1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/uaccess.h> 78 #include <asm/ioctls.h> 79 #include <linux/memblock.h> 80 #include <linux/highmem.h> 81 #include <linux/swap.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <trace/events/udp.h> 108 #include <linux/static_key.h> 109 #include <trace/events/skb.h> 110 #include <net/busy_poll.h> 111 #include "udp_impl.h" 112 #include <net/sock_reuseport.h> 113 #include <net/addrconf.h> 114 #include <net/udp_tunnel.h> 115 116 struct udp_table udp_table __read_mostly; 117 EXPORT_SYMBOL(udp_table); 118 119 long sysctl_udp_mem[3] __read_mostly; 120 EXPORT_SYMBOL(sysctl_udp_mem); 121 122 atomic_long_t udp_memory_allocated; 123 EXPORT_SYMBOL(udp_memory_allocated); 124 125 #define MAX_UDP_PORTS 65536 126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 127 128 static int udp_lib_lport_inuse(struct net *net, __u16 num, 129 const struct udp_hslot *hslot, 130 unsigned long *bitmap, 131 struct sock *sk, unsigned int log) 132 { 133 struct sock *sk2; 134 kuid_t uid = sock_i_uid(sk); 135 136 sk_for_each(sk2, &hslot->head) { 137 if (net_eq(sock_net(sk2), net) && 138 sk2 != sk && 139 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 140 (!sk2->sk_reuse || !sk->sk_reuse) && 141 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 142 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 143 inet_rcv_saddr_equal(sk, sk2, true)) { 144 if (sk2->sk_reuseport && sk->sk_reuseport && 145 !rcu_access_pointer(sk->sk_reuseport_cb) && 146 uid_eq(uid, sock_i_uid(sk2))) { 147 if (!bitmap) 148 return 0; 149 } else { 150 if (!bitmap) 151 return 1; 152 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 153 bitmap); 154 } 155 } 156 } 157 return 0; 158 } 159 160 /* 161 * Note: we still hold spinlock of primary hash chain, so no other writer 162 * can insert/delete a socket with local_port == num 163 */ 164 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 165 struct udp_hslot *hslot2, 166 struct sock *sk) 167 { 168 struct sock *sk2; 169 kuid_t uid = sock_i_uid(sk); 170 int res = 0; 171 172 spin_lock(&hslot2->lock); 173 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 174 if (net_eq(sock_net(sk2), net) && 175 sk2 != sk && 176 (udp_sk(sk2)->udp_port_hash == num) && 177 (!sk2->sk_reuse || !sk->sk_reuse) && 178 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 179 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 180 inet_rcv_saddr_equal(sk, sk2, true)) { 181 if (sk2->sk_reuseport && sk->sk_reuseport && 182 !rcu_access_pointer(sk->sk_reuseport_cb) && 183 uid_eq(uid, sock_i_uid(sk2))) { 184 res = 0; 185 } else { 186 res = 1; 187 } 188 break; 189 } 190 } 191 spin_unlock(&hslot2->lock); 192 return res; 193 } 194 195 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 196 { 197 struct net *net = sock_net(sk); 198 kuid_t uid = sock_i_uid(sk); 199 struct sock *sk2; 200 201 sk_for_each(sk2, &hslot->head) { 202 if (net_eq(sock_net(sk2), net) && 203 sk2 != sk && 204 sk2->sk_family == sk->sk_family && 205 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 206 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 207 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 208 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 209 inet_rcv_saddr_equal(sk, sk2, false)) { 210 return reuseport_add_sock(sk, sk2, 211 inet_rcv_saddr_any(sk)); 212 } 213 } 214 215 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 216 } 217 218 /** 219 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 220 * 221 * @sk: socket struct in question 222 * @snum: port number to look up 223 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 224 * with NULL address 225 */ 226 int udp_lib_get_port(struct sock *sk, unsigned short snum, 227 unsigned int hash2_nulladdr) 228 { 229 struct udp_hslot *hslot, *hslot2; 230 struct udp_table *udptable = sk->sk_prot->h.udp_table; 231 int error = 1; 232 struct net *net = sock_net(sk); 233 234 if (!snum) { 235 int low, high, remaining; 236 unsigned int rand; 237 unsigned short first, last; 238 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 239 240 inet_get_local_port_range(net, &low, &high); 241 remaining = (high - low) + 1; 242 243 rand = prandom_u32(); 244 first = reciprocal_scale(rand, remaining) + low; 245 /* 246 * force rand to be an odd multiple of UDP_HTABLE_SIZE 247 */ 248 rand = (rand | 1) * (udptable->mask + 1); 249 last = first + udptable->mask + 1; 250 do { 251 hslot = udp_hashslot(udptable, net, first); 252 bitmap_zero(bitmap, PORTS_PER_CHAIN); 253 spin_lock_bh(&hslot->lock); 254 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 255 udptable->log); 256 257 snum = first; 258 /* 259 * Iterate on all possible values of snum for this hash. 260 * Using steps of an odd multiple of UDP_HTABLE_SIZE 261 * give us randomization and full range coverage. 262 */ 263 do { 264 if (low <= snum && snum <= high && 265 !test_bit(snum >> udptable->log, bitmap) && 266 !inet_is_local_reserved_port(net, snum)) 267 goto found; 268 snum += rand; 269 } while (snum != first); 270 spin_unlock_bh(&hslot->lock); 271 cond_resched(); 272 } while (++first != last); 273 goto fail; 274 } else { 275 hslot = udp_hashslot(udptable, net, snum); 276 spin_lock_bh(&hslot->lock); 277 if (hslot->count > 10) { 278 int exist; 279 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 280 281 slot2 &= udptable->mask; 282 hash2_nulladdr &= udptable->mask; 283 284 hslot2 = udp_hashslot2(udptable, slot2); 285 if (hslot->count < hslot2->count) 286 goto scan_primary_hash; 287 288 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 289 if (!exist && (hash2_nulladdr != slot2)) { 290 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 291 exist = udp_lib_lport_inuse2(net, snum, hslot2, 292 sk); 293 } 294 if (exist) 295 goto fail_unlock; 296 else 297 goto found; 298 } 299 scan_primary_hash: 300 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 301 goto fail_unlock; 302 } 303 found: 304 inet_sk(sk)->inet_num = snum; 305 udp_sk(sk)->udp_port_hash = snum; 306 udp_sk(sk)->udp_portaddr_hash ^= snum; 307 if (sk_unhashed(sk)) { 308 if (sk->sk_reuseport && 309 udp_reuseport_add_sock(sk, hslot)) { 310 inet_sk(sk)->inet_num = 0; 311 udp_sk(sk)->udp_port_hash = 0; 312 udp_sk(sk)->udp_portaddr_hash ^= snum; 313 goto fail_unlock; 314 } 315 316 sk_add_node_rcu(sk, &hslot->head); 317 hslot->count++; 318 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 319 320 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 321 spin_lock(&hslot2->lock); 322 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 323 sk->sk_family == AF_INET6) 324 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 325 &hslot2->head); 326 else 327 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 328 &hslot2->head); 329 hslot2->count++; 330 spin_unlock(&hslot2->lock); 331 } 332 sock_set_flag(sk, SOCK_RCU_FREE); 333 error = 0; 334 fail_unlock: 335 spin_unlock_bh(&hslot->lock); 336 fail: 337 return error; 338 } 339 EXPORT_SYMBOL(udp_lib_get_port); 340 341 int udp_v4_get_port(struct sock *sk, unsigned short snum) 342 { 343 unsigned int hash2_nulladdr = 344 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 345 unsigned int hash2_partial = 346 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 347 348 /* precompute partial secondary hash */ 349 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 350 return udp_lib_get_port(sk, snum, hash2_nulladdr); 351 } 352 353 static int compute_score(struct sock *sk, struct net *net, 354 __be32 saddr, __be16 sport, 355 __be32 daddr, unsigned short hnum, 356 int dif, int sdif) 357 { 358 int score; 359 struct inet_sock *inet; 360 bool dev_match; 361 362 if (!net_eq(sock_net(sk), net) || 363 udp_sk(sk)->udp_port_hash != hnum || 364 ipv6_only_sock(sk)) 365 return -1; 366 367 if (sk->sk_rcv_saddr != daddr) 368 return -1; 369 370 score = (sk->sk_family == PF_INET) ? 2 : 1; 371 372 inet = inet_sk(sk); 373 if (inet->inet_daddr) { 374 if (inet->inet_daddr != saddr) 375 return -1; 376 score += 4; 377 } 378 379 if (inet->inet_dport) { 380 if (inet->inet_dport != sport) 381 return -1; 382 score += 4; 383 } 384 385 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 386 dif, sdif); 387 if (!dev_match) 388 return -1; 389 score += 4; 390 391 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 392 score++; 393 return score; 394 } 395 396 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 397 const __u16 lport, const __be32 faddr, 398 const __be16 fport) 399 { 400 static u32 udp_ehash_secret __read_mostly; 401 402 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 403 404 return __inet_ehashfn(laddr, lport, faddr, fport, 405 udp_ehash_secret + net_hash_mix(net)); 406 } 407 408 /* called with rcu_read_lock() */ 409 static struct sock *udp4_lib_lookup2(struct net *net, 410 __be32 saddr, __be16 sport, 411 __be32 daddr, unsigned int hnum, 412 int dif, int sdif, 413 struct udp_hslot *hslot2, 414 struct sk_buff *skb) 415 { 416 struct sock *sk, *result; 417 int score, badness; 418 u32 hash = 0; 419 420 result = NULL; 421 badness = 0; 422 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 423 score = compute_score(sk, net, saddr, sport, 424 daddr, hnum, dif, sdif); 425 if (score > badness) { 426 if (sk->sk_reuseport && 427 sk->sk_state != TCP_ESTABLISHED) { 428 hash = udp_ehashfn(net, daddr, hnum, 429 saddr, sport); 430 result = reuseport_select_sock(sk, hash, skb, 431 sizeof(struct udphdr)); 432 if (result && !reuseport_has_conns(sk, false)) 433 return result; 434 } 435 badness = score; 436 result = sk; 437 } 438 } 439 return result; 440 } 441 442 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 443 * harder than this. -DaveM 444 */ 445 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 446 __be16 sport, __be32 daddr, __be16 dport, int dif, 447 int sdif, struct udp_table *udptable, struct sk_buff *skb) 448 { 449 struct sock *result; 450 unsigned short hnum = ntohs(dport); 451 unsigned int hash2, slot2; 452 struct udp_hslot *hslot2; 453 454 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 455 slot2 = hash2 & udptable->mask; 456 hslot2 = &udptable->hash2[slot2]; 457 458 result = udp4_lib_lookup2(net, saddr, sport, 459 daddr, hnum, dif, sdif, 460 hslot2, skb); 461 if (!result) { 462 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 463 slot2 = hash2 & udptable->mask; 464 hslot2 = &udptable->hash2[slot2]; 465 466 result = udp4_lib_lookup2(net, saddr, sport, 467 htonl(INADDR_ANY), hnum, dif, sdif, 468 hslot2, skb); 469 } 470 if (IS_ERR(result)) 471 return NULL; 472 return result; 473 } 474 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 475 476 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 477 __be16 sport, __be16 dport, 478 struct udp_table *udptable) 479 { 480 const struct iphdr *iph = ip_hdr(skb); 481 482 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 483 iph->daddr, dport, inet_iif(skb), 484 inet_sdif(skb), udptable, skb); 485 } 486 487 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 488 __be16 sport, __be16 dport) 489 { 490 const struct iphdr *iph = ip_hdr(skb); 491 492 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 493 iph->daddr, dport, inet_iif(skb), 494 inet_sdif(skb), &udp_table, NULL); 495 } 496 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 497 498 /* Must be called under rcu_read_lock(). 499 * Does increment socket refcount. 500 */ 501 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 502 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 503 __be32 daddr, __be16 dport, int dif) 504 { 505 struct sock *sk; 506 507 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 508 dif, 0, &udp_table, NULL); 509 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 510 sk = NULL; 511 return sk; 512 } 513 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 514 #endif 515 516 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 517 __be16 loc_port, __be32 loc_addr, 518 __be16 rmt_port, __be32 rmt_addr, 519 int dif, int sdif, unsigned short hnum) 520 { 521 struct inet_sock *inet = inet_sk(sk); 522 523 if (!net_eq(sock_net(sk), net) || 524 udp_sk(sk)->udp_port_hash != hnum || 525 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 526 (inet->inet_dport != rmt_port && inet->inet_dport) || 527 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 528 ipv6_only_sock(sk) || 529 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 530 return false; 531 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 532 return false; 533 return true; 534 } 535 536 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 537 void udp_encap_enable(void) 538 { 539 static_branch_inc(&udp_encap_needed_key); 540 } 541 EXPORT_SYMBOL(udp_encap_enable); 542 543 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 544 * through error handlers in encapsulations looking for a match. 545 */ 546 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 547 { 548 int i; 549 550 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 551 int (*handler)(struct sk_buff *skb, u32 info); 552 const struct ip_tunnel_encap_ops *encap; 553 554 encap = rcu_dereference(iptun_encaps[i]); 555 if (!encap) 556 continue; 557 handler = encap->err_handler; 558 if (handler && !handler(skb, info)) 559 return 0; 560 } 561 562 return -ENOENT; 563 } 564 565 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 566 * reversing source and destination port: this will match tunnels that force the 567 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 568 * lwtunnels might actually break this assumption by being configured with 569 * different destination ports on endpoints, in this case we won't be able to 570 * trace ICMP messages back to them. 571 * 572 * If this doesn't match any socket, probe tunnels with arbitrary destination 573 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 574 * we've sent packets to won't necessarily match the local destination port. 575 * 576 * Then ask the tunnel implementation to match the error against a valid 577 * association. 578 * 579 * Return an error if we can't find a match, the socket if we need further 580 * processing, zero otherwise. 581 */ 582 static struct sock *__udp4_lib_err_encap(struct net *net, 583 const struct iphdr *iph, 584 struct udphdr *uh, 585 struct udp_table *udptable, 586 struct sk_buff *skb, u32 info) 587 { 588 int network_offset, transport_offset; 589 struct sock *sk; 590 591 network_offset = skb_network_offset(skb); 592 transport_offset = skb_transport_offset(skb); 593 594 /* Network header needs to point to the outer IPv4 header inside ICMP */ 595 skb_reset_network_header(skb); 596 597 /* Transport header needs to point to the UDP header */ 598 skb_set_transport_header(skb, iph->ihl << 2); 599 600 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 601 iph->saddr, uh->dest, skb->dev->ifindex, 0, 602 udptable, NULL); 603 if (sk) { 604 int (*lookup)(struct sock *sk, struct sk_buff *skb); 605 struct udp_sock *up = udp_sk(sk); 606 607 lookup = READ_ONCE(up->encap_err_lookup); 608 if (!lookup || lookup(sk, skb)) 609 sk = NULL; 610 } 611 612 if (!sk) 613 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 614 615 skb_set_transport_header(skb, transport_offset); 616 skb_set_network_header(skb, network_offset); 617 618 return sk; 619 } 620 621 /* 622 * This routine is called by the ICMP module when it gets some 623 * sort of error condition. If err < 0 then the socket should 624 * be closed and the error returned to the user. If err > 0 625 * it's just the icmp type << 8 | icmp code. 626 * Header points to the ip header of the error packet. We move 627 * on past this. Then (as it used to claim before adjustment) 628 * header points to the first 8 bytes of the udp header. We need 629 * to find the appropriate port. 630 */ 631 632 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 633 { 634 struct inet_sock *inet; 635 const struct iphdr *iph = (const struct iphdr *)skb->data; 636 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 637 const int type = icmp_hdr(skb)->type; 638 const int code = icmp_hdr(skb)->code; 639 bool tunnel = false; 640 struct sock *sk; 641 int harderr; 642 int err; 643 struct net *net = dev_net(skb->dev); 644 645 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 646 iph->saddr, uh->source, skb->dev->ifindex, 647 inet_sdif(skb), udptable, NULL); 648 if (!sk) { 649 /* No socket for error: try tunnels before discarding */ 650 sk = ERR_PTR(-ENOENT); 651 if (static_branch_unlikely(&udp_encap_needed_key)) { 652 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb, 653 info); 654 if (!sk) 655 return 0; 656 } 657 658 if (IS_ERR(sk)) { 659 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 660 return PTR_ERR(sk); 661 } 662 663 tunnel = true; 664 } 665 666 err = 0; 667 harderr = 0; 668 inet = inet_sk(sk); 669 670 switch (type) { 671 default: 672 case ICMP_TIME_EXCEEDED: 673 err = EHOSTUNREACH; 674 break; 675 case ICMP_SOURCE_QUENCH: 676 goto out; 677 case ICMP_PARAMETERPROB: 678 err = EPROTO; 679 harderr = 1; 680 break; 681 case ICMP_DEST_UNREACH: 682 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 683 ipv4_sk_update_pmtu(skb, sk, info); 684 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 685 err = EMSGSIZE; 686 harderr = 1; 687 break; 688 } 689 goto out; 690 } 691 err = EHOSTUNREACH; 692 if (code <= NR_ICMP_UNREACH) { 693 harderr = icmp_err_convert[code].fatal; 694 err = icmp_err_convert[code].errno; 695 } 696 break; 697 case ICMP_REDIRECT: 698 ipv4_sk_redirect(skb, sk); 699 goto out; 700 } 701 702 /* 703 * RFC1122: OK. Passes ICMP errors back to application, as per 704 * 4.1.3.3. 705 */ 706 if (tunnel) { 707 /* ...not for tunnels though: we don't have a sending socket */ 708 goto out; 709 } 710 if (!inet->recverr) { 711 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 712 goto out; 713 } else 714 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 715 716 sk->sk_err = err; 717 sk->sk_error_report(sk); 718 out: 719 return 0; 720 } 721 722 int udp_err(struct sk_buff *skb, u32 info) 723 { 724 return __udp4_lib_err(skb, info, &udp_table); 725 } 726 727 /* 728 * Throw away all pending data and cancel the corking. Socket is locked. 729 */ 730 void udp_flush_pending_frames(struct sock *sk) 731 { 732 struct udp_sock *up = udp_sk(sk); 733 734 if (up->pending) { 735 up->len = 0; 736 up->pending = 0; 737 ip_flush_pending_frames(sk); 738 } 739 } 740 EXPORT_SYMBOL(udp_flush_pending_frames); 741 742 /** 743 * udp4_hwcsum - handle outgoing HW checksumming 744 * @skb: sk_buff containing the filled-in UDP header 745 * (checksum field must be zeroed out) 746 * @src: source IP address 747 * @dst: destination IP address 748 */ 749 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 750 { 751 struct udphdr *uh = udp_hdr(skb); 752 int offset = skb_transport_offset(skb); 753 int len = skb->len - offset; 754 int hlen = len; 755 __wsum csum = 0; 756 757 if (!skb_has_frag_list(skb)) { 758 /* 759 * Only one fragment on the socket. 760 */ 761 skb->csum_start = skb_transport_header(skb) - skb->head; 762 skb->csum_offset = offsetof(struct udphdr, check); 763 uh->check = ~csum_tcpudp_magic(src, dst, len, 764 IPPROTO_UDP, 0); 765 } else { 766 struct sk_buff *frags; 767 768 /* 769 * HW-checksum won't work as there are two or more 770 * fragments on the socket so that all csums of sk_buffs 771 * should be together 772 */ 773 skb_walk_frags(skb, frags) { 774 csum = csum_add(csum, frags->csum); 775 hlen -= frags->len; 776 } 777 778 csum = skb_checksum(skb, offset, hlen, csum); 779 skb->ip_summed = CHECKSUM_NONE; 780 781 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 782 if (uh->check == 0) 783 uh->check = CSUM_MANGLED_0; 784 } 785 } 786 EXPORT_SYMBOL_GPL(udp4_hwcsum); 787 788 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 789 * for the simple case like when setting the checksum for a UDP tunnel. 790 */ 791 void udp_set_csum(bool nocheck, struct sk_buff *skb, 792 __be32 saddr, __be32 daddr, int len) 793 { 794 struct udphdr *uh = udp_hdr(skb); 795 796 if (nocheck) { 797 uh->check = 0; 798 } else if (skb_is_gso(skb)) { 799 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 800 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 801 uh->check = 0; 802 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 803 if (uh->check == 0) 804 uh->check = CSUM_MANGLED_0; 805 } else { 806 skb->ip_summed = CHECKSUM_PARTIAL; 807 skb->csum_start = skb_transport_header(skb) - skb->head; 808 skb->csum_offset = offsetof(struct udphdr, check); 809 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 810 } 811 } 812 EXPORT_SYMBOL(udp_set_csum); 813 814 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 815 struct inet_cork *cork) 816 { 817 struct sock *sk = skb->sk; 818 struct inet_sock *inet = inet_sk(sk); 819 struct udphdr *uh; 820 int err = 0; 821 int is_udplite = IS_UDPLITE(sk); 822 int offset = skb_transport_offset(skb); 823 int len = skb->len - offset; 824 int datalen = len - sizeof(*uh); 825 __wsum csum = 0; 826 827 /* 828 * Create a UDP header 829 */ 830 uh = udp_hdr(skb); 831 uh->source = inet->inet_sport; 832 uh->dest = fl4->fl4_dport; 833 uh->len = htons(len); 834 uh->check = 0; 835 836 if (cork->gso_size) { 837 const int hlen = skb_network_header_len(skb) + 838 sizeof(struct udphdr); 839 840 if (hlen + cork->gso_size > cork->fragsize) { 841 kfree_skb(skb); 842 return -EINVAL; 843 } 844 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) { 845 kfree_skb(skb); 846 return -EINVAL; 847 } 848 if (sk->sk_no_check_tx) { 849 kfree_skb(skb); 850 return -EINVAL; 851 } 852 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 853 dst_xfrm(skb_dst(skb))) { 854 kfree_skb(skb); 855 return -EIO; 856 } 857 858 if (datalen > cork->gso_size) { 859 skb_shinfo(skb)->gso_size = cork->gso_size; 860 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 861 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 862 cork->gso_size); 863 } 864 goto csum_partial; 865 } 866 867 if (is_udplite) /* UDP-Lite */ 868 csum = udplite_csum(skb); 869 870 else if (sk->sk_no_check_tx) { /* UDP csum off */ 871 872 skb->ip_summed = CHECKSUM_NONE; 873 goto send; 874 875 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 876 csum_partial: 877 878 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 879 goto send; 880 881 } else 882 csum = udp_csum(skb); 883 884 /* add protocol-dependent pseudo-header */ 885 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 886 sk->sk_protocol, csum); 887 if (uh->check == 0) 888 uh->check = CSUM_MANGLED_0; 889 890 send: 891 err = ip_send_skb(sock_net(sk), skb); 892 if (err) { 893 if (err == -ENOBUFS && !inet->recverr) { 894 UDP_INC_STATS(sock_net(sk), 895 UDP_MIB_SNDBUFERRORS, is_udplite); 896 err = 0; 897 } 898 } else 899 UDP_INC_STATS(sock_net(sk), 900 UDP_MIB_OUTDATAGRAMS, is_udplite); 901 return err; 902 } 903 904 /* 905 * Push out all pending data as one UDP datagram. Socket is locked. 906 */ 907 int udp_push_pending_frames(struct sock *sk) 908 { 909 struct udp_sock *up = udp_sk(sk); 910 struct inet_sock *inet = inet_sk(sk); 911 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 912 struct sk_buff *skb; 913 int err = 0; 914 915 skb = ip_finish_skb(sk, fl4); 916 if (!skb) 917 goto out; 918 919 err = udp_send_skb(skb, fl4, &inet->cork.base); 920 921 out: 922 up->len = 0; 923 up->pending = 0; 924 return err; 925 } 926 EXPORT_SYMBOL(udp_push_pending_frames); 927 928 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 929 { 930 switch (cmsg->cmsg_type) { 931 case UDP_SEGMENT: 932 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 933 return -EINVAL; 934 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 935 return 0; 936 default: 937 return -EINVAL; 938 } 939 } 940 941 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 942 { 943 struct cmsghdr *cmsg; 944 bool need_ip = false; 945 int err; 946 947 for_each_cmsghdr(cmsg, msg) { 948 if (!CMSG_OK(msg, cmsg)) 949 return -EINVAL; 950 951 if (cmsg->cmsg_level != SOL_UDP) { 952 need_ip = true; 953 continue; 954 } 955 956 err = __udp_cmsg_send(cmsg, gso_size); 957 if (err) 958 return err; 959 } 960 961 return need_ip; 962 } 963 EXPORT_SYMBOL_GPL(udp_cmsg_send); 964 965 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 966 { 967 struct inet_sock *inet = inet_sk(sk); 968 struct udp_sock *up = udp_sk(sk); 969 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 970 struct flowi4 fl4_stack; 971 struct flowi4 *fl4; 972 int ulen = len; 973 struct ipcm_cookie ipc; 974 struct rtable *rt = NULL; 975 int free = 0; 976 int connected = 0; 977 __be32 daddr, faddr, saddr; 978 __be16 dport; 979 u8 tos; 980 int err, is_udplite = IS_UDPLITE(sk); 981 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 982 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 983 struct sk_buff *skb; 984 struct ip_options_data opt_copy; 985 986 if (len > 0xFFFF) 987 return -EMSGSIZE; 988 989 /* 990 * Check the flags. 991 */ 992 993 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 994 return -EOPNOTSUPP; 995 996 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 997 998 fl4 = &inet->cork.fl.u.ip4; 999 if (up->pending) { 1000 /* 1001 * There are pending frames. 1002 * The socket lock must be held while it's corked. 1003 */ 1004 lock_sock(sk); 1005 if (likely(up->pending)) { 1006 if (unlikely(up->pending != AF_INET)) { 1007 release_sock(sk); 1008 return -EINVAL; 1009 } 1010 goto do_append_data; 1011 } 1012 release_sock(sk); 1013 } 1014 ulen += sizeof(struct udphdr); 1015 1016 /* 1017 * Get and verify the address. 1018 */ 1019 if (usin) { 1020 if (msg->msg_namelen < sizeof(*usin)) 1021 return -EINVAL; 1022 if (usin->sin_family != AF_INET) { 1023 if (usin->sin_family != AF_UNSPEC) 1024 return -EAFNOSUPPORT; 1025 } 1026 1027 daddr = usin->sin_addr.s_addr; 1028 dport = usin->sin_port; 1029 if (dport == 0) 1030 return -EINVAL; 1031 } else { 1032 if (sk->sk_state != TCP_ESTABLISHED) 1033 return -EDESTADDRREQ; 1034 daddr = inet->inet_daddr; 1035 dport = inet->inet_dport; 1036 /* Open fast path for connected socket. 1037 Route will not be used, if at least one option is set. 1038 */ 1039 connected = 1; 1040 } 1041 1042 ipcm_init_sk(&ipc, inet); 1043 ipc.gso_size = up->gso_size; 1044 1045 if (msg->msg_controllen) { 1046 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1047 if (err > 0) 1048 err = ip_cmsg_send(sk, msg, &ipc, 1049 sk->sk_family == AF_INET6); 1050 if (unlikely(err < 0)) { 1051 kfree(ipc.opt); 1052 return err; 1053 } 1054 if (ipc.opt) 1055 free = 1; 1056 connected = 0; 1057 } 1058 if (!ipc.opt) { 1059 struct ip_options_rcu *inet_opt; 1060 1061 rcu_read_lock(); 1062 inet_opt = rcu_dereference(inet->inet_opt); 1063 if (inet_opt) { 1064 memcpy(&opt_copy, inet_opt, 1065 sizeof(*inet_opt) + inet_opt->opt.optlen); 1066 ipc.opt = &opt_copy.opt; 1067 } 1068 rcu_read_unlock(); 1069 } 1070 1071 if (cgroup_bpf_enabled && !connected) { 1072 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1073 (struct sockaddr *)usin, &ipc.addr); 1074 if (err) 1075 goto out_free; 1076 if (usin) { 1077 if (usin->sin_port == 0) { 1078 /* BPF program set invalid port. Reject it. */ 1079 err = -EINVAL; 1080 goto out_free; 1081 } 1082 daddr = usin->sin_addr.s_addr; 1083 dport = usin->sin_port; 1084 } 1085 } 1086 1087 saddr = ipc.addr; 1088 ipc.addr = faddr = daddr; 1089 1090 if (ipc.opt && ipc.opt->opt.srr) { 1091 if (!daddr) { 1092 err = -EINVAL; 1093 goto out_free; 1094 } 1095 faddr = ipc.opt->opt.faddr; 1096 connected = 0; 1097 } 1098 tos = get_rttos(&ipc, inet); 1099 if (sock_flag(sk, SOCK_LOCALROUTE) || 1100 (msg->msg_flags & MSG_DONTROUTE) || 1101 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1102 tos |= RTO_ONLINK; 1103 connected = 0; 1104 } 1105 1106 if (ipv4_is_multicast(daddr)) { 1107 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1108 ipc.oif = inet->mc_index; 1109 if (!saddr) 1110 saddr = inet->mc_addr; 1111 connected = 0; 1112 } else if (!ipc.oif) { 1113 ipc.oif = inet->uc_index; 1114 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1115 /* oif is set, packet is to local broadcast and 1116 * and uc_index is set. oif is most likely set 1117 * by sk_bound_dev_if. If uc_index != oif check if the 1118 * oif is an L3 master and uc_index is an L3 slave. 1119 * If so, we want to allow the send using the uc_index. 1120 */ 1121 if (ipc.oif != inet->uc_index && 1122 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1123 inet->uc_index)) { 1124 ipc.oif = inet->uc_index; 1125 } 1126 } 1127 1128 if (connected) 1129 rt = (struct rtable *)sk_dst_check(sk, 0); 1130 1131 if (!rt) { 1132 struct net *net = sock_net(sk); 1133 __u8 flow_flags = inet_sk_flowi_flags(sk); 1134 1135 fl4 = &fl4_stack; 1136 1137 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, 1138 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1139 flow_flags, 1140 faddr, saddr, dport, inet->inet_sport, 1141 sk->sk_uid); 1142 1143 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1144 rt = ip_route_output_flow(net, fl4, sk); 1145 if (IS_ERR(rt)) { 1146 err = PTR_ERR(rt); 1147 rt = NULL; 1148 if (err == -ENETUNREACH) 1149 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1150 goto out; 1151 } 1152 1153 err = -EACCES; 1154 if ((rt->rt_flags & RTCF_BROADCAST) && 1155 !sock_flag(sk, SOCK_BROADCAST)) 1156 goto out; 1157 if (connected) 1158 sk_dst_set(sk, dst_clone(&rt->dst)); 1159 } 1160 1161 if (msg->msg_flags&MSG_CONFIRM) 1162 goto do_confirm; 1163 back_from_confirm: 1164 1165 saddr = fl4->saddr; 1166 if (!ipc.addr) 1167 daddr = ipc.addr = fl4->daddr; 1168 1169 /* Lockless fast path for the non-corking case. */ 1170 if (!corkreq) { 1171 struct inet_cork cork; 1172 1173 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1174 sizeof(struct udphdr), &ipc, &rt, 1175 &cork, msg->msg_flags); 1176 err = PTR_ERR(skb); 1177 if (!IS_ERR_OR_NULL(skb)) 1178 err = udp_send_skb(skb, fl4, &cork); 1179 goto out; 1180 } 1181 1182 lock_sock(sk); 1183 if (unlikely(up->pending)) { 1184 /* The socket is already corked while preparing it. */ 1185 /* ... which is an evident application bug. --ANK */ 1186 release_sock(sk); 1187 1188 net_dbg_ratelimited("socket already corked\n"); 1189 err = -EINVAL; 1190 goto out; 1191 } 1192 /* 1193 * Now cork the socket to pend data. 1194 */ 1195 fl4 = &inet->cork.fl.u.ip4; 1196 fl4->daddr = daddr; 1197 fl4->saddr = saddr; 1198 fl4->fl4_dport = dport; 1199 fl4->fl4_sport = inet->inet_sport; 1200 up->pending = AF_INET; 1201 1202 do_append_data: 1203 up->len += ulen; 1204 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1205 sizeof(struct udphdr), &ipc, &rt, 1206 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1207 if (err) 1208 udp_flush_pending_frames(sk); 1209 else if (!corkreq) 1210 err = udp_push_pending_frames(sk); 1211 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1212 up->pending = 0; 1213 release_sock(sk); 1214 1215 out: 1216 ip_rt_put(rt); 1217 out_free: 1218 if (free) 1219 kfree(ipc.opt); 1220 if (!err) 1221 return len; 1222 /* 1223 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1224 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1225 * we don't have a good statistic (IpOutDiscards but it can be too many 1226 * things). We could add another new stat but at least for now that 1227 * seems like overkill. 1228 */ 1229 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1230 UDP_INC_STATS(sock_net(sk), 1231 UDP_MIB_SNDBUFERRORS, is_udplite); 1232 } 1233 return err; 1234 1235 do_confirm: 1236 if (msg->msg_flags & MSG_PROBE) 1237 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1238 if (!(msg->msg_flags&MSG_PROBE) || len) 1239 goto back_from_confirm; 1240 err = 0; 1241 goto out; 1242 } 1243 EXPORT_SYMBOL(udp_sendmsg); 1244 1245 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1246 size_t size, int flags) 1247 { 1248 struct inet_sock *inet = inet_sk(sk); 1249 struct udp_sock *up = udp_sk(sk); 1250 int ret; 1251 1252 if (flags & MSG_SENDPAGE_NOTLAST) 1253 flags |= MSG_MORE; 1254 1255 if (!up->pending) { 1256 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1257 1258 /* Call udp_sendmsg to specify destination address which 1259 * sendpage interface can't pass. 1260 * This will succeed only when the socket is connected. 1261 */ 1262 ret = udp_sendmsg(sk, &msg, 0); 1263 if (ret < 0) 1264 return ret; 1265 } 1266 1267 lock_sock(sk); 1268 1269 if (unlikely(!up->pending)) { 1270 release_sock(sk); 1271 1272 net_dbg_ratelimited("cork failed\n"); 1273 return -EINVAL; 1274 } 1275 1276 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1277 page, offset, size, flags); 1278 if (ret == -EOPNOTSUPP) { 1279 release_sock(sk); 1280 return sock_no_sendpage(sk->sk_socket, page, offset, 1281 size, flags); 1282 } 1283 if (ret < 0) { 1284 udp_flush_pending_frames(sk); 1285 goto out; 1286 } 1287 1288 up->len += size; 1289 if (!(up->corkflag || (flags&MSG_MORE))) 1290 ret = udp_push_pending_frames(sk); 1291 if (!ret) 1292 ret = size; 1293 out: 1294 release_sock(sk); 1295 return ret; 1296 } 1297 1298 #define UDP_SKB_IS_STATELESS 0x80000000 1299 1300 static void udp_set_dev_scratch(struct sk_buff *skb) 1301 { 1302 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1303 1304 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1305 scratch->_tsize_state = skb->truesize; 1306 #if BITS_PER_LONG == 64 1307 scratch->len = skb->len; 1308 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1309 scratch->is_linear = !skb_is_nonlinear(skb); 1310 #endif 1311 /* all head states execept sp (dst, sk, nf) are always cleared by 1312 * udp_rcv() and we need to preserve secpath, if present, to eventually 1313 * process IP_CMSG_PASSSEC at recvmsg() time 1314 */ 1315 if (likely(!skb_sec_path(skb))) 1316 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1317 } 1318 1319 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1320 { 1321 /* We come here after udp_lib_checksum_complete() returned 0. 1322 * This means that __skb_checksum_complete() might have 1323 * set skb->csum_valid to 1. 1324 * On 64bit platforms, we can set csum_unnecessary 1325 * to true, but only if the skb is not shared. 1326 */ 1327 #if BITS_PER_LONG == 64 1328 if (!skb_shared(skb)) 1329 udp_skb_scratch(skb)->csum_unnecessary = true; 1330 #endif 1331 } 1332 1333 static int udp_skb_truesize(struct sk_buff *skb) 1334 { 1335 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1336 } 1337 1338 static bool udp_skb_has_head_state(struct sk_buff *skb) 1339 { 1340 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1341 } 1342 1343 /* fully reclaim rmem/fwd memory allocated for skb */ 1344 static void udp_rmem_release(struct sock *sk, int size, int partial, 1345 bool rx_queue_lock_held) 1346 { 1347 struct udp_sock *up = udp_sk(sk); 1348 struct sk_buff_head *sk_queue; 1349 int amt; 1350 1351 if (likely(partial)) { 1352 up->forward_deficit += size; 1353 size = up->forward_deficit; 1354 if (size < (sk->sk_rcvbuf >> 2)) 1355 return; 1356 } else { 1357 size += up->forward_deficit; 1358 } 1359 up->forward_deficit = 0; 1360 1361 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1362 * if the called don't held it already 1363 */ 1364 sk_queue = &sk->sk_receive_queue; 1365 if (!rx_queue_lock_held) 1366 spin_lock(&sk_queue->lock); 1367 1368 1369 sk->sk_forward_alloc += size; 1370 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1371 sk->sk_forward_alloc -= amt; 1372 1373 if (amt) 1374 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1375 1376 atomic_sub(size, &sk->sk_rmem_alloc); 1377 1378 /* this can save us from acquiring the rx queue lock on next receive */ 1379 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1380 1381 if (!rx_queue_lock_held) 1382 spin_unlock(&sk_queue->lock); 1383 } 1384 1385 /* Note: called with reader_queue.lock held. 1386 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1387 * This avoids a cache line miss while receive_queue lock is held. 1388 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1389 */ 1390 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1391 { 1392 prefetch(&skb->data); 1393 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1394 } 1395 EXPORT_SYMBOL(udp_skb_destructor); 1396 1397 /* as above, but the caller held the rx queue lock, too */ 1398 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1399 { 1400 prefetch(&skb->data); 1401 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1402 } 1403 1404 /* Idea of busylocks is to let producers grab an extra spinlock 1405 * to relieve pressure on the receive_queue spinlock shared by consumer. 1406 * Under flood, this means that only one producer can be in line 1407 * trying to acquire the receive_queue spinlock. 1408 * These busylock can be allocated on a per cpu manner, instead of a 1409 * per socket one (that would consume a cache line per socket) 1410 */ 1411 static int udp_busylocks_log __read_mostly; 1412 static spinlock_t *udp_busylocks __read_mostly; 1413 1414 static spinlock_t *busylock_acquire(void *ptr) 1415 { 1416 spinlock_t *busy; 1417 1418 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1419 spin_lock(busy); 1420 return busy; 1421 } 1422 1423 static void busylock_release(spinlock_t *busy) 1424 { 1425 if (busy) 1426 spin_unlock(busy); 1427 } 1428 1429 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1430 { 1431 struct sk_buff_head *list = &sk->sk_receive_queue; 1432 int rmem, delta, amt, err = -ENOMEM; 1433 spinlock_t *busy = NULL; 1434 int size; 1435 1436 /* try to avoid the costly atomic add/sub pair when the receive 1437 * queue is full; always allow at least a packet 1438 */ 1439 rmem = atomic_read(&sk->sk_rmem_alloc); 1440 if (rmem > sk->sk_rcvbuf) 1441 goto drop; 1442 1443 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1444 * having linear skbs : 1445 * - Reduce memory overhead and thus increase receive queue capacity 1446 * - Less cache line misses at copyout() time 1447 * - Less work at consume_skb() (less alien page frag freeing) 1448 */ 1449 if (rmem > (sk->sk_rcvbuf >> 1)) { 1450 skb_condense(skb); 1451 1452 busy = busylock_acquire(sk); 1453 } 1454 size = skb->truesize; 1455 udp_set_dev_scratch(skb); 1456 1457 /* we drop only if the receive buf is full and the receive 1458 * queue contains some other skb 1459 */ 1460 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1461 if (rmem > (size + sk->sk_rcvbuf)) 1462 goto uncharge_drop; 1463 1464 spin_lock(&list->lock); 1465 if (size >= sk->sk_forward_alloc) { 1466 amt = sk_mem_pages(size); 1467 delta = amt << SK_MEM_QUANTUM_SHIFT; 1468 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1469 err = -ENOBUFS; 1470 spin_unlock(&list->lock); 1471 goto uncharge_drop; 1472 } 1473 1474 sk->sk_forward_alloc += delta; 1475 } 1476 1477 sk->sk_forward_alloc -= size; 1478 1479 /* no need to setup a destructor, we will explicitly release the 1480 * forward allocated memory on dequeue 1481 */ 1482 sock_skb_set_dropcount(sk, skb); 1483 1484 __skb_queue_tail(list, skb); 1485 spin_unlock(&list->lock); 1486 1487 if (!sock_flag(sk, SOCK_DEAD)) 1488 sk->sk_data_ready(sk); 1489 1490 busylock_release(busy); 1491 return 0; 1492 1493 uncharge_drop: 1494 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1495 1496 drop: 1497 atomic_inc(&sk->sk_drops); 1498 busylock_release(busy); 1499 return err; 1500 } 1501 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1502 1503 void udp_destruct_sock(struct sock *sk) 1504 { 1505 /* reclaim completely the forward allocated memory */ 1506 struct udp_sock *up = udp_sk(sk); 1507 unsigned int total = 0; 1508 struct sk_buff *skb; 1509 1510 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1511 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1512 total += skb->truesize; 1513 kfree_skb(skb); 1514 } 1515 udp_rmem_release(sk, total, 0, true); 1516 1517 inet_sock_destruct(sk); 1518 } 1519 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1520 1521 int udp_init_sock(struct sock *sk) 1522 { 1523 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1524 sk->sk_destruct = udp_destruct_sock; 1525 return 0; 1526 } 1527 EXPORT_SYMBOL_GPL(udp_init_sock); 1528 1529 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1530 { 1531 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1532 bool slow = lock_sock_fast(sk); 1533 1534 sk_peek_offset_bwd(sk, len); 1535 unlock_sock_fast(sk, slow); 1536 } 1537 1538 if (!skb_unref(skb)) 1539 return; 1540 1541 /* In the more common cases we cleared the head states previously, 1542 * see __udp_queue_rcv_skb(). 1543 */ 1544 if (unlikely(udp_skb_has_head_state(skb))) 1545 skb_release_head_state(skb); 1546 __consume_stateless_skb(skb); 1547 } 1548 EXPORT_SYMBOL_GPL(skb_consume_udp); 1549 1550 static struct sk_buff *__first_packet_length(struct sock *sk, 1551 struct sk_buff_head *rcvq, 1552 int *total) 1553 { 1554 struct sk_buff *skb; 1555 1556 while ((skb = skb_peek(rcvq)) != NULL) { 1557 if (udp_lib_checksum_complete(skb)) { 1558 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1559 IS_UDPLITE(sk)); 1560 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1561 IS_UDPLITE(sk)); 1562 atomic_inc(&sk->sk_drops); 1563 __skb_unlink(skb, rcvq); 1564 *total += skb->truesize; 1565 kfree_skb(skb); 1566 } else { 1567 udp_skb_csum_unnecessary_set(skb); 1568 break; 1569 } 1570 } 1571 return skb; 1572 } 1573 1574 /** 1575 * first_packet_length - return length of first packet in receive queue 1576 * @sk: socket 1577 * 1578 * Drops all bad checksum frames, until a valid one is found. 1579 * Returns the length of found skb, or -1 if none is found. 1580 */ 1581 static int first_packet_length(struct sock *sk) 1582 { 1583 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1584 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1585 struct sk_buff *skb; 1586 int total = 0; 1587 int res; 1588 1589 spin_lock_bh(&rcvq->lock); 1590 skb = __first_packet_length(sk, rcvq, &total); 1591 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1592 spin_lock(&sk_queue->lock); 1593 skb_queue_splice_tail_init(sk_queue, rcvq); 1594 spin_unlock(&sk_queue->lock); 1595 1596 skb = __first_packet_length(sk, rcvq, &total); 1597 } 1598 res = skb ? skb->len : -1; 1599 if (total) 1600 udp_rmem_release(sk, total, 1, false); 1601 spin_unlock_bh(&rcvq->lock); 1602 return res; 1603 } 1604 1605 /* 1606 * IOCTL requests applicable to the UDP protocol 1607 */ 1608 1609 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1610 { 1611 switch (cmd) { 1612 case SIOCOUTQ: 1613 { 1614 int amount = sk_wmem_alloc_get(sk); 1615 1616 return put_user(amount, (int __user *)arg); 1617 } 1618 1619 case SIOCINQ: 1620 { 1621 int amount = max_t(int, 0, first_packet_length(sk)); 1622 1623 return put_user(amount, (int __user *)arg); 1624 } 1625 1626 default: 1627 return -ENOIOCTLCMD; 1628 } 1629 1630 return 0; 1631 } 1632 EXPORT_SYMBOL(udp_ioctl); 1633 1634 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1635 int noblock, int *off, int *err) 1636 { 1637 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1638 struct sk_buff_head *queue; 1639 struct sk_buff *last; 1640 long timeo; 1641 int error; 1642 1643 queue = &udp_sk(sk)->reader_queue; 1644 flags |= noblock ? MSG_DONTWAIT : 0; 1645 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1646 do { 1647 struct sk_buff *skb; 1648 1649 error = sock_error(sk); 1650 if (error) 1651 break; 1652 1653 error = -EAGAIN; 1654 do { 1655 spin_lock_bh(&queue->lock); 1656 skb = __skb_try_recv_from_queue(sk, queue, flags, 1657 udp_skb_destructor, 1658 off, err, &last); 1659 if (skb) { 1660 spin_unlock_bh(&queue->lock); 1661 return skb; 1662 } 1663 1664 if (skb_queue_empty_lockless(sk_queue)) { 1665 spin_unlock_bh(&queue->lock); 1666 goto busy_check; 1667 } 1668 1669 /* refill the reader queue and walk it again 1670 * keep both queues locked to avoid re-acquiring 1671 * the sk_receive_queue lock if fwd memory scheduling 1672 * is needed. 1673 */ 1674 spin_lock(&sk_queue->lock); 1675 skb_queue_splice_tail_init(sk_queue, queue); 1676 1677 skb = __skb_try_recv_from_queue(sk, queue, flags, 1678 udp_skb_dtor_locked, 1679 off, err, &last); 1680 spin_unlock(&sk_queue->lock); 1681 spin_unlock_bh(&queue->lock); 1682 if (skb) 1683 return skb; 1684 1685 busy_check: 1686 if (!sk_can_busy_loop(sk)) 1687 break; 1688 1689 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1690 } while (!skb_queue_empty_lockless(sk_queue)); 1691 1692 /* sk_queue is empty, reader_queue may contain peeked packets */ 1693 } while (timeo && 1694 !__skb_wait_for_more_packets(sk, &error, &timeo, 1695 (struct sk_buff *)sk_queue)); 1696 1697 *err = error; 1698 return NULL; 1699 } 1700 EXPORT_SYMBOL(__skb_recv_udp); 1701 1702 /* 1703 * This should be easy, if there is something there we 1704 * return it, otherwise we block. 1705 */ 1706 1707 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1708 int flags, int *addr_len) 1709 { 1710 struct inet_sock *inet = inet_sk(sk); 1711 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1712 struct sk_buff *skb; 1713 unsigned int ulen, copied; 1714 int off, err, peeking = flags & MSG_PEEK; 1715 int is_udplite = IS_UDPLITE(sk); 1716 bool checksum_valid = false; 1717 1718 if (flags & MSG_ERRQUEUE) 1719 return ip_recv_error(sk, msg, len, addr_len); 1720 1721 try_again: 1722 off = sk_peek_offset(sk, flags); 1723 skb = __skb_recv_udp(sk, flags, noblock, &off, &err); 1724 if (!skb) 1725 return err; 1726 1727 ulen = udp_skb_len(skb); 1728 copied = len; 1729 if (copied > ulen - off) 1730 copied = ulen - off; 1731 else if (copied < ulen) 1732 msg->msg_flags |= MSG_TRUNC; 1733 1734 /* 1735 * If checksum is needed at all, try to do it while copying the 1736 * data. If the data is truncated, or if we only want a partial 1737 * coverage checksum (UDP-Lite), do it before the copy. 1738 */ 1739 1740 if (copied < ulen || peeking || 1741 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1742 checksum_valid = udp_skb_csum_unnecessary(skb) || 1743 !__udp_lib_checksum_complete(skb); 1744 if (!checksum_valid) 1745 goto csum_copy_err; 1746 } 1747 1748 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1749 if (udp_skb_is_linear(skb)) 1750 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1751 else 1752 err = skb_copy_datagram_msg(skb, off, msg, copied); 1753 } else { 1754 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1755 1756 if (err == -EINVAL) 1757 goto csum_copy_err; 1758 } 1759 1760 if (unlikely(err)) { 1761 if (!peeking) { 1762 atomic_inc(&sk->sk_drops); 1763 UDP_INC_STATS(sock_net(sk), 1764 UDP_MIB_INERRORS, is_udplite); 1765 } 1766 kfree_skb(skb); 1767 return err; 1768 } 1769 1770 if (!peeking) 1771 UDP_INC_STATS(sock_net(sk), 1772 UDP_MIB_INDATAGRAMS, is_udplite); 1773 1774 sock_recv_ts_and_drops(msg, sk, skb); 1775 1776 /* Copy the address. */ 1777 if (sin) { 1778 sin->sin_family = AF_INET; 1779 sin->sin_port = udp_hdr(skb)->source; 1780 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1781 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1782 *addr_len = sizeof(*sin); 1783 1784 if (cgroup_bpf_enabled) 1785 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1786 (struct sockaddr *)sin); 1787 } 1788 1789 if (udp_sk(sk)->gro_enabled) 1790 udp_cmsg_recv(msg, sk, skb); 1791 1792 if (inet->cmsg_flags) 1793 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1794 1795 err = copied; 1796 if (flags & MSG_TRUNC) 1797 err = ulen; 1798 1799 skb_consume_udp(sk, skb, peeking ? -err : err); 1800 return err; 1801 1802 csum_copy_err: 1803 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1804 udp_skb_destructor)) { 1805 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1806 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1807 } 1808 kfree_skb(skb); 1809 1810 /* starting over for a new packet, but check if we need to yield */ 1811 cond_resched(); 1812 msg->msg_flags &= ~MSG_TRUNC; 1813 goto try_again; 1814 } 1815 1816 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1817 { 1818 /* This check is replicated from __ip4_datagram_connect() and 1819 * intended to prevent BPF program called below from accessing bytes 1820 * that are out of the bound specified by user in addr_len. 1821 */ 1822 if (addr_len < sizeof(struct sockaddr_in)) 1823 return -EINVAL; 1824 1825 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1826 } 1827 EXPORT_SYMBOL(udp_pre_connect); 1828 1829 int __udp_disconnect(struct sock *sk, int flags) 1830 { 1831 struct inet_sock *inet = inet_sk(sk); 1832 /* 1833 * 1003.1g - break association. 1834 */ 1835 1836 sk->sk_state = TCP_CLOSE; 1837 inet->inet_daddr = 0; 1838 inet->inet_dport = 0; 1839 sock_rps_reset_rxhash(sk); 1840 sk->sk_bound_dev_if = 0; 1841 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1842 inet_reset_saddr(sk); 1843 1844 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1845 sk->sk_prot->unhash(sk); 1846 inet->inet_sport = 0; 1847 } 1848 sk_dst_reset(sk); 1849 return 0; 1850 } 1851 EXPORT_SYMBOL(__udp_disconnect); 1852 1853 int udp_disconnect(struct sock *sk, int flags) 1854 { 1855 lock_sock(sk); 1856 __udp_disconnect(sk, flags); 1857 release_sock(sk); 1858 return 0; 1859 } 1860 EXPORT_SYMBOL(udp_disconnect); 1861 1862 void udp_lib_unhash(struct sock *sk) 1863 { 1864 if (sk_hashed(sk)) { 1865 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1866 struct udp_hslot *hslot, *hslot2; 1867 1868 hslot = udp_hashslot(udptable, sock_net(sk), 1869 udp_sk(sk)->udp_port_hash); 1870 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1871 1872 spin_lock_bh(&hslot->lock); 1873 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1874 reuseport_detach_sock(sk); 1875 if (sk_del_node_init_rcu(sk)) { 1876 hslot->count--; 1877 inet_sk(sk)->inet_num = 0; 1878 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1879 1880 spin_lock(&hslot2->lock); 1881 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1882 hslot2->count--; 1883 spin_unlock(&hslot2->lock); 1884 } 1885 spin_unlock_bh(&hslot->lock); 1886 } 1887 } 1888 EXPORT_SYMBOL(udp_lib_unhash); 1889 1890 /* 1891 * inet_rcv_saddr was changed, we must rehash secondary hash 1892 */ 1893 void udp_lib_rehash(struct sock *sk, u16 newhash) 1894 { 1895 if (sk_hashed(sk)) { 1896 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1897 struct udp_hslot *hslot, *hslot2, *nhslot2; 1898 1899 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1900 nhslot2 = udp_hashslot2(udptable, newhash); 1901 udp_sk(sk)->udp_portaddr_hash = newhash; 1902 1903 if (hslot2 != nhslot2 || 1904 rcu_access_pointer(sk->sk_reuseport_cb)) { 1905 hslot = udp_hashslot(udptable, sock_net(sk), 1906 udp_sk(sk)->udp_port_hash); 1907 /* we must lock primary chain too */ 1908 spin_lock_bh(&hslot->lock); 1909 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1910 reuseport_detach_sock(sk); 1911 1912 if (hslot2 != nhslot2) { 1913 spin_lock(&hslot2->lock); 1914 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1915 hslot2->count--; 1916 spin_unlock(&hslot2->lock); 1917 1918 spin_lock(&nhslot2->lock); 1919 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1920 &nhslot2->head); 1921 nhslot2->count++; 1922 spin_unlock(&nhslot2->lock); 1923 } 1924 1925 spin_unlock_bh(&hslot->lock); 1926 } 1927 } 1928 } 1929 EXPORT_SYMBOL(udp_lib_rehash); 1930 1931 void udp_v4_rehash(struct sock *sk) 1932 { 1933 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1934 inet_sk(sk)->inet_rcv_saddr, 1935 inet_sk(sk)->inet_num); 1936 udp_lib_rehash(sk, new_hash); 1937 } 1938 1939 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1940 { 1941 int rc; 1942 1943 if (inet_sk(sk)->inet_daddr) { 1944 sock_rps_save_rxhash(sk, skb); 1945 sk_mark_napi_id(sk, skb); 1946 sk_incoming_cpu_update(sk); 1947 } else { 1948 sk_mark_napi_id_once(sk, skb); 1949 } 1950 1951 rc = __udp_enqueue_schedule_skb(sk, skb); 1952 if (rc < 0) { 1953 int is_udplite = IS_UDPLITE(sk); 1954 1955 /* Note that an ENOMEM error is charged twice */ 1956 if (rc == -ENOMEM) 1957 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1958 is_udplite); 1959 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1960 kfree_skb(skb); 1961 trace_udp_fail_queue_rcv_skb(rc, sk); 1962 return -1; 1963 } 1964 1965 return 0; 1966 } 1967 1968 /* returns: 1969 * -1: error 1970 * 0: success 1971 * >0: "udp encap" protocol resubmission 1972 * 1973 * Note that in the success and error cases, the skb is assumed to 1974 * have either been requeued or freed. 1975 */ 1976 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 1977 { 1978 struct udp_sock *up = udp_sk(sk); 1979 int is_udplite = IS_UDPLITE(sk); 1980 1981 /* 1982 * Charge it to the socket, dropping if the queue is full. 1983 */ 1984 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1985 goto drop; 1986 nf_reset_ct(skb); 1987 1988 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1989 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1990 1991 /* 1992 * This is an encapsulation socket so pass the skb to 1993 * the socket's udp_encap_rcv() hook. Otherwise, just 1994 * fall through and pass this up the UDP socket. 1995 * up->encap_rcv() returns the following value: 1996 * =0 if skb was successfully passed to the encap 1997 * handler or was discarded by it. 1998 * >0 if skb should be passed on to UDP. 1999 * <0 if skb should be resubmitted as proto -N 2000 */ 2001 2002 /* if we're overly short, let UDP handle it */ 2003 encap_rcv = READ_ONCE(up->encap_rcv); 2004 if (encap_rcv) { 2005 int ret; 2006 2007 /* Verify checksum before giving to encap */ 2008 if (udp_lib_checksum_complete(skb)) 2009 goto csum_error; 2010 2011 ret = encap_rcv(sk, skb); 2012 if (ret <= 0) { 2013 __UDP_INC_STATS(sock_net(sk), 2014 UDP_MIB_INDATAGRAMS, 2015 is_udplite); 2016 return -ret; 2017 } 2018 } 2019 2020 /* FALLTHROUGH -- it's a UDP Packet */ 2021 } 2022 2023 /* 2024 * UDP-Lite specific tests, ignored on UDP sockets 2025 */ 2026 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2027 2028 /* 2029 * MIB statistics other than incrementing the error count are 2030 * disabled for the following two types of errors: these depend 2031 * on the application settings, not on the functioning of the 2032 * protocol stack as such. 2033 * 2034 * RFC 3828 here recommends (sec 3.3): "There should also be a 2035 * way ... to ... at least let the receiving application block 2036 * delivery of packets with coverage values less than a value 2037 * provided by the application." 2038 */ 2039 if (up->pcrlen == 0) { /* full coverage was set */ 2040 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2041 UDP_SKB_CB(skb)->cscov, skb->len); 2042 goto drop; 2043 } 2044 /* The next case involves violating the min. coverage requested 2045 * by the receiver. This is subtle: if receiver wants x and x is 2046 * greater than the buffersize/MTU then receiver will complain 2047 * that it wants x while sender emits packets of smaller size y. 2048 * Therefore the above ...()->partial_cov statement is essential. 2049 */ 2050 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2051 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2052 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2053 goto drop; 2054 } 2055 } 2056 2057 prefetch(&sk->sk_rmem_alloc); 2058 if (rcu_access_pointer(sk->sk_filter) && 2059 udp_lib_checksum_complete(skb)) 2060 goto csum_error; 2061 2062 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 2063 goto drop; 2064 2065 udp_csum_pull_header(skb); 2066 2067 ipv4_pktinfo_prepare(sk, skb); 2068 return __udp_queue_rcv_skb(sk, skb); 2069 2070 csum_error: 2071 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2072 drop: 2073 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2074 atomic_inc(&sk->sk_drops); 2075 kfree_skb(skb); 2076 return -1; 2077 } 2078 2079 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2080 { 2081 struct sk_buff *next, *segs; 2082 int ret; 2083 2084 if (likely(!udp_unexpected_gso(sk, skb))) 2085 return udp_queue_rcv_one_skb(sk, skb); 2086 2087 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET); 2088 __skb_push(skb, -skb_mac_offset(skb)); 2089 segs = udp_rcv_segment(sk, skb, true); 2090 for (skb = segs; skb; skb = next) { 2091 next = skb->next; 2092 __skb_pull(skb, skb_transport_offset(skb)); 2093 ret = udp_queue_rcv_one_skb(sk, skb); 2094 if (ret > 0) 2095 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret); 2096 } 2097 return 0; 2098 } 2099 2100 /* For TCP sockets, sk_rx_dst is protected by socket lock 2101 * For UDP, we use xchg() to guard against concurrent changes. 2102 */ 2103 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2104 { 2105 struct dst_entry *old; 2106 2107 if (dst_hold_safe(dst)) { 2108 old = xchg(&sk->sk_rx_dst, dst); 2109 dst_release(old); 2110 return old != dst; 2111 } 2112 return false; 2113 } 2114 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2115 2116 /* 2117 * Multicasts and broadcasts go to each listener. 2118 * 2119 * Note: called only from the BH handler context. 2120 */ 2121 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2122 struct udphdr *uh, 2123 __be32 saddr, __be32 daddr, 2124 struct udp_table *udptable, 2125 int proto) 2126 { 2127 struct sock *sk, *first = NULL; 2128 unsigned short hnum = ntohs(uh->dest); 2129 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2130 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2131 unsigned int offset = offsetof(typeof(*sk), sk_node); 2132 int dif = skb->dev->ifindex; 2133 int sdif = inet_sdif(skb); 2134 struct hlist_node *node; 2135 struct sk_buff *nskb; 2136 2137 if (use_hash2) { 2138 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2139 udptable->mask; 2140 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2141 start_lookup: 2142 hslot = &udptable->hash2[hash2]; 2143 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2144 } 2145 2146 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2147 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2148 uh->source, saddr, dif, sdif, hnum)) 2149 continue; 2150 2151 if (!first) { 2152 first = sk; 2153 continue; 2154 } 2155 nskb = skb_clone(skb, GFP_ATOMIC); 2156 2157 if (unlikely(!nskb)) { 2158 atomic_inc(&sk->sk_drops); 2159 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2160 IS_UDPLITE(sk)); 2161 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2162 IS_UDPLITE(sk)); 2163 continue; 2164 } 2165 if (udp_queue_rcv_skb(sk, nskb) > 0) 2166 consume_skb(nskb); 2167 } 2168 2169 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2170 if (use_hash2 && hash2 != hash2_any) { 2171 hash2 = hash2_any; 2172 goto start_lookup; 2173 } 2174 2175 if (first) { 2176 if (udp_queue_rcv_skb(first, skb) > 0) 2177 consume_skb(skb); 2178 } else { 2179 kfree_skb(skb); 2180 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2181 proto == IPPROTO_UDPLITE); 2182 } 2183 return 0; 2184 } 2185 2186 /* Initialize UDP checksum. If exited with zero value (success), 2187 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2188 * Otherwise, csum completion requires checksumming packet body, 2189 * including udp header and folding it to skb->csum. 2190 */ 2191 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2192 int proto) 2193 { 2194 int err; 2195 2196 UDP_SKB_CB(skb)->partial_cov = 0; 2197 UDP_SKB_CB(skb)->cscov = skb->len; 2198 2199 if (proto == IPPROTO_UDPLITE) { 2200 err = udplite_checksum_init(skb, uh); 2201 if (err) 2202 return err; 2203 2204 if (UDP_SKB_CB(skb)->partial_cov) { 2205 skb->csum = inet_compute_pseudo(skb, proto); 2206 return 0; 2207 } 2208 } 2209 2210 /* Note, we are only interested in != 0 or == 0, thus the 2211 * force to int. 2212 */ 2213 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2214 inet_compute_pseudo); 2215 if (err) 2216 return err; 2217 2218 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2219 /* If SW calculated the value, we know it's bad */ 2220 if (skb->csum_complete_sw) 2221 return 1; 2222 2223 /* HW says the value is bad. Let's validate that. 2224 * skb->csum is no longer the full packet checksum, 2225 * so don't treat it as such. 2226 */ 2227 skb_checksum_complete_unset(skb); 2228 } 2229 2230 return 0; 2231 } 2232 2233 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2234 * return code conversion for ip layer consumption 2235 */ 2236 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2237 struct udphdr *uh) 2238 { 2239 int ret; 2240 2241 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2242 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2243 2244 ret = udp_queue_rcv_skb(sk, skb); 2245 2246 /* a return value > 0 means to resubmit the input, but 2247 * it wants the return to be -protocol, or 0 2248 */ 2249 if (ret > 0) 2250 return -ret; 2251 return 0; 2252 } 2253 2254 /* 2255 * All we need to do is get the socket, and then do a checksum. 2256 */ 2257 2258 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2259 int proto) 2260 { 2261 struct sock *sk; 2262 struct udphdr *uh; 2263 unsigned short ulen; 2264 struct rtable *rt = skb_rtable(skb); 2265 __be32 saddr, daddr; 2266 struct net *net = dev_net(skb->dev); 2267 2268 /* 2269 * Validate the packet. 2270 */ 2271 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2272 goto drop; /* No space for header. */ 2273 2274 uh = udp_hdr(skb); 2275 ulen = ntohs(uh->len); 2276 saddr = ip_hdr(skb)->saddr; 2277 daddr = ip_hdr(skb)->daddr; 2278 2279 if (ulen > skb->len) 2280 goto short_packet; 2281 2282 if (proto == IPPROTO_UDP) { 2283 /* UDP validates ulen. */ 2284 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2285 goto short_packet; 2286 uh = udp_hdr(skb); 2287 } 2288 2289 if (udp4_csum_init(skb, uh, proto)) 2290 goto csum_error; 2291 2292 sk = skb_steal_sock(skb); 2293 if (sk) { 2294 struct dst_entry *dst = skb_dst(skb); 2295 int ret; 2296 2297 if (unlikely(sk->sk_rx_dst != dst)) 2298 udp_sk_rx_dst_set(sk, dst); 2299 2300 ret = udp_unicast_rcv_skb(sk, skb, uh); 2301 sock_put(sk); 2302 return ret; 2303 } 2304 2305 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2306 return __udp4_lib_mcast_deliver(net, skb, uh, 2307 saddr, daddr, udptable, proto); 2308 2309 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2310 if (sk) 2311 return udp_unicast_rcv_skb(sk, skb, uh); 2312 2313 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2314 goto drop; 2315 nf_reset_ct(skb); 2316 2317 /* No socket. Drop packet silently, if checksum is wrong */ 2318 if (udp_lib_checksum_complete(skb)) 2319 goto csum_error; 2320 2321 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2322 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2323 2324 /* 2325 * Hmm. We got an UDP packet to a port to which we 2326 * don't wanna listen. Ignore it. 2327 */ 2328 kfree_skb(skb); 2329 return 0; 2330 2331 short_packet: 2332 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2333 proto == IPPROTO_UDPLITE ? "Lite" : "", 2334 &saddr, ntohs(uh->source), 2335 ulen, skb->len, 2336 &daddr, ntohs(uh->dest)); 2337 goto drop; 2338 2339 csum_error: 2340 /* 2341 * RFC1122: OK. Discards the bad packet silently (as far as 2342 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2343 */ 2344 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2345 proto == IPPROTO_UDPLITE ? "Lite" : "", 2346 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2347 ulen); 2348 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2349 drop: 2350 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2351 kfree_skb(skb); 2352 return 0; 2353 } 2354 2355 /* We can only early demux multicast if there is a single matching socket. 2356 * If more than one socket found returns NULL 2357 */ 2358 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2359 __be16 loc_port, __be32 loc_addr, 2360 __be16 rmt_port, __be32 rmt_addr, 2361 int dif, int sdif) 2362 { 2363 struct sock *sk, *result; 2364 unsigned short hnum = ntohs(loc_port); 2365 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2366 struct udp_hslot *hslot = &udp_table.hash[slot]; 2367 2368 /* Do not bother scanning a too big list */ 2369 if (hslot->count > 10) 2370 return NULL; 2371 2372 result = NULL; 2373 sk_for_each_rcu(sk, &hslot->head) { 2374 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2375 rmt_port, rmt_addr, dif, sdif, hnum)) { 2376 if (result) 2377 return NULL; 2378 result = sk; 2379 } 2380 } 2381 2382 return result; 2383 } 2384 2385 /* For unicast we should only early demux connected sockets or we can 2386 * break forwarding setups. The chains here can be long so only check 2387 * if the first socket is an exact match and if not move on. 2388 */ 2389 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2390 __be16 loc_port, __be32 loc_addr, 2391 __be16 rmt_port, __be32 rmt_addr, 2392 int dif, int sdif) 2393 { 2394 unsigned short hnum = ntohs(loc_port); 2395 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2396 unsigned int slot2 = hash2 & udp_table.mask; 2397 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2398 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2399 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2400 struct sock *sk; 2401 2402 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2403 if (INET_MATCH(sk, net, acookie, rmt_addr, 2404 loc_addr, ports, dif, sdif)) 2405 return sk; 2406 /* Only check first socket in chain */ 2407 break; 2408 } 2409 return NULL; 2410 } 2411 2412 int udp_v4_early_demux(struct sk_buff *skb) 2413 { 2414 struct net *net = dev_net(skb->dev); 2415 struct in_device *in_dev = NULL; 2416 const struct iphdr *iph; 2417 const struct udphdr *uh; 2418 struct sock *sk = NULL; 2419 struct dst_entry *dst; 2420 int dif = skb->dev->ifindex; 2421 int sdif = inet_sdif(skb); 2422 int ours; 2423 2424 /* validate the packet */ 2425 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2426 return 0; 2427 2428 iph = ip_hdr(skb); 2429 uh = udp_hdr(skb); 2430 2431 if (skb->pkt_type == PACKET_MULTICAST) { 2432 in_dev = __in_dev_get_rcu(skb->dev); 2433 2434 if (!in_dev) 2435 return 0; 2436 2437 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2438 iph->protocol); 2439 if (!ours) 2440 return 0; 2441 2442 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2443 uh->source, iph->saddr, 2444 dif, sdif); 2445 } else if (skb->pkt_type == PACKET_HOST) { 2446 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2447 uh->source, iph->saddr, dif, sdif); 2448 } 2449 2450 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2451 return 0; 2452 2453 skb->sk = sk; 2454 skb->destructor = sock_efree; 2455 dst = READ_ONCE(sk->sk_rx_dst); 2456 2457 if (dst) 2458 dst = dst_check(dst, 0); 2459 if (dst) { 2460 u32 itag = 0; 2461 2462 /* set noref for now. 2463 * any place which wants to hold dst has to call 2464 * dst_hold_safe() 2465 */ 2466 skb_dst_set_noref(skb, dst); 2467 2468 /* for unconnected multicast sockets we need to validate 2469 * the source on each packet 2470 */ 2471 if (!inet_sk(sk)->inet_daddr && in_dev) 2472 return ip_mc_validate_source(skb, iph->daddr, 2473 iph->saddr, iph->tos, 2474 skb->dev, in_dev, &itag); 2475 } 2476 return 0; 2477 } 2478 2479 int udp_rcv(struct sk_buff *skb) 2480 { 2481 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2482 } 2483 2484 void udp_destroy_sock(struct sock *sk) 2485 { 2486 struct udp_sock *up = udp_sk(sk); 2487 bool slow = lock_sock_fast(sk); 2488 udp_flush_pending_frames(sk); 2489 unlock_sock_fast(sk, slow); 2490 if (static_branch_unlikely(&udp_encap_needed_key)) { 2491 if (up->encap_type) { 2492 void (*encap_destroy)(struct sock *sk); 2493 encap_destroy = READ_ONCE(up->encap_destroy); 2494 if (encap_destroy) 2495 encap_destroy(sk); 2496 } 2497 if (up->encap_enabled) 2498 static_branch_dec(&udp_encap_needed_key); 2499 } 2500 } 2501 2502 /* 2503 * Socket option code for UDP 2504 */ 2505 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2506 char __user *optval, unsigned int optlen, 2507 int (*push_pending_frames)(struct sock *)) 2508 { 2509 struct udp_sock *up = udp_sk(sk); 2510 int val, valbool; 2511 int err = 0; 2512 int is_udplite = IS_UDPLITE(sk); 2513 2514 if (optlen < sizeof(int)) 2515 return -EINVAL; 2516 2517 if (get_user(val, (int __user *)optval)) 2518 return -EFAULT; 2519 2520 valbool = val ? 1 : 0; 2521 2522 switch (optname) { 2523 case UDP_CORK: 2524 if (val != 0) { 2525 up->corkflag = 1; 2526 } else { 2527 up->corkflag = 0; 2528 lock_sock(sk); 2529 push_pending_frames(sk); 2530 release_sock(sk); 2531 } 2532 break; 2533 2534 case UDP_ENCAP: 2535 switch (val) { 2536 case 0: 2537 case UDP_ENCAP_ESPINUDP: 2538 case UDP_ENCAP_ESPINUDP_NON_IKE: 2539 up->encap_rcv = xfrm4_udp_encap_rcv; 2540 /* FALLTHROUGH */ 2541 case UDP_ENCAP_L2TPINUDP: 2542 up->encap_type = val; 2543 lock_sock(sk); 2544 udp_tunnel_encap_enable(sk->sk_socket); 2545 release_sock(sk); 2546 break; 2547 default: 2548 err = -ENOPROTOOPT; 2549 break; 2550 } 2551 break; 2552 2553 case UDP_NO_CHECK6_TX: 2554 up->no_check6_tx = valbool; 2555 break; 2556 2557 case UDP_NO_CHECK6_RX: 2558 up->no_check6_rx = valbool; 2559 break; 2560 2561 case UDP_SEGMENT: 2562 if (val < 0 || val > USHRT_MAX) 2563 return -EINVAL; 2564 up->gso_size = val; 2565 break; 2566 2567 case UDP_GRO: 2568 lock_sock(sk); 2569 if (valbool) 2570 udp_tunnel_encap_enable(sk->sk_socket); 2571 up->gro_enabled = valbool; 2572 release_sock(sk); 2573 break; 2574 2575 /* 2576 * UDP-Lite's partial checksum coverage (RFC 3828). 2577 */ 2578 /* The sender sets actual checksum coverage length via this option. 2579 * The case coverage > packet length is handled by send module. */ 2580 case UDPLITE_SEND_CSCOV: 2581 if (!is_udplite) /* Disable the option on UDP sockets */ 2582 return -ENOPROTOOPT; 2583 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2584 val = 8; 2585 else if (val > USHRT_MAX) 2586 val = USHRT_MAX; 2587 up->pcslen = val; 2588 up->pcflag |= UDPLITE_SEND_CC; 2589 break; 2590 2591 /* The receiver specifies a minimum checksum coverage value. To make 2592 * sense, this should be set to at least 8 (as done below). If zero is 2593 * used, this again means full checksum coverage. */ 2594 case UDPLITE_RECV_CSCOV: 2595 if (!is_udplite) /* Disable the option on UDP sockets */ 2596 return -ENOPROTOOPT; 2597 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2598 val = 8; 2599 else if (val > USHRT_MAX) 2600 val = USHRT_MAX; 2601 up->pcrlen = val; 2602 up->pcflag |= UDPLITE_RECV_CC; 2603 break; 2604 2605 default: 2606 err = -ENOPROTOOPT; 2607 break; 2608 } 2609 2610 return err; 2611 } 2612 EXPORT_SYMBOL(udp_lib_setsockopt); 2613 2614 int udp_setsockopt(struct sock *sk, int level, int optname, 2615 char __user *optval, unsigned int optlen) 2616 { 2617 if (level == SOL_UDP || level == SOL_UDPLITE) 2618 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2619 udp_push_pending_frames); 2620 return ip_setsockopt(sk, level, optname, optval, optlen); 2621 } 2622 2623 #ifdef CONFIG_COMPAT 2624 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2625 char __user *optval, unsigned int optlen) 2626 { 2627 if (level == SOL_UDP || level == SOL_UDPLITE) 2628 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2629 udp_push_pending_frames); 2630 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2631 } 2632 #endif 2633 2634 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2635 char __user *optval, int __user *optlen) 2636 { 2637 struct udp_sock *up = udp_sk(sk); 2638 int val, len; 2639 2640 if (get_user(len, optlen)) 2641 return -EFAULT; 2642 2643 len = min_t(unsigned int, len, sizeof(int)); 2644 2645 if (len < 0) 2646 return -EINVAL; 2647 2648 switch (optname) { 2649 case UDP_CORK: 2650 val = up->corkflag; 2651 break; 2652 2653 case UDP_ENCAP: 2654 val = up->encap_type; 2655 break; 2656 2657 case UDP_NO_CHECK6_TX: 2658 val = up->no_check6_tx; 2659 break; 2660 2661 case UDP_NO_CHECK6_RX: 2662 val = up->no_check6_rx; 2663 break; 2664 2665 case UDP_SEGMENT: 2666 val = up->gso_size; 2667 break; 2668 2669 /* The following two cannot be changed on UDP sockets, the return is 2670 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2671 case UDPLITE_SEND_CSCOV: 2672 val = up->pcslen; 2673 break; 2674 2675 case UDPLITE_RECV_CSCOV: 2676 val = up->pcrlen; 2677 break; 2678 2679 default: 2680 return -ENOPROTOOPT; 2681 } 2682 2683 if (put_user(len, optlen)) 2684 return -EFAULT; 2685 if (copy_to_user(optval, &val, len)) 2686 return -EFAULT; 2687 return 0; 2688 } 2689 EXPORT_SYMBOL(udp_lib_getsockopt); 2690 2691 int udp_getsockopt(struct sock *sk, int level, int optname, 2692 char __user *optval, int __user *optlen) 2693 { 2694 if (level == SOL_UDP || level == SOL_UDPLITE) 2695 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2696 return ip_getsockopt(sk, level, optname, optval, optlen); 2697 } 2698 2699 #ifdef CONFIG_COMPAT 2700 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2701 char __user *optval, int __user *optlen) 2702 { 2703 if (level == SOL_UDP || level == SOL_UDPLITE) 2704 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2705 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2706 } 2707 #endif 2708 /** 2709 * udp_poll - wait for a UDP event. 2710 * @file - file struct 2711 * @sock - socket 2712 * @wait - poll table 2713 * 2714 * This is same as datagram poll, except for the special case of 2715 * blocking sockets. If application is using a blocking fd 2716 * and a packet with checksum error is in the queue; 2717 * then it could get return from select indicating data available 2718 * but then block when reading it. Add special case code 2719 * to work around these arguably broken applications. 2720 */ 2721 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2722 { 2723 __poll_t mask = datagram_poll(file, sock, wait); 2724 struct sock *sk = sock->sk; 2725 2726 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2727 mask |= EPOLLIN | EPOLLRDNORM; 2728 2729 /* Check for false positives due to checksum errors */ 2730 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2731 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2732 mask &= ~(EPOLLIN | EPOLLRDNORM); 2733 2734 return mask; 2735 2736 } 2737 EXPORT_SYMBOL(udp_poll); 2738 2739 int udp_abort(struct sock *sk, int err) 2740 { 2741 lock_sock(sk); 2742 2743 sk->sk_err = err; 2744 sk->sk_error_report(sk); 2745 __udp_disconnect(sk, 0); 2746 2747 release_sock(sk); 2748 2749 return 0; 2750 } 2751 EXPORT_SYMBOL_GPL(udp_abort); 2752 2753 struct proto udp_prot = { 2754 .name = "UDP", 2755 .owner = THIS_MODULE, 2756 .close = udp_lib_close, 2757 .pre_connect = udp_pre_connect, 2758 .connect = ip4_datagram_connect, 2759 .disconnect = udp_disconnect, 2760 .ioctl = udp_ioctl, 2761 .init = udp_init_sock, 2762 .destroy = udp_destroy_sock, 2763 .setsockopt = udp_setsockopt, 2764 .getsockopt = udp_getsockopt, 2765 .sendmsg = udp_sendmsg, 2766 .recvmsg = udp_recvmsg, 2767 .sendpage = udp_sendpage, 2768 .release_cb = ip4_datagram_release_cb, 2769 .hash = udp_lib_hash, 2770 .unhash = udp_lib_unhash, 2771 .rehash = udp_v4_rehash, 2772 .get_port = udp_v4_get_port, 2773 .memory_allocated = &udp_memory_allocated, 2774 .sysctl_mem = sysctl_udp_mem, 2775 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2776 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2777 .obj_size = sizeof(struct udp_sock), 2778 .h.udp_table = &udp_table, 2779 #ifdef CONFIG_COMPAT 2780 .compat_setsockopt = compat_udp_setsockopt, 2781 .compat_getsockopt = compat_udp_getsockopt, 2782 #endif 2783 .diag_destroy = udp_abort, 2784 }; 2785 EXPORT_SYMBOL(udp_prot); 2786 2787 /* ------------------------------------------------------------------------ */ 2788 #ifdef CONFIG_PROC_FS 2789 2790 static struct sock *udp_get_first(struct seq_file *seq, int start) 2791 { 2792 struct sock *sk; 2793 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2794 struct udp_iter_state *state = seq->private; 2795 struct net *net = seq_file_net(seq); 2796 2797 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2798 ++state->bucket) { 2799 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2800 2801 if (hlist_empty(&hslot->head)) 2802 continue; 2803 2804 spin_lock_bh(&hslot->lock); 2805 sk_for_each(sk, &hslot->head) { 2806 if (!net_eq(sock_net(sk), net)) 2807 continue; 2808 if (sk->sk_family == afinfo->family) 2809 goto found; 2810 } 2811 spin_unlock_bh(&hslot->lock); 2812 } 2813 sk = NULL; 2814 found: 2815 return sk; 2816 } 2817 2818 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2819 { 2820 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2821 struct udp_iter_state *state = seq->private; 2822 struct net *net = seq_file_net(seq); 2823 2824 do { 2825 sk = sk_next(sk); 2826 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family)); 2827 2828 if (!sk) { 2829 if (state->bucket <= afinfo->udp_table->mask) 2830 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2831 return udp_get_first(seq, state->bucket + 1); 2832 } 2833 return sk; 2834 } 2835 2836 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2837 { 2838 struct sock *sk = udp_get_first(seq, 0); 2839 2840 if (sk) 2841 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2842 --pos; 2843 return pos ? NULL : sk; 2844 } 2845 2846 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2847 { 2848 struct udp_iter_state *state = seq->private; 2849 state->bucket = MAX_UDP_PORTS; 2850 2851 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2852 } 2853 EXPORT_SYMBOL(udp_seq_start); 2854 2855 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2856 { 2857 struct sock *sk; 2858 2859 if (v == SEQ_START_TOKEN) 2860 sk = udp_get_idx(seq, 0); 2861 else 2862 sk = udp_get_next(seq, v); 2863 2864 ++*pos; 2865 return sk; 2866 } 2867 EXPORT_SYMBOL(udp_seq_next); 2868 2869 void udp_seq_stop(struct seq_file *seq, void *v) 2870 { 2871 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2872 struct udp_iter_state *state = seq->private; 2873 2874 if (state->bucket <= afinfo->udp_table->mask) 2875 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2876 } 2877 EXPORT_SYMBOL(udp_seq_stop); 2878 2879 /* ------------------------------------------------------------------------ */ 2880 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2881 int bucket) 2882 { 2883 struct inet_sock *inet = inet_sk(sp); 2884 __be32 dest = inet->inet_daddr; 2885 __be32 src = inet->inet_rcv_saddr; 2886 __u16 destp = ntohs(inet->inet_dport); 2887 __u16 srcp = ntohs(inet->inet_sport); 2888 2889 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2890 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 2891 bucket, src, srcp, dest, destp, sp->sk_state, 2892 sk_wmem_alloc_get(sp), 2893 udp_rqueue_get(sp), 2894 0, 0L, 0, 2895 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2896 0, sock_i_ino(sp), 2897 refcount_read(&sp->sk_refcnt), sp, 2898 atomic_read(&sp->sk_drops)); 2899 } 2900 2901 int udp4_seq_show(struct seq_file *seq, void *v) 2902 { 2903 seq_setwidth(seq, 127); 2904 if (v == SEQ_START_TOKEN) 2905 seq_puts(seq, " sl local_address rem_address st tx_queue " 2906 "rx_queue tr tm->when retrnsmt uid timeout " 2907 "inode ref pointer drops"); 2908 else { 2909 struct udp_iter_state *state = seq->private; 2910 2911 udp4_format_sock(v, seq, state->bucket); 2912 } 2913 seq_pad(seq, '\n'); 2914 return 0; 2915 } 2916 2917 const struct seq_operations udp_seq_ops = { 2918 .start = udp_seq_start, 2919 .next = udp_seq_next, 2920 .stop = udp_seq_stop, 2921 .show = udp4_seq_show, 2922 }; 2923 EXPORT_SYMBOL(udp_seq_ops); 2924 2925 static struct udp_seq_afinfo udp4_seq_afinfo = { 2926 .family = AF_INET, 2927 .udp_table = &udp_table, 2928 }; 2929 2930 static int __net_init udp4_proc_init_net(struct net *net) 2931 { 2932 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 2933 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 2934 return -ENOMEM; 2935 return 0; 2936 } 2937 2938 static void __net_exit udp4_proc_exit_net(struct net *net) 2939 { 2940 remove_proc_entry("udp", net->proc_net); 2941 } 2942 2943 static struct pernet_operations udp4_net_ops = { 2944 .init = udp4_proc_init_net, 2945 .exit = udp4_proc_exit_net, 2946 }; 2947 2948 int __init udp4_proc_init(void) 2949 { 2950 return register_pernet_subsys(&udp4_net_ops); 2951 } 2952 2953 void udp4_proc_exit(void) 2954 { 2955 unregister_pernet_subsys(&udp4_net_ops); 2956 } 2957 #endif /* CONFIG_PROC_FS */ 2958 2959 static __initdata unsigned long uhash_entries; 2960 static int __init set_uhash_entries(char *str) 2961 { 2962 ssize_t ret; 2963 2964 if (!str) 2965 return 0; 2966 2967 ret = kstrtoul(str, 0, &uhash_entries); 2968 if (ret) 2969 return 0; 2970 2971 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2972 uhash_entries = UDP_HTABLE_SIZE_MIN; 2973 return 1; 2974 } 2975 __setup("uhash_entries=", set_uhash_entries); 2976 2977 void __init udp_table_init(struct udp_table *table, const char *name) 2978 { 2979 unsigned int i; 2980 2981 table->hash = alloc_large_system_hash(name, 2982 2 * sizeof(struct udp_hslot), 2983 uhash_entries, 2984 21, /* one slot per 2 MB */ 2985 0, 2986 &table->log, 2987 &table->mask, 2988 UDP_HTABLE_SIZE_MIN, 2989 64 * 1024); 2990 2991 table->hash2 = table->hash + (table->mask + 1); 2992 for (i = 0; i <= table->mask; i++) { 2993 INIT_HLIST_HEAD(&table->hash[i].head); 2994 table->hash[i].count = 0; 2995 spin_lock_init(&table->hash[i].lock); 2996 } 2997 for (i = 0; i <= table->mask; i++) { 2998 INIT_HLIST_HEAD(&table->hash2[i].head); 2999 table->hash2[i].count = 0; 3000 spin_lock_init(&table->hash2[i].lock); 3001 } 3002 } 3003 3004 u32 udp_flow_hashrnd(void) 3005 { 3006 static u32 hashrnd __read_mostly; 3007 3008 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3009 3010 return hashrnd; 3011 } 3012 EXPORT_SYMBOL(udp_flow_hashrnd); 3013 3014 static void __udp_sysctl_init(struct net *net) 3015 { 3016 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 3017 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 3018 3019 #ifdef CONFIG_NET_L3_MASTER_DEV 3020 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3021 #endif 3022 } 3023 3024 static int __net_init udp_sysctl_init(struct net *net) 3025 { 3026 __udp_sysctl_init(net); 3027 return 0; 3028 } 3029 3030 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3031 .init = udp_sysctl_init, 3032 }; 3033 3034 void __init udp_init(void) 3035 { 3036 unsigned long limit; 3037 unsigned int i; 3038 3039 udp_table_init(&udp_table, "UDP"); 3040 limit = nr_free_buffer_pages() / 8; 3041 limit = max(limit, 128UL); 3042 sysctl_udp_mem[0] = limit / 4 * 3; 3043 sysctl_udp_mem[1] = limit; 3044 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3045 3046 __udp_sysctl_init(&init_net); 3047 3048 /* 16 spinlocks per cpu */ 3049 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3050 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3051 GFP_KERNEL); 3052 if (!udp_busylocks) 3053 panic("UDP: failed to alloc udp_busylocks\n"); 3054 for (i = 0; i < (1U << udp_busylocks_log); i++) 3055 spin_lock_init(udp_busylocks + i); 3056 3057 if (register_pernet_subsys(&udp_sysctl_ops)) 3058 panic("UDP: failed to init sysctl parameters.\n"); 3059 } 3060