xref: /openbmc/linux/net/ipv4/udp.c (revision 13dd8710)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122 
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125 
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131 
132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 			       const struct udp_hslot *hslot,
134 			       unsigned long *bitmap,
135 			       struct sock *sk, unsigned int log)
136 {
137 	struct sock *sk2;
138 	kuid_t uid = sock_i_uid(sk);
139 
140 	sk_for_each(sk2, &hslot->head) {
141 		if (net_eq(sock_net(sk2), net) &&
142 		    sk2 != sk &&
143 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
144 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
145 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
146 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
147 		    inet_rcv_saddr_equal(sk, sk2, true)) {
148 			if (sk2->sk_reuseport && sk->sk_reuseport &&
149 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
150 			    uid_eq(uid, sock_i_uid(sk2))) {
151 				if (!bitmap)
152 					return 0;
153 			} else {
154 				if (!bitmap)
155 					return 1;
156 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
157 					  bitmap);
158 			}
159 		}
160 	}
161 	return 0;
162 }
163 
164 /*
165  * Note: we still hold spinlock of primary hash chain, so no other writer
166  * can insert/delete a socket with local_port == num
167  */
168 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
169 				struct udp_hslot *hslot2,
170 				struct sock *sk)
171 {
172 	struct sock *sk2;
173 	kuid_t uid = sock_i_uid(sk);
174 	int res = 0;
175 
176 	spin_lock(&hslot2->lock);
177 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
178 		if (net_eq(sock_net(sk2), net) &&
179 		    sk2 != sk &&
180 		    (udp_sk(sk2)->udp_port_hash == num) &&
181 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
182 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
183 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184 		    inet_rcv_saddr_equal(sk, sk2, true)) {
185 			if (sk2->sk_reuseport && sk->sk_reuseport &&
186 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
187 			    uid_eq(uid, sock_i_uid(sk2))) {
188 				res = 0;
189 			} else {
190 				res = 1;
191 			}
192 			break;
193 		}
194 	}
195 	spin_unlock(&hslot2->lock);
196 	return res;
197 }
198 
199 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
200 {
201 	struct net *net = sock_net(sk);
202 	kuid_t uid = sock_i_uid(sk);
203 	struct sock *sk2;
204 
205 	sk_for_each(sk2, &hslot->head) {
206 		if (net_eq(sock_net(sk2), net) &&
207 		    sk2 != sk &&
208 		    sk2->sk_family == sk->sk_family &&
209 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
210 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
211 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
212 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
213 		    inet_rcv_saddr_equal(sk, sk2, false)) {
214 			return reuseport_add_sock(sk, sk2,
215 						  inet_rcv_saddr_any(sk));
216 		}
217 	}
218 
219 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
220 }
221 
222 /**
223  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
224  *
225  *  @sk:          socket struct in question
226  *  @snum:        port number to look up
227  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
228  *                   with NULL address
229  */
230 int udp_lib_get_port(struct sock *sk, unsigned short snum,
231 		     unsigned int hash2_nulladdr)
232 {
233 	struct udp_hslot *hslot, *hslot2;
234 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
235 	int    error = 1;
236 	struct net *net = sock_net(sk);
237 
238 	if (!snum) {
239 		int low, high, remaining;
240 		unsigned int rand;
241 		unsigned short first, last;
242 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
243 
244 		inet_get_local_port_range(net, &low, &high);
245 		remaining = (high - low) + 1;
246 
247 		rand = prandom_u32();
248 		first = reciprocal_scale(rand, remaining) + low;
249 		/*
250 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
251 		 */
252 		rand = (rand | 1) * (udptable->mask + 1);
253 		last = first + udptable->mask + 1;
254 		do {
255 			hslot = udp_hashslot(udptable, net, first);
256 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
257 			spin_lock_bh(&hslot->lock);
258 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
259 					    udptable->log);
260 
261 			snum = first;
262 			/*
263 			 * Iterate on all possible values of snum for this hash.
264 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
265 			 * give us randomization and full range coverage.
266 			 */
267 			do {
268 				if (low <= snum && snum <= high &&
269 				    !test_bit(snum >> udptable->log, bitmap) &&
270 				    !inet_is_local_reserved_port(net, snum))
271 					goto found;
272 				snum += rand;
273 			} while (snum != first);
274 			spin_unlock_bh(&hslot->lock);
275 			cond_resched();
276 		} while (++first != last);
277 		goto fail;
278 	} else {
279 		hslot = udp_hashslot(udptable, net, snum);
280 		spin_lock_bh(&hslot->lock);
281 		if (hslot->count > 10) {
282 			int exist;
283 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
284 
285 			slot2          &= udptable->mask;
286 			hash2_nulladdr &= udptable->mask;
287 
288 			hslot2 = udp_hashslot2(udptable, slot2);
289 			if (hslot->count < hslot2->count)
290 				goto scan_primary_hash;
291 
292 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
293 			if (!exist && (hash2_nulladdr != slot2)) {
294 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
295 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
296 							     sk);
297 			}
298 			if (exist)
299 				goto fail_unlock;
300 			else
301 				goto found;
302 		}
303 scan_primary_hash:
304 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
305 			goto fail_unlock;
306 	}
307 found:
308 	inet_sk(sk)->inet_num = snum;
309 	udp_sk(sk)->udp_port_hash = snum;
310 	udp_sk(sk)->udp_portaddr_hash ^= snum;
311 	if (sk_unhashed(sk)) {
312 		if (sk->sk_reuseport &&
313 		    udp_reuseport_add_sock(sk, hslot)) {
314 			inet_sk(sk)->inet_num = 0;
315 			udp_sk(sk)->udp_port_hash = 0;
316 			udp_sk(sk)->udp_portaddr_hash ^= snum;
317 			goto fail_unlock;
318 		}
319 
320 		sk_add_node_rcu(sk, &hslot->head);
321 		hslot->count++;
322 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
323 
324 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
325 		spin_lock(&hslot2->lock);
326 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
327 		    sk->sk_family == AF_INET6)
328 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
329 					   &hslot2->head);
330 		else
331 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
332 					   &hslot2->head);
333 		hslot2->count++;
334 		spin_unlock(&hslot2->lock);
335 	}
336 	sock_set_flag(sk, SOCK_RCU_FREE);
337 	error = 0;
338 fail_unlock:
339 	spin_unlock_bh(&hslot->lock);
340 fail:
341 	return error;
342 }
343 EXPORT_SYMBOL(udp_lib_get_port);
344 
345 int udp_v4_get_port(struct sock *sk, unsigned short snum)
346 {
347 	unsigned int hash2_nulladdr =
348 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
349 	unsigned int hash2_partial =
350 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
351 
352 	/* precompute partial secondary hash */
353 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
354 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
355 }
356 
357 static int compute_score(struct sock *sk, struct net *net,
358 			 __be32 saddr, __be16 sport,
359 			 __be32 daddr, unsigned short hnum,
360 			 int dif, int sdif)
361 {
362 	int score;
363 	struct inet_sock *inet;
364 	bool dev_match;
365 
366 	if (!net_eq(sock_net(sk), net) ||
367 	    udp_sk(sk)->udp_port_hash != hnum ||
368 	    ipv6_only_sock(sk))
369 		return -1;
370 
371 	if (sk->sk_rcv_saddr != daddr)
372 		return -1;
373 
374 	score = (sk->sk_family == PF_INET) ? 2 : 1;
375 
376 	inet = inet_sk(sk);
377 	if (inet->inet_daddr) {
378 		if (inet->inet_daddr != saddr)
379 			return -1;
380 		score += 4;
381 	}
382 
383 	if (inet->inet_dport) {
384 		if (inet->inet_dport != sport)
385 			return -1;
386 		score += 4;
387 	}
388 
389 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
390 					dif, sdif);
391 	if (!dev_match)
392 		return -1;
393 	score += 4;
394 
395 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
396 		score++;
397 	return score;
398 }
399 
400 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
401 		       const __u16 lport, const __be32 faddr,
402 		       const __be16 fport)
403 {
404 	static u32 udp_ehash_secret __read_mostly;
405 
406 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
407 
408 	return __inet_ehashfn(laddr, lport, faddr, fport,
409 			      udp_ehash_secret + net_hash_mix(net));
410 }
411 
412 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
413 				     struct sk_buff *skb,
414 				     __be32 saddr, __be16 sport,
415 				     __be32 daddr, unsigned short hnum)
416 {
417 	struct sock *reuse_sk = NULL;
418 	u32 hash;
419 
420 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
421 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
422 		reuse_sk = reuseport_select_sock(sk, hash, skb,
423 						 sizeof(struct udphdr));
424 	}
425 	return reuse_sk;
426 }
427 
428 /* called with rcu_read_lock() */
429 static struct sock *udp4_lib_lookup2(struct net *net,
430 				     __be32 saddr, __be16 sport,
431 				     __be32 daddr, unsigned int hnum,
432 				     int dif, int sdif,
433 				     struct udp_hslot *hslot2,
434 				     struct sk_buff *skb)
435 {
436 	struct sock *sk, *result;
437 	int score, badness;
438 
439 	result = NULL;
440 	badness = 0;
441 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
442 		score = compute_score(sk, net, saddr, sport,
443 				      daddr, hnum, dif, sdif);
444 		if (score > badness) {
445 			result = lookup_reuseport(net, sk, skb,
446 						  saddr, sport, daddr, hnum);
447 			/* Fall back to scoring if group has connections */
448 			if (result && !reuseport_has_conns(sk, false))
449 				return result;
450 
451 			result = result ? : sk;
452 			badness = score;
453 		}
454 	}
455 	return result;
456 }
457 
458 static struct sock *udp4_lookup_run_bpf(struct net *net,
459 					struct udp_table *udptable,
460 					struct sk_buff *skb,
461 					__be32 saddr, __be16 sport,
462 					__be32 daddr, u16 hnum)
463 {
464 	struct sock *sk, *reuse_sk;
465 	bool no_reuseport;
466 
467 	if (udptable != &udp_table)
468 		return NULL; /* only UDP is supported */
469 
470 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
471 					    saddr, sport, daddr, hnum, &sk);
472 	if (no_reuseport || IS_ERR_OR_NULL(sk))
473 		return sk;
474 
475 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
476 	if (reuse_sk)
477 		sk = reuse_sk;
478 	return sk;
479 }
480 
481 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
482  * harder than this. -DaveM
483  */
484 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
485 		__be16 sport, __be32 daddr, __be16 dport, int dif,
486 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
487 {
488 	unsigned short hnum = ntohs(dport);
489 	unsigned int hash2, slot2;
490 	struct udp_hslot *hslot2;
491 	struct sock *result, *sk;
492 
493 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
494 	slot2 = hash2 & udptable->mask;
495 	hslot2 = &udptable->hash2[slot2];
496 
497 	/* Lookup connected or non-wildcard socket */
498 	result = udp4_lib_lookup2(net, saddr, sport,
499 				  daddr, hnum, dif, sdif,
500 				  hslot2, skb);
501 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
502 		goto done;
503 
504 	/* Lookup redirect from BPF */
505 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
506 		sk = udp4_lookup_run_bpf(net, udptable, skb,
507 					 saddr, sport, daddr, hnum);
508 		if (sk) {
509 			result = sk;
510 			goto done;
511 		}
512 	}
513 
514 	/* Got non-wildcard socket or error on first lookup */
515 	if (result)
516 		goto done;
517 
518 	/* Lookup wildcard sockets */
519 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
520 	slot2 = hash2 & udptable->mask;
521 	hslot2 = &udptable->hash2[slot2];
522 
523 	result = udp4_lib_lookup2(net, saddr, sport,
524 				  htonl(INADDR_ANY), hnum, dif, sdif,
525 				  hslot2, skb);
526 done:
527 	if (IS_ERR(result))
528 		return NULL;
529 	return result;
530 }
531 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
532 
533 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
534 						 __be16 sport, __be16 dport,
535 						 struct udp_table *udptable)
536 {
537 	const struct iphdr *iph = ip_hdr(skb);
538 
539 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
540 				 iph->daddr, dport, inet_iif(skb),
541 				 inet_sdif(skb), udptable, skb);
542 }
543 
544 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
545 				 __be16 sport, __be16 dport)
546 {
547 	const struct iphdr *iph = ip_hdr(skb);
548 
549 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
550 				 iph->daddr, dport, inet_iif(skb),
551 				 inet_sdif(skb), &udp_table, NULL);
552 }
553 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
554 
555 /* Must be called under rcu_read_lock().
556  * Does increment socket refcount.
557  */
558 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
559 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
560 			     __be32 daddr, __be16 dport, int dif)
561 {
562 	struct sock *sk;
563 
564 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
565 			       dif, 0, &udp_table, NULL);
566 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
567 		sk = NULL;
568 	return sk;
569 }
570 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
571 #endif
572 
573 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
574 				       __be16 loc_port, __be32 loc_addr,
575 				       __be16 rmt_port, __be32 rmt_addr,
576 				       int dif, int sdif, unsigned short hnum)
577 {
578 	struct inet_sock *inet = inet_sk(sk);
579 
580 	if (!net_eq(sock_net(sk), net) ||
581 	    udp_sk(sk)->udp_port_hash != hnum ||
582 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
583 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
584 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
585 	    ipv6_only_sock(sk) ||
586 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
587 		return false;
588 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
589 		return false;
590 	return true;
591 }
592 
593 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
594 void udp_encap_enable(void)
595 {
596 	static_branch_inc(&udp_encap_needed_key);
597 }
598 EXPORT_SYMBOL(udp_encap_enable);
599 
600 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
601  * through error handlers in encapsulations looking for a match.
602  */
603 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
604 {
605 	int i;
606 
607 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
608 		int (*handler)(struct sk_buff *skb, u32 info);
609 		const struct ip_tunnel_encap_ops *encap;
610 
611 		encap = rcu_dereference(iptun_encaps[i]);
612 		if (!encap)
613 			continue;
614 		handler = encap->err_handler;
615 		if (handler && !handler(skb, info))
616 			return 0;
617 	}
618 
619 	return -ENOENT;
620 }
621 
622 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
623  * reversing source and destination port: this will match tunnels that force the
624  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
625  * lwtunnels might actually break this assumption by being configured with
626  * different destination ports on endpoints, in this case we won't be able to
627  * trace ICMP messages back to them.
628  *
629  * If this doesn't match any socket, probe tunnels with arbitrary destination
630  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
631  * we've sent packets to won't necessarily match the local destination port.
632  *
633  * Then ask the tunnel implementation to match the error against a valid
634  * association.
635  *
636  * Return an error if we can't find a match, the socket if we need further
637  * processing, zero otherwise.
638  */
639 static struct sock *__udp4_lib_err_encap(struct net *net,
640 					 const struct iphdr *iph,
641 					 struct udphdr *uh,
642 					 struct udp_table *udptable,
643 					 struct sk_buff *skb, u32 info)
644 {
645 	int network_offset, transport_offset;
646 	struct sock *sk;
647 
648 	network_offset = skb_network_offset(skb);
649 	transport_offset = skb_transport_offset(skb);
650 
651 	/* Network header needs to point to the outer IPv4 header inside ICMP */
652 	skb_reset_network_header(skb);
653 
654 	/* Transport header needs to point to the UDP header */
655 	skb_set_transport_header(skb, iph->ihl << 2);
656 
657 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
658 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
659 			       udptable, NULL);
660 	if (sk) {
661 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
662 		struct udp_sock *up = udp_sk(sk);
663 
664 		lookup = READ_ONCE(up->encap_err_lookup);
665 		if (!lookup || lookup(sk, skb))
666 			sk = NULL;
667 	}
668 
669 	if (!sk)
670 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
671 
672 	skb_set_transport_header(skb, transport_offset);
673 	skb_set_network_header(skb, network_offset);
674 
675 	return sk;
676 }
677 
678 /*
679  * This routine is called by the ICMP module when it gets some
680  * sort of error condition.  If err < 0 then the socket should
681  * be closed and the error returned to the user.  If err > 0
682  * it's just the icmp type << 8 | icmp code.
683  * Header points to the ip header of the error packet. We move
684  * on past this. Then (as it used to claim before adjustment)
685  * header points to the first 8 bytes of the udp header.  We need
686  * to find the appropriate port.
687  */
688 
689 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
690 {
691 	struct inet_sock *inet;
692 	const struct iphdr *iph = (const struct iphdr *)skb->data;
693 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
694 	const int type = icmp_hdr(skb)->type;
695 	const int code = icmp_hdr(skb)->code;
696 	bool tunnel = false;
697 	struct sock *sk;
698 	int harderr;
699 	int err;
700 	struct net *net = dev_net(skb->dev);
701 
702 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
703 			       iph->saddr, uh->source, skb->dev->ifindex,
704 			       inet_sdif(skb), udptable, NULL);
705 	if (!sk) {
706 		/* No socket for error: try tunnels before discarding */
707 		sk = ERR_PTR(-ENOENT);
708 		if (static_branch_unlikely(&udp_encap_needed_key)) {
709 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
710 						  info);
711 			if (!sk)
712 				return 0;
713 		}
714 
715 		if (IS_ERR(sk)) {
716 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
717 			return PTR_ERR(sk);
718 		}
719 
720 		tunnel = true;
721 	}
722 
723 	err = 0;
724 	harderr = 0;
725 	inet = inet_sk(sk);
726 
727 	switch (type) {
728 	default:
729 	case ICMP_TIME_EXCEEDED:
730 		err = EHOSTUNREACH;
731 		break;
732 	case ICMP_SOURCE_QUENCH:
733 		goto out;
734 	case ICMP_PARAMETERPROB:
735 		err = EPROTO;
736 		harderr = 1;
737 		break;
738 	case ICMP_DEST_UNREACH:
739 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
740 			ipv4_sk_update_pmtu(skb, sk, info);
741 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
742 				err = EMSGSIZE;
743 				harderr = 1;
744 				break;
745 			}
746 			goto out;
747 		}
748 		err = EHOSTUNREACH;
749 		if (code <= NR_ICMP_UNREACH) {
750 			harderr = icmp_err_convert[code].fatal;
751 			err = icmp_err_convert[code].errno;
752 		}
753 		break;
754 	case ICMP_REDIRECT:
755 		ipv4_sk_redirect(skb, sk);
756 		goto out;
757 	}
758 
759 	/*
760 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
761 	 *	4.1.3.3.
762 	 */
763 	if (tunnel) {
764 		/* ...not for tunnels though: we don't have a sending socket */
765 		goto out;
766 	}
767 	if (!inet->recverr) {
768 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
769 			goto out;
770 	} else
771 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
772 
773 	sk->sk_err = err;
774 	sk->sk_error_report(sk);
775 out:
776 	return 0;
777 }
778 
779 int udp_err(struct sk_buff *skb, u32 info)
780 {
781 	return __udp4_lib_err(skb, info, &udp_table);
782 }
783 
784 /*
785  * Throw away all pending data and cancel the corking. Socket is locked.
786  */
787 void udp_flush_pending_frames(struct sock *sk)
788 {
789 	struct udp_sock *up = udp_sk(sk);
790 
791 	if (up->pending) {
792 		up->len = 0;
793 		up->pending = 0;
794 		ip_flush_pending_frames(sk);
795 	}
796 }
797 EXPORT_SYMBOL(udp_flush_pending_frames);
798 
799 /**
800  * 	udp4_hwcsum  -  handle outgoing HW checksumming
801  * 	@skb: 	sk_buff containing the filled-in UDP header
802  * 	        (checksum field must be zeroed out)
803  *	@src:	source IP address
804  *	@dst:	destination IP address
805  */
806 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
807 {
808 	struct udphdr *uh = udp_hdr(skb);
809 	int offset = skb_transport_offset(skb);
810 	int len = skb->len - offset;
811 	int hlen = len;
812 	__wsum csum = 0;
813 
814 	if (!skb_has_frag_list(skb)) {
815 		/*
816 		 * Only one fragment on the socket.
817 		 */
818 		skb->csum_start = skb_transport_header(skb) - skb->head;
819 		skb->csum_offset = offsetof(struct udphdr, check);
820 		uh->check = ~csum_tcpudp_magic(src, dst, len,
821 					       IPPROTO_UDP, 0);
822 	} else {
823 		struct sk_buff *frags;
824 
825 		/*
826 		 * HW-checksum won't work as there are two or more
827 		 * fragments on the socket so that all csums of sk_buffs
828 		 * should be together
829 		 */
830 		skb_walk_frags(skb, frags) {
831 			csum = csum_add(csum, frags->csum);
832 			hlen -= frags->len;
833 		}
834 
835 		csum = skb_checksum(skb, offset, hlen, csum);
836 		skb->ip_summed = CHECKSUM_NONE;
837 
838 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
839 		if (uh->check == 0)
840 			uh->check = CSUM_MANGLED_0;
841 	}
842 }
843 EXPORT_SYMBOL_GPL(udp4_hwcsum);
844 
845 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
846  * for the simple case like when setting the checksum for a UDP tunnel.
847  */
848 void udp_set_csum(bool nocheck, struct sk_buff *skb,
849 		  __be32 saddr, __be32 daddr, int len)
850 {
851 	struct udphdr *uh = udp_hdr(skb);
852 
853 	if (nocheck) {
854 		uh->check = 0;
855 	} else if (skb_is_gso(skb)) {
856 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
857 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
858 		uh->check = 0;
859 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
860 		if (uh->check == 0)
861 			uh->check = CSUM_MANGLED_0;
862 	} else {
863 		skb->ip_summed = CHECKSUM_PARTIAL;
864 		skb->csum_start = skb_transport_header(skb) - skb->head;
865 		skb->csum_offset = offsetof(struct udphdr, check);
866 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
867 	}
868 }
869 EXPORT_SYMBOL(udp_set_csum);
870 
871 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
872 			struct inet_cork *cork)
873 {
874 	struct sock *sk = skb->sk;
875 	struct inet_sock *inet = inet_sk(sk);
876 	struct udphdr *uh;
877 	int err = 0;
878 	int is_udplite = IS_UDPLITE(sk);
879 	int offset = skb_transport_offset(skb);
880 	int len = skb->len - offset;
881 	int datalen = len - sizeof(*uh);
882 	__wsum csum = 0;
883 
884 	/*
885 	 * Create a UDP header
886 	 */
887 	uh = udp_hdr(skb);
888 	uh->source = inet->inet_sport;
889 	uh->dest = fl4->fl4_dport;
890 	uh->len = htons(len);
891 	uh->check = 0;
892 
893 	if (cork->gso_size) {
894 		const int hlen = skb_network_header_len(skb) +
895 				 sizeof(struct udphdr);
896 
897 		if (hlen + cork->gso_size > cork->fragsize) {
898 			kfree_skb(skb);
899 			return -EINVAL;
900 		}
901 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
902 			kfree_skb(skb);
903 			return -EINVAL;
904 		}
905 		if (sk->sk_no_check_tx) {
906 			kfree_skb(skb);
907 			return -EINVAL;
908 		}
909 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
910 		    dst_xfrm(skb_dst(skb))) {
911 			kfree_skb(skb);
912 			return -EIO;
913 		}
914 
915 		if (datalen > cork->gso_size) {
916 			skb_shinfo(skb)->gso_size = cork->gso_size;
917 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
918 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
919 								 cork->gso_size);
920 		}
921 		goto csum_partial;
922 	}
923 
924 	if (is_udplite)  				 /*     UDP-Lite      */
925 		csum = udplite_csum(skb);
926 
927 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
928 
929 		skb->ip_summed = CHECKSUM_NONE;
930 		goto send;
931 
932 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
933 csum_partial:
934 
935 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
936 		goto send;
937 
938 	} else
939 		csum = udp_csum(skb);
940 
941 	/* add protocol-dependent pseudo-header */
942 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
943 				      sk->sk_protocol, csum);
944 	if (uh->check == 0)
945 		uh->check = CSUM_MANGLED_0;
946 
947 send:
948 	err = ip_send_skb(sock_net(sk), skb);
949 	if (err) {
950 		if (err == -ENOBUFS && !inet->recverr) {
951 			UDP_INC_STATS(sock_net(sk),
952 				      UDP_MIB_SNDBUFERRORS, is_udplite);
953 			err = 0;
954 		}
955 	} else
956 		UDP_INC_STATS(sock_net(sk),
957 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
958 	return err;
959 }
960 
961 /*
962  * Push out all pending data as one UDP datagram. Socket is locked.
963  */
964 int udp_push_pending_frames(struct sock *sk)
965 {
966 	struct udp_sock  *up = udp_sk(sk);
967 	struct inet_sock *inet = inet_sk(sk);
968 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
969 	struct sk_buff *skb;
970 	int err = 0;
971 
972 	skb = ip_finish_skb(sk, fl4);
973 	if (!skb)
974 		goto out;
975 
976 	err = udp_send_skb(skb, fl4, &inet->cork.base);
977 
978 out:
979 	up->len = 0;
980 	up->pending = 0;
981 	return err;
982 }
983 EXPORT_SYMBOL(udp_push_pending_frames);
984 
985 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
986 {
987 	switch (cmsg->cmsg_type) {
988 	case UDP_SEGMENT:
989 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
990 			return -EINVAL;
991 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
992 		return 0;
993 	default:
994 		return -EINVAL;
995 	}
996 }
997 
998 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
999 {
1000 	struct cmsghdr *cmsg;
1001 	bool need_ip = false;
1002 	int err;
1003 
1004 	for_each_cmsghdr(cmsg, msg) {
1005 		if (!CMSG_OK(msg, cmsg))
1006 			return -EINVAL;
1007 
1008 		if (cmsg->cmsg_level != SOL_UDP) {
1009 			need_ip = true;
1010 			continue;
1011 		}
1012 
1013 		err = __udp_cmsg_send(cmsg, gso_size);
1014 		if (err)
1015 			return err;
1016 	}
1017 
1018 	return need_ip;
1019 }
1020 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1021 
1022 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1023 {
1024 	struct inet_sock *inet = inet_sk(sk);
1025 	struct udp_sock *up = udp_sk(sk);
1026 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1027 	struct flowi4 fl4_stack;
1028 	struct flowi4 *fl4;
1029 	int ulen = len;
1030 	struct ipcm_cookie ipc;
1031 	struct rtable *rt = NULL;
1032 	int free = 0;
1033 	int connected = 0;
1034 	__be32 daddr, faddr, saddr;
1035 	__be16 dport;
1036 	u8  tos;
1037 	int err, is_udplite = IS_UDPLITE(sk);
1038 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
1039 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1040 	struct sk_buff *skb;
1041 	struct ip_options_data opt_copy;
1042 
1043 	if (len > 0xFFFF)
1044 		return -EMSGSIZE;
1045 
1046 	/*
1047 	 *	Check the flags.
1048 	 */
1049 
1050 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1051 		return -EOPNOTSUPP;
1052 
1053 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1054 
1055 	fl4 = &inet->cork.fl.u.ip4;
1056 	if (up->pending) {
1057 		/*
1058 		 * There are pending frames.
1059 		 * The socket lock must be held while it's corked.
1060 		 */
1061 		lock_sock(sk);
1062 		if (likely(up->pending)) {
1063 			if (unlikely(up->pending != AF_INET)) {
1064 				release_sock(sk);
1065 				return -EINVAL;
1066 			}
1067 			goto do_append_data;
1068 		}
1069 		release_sock(sk);
1070 	}
1071 	ulen += sizeof(struct udphdr);
1072 
1073 	/*
1074 	 *	Get and verify the address.
1075 	 */
1076 	if (usin) {
1077 		if (msg->msg_namelen < sizeof(*usin))
1078 			return -EINVAL;
1079 		if (usin->sin_family != AF_INET) {
1080 			if (usin->sin_family != AF_UNSPEC)
1081 				return -EAFNOSUPPORT;
1082 		}
1083 
1084 		daddr = usin->sin_addr.s_addr;
1085 		dport = usin->sin_port;
1086 		if (dport == 0)
1087 			return -EINVAL;
1088 	} else {
1089 		if (sk->sk_state != TCP_ESTABLISHED)
1090 			return -EDESTADDRREQ;
1091 		daddr = inet->inet_daddr;
1092 		dport = inet->inet_dport;
1093 		/* Open fast path for connected socket.
1094 		   Route will not be used, if at least one option is set.
1095 		 */
1096 		connected = 1;
1097 	}
1098 
1099 	ipcm_init_sk(&ipc, inet);
1100 	ipc.gso_size = up->gso_size;
1101 
1102 	if (msg->msg_controllen) {
1103 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1104 		if (err > 0)
1105 			err = ip_cmsg_send(sk, msg, &ipc,
1106 					   sk->sk_family == AF_INET6);
1107 		if (unlikely(err < 0)) {
1108 			kfree(ipc.opt);
1109 			return err;
1110 		}
1111 		if (ipc.opt)
1112 			free = 1;
1113 		connected = 0;
1114 	}
1115 	if (!ipc.opt) {
1116 		struct ip_options_rcu *inet_opt;
1117 
1118 		rcu_read_lock();
1119 		inet_opt = rcu_dereference(inet->inet_opt);
1120 		if (inet_opt) {
1121 			memcpy(&opt_copy, inet_opt,
1122 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1123 			ipc.opt = &opt_copy.opt;
1124 		}
1125 		rcu_read_unlock();
1126 	}
1127 
1128 	if (cgroup_bpf_enabled && !connected) {
1129 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1130 					    (struct sockaddr *)usin, &ipc.addr);
1131 		if (err)
1132 			goto out_free;
1133 		if (usin) {
1134 			if (usin->sin_port == 0) {
1135 				/* BPF program set invalid port. Reject it. */
1136 				err = -EINVAL;
1137 				goto out_free;
1138 			}
1139 			daddr = usin->sin_addr.s_addr;
1140 			dport = usin->sin_port;
1141 		}
1142 	}
1143 
1144 	saddr = ipc.addr;
1145 	ipc.addr = faddr = daddr;
1146 
1147 	if (ipc.opt && ipc.opt->opt.srr) {
1148 		if (!daddr) {
1149 			err = -EINVAL;
1150 			goto out_free;
1151 		}
1152 		faddr = ipc.opt->opt.faddr;
1153 		connected = 0;
1154 	}
1155 	tos = get_rttos(&ipc, inet);
1156 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1157 	    (msg->msg_flags & MSG_DONTROUTE) ||
1158 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1159 		tos |= RTO_ONLINK;
1160 		connected = 0;
1161 	}
1162 
1163 	if (ipv4_is_multicast(daddr)) {
1164 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1165 			ipc.oif = inet->mc_index;
1166 		if (!saddr)
1167 			saddr = inet->mc_addr;
1168 		connected = 0;
1169 	} else if (!ipc.oif) {
1170 		ipc.oif = inet->uc_index;
1171 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1172 		/* oif is set, packet is to local broadcast and
1173 		 * uc_index is set. oif is most likely set
1174 		 * by sk_bound_dev_if. If uc_index != oif check if the
1175 		 * oif is an L3 master and uc_index is an L3 slave.
1176 		 * If so, we want to allow the send using the uc_index.
1177 		 */
1178 		if (ipc.oif != inet->uc_index &&
1179 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1180 							      inet->uc_index)) {
1181 			ipc.oif = inet->uc_index;
1182 		}
1183 	}
1184 
1185 	if (connected)
1186 		rt = (struct rtable *)sk_dst_check(sk, 0);
1187 
1188 	if (!rt) {
1189 		struct net *net = sock_net(sk);
1190 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1191 
1192 		fl4 = &fl4_stack;
1193 
1194 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1195 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1196 				   flow_flags,
1197 				   faddr, saddr, dport, inet->inet_sport,
1198 				   sk->sk_uid);
1199 
1200 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1201 		rt = ip_route_output_flow(net, fl4, sk);
1202 		if (IS_ERR(rt)) {
1203 			err = PTR_ERR(rt);
1204 			rt = NULL;
1205 			if (err == -ENETUNREACH)
1206 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1207 			goto out;
1208 		}
1209 
1210 		err = -EACCES;
1211 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1212 		    !sock_flag(sk, SOCK_BROADCAST))
1213 			goto out;
1214 		if (connected)
1215 			sk_dst_set(sk, dst_clone(&rt->dst));
1216 	}
1217 
1218 	if (msg->msg_flags&MSG_CONFIRM)
1219 		goto do_confirm;
1220 back_from_confirm:
1221 
1222 	saddr = fl4->saddr;
1223 	if (!ipc.addr)
1224 		daddr = ipc.addr = fl4->daddr;
1225 
1226 	/* Lockless fast path for the non-corking case. */
1227 	if (!corkreq) {
1228 		struct inet_cork cork;
1229 
1230 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1231 				  sizeof(struct udphdr), &ipc, &rt,
1232 				  &cork, msg->msg_flags);
1233 		err = PTR_ERR(skb);
1234 		if (!IS_ERR_OR_NULL(skb))
1235 			err = udp_send_skb(skb, fl4, &cork);
1236 		goto out;
1237 	}
1238 
1239 	lock_sock(sk);
1240 	if (unlikely(up->pending)) {
1241 		/* The socket is already corked while preparing it. */
1242 		/* ... which is an evident application bug. --ANK */
1243 		release_sock(sk);
1244 
1245 		net_dbg_ratelimited("socket already corked\n");
1246 		err = -EINVAL;
1247 		goto out;
1248 	}
1249 	/*
1250 	 *	Now cork the socket to pend data.
1251 	 */
1252 	fl4 = &inet->cork.fl.u.ip4;
1253 	fl4->daddr = daddr;
1254 	fl4->saddr = saddr;
1255 	fl4->fl4_dport = dport;
1256 	fl4->fl4_sport = inet->inet_sport;
1257 	up->pending = AF_INET;
1258 
1259 do_append_data:
1260 	up->len += ulen;
1261 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1262 			     sizeof(struct udphdr), &ipc, &rt,
1263 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1264 	if (err)
1265 		udp_flush_pending_frames(sk);
1266 	else if (!corkreq)
1267 		err = udp_push_pending_frames(sk);
1268 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1269 		up->pending = 0;
1270 	release_sock(sk);
1271 
1272 out:
1273 	ip_rt_put(rt);
1274 out_free:
1275 	if (free)
1276 		kfree(ipc.opt);
1277 	if (!err)
1278 		return len;
1279 	/*
1280 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1281 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1282 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1283 	 * things).  We could add another new stat but at least for now that
1284 	 * seems like overkill.
1285 	 */
1286 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1287 		UDP_INC_STATS(sock_net(sk),
1288 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1289 	}
1290 	return err;
1291 
1292 do_confirm:
1293 	if (msg->msg_flags & MSG_PROBE)
1294 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1295 	if (!(msg->msg_flags&MSG_PROBE) || len)
1296 		goto back_from_confirm;
1297 	err = 0;
1298 	goto out;
1299 }
1300 EXPORT_SYMBOL(udp_sendmsg);
1301 
1302 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1303 		 size_t size, int flags)
1304 {
1305 	struct inet_sock *inet = inet_sk(sk);
1306 	struct udp_sock *up = udp_sk(sk);
1307 	int ret;
1308 
1309 	if (flags & MSG_SENDPAGE_NOTLAST)
1310 		flags |= MSG_MORE;
1311 
1312 	if (!up->pending) {
1313 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1314 
1315 		/* Call udp_sendmsg to specify destination address which
1316 		 * sendpage interface can't pass.
1317 		 * This will succeed only when the socket is connected.
1318 		 */
1319 		ret = udp_sendmsg(sk, &msg, 0);
1320 		if (ret < 0)
1321 			return ret;
1322 	}
1323 
1324 	lock_sock(sk);
1325 
1326 	if (unlikely(!up->pending)) {
1327 		release_sock(sk);
1328 
1329 		net_dbg_ratelimited("cork failed\n");
1330 		return -EINVAL;
1331 	}
1332 
1333 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1334 			     page, offset, size, flags);
1335 	if (ret == -EOPNOTSUPP) {
1336 		release_sock(sk);
1337 		return sock_no_sendpage(sk->sk_socket, page, offset,
1338 					size, flags);
1339 	}
1340 	if (ret < 0) {
1341 		udp_flush_pending_frames(sk);
1342 		goto out;
1343 	}
1344 
1345 	up->len += size;
1346 	if (!(up->corkflag || (flags&MSG_MORE)))
1347 		ret = udp_push_pending_frames(sk);
1348 	if (!ret)
1349 		ret = size;
1350 out:
1351 	release_sock(sk);
1352 	return ret;
1353 }
1354 
1355 #define UDP_SKB_IS_STATELESS 0x80000000
1356 
1357 /* all head states (dst, sk, nf conntrack) except skb extensions are
1358  * cleared by udp_rcv().
1359  *
1360  * We need to preserve secpath, if present, to eventually process
1361  * IP_CMSG_PASSSEC at recvmsg() time.
1362  *
1363  * Other extensions can be cleared.
1364  */
1365 static bool udp_try_make_stateless(struct sk_buff *skb)
1366 {
1367 	if (!skb_has_extensions(skb))
1368 		return true;
1369 
1370 	if (!secpath_exists(skb)) {
1371 		skb_ext_reset(skb);
1372 		return true;
1373 	}
1374 
1375 	return false;
1376 }
1377 
1378 static void udp_set_dev_scratch(struct sk_buff *skb)
1379 {
1380 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1381 
1382 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1383 	scratch->_tsize_state = skb->truesize;
1384 #if BITS_PER_LONG == 64
1385 	scratch->len = skb->len;
1386 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1387 	scratch->is_linear = !skb_is_nonlinear(skb);
1388 #endif
1389 	if (udp_try_make_stateless(skb))
1390 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1391 }
1392 
1393 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1394 {
1395 	/* We come here after udp_lib_checksum_complete() returned 0.
1396 	 * This means that __skb_checksum_complete() might have
1397 	 * set skb->csum_valid to 1.
1398 	 * On 64bit platforms, we can set csum_unnecessary
1399 	 * to true, but only if the skb is not shared.
1400 	 */
1401 #if BITS_PER_LONG == 64
1402 	if (!skb_shared(skb))
1403 		udp_skb_scratch(skb)->csum_unnecessary = true;
1404 #endif
1405 }
1406 
1407 static int udp_skb_truesize(struct sk_buff *skb)
1408 {
1409 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1410 }
1411 
1412 static bool udp_skb_has_head_state(struct sk_buff *skb)
1413 {
1414 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1415 }
1416 
1417 /* fully reclaim rmem/fwd memory allocated for skb */
1418 static void udp_rmem_release(struct sock *sk, int size, int partial,
1419 			     bool rx_queue_lock_held)
1420 {
1421 	struct udp_sock *up = udp_sk(sk);
1422 	struct sk_buff_head *sk_queue;
1423 	int amt;
1424 
1425 	if (likely(partial)) {
1426 		up->forward_deficit += size;
1427 		size = up->forward_deficit;
1428 		if (size < (sk->sk_rcvbuf >> 2) &&
1429 		    !skb_queue_empty(&up->reader_queue))
1430 			return;
1431 	} else {
1432 		size += up->forward_deficit;
1433 	}
1434 	up->forward_deficit = 0;
1435 
1436 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1437 	 * if the called don't held it already
1438 	 */
1439 	sk_queue = &sk->sk_receive_queue;
1440 	if (!rx_queue_lock_held)
1441 		spin_lock(&sk_queue->lock);
1442 
1443 
1444 	sk->sk_forward_alloc += size;
1445 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1446 	sk->sk_forward_alloc -= amt;
1447 
1448 	if (amt)
1449 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1450 
1451 	atomic_sub(size, &sk->sk_rmem_alloc);
1452 
1453 	/* this can save us from acquiring the rx queue lock on next receive */
1454 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1455 
1456 	if (!rx_queue_lock_held)
1457 		spin_unlock(&sk_queue->lock);
1458 }
1459 
1460 /* Note: called with reader_queue.lock held.
1461  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1462  * This avoids a cache line miss while receive_queue lock is held.
1463  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1464  */
1465 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1466 {
1467 	prefetch(&skb->data);
1468 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1469 }
1470 EXPORT_SYMBOL(udp_skb_destructor);
1471 
1472 /* as above, but the caller held the rx queue lock, too */
1473 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1474 {
1475 	prefetch(&skb->data);
1476 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1477 }
1478 
1479 /* Idea of busylocks is to let producers grab an extra spinlock
1480  * to relieve pressure on the receive_queue spinlock shared by consumer.
1481  * Under flood, this means that only one producer can be in line
1482  * trying to acquire the receive_queue spinlock.
1483  * These busylock can be allocated on a per cpu manner, instead of a
1484  * per socket one (that would consume a cache line per socket)
1485  */
1486 static int udp_busylocks_log __read_mostly;
1487 static spinlock_t *udp_busylocks __read_mostly;
1488 
1489 static spinlock_t *busylock_acquire(void *ptr)
1490 {
1491 	spinlock_t *busy;
1492 
1493 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1494 	spin_lock(busy);
1495 	return busy;
1496 }
1497 
1498 static void busylock_release(spinlock_t *busy)
1499 {
1500 	if (busy)
1501 		spin_unlock(busy);
1502 }
1503 
1504 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1505 {
1506 	struct sk_buff_head *list = &sk->sk_receive_queue;
1507 	int rmem, delta, amt, err = -ENOMEM;
1508 	spinlock_t *busy = NULL;
1509 	int size;
1510 
1511 	/* try to avoid the costly atomic add/sub pair when the receive
1512 	 * queue is full; always allow at least a packet
1513 	 */
1514 	rmem = atomic_read(&sk->sk_rmem_alloc);
1515 	if (rmem > sk->sk_rcvbuf)
1516 		goto drop;
1517 
1518 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1519 	 * having linear skbs :
1520 	 * - Reduce memory overhead and thus increase receive queue capacity
1521 	 * - Less cache line misses at copyout() time
1522 	 * - Less work at consume_skb() (less alien page frag freeing)
1523 	 */
1524 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1525 		skb_condense(skb);
1526 
1527 		busy = busylock_acquire(sk);
1528 	}
1529 	size = skb->truesize;
1530 	udp_set_dev_scratch(skb);
1531 
1532 	/* we drop only if the receive buf is full and the receive
1533 	 * queue contains some other skb
1534 	 */
1535 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1536 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1537 		goto uncharge_drop;
1538 
1539 	spin_lock(&list->lock);
1540 	if (size >= sk->sk_forward_alloc) {
1541 		amt = sk_mem_pages(size);
1542 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1543 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1544 			err = -ENOBUFS;
1545 			spin_unlock(&list->lock);
1546 			goto uncharge_drop;
1547 		}
1548 
1549 		sk->sk_forward_alloc += delta;
1550 	}
1551 
1552 	sk->sk_forward_alloc -= size;
1553 
1554 	/* no need to setup a destructor, we will explicitly release the
1555 	 * forward allocated memory on dequeue
1556 	 */
1557 	sock_skb_set_dropcount(sk, skb);
1558 
1559 	__skb_queue_tail(list, skb);
1560 	spin_unlock(&list->lock);
1561 
1562 	if (!sock_flag(sk, SOCK_DEAD))
1563 		sk->sk_data_ready(sk);
1564 
1565 	busylock_release(busy);
1566 	return 0;
1567 
1568 uncharge_drop:
1569 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1570 
1571 drop:
1572 	atomic_inc(&sk->sk_drops);
1573 	busylock_release(busy);
1574 	return err;
1575 }
1576 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1577 
1578 void udp_destruct_sock(struct sock *sk)
1579 {
1580 	/* reclaim completely the forward allocated memory */
1581 	struct udp_sock *up = udp_sk(sk);
1582 	unsigned int total = 0;
1583 	struct sk_buff *skb;
1584 
1585 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1586 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1587 		total += skb->truesize;
1588 		kfree_skb(skb);
1589 	}
1590 	udp_rmem_release(sk, total, 0, true);
1591 
1592 	inet_sock_destruct(sk);
1593 }
1594 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1595 
1596 int udp_init_sock(struct sock *sk)
1597 {
1598 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1599 	sk->sk_destruct = udp_destruct_sock;
1600 	return 0;
1601 }
1602 EXPORT_SYMBOL_GPL(udp_init_sock);
1603 
1604 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1605 {
1606 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1607 		bool slow = lock_sock_fast(sk);
1608 
1609 		sk_peek_offset_bwd(sk, len);
1610 		unlock_sock_fast(sk, slow);
1611 	}
1612 
1613 	if (!skb_unref(skb))
1614 		return;
1615 
1616 	/* In the more common cases we cleared the head states previously,
1617 	 * see __udp_queue_rcv_skb().
1618 	 */
1619 	if (unlikely(udp_skb_has_head_state(skb)))
1620 		skb_release_head_state(skb);
1621 	__consume_stateless_skb(skb);
1622 }
1623 EXPORT_SYMBOL_GPL(skb_consume_udp);
1624 
1625 static struct sk_buff *__first_packet_length(struct sock *sk,
1626 					     struct sk_buff_head *rcvq,
1627 					     int *total)
1628 {
1629 	struct sk_buff *skb;
1630 
1631 	while ((skb = skb_peek(rcvq)) != NULL) {
1632 		if (udp_lib_checksum_complete(skb)) {
1633 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1634 					IS_UDPLITE(sk));
1635 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1636 					IS_UDPLITE(sk));
1637 			atomic_inc(&sk->sk_drops);
1638 			__skb_unlink(skb, rcvq);
1639 			*total += skb->truesize;
1640 			kfree_skb(skb);
1641 		} else {
1642 			udp_skb_csum_unnecessary_set(skb);
1643 			break;
1644 		}
1645 	}
1646 	return skb;
1647 }
1648 
1649 /**
1650  *	first_packet_length	- return length of first packet in receive queue
1651  *	@sk: socket
1652  *
1653  *	Drops all bad checksum frames, until a valid one is found.
1654  *	Returns the length of found skb, or -1 if none is found.
1655  */
1656 static int first_packet_length(struct sock *sk)
1657 {
1658 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1659 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1660 	struct sk_buff *skb;
1661 	int total = 0;
1662 	int res;
1663 
1664 	spin_lock_bh(&rcvq->lock);
1665 	skb = __first_packet_length(sk, rcvq, &total);
1666 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1667 		spin_lock(&sk_queue->lock);
1668 		skb_queue_splice_tail_init(sk_queue, rcvq);
1669 		spin_unlock(&sk_queue->lock);
1670 
1671 		skb = __first_packet_length(sk, rcvq, &total);
1672 	}
1673 	res = skb ? skb->len : -1;
1674 	if (total)
1675 		udp_rmem_release(sk, total, 1, false);
1676 	spin_unlock_bh(&rcvq->lock);
1677 	return res;
1678 }
1679 
1680 /*
1681  *	IOCTL requests applicable to the UDP protocol
1682  */
1683 
1684 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1685 {
1686 	switch (cmd) {
1687 	case SIOCOUTQ:
1688 	{
1689 		int amount = sk_wmem_alloc_get(sk);
1690 
1691 		return put_user(amount, (int __user *)arg);
1692 	}
1693 
1694 	case SIOCINQ:
1695 	{
1696 		int amount = max_t(int, 0, first_packet_length(sk));
1697 
1698 		return put_user(amount, (int __user *)arg);
1699 	}
1700 
1701 	default:
1702 		return -ENOIOCTLCMD;
1703 	}
1704 
1705 	return 0;
1706 }
1707 EXPORT_SYMBOL(udp_ioctl);
1708 
1709 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1710 			       int noblock, int *off, int *err)
1711 {
1712 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1713 	struct sk_buff_head *queue;
1714 	struct sk_buff *last;
1715 	long timeo;
1716 	int error;
1717 
1718 	queue = &udp_sk(sk)->reader_queue;
1719 	flags |= noblock ? MSG_DONTWAIT : 0;
1720 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1721 	do {
1722 		struct sk_buff *skb;
1723 
1724 		error = sock_error(sk);
1725 		if (error)
1726 			break;
1727 
1728 		error = -EAGAIN;
1729 		do {
1730 			spin_lock_bh(&queue->lock);
1731 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1732 							err, &last);
1733 			if (skb) {
1734 				if (!(flags & MSG_PEEK))
1735 					udp_skb_destructor(sk, skb);
1736 				spin_unlock_bh(&queue->lock);
1737 				return skb;
1738 			}
1739 
1740 			if (skb_queue_empty_lockless(sk_queue)) {
1741 				spin_unlock_bh(&queue->lock);
1742 				goto busy_check;
1743 			}
1744 
1745 			/* refill the reader queue and walk it again
1746 			 * keep both queues locked to avoid re-acquiring
1747 			 * the sk_receive_queue lock if fwd memory scheduling
1748 			 * is needed.
1749 			 */
1750 			spin_lock(&sk_queue->lock);
1751 			skb_queue_splice_tail_init(sk_queue, queue);
1752 
1753 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1754 							err, &last);
1755 			if (skb && !(flags & MSG_PEEK))
1756 				udp_skb_dtor_locked(sk, skb);
1757 			spin_unlock(&sk_queue->lock);
1758 			spin_unlock_bh(&queue->lock);
1759 			if (skb)
1760 				return skb;
1761 
1762 busy_check:
1763 			if (!sk_can_busy_loop(sk))
1764 				break;
1765 
1766 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1767 		} while (!skb_queue_empty_lockless(sk_queue));
1768 
1769 		/* sk_queue is empty, reader_queue may contain peeked packets */
1770 	} while (timeo &&
1771 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1772 					      &error, &timeo,
1773 					      (struct sk_buff *)sk_queue));
1774 
1775 	*err = error;
1776 	return NULL;
1777 }
1778 EXPORT_SYMBOL(__skb_recv_udp);
1779 
1780 /*
1781  * 	This should be easy, if there is something there we
1782  * 	return it, otherwise we block.
1783  */
1784 
1785 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1786 		int flags, int *addr_len)
1787 {
1788 	struct inet_sock *inet = inet_sk(sk);
1789 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1790 	struct sk_buff *skb;
1791 	unsigned int ulen, copied;
1792 	int off, err, peeking = flags & MSG_PEEK;
1793 	int is_udplite = IS_UDPLITE(sk);
1794 	bool checksum_valid = false;
1795 
1796 	if (flags & MSG_ERRQUEUE)
1797 		return ip_recv_error(sk, msg, len, addr_len);
1798 
1799 try_again:
1800 	off = sk_peek_offset(sk, flags);
1801 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1802 	if (!skb)
1803 		return err;
1804 
1805 	ulen = udp_skb_len(skb);
1806 	copied = len;
1807 	if (copied > ulen - off)
1808 		copied = ulen - off;
1809 	else if (copied < ulen)
1810 		msg->msg_flags |= MSG_TRUNC;
1811 
1812 	/*
1813 	 * If checksum is needed at all, try to do it while copying the
1814 	 * data.  If the data is truncated, or if we only want a partial
1815 	 * coverage checksum (UDP-Lite), do it before the copy.
1816 	 */
1817 
1818 	if (copied < ulen || peeking ||
1819 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1820 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1821 				!__udp_lib_checksum_complete(skb);
1822 		if (!checksum_valid)
1823 			goto csum_copy_err;
1824 	}
1825 
1826 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1827 		if (udp_skb_is_linear(skb))
1828 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1829 		else
1830 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1831 	} else {
1832 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1833 
1834 		if (err == -EINVAL)
1835 			goto csum_copy_err;
1836 	}
1837 
1838 	if (unlikely(err)) {
1839 		if (!peeking) {
1840 			atomic_inc(&sk->sk_drops);
1841 			UDP_INC_STATS(sock_net(sk),
1842 				      UDP_MIB_INERRORS, is_udplite);
1843 		}
1844 		kfree_skb(skb);
1845 		return err;
1846 	}
1847 
1848 	if (!peeking)
1849 		UDP_INC_STATS(sock_net(sk),
1850 			      UDP_MIB_INDATAGRAMS, is_udplite);
1851 
1852 	sock_recv_ts_and_drops(msg, sk, skb);
1853 
1854 	/* Copy the address. */
1855 	if (sin) {
1856 		sin->sin_family = AF_INET;
1857 		sin->sin_port = udp_hdr(skb)->source;
1858 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1859 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1860 		*addr_len = sizeof(*sin);
1861 
1862 		if (cgroup_bpf_enabled)
1863 			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1864 							(struct sockaddr *)sin);
1865 	}
1866 
1867 	if (udp_sk(sk)->gro_enabled)
1868 		udp_cmsg_recv(msg, sk, skb);
1869 
1870 	if (inet->cmsg_flags)
1871 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1872 
1873 	err = copied;
1874 	if (flags & MSG_TRUNC)
1875 		err = ulen;
1876 
1877 	skb_consume_udp(sk, skb, peeking ? -err : err);
1878 	return err;
1879 
1880 csum_copy_err:
1881 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1882 				 udp_skb_destructor)) {
1883 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1884 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1885 	}
1886 	kfree_skb(skb);
1887 
1888 	/* starting over for a new packet, but check if we need to yield */
1889 	cond_resched();
1890 	msg->msg_flags &= ~MSG_TRUNC;
1891 	goto try_again;
1892 }
1893 
1894 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1895 {
1896 	/* This check is replicated from __ip4_datagram_connect() and
1897 	 * intended to prevent BPF program called below from accessing bytes
1898 	 * that are out of the bound specified by user in addr_len.
1899 	 */
1900 	if (addr_len < sizeof(struct sockaddr_in))
1901 		return -EINVAL;
1902 
1903 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1904 }
1905 EXPORT_SYMBOL(udp_pre_connect);
1906 
1907 int __udp_disconnect(struct sock *sk, int flags)
1908 {
1909 	struct inet_sock *inet = inet_sk(sk);
1910 	/*
1911 	 *	1003.1g - break association.
1912 	 */
1913 
1914 	sk->sk_state = TCP_CLOSE;
1915 	inet->inet_daddr = 0;
1916 	inet->inet_dport = 0;
1917 	sock_rps_reset_rxhash(sk);
1918 	sk->sk_bound_dev_if = 0;
1919 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1920 		inet_reset_saddr(sk);
1921 		if (sk->sk_prot->rehash &&
1922 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1923 			sk->sk_prot->rehash(sk);
1924 	}
1925 
1926 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1927 		sk->sk_prot->unhash(sk);
1928 		inet->inet_sport = 0;
1929 	}
1930 	sk_dst_reset(sk);
1931 	return 0;
1932 }
1933 EXPORT_SYMBOL(__udp_disconnect);
1934 
1935 int udp_disconnect(struct sock *sk, int flags)
1936 {
1937 	lock_sock(sk);
1938 	__udp_disconnect(sk, flags);
1939 	release_sock(sk);
1940 	return 0;
1941 }
1942 EXPORT_SYMBOL(udp_disconnect);
1943 
1944 void udp_lib_unhash(struct sock *sk)
1945 {
1946 	if (sk_hashed(sk)) {
1947 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1948 		struct udp_hslot *hslot, *hslot2;
1949 
1950 		hslot  = udp_hashslot(udptable, sock_net(sk),
1951 				      udp_sk(sk)->udp_port_hash);
1952 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1953 
1954 		spin_lock_bh(&hslot->lock);
1955 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1956 			reuseport_detach_sock(sk);
1957 		if (sk_del_node_init_rcu(sk)) {
1958 			hslot->count--;
1959 			inet_sk(sk)->inet_num = 0;
1960 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1961 
1962 			spin_lock(&hslot2->lock);
1963 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1964 			hslot2->count--;
1965 			spin_unlock(&hslot2->lock);
1966 		}
1967 		spin_unlock_bh(&hslot->lock);
1968 	}
1969 }
1970 EXPORT_SYMBOL(udp_lib_unhash);
1971 
1972 /*
1973  * inet_rcv_saddr was changed, we must rehash secondary hash
1974  */
1975 void udp_lib_rehash(struct sock *sk, u16 newhash)
1976 {
1977 	if (sk_hashed(sk)) {
1978 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1979 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1980 
1981 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1982 		nhslot2 = udp_hashslot2(udptable, newhash);
1983 		udp_sk(sk)->udp_portaddr_hash = newhash;
1984 
1985 		if (hslot2 != nhslot2 ||
1986 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1987 			hslot = udp_hashslot(udptable, sock_net(sk),
1988 					     udp_sk(sk)->udp_port_hash);
1989 			/* we must lock primary chain too */
1990 			spin_lock_bh(&hslot->lock);
1991 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1992 				reuseport_detach_sock(sk);
1993 
1994 			if (hslot2 != nhslot2) {
1995 				spin_lock(&hslot2->lock);
1996 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1997 				hslot2->count--;
1998 				spin_unlock(&hslot2->lock);
1999 
2000 				spin_lock(&nhslot2->lock);
2001 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2002 							 &nhslot2->head);
2003 				nhslot2->count++;
2004 				spin_unlock(&nhslot2->lock);
2005 			}
2006 
2007 			spin_unlock_bh(&hslot->lock);
2008 		}
2009 	}
2010 }
2011 EXPORT_SYMBOL(udp_lib_rehash);
2012 
2013 void udp_v4_rehash(struct sock *sk)
2014 {
2015 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2016 					  inet_sk(sk)->inet_rcv_saddr,
2017 					  inet_sk(sk)->inet_num);
2018 	udp_lib_rehash(sk, new_hash);
2019 }
2020 
2021 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2022 {
2023 	int rc;
2024 
2025 	if (inet_sk(sk)->inet_daddr) {
2026 		sock_rps_save_rxhash(sk, skb);
2027 		sk_mark_napi_id(sk, skb);
2028 		sk_incoming_cpu_update(sk);
2029 	} else {
2030 		sk_mark_napi_id_once(sk, skb);
2031 	}
2032 
2033 	rc = __udp_enqueue_schedule_skb(sk, skb);
2034 	if (rc < 0) {
2035 		int is_udplite = IS_UDPLITE(sk);
2036 
2037 		/* Note that an ENOMEM error is charged twice */
2038 		if (rc == -ENOMEM)
2039 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2040 					is_udplite);
2041 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2042 		kfree_skb(skb);
2043 		trace_udp_fail_queue_rcv_skb(rc, sk);
2044 		return -1;
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 /* returns:
2051  *  -1: error
2052  *   0: success
2053  *  >0: "udp encap" protocol resubmission
2054  *
2055  * Note that in the success and error cases, the skb is assumed to
2056  * have either been requeued or freed.
2057  */
2058 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2059 {
2060 	struct udp_sock *up = udp_sk(sk);
2061 	int is_udplite = IS_UDPLITE(sk);
2062 
2063 	/*
2064 	 *	Charge it to the socket, dropping if the queue is full.
2065 	 */
2066 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2067 		goto drop;
2068 	nf_reset_ct(skb);
2069 
2070 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2071 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2072 
2073 		/*
2074 		 * This is an encapsulation socket so pass the skb to
2075 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2076 		 * fall through and pass this up the UDP socket.
2077 		 * up->encap_rcv() returns the following value:
2078 		 * =0 if skb was successfully passed to the encap
2079 		 *    handler or was discarded by it.
2080 		 * >0 if skb should be passed on to UDP.
2081 		 * <0 if skb should be resubmitted as proto -N
2082 		 */
2083 
2084 		/* if we're overly short, let UDP handle it */
2085 		encap_rcv = READ_ONCE(up->encap_rcv);
2086 		if (encap_rcv) {
2087 			int ret;
2088 
2089 			/* Verify checksum before giving to encap */
2090 			if (udp_lib_checksum_complete(skb))
2091 				goto csum_error;
2092 
2093 			ret = encap_rcv(sk, skb);
2094 			if (ret <= 0) {
2095 				__UDP_INC_STATS(sock_net(sk),
2096 						UDP_MIB_INDATAGRAMS,
2097 						is_udplite);
2098 				return -ret;
2099 			}
2100 		}
2101 
2102 		/* FALLTHROUGH -- it's a UDP Packet */
2103 	}
2104 
2105 	/*
2106 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2107 	 */
2108 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2109 
2110 		/*
2111 		 * MIB statistics other than incrementing the error count are
2112 		 * disabled for the following two types of errors: these depend
2113 		 * on the application settings, not on the functioning of the
2114 		 * protocol stack as such.
2115 		 *
2116 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2117 		 * way ... to ... at least let the receiving application block
2118 		 * delivery of packets with coverage values less than a value
2119 		 * provided by the application."
2120 		 */
2121 		if (up->pcrlen == 0) {          /* full coverage was set  */
2122 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2123 					    UDP_SKB_CB(skb)->cscov, skb->len);
2124 			goto drop;
2125 		}
2126 		/* The next case involves violating the min. coverage requested
2127 		 * by the receiver. This is subtle: if receiver wants x and x is
2128 		 * greater than the buffersize/MTU then receiver will complain
2129 		 * that it wants x while sender emits packets of smaller size y.
2130 		 * Therefore the above ...()->partial_cov statement is essential.
2131 		 */
2132 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2133 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2134 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2135 			goto drop;
2136 		}
2137 	}
2138 
2139 	prefetch(&sk->sk_rmem_alloc);
2140 	if (rcu_access_pointer(sk->sk_filter) &&
2141 	    udp_lib_checksum_complete(skb))
2142 			goto csum_error;
2143 
2144 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2145 		goto drop;
2146 
2147 	udp_csum_pull_header(skb);
2148 
2149 	ipv4_pktinfo_prepare(sk, skb);
2150 	return __udp_queue_rcv_skb(sk, skb);
2151 
2152 csum_error:
2153 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2154 drop:
2155 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2156 	atomic_inc(&sk->sk_drops);
2157 	kfree_skb(skb);
2158 	return -1;
2159 }
2160 
2161 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2162 {
2163 	struct sk_buff *next, *segs;
2164 	int ret;
2165 
2166 	if (likely(!udp_unexpected_gso(sk, skb)))
2167 		return udp_queue_rcv_one_skb(sk, skb);
2168 
2169 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2170 	__skb_push(skb, -skb_mac_offset(skb));
2171 	segs = udp_rcv_segment(sk, skb, true);
2172 	skb_list_walk_safe(segs, skb, next) {
2173 		__skb_pull(skb, skb_transport_offset(skb));
2174 		ret = udp_queue_rcv_one_skb(sk, skb);
2175 		if (ret > 0)
2176 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2177 	}
2178 	return 0;
2179 }
2180 
2181 /* For TCP sockets, sk_rx_dst is protected by socket lock
2182  * For UDP, we use xchg() to guard against concurrent changes.
2183  */
2184 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2185 {
2186 	struct dst_entry *old;
2187 
2188 	if (dst_hold_safe(dst)) {
2189 		old = xchg(&sk->sk_rx_dst, dst);
2190 		dst_release(old);
2191 		return old != dst;
2192 	}
2193 	return false;
2194 }
2195 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2196 
2197 /*
2198  *	Multicasts and broadcasts go to each listener.
2199  *
2200  *	Note: called only from the BH handler context.
2201  */
2202 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2203 				    struct udphdr  *uh,
2204 				    __be32 saddr, __be32 daddr,
2205 				    struct udp_table *udptable,
2206 				    int proto)
2207 {
2208 	struct sock *sk, *first = NULL;
2209 	unsigned short hnum = ntohs(uh->dest);
2210 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2211 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2212 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2213 	int dif = skb->dev->ifindex;
2214 	int sdif = inet_sdif(skb);
2215 	struct hlist_node *node;
2216 	struct sk_buff *nskb;
2217 
2218 	if (use_hash2) {
2219 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2220 			    udptable->mask;
2221 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2222 start_lookup:
2223 		hslot = &udptable->hash2[hash2];
2224 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2225 	}
2226 
2227 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2228 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2229 					 uh->source, saddr, dif, sdif, hnum))
2230 			continue;
2231 
2232 		if (!first) {
2233 			first = sk;
2234 			continue;
2235 		}
2236 		nskb = skb_clone(skb, GFP_ATOMIC);
2237 
2238 		if (unlikely(!nskb)) {
2239 			atomic_inc(&sk->sk_drops);
2240 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2241 					IS_UDPLITE(sk));
2242 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2243 					IS_UDPLITE(sk));
2244 			continue;
2245 		}
2246 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2247 			consume_skb(nskb);
2248 	}
2249 
2250 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2251 	if (use_hash2 && hash2 != hash2_any) {
2252 		hash2 = hash2_any;
2253 		goto start_lookup;
2254 	}
2255 
2256 	if (first) {
2257 		if (udp_queue_rcv_skb(first, skb) > 0)
2258 			consume_skb(skb);
2259 	} else {
2260 		kfree_skb(skb);
2261 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2262 				proto == IPPROTO_UDPLITE);
2263 	}
2264 	return 0;
2265 }
2266 
2267 /* Initialize UDP checksum. If exited with zero value (success),
2268  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2269  * Otherwise, csum completion requires checksumming packet body,
2270  * including udp header and folding it to skb->csum.
2271  */
2272 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2273 				 int proto)
2274 {
2275 	int err;
2276 
2277 	UDP_SKB_CB(skb)->partial_cov = 0;
2278 	UDP_SKB_CB(skb)->cscov = skb->len;
2279 
2280 	if (proto == IPPROTO_UDPLITE) {
2281 		err = udplite_checksum_init(skb, uh);
2282 		if (err)
2283 			return err;
2284 
2285 		if (UDP_SKB_CB(skb)->partial_cov) {
2286 			skb->csum = inet_compute_pseudo(skb, proto);
2287 			return 0;
2288 		}
2289 	}
2290 
2291 	/* Note, we are only interested in != 0 or == 0, thus the
2292 	 * force to int.
2293 	 */
2294 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2295 							inet_compute_pseudo);
2296 	if (err)
2297 		return err;
2298 
2299 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2300 		/* If SW calculated the value, we know it's bad */
2301 		if (skb->csum_complete_sw)
2302 			return 1;
2303 
2304 		/* HW says the value is bad. Let's validate that.
2305 		 * skb->csum is no longer the full packet checksum,
2306 		 * so don't treat it as such.
2307 		 */
2308 		skb_checksum_complete_unset(skb);
2309 	}
2310 
2311 	return 0;
2312 }
2313 
2314 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2315  * return code conversion for ip layer consumption
2316  */
2317 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2318 			       struct udphdr *uh)
2319 {
2320 	int ret;
2321 
2322 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2323 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2324 
2325 	ret = udp_queue_rcv_skb(sk, skb);
2326 
2327 	/* a return value > 0 means to resubmit the input, but
2328 	 * it wants the return to be -protocol, or 0
2329 	 */
2330 	if (ret > 0)
2331 		return -ret;
2332 	return 0;
2333 }
2334 
2335 /*
2336  *	All we need to do is get the socket, and then do a checksum.
2337  */
2338 
2339 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2340 		   int proto)
2341 {
2342 	struct sock *sk;
2343 	struct udphdr *uh;
2344 	unsigned short ulen;
2345 	struct rtable *rt = skb_rtable(skb);
2346 	__be32 saddr, daddr;
2347 	struct net *net = dev_net(skb->dev);
2348 	bool refcounted;
2349 
2350 	/*
2351 	 *  Validate the packet.
2352 	 */
2353 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2354 		goto drop;		/* No space for header. */
2355 
2356 	uh   = udp_hdr(skb);
2357 	ulen = ntohs(uh->len);
2358 	saddr = ip_hdr(skb)->saddr;
2359 	daddr = ip_hdr(skb)->daddr;
2360 
2361 	if (ulen > skb->len)
2362 		goto short_packet;
2363 
2364 	if (proto == IPPROTO_UDP) {
2365 		/* UDP validates ulen. */
2366 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2367 			goto short_packet;
2368 		uh = udp_hdr(skb);
2369 	}
2370 
2371 	if (udp4_csum_init(skb, uh, proto))
2372 		goto csum_error;
2373 
2374 	sk = skb_steal_sock(skb, &refcounted);
2375 	if (sk) {
2376 		struct dst_entry *dst = skb_dst(skb);
2377 		int ret;
2378 
2379 		if (unlikely(sk->sk_rx_dst != dst))
2380 			udp_sk_rx_dst_set(sk, dst);
2381 
2382 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2383 		if (refcounted)
2384 			sock_put(sk);
2385 		return ret;
2386 	}
2387 
2388 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2389 		return __udp4_lib_mcast_deliver(net, skb, uh,
2390 						saddr, daddr, udptable, proto);
2391 
2392 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2393 	if (sk)
2394 		return udp_unicast_rcv_skb(sk, skb, uh);
2395 
2396 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2397 		goto drop;
2398 	nf_reset_ct(skb);
2399 
2400 	/* No socket. Drop packet silently, if checksum is wrong */
2401 	if (udp_lib_checksum_complete(skb))
2402 		goto csum_error;
2403 
2404 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2405 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2406 
2407 	/*
2408 	 * Hmm.  We got an UDP packet to a port to which we
2409 	 * don't wanna listen.  Ignore it.
2410 	 */
2411 	kfree_skb(skb);
2412 	return 0;
2413 
2414 short_packet:
2415 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2416 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2417 			    &saddr, ntohs(uh->source),
2418 			    ulen, skb->len,
2419 			    &daddr, ntohs(uh->dest));
2420 	goto drop;
2421 
2422 csum_error:
2423 	/*
2424 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2425 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2426 	 */
2427 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2428 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2429 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2430 			    ulen);
2431 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2432 drop:
2433 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2434 	kfree_skb(skb);
2435 	return 0;
2436 }
2437 
2438 /* We can only early demux multicast if there is a single matching socket.
2439  * If more than one socket found returns NULL
2440  */
2441 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2442 						  __be16 loc_port, __be32 loc_addr,
2443 						  __be16 rmt_port, __be32 rmt_addr,
2444 						  int dif, int sdif)
2445 {
2446 	struct sock *sk, *result;
2447 	unsigned short hnum = ntohs(loc_port);
2448 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2449 	struct udp_hslot *hslot = &udp_table.hash[slot];
2450 
2451 	/* Do not bother scanning a too big list */
2452 	if (hslot->count > 10)
2453 		return NULL;
2454 
2455 	result = NULL;
2456 	sk_for_each_rcu(sk, &hslot->head) {
2457 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2458 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2459 			if (result)
2460 				return NULL;
2461 			result = sk;
2462 		}
2463 	}
2464 
2465 	return result;
2466 }
2467 
2468 /* For unicast we should only early demux connected sockets or we can
2469  * break forwarding setups.  The chains here can be long so only check
2470  * if the first socket is an exact match and if not move on.
2471  */
2472 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2473 					    __be16 loc_port, __be32 loc_addr,
2474 					    __be16 rmt_port, __be32 rmt_addr,
2475 					    int dif, int sdif)
2476 {
2477 	unsigned short hnum = ntohs(loc_port);
2478 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2479 	unsigned int slot2 = hash2 & udp_table.mask;
2480 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2481 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2482 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2483 	struct sock *sk;
2484 
2485 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2486 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2487 			       loc_addr, ports, dif, sdif))
2488 			return sk;
2489 		/* Only check first socket in chain */
2490 		break;
2491 	}
2492 	return NULL;
2493 }
2494 
2495 int udp_v4_early_demux(struct sk_buff *skb)
2496 {
2497 	struct net *net = dev_net(skb->dev);
2498 	struct in_device *in_dev = NULL;
2499 	const struct iphdr *iph;
2500 	const struct udphdr *uh;
2501 	struct sock *sk = NULL;
2502 	struct dst_entry *dst;
2503 	int dif = skb->dev->ifindex;
2504 	int sdif = inet_sdif(skb);
2505 	int ours;
2506 
2507 	/* validate the packet */
2508 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2509 		return 0;
2510 
2511 	iph = ip_hdr(skb);
2512 	uh = udp_hdr(skb);
2513 
2514 	if (skb->pkt_type == PACKET_MULTICAST) {
2515 		in_dev = __in_dev_get_rcu(skb->dev);
2516 
2517 		if (!in_dev)
2518 			return 0;
2519 
2520 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2521 				       iph->protocol);
2522 		if (!ours)
2523 			return 0;
2524 
2525 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2526 						   uh->source, iph->saddr,
2527 						   dif, sdif);
2528 	} else if (skb->pkt_type == PACKET_HOST) {
2529 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2530 					     uh->source, iph->saddr, dif, sdif);
2531 	}
2532 
2533 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2534 		return 0;
2535 
2536 	skb->sk = sk;
2537 	skb->destructor = sock_efree;
2538 	dst = READ_ONCE(sk->sk_rx_dst);
2539 
2540 	if (dst)
2541 		dst = dst_check(dst, 0);
2542 	if (dst) {
2543 		u32 itag = 0;
2544 
2545 		/* set noref for now.
2546 		 * any place which wants to hold dst has to call
2547 		 * dst_hold_safe()
2548 		 */
2549 		skb_dst_set_noref(skb, dst);
2550 
2551 		/* for unconnected multicast sockets we need to validate
2552 		 * the source on each packet
2553 		 */
2554 		if (!inet_sk(sk)->inet_daddr && in_dev)
2555 			return ip_mc_validate_source(skb, iph->daddr,
2556 						     iph->saddr, iph->tos,
2557 						     skb->dev, in_dev, &itag);
2558 	}
2559 	return 0;
2560 }
2561 
2562 int udp_rcv(struct sk_buff *skb)
2563 {
2564 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2565 }
2566 
2567 void udp_destroy_sock(struct sock *sk)
2568 {
2569 	struct udp_sock *up = udp_sk(sk);
2570 	bool slow = lock_sock_fast(sk);
2571 	udp_flush_pending_frames(sk);
2572 	unlock_sock_fast(sk, slow);
2573 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2574 		if (up->encap_type) {
2575 			void (*encap_destroy)(struct sock *sk);
2576 			encap_destroy = READ_ONCE(up->encap_destroy);
2577 			if (encap_destroy)
2578 				encap_destroy(sk);
2579 		}
2580 		if (up->encap_enabled)
2581 			static_branch_dec(&udp_encap_needed_key);
2582 	}
2583 }
2584 
2585 /*
2586  *	Socket option code for UDP
2587  */
2588 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2589 		       sockptr_t optval, unsigned int optlen,
2590 		       int (*push_pending_frames)(struct sock *))
2591 {
2592 	struct udp_sock *up = udp_sk(sk);
2593 	int val, valbool;
2594 	int err = 0;
2595 	int is_udplite = IS_UDPLITE(sk);
2596 
2597 	if (optlen < sizeof(int))
2598 		return -EINVAL;
2599 
2600 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2601 		return -EFAULT;
2602 
2603 	valbool = val ? 1 : 0;
2604 
2605 	switch (optname) {
2606 	case UDP_CORK:
2607 		if (val != 0) {
2608 			up->corkflag = 1;
2609 		} else {
2610 			up->corkflag = 0;
2611 			lock_sock(sk);
2612 			push_pending_frames(sk);
2613 			release_sock(sk);
2614 		}
2615 		break;
2616 
2617 	case UDP_ENCAP:
2618 		switch (val) {
2619 		case 0:
2620 #ifdef CONFIG_XFRM
2621 		case UDP_ENCAP_ESPINUDP:
2622 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2623 #if IS_ENABLED(CONFIG_IPV6)
2624 			if (sk->sk_family == AF_INET6)
2625 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2626 			else
2627 #endif
2628 				up->encap_rcv = xfrm4_udp_encap_rcv;
2629 #endif
2630 			fallthrough;
2631 		case UDP_ENCAP_L2TPINUDP:
2632 			up->encap_type = val;
2633 			lock_sock(sk);
2634 			udp_tunnel_encap_enable(sk->sk_socket);
2635 			release_sock(sk);
2636 			break;
2637 		default:
2638 			err = -ENOPROTOOPT;
2639 			break;
2640 		}
2641 		break;
2642 
2643 	case UDP_NO_CHECK6_TX:
2644 		up->no_check6_tx = valbool;
2645 		break;
2646 
2647 	case UDP_NO_CHECK6_RX:
2648 		up->no_check6_rx = valbool;
2649 		break;
2650 
2651 	case UDP_SEGMENT:
2652 		if (val < 0 || val > USHRT_MAX)
2653 			return -EINVAL;
2654 		up->gso_size = val;
2655 		break;
2656 
2657 	case UDP_GRO:
2658 		lock_sock(sk);
2659 		if (valbool)
2660 			udp_tunnel_encap_enable(sk->sk_socket);
2661 		up->gro_enabled = valbool;
2662 		release_sock(sk);
2663 		break;
2664 
2665 	/*
2666 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2667 	 */
2668 	/* The sender sets actual checksum coverage length via this option.
2669 	 * The case coverage > packet length is handled by send module. */
2670 	case UDPLITE_SEND_CSCOV:
2671 		if (!is_udplite)         /* Disable the option on UDP sockets */
2672 			return -ENOPROTOOPT;
2673 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2674 			val = 8;
2675 		else if (val > USHRT_MAX)
2676 			val = USHRT_MAX;
2677 		up->pcslen = val;
2678 		up->pcflag |= UDPLITE_SEND_CC;
2679 		break;
2680 
2681 	/* The receiver specifies a minimum checksum coverage value. To make
2682 	 * sense, this should be set to at least 8 (as done below). If zero is
2683 	 * used, this again means full checksum coverage.                     */
2684 	case UDPLITE_RECV_CSCOV:
2685 		if (!is_udplite)         /* Disable the option on UDP sockets */
2686 			return -ENOPROTOOPT;
2687 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2688 			val = 8;
2689 		else if (val > USHRT_MAX)
2690 			val = USHRT_MAX;
2691 		up->pcrlen = val;
2692 		up->pcflag |= UDPLITE_RECV_CC;
2693 		break;
2694 
2695 	default:
2696 		err = -ENOPROTOOPT;
2697 		break;
2698 	}
2699 
2700 	return err;
2701 }
2702 EXPORT_SYMBOL(udp_lib_setsockopt);
2703 
2704 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2705 		   unsigned int optlen)
2706 {
2707 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2708 		return udp_lib_setsockopt(sk, level, optname,
2709 					  optval, optlen,
2710 					  udp_push_pending_frames);
2711 	return ip_setsockopt(sk, level, optname, optval, optlen);
2712 }
2713 
2714 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2715 		       char __user *optval, int __user *optlen)
2716 {
2717 	struct udp_sock *up = udp_sk(sk);
2718 	int val, len;
2719 
2720 	if (get_user(len, optlen))
2721 		return -EFAULT;
2722 
2723 	len = min_t(unsigned int, len, sizeof(int));
2724 
2725 	if (len < 0)
2726 		return -EINVAL;
2727 
2728 	switch (optname) {
2729 	case UDP_CORK:
2730 		val = up->corkflag;
2731 		break;
2732 
2733 	case UDP_ENCAP:
2734 		val = up->encap_type;
2735 		break;
2736 
2737 	case UDP_NO_CHECK6_TX:
2738 		val = up->no_check6_tx;
2739 		break;
2740 
2741 	case UDP_NO_CHECK6_RX:
2742 		val = up->no_check6_rx;
2743 		break;
2744 
2745 	case UDP_SEGMENT:
2746 		val = up->gso_size;
2747 		break;
2748 
2749 	/* The following two cannot be changed on UDP sockets, the return is
2750 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2751 	case UDPLITE_SEND_CSCOV:
2752 		val = up->pcslen;
2753 		break;
2754 
2755 	case UDPLITE_RECV_CSCOV:
2756 		val = up->pcrlen;
2757 		break;
2758 
2759 	default:
2760 		return -ENOPROTOOPT;
2761 	}
2762 
2763 	if (put_user(len, optlen))
2764 		return -EFAULT;
2765 	if (copy_to_user(optval, &val, len))
2766 		return -EFAULT;
2767 	return 0;
2768 }
2769 EXPORT_SYMBOL(udp_lib_getsockopt);
2770 
2771 int udp_getsockopt(struct sock *sk, int level, int optname,
2772 		   char __user *optval, int __user *optlen)
2773 {
2774 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2775 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2776 	return ip_getsockopt(sk, level, optname, optval, optlen);
2777 }
2778 
2779 /**
2780  * 	udp_poll - wait for a UDP event.
2781  *	@file: - file struct
2782  *	@sock: - socket
2783  *	@wait: - poll table
2784  *
2785  *	This is same as datagram poll, except for the special case of
2786  *	blocking sockets. If application is using a blocking fd
2787  *	and a packet with checksum error is in the queue;
2788  *	then it could get return from select indicating data available
2789  *	but then block when reading it. Add special case code
2790  *	to work around these arguably broken applications.
2791  */
2792 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2793 {
2794 	__poll_t mask = datagram_poll(file, sock, wait);
2795 	struct sock *sk = sock->sk;
2796 
2797 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2798 		mask |= EPOLLIN | EPOLLRDNORM;
2799 
2800 	/* Check for false positives due to checksum errors */
2801 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2802 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2803 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2804 
2805 	return mask;
2806 
2807 }
2808 EXPORT_SYMBOL(udp_poll);
2809 
2810 int udp_abort(struct sock *sk, int err)
2811 {
2812 	lock_sock(sk);
2813 
2814 	sk->sk_err = err;
2815 	sk->sk_error_report(sk);
2816 	__udp_disconnect(sk, 0);
2817 
2818 	release_sock(sk);
2819 
2820 	return 0;
2821 }
2822 EXPORT_SYMBOL_GPL(udp_abort);
2823 
2824 struct proto udp_prot = {
2825 	.name			= "UDP",
2826 	.owner			= THIS_MODULE,
2827 	.close			= udp_lib_close,
2828 	.pre_connect		= udp_pre_connect,
2829 	.connect		= ip4_datagram_connect,
2830 	.disconnect		= udp_disconnect,
2831 	.ioctl			= udp_ioctl,
2832 	.init			= udp_init_sock,
2833 	.destroy		= udp_destroy_sock,
2834 	.setsockopt		= udp_setsockopt,
2835 	.getsockopt		= udp_getsockopt,
2836 	.sendmsg		= udp_sendmsg,
2837 	.recvmsg		= udp_recvmsg,
2838 	.sendpage		= udp_sendpage,
2839 	.release_cb		= ip4_datagram_release_cb,
2840 	.hash			= udp_lib_hash,
2841 	.unhash			= udp_lib_unhash,
2842 	.rehash			= udp_v4_rehash,
2843 	.get_port		= udp_v4_get_port,
2844 	.memory_allocated	= &udp_memory_allocated,
2845 	.sysctl_mem		= sysctl_udp_mem,
2846 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2847 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2848 	.obj_size		= sizeof(struct udp_sock),
2849 	.h.udp_table		= &udp_table,
2850 	.diag_destroy		= udp_abort,
2851 };
2852 EXPORT_SYMBOL(udp_prot);
2853 
2854 /* ------------------------------------------------------------------------ */
2855 #ifdef CONFIG_PROC_FS
2856 
2857 static struct sock *udp_get_first(struct seq_file *seq, int start)
2858 {
2859 	struct sock *sk;
2860 	struct udp_seq_afinfo *afinfo;
2861 	struct udp_iter_state *state = seq->private;
2862 	struct net *net = seq_file_net(seq);
2863 
2864 	if (state->bpf_seq_afinfo)
2865 		afinfo = state->bpf_seq_afinfo;
2866 	else
2867 		afinfo = PDE_DATA(file_inode(seq->file));
2868 
2869 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2870 	     ++state->bucket) {
2871 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2872 
2873 		if (hlist_empty(&hslot->head))
2874 			continue;
2875 
2876 		spin_lock_bh(&hslot->lock);
2877 		sk_for_each(sk, &hslot->head) {
2878 			if (!net_eq(sock_net(sk), net))
2879 				continue;
2880 			if (afinfo->family == AF_UNSPEC ||
2881 			    sk->sk_family == afinfo->family)
2882 				goto found;
2883 		}
2884 		spin_unlock_bh(&hslot->lock);
2885 	}
2886 	sk = NULL;
2887 found:
2888 	return sk;
2889 }
2890 
2891 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2892 {
2893 	struct udp_seq_afinfo *afinfo;
2894 	struct udp_iter_state *state = seq->private;
2895 	struct net *net = seq_file_net(seq);
2896 
2897 	if (state->bpf_seq_afinfo)
2898 		afinfo = state->bpf_seq_afinfo;
2899 	else
2900 		afinfo = PDE_DATA(file_inode(seq->file));
2901 
2902 	do {
2903 		sk = sk_next(sk);
2904 	} while (sk && (!net_eq(sock_net(sk), net) ||
2905 			(afinfo->family != AF_UNSPEC &&
2906 			 sk->sk_family != afinfo->family)));
2907 
2908 	if (!sk) {
2909 		if (state->bucket <= afinfo->udp_table->mask)
2910 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2911 		return udp_get_first(seq, state->bucket + 1);
2912 	}
2913 	return sk;
2914 }
2915 
2916 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2917 {
2918 	struct sock *sk = udp_get_first(seq, 0);
2919 
2920 	if (sk)
2921 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2922 			--pos;
2923 	return pos ? NULL : sk;
2924 }
2925 
2926 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2927 {
2928 	struct udp_iter_state *state = seq->private;
2929 	state->bucket = MAX_UDP_PORTS;
2930 
2931 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2932 }
2933 EXPORT_SYMBOL(udp_seq_start);
2934 
2935 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2936 {
2937 	struct sock *sk;
2938 
2939 	if (v == SEQ_START_TOKEN)
2940 		sk = udp_get_idx(seq, 0);
2941 	else
2942 		sk = udp_get_next(seq, v);
2943 
2944 	++*pos;
2945 	return sk;
2946 }
2947 EXPORT_SYMBOL(udp_seq_next);
2948 
2949 void udp_seq_stop(struct seq_file *seq, void *v)
2950 {
2951 	struct udp_seq_afinfo *afinfo;
2952 	struct udp_iter_state *state = seq->private;
2953 
2954 	if (state->bpf_seq_afinfo)
2955 		afinfo = state->bpf_seq_afinfo;
2956 	else
2957 		afinfo = PDE_DATA(file_inode(seq->file));
2958 
2959 	if (state->bucket <= afinfo->udp_table->mask)
2960 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2961 }
2962 EXPORT_SYMBOL(udp_seq_stop);
2963 
2964 /* ------------------------------------------------------------------------ */
2965 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2966 		int bucket)
2967 {
2968 	struct inet_sock *inet = inet_sk(sp);
2969 	__be32 dest = inet->inet_daddr;
2970 	__be32 src  = inet->inet_rcv_saddr;
2971 	__u16 destp	  = ntohs(inet->inet_dport);
2972 	__u16 srcp	  = ntohs(inet->inet_sport);
2973 
2974 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2975 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2976 		bucket, src, srcp, dest, destp, sp->sk_state,
2977 		sk_wmem_alloc_get(sp),
2978 		udp_rqueue_get(sp),
2979 		0, 0L, 0,
2980 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2981 		0, sock_i_ino(sp),
2982 		refcount_read(&sp->sk_refcnt), sp,
2983 		atomic_read(&sp->sk_drops));
2984 }
2985 
2986 int udp4_seq_show(struct seq_file *seq, void *v)
2987 {
2988 	seq_setwidth(seq, 127);
2989 	if (v == SEQ_START_TOKEN)
2990 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2991 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2992 			   "inode ref pointer drops");
2993 	else {
2994 		struct udp_iter_state *state = seq->private;
2995 
2996 		udp4_format_sock(v, seq, state->bucket);
2997 	}
2998 	seq_pad(seq, '\n');
2999 	return 0;
3000 }
3001 
3002 #ifdef CONFIG_BPF_SYSCALL
3003 struct bpf_iter__udp {
3004 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3005 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3006 	uid_t uid __aligned(8);
3007 	int bucket __aligned(8);
3008 };
3009 
3010 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3011 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3012 {
3013 	struct bpf_iter__udp ctx;
3014 
3015 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3016 	ctx.meta = meta;
3017 	ctx.udp_sk = udp_sk;
3018 	ctx.uid = uid;
3019 	ctx.bucket = bucket;
3020 	return bpf_iter_run_prog(prog, &ctx);
3021 }
3022 
3023 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3024 {
3025 	struct udp_iter_state *state = seq->private;
3026 	struct bpf_iter_meta meta;
3027 	struct bpf_prog *prog;
3028 	struct sock *sk = v;
3029 	uid_t uid;
3030 
3031 	if (v == SEQ_START_TOKEN)
3032 		return 0;
3033 
3034 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3035 	meta.seq = seq;
3036 	prog = bpf_iter_get_info(&meta, false);
3037 	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3038 }
3039 
3040 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3041 {
3042 	struct bpf_iter_meta meta;
3043 	struct bpf_prog *prog;
3044 
3045 	if (!v) {
3046 		meta.seq = seq;
3047 		prog = bpf_iter_get_info(&meta, true);
3048 		if (prog)
3049 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3050 	}
3051 
3052 	udp_seq_stop(seq, v);
3053 }
3054 
3055 static const struct seq_operations bpf_iter_udp_seq_ops = {
3056 	.start		= udp_seq_start,
3057 	.next		= udp_seq_next,
3058 	.stop		= bpf_iter_udp_seq_stop,
3059 	.show		= bpf_iter_udp_seq_show,
3060 };
3061 #endif
3062 
3063 const struct seq_operations udp_seq_ops = {
3064 	.start		= udp_seq_start,
3065 	.next		= udp_seq_next,
3066 	.stop		= udp_seq_stop,
3067 	.show		= udp4_seq_show,
3068 };
3069 EXPORT_SYMBOL(udp_seq_ops);
3070 
3071 static struct udp_seq_afinfo udp4_seq_afinfo = {
3072 	.family		= AF_INET,
3073 	.udp_table	= &udp_table,
3074 };
3075 
3076 static int __net_init udp4_proc_init_net(struct net *net)
3077 {
3078 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3079 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3080 		return -ENOMEM;
3081 	return 0;
3082 }
3083 
3084 static void __net_exit udp4_proc_exit_net(struct net *net)
3085 {
3086 	remove_proc_entry("udp", net->proc_net);
3087 }
3088 
3089 static struct pernet_operations udp4_net_ops = {
3090 	.init = udp4_proc_init_net,
3091 	.exit = udp4_proc_exit_net,
3092 };
3093 
3094 int __init udp4_proc_init(void)
3095 {
3096 	return register_pernet_subsys(&udp4_net_ops);
3097 }
3098 
3099 void udp4_proc_exit(void)
3100 {
3101 	unregister_pernet_subsys(&udp4_net_ops);
3102 }
3103 #endif /* CONFIG_PROC_FS */
3104 
3105 static __initdata unsigned long uhash_entries;
3106 static int __init set_uhash_entries(char *str)
3107 {
3108 	ssize_t ret;
3109 
3110 	if (!str)
3111 		return 0;
3112 
3113 	ret = kstrtoul(str, 0, &uhash_entries);
3114 	if (ret)
3115 		return 0;
3116 
3117 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3118 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3119 	return 1;
3120 }
3121 __setup("uhash_entries=", set_uhash_entries);
3122 
3123 void __init udp_table_init(struct udp_table *table, const char *name)
3124 {
3125 	unsigned int i;
3126 
3127 	table->hash = alloc_large_system_hash(name,
3128 					      2 * sizeof(struct udp_hslot),
3129 					      uhash_entries,
3130 					      21, /* one slot per 2 MB */
3131 					      0,
3132 					      &table->log,
3133 					      &table->mask,
3134 					      UDP_HTABLE_SIZE_MIN,
3135 					      64 * 1024);
3136 
3137 	table->hash2 = table->hash + (table->mask + 1);
3138 	for (i = 0; i <= table->mask; i++) {
3139 		INIT_HLIST_HEAD(&table->hash[i].head);
3140 		table->hash[i].count = 0;
3141 		spin_lock_init(&table->hash[i].lock);
3142 	}
3143 	for (i = 0; i <= table->mask; i++) {
3144 		INIT_HLIST_HEAD(&table->hash2[i].head);
3145 		table->hash2[i].count = 0;
3146 		spin_lock_init(&table->hash2[i].lock);
3147 	}
3148 }
3149 
3150 u32 udp_flow_hashrnd(void)
3151 {
3152 	static u32 hashrnd __read_mostly;
3153 
3154 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3155 
3156 	return hashrnd;
3157 }
3158 EXPORT_SYMBOL(udp_flow_hashrnd);
3159 
3160 static void __udp_sysctl_init(struct net *net)
3161 {
3162 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3163 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3164 
3165 #ifdef CONFIG_NET_L3_MASTER_DEV
3166 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3167 #endif
3168 }
3169 
3170 static int __net_init udp_sysctl_init(struct net *net)
3171 {
3172 	__udp_sysctl_init(net);
3173 	return 0;
3174 }
3175 
3176 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3177 	.init	= udp_sysctl_init,
3178 };
3179 
3180 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3181 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3182 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3183 
3184 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3185 {
3186 	struct udp_iter_state *st = priv_data;
3187 	struct udp_seq_afinfo *afinfo;
3188 	int ret;
3189 
3190 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3191 	if (!afinfo)
3192 		return -ENOMEM;
3193 
3194 	afinfo->family = AF_UNSPEC;
3195 	afinfo->udp_table = &udp_table;
3196 	st->bpf_seq_afinfo = afinfo;
3197 	ret = bpf_iter_init_seq_net(priv_data, aux);
3198 	if (ret)
3199 		kfree(afinfo);
3200 	return ret;
3201 }
3202 
3203 static void bpf_iter_fini_udp(void *priv_data)
3204 {
3205 	struct udp_iter_state *st = priv_data;
3206 
3207 	kfree(st->bpf_seq_afinfo);
3208 	bpf_iter_fini_seq_net(priv_data);
3209 }
3210 
3211 static const struct bpf_iter_seq_info udp_seq_info = {
3212 	.seq_ops		= &bpf_iter_udp_seq_ops,
3213 	.init_seq_private	= bpf_iter_init_udp,
3214 	.fini_seq_private	= bpf_iter_fini_udp,
3215 	.seq_priv_size		= sizeof(struct udp_iter_state),
3216 };
3217 
3218 static struct bpf_iter_reg udp_reg_info = {
3219 	.target			= "udp",
3220 	.ctx_arg_info_size	= 1,
3221 	.ctx_arg_info		= {
3222 		{ offsetof(struct bpf_iter__udp, udp_sk),
3223 		  PTR_TO_BTF_ID_OR_NULL },
3224 	},
3225 	.seq_info		= &udp_seq_info,
3226 };
3227 
3228 static void __init bpf_iter_register(void)
3229 {
3230 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3231 	if (bpf_iter_reg_target(&udp_reg_info))
3232 		pr_warn("Warning: could not register bpf iterator udp\n");
3233 }
3234 #endif
3235 
3236 void __init udp_init(void)
3237 {
3238 	unsigned long limit;
3239 	unsigned int i;
3240 
3241 	udp_table_init(&udp_table, "UDP");
3242 	limit = nr_free_buffer_pages() / 8;
3243 	limit = max(limit, 128UL);
3244 	sysctl_udp_mem[0] = limit / 4 * 3;
3245 	sysctl_udp_mem[1] = limit;
3246 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3247 
3248 	__udp_sysctl_init(&init_net);
3249 
3250 	/* 16 spinlocks per cpu */
3251 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3252 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3253 				GFP_KERNEL);
3254 	if (!udp_busylocks)
3255 		panic("UDP: failed to alloc udp_busylocks\n");
3256 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3257 		spin_lock_init(udp_busylocks + i);
3258 
3259 	if (register_pernet_subsys(&udp_sysctl_ops))
3260 		panic("UDP: failed to init sysctl parameters.\n");
3261 
3262 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3263 	bpf_iter_register();
3264 #endif
3265 }
3266