lock);
2580 		sk_for_each(sk, &hslot->head) {
2581 			if (!net_eq(sock_net(sk), net))
2582 				continue;
2583 			if (sk->sk_family == state->family)
2584 				goto found;
2585 		}
2586 		spin_unlock_bh(&hslot->lock);
2587 	}
2588 	sk = NULL;
2589 found:
2590 	return sk;
2591 }
2592 
2593 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2594 {
2595 	struct udp_iter_state *state = seq->private;
2596 	struct net *net = seq_file_net(seq);
2597 
2598 	do {
2599 		sk = sk_next(sk);
2600 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2601 
2602 	if (!sk) {
2603 		if (state->bucket <= state->udp_table->mask)
2604 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2605 		return udp_get_first(seq, state->bucket + 1);
2606 	}
2607 	return sk;
2608 }
2609 
2610 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2611 {
2612 	struct sock *sk = udp_get_first(seq, 0);
2613 
2614 	if (sk)
2615 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2616 			--pos;
2617 	return pos ? NULL : sk;
2618 }
2619 
2620 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2621 {
2622 	struct udp_iter_state *state = seq->private;
2623 	state->bucket = MAX_UDP_PORTS;
2624 
2625 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2626 }
2627 
2628 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2629 {
2630 	struct sock *sk;
2631 
2632 	if (v == SEQ_START_TOKEN)
2633 		sk = udp_get_idx(seq, 0);
2634 	else
2635 		sk = udp_get_next(seq, v);
2636 
2637 	++*pos;
2638 	return sk;
2639 }
2640 
2641 static void udp_seq_stop(struct seq_file *seq, void *v)
2642 {
2643 	struct udp_iter_state *state = seq->private;
2644 
2645 	if (state->bucket <= state->udp_table->mask)
2646 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2647 }
2648 
2649 int udp_seq_open(struct inode *inode, struct file *file)
2650 {
2651 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2652 	struct udp_iter_state *s;
2653 	int err;
2654 
2655 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2656 			   sizeof(struct udp_iter_state));
2657 	if (err < 0)
2658 		return err;
2659 
2660 	s = ((struct seq_file *)file->private_data)->private;
2661 	s->family		= afinfo->family;
2662 	s->udp_table		= afinfo->udp_table;
2663 	return err;
2664 }
2665 EXPORT_SYMBOL(udp_seq_open);
2666 
2667 /* ------------------------------------------------------------------------ */
2668 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2669 {
2670 	struct proc_dir_entry *p;
2671 	int rc = 0;
2672 
2673 	afinfo->seq_ops.start		= udp_seq_start;
2674 	afinfo->seq_ops.next		= udp_seq_next;
2675 	afinfo->seq_ops.stop		= udp_seq_stop;
2676 
2677 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2678 			     afinfo->seq_fops, afinfo);
2679 	if (!p)
2680 		rc = -ENOMEM;
2681 	return rc;
2682 }
2683 EXPORT_SYMBOL(udp_proc_register);
2684 
2685 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2686 {
2687 	remove_proc_entry(afinfo->name, net->proc_net);
2688 }
2689 EXPORT_SYMBOL(udp_proc_unregister);
2690 
2691 /* ------------------------------------------------------------------------ */
2692 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2693 		int bucket)
2694 {
2695 	struct inet_sock *inet = inet_sk(sp);
2696 	__be32 dest = inet->inet_daddr;
2697 	__be32 src  = inet->inet_rcv_saddr;
2698 	__u16 destp	  = ntohs(inet->inet_dport);
2699 	__u16 srcp	  = ntohs(inet->inet_sport);
2700 
2701 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2702 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2703 		bucket, src, srcp, dest, destp, sp->sk_state,
2704 		sk_wmem_alloc_get(sp),
2705 		sk_rmem_alloc_get(sp),
2706 		0, 0L, 0,
2707 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2708 		0, sock_i_ino(sp),
2709 		refcount_read(&sp->sk_refcnt), sp,
2710 		atomic_read(&sp->sk_drops));
2711 }
2712 
2713 int udp4_seq_show(struct seq_file *seq, void *v)
2714 {
2715 	seq_setwidth(seq, 127);
2716 	if (v == SEQ_START_TOKEN)
2717 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2718 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2719 			   "inode ref pointer drops");
2720 	else {
2721 		struct udp_iter_state *state = seq->private;
2722 
2723 		udp4_format_sock(v, seq, state->bucket);
2724 	}
2725 	seq_pad(seq, '\n');
2726 	return 0;
2727 }
2728 
2729 static const struct file_operations udp_afinfo_seq_fops = {
2730 	.open     = udp_seq_open,
2731 	.read     = seq_read,
2732 	.llseek   = seq_lseek,
2733 	.release  = seq_release_net
2734 };
2735 
2736 /* ------------------------------------------------------------------------ */
2737 static struct udp_seq_afinfo udp4_seq_afinfo = {
2738 	.name		= "udp",
2739 	.family		= AF_INET,
2740 	.udp_table	= &udp_table,
2741 	.seq_fops	= &udp_afinfo_seq_fops,
2742 	.seq_ops	= {
2743 		.show		= udp4_seq_show,
2744 	},
2745 };
2746 
2747 static int __net_init udp4_proc_init_net(struct net *net)
2748 {
2749 	return udp_proc_register(net, &udp4_seq_afinfo);
2750 }
2751 
2752 static void __net_exit udp4_proc_exit_net(struct net *net)
2753 {
2754 	udp_proc_unregister(net, &udp4_seq_afinfo);
2755 }
2756 
2757 static struct pernet_operations udp4_net_ops = {
2758 	.init = udp4_proc_init_net,
2759 	.exit = udp4_proc_exit_net,
2760 };
2761 
2762 int __init udp4_proc_init(void)
2763 {
2764 	return register_pernet_subsys(&udp4_net_ops);
2765 }
2766 
2767 void udp4_proc_exit(void)
2768 {
2769 	unregister_pernet_subsys(&udp4_net_ops);
2770 }
2771 #endif /* CONFIG_PROC_FS */
2772 
2773 static __initdata unsigned long uhash_entries;
2774 static int __init set_uhash_entries(char *str)
2775 {
2776 	ssize_t ret;
2777 
2778 	if (!str)
2779 		return 0;
2780 
2781 	ret = kstrtoul(str, 0, &uhash_entries);
2782 	if (ret)
2783 		return 0;
2784 
2785 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2786 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2787 	return 1;
2788 }
2789 __setup("uhash_entries=", set_uhash_entries);
2790 
2791 void __init udp_table_init(struct udp_table *table, const char *name)
2792 {
2793 	unsigned int i;
2794 
2795 	table->hash = alloc_large_system_hash(name,
2796 					      2 * sizeof(struct udp_hslot),
2797 					      uhash_entries,
2798 					      21, /* one slot per 2 MB */
2799 					      0,
2800 					      &table->log,
2801 					      &table->mask,
2802 					      UDP_HTABLE_SIZE_MIN,
2803 					      64 * 1024);
2804 
2805 	table->hash2 = table->hash + (table->mask + 1);
2806 	for (i = 0; i <= table->mask; i++) {
2807 		INIT_HLIST_HEAD(&table->hash[i].head);
2808 		table->hash[i].count = 0;
2809 		spin_lock_init(&table->hash[i].lock);
2810 	}
2811 	for (i = 0; i <= table->mask; i++) {
2812 		INIT_HLIST_HEAD(&table->hash2[i].head);
2813 		table->hash2[i].count = 0;
2814 		spin_lock_init(&table->hash2[i].lock);
2815 	}
2816 }
2817 
2818 u32 udp_flow_hashrnd(void)
2819 {
2820 	static u32 hashrnd __read_mostly;
2821 
2822 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2823 
2824 	return hashrnd;
2825 }
2826 EXPORT_SYMBOL(udp_flow_hashrnd);
2827 
2828 void __init udp_init(void)
2829 {
2830 	unsigned long limit;
2831 	unsigned int i;
2832 
2833 	udp_table_init(&udp_table, "UDP");
2834 	limit = nr_free_buffer_pages() / 8;
2835 	limit = max(limit, 128UL);
2836 	sysctl_udp_mem[0] = limit / 4 * 3;
2837 	sysctl_udp_mem[1] = limit;
2838 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2839 
2840 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2841 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2842 
2843 	/* 16 spinlocks per cpu */
2844 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2845 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2846 				GFP_KERNEL);
2847 	if (!udp_busylocks)
2848 		panic("UDP: failed to alloc udp_busylocks\n");
2849 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2850 		spin_lock_init(udp_busylocks + i);
2851 }
2852