1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/memblock.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/ip_tunnels.h> 109 #include <net/route.h> 110 #include <net/checksum.h> 111 #include <net/xfrm.h> 112 #include <trace/events/udp.h> 113 #include <linux/static_key.h> 114 #include <trace/events/skb.h> 115 #include <net/busy_poll.h> 116 #include "udp_impl.h" 117 #include <net/sock_reuseport.h> 118 #include <net/addrconf.h> 119 #include <net/udp_tunnel.h> 120 121 struct udp_table udp_table __read_mostly; 122 EXPORT_SYMBOL(udp_table); 123 124 long sysctl_udp_mem[3] __read_mostly; 125 EXPORT_SYMBOL(sysctl_udp_mem); 126 127 atomic_long_t udp_memory_allocated; 128 EXPORT_SYMBOL(udp_memory_allocated); 129 130 #define MAX_UDP_PORTS 65536 131 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 132 133 /* IPCB reference means this can not be used from early demux */ 134 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 135 { 136 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 137 if (!net->ipv4.sysctl_udp_l3mdev_accept && 138 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 139 return true; 140 #endif 141 return false; 142 } 143 144 static int udp_lib_lport_inuse(struct net *net, __u16 num, 145 const struct udp_hslot *hslot, 146 unsigned long *bitmap, 147 struct sock *sk, unsigned int log) 148 { 149 struct sock *sk2; 150 kuid_t uid = sock_i_uid(sk); 151 152 sk_for_each(sk2, &hslot->head) { 153 if (net_eq(sock_net(sk2), net) && 154 sk2 != sk && 155 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 156 (!sk2->sk_reuse || !sk->sk_reuse) && 157 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 158 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 159 inet_rcv_saddr_equal(sk, sk2, true)) { 160 if (sk2->sk_reuseport && sk->sk_reuseport && 161 !rcu_access_pointer(sk->sk_reuseport_cb) && 162 uid_eq(uid, sock_i_uid(sk2))) { 163 if (!bitmap) 164 return 0; 165 } else { 166 if (!bitmap) 167 return 1; 168 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 169 bitmap); 170 } 171 } 172 } 173 return 0; 174 } 175 176 /* 177 * Note: we still hold spinlock of primary hash chain, so no other writer 178 * can insert/delete a socket with local_port == num 179 */ 180 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 181 struct udp_hslot *hslot2, 182 struct sock *sk) 183 { 184 struct sock *sk2; 185 kuid_t uid = sock_i_uid(sk); 186 int res = 0; 187 188 spin_lock(&hslot2->lock); 189 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 190 if (net_eq(sock_net(sk2), net) && 191 sk2 != sk && 192 (udp_sk(sk2)->udp_port_hash == num) && 193 (!sk2->sk_reuse || !sk->sk_reuse) && 194 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 195 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 196 inet_rcv_saddr_equal(sk, sk2, true)) { 197 if (sk2->sk_reuseport && sk->sk_reuseport && 198 !rcu_access_pointer(sk->sk_reuseport_cb) && 199 uid_eq(uid, sock_i_uid(sk2))) { 200 res = 0; 201 } else { 202 res = 1; 203 } 204 break; 205 } 206 } 207 spin_unlock(&hslot2->lock); 208 return res; 209 } 210 211 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 212 { 213 struct net *net = sock_net(sk); 214 kuid_t uid = sock_i_uid(sk); 215 struct sock *sk2; 216 217 sk_for_each(sk2, &hslot->head) { 218 if (net_eq(sock_net(sk2), net) && 219 sk2 != sk && 220 sk2->sk_family == sk->sk_family && 221 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 222 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 223 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 224 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 225 inet_rcv_saddr_equal(sk, sk2, false)) { 226 return reuseport_add_sock(sk, sk2, 227 inet_rcv_saddr_any(sk)); 228 } 229 } 230 231 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 232 } 233 234 /** 235 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 236 * 237 * @sk: socket struct in question 238 * @snum: port number to look up 239 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 240 * with NULL address 241 */ 242 int udp_lib_get_port(struct sock *sk, unsigned short snum, 243 unsigned int hash2_nulladdr) 244 { 245 struct udp_hslot *hslot, *hslot2; 246 struct udp_table *udptable = sk->sk_prot->h.udp_table; 247 int error = 1; 248 struct net *net = sock_net(sk); 249 250 if (!snum) { 251 int low, high, remaining; 252 unsigned int rand; 253 unsigned short first, last; 254 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 255 256 inet_get_local_port_range(net, &low, &high); 257 remaining = (high - low) + 1; 258 259 rand = prandom_u32(); 260 first = reciprocal_scale(rand, remaining) + low; 261 /* 262 * force rand to be an odd multiple of UDP_HTABLE_SIZE 263 */ 264 rand = (rand | 1) * (udptable->mask + 1); 265 last = first + udptable->mask + 1; 266 do { 267 hslot = udp_hashslot(udptable, net, first); 268 bitmap_zero(bitmap, PORTS_PER_CHAIN); 269 spin_lock_bh(&hslot->lock); 270 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 271 udptable->log); 272 273 snum = first; 274 /* 275 * Iterate on all possible values of snum for this hash. 276 * Using steps of an odd multiple of UDP_HTABLE_SIZE 277 * give us randomization and full range coverage. 278 */ 279 do { 280 if (low <= snum && snum <= high && 281 !test_bit(snum >> udptable->log, bitmap) && 282 !inet_is_local_reserved_port(net, snum)) 283 goto found; 284 snum += rand; 285 } while (snum != first); 286 spin_unlock_bh(&hslot->lock); 287 cond_resched(); 288 } while (++first != last); 289 goto fail; 290 } else { 291 hslot = udp_hashslot(udptable, net, snum); 292 spin_lock_bh(&hslot->lock); 293 if (hslot->count > 10) { 294 int exist; 295 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 296 297 slot2 &= udptable->mask; 298 hash2_nulladdr &= udptable->mask; 299 300 hslot2 = udp_hashslot2(udptable, slot2); 301 if (hslot->count < hslot2->count) 302 goto scan_primary_hash; 303 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 305 if (!exist && (hash2_nulladdr != slot2)) { 306 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 307 exist = udp_lib_lport_inuse2(net, snum, hslot2, 308 sk); 309 } 310 if (exist) 311 goto fail_unlock; 312 else 313 goto found; 314 } 315 scan_primary_hash: 316 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 317 goto fail_unlock; 318 } 319 found: 320 inet_sk(sk)->inet_num = snum; 321 udp_sk(sk)->udp_port_hash = snum; 322 udp_sk(sk)->udp_portaddr_hash ^= snum; 323 if (sk_unhashed(sk)) { 324 if (sk->sk_reuseport && 325 udp_reuseport_add_sock(sk, hslot)) { 326 inet_sk(sk)->inet_num = 0; 327 udp_sk(sk)->udp_port_hash = 0; 328 udp_sk(sk)->udp_portaddr_hash ^= snum; 329 goto fail_unlock; 330 } 331 332 sk_add_node_rcu(sk, &hslot->head); 333 hslot->count++; 334 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 335 336 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 337 spin_lock(&hslot2->lock); 338 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 339 sk->sk_family == AF_INET6) 340 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 else 343 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 344 &hslot2->head); 345 hslot2->count++; 346 spin_unlock(&hslot2->lock); 347 } 348 sock_set_flag(sk, SOCK_RCU_FREE); 349 error = 0; 350 fail_unlock: 351 spin_unlock_bh(&hslot->lock); 352 fail: 353 return error; 354 } 355 EXPORT_SYMBOL(udp_lib_get_port); 356 357 int udp_v4_get_port(struct sock *sk, unsigned short snum) 358 { 359 unsigned int hash2_nulladdr = 360 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 361 unsigned int hash2_partial = 362 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 363 364 /* precompute partial secondary hash */ 365 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 366 return udp_lib_get_port(sk, snum, hash2_nulladdr); 367 } 368 369 static int compute_score(struct sock *sk, struct net *net, 370 __be32 saddr, __be16 sport, 371 __be32 daddr, unsigned short hnum, 372 int dif, int sdif, bool exact_dif) 373 { 374 int score; 375 struct inet_sock *inet; 376 bool dev_match; 377 378 if (!net_eq(sock_net(sk), net) || 379 udp_sk(sk)->udp_port_hash != hnum || 380 ipv6_only_sock(sk)) 381 return -1; 382 383 if (sk->sk_rcv_saddr != daddr) 384 return -1; 385 386 score = (sk->sk_family == PF_INET) ? 2 : 1; 387 388 inet = inet_sk(sk); 389 if (inet->inet_daddr) { 390 if (inet->inet_daddr != saddr) 391 return -1; 392 score += 4; 393 } 394 395 if (inet->inet_dport) { 396 if (inet->inet_dport != sport) 397 return -1; 398 score += 4; 399 } 400 401 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 402 dif, sdif); 403 if (!dev_match) 404 return -1; 405 score += 4; 406 407 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 408 score++; 409 return score; 410 } 411 412 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 413 const __u16 lport, const __be32 faddr, 414 const __be16 fport) 415 { 416 static u32 udp_ehash_secret __read_mostly; 417 418 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 419 420 return __inet_ehashfn(laddr, lport, faddr, fport, 421 udp_ehash_secret + net_hash_mix(net)); 422 } 423 424 /* called with rcu_read_lock() */ 425 static struct sock *udp4_lib_lookup2(struct net *net, 426 __be32 saddr, __be16 sport, 427 __be32 daddr, unsigned int hnum, 428 int dif, int sdif, bool exact_dif, 429 struct udp_hslot *hslot2, 430 struct sk_buff *skb) 431 { 432 struct sock *sk, *result; 433 int score, badness; 434 u32 hash = 0; 435 436 result = NULL; 437 badness = 0; 438 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 439 score = compute_score(sk, net, saddr, sport, 440 daddr, hnum, dif, sdif, exact_dif); 441 if (score > badness) { 442 if (sk->sk_reuseport) { 443 hash = udp_ehashfn(net, daddr, hnum, 444 saddr, sport); 445 result = reuseport_select_sock(sk, hash, skb, 446 sizeof(struct udphdr)); 447 if (result) 448 return result; 449 } 450 badness = score; 451 result = sk; 452 } 453 } 454 return result; 455 } 456 457 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 458 * harder than this. -DaveM 459 */ 460 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 461 __be16 sport, __be32 daddr, __be16 dport, int dif, 462 int sdif, struct udp_table *udptable, struct sk_buff *skb) 463 { 464 struct sock *result; 465 unsigned short hnum = ntohs(dport); 466 unsigned int hash2, slot2; 467 struct udp_hslot *hslot2; 468 bool exact_dif = udp_lib_exact_dif_match(net, skb); 469 470 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 471 slot2 = hash2 & udptable->mask; 472 hslot2 = &udptable->hash2[slot2]; 473 474 result = udp4_lib_lookup2(net, saddr, sport, 475 daddr, hnum, dif, sdif, 476 exact_dif, hslot2, skb); 477 if (!result) { 478 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 479 slot2 = hash2 & udptable->mask; 480 hslot2 = &udptable->hash2[slot2]; 481 482 result = udp4_lib_lookup2(net, saddr, sport, 483 htonl(INADDR_ANY), hnum, dif, sdif, 484 exact_dif, hslot2, skb); 485 } 486 if (unlikely(IS_ERR(result))) 487 return NULL; 488 return result; 489 } 490 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 491 492 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 493 __be16 sport, __be16 dport, 494 struct udp_table *udptable) 495 { 496 const struct iphdr *iph = ip_hdr(skb); 497 498 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 499 iph->daddr, dport, inet_iif(skb), 500 inet_sdif(skb), udptable, skb); 501 } 502 503 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 504 __be16 sport, __be16 dport) 505 { 506 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 507 } 508 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 509 510 /* Must be called under rcu_read_lock(). 511 * Does increment socket refcount. 512 */ 513 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 514 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 515 __be32 daddr, __be16 dport, int dif) 516 { 517 struct sock *sk; 518 519 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 520 dif, 0, &udp_table, NULL); 521 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 522 sk = NULL; 523 return sk; 524 } 525 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 526 #endif 527 528 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 529 __be16 loc_port, __be32 loc_addr, 530 __be16 rmt_port, __be32 rmt_addr, 531 int dif, int sdif, unsigned short hnum) 532 { 533 struct inet_sock *inet = inet_sk(sk); 534 535 if (!net_eq(sock_net(sk), net) || 536 udp_sk(sk)->udp_port_hash != hnum || 537 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 538 (inet->inet_dport != rmt_port && inet->inet_dport) || 539 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 540 ipv6_only_sock(sk) || 541 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 542 sk->sk_bound_dev_if != sdif)) 543 return false; 544 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 545 return false; 546 return true; 547 } 548 549 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 550 void udp_encap_enable(void) 551 { 552 static_branch_inc(&udp_encap_needed_key); 553 } 554 EXPORT_SYMBOL(udp_encap_enable); 555 556 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 557 * through error handlers in encapsulations looking for a match. 558 */ 559 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 560 { 561 int i; 562 563 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 564 int (*handler)(struct sk_buff *skb, u32 info); 565 566 if (!iptun_encaps[i]) 567 continue; 568 handler = rcu_dereference(iptun_encaps[i]->err_handler); 569 if (handler && !handler(skb, info)) 570 return 0; 571 } 572 573 return -ENOENT; 574 } 575 576 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 577 * reversing source and destination port: this will match tunnels that force the 578 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 579 * lwtunnels might actually break this assumption by being configured with 580 * different destination ports on endpoints, in this case we won't be able to 581 * trace ICMP messages back to them. 582 * 583 * If this doesn't match any socket, probe tunnels with arbitrary destination 584 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 585 * we've sent packets to won't necessarily match the local destination port. 586 * 587 * Then ask the tunnel implementation to match the error against a valid 588 * association. 589 * 590 * Return an error if we can't find a match, the socket if we need further 591 * processing, zero otherwise. 592 */ 593 static struct sock *__udp4_lib_err_encap(struct net *net, 594 const struct iphdr *iph, 595 struct udphdr *uh, 596 struct udp_table *udptable, 597 struct sk_buff *skb, u32 info) 598 { 599 int network_offset, transport_offset; 600 struct sock *sk; 601 602 network_offset = skb_network_offset(skb); 603 transport_offset = skb_transport_offset(skb); 604 605 /* Network header needs to point to the outer IPv4 header inside ICMP */ 606 skb_reset_network_header(skb); 607 608 /* Transport header needs to point to the UDP header */ 609 skb_set_transport_header(skb, iph->ihl << 2); 610 611 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 612 iph->saddr, uh->dest, skb->dev->ifindex, 0, 613 udptable, NULL); 614 if (sk) { 615 int (*lookup)(struct sock *sk, struct sk_buff *skb); 616 struct udp_sock *up = udp_sk(sk); 617 618 lookup = READ_ONCE(up->encap_err_lookup); 619 if (!lookup || lookup(sk, skb)) 620 sk = NULL; 621 } 622 623 if (!sk) 624 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 625 626 skb_set_transport_header(skb, transport_offset); 627 skb_set_network_header(skb, network_offset); 628 629 return sk; 630 } 631 632 /* 633 * This routine is called by the ICMP module when it gets some 634 * sort of error condition. If err < 0 then the socket should 635 * be closed and the error returned to the user. If err > 0 636 * it's just the icmp type << 8 | icmp code. 637 * Header points to the ip header of the error packet. We move 638 * on past this. Then (as it used to claim before adjustment) 639 * header points to the first 8 bytes of the udp header. We need 640 * to find the appropriate port. 641 */ 642 643 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 644 { 645 struct inet_sock *inet; 646 const struct iphdr *iph = (const struct iphdr *)skb->data; 647 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 648 const int type = icmp_hdr(skb)->type; 649 const int code = icmp_hdr(skb)->code; 650 bool tunnel = false; 651 struct sock *sk; 652 int harderr; 653 int err; 654 struct net *net = dev_net(skb->dev); 655 656 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 657 iph->saddr, uh->source, skb->dev->ifindex, 658 inet_sdif(skb), udptable, NULL); 659 if (!sk) { 660 /* No socket for error: try tunnels before discarding */ 661 sk = ERR_PTR(-ENOENT); 662 if (static_branch_unlikely(&udp_encap_needed_key)) { 663 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb, 664 info); 665 if (!sk) 666 return 0; 667 } 668 669 if (IS_ERR(sk)) { 670 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 671 return PTR_ERR(sk); 672 } 673 674 tunnel = true; 675 } 676 677 err = 0; 678 harderr = 0; 679 inet = inet_sk(sk); 680 681 switch (type) { 682 default: 683 case ICMP_TIME_EXCEEDED: 684 err = EHOSTUNREACH; 685 break; 686 case ICMP_SOURCE_QUENCH: 687 goto out; 688 case ICMP_PARAMETERPROB: 689 err = EPROTO; 690 harderr = 1; 691 break; 692 case ICMP_DEST_UNREACH: 693 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 694 ipv4_sk_update_pmtu(skb, sk, info); 695 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 696 err = EMSGSIZE; 697 harderr = 1; 698 break; 699 } 700 goto out; 701 } 702 err = EHOSTUNREACH; 703 if (code <= NR_ICMP_UNREACH) { 704 harderr = icmp_err_convert[code].fatal; 705 err = icmp_err_convert[code].errno; 706 } 707 break; 708 case ICMP_REDIRECT: 709 ipv4_sk_redirect(skb, sk); 710 goto out; 711 } 712 713 /* 714 * RFC1122: OK. Passes ICMP errors back to application, as per 715 * 4.1.3.3. 716 */ 717 if (tunnel) { 718 /* ...not for tunnels though: we don't have a sending socket */ 719 goto out; 720 } 721 if (!inet->recverr) { 722 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 723 goto out; 724 } else 725 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 726 727 sk->sk_err = err; 728 sk->sk_error_report(sk); 729 out: 730 return 0; 731 } 732 733 int udp_err(struct sk_buff *skb, u32 info) 734 { 735 return __udp4_lib_err(skb, info, &udp_table); 736 } 737 738 /* 739 * Throw away all pending data and cancel the corking. Socket is locked. 740 */ 741 void udp_flush_pending_frames(struct sock *sk) 742 { 743 struct udp_sock *up = udp_sk(sk); 744 745 if (up->pending) { 746 up->len = 0; 747 up->pending = 0; 748 ip_flush_pending_frames(sk); 749 } 750 } 751 EXPORT_SYMBOL(udp_flush_pending_frames); 752 753 /** 754 * udp4_hwcsum - handle outgoing HW checksumming 755 * @skb: sk_buff containing the filled-in UDP header 756 * (checksum field must be zeroed out) 757 * @src: source IP address 758 * @dst: destination IP address 759 */ 760 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 761 { 762 struct udphdr *uh = udp_hdr(skb); 763 int offset = skb_transport_offset(skb); 764 int len = skb->len - offset; 765 int hlen = len; 766 __wsum csum = 0; 767 768 if (!skb_has_frag_list(skb)) { 769 /* 770 * Only one fragment on the socket. 771 */ 772 skb->csum_start = skb_transport_header(skb) - skb->head; 773 skb->csum_offset = offsetof(struct udphdr, check); 774 uh->check = ~csum_tcpudp_magic(src, dst, len, 775 IPPROTO_UDP, 0); 776 } else { 777 struct sk_buff *frags; 778 779 /* 780 * HW-checksum won't work as there are two or more 781 * fragments on the socket so that all csums of sk_buffs 782 * should be together 783 */ 784 skb_walk_frags(skb, frags) { 785 csum = csum_add(csum, frags->csum); 786 hlen -= frags->len; 787 } 788 789 csum = skb_checksum(skb, offset, hlen, csum); 790 skb->ip_summed = CHECKSUM_NONE; 791 792 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 793 if (uh->check == 0) 794 uh->check = CSUM_MANGLED_0; 795 } 796 } 797 EXPORT_SYMBOL_GPL(udp4_hwcsum); 798 799 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 800 * for the simple case like when setting the checksum for a UDP tunnel. 801 */ 802 void udp_set_csum(bool nocheck, struct sk_buff *skb, 803 __be32 saddr, __be32 daddr, int len) 804 { 805 struct udphdr *uh = udp_hdr(skb); 806 807 if (nocheck) { 808 uh->check = 0; 809 } else if (skb_is_gso(skb)) { 810 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 811 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 812 uh->check = 0; 813 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 814 if (uh->check == 0) 815 uh->check = CSUM_MANGLED_0; 816 } else { 817 skb->ip_summed = CHECKSUM_PARTIAL; 818 skb->csum_start = skb_transport_header(skb) - skb->head; 819 skb->csum_offset = offsetof(struct udphdr, check); 820 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 821 } 822 } 823 EXPORT_SYMBOL(udp_set_csum); 824 825 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 826 struct inet_cork *cork) 827 { 828 struct sock *sk = skb->sk; 829 struct inet_sock *inet = inet_sk(sk); 830 struct udphdr *uh; 831 int err = 0; 832 int is_udplite = IS_UDPLITE(sk); 833 int offset = skb_transport_offset(skb); 834 int len = skb->len - offset; 835 __wsum csum = 0; 836 837 /* 838 * Create a UDP header 839 */ 840 uh = udp_hdr(skb); 841 uh->source = inet->inet_sport; 842 uh->dest = fl4->fl4_dport; 843 uh->len = htons(len); 844 uh->check = 0; 845 846 if (cork->gso_size) { 847 const int hlen = skb_network_header_len(skb) + 848 sizeof(struct udphdr); 849 850 if (hlen + cork->gso_size > cork->fragsize) 851 return -EINVAL; 852 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) 853 return -EINVAL; 854 if (sk->sk_no_check_tx) 855 return -EINVAL; 856 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 857 dst_xfrm(skb_dst(skb))) 858 return -EIO; 859 860 skb_shinfo(skb)->gso_size = cork->gso_size; 861 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 862 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh), 863 cork->gso_size); 864 goto csum_partial; 865 } 866 867 if (is_udplite) /* UDP-Lite */ 868 csum = udplite_csum(skb); 869 870 else if (sk->sk_no_check_tx) { /* UDP csum off */ 871 872 skb->ip_summed = CHECKSUM_NONE; 873 goto send; 874 875 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 876 csum_partial: 877 878 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 879 goto send; 880 881 } else 882 csum = udp_csum(skb); 883 884 /* add protocol-dependent pseudo-header */ 885 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 886 sk->sk_protocol, csum); 887 if (uh->check == 0) 888 uh->check = CSUM_MANGLED_0; 889 890 send: 891 err = ip_send_skb(sock_net(sk), skb); 892 if (err) { 893 if (err == -ENOBUFS && !inet->recverr) { 894 UDP_INC_STATS(sock_net(sk), 895 UDP_MIB_SNDBUFERRORS, is_udplite); 896 err = 0; 897 } 898 } else 899 UDP_INC_STATS(sock_net(sk), 900 UDP_MIB_OUTDATAGRAMS, is_udplite); 901 return err; 902 } 903 904 /* 905 * Push out all pending data as one UDP datagram. Socket is locked. 906 */ 907 int udp_push_pending_frames(struct sock *sk) 908 { 909 struct udp_sock *up = udp_sk(sk); 910 struct inet_sock *inet = inet_sk(sk); 911 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 912 struct sk_buff *skb; 913 int err = 0; 914 915 skb = ip_finish_skb(sk, fl4); 916 if (!skb) 917 goto out; 918 919 err = udp_send_skb(skb, fl4, &inet->cork.base); 920 921 out: 922 up->len = 0; 923 up->pending = 0; 924 return err; 925 } 926 EXPORT_SYMBOL(udp_push_pending_frames); 927 928 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 929 { 930 switch (cmsg->cmsg_type) { 931 case UDP_SEGMENT: 932 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 933 return -EINVAL; 934 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 935 return 0; 936 default: 937 return -EINVAL; 938 } 939 } 940 941 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 942 { 943 struct cmsghdr *cmsg; 944 bool need_ip = false; 945 int err; 946 947 for_each_cmsghdr(cmsg, msg) { 948 if (!CMSG_OK(msg, cmsg)) 949 return -EINVAL; 950 951 if (cmsg->cmsg_level != SOL_UDP) { 952 need_ip = true; 953 continue; 954 } 955 956 err = __udp_cmsg_send(cmsg, gso_size); 957 if (err) 958 return err; 959 } 960 961 return need_ip; 962 } 963 EXPORT_SYMBOL_GPL(udp_cmsg_send); 964 965 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 966 { 967 struct inet_sock *inet = inet_sk(sk); 968 struct udp_sock *up = udp_sk(sk); 969 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 970 struct flowi4 fl4_stack; 971 struct flowi4 *fl4; 972 int ulen = len; 973 struct ipcm_cookie ipc; 974 struct rtable *rt = NULL; 975 int free = 0; 976 int connected = 0; 977 __be32 daddr, faddr, saddr; 978 __be16 dport; 979 u8 tos; 980 int err, is_udplite = IS_UDPLITE(sk); 981 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 982 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 983 struct sk_buff *skb; 984 struct ip_options_data opt_copy; 985 986 if (len > 0xFFFF) 987 return -EMSGSIZE; 988 989 /* 990 * Check the flags. 991 */ 992 993 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 994 return -EOPNOTSUPP; 995 996 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 997 998 fl4 = &inet->cork.fl.u.ip4; 999 if (up->pending) { 1000 /* 1001 * There are pending frames. 1002 * The socket lock must be held while it's corked. 1003 */ 1004 lock_sock(sk); 1005 if (likely(up->pending)) { 1006 if (unlikely(up->pending != AF_INET)) { 1007 release_sock(sk); 1008 return -EINVAL; 1009 } 1010 goto do_append_data; 1011 } 1012 release_sock(sk); 1013 } 1014 ulen += sizeof(struct udphdr); 1015 1016 /* 1017 * Get and verify the address. 1018 */ 1019 if (usin) { 1020 if (msg->msg_namelen < sizeof(*usin)) 1021 return -EINVAL; 1022 if (usin->sin_family != AF_INET) { 1023 if (usin->sin_family != AF_UNSPEC) 1024 return -EAFNOSUPPORT; 1025 } 1026 1027 daddr = usin->sin_addr.s_addr; 1028 dport = usin->sin_port; 1029 if (dport == 0) 1030 return -EINVAL; 1031 } else { 1032 if (sk->sk_state != TCP_ESTABLISHED) 1033 return -EDESTADDRREQ; 1034 daddr = inet->inet_daddr; 1035 dport = inet->inet_dport; 1036 /* Open fast path for connected socket. 1037 Route will not be used, if at least one option is set. 1038 */ 1039 connected = 1; 1040 } 1041 1042 ipcm_init_sk(&ipc, inet); 1043 ipc.gso_size = up->gso_size; 1044 1045 if (msg->msg_controllen) { 1046 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1047 if (err > 0) 1048 err = ip_cmsg_send(sk, msg, &ipc, 1049 sk->sk_family == AF_INET6); 1050 if (unlikely(err < 0)) { 1051 kfree(ipc.opt); 1052 return err; 1053 } 1054 if (ipc.opt) 1055 free = 1; 1056 connected = 0; 1057 } 1058 if (!ipc.opt) { 1059 struct ip_options_rcu *inet_opt; 1060 1061 rcu_read_lock(); 1062 inet_opt = rcu_dereference(inet->inet_opt); 1063 if (inet_opt) { 1064 memcpy(&opt_copy, inet_opt, 1065 sizeof(*inet_opt) + inet_opt->opt.optlen); 1066 ipc.opt = &opt_copy.opt; 1067 } 1068 rcu_read_unlock(); 1069 } 1070 1071 if (cgroup_bpf_enabled && !connected) { 1072 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1073 (struct sockaddr *)usin, &ipc.addr); 1074 if (err) 1075 goto out_free; 1076 if (usin) { 1077 if (usin->sin_port == 0) { 1078 /* BPF program set invalid port. Reject it. */ 1079 err = -EINVAL; 1080 goto out_free; 1081 } 1082 daddr = usin->sin_addr.s_addr; 1083 dport = usin->sin_port; 1084 } 1085 } 1086 1087 saddr = ipc.addr; 1088 ipc.addr = faddr = daddr; 1089 1090 if (ipc.opt && ipc.opt->opt.srr) { 1091 if (!daddr) { 1092 err = -EINVAL; 1093 goto out_free; 1094 } 1095 faddr = ipc.opt->opt.faddr; 1096 connected = 0; 1097 } 1098 tos = get_rttos(&ipc, inet); 1099 if (sock_flag(sk, SOCK_LOCALROUTE) || 1100 (msg->msg_flags & MSG_DONTROUTE) || 1101 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1102 tos |= RTO_ONLINK; 1103 connected = 0; 1104 } 1105 1106 if (ipv4_is_multicast(daddr)) { 1107 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1108 ipc.oif = inet->mc_index; 1109 if (!saddr) 1110 saddr = inet->mc_addr; 1111 connected = 0; 1112 } else if (!ipc.oif) { 1113 ipc.oif = inet->uc_index; 1114 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1115 /* oif is set, packet is to local broadcast and 1116 * and uc_index is set. oif is most likely set 1117 * by sk_bound_dev_if. If uc_index != oif check if the 1118 * oif is an L3 master and uc_index is an L3 slave. 1119 * If so, we want to allow the send using the uc_index. 1120 */ 1121 if (ipc.oif != inet->uc_index && 1122 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1123 inet->uc_index)) { 1124 ipc.oif = inet->uc_index; 1125 } 1126 } 1127 1128 if (connected) 1129 rt = (struct rtable *)sk_dst_check(sk, 0); 1130 1131 if (!rt) { 1132 struct net *net = sock_net(sk); 1133 __u8 flow_flags = inet_sk_flowi_flags(sk); 1134 1135 fl4 = &fl4_stack; 1136 1137 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1138 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1139 flow_flags, 1140 faddr, saddr, dport, inet->inet_sport, 1141 sk->sk_uid); 1142 1143 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1144 rt = ip_route_output_flow(net, fl4, sk); 1145 if (IS_ERR(rt)) { 1146 err = PTR_ERR(rt); 1147 rt = NULL; 1148 if (err == -ENETUNREACH) 1149 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1150 goto out; 1151 } 1152 1153 err = -EACCES; 1154 if ((rt->rt_flags & RTCF_BROADCAST) && 1155 !sock_flag(sk, SOCK_BROADCAST)) 1156 goto out; 1157 if (connected) 1158 sk_dst_set(sk, dst_clone(&rt->dst)); 1159 } 1160 1161 if (msg->msg_flags&MSG_CONFIRM) 1162 goto do_confirm; 1163 back_from_confirm: 1164 1165 saddr = fl4->saddr; 1166 if (!ipc.addr) 1167 daddr = ipc.addr = fl4->daddr; 1168 1169 /* Lockless fast path for the non-corking case. */ 1170 if (!corkreq) { 1171 struct inet_cork cork; 1172 1173 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1174 sizeof(struct udphdr), &ipc, &rt, 1175 &cork, msg->msg_flags); 1176 err = PTR_ERR(skb); 1177 if (!IS_ERR_OR_NULL(skb)) 1178 err = udp_send_skb(skb, fl4, &cork); 1179 goto out; 1180 } 1181 1182 lock_sock(sk); 1183 if (unlikely(up->pending)) { 1184 /* The socket is already corked while preparing it. */ 1185 /* ... which is an evident application bug. --ANK */ 1186 release_sock(sk); 1187 1188 net_dbg_ratelimited("socket already corked\n"); 1189 err = -EINVAL; 1190 goto out; 1191 } 1192 /* 1193 * Now cork the socket to pend data. 1194 */ 1195 fl4 = &inet->cork.fl.u.ip4; 1196 fl4->daddr = daddr; 1197 fl4->saddr = saddr; 1198 fl4->fl4_dport = dport; 1199 fl4->fl4_sport = inet->inet_sport; 1200 up->pending = AF_INET; 1201 1202 do_append_data: 1203 up->len += ulen; 1204 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1205 sizeof(struct udphdr), &ipc, &rt, 1206 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1207 if (err) 1208 udp_flush_pending_frames(sk); 1209 else if (!corkreq) 1210 err = udp_push_pending_frames(sk); 1211 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1212 up->pending = 0; 1213 release_sock(sk); 1214 1215 out: 1216 ip_rt_put(rt); 1217 out_free: 1218 if (free) 1219 kfree(ipc.opt); 1220 if (!err) 1221 return len; 1222 /* 1223 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1224 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1225 * we don't have a good statistic (IpOutDiscards but it can be too many 1226 * things). We could add another new stat but at least for now that 1227 * seems like overkill. 1228 */ 1229 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1230 UDP_INC_STATS(sock_net(sk), 1231 UDP_MIB_SNDBUFERRORS, is_udplite); 1232 } 1233 return err; 1234 1235 do_confirm: 1236 if (msg->msg_flags & MSG_PROBE) 1237 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1238 if (!(msg->msg_flags&MSG_PROBE) || len) 1239 goto back_from_confirm; 1240 err = 0; 1241 goto out; 1242 } 1243 EXPORT_SYMBOL(udp_sendmsg); 1244 1245 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1246 size_t size, int flags) 1247 { 1248 struct inet_sock *inet = inet_sk(sk); 1249 struct udp_sock *up = udp_sk(sk); 1250 int ret; 1251 1252 if (flags & MSG_SENDPAGE_NOTLAST) 1253 flags |= MSG_MORE; 1254 1255 if (!up->pending) { 1256 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1257 1258 /* Call udp_sendmsg to specify destination address which 1259 * sendpage interface can't pass. 1260 * This will succeed only when the socket is connected. 1261 */ 1262 ret = udp_sendmsg(sk, &msg, 0); 1263 if (ret < 0) 1264 return ret; 1265 } 1266 1267 lock_sock(sk); 1268 1269 if (unlikely(!up->pending)) { 1270 release_sock(sk); 1271 1272 net_dbg_ratelimited("cork failed\n"); 1273 return -EINVAL; 1274 } 1275 1276 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1277 page, offset, size, flags); 1278 if (ret == -EOPNOTSUPP) { 1279 release_sock(sk); 1280 return sock_no_sendpage(sk->sk_socket, page, offset, 1281 size, flags); 1282 } 1283 if (ret < 0) { 1284 udp_flush_pending_frames(sk); 1285 goto out; 1286 } 1287 1288 up->len += size; 1289 if (!(up->corkflag || (flags&MSG_MORE))) 1290 ret = udp_push_pending_frames(sk); 1291 if (!ret) 1292 ret = size; 1293 out: 1294 release_sock(sk); 1295 return ret; 1296 } 1297 1298 #define UDP_SKB_IS_STATELESS 0x80000000 1299 1300 static void udp_set_dev_scratch(struct sk_buff *skb) 1301 { 1302 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1303 1304 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1305 scratch->_tsize_state = skb->truesize; 1306 #if BITS_PER_LONG == 64 1307 scratch->len = skb->len; 1308 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1309 scratch->is_linear = !skb_is_nonlinear(skb); 1310 #endif 1311 /* all head states execept sp (dst, sk, nf) are always cleared by 1312 * udp_rcv() and we need to preserve secpath, if present, to eventually 1313 * process IP_CMSG_PASSSEC at recvmsg() time 1314 */ 1315 if (likely(!skb_sec_path(skb))) 1316 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1317 } 1318 1319 static int udp_skb_truesize(struct sk_buff *skb) 1320 { 1321 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1322 } 1323 1324 static bool udp_skb_has_head_state(struct sk_buff *skb) 1325 { 1326 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1327 } 1328 1329 /* fully reclaim rmem/fwd memory allocated for skb */ 1330 static void udp_rmem_release(struct sock *sk, int size, int partial, 1331 bool rx_queue_lock_held) 1332 { 1333 struct udp_sock *up = udp_sk(sk); 1334 struct sk_buff_head *sk_queue; 1335 int amt; 1336 1337 if (likely(partial)) { 1338 up->forward_deficit += size; 1339 size = up->forward_deficit; 1340 if (size < (sk->sk_rcvbuf >> 2)) 1341 return; 1342 } else { 1343 size += up->forward_deficit; 1344 } 1345 up->forward_deficit = 0; 1346 1347 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1348 * if the called don't held it already 1349 */ 1350 sk_queue = &sk->sk_receive_queue; 1351 if (!rx_queue_lock_held) 1352 spin_lock(&sk_queue->lock); 1353 1354 1355 sk->sk_forward_alloc += size; 1356 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1357 sk->sk_forward_alloc -= amt; 1358 1359 if (amt) 1360 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1361 1362 atomic_sub(size, &sk->sk_rmem_alloc); 1363 1364 /* this can save us from acquiring the rx queue lock on next receive */ 1365 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1366 1367 if (!rx_queue_lock_held) 1368 spin_unlock(&sk_queue->lock); 1369 } 1370 1371 /* Note: called with reader_queue.lock held. 1372 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1373 * This avoids a cache line miss while receive_queue lock is held. 1374 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1375 */ 1376 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1377 { 1378 prefetch(&skb->data); 1379 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1380 } 1381 EXPORT_SYMBOL(udp_skb_destructor); 1382 1383 /* as above, but the caller held the rx queue lock, too */ 1384 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1385 { 1386 prefetch(&skb->data); 1387 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1388 } 1389 1390 /* Idea of busylocks is to let producers grab an extra spinlock 1391 * to relieve pressure on the receive_queue spinlock shared by consumer. 1392 * Under flood, this means that only one producer can be in line 1393 * trying to acquire the receive_queue spinlock. 1394 * These busylock can be allocated on a per cpu manner, instead of a 1395 * per socket one (that would consume a cache line per socket) 1396 */ 1397 static int udp_busylocks_log __read_mostly; 1398 static spinlock_t *udp_busylocks __read_mostly; 1399 1400 static spinlock_t *busylock_acquire(void *ptr) 1401 { 1402 spinlock_t *busy; 1403 1404 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1405 spin_lock(busy); 1406 return busy; 1407 } 1408 1409 static void busylock_release(spinlock_t *busy) 1410 { 1411 if (busy) 1412 spin_unlock(busy); 1413 } 1414 1415 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1416 { 1417 struct sk_buff_head *list = &sk->sk_receive_queue; 1418 int rmem, delta, amt, err = -ENOMEM; 1419 spinlock_t *busy = NULL; 1420 int size; 1421 1422 /* try to avoid the costly atomic add/sub pair when the receive 1423 * queue is full; always allow at least a packet 1424 */ 1425 rmem = atomic_read(&sk->sk_rmem_alloc); 1426 if (rmem > sk->sk_rcvbuf) 1427 goto drop; 1428 1429 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1430 * having linear skbs : 1431 * - Reduce memory overhead and thus increase receive queue capacity 1432 * - Less cache line misses at copyout() time 1433 * - Less work at consume_skb() (less alien page frag freeing) 1434 */ 1435 if (rmem > (sk->sk_rcvbuf >> 1)) { 1436 skb_condense(skb); 1437 1438 busy = busylock_acquire(sk); 1439 } 1440 size = skb->truesize; 1441 udp_set_dev_scratch(skb); 1442 1443 /* we drop only if the receive buf is full and the receive 1444 * queue contains some other skb 1445 */ 1446 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1447 if (rmem > (size + sk->sk_rcvbuf)) 1448 goto uncharge_drop; 1449 1450 spin_lock(&list->lock); 1451 if (size >= sk->sk_forward_alloc) { 1452 amt = sk_mem_pages(size); 1453 delta = amt << SK_MEM_QUANTUM_SHIFT; 1454 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1455 err = -ENOBUFS; 1456 spin_unlock(&list->lock); 1457 goto uncharge_drop; 1458 } 1459 1460 sk->sk_forward_alloc += delta; 1461 } 1462 1463 sk->sk_forward_alloc -= size; 1464 1465 /* no need to setup a destructor, we will explicitly release the 1466 * forward allocated memory on dequeue 1467 */ 1468 sock_skb_set_dropcount(sk, skb); 1469 1470 __skb_queue_tail(list, skb); 1471 spin_unlock(&list->lock); 1472 1473 if (!sock_flag(sk, SOCK_DEAD)) 1474 sk->sk_data_ready(sk); 1475 1476 busylock_release(busy); 1477 return 0; 1478 1479 uncharge_drop: 1480 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1481 1482 drop: 1483 atomic_inc(&sk->sk_drops); 1484 busylock_release(busy); 1485 return err; 1486 } 1487 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1488 1489 void udp_destruct_sock(struct sock *sk) 1490 { 1491 /* reclaim completely the forward allocated memory */ 1492 struct udp_sock *up = udp_sk(sk); 1493 unsigned int total = 0; 1494 struct sk_buff *skb; 1495 1496 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1497 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1498 total += skb->truesize; 1499 kfree_skb(skb); 1500 } 1501 udp_rmem_release(sk, total, 0, true); 1502 1503 inet_sock_destruct(sk); 1504 } 1505 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1506 1507 int udp_init_sock(struct sock *sk) 1508 { 1509 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1510 sk->sk_destruct = udp_destruct_sock; 1511 return 0; 1512 } 1513 EXPORT_SYMBOL_GPL(udp_init_sock); 1514 1515 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1516 { 1517 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1518 bool slow = lock_sock_fast(sk); 1519 1520 sk_peek_offset_bwd(sk, len); 1521 unlock_sock_fast(sk, slow); 1522 } 1523 1524 if (!skb_unref(skb)) 1525 return; 1526 1527 /* In the more common cases we cleared the head states previously, 1528 * see __udp_queue_rcv_skb(). 1529 */ 1530 if (unlikely(udp_skb_has_head_state(skb))) 1531 skb_release_head_state(skb); 1532 __consume_stateless_skb(skb); 1533 } 1534 EXPORT_SYMBOL_GPL(skb_consume_udp); 1535 1536 static struct sk_buff *__first_packet_length(struct sock *sk, 1537 struct sk_buff_head *rcvq, 1538 int *total) 1539 { 1540 struct sk_buff *skb; 1541 1542 while ((skb = skb_peek(rcvq)) != NULL) { 1543 if (udp_lib_checksum_complete(skb)) { 1544 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1545 IS_UDPLITE(sk)); 1546 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1547 IS_UDPLITE(sk)); 1548 atomic_inc(&sk->sk_drops); 1549 __skb_unlink(skb, rcvq); 1550 *total += skb->truesize; 1551 kfree_skb(skb); 1552 } else { 1553 /* the csum related bits could be changed, refresh 1554 * the scratch area 1555 */ 1556 udp_set_dev_scratch(skb); 1557 break; 1558 } 1559 } 1560 return skb; 1561 } 1562 1563 /** 1564 * first_packet_length - return length of first packet in receive queue 1565 * @sk: socket 1566 * 1567 * Drops all bad checksum frames, until a valid one is found. 1568 * Returns the length of found skb, or -1 if none is found. 1569 */ 1570 static int first_packet_length(struct sock *sk) 1571 { 1572 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1573 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1574 struct sk_buff *skb; 1575 int total = 0; 1576 int res; 1577 1578 spin_lock_bh(&rcvq->lock); 1579 skb = __first_packet_length(sk, rcvq, &total); 1580 if (!skb && !skb_queue_empty(sk_queue)) { 1581 spin_lock(&sk_queue->lock); 1582 skb_queue_splice_tail_init(sk_queue, rcvq); 1583 spin_unlock(&sk_queue->lock); 1584 1585 skb = __first_packet_length(sk, rcvq, &total); 1586 } 1587 res = skb ? skb->len : -1; 1588 if (total) 1589 udp_rmem_release(sk, total, 1, false); 1590 spin_unlock_bh(&rcvq->lock); 1591 return res; 1592 } 1593 1594 /* 1595 * IOCTL requests applicable to the UDP protocol 1596 */ 1597 1598 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1599 { 1600 switch (cmd) { 1601 case SIOCOUTQ: 1602 { 1603 int amount = sk_wmem_alloc_get(sk); 1604 1605 return put_user(amount, (int __user *)arg); 1606 } 1607 1608 case SIOCINQ: 1609 { 1610 int amount = max_t(int, 0, first_packet_length(sk)); 1611 1612 return put_user(amount, (int __user *)arg); 1613 } 1614 1615 default: 1616 return -ENOIOCTLCMD; 1617 } 1618 1619 return 0; 1620 } 1621 EXPORT_SYMBOL(udp_ioctl); 1622 1623 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1624 int noblock, int *peeked, int *off, int *err) 1625 { 1626 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1627 struct sk_buff_head *queue; 1628 struct sk_buff *last; 1629 long timeo; 1630 int error; 1631 1632 queue = &udp_sk(sk)->reader_queue; 1633 flags |= noblock ? MSG_DONTWAIT : 0; 1634 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1635 do { 1636 struct sk_buff *skb; 1637 1638 error = sock_error(sk); 1639 if (error) 1640 break; 1641 1642 error = -EAGAIN; 1643 *peeked = 0; 1644 do { 1645 spin_lock_bh(&queue->lock); 1646 skb = __skb_try_recv_from_queue(sk, queue, flags, 1647 udp_skb_destructor, 1648 peeked, off, err, 1649 &last); 1650 if (skb) { 1651 spin_unlock_bh(&queue->lock); 1652 return skb; 1653 } 1654 1655 if (skb_queue_empty(sk_queue)) { 1656 spin_unlock_bh(&queue->lock); 1657 goto busy_check; 1658 } 1659 1660 /* refill the reader queue and walk it again 1661 * keep both queues locked to avoid re-acquiring 1662 * the sk_receive_queue lock if fwd memory scheduling 1663 * is needed. 1664 */ 1665 spin_lock(&sk_queue->lock); 1666 skb_queue_splice_tail_init(sk_queue, queue); 1667 1668 skb = __skb_try_recv_from_queue(sk, queue, flags, 1669 udp_skb_dtor_locked, 1670 peeked, off, err, 1671 &last); 1672 spin_unlock(&sk_queue->lock); 1673 spin_unlock_bh(&queue->lock); 1674 if (skb) 1675 return skb; 1676 1677 busy_check: 1678 if (!sk_can_busy_loop(sk)) 1679 break; 1680 1681 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1682 } while (!skb_queue_empty(sk_queue)); 1683 1684 /* sk_queue is empty, reader_queue may contain peeked packets */ 1685 } while (timeo && 1686 !__skb_wait_for_more_packets(sk, &error, &timeo, 1687 (struct sk_buff *)sk_queue)); 1688 1689 *err = error; 1690 return NULL; 1691 } 1692 EXPORT_SYMBOL(__skb_recv_udp); 1693 1694 /* 1695 * This should be easy, if there is something there we 1696 * return it, otherwise we block. 1697 */ 1698 1699 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1700 int flags, int *addr_len) 1701 { 1702 struct inet_sock *inet = inet_sk(sk); 1703 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1704 struct sk_buff *skb; 1705 unsigned int ulen, copied; 1706 int peeked, peeking, off; 1707 int err; 1708 int is_udplite = IS_UDPLITE(sk); 1709 bool checksum_valid = false; 1710 1711 if (flags & MSG_ERRQUEUE) 1712 return ip_recv_error(sk, msg, len, addr_len); 1713 1714 try_again: 1715 peeking = flags & MSG_PEEK; 1716 off = sk_peek_offset(sk, flags); 1717 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1718 if (!skb) 1719 return err; 1720 1721 ulen = udp_skb_len(skb); 1722 copied = len; 1723 if (copied > ulen - off) 1724 copied = ulen - off; 1725 else if (copied < ulen) 1726 msg->msg_flags |= MSG_TRUNC; 1727 1728 /* 1729 * If checksum is needed at all, try to do it while copying the 1730 * data. If the data is truncated, or if we only want a partial 1731 * coverage checksum (UDP-Lite), do it before the copy. 1732 */ 1733 1734 if (copied < ulen || peeking || 1735 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1736 checksum_valid = udp_skb_csum_unnecessary(skb) || 1737 !__udp_lib_checksum_complete(skb); 1738 if (!checksum_valid) 1739 goto csum_copy_err; 1740 } 1741 1742 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1743 if (udp_skb_is_linear(skb)) 1744 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1745 else 1746 err = skb_copy_datagram_msg(skb, off, msg, copied); 1747 } else { 1748 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1749 1750 if (err == -EINVAL) 1751 goto csum_copy_err; 1752 } 1753 1754 if (unlikely(err)) { 1755 if (!peeked) { 1756 atomic_inc(&sk->sk_drops); 1757 UDP_INC_STATS(sock_net(sk), 1758 UDP_MIB_INERRORS, is_udplite); 1759 } 1760 kfree_skb(skb); 1761 return err; 1762 } 1763 1764 if (!peeked) 1765 UDP_INC_STATS(sock_net(sk), 1766 UDP_MIB_INDATAGRAMS, is_udplite); 1767 1768 sock_recv_ts_and_drops(msg, sk, skb); 1769 1770 /* Copy the address. */ 1771 if (sin) { 1772 sin->sin_family = AF_INET; 1773 sin->sin_port = udp_hdr(skb)->source; 1774 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1775 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1776 *addr_len = sizeof(*sin); 1777 } 1778 1779 if (udp_sk(sk)->gro_enabled) 1780 udp_cmsg_recv(msg, sk, skb); 1781 1782 if (inet->cmsg_flags) 1783 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1784 1785 err = copied; 1786 if (flags & MSG_TRUNC) 1787 err = ulen; 1788 1789 skb_consume_udp(sk, skb, peeking ? -err : err); 1790 return err; 1791 1792 csum_copy_err: 1793 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1794 udp_skb_destructor)) { 1795 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1796 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1797 } 1798 kfree_skb(skb); 1799 1800 /* starting over for a new packet, but check if we need to yield */ 1801 cond_resched(); 1802 msg->msg_flags &= ~MSG_TRUNC; 1803 goto try_again; 1804 } 1805 1806 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1807 { 1808 /* This check is replicated from __ip4_datagram_connect() and 1809 * intended to prevent BPF program called below from accessing bytes 1810 * that are out of the bound specified by user in addr_len. 1811 */ 1812 if (addr_len < sizeof(struct sockaddr_in)) 1813 return -EINVAL; 1814 1815 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1816 } 1817 EXPORT_SYMBOL(udp_pre_connect); 1818 1819 int __udp_disconnect(struct sock *sk, int flags) 1820 { 1821 struct inet_sock *inet = inet_sk(sk); 1822 /* 1823 * 1003.1g - break association. 1824 */ 1825 1826 sk->sk_state = TCP_CLOSE; 1827 inet->inet_daddr = 0; 1828 inet->inet_dport = 0; 1829 sock_rps_reset_rxhash(sk); 1830 sk->sk_bound_dev_if = 0; 1831 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1832 inet_reset_saddr(sk); 1833 1834 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1835 sk->sk_prot->unhash(sk); 1836 inet->inet_sport = 0; 1837 } 1838 sk_dst_reset(sk); 1839 return 0; 1840 } 1841 EXPORT_SYMBOL(__udp_disconnect); 1842 1843 int udp_disconnect(struct sock *sk, int flags) 1844 { 1845 lock_sock(sk); 1846 __udp_disconnect(sk, flags); 1847 release_sock(sk); 1848 return 0; 1849 } 1850 EXPORT_SYMBOL(udp_disconnect); 1851 1852 void udp_lib_unhash(struct sock *sk) 1853 { 1854 if (sk_hashed(sk)) { 1855 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1856 struct udp_hslot *hslot, *hslot2; 1857 1858 hslot = udp_hashslot(udptable, sock_net(sk), 1859 udp_sk(sk)->udp_port_hash); 1860 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1861 1862 spin_lock_bh(&hslot->lock); 1863 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1864 reuseport_detach_sock(sk); 1865 if (sk_del_node_init_rcu(sk)) { 1866 hslot->count--; 1867 inet_sk(sk)->inet_num = 0; 1868 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1869 1870 spin_lock(&hslot2->lock); 1871 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1872 hslot2->count--; 1873 spin_unlock(&hslot2->lock); 1874 } 1875 spin_unlock_bh(&hslot->lock); 1876 } 1877 } 1878 EXPORT_SYMBOL(udp_lib_unhash); 1879 1880 /* 1881 * inet_rcv_saddr was changed, we must rehash secondary hash 1882 */ 1883 void udp_lib_rehash(struct sock *sk, u16 newhash) 1884 { 1885 if (sk_hashed(sk)) { 1886 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1887 struct udp_hslot *hslot, *hslot2, *nhslot2; 1888 1889 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1890 nhslot2 = udp_hashslot2(udptable, newhash); 1891 udp_sk(sk)->udp_portaddr_hash = newhash; 1892 1893 if (hslot2 != nhslot2 || 1894 rcu_access_pointer(sk->sk_reuseport_cb)) { 1895 hslot = udp_hashslot(udptable, sock_net(sk), 1896 udp_sk(sk)->udp_port_hash); 1897 /* we must lock primary chain too */ 1898 spin_lock_bh(&hslot->lock); 1899 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1900 reuseport_detach_sock(sk); 1901 1902 if (hslot2 != nhslot2) { 1903 spin_lock(&hslot2->lock); 1904 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1905 hslot2->count--; 1906 spin_unlock(&hslot2->lock); 1907 1908 spin_lock(&nhslot2->lock); 1909 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1910 &nhslot2->head); 1911 nhslot2->count++; 1912 spin_unlock(&nhslot2->lock); 1913 } 1914 1915 spin_unlock_bh(&hslot->lock); 1916 } 1917 } 1918 } 1919 EXPORT_SYMBOL(udp_lib_rehash); 1920 1921 static void udp_v4_rehash(struct sock *sk) 1922 { 1923 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1924 inet_sk(sk)->inet_rcv_saddr, 1925 inet_sk(sk)->inet_num); 1926 udp_lib_rehash(sk, new_hash); 1927 } 1928 1929 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1930 { 1931 int rc; 1932 1933 if (inet_sk(sk)->inet_daddr) { 1934 sock_rps_save_rxhash(sk, skb); 1935 sk_mark_napi_id(sk, skb); 1936 sk_incoming_cpu_update(sk); 1937 } else { 1938 sk_mark_napi_id_once(sk, skb); 1939 } 1940 1941 rc = __udp_enqueue_schedule_skb(sk, skb); 1942 if (rc < 0) { 1943 int is_udplite = IS_UDPLITE(sk); 1944 1945 /* Note that an ENOMEM error is charged twice */ 1946 if (rc == -ENOMEM) 1947 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1948 is_udplite); 1949 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1950 kfree_skb(skb); 1951 trace_udp_fail_queue_rcv_skb(rc, sk); 1952 return -1; 1953 } 1954 1955 return 0; 1956 } 1957 1958 /* returns: 1959 * -1: error 1960 * 0: success 1961 * >0: "udp encap" protocol resubmission 1962 * 1963 * Note that in the success and error cases, the skb is assumed to 1964 * have either been requeued or freed. 1965 */ 1966 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 1967 { 1968 struct udp_sock *up = udp_sk(sk); 1969 int is_udplite = IS_UDPLITE(sk); 1970 1971 /* 1972 * Charge it to the socket, dropping if the queue is full. 1973 */ 1974 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1975 goto drop; 1976 nf_reset(skb); 1977 1978 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1979 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1980 1981 /* 1982 * This is an encapsulation socket so pass the skb to 1983 * the socket's udp_encap_rcv() hook. Otherwise, just 1984 * fall through and pass this up the UDP socket. 1985 * up->encap_rcv() returns the following value: 1986 * =0 if skb was successfully passed to the encap 1987 * handler or was discarded by it. 1988 * >0 if skb should be passed on to UDP. 1989 * <0 if skb should be resubmitted as proto -N 1990 */ 1991 1992 /* if we're overly short, let UDP handle it */ 1993 encap_rcv = READ_ONCE(up->encap_rcv); 1994 if (encap_rcv) { 1995 int ret; 1996 1997 /* Verify checksum before giving to encap */ 1998 if (udp_lib_checksum_complete(skb)) 1999 goto csum_error; 2000 2001 ret = encap_rcv(sk, skb); 2002 if (ret <= 0) { 2003 __UDP_INC_STATS(sock_net(sk), 2004 UDP_MIB_INDATAGRAMS, 2005 is_udplite); 2006 return -ret; 2007 } 2008 } 2009 2010 /* FALLTHROUGH -- it's a UDP Packet */ 2011 } 2012 2013 /* 2014 * UDP-Lite specific tests, ignored on UDP sockets 2015 */ 2016 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2017 2018 /* 2019 * MIB statistics other than incrementing the error count are 2020 * disabled for the following two types of errors: these depend 2021 * on the application settings, not on the functioning of the 2022 * protocol stack as such. 2023 * 2024 * RFC 3828 here recommends (sec 3.3): "There should also be a 2025 * way ... to ... at least let the receiving application block 2026 * delivery of packets with coverage values less than a value 2027 * provided by the application." 2028 */ 2029 if (up->pcrlen == 0) { /* full coverage was set */ 2030 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2031 UDP_SKB_CB(skb)->cscov, skb->len); 2032 goto drop; 2033 } 2034 /* The next case involves violating the min. coverage requested 2035 * by the receiver. This is subtle: if receiver wants x and x is 2036 * greater than the buffersize/MTU then receiver will complain 2037 * that it wants x while sender emits packets of smaller size y. 2038 * Therefore the above ...()->partial_cov statement is essential. 2039 */ 2040 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2041 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2042 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2043 goto drop; 2044 } 2045 } 2046 2047 prefetch(&sk->sk_rmem_alloc); 2048 if (rcu_access_pointer(sk->sk_filter) && 2049 udp_lib_checksum_complete(skb)) 2050 goto csum_error; 2051 2052 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 2053 goto drop; 2054 2055 udp_csum_pull_header(skb); 2056 2057 ipv4_pktinfo_prepare(sk, skb); 2058 return __udp_queue_rcv_skb(sk, skb); 2059 2060 csum_error: 2061 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2062 drop: 2063 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2064 atomic_inc(&sk->sk_drops); 2065 kfree_skb(skb); 2066 return -1; 2067 } 2068 2069 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2070 { 2071 struct sk_buff *next, *segs; 2072 int ret; 2073 2074 if (likely(!udp_unexpected_gso(sk, skb))) 2075 return udp_queue_rcv_one_skb(sk, skb); 2076 2077 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET); 2078 __skb_push(skb, -skb_mac_offset(skb)); 2079 segs = udp_rcv_segment(sk, skb, true); 2080 for (skb = segs; skb; skb = next) { 2081 next = skb->next; 2082 __skb_pull(skb, skb_transport_offset(skb)); 2083 ret = udp_queue_rcv_one_skb(sk, skb); 2084 if (ret > 0) 2085 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret); 2086 } 2087 return 0; 2088 } 2089 2090 /* For TCP sockets, sk_rx_dst is protected by socket lock 2091 * For UDP, we use xchg() to guard against concurrent changes. 2092 */ 2093 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2094 { 2095 struct dst_entry *old; 2096 2097 if (dst_hold_safe(dst)) { 2098 old = xchg(&sk->sk_rx_dst, dst); 2099 dst_release(old); 2100 return old != dst; 2101 } 2102 return false; 2103 } 2104 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2105 2106 /* 2107 * Multicasts and broadcasts go to each listener. 2108 * 2109 * Note: called only from the BH handler context. 2110 */ 2111 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2112 struct udphdr *uh, 2113 __be32 saddr, __be32 daddr, 2114 struct udp_table *udptable, 2115 int proto) 2116 { 2117 struct sock *sk, *first = NULL; 2118 unsigned short hnum = ntohs(uh->dest); 2119 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2120 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2121 unsigned int offset = offsetof(typeof(*sk), sk_node); 2122 int dif = skb->dev->ifindex; 2123 int sdif = inet_sdif(skb); 2124 struct hlist_node *node; 2125 struct sk_buff *nskb; 2126 2127 if (use_hash2) { 2128 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2129 udptable->mask; 2130 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2131 start_lookup: 2132 hslot = &udptable->hash2[hash2]; 2133 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2134 } 2135 2136 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2137 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2138 uh->source, saddr, dif, sdif, hnum)) 2139 continue; 2140 2141 if (!first) { 2142 first = sk; 2143 continue; 2144 } 2145 nskb = skb_clone(skb, GFP_ATOMIC); 2146 2147 if (unlikely(!nskb)) { 2148 atomic_inc(&sk->sk_drops); 2149 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2150 IS_UDPLITE(sk)); 2151 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2152 IS_UDPLITE(sk)); 2153 continue; 2154 } 2155 if (udp_queue_rcv_skb(sk, nskb) > 0) 2156 consume_skb(nskb); 2157 } 2158 2159 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2160 if (use_hash2 && hash2 != hash2_any) { 2161 hash2 = hash2_any; 2162 goto start_lookup; 2163 } 2164 2165 if (first) { 2166 if (udp_queue_rcv_skb(first, skb) > 0) 2167 consume_skb(skb); 2168 } else { 2169 kfree_skb(skb); 2170 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2171 proto == IPPROTO_UDPLITE); 2172 } 2173 return 0; 2174 } 2175 2176 /* Initialize UDP checksum. If exited with zero value (success), 2177 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2178 * Otherwise, csum completion requires chacksumming packet body, 2179 * including udp header and folding it to skb->csum. 2180 */ 2181 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2182 int proto) 2183 { 2184 int err; 2185 2186 UDP_SKB_CB(skb)->partial_cov = 0; 2187 UDP_SKB_CB(skb)->cscov = skb->len; 2188 2189 if (proto == IPPROTO_UDPLITE) { 2190 err = udplite_checksum_init(skb, uh); 2191 if (err) 2192 return err; 2193 2194 if (UDP_SKB_CB(skb)->partial_cov) { 2195 skb->csum = inet_compute_pseudo(skb, proto); 2196 return 0; 2197 } 2198 } 2199 2200 /* Note, we are only interested in != 0 or == 0, thus the 2201 * force to int. 2202 */ 2203 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2204 inet_compute_pseudo); 2205 if (err) 2206 return err; 2207 2208 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2209 /* If SW calculated the value, we know it's bad */ 2210 if (skb->csum_complete_sw) 2211 return 1; 2212 2213 /* HW says the value is bad. Let's validate that. 2214 * skb->csum is no longer the full packet checksum, 2215 * so don't treat it as such. 2216 */ 2217 skb_checksum_complete_unset(skb); 2218 } 2219 2220 return 0; 2221 } 2222 2223 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2224 * return code conversion for ip layer consumption 2225 */ 2226 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2227 struct udphdr *uh) 2228 { 2229 int ret; 2230 2231 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2232 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2233 inet_compute_pseudo); 2234 2235 ret = udp_queue_rcv_skb(sk, skb); 2236 2237 /* a return value > 0 means to resubmit the input, but 2238 * it wants the return to be -protocol, or 0 2239 */ 2240 if (ret > 0) 2241 return -ret; 2242 return 0; 2243 } 2244 2245 /* 2246 * All we need to do is get the socket, and then do a checksum. 2247 */ 2248 2249 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2250 int proto) 2251 { 2252 struct sock *sk; 2253 struct udphdr *uh; 2254 unsigned short ulen; 2255 struct rtable *rt = skb_rtable(skb); 2256 __be32 saddr, daddr; 2257 struct net *net = dev_net(skb->dev); 2258 2259 /* 2260 * Validate the packet. 2261 */ 2262 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2263 goto drop; /* No space for header. */ 2264 2265 uh = udp_hdr(skb); 2266 ulen = ntohs(uh->len); 2267 saddr = ip_hdr(skb)->saddr; 2268 daddr = ip_hdr(skb)->daddr; 2269 2270 if (ulen > skb->len) 2271 goto short_packet; 2272 2273 if (proto == IPPROTO_UDP) { 2274 /* UDP validates ulen. */ 2275 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2276 goto short_packet; 2277 uh = udp_hdr(skb); 2278 } 2279 2280 if (udp4_csum_init(skb, uh, proto)) 2281 goto csum_error; 2282 2283 sk = skb_steal_sock(skb); 2284 if (sk) { 2285 struct dst_entry *dst = skb_dst(skb); 2286 int ret; 2287 2288 if (unlikely(sk->sk_rx_dst != dst)) 2289 udp_sk_rx_dst_set(sk, dst); 2290 2291 ret = udp_unicast_rcv_skb(sk, skb, uh); 2292 sock_put(sk); 2293 return ret; 2294 } 2295 2296 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2297 return __udp4_lib_mcast_deliver(net, skb, uh, 2298 saddr, daddr, udptable, proto); 2299 2300 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2301 if (sk) 2302 return udp_unicast_rcv_skb(sk, skb, uh); 2303 2304 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2305 goto drop; 2306 nf_reset(skb); 2307 2308 /* No socket. Drop packet silently, if checksum is wrong */ 2309 if (udp_lib_checksum_complete(skb)) 2310 goto csum_error; 2311 2312 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2313 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2314 2315 /* 2316 * Hmm. We got an UDP packet to a port to which we 2317 * don't wanna listen. Ignore it. 2318 */ 2319 kfree_skb(skb); 2320 return 0; 2321 2322 short_packet: 2323 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2324 proto == IPPROTO_UDPLITE ? "Lite" : "", 2325 &saddr, ntohs(uh->source), 2326 ulen, skb->len, 2327 &daddr, ntohs(uh->dest)); 2328 goto drop; 2329 2330 csum_error: 2331 /* 2332 * RFC1122: OK. Discards the bad packet silently (as far as 2333 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2334 */ 2335 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2336 proto == IPPROTO_UDPLITE ? "Lite" : "", 2337 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2338 ulen); 2339 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2340 drop: 2341 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2342 kfree_skb(skb); 2343 return 0; 2344 } 2345 2346 /* We can only early demux multicast if there is a single matching socket. 2347 * If more than one socket found returns NULL 2348 */ 2349 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2350 __be16 loc_port, __be32 loc_addr, 2351 __be16 rmt_port, __be32 rmt_addr, 2352 int dif, int sdif) 2353 { 2354 struct sock *sk, *result; 2355 unsigned short hnum = ntohs(loc_port); 2356 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2357 struct udp_hslot *hslot = &udp_table.hash[slot]; 2358 2359 /* Do not bother scanning a too big list */ 2360 if (hslot->count > 10) 2361 return NULL; 2362 2363 result = NULL; 2364 sk_for_each_rcu(sk, &hslot->head) { 2365 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2366 rmt_port, rmt_addr, dif, sdif, hnum)) { 2367 if (result) 2368 return NULL; 2369 result = sk; 2370 } 2371 } 2372 2373 return result; 2374 } 2375 2376 /* For unicast we should only early demux connected sockets or we can 2377 * break forwarding setups. The chains here can be long so only check 2378 * if the first socket is an exact match and if not move on. 2379 */ 2380 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2381 __be16 loc_port, __be32 loc_addr, 2382 __be16 rmt_port, __be32 rmt_addr, 2383 int dif, int sdif) 2384 { 2385 unsigned short hnum = ntohs(loc_port); 2386 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2387 unsigned int slot2 = hash2 & udp_table.mask; 2388 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2389 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2390 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2391 struct sock *sk; 2392 2393 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2394 if (INET_MATCH(sk, net, acookie, rmt_addr, 2395 loc_addr, ports, dif, sdif)) 2396 return sk; 2397 /* Only check first socket in chain */ 2398 break; 2399 } 2400 return NULL; 2401 } 2402 2403 int udp_v4_early_demux(struct sk_buff *skb) 2404 { 2405 struct net *net = dev_net(skb->dev); 2406 struct in_device *in_dev = NULL; 2407 const struct iphdr *iph; 2408 const struct udphdr *uh; 2409 struct sock *sk = NULL; 2410 struct dst_entry *dst; 2411 int dif = skb->dev->ifindex; 2412 int sdif = inet_sdif(skb); 2413 int ours; 2414 2415 /* validate the packet */ 2416 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2417 return 0; 2418 2419 iph = ip_hdr(skb); 2420 uh = udp_hdr(skb); 2421 2422 if (skb->pkt_type == PACKET_MULTICAST) { 2423 in_dev = __in_dev_get_rcu(skb->dev); 2424 2425 if (!in_dev) 2426 return 0; 2427 2428 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2429 iph->protocol); 2430 if (!ours) 2431 return 0; 2432 2433 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2434 uh->source, iph->saddr, 2435 dif, sdif); 2436 } else if (skb->pkt_type == PACKET_HOST) { 2437 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2438 uh->source, iph->saddr, dif, sdif); 2439 } 2440 2441 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2442 return 0; 2443 2444 skb->sk = sk; 2445 skb->destructor = sock_efree; 2446 dst = READ_ONCE(sk->sk_rx_dst); 2447 2448 if (dst) 2449 dst = dst_check(dst, 0); 2450 if (dst) { 2451 u32 itag = 0; 2452 2453 /* set noref for now. 2454 * any place which wants to hold dst has to call 2455 * dst_hold_safe() 2456 */ 2457 skb_dst_set_noref(skb, dst); 2458 2459 /* for unconnected multicast sockets we need to validate 2460 * the source on each packet 2461 */ 2462 if (!inet_sk(sk)->inet_daddr && in_dev) 2463 return ip_mc_validate_source(skb, iph->daddr, 2464 iph->saddr, iph->tos, 2465 skb->dev, in_dev, &itag); 2466 } 2467 return 0; 2468 } 2469 2470 int udp_rcv(struct sk_buff *skb) 2471 { 2472 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2473 } 2474 2475 void udp_destroy_sock(struct sock *sk) 2476 { 2477 struct udp_sock *up = udp_sk(sk); 2478 bool slow = lock_sock_fast(sk); 2479 udp_flush_pending_frames(sk); 2480 unlock_sock_fast(sk, slow); 2481 if (static_branch_unlikely(&udp_encap_needed_key)) { 2482 if (up->encap_type) { 2483 void (*encap_destroy)(struct sock *sk); 2484 encap_destroy = READ_ONCE(up->encap_destroy); 2485 if (encap_destroy) 2486 encap_destroy(sk); 2487 } 2488 if (up->encap_enabled) 2489 static_branch_dec(&udp_encap_needed_key); 2490 } 2491 } 2492 2493 /* 2494 * Socket option code for UDP 2495 */ 2496 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2497 char __user *optval, unsigned int optlen, 2498 int (*push_pending_frames)(struct sock *)) 2499 { 2500 struct udp_sock *up = udp_sk(sk); 2501 int val, valbool; 2502 int err = 0; 2503 int is_udplite = IS_UDPLITE(sk); 2504 2505 if (optlen < sizeof(int)) 2506 return -EINVAL; 2507 2508 if (get_user(val, (int __user *)optval)) 2509 return -EFAULT; 2510 2511 valbool = val ? 1 : 0; 2512 2513 switch (optname) { 2514 case UDP_CORK: 2515 if (val != 0) { 2516 up->corkflag = 1; 2517 } else { 2518 up->corkflag = 0; 2519 lock_sock(sk); 2520 push_pending_frames(sk); 2521 release_sock(sk); 2522 } 2523 break; 2524 2525 case UDP_ENCAP: 2526 switch (val) { 2527 case 0: 2528 case UDP_ENCAP_ESPINUDP: 2529 case UDP_ENCAP_ESPINUDP_NON_IKE: 2530 up->encap_rcv = xfrm4_udp_encap_rcv; 2531 /* FALLTHROUGH */ 2532 case UDP_ENCAP_L2TPINUDP: 2533 up->encap_type = val; 2534 lock_sock(sk); 2535 udp_tunnel_encap_enable(sk->sk_socket); 2536 release_sock(sk); 2537 break; 2538 default: 2539 err = -ENOPROTOOPT; 2540 break; 2541 } 2542 break; 2543 2544 case UDP_NO_CHECK6_TX: 2545 up->no_check6_tx = valbool; 2546 break; 2547 2548 case UDP_NO_CHECK6_RX: 2549 up->no_check6_rx = valbool; 2550 break; 2551 2552 case UDP_SEGMENT: 2553 if (val < 0 || val > USHRT_MAX) 2554 return -EINVAL; 2555 up->gso_size = val; 2556 break; 2557 2558 case UDP_GRO: 2559 lock_sock(sk); 2560 if (valbool) 2561 udp_tunnel_encap_enable(sk->sk_socket); 2562 up->gro_enabled = valbool; 2563 release_sock(sk); 2564 break; 2565 2566 /* 2567 * UDP-Lite's partial checksum coverage (RFC 3828). 2568 */ 2569 /* The sender sets actual checksum coverage length via this option. 2570 * The case coverage > packet length is handled by send module. */ 2571 case UDPLITE_SEND_CSCOV: 2572 if (!is_udplite) /* Disable the option on UDP sockets */ 2573 return -ENOPROTOOPT; 2574 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2575 val = 8; 2576 else if (val > USHRT_MAX) 2577 val = USHRT_MAX; 2578 up->pcslen = val; 2579 up->pcflag |= UDPLITE_SEND_CC; 2580 break; 2581 2582 /* The receiver specifies a minimum checksum coverage value. To make 2583 * sense, this should be set to at least 8 (as done below). If zero is 2584 * used, this again means full checksum coverage. */ 2585 case UDPLITE_RECV_CSCOV: 2586 if (!is_udplite) /* Disable the option on UDP sockets */ 2587 return -ENOPROTOOPT; 2588 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2589 val = 8; 2590 else if (val > USHRT_MAX) 2591 val = USHRT_MAX; 2592 up->pcrlen = val; 2593 up->pcflag |= UDPLITE_RECV_CC; 2594 break; 2595 2596 default: 2597 err = -ENOPROTOOPT; 2598 break; 2599 } 2600 2601 return err; 2602 } 2603 EXPORT_SYMBOL(udp_lib_setsockopt); 2604 2605 int udp_setsockopt(struct sock *sk, int level, int optname, 2606 char __user *optval, unsigned int optlen) 2607 { 2608 if (level == SOL_UDP || level == SOL_UDPLITE) 2609 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2610 udp_push_pending_frames); 2611 return ip_setsockopt(sk, level, optname, optval, optlen); 2612 } 2613 2614 #ifdef CONFIG_COMPAT 2615 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2616 char __user *optval, unsigned int optlen) 2617 { 2618 if (level == SOL_UDP || level == SOL_UDPLITE) 2619 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2620 udp_push_pending_frames); 2621 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2622 } 2623 #endif 2624 2625 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2626 char __user *optval, int __user *optlen) 2627 { 2628 struct udp_sock *up = udp_sk(sk); 2629 int val, len; 2630 2631 if (get_user(len, optlen)) 2632 return -EFAULT; 2633 2634 len = min_t(unsigned int, len, sizeof(int)); 2635 2636 if (len < 0) 2637 return -EINVAL; 2638 2639 switch (optname) { 2640 case UDP_CORK: 2641 val = up->corkflag; 2642 break; 2643 2644 case UDP_ENCAP: 2645 val = up->encap_type; 2646 break; 2647 2648 case UDP_NO_CHECK6_TX: 2649 val = up->no_check6_tx; 2650 break; 2651 2652 case UDP_NO_CHECK6_RX: 2653 val = up->no_check6_rx; 2654 break; 2655 2656 case UDP_SEGMENT: 2657 val = up->gso_size; 2658 break; 2659 2660 /* The following two cannot be changed on UDP sockets, the return is 2661 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2662 case UDPLITE_SEND_CSCOV: 2663 val = up->pcslen; 2664 break; 2665 2666 case UDPLITE_RECV_CSCOV: 2667 val = up->pcrlen; 2668 break; 2669 2670 default: 2671 return -ENOPROTOOPT; 2672 } 2673 2674 if (put_user(len, optlen)) 2675 return -EFAULT; 2676 if (copy_to_user(optval, &val, len)) 2677 return -EFAULT; 2678 return 0; 2679 } 2680 EXPORT_SYMBOL(udp_lib_getsockopt); 2681 2682 int udp_getsockopt(struct sock *sk, int level, int optname, 2683 char __user *optval, int __user *optlen) 2684 { 2685 if (level == SOL_UDP || level == SOL_UDPLITE) 2686 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2687 return ip_getsockopt(sk, level, optname, optval, optlen); 2688 } 2689 2690 #ifdef CONFIG_COMPAT 2691 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2692 char __user *optval, int __user *optlen) 2693 { 2694 if (level == SOL_UDP || level == SOL_UDPLITE) 2695 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2696 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2697 } 2698 #endif 2699 /** 2700 * udp_poll - wait for a UDP event. 2701 * @file - file struct 2702 * @sock - socket 2703 * @wait - poll table 2704 * 2705 * This is same as datagram poll, except for the special case of 2706 * blocking sockets. If application is using a blocking fd 2707 * and a packet with checksum error is in the queue; 2708 * then it could get return from select indicating data available 2709 * but then block when reading it. Add special case code 2710 * to work around these arguably broken applications. 2711 */ 2712 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2713 { 2714 __poll_t mask = datagram_poll(file, sock, wait); 2715 struct sock *sk = sock->sk; 2716 2717 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2718 mask |= EPOLLIN | EPOLLRDNORM; 2719 2720 /* Check for false positives due to checksum errors */ 2721 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2722 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2723 mask &= ~(EPOLLIN | EPOLLRDNORM); 2724 2725 return mask; 2726 2727 } 2728 EXPORT_SYMBOL(udp_poll); 2729 2730 int udp_abort(struct sock *sk, int err) 2731 { 2732 lock_sock(sk); 2733 2734 sk->sk_err = err; 2735 sk->sk_error_report(sk); 2736 __udp_disconnect(sk, 0); 2737 2738 release_sock(sk); 2739 2740 return 0; 2741 } 2742 EXPORT_SYMBOL_GPL(udp_abort); 2743 2744 struct proto udp_prot = { 2745 .name = "UDP", 2746 .owner = THIS_MODULE, 2747 .close = udp_lib_close, 2748 .pre_connect = udp_pre_connect, 2749 .connect = ip4_datagram_connect, 2750 .disconnect = udp_disconnect, 2751 .ioctl = udp_ioctl, 2752 .init = udp_init_sock, 2753 .destroy = udp_destroy_sock, 2754 .setsockopt = udp_setsockopt, 2755 .getsockopt = udp_getsockopt, 2756 .sendmsg = udp_sendmsg, 2757 .recvmsg = udp_recvmsg, 2758 .sendpage = udp_sendpage, 2759 .release_cb = ip4_datagram_release_cb, 2760 .hash = udp_lib_hash, 2761 .unhash = udp_lib_unhash, 2762 .rehash = udp_v4_rehash, 2763 .get_port = udp_v4_get_port, 2764 .memory_allocated = &udp_memory_allocated, 2765 .sysctl_mem = sysctl_udp_mem, 2766 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2767 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2768 .obj_size = sizeof(struct udp_sock), 2769 .h.udp_table = &udp_table, 2770 #ifdef CONFIG_COMPAT 2771 .compat_setsockopt = compat_udp_setsockopt, 2772 .compat_getsockopt = compat_udp_getsockopt, 2773 #endif 2774 .diag_destroy = udp_abort, 2775 }; 2776 EXPORT_SYMBOL(udp_prot); 2777 2778 /* ------------------------------------------------------------------------ */ 2779 #ifdef CONFIG_PROC_FS 2780 2781 static struct sock *udp_get_first(struct seq_file *seq, int start) 2782 { 2783 struct sock *sk; 2784 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2785 struct udp_iter_state *state = seq->private; 2786 struct net *net = seq_file_net(seq); 2787 2788 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2789 ++state->bucket) { 2790 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2791 2792 if (hlist_empty(&hslot->head)) 2793 continue; 2794 2795 spin_lock_bh(&hslot->lock); 2796 sk_for_each(sk, &hslot->head) { 2797 if (!net_eq(sock_net(sk), net)) 2798 continue; 2799 if (sk->sk_family == afinfo->family) 2800 goto found; 2801 } 2802 spin_unlock_bh(&hslot->lock); 2803 } 2804 sk = NULL; 2805 found: 2806 return sk; 2807 } 2808 2809 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2810 { 2811 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2812 struct udp_iter_state *state = seq->private; 2813 struct net *net = seq_file_net(seq); 2814 2815 do { 2816 sk = sk_next(sk); 2817 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family)); 2818 2819 if (!sk) { 2820 if (state->bucket <= afinfo->udp_table->mask) 2821 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2822 return udp_get_first(seq, state->bucket + 1); 2823 } 2824 return sk; 2825 } 2826 2827 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2828 { 2829 struct sock *sk = udp_get_first(seq, 0); 2830 2831 if (sk) 2832 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2833 --pos; 2834 return pos ? NULL : sk; 2835 } 2836 2837 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2838 { 2839 struct udp_iter_state *state = seq->private; 2840 state->bucket = MAX_UDP_PORTS; 2841 2842 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2843 } 2844 EXPORT_SYMBOL(udp_seq_start); 2845 2846 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2847 { 2848 struct sock *sk; 2849 2850 if (v == SEQ_START_TOKEN) 2851 sk = udp_get_idx(seq, 0); 2852 else 2853 sk = udp_get_next(seq, v); 2854 2855 ++*pos; 2856 return sk; 2857 } 2858 EXPORT_SYMBOL(udp_seq_next); 2859 2860 void udp_seq_stop(struct seq_file *seq, void *v) 2861 { 2862 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2863 struct udp_iter_state *state = seq->private; 2864 2865 if (state->bucket <= afinfo->udp_table->mask) 2866 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2867 } 2868 EXPORT_SYMBOL(udp_seq_stop); 2869 2870 /* ------------------------------------------------------------------------ */ 2871 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2872 int bucket) 2873 { 2874 struct inet_sock *inet = inet_sk(sp); 2875 __be32 dest = inet->inet_daddr; 2876 __be32 src = inet->inet_rcv_saddr; 2877 __u16 destp = ntohs(inet->inet_dport); 2878 __u16 srcp = ntohs(inet->inet_sport); 2879 2880 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2881 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2882 bucket, src, srcp, dest, destp, sp->sk_state, 2883 sk_wmem_alloc_get(sp), 2884 udp_rqueue_get(sp), 2885 0, 0L, 0, 2886 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2887 0, sock_i_ino(sp), 2888 refcount_read(&sp->sk_refcnt), sp, 2889 atomic_read(&sp->sk_drops)); 2890 } 2891 2892 int udp4_seq_show(struct seq_file *seq, void *v) 2893 { 2894 seq_setwidth(seq, 127); 2895 if (v == SEQ_START_TOKEN) 2896 seq_puts(seq, " sl local_address rem_address st tx_queue " 2897 "rx_queue tr tm->when retrnsmt uid timeout " 2898 "inode ref pointer drops"); 2899 else { 2900 struct udp_iter_state *state = seq->private; 2901 2902 udp4_format_sock(v, seq, state->bucket); 2903 } 2904 seq_pad(seq, '\n'); 2905 return 0; 2906 } 2907 2908 const struct seq_operations udp_seq_ops = { 2909 .start = udp_seq_start, 2910 .next = udp_seq_next, 2911 .stop = udp_seq_stop, 2912 .show = udp4_seq_show, 2913 }; 2914 EXPORT_SYMBOL(udp_seq_ops); 2915 2916 static struct udp_seq_afinfo udp4_seq_afinfo = { 2917 .family = AF_INET, 2918 .udp_table = &udp_table, 2919 }; 2920 2921 static int __net_init udp4_proc_init_net(struct net *net) 2922 { 2923 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 2924 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 2925 return -ENOMEM; 2926 return 0; 2927 } 2928 2929 static void __net_exit udp4_proc_exit_net(struct net *net) 2930 { 2931 remove_proc_entry("udp", net->proc_net); 2932 } 2933 2934 static struct pernet_operations udp4_net_ops = { 2935 .init = udp4_proc_init_net, 2936 .exit = udp4_proc_exit_net, 2937 }; 2938 2939 int __init udp4_proc_init(void) 2940 { 2941 return register_pernet_subsys(&udp4_net_ops); 2942 } 2943 2944 void udp4_proc_exit(void) 2945 { 2946 unregister_pernet_subsys(&udp4_net_ops); 2947 } 2948 #endif /* CONFIG_PROC_FS */ 2949 2950 static __initdata unsigned long uhash_entries; 2951 static int __init set_uhash_entries(char *str) 2952 { 2953 ssize_t ret; 2954 2955 if (!str) 2956 return 0; 2957 2958 ret = kstrtoul(str, 0, &uhash_entries); 2959 if (ret) 2960 return 0; 2961 2962 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2963 uhash_entries = UDP_HTABLE_SIZE_MIN; 2964 return 1; 2965 } 2966 __setup("uhash_entries=", set_uhash_entries); 2967 2968 void __init udp_table_init(struct udp_table *table, const char *name) 2969 { 2970 unsigned int i; 2971 2972 table->hash = alloc_large_system_hash(name, 2973 2 * sizeof(struct udp_hslot), 2974 uhash_entries, 2975 21, /* one slot per 2 MB */ 2976 0, 2977 &table->log, 2978 &table->mask, 2979 UDP_HTABLE_SIZE_MIN, 2980 64 * 1024); 2981 2982 table->hash2 = table->hash + (table->mask + 1); 2983 for (i = 0; i <= table->mask; i++) { 2984 INIT_HLIST_HEAD(&table->hash[i].head); 2985 table->hash[i].count = 0; 2986 spin_lock_init(&table->hash[i].lock); 2987 } 2988 for (i = 0; i <= table->mask; i++) { 2989 INIT_HLIST_HEAD(&table->hash2[i].head); 2990 table->hash2[i].count = 0; 2991 spin_lock_init(&table->hash2[i].lock); 2992 } 2993 } 2994 2995 u32 udp_flow_hashrnd(void) 2996 { 2997 static u32 hashrnd __read_mostly; 2998 2999 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3000 3001 return hashrnd; 3002 } 3003 EXPORT_SYMBOL(udp_flow_hashrnd); 3004 3005 static void __udp_sysctl_init(struct net *net) 3006 { 3007 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 3008 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 3009 3010 #ifdef CONFIG_NET_L3_MASTER_DEV 3011 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3012 #endif 3013 } 3014 3015 static int __net_init udp_sysctl_init(struct net *net) 3016 { 3017 __udp_sysctl_init(net); 3018 return 0; 3019 } 3020 3021 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3022 .init = udp_sysctl_init, 3023 }; 3024 3025 void __init udp_init(void) 3026 { 3027 unsigned long limit; 3028 unsigned int i; 3029 3030 udp_table_init(&udp_table, "UDP"); 3031 limit = nr_free_buffer_pages() / 8; 3032 limit = max(limit, 128UL); 3033 sysctl_udp_mem[0] = limit / 4 * 3; 3034 sysctl_udp_mem[1] = limit; 3035 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3036 3037 __udp_sysctl_init(&init_net); 3038 3039 /* 16 spinlocks per cpu */ 3040 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3041 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3042 GFP_KERNEL); 3043 if (!udp_busylocks) 3044 panic("UDP: failed to alloc udp_busylocks\n"); 3045 for (i = 0; i < (1U << udp_busylocks_log); i++) 3046 spin_lock_init(udp_busylocks + i); 3047 3048 if (register_pernet_subsys(&udp_sysctl_ops)) 3049 panic("UDP: failed to init sysctl parameters.\n"); 3050 } 3051