xref: /openbmc/linux/net/ipv4/udp.c (revision 06ba8020)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122 
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125 
126 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
129 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
130 
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
133 
134 static struct udp_table *udp_get_table_prot(struct sock *sk)
135 {
136 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
137 }
138 
139 static int udp_lib_lport_inuse(struct net *net, __u16 num,
140 			       const struct udp_hslot *hslot,
141 			       unsigned long *bitmap,
142 			       struct sock *sk, unsigned int log)
143 {
144 	struct sock *sk2;
145 	kuid_t uid = sock_i_uid(sk);
146 
147 	sk_for_each(sk2, &hslot->head) {
148 		if (net_eq(sock_net(sk2), net) &&
149 		    sk2 != sk &&
150 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
152 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 		    inet_rcv_saddr_equal(sk, sk2, true)) {
155 			if (sk2->sk_reuseport && sk->sk_reuseport &&
156 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
157 			    uid_eq(uid, sock_i_uid(sk2))) {
158 				if (!bitmap)
159 					return 0;
160 			} else {
161 				if (!bitmap)
162 					return 1;
163 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
164 					  bitmap);
165 			}
166 		}
167 	}
168 	return 0;
169 }
170 
171 /*
172  * Note: we still hold spinlock of primary hash chain, so no other writer
173  * can insert/delete a socket with local_port == num
174  */
175 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
176 				struct udp_hslot *hslot2,
177 				struct sock *sk)
178 {
179 	struct sock *sk2;
180 	kuid_t uid = sock_i_uid(sk);
181 	int res = 0;
182 
183 	spin_lock(&hslot2->lock);
184 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 		if (net_eq(sock_net(sk2), net) &&
186 		    sk2 != sk &&
187 		    (udp_sk(sk2)->udp_port_hash == num) &&
188 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
189 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 		    inet_rcv_saddr_equal(sk, sk2, true)) {
192 			if (sk2->sk_reuseport && sk->sk_reuseport &&
193 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
194 			    uid_eq(uid, sock_i_uid(sk2))) {
195 				res = 0;
196 			} else {
197 				res = 1;
198 			}
199 			break;
200 		}
201 	}
202 	spin_unlock(&hslot2->lock);
203 	return res;
204 }
205 
206 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
207 {
208 	struct net *net = sock_net(sk);
209 	kuid_t uid = sock_i_uid(sk);
210 	struct sock *sk2;
211 
212 	sk_for_each(sk2, &hslot->head) {
213 		if (net_eq(sock_net(sk2), net) &&
214 		    sk2 != sk &&
215 		    sk2->sk_family == sk->sk_family &&
216 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 		    inet_rcv_saddr_equal(sk, sk2, false)) {
221 			return reuseport_add_sock(sk, sk2,
222 						  inet_rcv_saddr_any(sk));
223 		}
224 	}
225 
226 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
227 }
228 
229 /**
230  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
231  *
232  *  @sk:          socket struct in question
233  *  @snum:        port number to look up
234  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
235  *                   with NULL address
236  */
237 int udp_lib_get_port(struct sock *sk, unsigned short snum,
238 		     unsigned int hash2_nulladdr)
239 {
240 	struct udp_table *udptable = udp_get_table_prot(sk);
241 	struct udp_hslot *hslot, *hslot2;
242 	struct net *net = sock_net(sk);
243 	int error = -EADDRINUSE;
244 
245 	if (!snum) {
246 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
247 		unsigned short first, last;
248 		int low, high, remaining;
249 		unsigned int rand;
250 
251 		inet_sk_get_local_port_range(sk, &low, &high);
252 		remaining = (high - low) + 1;
253 
254 		rand = get_random_u32();
255 		first = reciprocal_scale(rand, remaining) + low;
256 		/*
257 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
258 		 */
259 		rand = (rand | 1) * (udptable->mask + 1);
260 		last = first + udptable->mask + 1;
261 		do {
262 			hslot = udp_hashslot(udptable, net, first);
263 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
264 			spin_lock_bh(&hslot->lock);
265 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
266 					    udptable->log);
267 
268 			snum = first;
269 			/*
270 			 * Iterate on all possible values of snum for this hash.
271 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
272 			 * give us randomization and full range coverage.
273 			 */
274 			do {
275 				if (low <= snum && snum <= high &&
276 				    !test_bit(snum >> udptable->log, bitmap) &&
277 				    !inet_is_local_reserved_port(net, snum))
278 					goto found;
279 				snum += rand;
280 			} while (snum != first);
281 			spin_unlock_bh(&hslot->lock);
282 			cond_resched();
283 		} while (++first != last);
284 		goto fail;
285 	} else {
286 		hslot = udp_hashslot(udptable, net, snum);
287 		spin_lock_bh(&hslot->lock);
288 		if (hslot->count > 10) {
289 			int exist;
290 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
291 
292 			slot2          &= udptable->mask;
293 			hash2_nulladdr &= udptable->mask;
294 
295 			hslot2 = udp_hashslot2(udptable, slot2);
296 			if (hslot->count < hslot2->count)
297 				goto scan_primary_hash;
298 
299 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
300 			if (!exist && (hash2_nulladdr != slot2)) {
301 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
302 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
303 							     sk);
304 			}
305 			if (exist)
306 				goto fail_unlock;
307 			else
308 				goto found;
309 		}
310 scan_primary_hash:
311 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
312 			goto fail_unlock;
313 	}
314 found:
315 	inet_sk(sk)->inet_num = snum;
316 	udp_sk(sk)->udp_port_hash = snum;
317 	udp_sk(sk)->udp_portaddr_hash ^= snum;
318 	if (sk_unhashed(sk)) {
319 		if (sk->sk_reuseport &&
320 		    udp_reuseport_add_sock(sk, hslot)) {
321 			inet_sk(sk)->inet_num = 0;
322 			udp_sk(sk)->udp_port_hash = 0;
323 			udp_sk(sk)->udp_portaddr_hash ^= snum;
324 			goto fail_unlock;
325 		}
326 
327 		sk_add_node_rcu(sk, &hslot->head);
328 		hslot->count++;
329 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
330 
331 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
332 		spin_lock(&hslot2->lock);
333 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
334 		    sk->sk_family == AF_INET6)
335 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
336 					   &hslot2->head);
337 		else
338 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
339 					   &hslot2->head);
340 		hslot2->count++;
341 		spin_unlock(&hslot2->lock);
342 	}
343 	sock_set_flag(sk, SOCK_RCU_FREE);
344 	error = 0;
345 fail_unlock:
346 	spin_unlock_bh(&hslot->lock);
347 fail:
348 	return error;
349 }
350 EXPORT_SYMBOL(udp_lib_get_port);
351 
352 int udp_v4_get_port(struct sock *sk, unsigned short snum)
353 {
354 	unsigned int hash2_nulladdr =
355 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
356 	unsigned int hash2_partial =
357 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
358 
359 	/* precompute partial secondary hash */
360 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
361 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
362 }
363 
364 static int compute_score(struct sock *sk, struct net *net,
365 			 __be32 saddr, __be16 sport,
366 			 __be32 daddr, unsigned short hnum,
367 			 int dif, int sdif)
368 {
369 	int score;
370 	struct inet_sock *inet;
371 	bool dev_match;
372 
373 	if (!net_eq(sock_net(sk), net) ||
374 	    udp_sk(sk)->udp_port_hash != hnum ||
375 	    ipv6_only_sock(sk))
376 		return -1;
377 
378 	if (sk->sk_rcv_saddr != daddr)
379 		return -1;
380 
381 	score = (sk->sk_family == PF_INET) ? 2 : 1;
382 
383 	inet = inet_sk(sk);
384 	if (inet->inet_daddr) {
385 		if (inet->inet_daddr != saddr)
386 			return -1;
387 		score += 4;
388 	}
389 
390 	if (inet->inet_dport) {
391 		if (inet->inet_dport != sport)
392 			return -1;
393 		score += 4;
394 	}
395 
396 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
397 					dif, sdif);
398 	if (!dev_match)
399 		return -1;
400 	if (sk->sk_bound_dev_if)
401 		score += 4;
402 
403 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
404 		score++;
405 	return score;
406 }
407 
408 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
409 		       const __u16 lport, const __be32 faddr,
410 		       const __be16 fport)
411 {
412 	static u32 udp_ehash_secret __read_mostly;
413 
414 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
415 
416 	return __inet_ehashfn(laddr, lport, faddr, fport,
417 			      udp_ehash_secret + net_hash_mix(net));
418 }
419 
420 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
421 				     struct sk_buff *skb,
422 				     __be32 saddr, __be16 sport,
423 				     __be32 daddr, unsigned short hnum)
424 {
425 	struct sock *reuse_sk = NULL;
426 	u32 hash;
427 
428 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
429 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
430 		reuse_sk = reuseport_select_sock(sk, hash, skb,
431 						 sizeof(struct udphdr));
432 	}
433 	return reuse_sk;
434 }
435 
436 /* called with rcu_read_lock() */
437 static struct sock *udp4_lib_lookup2(struct net *net,
438 				     __be32 saddr, __be16 sport,
439 				     __be32 daddr, unsigned int hnum,
440 				     int dif, int sdif,
441 				     struct udp_hslot *hslot2,
442 				     struct sk_buff *skb)
443 {
444 	struct sock *sk, *result;
445 	int score, badness;
446 
447 	result = NULL;
448 	badness = 0;
449 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
450 		score = compute_score(sk, net, saddr, sport,
451 				      daddr, hnum, dif, sdif);
452 		if (score > badness) {
453 			result = lookup_reuseport(net, sk, skb,
454 						  saddr, sport, daddr, hnum);
455 			/* Fall back to scoring if group has connections */
456 			if (result && !reuseport_has_conns(sk))
457 				return result;
458 
459 			result = result ? : sk;
460 			badness = score;
461 		}
462 	}
463 	return result;
464 }
465 
466 static struct sock *udp4_lookup_run_bpf(struct net *net,
467 					struct udp_table *udptable,
468 					struct sk_buff *skb,
469 					__be32 saddr, __be16 sport,
470 					__be32 daddr, u16 hnum, const int dif)
471 {
472 	struct sock *sk, *reuse_sk;
473 	bool no_reuseport;
474 
475 	if (udptable != net->ipv4.udp_table)
476 		return NULL; /* only UDP is supported */
477 
478 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
479 					    daddr, hnum, dif, &sk);
480 	if (no_reuseport || IS_ERR_OR_NULL(sk))
481 		return sk;
482 
483 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
484 	if (reuse_sk)
485 		sk = reuse_sk;
486 	return sk;
487 }
488 
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490  * harder than this. -DaveM
491  */
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 		__be16 sport, __be32 daddr, __be16 dport, int dif,
494 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
495 {
496 	unsigned short hnum = ntohs(dport);
497 	unsigned int hash2, slot2;
498 	struct udp_hslot *hslot2;
499 	struct sock *result, *sk;
500 
501 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
502 	slot2 = hash2 & udptable->mask;
503 	hslot2 = &udptable->hash2[slot2];
504 
505 	/* Lookup connected or non-wildcard socket */
506 	result = udp4_lib_lookup2(net, saddr, sport,
507 				  daddr, hnum, dif, sdif,
508 				  hslot2, skb);
509 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
510 		goto done;
511 
512 	/* Lookup redirect from BPF */
513 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
514 		sk = udp4_lookup_run_bpf(net, udptable, skb,
515 					 saddr, sport, daddr, hnum, dif);
516 		if (sk) {
517 			result = sk;
518 			goto done;
519 		}
520 	}
521 
522 	/* Got non-wildcard socket or error on first lookup */
523 	if (result)
524 		goto done;
525 
526 	/* Lookup wildcard sockets */
527 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
528 	slot2 = hash2 & udptable->mask;
529 	hslot2 = &udptable->hash2[slot2];
530 
531 	result = udp4_lib_lookup2(net, saddr, sport,
532 				  htonl(INADDR_ANY), hnum, dif, sdif,
533 				  hslot2, skb);
534 done:
535 	if (IS_ERR(result))
536 		return NULL;
537 	return result;
538 }
539 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
540 
541 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
542 						 __be16 sport, __be16 dport,
543 						 struct udp_table *udptable)
544 {
545 	const struct iphdr *iph = ip_hdr(skb);
546 
547 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
548 				 iph->daddr, dport, inet_iif(skb),
549 				 inet_sdif(skb), udptable, skb);
550 }
551 
552 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
553 				 __be16 sport, __be16 dport)
554 {
555 	const struct iphdr *iph = ip_hdr(skb);
556 	struct net *net = dev_net(skb->dev);
557 
558 	return __udp4_lib_lookup(net, iph->saddr, sport,
559 				 iph->daddr, dport, inet_iif(skb),
560 				 inet_sdif(skb), net->ipv4.udp_table, NULL);
561 }
562 
563 /* Must be called under rcu_read_lock().
564  * Does increment socket refcount.
565  */
566 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
567 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
568 			     __be32 daddr, __be16 dport, int dif)
569 {
570 	struct sock *sk;
571 
572 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
573 			       dif, 0, net->ipv4.udp_table, NULL);
574 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
575 		sk = NULL;
576 	return sk;
577 }
578 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
579 #endif
580 
581 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
582 				       __be16 loc_port, __be32 loc_addr,
583 				       __be16 rmt_port, __be32 rmt_addr,
584 				       int dif, int sdif, unsigned short hnum)
585 {
586 	const struct inet_sock *inet = inet_sk(sk);
587 
588 	if (!net_eq(sock_net(sk), net) ||
589 	    udp_sk(sk)->udp_port_hash != hnum ||
590 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
591 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
592 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
593 	    ipv6_only_sock(sk) ||
594 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
595 		return false;
596 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
597 		return false;
598 	return true;
599 }
600 
601 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
602 void udp_encap_enable(void)
603 {
604 	static_branch_inc(&udp_encap_needed_key);
605 }
606 EXPORT_SYMBOL(udp_encap_enable);
607 
608 void udp_encap_disable(void)
609 {
610 	static_branch_dec(&udp_encap_needed_key);
611 }
612 EXPORT_SYMBOL(udp_encap_disable);
613 
614 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
615  * through error handlers in encapsulations looking for a match.
616  */
617 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
618 {
619 	int i;
620 
621 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
622 		int (*handler)(struct sk_buff *skb, u32 info);
623 		const struct ip_tunnel_encap_ops *encap;
624 
625 		encap = rcu_dereference(iptun_encaps[i]);
626 		if (!encap)
627 			continue;
628 		handler = encap->err_handler;
629 		if (handler && !handler(skb, info))
630 			return 0;
631 	}
632 
633 	return -ENOENT;
634 }
635 
636 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
637  * reversing source and destination port: this will match tunnels that force the
638  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
639  * lwtunnels might actually break this assumption by being configured with
640  * different destination ports on endpoints, in this case we won't be able to
641  * trace ICMP messages back to them.
642  *
643  * If this doesn't match any socket, probe tunnels with arbitrary destination
644  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
645  * we've sent packets to won't necessarily match the local destination port.
646  *
647  * Then ask the tunnel implementation to match the error against a valid
648  * association.
649  *
650  * Return an error if we can't find a match, the socket if we need further
651  * processing, zero otherwise.
652  */
653 static struct sock *__udp4_lib_err_encap(struct net *net,
654 					 const struct iphdr *iph,
655 					 struct udphdr *uh,
656 					 struct udp_table *udptable,
657 					 struct sock *sk,
658 					 struct sk_buff *skb, u32 info)
659 {
660 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
661 	int network_offset, transport_offset;
662 	struct udp_sock *up;
663 
664 	network_offset = skb_network_offset(skb);
665 	transport_offset = skb_transport_offset(skb);
666 
667 	/* Network header needs to point to the outer IPv4 header inside ICMP */
668 	skb_reset_network_header(skb);
669 
670 	/* Transport header needs to point to the UDP header */
671 	skb_set_transport_header(skb, iph->ihl << 2);
672 
673 	if (sk) {
674 		up = udp_sk(sk);
675 
676 		lookup = READ_ONCE(up->encap_err_lookup);
677 		if (lookup && lookup(sk, skb))
678 			sk = NULL;
679 
680 		goto out;
681 	}
682 
683 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
684 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
685 			       udptable, NULL);
686 	if (sk) {
687 		up = udp_sk(sk);
688 
689 		lookup = READ_ONCE(up->encap_err_lookup);
690 		if (!lookup || lookup(sk, skb))
691 			sk = NULL;
692 	}
693 
694 out:
695 	if (!sk)
696 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
697 
698 	skb_set_transport_header(skb, transport_offset);
699 	skb_set_network_header(skb, network_offset);
700 
701 	return sk;
702 }
703 
704 /*
705  * This routine is called by the ICMP module when it gets some
706  * sort of error condition.  If err < 0 then the socket should
707  * be closed and the error returned to the user.  If err > 0
708  * it's just the icmp type << 8 | icmp code.
709  * Header points to the ip header of the error packet. We move
710  * on past this. Then (as it used to claim before adjustment)
711  * header points to the first 8 bytes of the udp header.  We need
712  * to find the appropriate port.
713  */
714 
715 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
716 {
717 	struct inet_sock *inet;
718 	const struct iphdr *iph = (const struct iphdr *)skb->data;
719 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
720 	const int type = icmp_hdr(skb)->type;
721 	const int code = icmp_hdr(skb)->code;
722 	bool tunnel = false;
723 	struct sock *sk;
724 	int harderr;
725 	int err;
726 	struct net *net = dev_net(skb->dev);
727 
728 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
729 			       iph->saddr, uh->source, skb->dev->ifindex,
730 			       inet_sdif(skb), udptable, NULL);
731 
732 	if (!sk || udp_sk(sk)->encap_type) {
733 		/* No socket for error: try tunnels before discarding */
734 		if (static_branch_unlikely(&udp_encap_needed_key)) {
735 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
736 						  info);
737 			if (!sk)
738 				return 0;
739 		} else
740 			sk = ERR_PTR(-ENOENT);
741 
742 		if (IS_ERR(sk)) {
743 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
744 			return PTR_ERR(sk);
745 		}
746 
747 		tunnel = true;
748 	}
749 
750 	err = 0;
751 	harderr = 0;
752 	inet = inet_sk(sk);
753 
754 	switch (type) {
755 	default:
756 	case ICMP_TIME_EXCEEDED:
757 		err = EHOSTUNREACH;
758 		break;
759 	case ICMP_SOURCE_QUENCH:
760 		goto out;
761 	case ICMP_PARAMETERPROB:
762 		err = EPROTO;
763 		harderr = 1;
764 		break;
765 	case ICMP_DEST_UNREACH:
766 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
767 			ipv4_sk_update_pmtu(skb, sk, info);
768 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
769 				err = EMSGSIZE;
770 				harderr = 1;
771 				break;
772 			}
773 			goto out;
774 		}
775 		err = EHOSTUNREACH;
776 		if (code <= NR_ICMP_UNREACH) {
777 			harderr = icmp_err_convert[code].fatal;
778 			err = icmp_err_convert[code].errno;
779 		}
780 		break;
781 	case ICMP_REDIRECT:
782 		ipv4_sk_redirect(skb, sk);
783 		goto out;
784 	}
785 
786 	/*
787 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
788 	 *	4.1.3.3.
789 	 */
790 	if (tunnel) {
791 		/* ...not for tunnels though: we don't have a sending socket */
792 		if (udp_sk(sk)->encap_err_rcv)
793 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
794 						  (u8 *)(uh+1));
795 		goto out;
796 	}
797 	if (!inet->recverr) {
798 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
799 			goto out;
800 	} else
801 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
802 
803 	sk->sk_err = err;
804 	sk_error_report(sk);
805 out:
806 	return 0;
807 }
808 
809 int udp_err(struct sk_buff *skb, u32 info)
810 {
811 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
812 }
813 
814 /*
815  * Throw away all pending data and cancel the corking. Socket is locked.
816  */
817 void udp_flush_pending_frames(struct sock *sk)
818 {
819 	struct udp_sock *up = udp_sk(sk);
820 
821 	if (up->pending) {
822 		up->len = 0;
823 		up->pending = 0;
824 		ip_flush_pending_frames(sk);
825 	}
826 }
827 EXPORT_SYMBOL(udp_flush_pending_frames);
828 
829 /**
830  * 	udp4_hwcsum  -  handle outgoing HW checksumming
831  * 	@skb: 	sk_buff containing the filled-in UDP header
832  * 	        (checksum field must be zeroed out)
833  *	@src:	source IP address
834  *	@dst:	destination IP address
835  */
836 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
837 {
838 	struct udphdr *uh = udp_hdr(skb);
839 	int offset = skb_transport_offset(skb);
840 	int len = skb->len - offset;
841 	int hlen = len;
842 	__wsum csum = 0;
843 
844 	if (!skb_has_frag_list(skb)) {
845 		/*
846 		 * Only one fragment on the socket.
847 		 */
848 		skb->csum_start = skb_transport_header(skb) - skb->head;
849 		skb->csum_offset = offsetof(struct udphdr, check);
850 		uh->check = ~csum_tcpudp_magic(src, dst, len,
851 					       IPPROTO_UDP, 0);
852 	} else {
853 		struct sk_buff *frags;
854 
855 		/*
856 		 * HW-checksum won't work as there are two or more
857 		 * fragments on the socket so that all csums of sk_buffs
858 		 * should be together
859 		 */
860 		skb_walk_frags(skb, frags) {
861 			csum = csum_add(csum, frags->csum);
862 			hlen -= frags->len;
863 		}
864 
865 		csum = skb_checksum(skb, offset, hlen, csum);
866 		skb->ip_summed = CHECKSUM_NONE;
867 
868 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
869 		if (uh->check == 0)
870 			uh->check = CSUM_MANGLED_0;
871 	}
872 }
873 EXPORT_SYMBOL_GPL(udp4_hwcsum);
874 
875 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
876  * for the simple case like when setting the checksum for a UDP tunnel.
877  */
878 void udp_set_csum(bool nocheck, struct sk_buff *skb,
879 		  __be32 saddr, __be32 daddr, int len)
880 {
881 	struct udphdr *uh = udp_hdr(skb);
882 
883 	if (nocheck) {
884 		uh->check = 0;
885 	} else if (skb_is_gso(skb)) {
886 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
887 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
888 		uh->check = 0;
889 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
890 		if (uh->check == 0)
891 			uh->check = CSUM_MANGLED_0;
892 	} else {
893 		skb->ip_summed = CHECKSUM_PARTIAL;
894 		skb->csum_start = skb_transport_header(skb) - skb->head;
895 		skb->csum_offset = offsetof(struct udphdr, check);
896 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
897 	}
898 }
899 EXPORT_SYMBOL(udp_set_csum);
900 
901 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
902 			struct inet_cork *cork)
903 {
904 	struct sock *sk = skb->sk;
905 	struct inet_sock *inet = inet_sk(sk);
906 	struct udphdr *uh;
907 	int err;
908 	int is_udplite = IS_UDPLITE(sk);
909 	int offset = skb_transport_offset(skb);
910 	int len = skb->len - offset;
911 	int datalen = len - sizeof(*uh);
912 	__wsum csum = 0;
913 
914 	/*
915 	 * Create a UDP header
916 	 */
917 	uh = udp_hdr(skb);
918 	uh->source = inet->inet_sport;
919 	uh->dest = fl4->fl4_dport;
920 	uh->len = htons(len);
921 	uh->check = 0;
922 
923 	if (cork->gso_size) {
924 		const int hlen = skb_network_header_len(skb) +
925 				 sizeof(struct udphdr);
926 
927 		if (hlen + cork->gso_size > cork->fragsize) {
928 			kfree_skb(skb);
929 			return -EINVAL;
930 		}
931 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
932 			kfree_skb(skb);
933 			return -EINVAL;
934 		}
935 		if (sk->sk_no_check_tx) {
936 			kfree_skb(skb);
937 			return -EINVAL;
938 		}
939 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
940 		    dst_xfrm(skb_dst(skb))) {
941 			kfree_skb(skb);
942 			return -EIO;
943 		}
944 
945 		if (datalen > cork->gso_size) {
946 			skb_shinfo(skb)->gso_size = cork->gso_size;
947 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
948 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
949 								 cork->gso_size);
950 		}
951 		goto csum_partial;
952 	}
953 
954 	if (is_udplite)  				 /*     UDP-Lite      */
955 		csum = udplite_csum(skb);
956 
957 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
958 
959 		skb->ip_summed = CHECKSUM_NONE;
960 		goto send;
961 
962 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
963 csum_partial:
964 
965 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
966 		goto send;
967 
968 	} else
969 		csum = udp_csum(skb);
970 
971 	/* add protocol-dependent pseudo-header */
972 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
973 				      sk->sk_protocol, csum);
974 	if (uh->check == 0)
975 		uh->check = CSUM_MANGLED_0;
976 
977 send:
978 	err = ip_send_skb(sock_net(sk), skb);
979 	if (err) {
980 		if (err == -ENOBUFS && !inet->recverr) {
981 			UDP_INC_STATS(sock_net(sk),
982 				      UDP_MIB_SNDBUFERRORS, is_udplite);
983 			err = 0;
984 		}
985 	} else
986 		UDP_INC_STATS(sock_net(sk),
987 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
988 	return err;
989 }
990 
991 /*
992  * Push out all pending data as one UDP datagram. Socket is locked.
993  */
994 int udp_push_pending_frames(struct sock *sk)
995 {
996 	struct udp_sock  *up = udp_sk(sk);
997 	struct inet_sock *inet = inet_sk(sk);
998 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
999 	struct sk_buff *skb;
1000 	int err = 0;
1001 
1002 	skb = ip_finish_skb(sk, fl4);
1003 	if (!skb)
1004 		goto out;
1005 
1006 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1007 
1008 out:
1009 	up->len = 0;
1010 	up->pending = 0;
1011 	return err;
1012 }
1013 EXPORT_SYMBOL(udp_push_pending_frames);
1014 
1015 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1016 {
1017 	switch (cmsg->cmsg_type) {
1018 	case UDP_SEGMENT:
1019 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1020 			return -EINVAL;
1021 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1022 		return 0;
1023 	default:
1024 		return -EINVAL;
1025 	}
1026 }
1027 
1028 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1029 {
1030 	struct cmsghdr *cmsg;
1031 	bool need_ip = false;
1032 	int err;
1033 
1034 	for_each_cmsghdr(cmsg, msg) {
1035 		if (!CMSG_OK(msg, cmsg))
1036 			return -EINVAL;
1037 
1038 		if (cmsg->cmsg_level != SOL_UDP) {
1039 			need_ip = true;
1040 			continue;
1041 		}
1042 
1043 		err = __udp_cmsg_send(cmsg, gso_size);
1044 		if (err)
1045 			return err;
1046 	}
1047 
1048 	return need_ip;
1049 }
1050 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1051 
1052 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1053 {
1054 	struct inet_sock *inet = inet_sk(sk);
1055 	struct udp_sock *up = udp_sk(sk);
1056 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1057 	struct flowi4 fl4_stack;
1058 	struct flowi4 *fl4;
1059 	int ulen = len;
1060 	struct ipcm_cookie ipc;
1061 	struct rtable *rt = NULL;
1062 	int free = 0;
1063 	int connected = 0;
1064 	__be32 daddr, faddr, saddr;
1065 	__be16 dport;
1066 	u8  tos;
1067 	int err, is_udplite = IS_UDPLITE(sk);
1068 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1069 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1070 	struct sk_buff *skb;
1071 	struct ip_options_data opt_copy;
1072 
1073 	if (len > 0xFFFF)
1074 		return -EMSGSIZE;
1075 
1076 	/*
1077 	 *	Check the flags.
1078 	 */
1079 
1080 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1081 		return -EOPNOTSUPP;
1082 
1083 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1084 
1085 	fl4 = &inet->cork.fl.u.ip4;
1086 	if (up->pending) {
1087 		/*
1088 		 * There are pending frames.
1089 		 * The socket lock must be held while it's corked.
1090 		 */
1091 		lock_sock(sk);
1092 		if (likely(up->pending)) {
1093 			if (unlikely(up->pending != AF_INET)) {
1094 				release_sock(sk);
1095 				return -EINVAL;
1096 			}
1097 			goto do_append_data;
1098 		}
1099 		release_sock(sk);
1100 	}
1101 	ulen += sizeof(struct udphdr);
1102 
1103 	/*
1104 	 *	Get and verify the address.
1105 	 */
1106 	if (usin) {
1107 		if (msg->msg_namelen < sizeof(*usin))
1108 			return -EINVAL;
1109 		if (usin->sin_family != AF_INET) {
1110 			if (usin->sin_family != AF_UNSPEC)
1111 				return -EAFNOSUPPORT;
1112 		}
1113 
1114 		daddr = usin->sin_addr.s_addr;
1115 		dport = usin->sin_port;
1116 		if (dport == 0)
1117 			return -EINVAL;
1118 	} else {
1119 		if (sk->sk_state != TCP_ESTABLISHED)
1120 			return -EDESTADDRREQ;
1121 		daddr = inet->inet_daddr;
1122 		dport = inet->inet_dport;
1123 		/* Open fast path for connected socket.
1124 		   Route will not be used, if at least one option is set.
1125 		 */
1126 		connected = 1;
1127 	}
1128 
1129 	ipcm_init_sk(&ipc, inet);
1130 	ipc.gso_size = READ_ONCE(up->gso_size);
1131 
1132 	if (msg->msg_controllen) {
1133 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1134 		if (err > 0)
1135 			err = ip_cmsg_send(sk, msg, &ipc,
1136 					   sk->sk_family == AF_INET6);
1137 		if (unlikely(err < 0)) {
1138 			kfree(ipc.opt);
1139 			return err;
1140 		}
1141 		if (ipc.opt)
1142 			free = 1;
1143 		connected = 0;
1144 	}
1145 	if (!ipc.opt) {
1146 		struct ip_options_rcu *inet_opt;
1147 
1148 		rcu_read_lock();
1149 		inet_opt = rcu_dereference(inet->inet_opt);
1150 		if (inet_opt) {
1151 			memcpy(&opt_copy, inet_opt,
1152 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1153 			ipc.opt = &opt_copy.opt;
1154 		}
1155 		rcu_read_unlock();
1156 	}
1157 
1158 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1159 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1160 					    (struct sockaddr *)usin, &ipc.addr);
1161 		if (err)
1162 			goto out_free;
1163 		if (usin) {
1164 			if (usin->sin_port == 0) {
1165 				/* BPF program set invalid port. Reject it. */
1166 				err = -EINVAL;
1167 				goto out_free;
1168 			}
1169 			daddr = usin->sin_addr.s_addr;
1170 			dport = usin->sin_port;
1171 		}
1172 	}
1173 
1174 	saddr = ipc.addr;
1175 	ipc.addr = faddr = daddr;
1176 
1177 	if (ipc.opt && ipc.opt->opt.srr) {
1178 		if (!daddr) {
1179 			err = -EINVAL;
1180 			goto out_free;
1181 		}
1182 		faddr = ipc.opt->opt.faddr;
1183 		connected = 0;
1184 	}
1185 	tos = get_rttos(&ipc, inet);
1186 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1187 	    (msg->msg_flags & MSG_DONTROUTE) ||
1188 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1189 		tos |= RTO_ONLINK;
1190 		connected = 0;
1191 	}
1192 
1193 	if (ipv4_is_multicast(daddr)) {
1194 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1195 			ipc.oif = inet->mc_index;
1196 		if (!saddr)
1197 			saddr = inet->mc_addr;
1198 		connected = 0;
1199 	} else if (!ipc.oif) {
1200 		ipc.oif = inet->uc_index;
1201 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1202 		/* oif is set, packet is to local broadcast and
1203 		 * uc_index is set. oif is most likely set
1204 		 * by sk_bound_dev_if. If uc_index != oif check if the
1205 		 * oif is an L3 master and uc_index is an L3 slave.
1206 		 * If so, we want to allow the send using the uc_index.
1207 		 */
1208 		if (ipc.oif != inet->uc_index &&
1209 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1210 							      inet->uc_index)) {
1211 			ipc.oif = inet->uc_index;
1212 		}
1213 	}
1214 
1215 	if (connected)
1216 		rt = (struct rtable *)sk_dst_check(sk, 0);
1217 
1218 	if (!rt) {
1219 		struct net *net = sock_net(sk);
1220 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1221 
1222 		fl4 = &fl4_stack;
1223 
1224 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1225 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1226 				   flow_flags,
1227 				   faddr, saddr, dport, inet->inet_sport,
1228 				   sk->sk_uid);
1229 
1230 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1231 		rt = ip_route_output_flow(net, fl4, sk);
1232 		if (IS_ERR(rt)) {
1233 			err = PTR_ERR(rt);
1234 			rt = NULL;
1235 			if (err == -ENETUNREACH)
1236 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1237 			goto out;
1238 		}
1239 
1240 		err = -EACCES;
1241 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1242 		    !sock_flag(sk, SOCK_BROADCAST))
1243 			goto out;
1244 		if (connected)
1245 			sk_dst_set(sk, dst_clone(&rt->dst));
1246 	}
1247 
1248 	if (msg->msg_flags&MSG_CONFIRM)
1249 		goto do_confirm;
1250 back_from_confirm:
1251 
1252 	saddr = fl4->saddr;
1253 	if (!ipc.addr)
1254 		daddr = ipc.addr = fl4->daddr;
1255 
1256 	/* Lockless fast path for the non-corking case. */
1257 	if (!corkreq) {
1258 		struct inet_cork cork;
1259 
1260 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1261 				  sizeof(struct udphdr), &ipc, &rt,
1262 				  &cork, msg->msg_flags);
1263 		err = PTR_ERR(skb);
1264 		if (!IS_ERR_OR_NULL(skb))
1265 			err = udp_send_skb(skb, fl4, &cork);
1266 		goto out;
1267 	}
1268 
1269 	lock_sock(sk);
1270 	if (unlikely(up->pending)) {
1271 		/* The socket is already corked while preparing it. */
1272 		/* ... which is an evident application bug. --ANK */
1273 		release_sock(sk);
1274 
1275 		net_dbg_ratelimited("socket already corked\n");
1276 		err = -EINVAL;
1277 		goto out;
1278 	}
1279 	/*
1280 	 *	Now cork the socket to pend data.
1281 	 */
1282 	fl4 = &inet->cork.fl.u.ip4;
1283 	fl4->daddr = daddr;
1284 	fl4->saddr = saddr;
1285 	fl4->fl4_dport = dport;
1286 	fl4->fl4_sport = inet->inet_sport;
1287 	up->pending = AF_INET;
1288 
1289 do_append_data:
1290 	up->len += ulen;
1291 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1292 			     sizeof(struct udphdr), &ipc, &rt,
1293 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1294 	if (err)
1295 		udp_flush_pending_frames(sk);
1296 	else if (!corkreq)
1297 		err = udp_push_pending_frames(sk);
1298 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1299 		up->pending = 0;
1300 	release_sock(sk);
1301 
1302 out:
1303 	ip_rt_put(rt);
1304 out_free:
1305 	if (free)
1306 		kfree(ipc.opt);
1307 	if (!err)
1308 		return len;
1309 	/*
1310 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1311 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1312 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1313 	 * things).  We could add another new stat but at least for now that
1314 	 * seems like overkill.
1315 	 */
1316 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1317 		UDP_INC_STATS(sock_net(sk),
1318 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1319 	}
1320 	return err;
1321 
1322 do_confirm:
1323 	if (msg->msg_flags & MSG_PROBE)
1324 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1325 	if (!(msg->msg_flags&MSG_PROBE) || len)
1326 		goto back_from_confirm;
1327 	err = 0;
1328 	goto out;
1329 }
1330 EXPORT_SYMBOL(udp_sendmsg);
1331 
1332 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1333 		 size_t size, int flags)
1334 {
1335 	struct inet_sock *inet = inet_sk(sk);
1336 	struct udp_sock *up = udp_sk(sk);
1337 	int ret;
1338 
1339 	if (flags & MSG_SENDPAGE_NOTLAST)
1340 		flags |= MSG_MORE;
1341 
1342 	if (!up->pending) {
1343 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1344 
1345 		/* Call udp_sendmsg to specify destination address which
1346 		 * sendpage interface can't pass.
1347 		 * This will succeed only when the socket is connected.
1348 		 */
1349 		ret = udp_sendmsg(sk, &msg, 0);
1350 		if (ret < 0)
1351 			return ret;
1352 	}
1353 
1354 	lock_sock(sk);
1355 
1356 	if (unlikely(!up->pending)) {
1357 		release_sock(sk);
1358 
1359 		net_dbg_ratelimited("cork failed\n");
1360 		return -EINVAL;
1361 	}
1362 
1363 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1364 			     page, offset, size, flags);
1365 	if (ret == -EOPNOTSUPP) {
1366 		release_sock(sk);
1367 		return sock_no_sendpage(sk->sk_socket, page, offset,
1368 					size, flags);
1369 	}
1370 	if (ret < 0) {
1371 		udp_flush_pending_frames(sk);
1372 		goto out;
1373 	}
1374 
1375 	up->len += size;
1376 	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1377 		ret = udp_push_pending_frames(sk);
1378 	if (!ret)
1379 		ret = size;
1380 out:
1381 	release_sock(sk);
1382 	return ret;
1383 }
1384 
1385 #define UDP_SKB_IS_STATELESS 0x80000000
1386 
1387 /* all head states (dst, sk, nf conntrack) except skb extensions are
1388  * cleared by udp_rcv().
1389  *
1390  * We need to preserve secpath, if present, to eventually process
1391  * IP_CMSG_PASSSEC at recvmsg() time.
1392  *
1393  * Other extensions can be cleared.
1394  */
1395 static bool udp_try_make_stateless(struct sk_buff *skb)
1396 {
1397 	if (!skb_has_extensions(skb))
1398 		return true;
1399 
1400 	if (!secpath_exists(skb)) {
1401 		skb_ext_reset(skb);
1402 		return true;
1403 	}
1404 
1405 	return false;
1406 }
1407 
1408 static void udp_set_dev_scratch(struct sk_buff *skb)
1409 {
1410 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1411 
1412 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1413 	scratch->_tsize_state = skb->truesize;
1414 #if BITS_PER_LONG == 64
1415 	scratch->len = skb->len;
1416 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1417 	scratch->is_linear = !skb_is_nonlinear(skb);
1418 #endif
1419 	if (udp_try_make_stateless(skb))
1420 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1421 }
1422 
1423 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1424 {
1425 	/* We come here after udp_lib_checksum_complete() returned 0.
1426 	 * This means that __skb_checksum_complete() might have
1427 	 * set skb->csum_valid to 1.
1428 	 * On 64bit platforms, we can set csum_unnecessary
1429 	 * to true, but only if the skb is not shared.
1430 	 */
1431 #if BITS_PER_LONG == 64
1432 	if (!skb_shared(skb))
1433 		udp_skb_scratch(skb)->csum_unnecessary = true;
1434 #endif
1435 }
1436 
1437 static int udp_skb_truesize(struct sk_buff *skb)
1438 {
1439 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1440 }
1441 
1442 static bool udp_skb_has_head_state(struct sk_buff *skb)
1443 {
1444 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1445 }
1446 
1447 /* fully reclaim rmem/fwd memory allocated for skb */
1448 static void udp_rmem_release(struct sock *sk, int size, int partial,
1449 			     bool rx_queue_lock_held)
1450 {
1451 	struct udp_sock *up = udp_sk(sk);
1452 	struct sk_buff_head *sk_queue;
1453 	int amt;
1454 
1455 	if (likely(partial)) {
1456 		up->forward_deficit += size;
1457 		size = up->forward_deficit;
1458 		if (size < READ_ONCE(up->forward_threshold) &&
1459 		    !skb_queue_empty(&up->reader_queue))
1460 			return;
1461 	} else {
1462 		size += up->forward_deficit;
1463 	}
1464 	up->forward_deficit = 0;
1465 
1466 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1467 	 * if the called don't held it already
1468 	 */
1469 	sk_queue = &sk->sk_receive_queue;
1470 	if (!rx_queue_lock_held)
1471 		spin_lock(&sk_queue->lock);
1472 
1473 
1474 	sk->sk_forward_alloc += size;
1475 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1476 	sk->sk_forward_alloc -= amt;
1477 
1478 	if (amt)
1479 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1480 
1481 	atomic_sub(size, &sk->sk_rmem_alloc);
1482 
1483 	/* this can save us from acquiring the rx queue lock on next receive */
1484 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1485 
1486 	if (!rx_queue_lock_held)
1487 		spin_unlock(&sk_queue->lock);
1488 }
1489 
1490 /* Note: called with reader_queue.lock held.
1491  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1492  * This avoids a cache line miss while receive_queue lock is held.
1493  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1494  */
1495 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1496 {
1497 	prefetch(&skb->data);
1498 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1499 }
1500 EXPORT_SYMBOL(udp_skb_destructor);
1501 
1502 /* as above, but the caller held the rx queue lock, too */
1503 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1504 {
1505 	prefetch(&skb->data);
1506 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1507 }
1508 
1509 /* Idea of busylocks is to let producers grab an extra spinlock
1510  * to relieve pressure on the receive_queue spinlock shared by consumer.
1511  * Under flood, this means that only one producer can be in line
1512  * trying to acquire the receive_queue spinlock.
1513  * These busylock can be allocated on a per cpu manner, instead of a
1514  * per socket one (that would consume a cache line per socket)
1515  */
1516 static int udp_busylocks_log __read_mostly;
1517 static spinlock_t *udp_busylocks __read_mostly;
1518 
1519 static spinlock_t *busylock_acquire(void *ptr)
1520 {
1521 	spinlock_t *busy;
1522 
1523 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1524 	spin_lock(busy);
1525 	return busy;
1526 }
1527 
1528 static void busylock_release(spinlock_t *busy)
1529 {
1530 	if (busy)
1531 		spin_unlock(busy);
1532 }
1533 
1534 static int udp_rmem_schedule(struct sock *sk, int size)
1535 {
1536 	int delta;
1537 
1538 	delta = size - sk->sk_forward_alloc;
1539 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1540 		return -ENOBUFS;
1541 
1542 	return 0;
1543 }
1544 
1545 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1546 {
1547 	struct sk_buff_head *list = &sk->sk_receive_queue;
1548 	int rmem, err = -ENOMEM;
1549 	spinlock_t *busy = NULL;
1550 	int size;
1551 
1552 	/* try to avoid the costly atomic add/sub pair when the receive
1553 	 * queue is full; always allow at least a packet
1554 	 */
1555 	rmem = atomic_read(&sk->sk_rmem_alloc);
1556 	if (rmem > sk->sk_rcvbuf)
1557 		goto drop;
1558 
1559 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1560 	 * having linear skbs :
1561 	 * - Reduce memory overhead and thus increase receive queue capacity
1562 	 * - Less cache line misses at copyout() time
1563 	 * - Less work at consume_skb() (less alien page frag freeing)
1564 	 */
1565 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1566 		skb_condense(skb);
1567 
1568 		busy = busylock_acquire(sk);
1569 	}
1570 	size = skb->truesize;
1571 	udp_set_dev_scratch(skb);
1572 
1573 	/* we drop only if the receive buf is full and the receive
1574 	 * queue contains some other skb
1575 	 */
1576 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1577 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1578 		goto uncharge_drop;
1579 
1580 	spin_lock(&list->lock);
1581 	err = udp_rmem_schedule(sk, size);
1582 	if (err) {
1583 		spin_unlock(&list->lock);
1584 		goto uncharge_drop;
1585 	}
1586 
1587 	sk->sk_forward_alloc -= size;
1588 
1589 	/* no need to setup a destructor, we will explicitly release the
1590 	 * forward allocated memory on dequeue
1591 	 */
1592 	sock_skb_set_dropcount(sk, skb);
1593 
1594 	__skb_queue_tail(list, skb);
1595 	spin_unlock(&list->lock);
1596 
1597 	if (!sock_flag(sk, SOCK_DEAD))
1598 		sk->sk_data_ready(sk);
1599 
1600 	busylock_release(busy);
1601 	return 0;
1602 
1603 uncharge_drop:
1604 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1605 
1606 drop:
1607 	atomic_inc(&sk->sk_drops);
1608 	busylock_release(busy);
1609 	return err;
1610 }
1611 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1612 
1613 void udp_destruct_common(struct sock *sk)
1614 {
1615 	/* reclaim completely the forward allocated memory */
1616 	struct udp_sock *up = udp_sk(sk);
1617 	unsigned int total = 0;
1618 	struct sk_buff *skb;
1619 
1620 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1621 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1622 		total += skb->truesize;
1623 		kfree_skb(skb);
1624 	}
1625 	udp_rmem_release(sk, total, 0, true);
1626 }
1627 EXPORT_SYMBOL_GPL(udp_destruct_common);
1628 
1629 static void udp_destruct_sock(struct sock *sk)
1630 {
1631 	udp_destruct_common(sk);
1632 	inet_sock_destruct(sk);
1633 }
1634 
1635 int udp_init_sock(struct sock *sk)
1636 {
1637 	udp_lib_init_sock(sk);
1638 	sk->sk_destruct = udp_destruct_sock;
1639 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1640 	return 0;
1641 }
1642 
1643 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1644 {
1645 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1646 		bool slow = lock_sock_fast(sk);
1647 
1648 		sk_peek_offset_bwd(sk, len);
1649 		unlock_sock_fast(sk, slow);
1650 	}
1651 
1652 	if (!skb_unref(skb))
1653 		return;
1654 
1655 	/* In the more common cases we cleared the head states previously,
1656 	 * see __udp_queue_rcv_skb().
1657 	 */
1658 	if (unlikely(udp_skb_has_head_state(skb)))
1659 		skb_release_head_state(skb);
1660 	__consume_stateless_skb(skb);
1661 }
1662 EXPORT_SYMBOL_GPL(skb_consume_udp);
1663 
1664 static struct sk_buff *__first_packet_length(struct sock *sk,
1665 					     struct sk_buff_head *rcvq,
1666 					     int *total)
1667 {
1668 	struct sk_buff *skb;
1669 
1670 	while ((skb = skb_peek(rcvq)) != NULL) {
1671 		if (udp_lib_checksum_complete(skb)) {
1672 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1673 					IS_UDPLITE(sk));
1674 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1675 					IS_UDPLITE(sk));
1676 			atomic_inc(&sk->sk_drops);
1677 			__skb_unlink(skb, rcvq);
1678 			*total += skb->truesize;
1679 			kfree_skb(skb);
1680 		} else {
1681 			udp_skb_csum_unnecessary_set(skb);
1682 			break;
1683 		}
1684 	}
1685 	return skb;
1686 }
1687 
1688 /**
1689  *	first_packet_length	- return length of first packet in receive queue
1690  *	@sk: socket
1691  *
1692  *	Drops all bad checksum frames, until a valid one is found.
1693  *	Returns the length of found skb, or -1 if none is found.
1694  */
1695 static int first_packet_length(struct sock *sk)
1696 {
1697 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1698 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1699 	struct sk_buff *skb;
1700 	int total = 0;
1701 	int res;
1702 
1703 	spin_lock_bh(&rcvq->lock);
1704 	skb = __first_packet_length(sk, rcvq, &total);
1705 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1706 		spin_lock(&sk_queue->lock);
1707 		skb_queue_splice_tail_init(sk_queue, rcvq);
1708 		spin_unlock(&sk_queue->lock);
1709 
1710 		skb = __first_packet_length(sk, rcvq, &total);
1711 	}
1712 	res = skb ? skb->len : -1;
1713 	if (total)
1714 		udp_rmem_release(sk, total, 1, false);
1715 	spin_unlock_bh(&rcvq->lock);
1716 	return res;
1717 }
1718 
1719 /*
1720  *	IOCTL requests applicable to the UDP protocol
1721  */
1722 
1723 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1724 {
1725 	switch (cmd) {
1726 	case SIOCOUTQ:
1727 	{
1728 		int amount = sk_wmem_alloc_get(sk);
1729 
1730 		return put_user(amount, (int __user *)arg);
1731 	}
1732 
1733 	case SIOCINQ:
1734 	{
1735 		int amount = max_t(int, 0, first_packet_length(sk));
1736 
1737 		return put_user(amount, (int __user *)arg);
1738 	}
1739 
1740 	default:
1741 		return -ENOIOCTLCMD;
1742 	}
1743 
1744 	return 0;
1745 }
1746 EXPORT_SYMBOL(udp_ioctl);
1747 
1748 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1749 			       int *off, int *err)
1750 {
1751 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1752 	struct sk_buff_head *queue;
1753 	struct sk_buff *last;
1754 	long timeo;
1755 	int error;
1756 
1757 	queue = &udp_sk(sk)->reader_queue;
1758 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1759 	do {
1760 		struct sk_buff *skb;
1761 
1762 		error = sock_error(sk);
1763 		if (error)
1764 			break;
1765 
1766 		error = -EAGAIN;
1767 		do {
1768 			spin_lock_bh(&queue->lock);
1769 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1770 							err, &last);
1771 			if (skb) {
1772 				if (!(flags & MSG_PEEK))
1773 					udp_skb_destructor(sk, skb);
1774 				spin_unlock_bh(&queue->lock);
1775 				return skb;
1776 			}
1777 
1778 			if (skb_queue_empty_lockless(sk_queue)) {
1779 				spin_unlock_bh(&queue->lock);
1780 				goto busy_check;
1781 			}
1782 
1783 			/* refill the reader queue and walk it again
1784 			 * keep both queues locked to avoid re-acquiring
1785 			 * the sk_receive_queue lock if fwd memory scheduling
1786 			 * is needed.
1787 			 */
1788 			spin_lock(&sk_queue->lock);
1789 			skb_queue_splice_tail_init(sk_queue, queue);
1790 
1791 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1792 							err, &last);
1793 			if (skb && !(flags & MSG_PEEK))
1794 				udp_skb_dtor_locked(sk, skb);
1795 			spin_unlock(&sk_queue->lock);
1796 			spin_unlock_bh(&queue->lock);
1797 			if (skb)
1798 				return skb;
1799 
1800 busy_check:
1801 			if (!sk_can_busy_loop(sk))
1802 				break;
1803 
1804 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1805 		} while (!skb_queue_empty_lockless(sk_queue));
1806 
1807 		/* sk_queue is empty, reader_queue may contain peeked packets */
1808 	} while (timeo &&
1809 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1810 					      &error, &timeo,
1811 					      (struct sk_buff *)sk_queue));
1812 
1813 	*err = error;
1814 	return NULL;
1815 }
1816 EXPORT_SYMBOL(__skb_recv_udp);
1817 
1818 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1819 {
1820 	struct sk_buff *skb;
1821 	int err, copied;
1822 
1823 try_again:
1824 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1825 	if (!skb)
1826 		return err;
1827 
1828 	if (udp_lib_checksum_complete(skb)) {
1829 		int is_udplite = IS_UDPLITE(sk);
1830 		struct net *net = sock_net(sk);
1831 
1832 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1833 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1834 		atomic_inc(&sk->sk_drops);
1835 		kfree_skb(skb);
1836 		goto try_again;
1837 	}
1838 
1839 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1840 	copied = recv_actor(sk, skb);
1841 	kfree_skb(skb);
1842 
1843 	return copied;
1844 }
1845 EXPORT_SYMBOL(udp_read_skb);
1846 
1847 /*
1848  * 	This should be easy, if there is something there we
1849  * 	return it, otherwise we block.
1850  */
1851 
1852 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1853 		int *addr_len)
1854 {
1855 	struct inet_sock *inet = inet_sk(sk);
1856 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1857 	struct sk_buff *skb;
1858 	unsigned int ulen, copied;
1859 	int off, err, peeking = flags & MSG_PEEK;
1860 	int is_udplite = IS_UDPLITE(sk);
1861 	bool checksum_valid = false;
1862 
1863 	if (flags & MSG_ERRQUEUE)
1864 		return ip_recv_error(sk, msg, len, addr_len);
1865 
1866 try_again:
1867 	off = sk_peek_offset(sk, flags);
1868 	skb = __skb_recv_udp(sk, flags, &off, &err);
1869 	if (!skb)
1870 		return err;
1871 
1872 	ulen = udp_skb_len(skb);
1873 	copied = len;
1874 	if (copied > ulen - off)
1875 		copied = ulen - off;
1876 	else if (copied < ulen)
1877 		msg->msg_flags |= MSG_TRUNC;
1878 
1879 	/*
1880 	 * If checksum is needed at all, try to do it while copying the
1881 	 * data.  If the data is truncated, or if we only want a partial
1882 	 * coverage checksum (UDP-Lite), do it before the copy.
1883 	 */
1884 
1885 	if (copied < ulen || peeking ||
1886 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1887 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1888 				!__udp_lib_checksum_complete(skb);
1889 		if (!checksum_valid)
1890 			goto csum_copy_err;
1891 	}
1892 
1893 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1894 		if (udp_skb_is_linear(skb))
1895 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1896 		else
1897 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1898 	} else {
1899 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1900 
1901 		if (err == -EINVAL)
1902 			goto csum_copy_err;
1903 	}
1904 
1905 	if (unlikely(err)) {
1906 		if (!peeking) {
1907 			atomic_inc(&sk->sk_drops);
1908 			UDP_INC_STATS(sock_net(sk),
1909 				      UDP_MIB_INERRORS, is_udplite);
1910 		}
1911 		kfree_skb(skb);
1912 		return err;
1913 	}
1914 
1915 	if (!peeking)
1916 		UDP_INC_STATS(sock_net(sk),
1917 			      UDP_MIB_INDATAGRAMS, is_udplite);
1918 
1919 	sock_recv_cmsgs(msg, sk, skb);
1920 
1921 	/* Copy the address. */
1922 	if (sin) {
1923 		sin->sin_family = AF_INET;
1924 		sin->sin_port = udp_hdr(skb)->source;
1925 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1926 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1927 		*addr_len = sizeof(*sin);
1928 
1929 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1930 						      (struct sockaddr *)sin);
1931 	}
1932 
1933 	if (udp_sk(sk)->gro_enabled)
1934 		udp_cmsg_recv(msg, sk, skb);
1935 
1936 	if (inet->cmsg_flags)
1937 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1938 
1939 	err = copied;
1940 	if (flags & MSG_TRUNC)
1941 		err = ulen;
1942 
1943 	skb_consume_udp(sk, skb, peeking ? -err : err);
1944 	return err;
1945 
1946 csum_copy_err:
1947 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1948 				 udp_skb_destructor)) {
1949 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1950 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1951 	}
1952 	kfree_skb(skb);
1953 
1954 	/* starting over for a new packet, but check if we need to yield */
1955 	cond_resched();
1956 	msg->msg_flags &= ~MSG_TRUNC;
1957 	goto try_again;
1958 }
1959 
1960 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1961 {
1962 	/* This check is replicated from __ip4_datagram_connect() and
1963 	 * intended to prevent BPF program called below from accessing bytes
1964 	 * that are out of the bound specified by user in addr_len.
1965 	 */
1966 	if (addr_len < sizeof(struct sockaddr_in))
1967 		return -EINVAL;
1968 
1969 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1970 }
1971 EXPORT_SYMBOL(udp_pre_connect);
1972 
1973 int __udp_disconnect(struct sock *sk, int flags)
1974 {
1975 	struct inet_sock *inet = inet_sk(sk);
1976 	/*
1977 	 *	1003.1g - break association.
1978 	 */
1979 
1980 	sk->sk_state = TCP_CLOSE;
1981 	inet->inet_daddr = 0;
1982 	inet->inet_dport = 0;
1983 	sock_rps_reset_rxhash(sk);
1984 	sk->sk_bound_dev_if = 0;
1985 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1986 		inet_reset_saddr(sk);
1987 		if (sk->sk_prot->rehash &&
1988 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1989 			sk->sk_prot->rehash(sk);
1990 	}
1991 
1992 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1993 		sk->sk_prot->unhash(sk);
1994 		inet->inet_sport = 0;
1995 	}
1996 	sk_dst_reset(sk);
1997 	return 0;
1998 }
1999 EXPORT_SYMBOL(__udp_disconnect);
2000 
2001 int udp_disconnect(struct sock *sk, int flags)
2002 {
2003 	lock_sock(sk);
2004 	__udp_disconnect(sk, flags);
2005 	release_sock(sk);
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL(udp_disconnect);
2009 
2010 void udp_lib_unhash(struct sock *sk)
2011 {
2012 	if (sk_hashed(sk)) {
2013 		struct udp_table *udptable = udp_get_table_prot(sk);
2014 		struct udp_hslot *hslot, *hslot2;
2015 
2016 		hslot  = udp_hashslot(udptable, sock_net(sk),
2017 				      udp_sk(sk)->udp_port_hash);
2018 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2019 
2020 		spin_lock_bh(&hslot->lock);
2021 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2022 			reuseport_detach_sock(sk);
2023 		if (sk_del_node_init_rcu(sk)) {
2024 			hslot->count--;
2025 			inet_sk(sk)->inet_num = 0;
2026 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2027 
2028 			spin_lock(&hslot2->lock);
2029 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2030 			hslot2->count--;
2031 			spin_unlock(&hslot2->lock);
2032 		}
2033 		spin_unlock_bh(&hslot->lock);
2034 	}
2035 }
2036 EXPORT_SYMBOL(udp_lib_unhash);
2037 
2038 /*
2039  * inet_rcv_saddr was changed, we must rehash secondary hash
2040  */
2041 void udp_lib_rehash(struct sock *sk, u16 newhash)
2042 {
2043 	if (sk_hashed(sk)) {
2044 		struct udp_table *udptable = udp_get_table_prot(sk);
2045 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2046 
2047 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2048 		nhslot2 = udp_hashslot2(udptable, newhash);
2049 		udp_sk(sk)->udp_portaddr_hash = newhash;
2050 
2051 		if (hslot2 != nhslot2 ||
2052 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2053 			hslot = udp_hashslot(udptable, sock_net(sk),
2054 					     udp_sk(sk)->udp_port_hash);
2055 			/* we must lock primary chain too */
2056 			spin_lock_bh(&hslot->lock);
2057 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2058 				reuseport_detach_sock(sk);
2059 
2060 			if (hslot2 != nhslot2) {
2061 				spin_lock(&hslot2->lock);
2062 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2063 				hslot2->count--;
2064 				spin_unlock(&hslot2->lock);
2065 
2066 				spin_lock(&nhslot2->lock);
2067 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2068 							 &nhslot2->head);
2069 				nhslot2->count++;
2070 				spin_unlock(&nhslot2->lock);
2071 			}
2072 
2073 			spin_unlock_bh(&hslot->lock);
2074 		}
2075 	}
2076 }
2077 EXPORT_SYMBOL(udp_lib_rehash);
2078 
2079 void udp_v4_rehash(struct sock *sk)
2080 {
2081 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2082 					  inet_sk(sk)->inet_rcv_saddr,
2083 					  inet_sk(sk)->inet_num);
2084 	udp_lib_rehash(sk, new_hash);
2085 }
2086 
2087 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2088 {
2089 	int rc;
2090 
2091 	if (inet_sk(sk)->inet_daddr) {
2092 		sock_rps_save_rxhash(sk, skb);
2093 		sk_mark_napi_id(sk, skb);
2094 		sk_incoming_cpu_update(sk);
2095 	} else {
2096 		sk_mark_napi_id_once(sk, skb);
2097 	}
2098 
2099 	rc = __udp_enqueue_schedule_skb(sk, skb);
2100 	if (rc < 0) {
2101 		int is_udplite = IS_UDPLITE(sk);
2102 		int drop_reason;
2103 
2104 		/* Note that an ENOMEM error is charged twice */
2105 		if (rc == -ENOMEM) {
2106 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2107 					is_udplite);
2108 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2109 		} else {
2110 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2111 				      is_udplite);
2112 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2113 		}
2114 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2115 		kfree_skb_reason(skb, drop_reason);
2116 		trace_udp_fail_queue_rcv_skb(rc, sk);
2117 		return -1;
2118 	}
2119 
2120 	return 0;
2121 }
2122 
2123 /* returns:
2124  *  -1: error
2125  *   0: success
2126  *  >0: "udp encap" protocol resubmission
2127  *
2128  * Note that in the success and error cases, the skb is assumed to
2129  * have either been requeued or freed.
2130  */
2131 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2132 {
2133 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2134 	struct udp_sock *up = udp_sk(sk);
2135 	int is_udplite = IS_UDPLITE(sk);
2136 
2137 	/*
2138 	 *	Charge it to the socket, dropping if the queue is full.
2139 	 */
2140 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2141 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2142 		goto drop;
2143 	}
2144 	nf_reset_ct(skb);
2145 
2146 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2147 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2148 
2149 		/*
2150 		 * This is an encapsulation socket so pass the skb to
2151 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2152 		 * fall through and pass this up the UDP socket.
2153 		 * up->encap_rcv() returns the following value:
2154 		 * =0 if skb was successfully passed to the encap
2155 		 *    handler or was discarded by it.
2156 		 * >0 if skb should be passed on to UDP.
2157 		 * <0 if skb should be resubmitted as proto -N
2158 		 */
2159 
2160 		/* if we're overly short, let UDP handle it */
2161 		encap_rcv = READ_ONCE(up->encap_rcv);
2162 		if (encap_rcv) {
2163 			int ret;
2164 
2165 			/* Verify checksum before giving to encap */
2166 			if (udp_lib_checksum_complete(skb))
2167 				goto csum_error;
2168 
2169 			ret = encap_rcv(sk, skb);
2170 			if (ret <= 0) {
2171 				__UDP_INC_STATS(sock_net(sk),
2172 						UDP_MIB_INDATAGRAMS,
2173 						is_udplite);
2174 				return -ret;
2175 			}
2176 		}
2177 
2178 		/* FALLTHROUGH -- it's a UDP Packet */
2179 	}
2180 
2181 	/*
2182 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2183 	 */
2184 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2185 
2186 		/*
2187 		 * MIB statistics other than incrementing the error count are
2188 		 * disabled for the following two types of errors: these depend
2189 		 * on the application settings, not on the functioning of the
2190 		 * protocol stack as such.
2191 		 *
2192 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2193 		 * way ... to ... at least let the receiving application block
2194 		 * delivery of packets with coverage values less than a value
2195 		 * provided by the application."
2196 		 */
2197 		if (up->pcrlen == 0) {          /* full coverage was set  */
2198 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2199 					    UDP_SKB_CB(skb)->cscov, skb->len);
2200 			goto drop;
2201 		}
2202 		/* The next case involves violating the min. coverage requested
2203 		 * by the receiver. This is subtle: if receiver wants x and x is
2204 		 * greater than the buffersize/MTU then receiver will complain
2205 		 * that it wants x while sender emits packets of smaller size y.
2206 		 * Therefore the above ...()->partial_cov statement is essential.
2207 		 */
2208 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2209 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2210 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2211 			goto drop;
2212 		}
2213 	}
2214 
2215 	prefetch(&sk->sk_rmem_alloc);
2216 	if (rcu_access_pointer(sk->sk_filter) &&
2217 	    udp_lib_checksum_complete(skb))
2218 			goto csum_error;
2219 
2220 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2221 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2222 		goto drop;
2223 	}
2224 
2225 	udp_csum_pull_header(skb);
2226 
2227 	ipv4_pktinfo_prepare(sk, skb);
2228 	return __udp_queue_rcv_skb(sk, skb);
2229 
2230 csum_error:
2231 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2232 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2233 drop:
2234 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2235 	atomic_inc(&sk->sk_drops);
2236 	kfree_skb_reason(skb, drop_reason);
2237 	return -1;
2238 }
2239 
2240 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2241 {
2242 	struct sk_buff *next, *segs;
2243 	int ret;
2244 
2245 	if (likely(!udp_unexpected_gso(sk, skb)))
2246 		return udp_queue_rcv_one_skb(sk, skb);
2247 
2248 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2249 	__skb_push(skb, -skb_mac_offset(skb));
2250 	segs = udp_rcv_segment(sk, skb, true);
2251 	skb_list_walk_safe(segs, skb, next) {
2252 		__skb_pull(skb, skb_transport_offset(skb));
2253 
2254 		udp_post_segment_fix_csum(skb);
2255 		ret = udp_queue_rcv_one_skb(sk, skb);
2256 		if (ret > 0)
2257 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2258 	}
2259 	return 0;
2260 }
2261 
2262 /* For TCP sockets, sk_rx_dst is protected by socket lock
2263  * For UDP, we use xchg() to guard against concurrent changes.
2264  */
2265 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2266 {
2267 	struct dst_entry *old;
2268 
2269 	if (dst_hold_safe(dst)) {
2270 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2271 		dst_release(old);
2272 		return old != dst;
2273 	}
2274 	return false;
2275 }
2276 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2277 
2278 /*
2279  *	Multicasts and broadcasts go to each listener.
2280  *
2281  *	Note: called only from the BH handler context.
2282  */
2283 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2284 				    struct udphdr  *uh,
2285 				    __be32 saddr, __be32 daddr,
2286 				    struct udp_table *udptable,
2287 				    int proto)
2288 {
2289 	struct sock *sk, *first = NULL;
2290 	unsigned short hnum = ntohs(uh->dest);
2291 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2292 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2293 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2294 	int dif = skb->dev->ifindex;
2295 	int sdif = inet_sdif(skb);
2296 	struct hlist_node *node;
2297 	struct sk_buff *nskb;
2298 
2299 	if (use_hash2) {
2300 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2301 			    udptable->mask;
2302 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2303 start_lookup:
2304 		hslot = &udptable->hash2[hash2];
2305 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2306 	}
2307 
2308 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2309 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2310 					 uh->source, saddr, dif, sdif, hnum))
2311 			continue;
2312 
2313 		if (!first) {
2314 			first = sk;
2315 			continue;
2316 		}
2317 		nskb = skb_clone(skb, GFP_ATOMIC);
2318 
2319 		if (unlikely(!nskb)) {
2320 			atomic_inc(&sk->sk_drops);
2321 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2322 					IS_UDPLITE(sk));
2323 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2324 					IS_UDPLITE(sk));
2325 			continue;
2326 		}
2327 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2328 			consume_skb(nskb);
2329 	}
2330 
2331 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2332 	if (use_hash2 && hash2 != hash2_any) {
2333 		hash2 = hash2_any;
2334 		goto start_lookup;
2335 	}
2336 
2337 	if (first) {
2338 		if (udp_queue_rcv_skb(first, skb) > 0)
2339 			consume_skb(skb);
2340 	} else {
2341 		kfree_skb(skb);
2342 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2343 				proto == IPPROTO_UDPLITE);
2344 	}
2345 	return 0;
2346 }
2347 
2348 /* Initialize UDP checksum. If exited with zero value (success),
2349  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2350  * Otherwise, csum completion requires checksumming packet body,
2351  * including udp header and folding it to skb->csum.
2352  */
2353 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2354 				 int proto)
2355 {
2356 	int err;
2357 
2358 	UDP_SKB_CB(skb)->partial_cov = 0;
2359 	UDP_SKB_CB(skb)->cscov = skb->len;
2360 
2361 	if (proto == IPPROTO_UDPLITE) {
2362 		err = udplite_checksum_init(skb, uh);
2363 		if (err)
2364 			return err;
2365 
2366 		if (UDP_SKB_CB(skb)->partial_cov) {
2367 			skb->csum = inet_compute_pseudo(skb, proto);
2368 			return 0;
2369 		}
2370 	}
2371 
2372 	/* Note, we are only interested in != 0 or == 0, thus the
2373 	 * force to int.
2374 	 */
2375 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2376 							inet_compute_pseudo);
2377 	if (err)
2378 		return err;
2379 
2380 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2381 		/* If SW calculated the value, we know it's bad */
2382 		if (skb->csum_complete_sw)
2383 			return 1;
2384 
2385 		/* HW says the value is bad. Let's validate that.
2386 		 * skb->csum is no longer the full packet checksum,
2387 		 * so don't treat it as such.
2388 		 */
2389 		skb_checksum_complete_unset(skb);
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2396  * return code conversion for ip layer consumption
2397  */
2398 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2399 			       struct udphdr *uh)
2400 {
2401 	int ret;
2402 
2403 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2404 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2405 
2406 	ret = udp_queue_rcv_skb(sk, skb);
2407 
2408 	/* a return value > 0 means to resubmit the input, but
2409 	 * it wants the return to be -protocol, or 0
2410 	 */
2411 	if (ret > 0)
2412 		return -ret;
2413 	return 0;
2414 }
2415 
2416 /*
2417  *	All we need to do is get the socket, and then do a checksum.
2418  */
2419 
2420 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2421 		   int proto)
2422 {
2423 	struct sock *sk;
2424 	struct udphdr *uh;
2425 	unsigned short ulen;
2426 	struct rtable *rt = skb_rtable(skb);
2427 	__be32 saddr, daddr;
2428 	struct net *net = dev_net(skb->dev);
2429 	bool refcounted;
2430 	int drop_reason;
2431 
2432 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2433 
2434 	/*
2435 	 *  Validate the packet.
2436 	 */
2437 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2438 		goto drop;		/* No space for header. */
2439 
2440 	uh   = udp_hdr(skb);
2441 	ulen = ntohs(uh->len);
2442 	saddr = ip_hdr(skb)->saddr;
2443 	daddr = ip_hdr(skb)->daddr;
2444 
2445 	if (ulen > skb->len)
2446 		goto short_packet;
2447 
2448 	if (proto == IPPROTO_UDP) {
2449 		/* UDP validates ulen. */
2450 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2451 			goto short_packet;
2452 		uh = udp_hdr(skb);
2453 	}
2454 
2455 	if (udp4_csum_init(skb, uh, proto))
2456 		goto csum_error;
2457 
2458 	sk = skb_steal_sock(skb, &refcounted);
2459 	if (sk) {
2460 		struct dst_entry *dst = skb_dst(skb);
2461 		int ret;
2462 
2463 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2464 			udp_sk_rx_dst_set(sk, dst);
2465 
2466 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2467 		if (refcounted)
2468 			sock_put(sk);
2469 		return ret;
2470 	}
2471 
2472 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2473 		return __udp4_lib_mcast_deliver(net, skb, uh,
2474 						saddr, daddr, udptable, proto);
2475 
2476 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2477 	if (sk)
2478 		return udp_unicast_rcv_skb(sk, skb, uh);
2479 
2480 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2481 		goto drop;
2482 	nf_reset_ct(skb);
2483 
2484 	/* No socket. Drop packet silently, if checksum is wrong */
2485 	if (udp_lib_checksum_complete(skb))
2486 		goto csum_error;
2487 
2488 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2489 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2490 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2491 
2492 	/*
2493 	 * Hmm.  We got an UDP packet to a port to which we
2494 	 * don't wanna listen.  Ignore it.
2495 	 */
2496 	kfree_skb_reason(skb, drop_reason);
2497 	return 0;
2498 
2499 short_packet:
2500 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2501 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2502 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2503 			    &saddr, ntohs(uh->source),
2504 			    ulen, skb->len,
2505 			    &daddr, ntohs(uh->dest));
2506 	goto drop;
2507 
2508 csum_error:
2509 	/*
2510 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2511 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2512 	 */
2513 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2514 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2515 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2516 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2517 			    ulen);
2518 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2519 drop:
2520 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2521 	kfree_skb_reason(skb, drop_reason);
2522 	return 0;
2523 }
2524 
2525 /* We can only early demux multicast if there is a single matching socket.
2526  * If more than one socket found returns NULL
2527  */
2528 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2529 						  __be16 loc_port, __be32 loc_addr,
2530 						  __be16 rmt_port, __be32 rmt_addr,
2531 						  int dif, int sdif)
2532 {
2533 	struct udp_table *udptable = net->ipv4.udp_table;
2534 	unsigned short hnum = ntohs(loc_port);
2535 	struct sock *sk, *result;
2536 	struct udp_hslot *hslot;
2537 	unsigned int slot;
2538 
2539 	slot = udp_hashfn(net, hnum, udptable->mask);
2540 	hslot = &udptable->hash[slot];
2541 
2542 	/* Do not bother scanning a too big list */
2543 	if (hslot->count > 10)
2544 		return NULL;
2545 
2546 	result = NULL;
2547 	sk_for_each_rcu(sk, &hslot->head) {
2548 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2549 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2550 			if (result)
2551 				return NULL;
2552 			result = sk;
2553 		}
2554 	}
2555 
2556 	return result;
2557 }
2558 
2559 /* For unicast we should only early demux connected sockets or we can
2560  * break forwarding setups.  The chains here can be long so only check
2561  * if the first socket is an exact match and if not move on.
2562  */
2563 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2564 					    __be16 loc_port, __be32 loc_addr,
2565 					    __be16 rmt_port, __be32 rmt_addr,
2566 					    int dif, int sdif)
2567 {
2568 	struct udp_table *udptable = net->ipv4.udp_table;
2569 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2570 	unsigned short hnum = ntohs(loc_port);
2571 	unsigned int hash2, slot2;
2572 	struct udp_hslot *hslot2;
2573 	__portpair ports;
2574 	struct sock *sk;
2575 
2576 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2577 	slot2 = hash2 & udptable->mask;
2578 	hslot2 = &udptable->hash2[slot2];
2579 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2580 
2581 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2582 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2583 			return sk;
2584 		/* Only check first socket in chain */
2585 		break;
2586 	}
2587 	return NULL;
2588 }
2589 
2590 int udp_v4_early_demux(struct sk_buff *skb)
2591 {
2592 	struct net *net = dev_net(skb->dev);
2593 	struct in_device *in_dev = NULL;
2594 	const struct iphdr *iph;
2595 	const struct udphdr *uh;
2596 	struct sock *sk = NULL;
2597 	struct dst_entry *dst;
2598 	int dif = skb->dev->ifindex;
2599 	int sdif = inet_sdif(skb);
2600 	int ours;
2601 
2602 	/* validate the packet */
2603 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2604 		return 0;
2605 
2606 	iph = ip_hdr(skb);
2607 	uh = udp_hdr(skb);
2608 
2609 	if (skb->pkt_type == PACKET_MULTICAST) {
2610 		in_dev = __in_dev_get_rcu(skb->dev);
2611 
2612 		if (!in_dev)
2613 			return 0;
2614 
2615 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2616 				       iph->protocol);
2617 		if (!ours)
2618 			return 0;
2619 
2620 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2621 						   uh->source, iph->saddr,
2622 						   dif, sdif);
2623 	} else if (skb->pkt_type == PACKET_HOST) {
2624 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2625 					     uh->source, iph->saddr, dif, sdif);
2626 	}
2627 
2628 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2629 		return 0;
2630 
2631 	skb->sk = sk;
2632 	skb->destructor = sock_efree;
2633 	dst = rcu_dereference(sk->sk_rx_dst);
2634 
2635 	if (dst)
2636 		dst = dst_check(dst, 0);
2637 	if (dst) {
2638 		u32 itag = 0;
2639 
2640 		/* set noref for now.
2641 		 * any place which wants to hold dst has to call
2642 		 * dst_hold_safe()
2643 		 */
2644 		skb_dst_set_noref(skb, dst);
2645 
2646 		/* for unconnected multicast sockets we need to validate
2647 		 * the source on each packet
2648 		 */
2649 		if (!inet_sk(sk)->inet_daddr && in_dev)
2650 			return ip_mc_validate_source(skb, iph->daddr,
2651 						     iph->saddr,
2652 						     iph->tos & IPTOS_RT_MASK,
2653 						     skb->dev, in_dev, &itag);
2654 	}
2655 	return 0;
2656 }
2657 
2658 int udp_rcv(struct sk_buff *skb)
2659 {
2660 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2661 }
2662 
2663 void udp_destroy_sock(struct sock *sk)
2664 {
2665 	struct udp_sock *up = udp_sk(sk);
2666 	bool slow = lock_sock_fast(sk);
2667 
2668 	/* protects from races with udp_abort() */
2669 	sock_set_flag(sk, SOCK_DEAD);
2670 	udp_flush_pending_frames(sk);
2671 	unlock_sock_fast(sk, slow);
2672 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2673 		if (up->encap_type) {
2674 			void (*encap_destroy)(struct sock *sk);
2675 			encap_destroy = READ_ONCE(up->encap_destroy);
2676 			if (encap_destroy)
2677 				encap_destroy(sk);
2678 		}
2679 		if (up->encap_enabled)
2680 			static_branch_dec(&udp_encap_needed_key);
2681 	}
2682 }
2683 
2684 /*
2685  *	Socket option code for UDP
2686  */
2687 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2688 		       sockptr_t optval, unsigned int optlen,
2689 		       int (*push_pending_frames)(struct sock *))
2690 {
2691 	struct udp_sock *up = udp_sk(sk);
2692 	int val, valbool;
2693 	int err = 0;
2694 	int is_udplite = IS_UDPLITE(sk);
2695 
2696 	if (level == SOL_SOCKET) {
2697 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2698 
2699 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2700 			sockopt_lock_sock(sk);
2701 			/* paired with READ_ONCE in udp_rmem_release() */
2702 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2703 			sockopt_release_sock(sk);
2704 		}
2705 		return err;
2706 	}
2707 
2708 	if (optlen < sizeof(int))
2709 		return -EINVAL;
2710 
2711 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2712 		return -EFAULT;
2713 
2714 	valbool = val ? 1 : 0;
2715 
2716 	switch (optname) {
2717 	case UDP_CORK:
2718 		if (val != 0) {
2719 			WRITE_ONCE(up->corkflag, 1);
2720 		} else {
2721 			WRITE_ONCE(up->corkflag, 0);
2722 			lock_sock(sk);
2723 			push_pending_frames(sk);
2724 			release_sock(sk);
2725 		}
2726 		break;
2727 
2728 	case UDP_ENCAP:
2729 		switch (val) {
2730 		case 0:
2731 #ifdef CONFIG_XFRM
2732 		case UDP_ENCAP_ESPINUDP:
2733 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2734 #if IS_ENABLED(CONFIG_IPV6)
2735 			if (sk->sk_family == AF_INET6)
2736 				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2737 			else
2738 #endif
2739 				up->encap_rcv = xfrm4_udp_encap_rcv;
2740 #endif
2741 			fallthrough;
2742 		case UDP_ENCAP_L2TPINUDP:
2743 			up->encap_type = val;
2744 			lock_sock(sk);
2745 			udp_tunnel_encap_enable(sk->sk_socket);
2746 			release_sock(sk);
2747 			break;
2748 		default:
2749 			err = -ENOPROTOOPT;
2750 			break;
2751 		}
2752 		break;
2753 
2754 	case UDP_NO_CHECK6_TX:
2755 		up->no_check6_tx = valbool;
2756 		break;
2757 
2758 	case UDP_NO_CHECK6_RX:
2759 		up->no_check6_rx = valbool;
2760 		break;
2761 
2762 	case UDP_SEGMENT:
2763 		if (val < 0 || val > USHRT_MAX)
2764 			return -EINVAL;
2765 		WRITE_ONCE(up->gso_size, val);
2766 		break;
2767 
2768 	case UDP_GRO:
2769 		lock_sock(sk);
2770 
2771 		/* when enabling GRO, accept the related GSO packet type */
2772 		if (valbool)
2773 			udp_tunnel_encap_enable(sk->sk_socket);
2774 		up->gro_enabled = valbool;
2775 		up->accept_udp_l4 = valbool;
2776 		release_sock(sk);
2777 		break;
2778 
2779 	/*
2780 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2781 	 */
2782 	/* The sender sets actual checksum coverage length via this option.
2783 	 * The case coverage > packet length is handled by send module. */
2784 	case UDPLITE_SEND_CSCOV:
2785 		if (!is_udplite)         /* Disable the option on UDP sockets */
2786 			return -ENOPROTOOPT;
2787 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2788 			val = 8;
2789 		else if (val > USHRT_MAX)
2790 			val = USHRT_MAX;
2791 		up->pcslen = val;
2792 		up->pcflag |= UDPLITE_SEND_CC;
2793 		break;
2794 
2795 	/* The receiver specifies a minimum checksum coverage value. To make
2796 	 * sense, this should be set to at least 8 (as done below). If zero is
2797 	 * used, this again means full checksum coverage.                     */
2798 	case UDPLITE_RECV_CSCOV:
2799 		if (!is_udplite)         /* Disable the option on UDP sockets */
2800 			return -ENOPROTOOPT;
2801 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2802 			val = 8;
2803 		else if (val > USHRT_MAX)
2804 			val = USHRT_MAX;
2805 		up->pcrlen = val;
2806 		up->pcflag |= UDPLITE_RECV_CC;
2807 		break;
2808 
2809 	default:
2810 		err = -ENOPROTOOPT;
2811 		break;
2812 	}
2813 
2814 	return err;
2815 }
2816 EXPORT_SYMBOL(udp_lib_setsockopt);
2817 
2818 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2819 		   unsigned int optlen)
2820 {
2821 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2822 		return udp_lib_setsockopt(sk, level, optname,
2823 					  optval, optlen,
2824 					  udp_push_pending_frames);
2825 	return ip_setsockopt(sk, level, optname, optval, optlen);
2826 }
2827 
2828 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2829 		       char __user *optval, int __user *optlen)
2830 {
2831 	struct udp_sock *up = udp_sk(sk);
2832 	int val, len;
2833 
2834 	if (get_user(len, optlen))
2835 		return -EFAULT;
2836 
2837 	len = min_t(unsigned int, len, sizeof(int));
2838 
2839 	if (len < 0)
2840 		return -EINVAL;
2841 
2842 	switch (optname) {
2843 	case UDP_CORK:
2844 		val = READ_ONCE(up->corkflag);
2845 		break;
2846 
2847 	case UDP_ENCAP:
2848 		val = up->encap_type;
2849 		break;
2850 
2851 	case UDP_NO_CHECK6_TX:
2852 		val = up->no_check6_tx;
2853 		break;
2854 
2855 	case UDP_NO_CHECK6_RX:
2856 		val = up->no_check6_rx;
2857 		break;
2858 
2859 	case UDP_SEGMENT:
2860 		val = READ_ONCE(up->gso_size);
2861 		break;
2862 
2863 	case UDP_GRO:
2864 		val = up->gro_enabled;
2865 		break;
2866 
2867 	/* The following two cannot be changed on UDP sockets, the return is
2868 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2869 	case UDPLITE_SEND_CSCOV:
2870 		val = up->pcslen;
2871 		break;
2872 
2873 	case UDPLITE_RECV_CSCOV:
2874 		val = up->pcrlen;
2875 		break;
2876 
2877 	default:
2878 		return -ENOPROTOOPT;
2879 	}
2880 
2881 	if (put_user(len, optlen))
2882 		return -EFAULT;
2883 	if (copy_to_user(optval, &val, len))
2884 		return -EFAULT;
2885 	return 0;
2886 }
2887 EXPORT_SYMBOL(udp_lib_getsockopt);
2888 
2889 int udp_getsockopt(struct sock *sk, int level, int optname,
2890 		   char __user *optval, int __user *optlen)
2891 {
2892 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2893 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2894 	return ip_getsockopt(sk, level, optname, optval, optlen);
2895 }
2896 
2897 /**
2898  * 	udp_poll - wait for a UDP event.
2899  *	@file: - file struct
2900  *	@sock: - socket
2901  *	@wait: - poll table
2902  *
2903  *	This is same as datagram poll, except for the special case of
2904  *	blocking sockets. If application is using a blocking fd
2905  *	and a packet with checksum error is in the queue;
2906  *	then it could get return from select indicating data available
2907  *	but then block when reading it. Add special case code
2908  *	to work around these arguably broken applications.
2909  */
2910 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2911 {
2912 	__poll_t mask = datagram_poll(file, sock, wait);
2913 	struct sock *sk = sock->sk;
2914 
2915 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2916 		mask |= EPOLLIN | EPOLLRDNORM;
2917 
2918 	/* Check for false positives due to checksum errors */
2919 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2920 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2921 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2922 
2923 	/* psock ingress_msg queue should not contain any bad checksum frames */
2924 	if (sk_is_readable(sk))
2925 		mask |= EPOLLIN | EPOLLRDNORM;
2926 	return mask;
2927 
2928 }
2929 EXPORT_SYMBOL(udp_poll);
2930 
2931 int udp_abort(struct sock *sk, int err)
2932 {
2933 	lock_sock(sk);
2934 
2935 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2936 	 * with close()
2937 	 */
2938 	if (sock_flag(sk, SOCK_DEAD))
2939 		goto out;
2940 
2941 	sk->sk_err = err;
2942 	sk_error_report(sk);
2943 	__udp_disconnect(sk, 0);
2944 
2945 out:
2946 	release_sock(sk);
2947 
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL_GPL(udp_abort);
2951 
2952 struct proto udp_prot = {
2953 	.name			= "UDP",
2954 	.owner			= THIS_MODULE,
2955 	.close			= udp_lib_close,
2956 	.pre_connect		= udp_pre_connect,
2957 	.connect		= ip4_datagram_connect,
2958 	.disconnect		= udp_disconnect,
2959 	.ioctl			= udp_ioctl,
2960 	.init			= udp_init_sock,
2961 	.destroy		= udp_destroy_sock,
2962 	.setsockopt		= udp_setsockopt,
2963 	.getsockopt		= udp_getsockopt,
2964 	.sendmsg		= udp_sendmsg,
2965 	.recvmsg		= udp_recvmsg,
2966 	.sendpage		= udp_sendpage,
2967 	.release_cb		= ip4_datagram_release_cb,
2968 	.hash			= udp_lib_hash,
2969 	.unhash			= udp_lib_unhash,
2970 	.rehash			= udp_v4_rehash,
2971 	.get_port		= udp_v4_get_port,
2972 	.put_port		= udp_lib_unhash,
2973 #ifdef CONFIG_BPF_SYSCALL
2974 	.psock_update_sk_prot	= udp_bpf_update_proto,
2975 #endif
2976 	.memory_allocated	= &udp_memory_allocated,
2977 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2978 
2979 	.sysctl_mem		= sysctl_udp_mem,
2980 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2981 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2982 	.obj_size		= sizeof(struct udp_sock),
2983 	.h.udp_table		= NULL,
2984 	.diag_destroy		= udp_abort,
2985 };
2986 EXPORT_SYMBOL(udp_prot);
2987 
2988 /* ------------------------------------------------------------------------ */
2989 #ifdef CONFIG_PROC_FS
2990 
2991 static struct udp_table *udp_get_table_afinfo(struct udp_seq_afinfo *afinfo,
2992 					      struct net *net)
2993 {
2994 	return afinfo->udp_table ? : net->ipv4.udp_table;
2995 }
2996 
2997 static struct sock *udp_get_first(struct seq_file *seq, int start)
2998 {
2999 	struct udp_iter_state *state = seq->private;
3000 	struct net *net = seq_file_net(seq);
3001 	struct udp_seq_afinfo *afinfo;
3002 	struct udp_table *udptable;
3003 	struct sock *sk;
3004 
3005 	if (state->bpf_seq_afinfo)
3006 		afinfo = state->bpf_seq_afinfo;
3007 	else
3008 		afinfo = pde_data(file_inode(seq->file));
3009 
3010 	udptable = udp_get_table_afinfo(afinfo, net);
3011 
3012 	for (state->bucket = start; state->bucket <= udptable->mask;
3013 	     ++state->bucket) {
3014 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3015 
3016 		if (hlist_empty(&hslot->head))
3017 			continue;
3018 
3019 		spin_lock_bh(&hslot->lock);
3020 		sk_for_each(sk, &hslot->head) {
3021 			if (!net_eq(sock_net(sk), net))
3022 				continue;
3023 			if (afinfo->family == AF_UNSPEC ||
3024 			    sk->sk_family == afinfo->family)
3025 				goto found;
3026 		}
3027 		spin_unlock_bh(&hslot->lock);
3028 	}
3029 	sk = NULL;
3030 found:
3031 	return sk;
3032 }
3033 
3034 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3035 {
3036 	struct udp_iter_state *state = seq->private;
3037 	struct net *net = seq_file_net(seq);
3038 	struct udp_seq_afinfo *afinfo;
3039 	struct udp_table *udptable;
3040 
3041 	if (state->bpf_seq_afinfo)
3042 		afinfo = state->bpf_seq_afinfo;
3043 	else
3044 		afinfo = pde_data(file_inode(seq->file));
3045 
3046 	do {
3047 		sk = sk_next(sk);
3048 	} while (sk && (!net_eq(sock_net(sk), net) ||
3049 			(afinfo->family != AF_UNSPEC &&
3050 			 sk->sk_family != afinfo->family)));
3051 
3052 	if (!sk) {
3053 		udptable = udp_get_table_afinfo(afinfo, net);
3054 
3055 		if (state->bucket <= udptable->mask)
3056 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3057 
3058 		return udp_get_first(seq, state->bucket + 1);
3059 	}
3060 	return sk;
3061 }
3062 
3063 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3064 {
3065 	struct sock *sk = udp_get_first(seq, 0);
3066 
3067 	if (sk)
3068 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3069 			--pos;
3070 	return pos ? NULL : sk;
3071 }
3072 
3073 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3074 {
3075 	struct udp_iter_state *state = seq->private;
3076 	state->bucket = MAX_UDP_PORTS;
3077 
3078 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3079 }
3080 EXPORT_SYMBOL(udp_seq_start);
3081 
3082 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3083 {
3084 	struct sock *sk;
3085 
3086 	if (v == SEQ_START_TOKEN)
3087 		sk = udp_get_idx(seq, 0);
3088 	else
3089 		sk = udp_get_next(seq, v);
3090 
3091 	++*pos;
3092 	return sk;
3093 }
3094 EXPORT_SYMBOL(udp_seq_next);
3095 
3096 void udp_seq_stop(struct seq_file *seq, void *v)
3097 {
3098 	struct udp_iter_state *state = seq->private;
3099 	struct udp_seq_afinfo *afinfo;
3100 	struct udp_table *udptable;
3101 
3102 	if (state->bpf_seq_afinfo)
3103 		afinfo = state->bpf_seq_afinfo;
3104 	else
3105 		afinfo = pde_data(file_inode(seq->file));
3106 
3107 	udptable = udp_get_table_afinfo(afinfo, seq_file_net(seq));
3108 
3109 	if (state->bucket <= udptable->mask)
3110 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3111 }
3112 EXPORT_SYMBOL(udp_seq_stop);
3113 
3114 /* ------------------------------------------------------------------------ */
3115 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3116 		int bucket)
3117 {
3118 	struct inet_sock *inet = inet_sk(sp);
3119 	__be32 dest = inet->inet_daddr;
3120 	__be32 src  = inet->inet_rcv_saddr;
3121 	__u16 destp	  = ntohs(inet->inet_dport);
3122 	__u16 srcp	  = ntohs(inet->inet_sport);
3123 
3124 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3125 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3126 		bucket, src, srcp, dest, destp, sp->sk_state,
3127 		sk_wmem_alloc_get(sp),
3128 		udp_rqueue_get(sp),
3129 		0, 0L, 0,
3130 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3131 		0, sock_i_ino(sp),
3132 		refcount_read(&sp->sk_refcnt), sp,
3133 		atomic_read(&sp->sk_drops));
3134 }
3135 
3136 int udp4_seq_show(struct seq_file *seq, void *v)
3137 {
3138 	seq_setwidth(seq, 127);
3139 	if (v == SEQ_START_TOKEN)
3140 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3141 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3142 			   "inode ref pointer drops");
3143 	else {
3144 		struct udp_iter_state *state = seq->private;
3145 
3146 		udp4_format_sock(v, seq, state->bucket);
3147 	}
3148 	seq_pad(seq, '\n');
3149 	return 0;
3150 }
3151 
3152 #ifdef CONFIG_BPF_SYSCALL
3153 struct bpf_iter__udp {
3154 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3155 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3156 	uid_t uid __aligned(8);
3157 	int bucket __aligned(8);
3158 };
3159 
3160 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3161 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3162 {
3163 	struct bpf_iter__udp ctx;
3164 
3165 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3166 	ctx.meta = meta;
3167 	ctx.udp_sk = udp_sk;
3168 	ctx.uid = uid;
3169 	ctx.bucket = bucket;
3170 	return bpf_iter_run_prog(prog, &ctx);
3171 }
3172 
3173 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3174 {
3175 	struct udp_iter_state *state = seq->private;
3176 	struct bpf_iter_meta meta;
3177 	struct bpf_prog *prog;
3178 	struct sock *sk = v;
3179 	uid_t uid;
3180 
3181 	if (v == SEQ_START_TOKEN)
3182 		return 0;
3183 
3184 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3185 	meta.seq = seq;
3186 	prog = bpf_iter_get_info(&meta, false);
3187 	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3188 }
3189 
3190 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3191 {
3192 	struct bpf_iter_meta meta;
3193 	struct bpf_prog *prog;
3194 
3195 	if (!v) {
3196 		meta.seq = seq;
3197 		prog = bpf_iter_get_info(&meta, true);
3198 		if (prog)
3199 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3200 	}
3201 
3202 	udp_seq_stop(seq, v);
3203 }
3204 
3205 static const struct seq_operations bpf_iter_udp_seq_ops = {
3206 	.start		= udp_seq_start,
3207 	.next		= udp_seq_next,
3208 	.stop		= bpf_iter_udp_seq_stop,
3209 	.show		= bpf_iter_udp_seq_show,
3210 };
3211 #endif
3212 
3213 const struct seq_operations udp_seq_ops = {
3214 	.start		= udp_seq_start,
3215 	.next		= udp_seq_next,
3216 	.stop		= udp_seq_stop,
3217 	.show		= udp4_seq_show,
3218 };
3219 EXPORT_SYMBOL(udp_seq_ops);
3220 
3221 static struct udp_seq_afinfo udp4_seq_afinfo = {
3222 	.family		= AF_INET,
3223 	.udp_table	= NULL,
3224 };
3225 
3226 static int __net_init udp4_proc_init_net(struct net *net)
3227 {
3228 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3229 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3230 		return -ENOMEM;
3231 	return 0;
3232 }
3233 
3234 static void __net_exit udp4_proc_exit_net(struct net *net)
3235 {
3236 	remove_proc_entry("udp", net->proc_net);
3237 }
3238 
3239 static struct pernet_operations udp4_net_ops = {
3240 	.init = udp4_proc_init_net,
3241 	.exit = udp4_proc_exit_net,
3242 };
3243 
3244 int __init udp4_proc_init(void)
3245 {
3246 	return register_pernet_subsys(&udp4_net_ops);
3247 }
3248 
3249 void udp4_proc_exit(void)
3250 {
3251 	unregister_pernet_subsys(&udp4_net_ops);
3252 }
3253 #endif /* CONFIG_PROC_FS */
3254 
3255 static __initdata unsigned long uhash_entries;
3256 static int __init set_uhash_entries(char *str)
3257 {
3258 	ssize_t ret;
3259 
3260 	if (!str)
3261 		return 0;
3262 
3263 	ret = kstrtoul(str, 0, &uhash_entries);
3264 	if (ret)
3265 		return 0;
3266 
3267 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3268 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3269 	return 1;
3270 }
3271 __setup("uhash_entries=", set_uhash_entries);
3272 
3273 void __init udp_table_init(struct udp_table *table, const char *name)
3274 {
3275 	unsigned int i;
3276 
3277 	table->hash = alloc_large_system_hash(name,
3278 					      2 * sizeof(struct udp_hslot),
3279 					      uhash_entries,
3280 					      21, /* one slot per 2 MB */
3281 					      0,
3282 					      &table->log,
3283 					      &table->mask,
3284 					      UDP_HTABLE_SIZE_MIN,
3285 					      UDP_HTABLE_SIZE_MAX);
3286 
3287 	table->hash2 = table->hash + (table->mask + 1);
3288 	for (i = 0; i <= table->mask; i++) {
3289 		INIT_HLIST_HEAD(&table->hash[i].head);
3290 		table->hash[i].count = 0;
3291 		spin_lock_init(&table->hash[i].lock);
3292 	}
3293 	for (i = 0; i <= table->mask; i++) {
3294 		INIT_HLIST_HEAD(&table->hash2[i].head);
3295 		table->hash2[i].count = 0;
3296 		spin_lock_init(&table->hash2[i].lock);
3297 	}
3298 }
3299 
3300 u32 udp_flow_hashrnd(void)
3301 {
3302 	static u32 hashrnd __read_mostly;
3303 
3304 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3305 
3306 	return hashrnd;
3307 }
3308 EXPORT_SYMBOL(udp_flow_hashrnd);
3309 
3310 static void __net_init udp_sysctl_init(struct net *net)
3311 {
3312 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3313 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3314 
3315 #ifdef CONFIG_NET_L3_MASTER_DEV
3316 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3317 #endif
3318 }
3319 
3320 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3321 {
3322 	struct udp_table *udptable;
3323 	int i;
3324 
3325 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3326 	if (!udptable)
3327 		goto out;
3328 
3329 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3330 				      GFP_KERNEL_ACCOUNT);
3331 	if (!udptable->hash)
3332 		goto free_table;
3333 
3334 	udptable->hash2 = udptable->hash + hash_entries;
3335 	udptable->mask = hash_entries - 1;
3336 	udptable->log = ilog2(hash_entries);
3337 
3338 	for (i = 0; i < hash_entries; i++) {
3339 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3340 		udptable->hash[i].count = 0;
3341 		spin_lock_init(&udptable->hash[i].lock);
3342 
3343 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3344 		udptable->hash2[i].count = 0;
3345 		spin_lock_init(&udptable->hash2[i].lock);
3346 	}
3347 
3348 	return udptable;
3349 
3350 free_table:
3351 	kfree(udptable);
3352 out:
3353 	return NULL;
3354 }
3355 
3356 static void __net_exit udp_pernet_table_free(struct net *net)
3357 {
3358 	struct udp_table *udptable = net->ipv4.udp_table;
3359 
3360 	if (udptable == &udp_table)
3361 		return;
3362 
3363 	kvfree(udptable->hash);
3364 	kfree(udptable);
3365 }
3366 
3367 static void __net_init udp_set_table(struct net *net)
3368 {
3369 	struct udp_table *udptable;
3370 	unsigned int hash_entries;
3371 	struct net *old_net;
3372 
3373 	if (net_eq(net, &init_net))
3374 		goto fallback;
3375 
3376 	old_net = current->nsproxy->net_ns;
3377 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3378 	if (!hash_entries)
3379 		goto fallback;
3380 
3381 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3382 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3383 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3384 	else
3385 		hash_entries = roundup_pow_of_two(hash_entries);
3386 
3387 	udptable = udp_pernet_table_alloc(hash_entries);
3388 	if (udptable) {
3389 		net->ipv4.udp_table = udptable;
3390 	} else {
3391 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3392 			"for a netns, fallback to the global one\n",
3393 			hash_entries);
3394 fallback:
3395 		net->ipv4.udp_table = &udp_table;
3396 	}
3397 }
3398 
3399 static int __net_init udp_pernet_init(struct net *net)
3400 {
3401 	udp_sysctl_init(net);
3402 	udp_set_table(net);
3403 
3404 	return 0;
3405 }
3406 
3407 static void __net_exit udp_pernet_exit(struct net *net)
3408 {
3409 	udp_pernet_table_free(net);
3410 }
3411 
3412 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3413 	.init	= udp_pernet_init,
3414 	.exit	= udp_pernet_exit,
3415 };
3416 
3417 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3418 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3419 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3420 
3421 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3422 {
3423 	struct udp_iter_state *st = priv_data;
3424 	struct udp_seq_afinfo *afinfo;
3425 	int ret;
3426 
3427 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3428 	if (!afinfo)
3429 		return -ENOMEM;
3430 
3431 	afinfo->family = AF_UNSPEC;
3432 	afinfo->udp_table = NULL;
3433 	st->bpf_seq_afinfo = afinfo;
3434 	ret = bpf_iter_init_seq_net(priv_data, aux);
3435 	if (ret)
3436 		kfree(afinfo);
3437 	return ret;
3438 }
3439 
3440 static void bpf_iter_fini_udp(void *priv_data)
3441 {
3442 	struct udp_iter_state *st = priv_data;
3443 
3444 	kfree(st->bpf_seq_afinfo);
3445 	bpf_iter_fini_seq_net(priv_data);
3446 }
3447 
3448 static const struct bpf_iter_seq_info udp_seq_info = {
3449 	.seq_ops		= &bpf_iter_udp_seq_ops,
3450 	.init_seq_private	= bpf_iter_init_udp,
3451 	.fini_seq_private	= bpf_iter_fini_udp,
3452 	.seq_priv_size		= sizeof(struct udp_iter_state),
3453 };
3454 
3455 static struct bpf_iter_reg udp_reg_info = {
3456 	.target			= "udp",
3457 	.ctx_arg_info_size	= 1,
3458 	.ctx_arg_info		= {
3459 		{ offsetof(struct bpf_iter__udp, udp_sk),
3460 		  PTR_TO_BTF_ID_OR_NULL },
3461 	},
3462 	.seq_info		= &udp_seq_info,
3463 };
3464 
3465 static void __init bpf_iter_register(void)
3466 {
3467 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3468 	if (bpf_iter_reg_target(&udp_reg_info))
3469 		pr_warn("Warning: could not register bpf iterator udp\n");
3470 }
3471 #endif
3472 
3473 void __init udp_init(void)
3474 {
3475 	unsigned long limit;
3476 	unsigned int i;
3477 
3478 	udp_table_init(&udp_table, "UDP");
3479 	limit = nr_free_buffer_pages() / 8;
3480 	limit = max(limit, 128UL);
3481 	sysctl_udp_mem[0] = limit / 4 * 3;
3482 	sysctl_udp_mem[1] = limit;
3483 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3484 
3485 	/* 16 spinlocks per cpu */
3486 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3487 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3488 				GFP_KERNEL);
3489 	if (!udp_busylocks)
3490 		panic("UDP: failed to alloc udp_busylocks\n");
3491 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3492 		spin_lock_init(udp_busylocks + i);
3493 
3494 	if (register_pernet_subsys(&udp_sysctl_ops))
3495 		panic("UDP: failed to init sysctl parameters.\n");
3496 
3497 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3498 	bpf_iter_register();
3499 #endif
3500 }
3501