xref: /openbmc/linux/net/ipv4/tcp_output.c (revision fd589a8f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #include <net/tcp.h>
38 
39 #include <linux/compiler.h>
40 #include <linux/module.h>
41 
42 /* People can turn this off for buggy TCP's found in printers etc. */
43 int sysctl_tcp_retrans_collapse __read_mostly = 1;
44 
45 /* People can turn this on to work with those rare, broken TCPs that
46  * interpret the window field as a signed quantity.
47  */
48 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
49 
50 /* This limits the percentage of the congestion window which we
51  * will allow a single TSO frame to consume.  Building TSO frames
52  * which are too large can cause TCP streams to be bursty.
53  */
54 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
55 
56 int sysctl_tcp_mtu_probing __read_mostly = 0;
57 int sysctl_tcp_base_mss __read_mostly = 512;
58 
59 /* By default, RFC2861 behavior.  */
60 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
61 
62 /* Account for new data that has been sent to the network. */
63 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
64 {
65 	struct tcp_sock *tp = tcp_sk(sk);
66 	unsigned int prior_packets = tp->packets_out;
67 
68 	tcp_advance_send_head(sk, skb);
69 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
70 
71 	/* Don't override Nagle indefinately with F-RTO */
72 	if (tp->frto_counter == 2)
73 		tp->frto_counter = 3;
74 
75 	tp->packets_out += tcp_skb_pcount(skb);
76 	if (!prior_packets)
77 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
78 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
79 }
80 
81 /* SND.NXT, if window was not shrunk.
82  * If window has been shrunk, what should we make? It is not clear at all.
83  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
84  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
85  * invalid. OK, let's make this for now:
86  */
87 static inline __u32 tcp_acceptable_seq(struct sock *sk)
88 {
89 	struct tcp_sock *tp = tcp_sk(sk);
90 
91 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
92 		return tp->snd_nxt;
93 	else
94 		return tcp_wnd_end(tp);
95 }
96 
97 /* Calculate mss to advertise in SYN segment.
98  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
99  *
100  * 1. It is independent of path mtu.
101  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
102  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
103  *    attached devices, because some buggy hosts are confused by
104  *    large MSS.
105  * 4. We do not make 3, we advertise MSS, calculated from first
106  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
107  *    This may be overridden via information stored in routing table.
108  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
109  *    probably even Jumbo".
110  */
111 static __u16 tcp_advertise_mss(struct sock *sk)
112 {
113 	struct tcp_sock *tp = tcp_sk(sk);
114 	struct dst_entry *dst = __sk_dst_get(sk);
115 	int mss = tp->advmss;
116 
117 	if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
118 		mss = dst_metric(dst, RTAX_ADVMSS);
119 		tp->advmss = mss;
120 	}
121 
122 	return (__u16)mss;
123 }
124 
125 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
126  * This is the first part of cwnd validation mechanism. */
127 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
128 {
129 	struct tcp_sock *tp = tcp_sk(sk);
130 	s32 delta = tcp_time_stamp - tp->lsndtime;
131 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
132 	u32 cwnd = tp->snd_cwnd;
133 
134 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
135 
136 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
137 	restart_cwnd = min(restart_cwnd, cwnd);
138 
139 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
140 		cwnd >>= 1;
141 	tp->snd_cwnd = max(cwnd, restart_cwnd);
142 	tp->snd_cwnd_stamp = tcp_time_stamp;
143 	tp->snd_cwnd_used = 0;
144 }
145 
146 /* Congestion state accounting after a packet has been sent. */
147 static void tcp_event_data_sent(struct tcp_sock *tp,
148 				struct sk_buff *skb, struct sock *sk)
149 {
150 	struct inet_connection_sock *icsk = inet_csk(sk);
151 	const u32 now = tcp_time_stamp;
152 
153 	if (sysctl_tcp_slow_start_after_idle &&
154 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
155 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
156 
157 	tp->lsndtime = now;
158 
159 	/* If it is a reply for ato after last received
160 	 * packet, enter pingpong mode.
161 	 */
162 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
163 		icsk->icsk_ack.pingpong = 1;
164 }
165 
166 /* Account for an ACK we sent. */
167 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
168 {
169 	tcp_dec_quickack_mode(sk, pkts);
170 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
171 }
172 
173 /* Determine a window scaling and initial window to offer.
174  * Based on the assumption that the given amount of space
175  * will be offered. Store the results in the tp structure.
176  * NOTE: for smooth operation initial space offering should
177  * be a multiple of mss if possible. We assume here that mss >= 1.
178  * This MUST be enforced by all callers.
179  */
180 void tcp_select_initial_window(int __space, __u32 mss,
181 			       __u32 *rcv_wnd, __u32 *window_clamp,
182 			       int wscale_ok, __u8 *rcv_wscale)
183 {
184 	unsigned int space = (__space < 0 ? 0 : __space);
185 
186 	/* If no clamp set the clamp to the max possible scaled window */
187 	if (*window_clamp == 0)
188 		(*window_clamp) = (65535 << 14);
189 	space = min(*window_clamp, space);
190 
191 	/* Quantize space offering to a multiple of mss if possible. */
192 	if (space > mss)
193 		space = (space / mss) * mss;
194 
195 	/* NOTE: offering an initial window larger than 32767
196 	 * will break some buggy TCP stacks. If the admin tells us
197 	 * it is likely we could be speaking with such a buggy stack
198 	 * we will truncate our initial window offering to 32K-1
199 	 * unless the remote has sent us a window scaling option,
200 	 * which we interpret as a sign the remote TCP is not
201 	 * misinterpreting the window field as a signed quantity.
202 	 */
203 	if (sysctl_tcp_workaround_signed_windows)
204 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
205 	else
206 		(*rcv_wnd) = space;
207 
208 	(*rcv_wscale) = 0;
209 	if (wscale_ok) {
210 		/* Set window scaling on max possible window
211 		 * See RFC1323 for an explanation of the limit to 14
212 		 */
213 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
214 		space = min_t(u32, space, *window_clamp);
215 		while (space > 65535 && (*rcv_wscale) < 14) {
216 			space >>= 1;
217 			(*rcv_wscale)++;
218 		}
219 	}
220 
221 	/* Set initial window to value enough for senders,
222 	 * following RFC2414. Senders, not following this RFC,
223 	 * will be satisfied with 2.
224 	 */
225 	if (mss > (1 << *rcv_wscale)) {
226 		int init_cwnd = 4;
227 		if (mss > 1460 * 3)
228 			init_cwnd = 2;
229 		else if (mss > 1460)
230 			init_cwnd = 3;
231 		if (*rcv_wnd > init_cwnd * mss)
232 			*rcv_wnd = init_cwnd * mss;
233 	}
234 
235 	/* Set the clamp no higher than max representable value */
236 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
237 }
238 
239 /* Chose a new window to advertise, update state in tcp_sock for the
240  * socket, and return result with RFC1323 scaling applied.  The return
241  * value can be stuffed directly into th->window for an outgoing
242  * frame.
243  */
244 static u16 tcp_select_window(struct sock *sk)
245 {
246 	struct tcp_sock *tp = tcp_sk(sk);
247 	u32 cur_win = tcp_receive_window(tp);
248 	u32 new_win = __tcp_select_window(sk);
249 
250 	/* Never shrink the offered window */
251 	if (new_win < cur_win) {
252 		/* Danger Will Robinson!
253 		 * Don't update rcv_wup/rcv_wnd here or else
254 		 * we will not be able to advertise a zero
255 		 * window in time.  --DaveM
256 		 *
257 		 * Relax Will Robinson.
258 		 */
259 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
260 	}
261 	tp->rcv_wnd = new_win;
262 	tp->rcv_wup = tp->rcv_nxt;
263 
264 	/* Make sure we do not exceed the maximum possible
265 	 * scaled window.
266 	 */
267 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
268 		new_win = min(new_win, MAX_TCP_WINDOW);
269 	else
270 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
271 
272 	/* RFC1323 scaling applied */
273 	new_win >>= tp->rx_opt.rcv_wscale;
274 
275 	/* If we advertise zero window, disable fast path. */
276 	if (new_win == 0)
277 		tp->pred_flags = 0;
278 
279 	return new_win;
280 }
281 
282 /* Packet ECN state for a SYN-ACK */
283 static inline void TCP_ECN_send_synack(struct tcp_sock *tp, struct sk_buff *skb)
284 {
285 	TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_CWR;
286 	if (!(tp->ecn_flags & TCP_ECN_OK))
287 		TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_ECE;
288 }
289 
290 /* Packet ECN state for a SYN.  */
291 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
292 {
293 	struct tcp_sock *tp = tcp_sk(sk);
294 
295 	tp->ecn_flags = 0;
296 	if (sysctl_tcp_ecn == 1) {
297 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ECE | TCPCB_FLAG_CWR;
298 		tp->ecn_flags = TCP_ECN_OK;
299 	}
300 }
301 
302 static __inline__ void
303 TCP_ECN_make_synack(struct request_sock *req, struct tcphdr *th)
304 {
305 	if (inet_rsk(req)->ecn_ok)
306 		th->ece = 1;
307 }
308 
309 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
310  * be sent.
311  */
312 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
313 				int tcp_header_len)
314 {
315 	struct tcp_sock *tp = tcp_sk(sk);
316 
317 	if (tp->ecn_flags & TCP_ECN_OK) {
318 		/* Not-retransmitted data segment: set ECT and inject CWR. */
319 		if (skb->len != tcp_header_len &&
320 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
321 			INET_ECN_xmit(sk);
322 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
323 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
324 				tcp_hdr(skb)->cwr = 1;
325 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
326 			}
327 		} else {
328 			/* ACK or retransmitted segment: clear ECT|CE */
329 			INET_ECN_dontxmit(sk);
330 		}
331 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
332 			tcp_hdr(skb)->ece = 1;
333 	}
334 }
335 
336 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
337  * auto increment end seqno.
338  */
339 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
340 {
341 	skb->csum = 0;
342 
343 	TCP_SKB_CB(skb)->flags = flags;
344 	TCP_SKB_CB(skb)->sacked = 0;
345 
346 	skb_shinfo(skb)->gso_segs = 1;
347 	skb_shinfo(skb)->gso_size = 0;
348 	skb_shinfo(skb)->gso_type = 0;
349 
350 	TCP_SKB_CB(skb)->seq = seq;
351 	if (flags & (TCPCB_FLAG_SYN | TCPCB_FLAG_FIN))
352 		seq++;
353 	TCP_SKB_CB(skb)->end_seq = seq;
354 }
355 
356 static inline int tcp_urg_mode(const struct tcp_sock *tp)
357 {
358 	return tp->snd_una != tp->snd_up;
359 }
360 
361 #define OPTION_SACK_ADVERTISE	(1 << 0)
362 #define OPTION_TS		(1 << 1)
363 #define OPTION_MD5		(1 << 2)
364 
365 struct tcp_out_options {
366 	u8 options;		/* bit field of OPTION_* */
367 	u8 ws;			/* window scale, 0 to disable */
368 	u8 num_sack_blocks;	/* number of SACK blocks to include */
369 	u16 mss;		/* 0 to disable */
370 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
371 };
372 
373 /* Write previously computed TCP options to the packet.
374  *
375  * Beware: Something in the Internet is very sensitive to the ordering of
376  * TCP options, we learned this through the hard way, so be careful here.
377  * Luckily we can at least blame others for their non-compliance but from
378  * inter-operatibility perspective it seems that we're somewhat stuck with
379  * the ordering which we have been using if we want to keep working with
380  * those broken things (not that it currently hurts anybody as there isn't
381  * particular reason why the ordering would need to be changed).
382  *
383  * At least SACK_PERM as the first option is known to lead to a disaster
384  * (but it may well be that other scenarios fail similarly).
385  */
386 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
387 			      const struct tcp_out_options *opts,
388 			      __u8 **md5_hash) {
389 	if (unlikely(OPTION_MD5 & opts->options)) {
390 		*ptr++ = htonl((TCPOPT_NOP << 24) |
391 			       (TCPOPT_NOP << 16) |
392 			       (TCPOPT_MD5SIG << 8) |
393 			       TCPOLEN_MD5SIG);
394 		*md5_hash = (__u8 *)ptr;
395 		ptr += 4;
396 	} else {
397 		*md5_hash = NULL;
398 	}
399 
400 	if (unlikely(opts->mss)) {
401 		*ptr++ = htonl((TCPOPT_MSS << 24) |
402 			       (TCPOLEN_MSS << 16) |
403 			       opts->mss);
404 	}
405 
406 	if (likely(OPTION_TS & opts->options)) {
407 		if (unlikely(OPTION_SACK_ADVERTISE & opts->options)) {
408 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
409 				       (TCPOLEN_SACK_PERM << 16) |
410 				       (TCPOPT_TIMESTAMP << 8) |
411 				       TCPOLEN_TIMESTAMP);
412 		} else {
413 			*ptr++ = htonl((TCPOPT_NOP << 24) |
414 				       (TCPOPT_NOP << 16) |
415 				       (TCPOPT_TIMESTAMP << 8) |
416 				       TCPOLEN_TIMESTAMP);
417 		}
418 		*ptr++ = htonl(opts->tsval);
419 		*ptr++ = htonl(opts->tsecr);
420 	}
421 
422 	if (unlikely(OPTION_SACK_ADVERTISE & opts->options &&
423 		     !(OPTION_TS & opts->options))) {
424 		*ptr++ = htonl((TCPOPT_NOP << 24) |
425 			       (TCPOPT_NOP << 16) |
426 			       (TCPOPT_SACK_PERM << 8) |
427 			       TCPOLEN_SACK_PERM);
428 	}
429 
430 	if (unlikely(opts->ws)) {
431 		*ptr++ = htonl((TCPOPT_NOP << 24) |
432 			       (TCPOPT_WINDOW << 16) |
433 			       (TCPOLEN_WINDOW << 8) |
434 			       opts->ws);
435 	}
436 
437 	if (unlikely(opts->num_sack_blocks)) {
438 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
439 			tp->duplicate_sack : tp->selective_acks;
440 		int this_sack;
441 
442 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
443 			       (TCPOPT_NOP  << 16) |
444 			       (TCPOPT_SACK <<  8) |
445 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
446 						     TCPOLEN_SACK_PERBLOCK)));
447 
448 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
449 		     ++this_sack) {
450 			*ptr++ = htonl(sp[this_sack].start_seq);
451 			*ptr++ = htonl(sp[this_sack].end_seq);
452 		}
453 
454 		tp->rx_opt.dsack = 0;
455 	}
456 }
457 
458 /* Compute TCP options for SYN packets. This is not the final
459  * network wire format yet.
460  */
461 static unsigned tcp_syn_options(struct sock *sk, struct sk_buff *skb,
462 				struct tcp_out_options *opts,
463 				struct tcp_md5sig_key **md5) {
464 	struct tcp_sock *tp = tcp_sk(sk);
465 	unsigned size = 0;
466 
467 #ifdef CONFIG_TCP_MD5SIG
468 	*md5 = tp->af_specific->md5_lookup(sk, sk);
469 	if (*md5) {
470 		opts->options |= OPTION_MD5;
471 		size += TCPOLEN_MD5SIG_ALIGNED;
472 	}
473 #else
474 	*md5 = NULL;
475 #endif
476 
477 	/* We always get an MSS option.  The option bytes which will be seen in
478 	 * normal data packets should timestamps be used, must be in the MSS
479 	 * advertised.  But we subtract them from tp->mss_cache so that
480 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
481 	 * fact here if necessary.  If we don't do this correctly, as a
482 	 * receiver we won't recognize data packets as being full sized when we
483 	 * should, and thus we won't abide by the delayed ACK rules correctly.
484 	 * SACKs don't matter, we never delay an ACK when we have any of those
485 	 * going out.  */
486 	opts->mss = tcp_advertise_mss(sk);
487 	size += TCPOLEN_MSS_ALIGNED;
488 
489 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
490 		opts->options |= OPTION_TS;
491 		opts->tsval = TCP_SKB_CB(skb)->when;
492 		opts->tsecr = tp->rx_opt.ts_recent;
493 		size += TCPOLEN_TSTAMP_ALIGNED;
494 	}
495 	if (likely(sysctl_tcp_window_scaling)) {
496 		opts->ws = tp->rx_opt.rcv_wscale;
497 		if (likely(opts->ws))
498 			size += TCPOLEN_WSCALE_ALIGNED;
499 	}
500 	if (likely(sysctl_tcp_sack)) {
501 		opts->options |= OPTION_SACK_ADVERTISE;
502 		if (unlikely(!(OPTION_TS & opts->options)))
503 			size += TCPOLEN_SACKPERM_ALIGNED;
504 	}
505 
506 	return size;
507 }
508 
509 /* Set up TCP options for SYN-ACKs. */
510 static unsigned tcp_synack_options(struct sock *sk,
511 				   struct request_sock *req,
512 				   unsigned mss, struct sk_buff *skb,
513 				   struct tcp_out_options *opts,
514 				   struct tcp_md5sig_key **md5) {
515 	unsigned size = 0;
516 	struct inet_request_sock *ireq = inet_rsk(req);
517 	char doing_ts;
518 
519 #ifdef CONFIG_TCP_MD5SIG
520 	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
521 	if (*md5) {
522 		opts->options |= OPTION_MD5;
523 		size += TCPOLEN_MD5SIG_ALIGNED;
524 	}
525 #else
526 	*md5 = NULL;
527 #endif
528 
529 	/* we can't fit any SACK blocks in a packet with MD5 + TS
530 	   options. There was discussion about disabling SACK rather than TS in
531 	   order to fit in better with old, buggy kernels, but that was deemed
532 	   to be unnecessary. */
533 	doing_ts = ireq->tstamp_ok && !(*md5 && ireq->sack_ok);
534 
535 	opts->mss = mss;
536 	size += TCPOLEN_MSS_ALIGNED;
537 
538 	if (likely(ireq->wscale_ok)) {
539 		opts->ws = ireq->rcv_wscale;
540 		if (likely(opts->ws))
541 			size += TCPOLEN_WSCALE_ALIGNED;
542 	}
543 	if (likely(doing_ts)) {
544 		opts->options |= OPTION_TS;
545 		opts->tsval = TCP_SKB_CB(skb)->when;
546 		opts->tsecr = req->ts_recent;
547 		size += TCPOLEN_TSTAMP_ALIGNED;
548 	}
549 	if (likely(ireq->sack_ok)) {
550 		opts->options |= OPTION_SACK_ADVERTISE;
551 		if (unlikely(!doing_ts))
552 			size += TCPOLEN_SACKPERM_ALIGNED;
553 	}
554 
555 	return size;
556 }
557 
558 /* Compute TCP options for ESTABLISHED sockets. This is not the
559  * final wire format yet.
560  */
561 static unsigned tcp_established_options(struct sock *sk, struct sk_buff *skb,
562 					struct tcp_out_options *opts,
563 					struct tcp_md5sig_key **md5) {
564 	struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
565 	struct tcp_sock *tp = tcp_sk(sk);
566 	unsigned size = 0;
567 	unsigned int eff_sacks;
568 
569 #ifdef CONFIG_TCP_MD5SIG
570 	*md5 = tp->af_specific->md5_lookup(sk, sk);
571 	if (unlikely(*md5)) {
572 		opts->options |= OPTION_MD5;
573 		size += TCPOLEN_MD5SIG_ALIGNED;
574 	}
575 #else
576 	*md5 = NULL;
577 #endif
578 
579 	if (likely(tp->rx_opt.tstamp_ok)) {
580 		opts->options |= OPTION_TS;
581 		opts->tsval = tcb ? tcb->when : 0;
582 		opts->tsecr = tp->rx_opt.ts_recent;
583 		size += TCPOLEN_TSTAMP_ALIGNED;
584 	}
585 
586 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
587 	if (unlikely(eff_sacks)) {
588 		const unsigned remaining = MAX_TCP_OPTION_SPACE - size;
589 		opts->num_sack_blocks =
590 			min_t(unsigned, eff_sacks,
591 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
592 			      TCPOLEN_SACK_PERBLOCK);
593 		size += TCPOLEN_SACK_BASE_ALIGNED +
594 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
595 	}
596 
597 	return size;
598 }
599 
600 /* This routine actually transmits TCP packets queued in by
601  * tcp_do_sendmsg().  This is used by both the initial
602  * transmission and possible later retransmissions.
603  * All SKB's seen here are completely headerless.  It is our
604  * job to build the TCP header, and pass the packet down to
605  * IP so it can do the same plus pass the packet off to the
606  * device.
607  *
608  * We are working here with either a clone of the original
609  * SKB, or a fresh unique copy made by the retransmit engine.
610  */
611 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
612 			    gfp_t gfp_mask)
613 {
614 	const struct inet_connection_sock *icsk = inet_csk(sk);
615 	struct inet_sock *inet;
616 	struct tcp_sock *tp;
617 	struct tcp_skb_cb *tcb;
618 	struct tcp_out_options opts;
619 	unsigned tcp_options_size, tcp_header_size;
620 	struct tcp_md5sig_key *md5;
621 	__u8 *md5_hash_location;
622 	struct tcphdr *th;
623 	int err;
624 
625 	BUG_ON(!skb || !tcp_skb_pcount(skb));
626 
627 	/* If congestion control is doing timestamping, we must
628 	 * take such a timestamp before we potentially clone/copy.
629 	 */
630 	if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
631 		__net_timestamp(skb);
632 
633 	if (likely(clone_it)) {
634 		if (unlikely(skb_cloned(skb)))
635 			skb = pskb_copy(skb, gfp_mask);
636 		else
637 			skb = skb_clone(skb, gfp_mask);
638 		if (unlikely(!skb))
639 			return -ENOBUFS;
640 	}
641 
642 	inet = inet_sk(sk);
643 	tp = tcp_sk(sk);
644 	tcb = TCP_SKB_CB(skb);
645 	memset(&opts, 0, sizeof(opts));
646 
647 	if (unlikely(tcb->flags & TCPCB_FLAG_SYN))
648 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
649 	else
650 		tcp_options_size = tcp_established_options(sk, skb, &opts,
651 							   &md5);
652 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
653 
654 	if (tcp_packets_in_flight(tp) == 0)
655 		tcp_ca_event(sk, CA_EVENT_TX_START);
656 
657 	skb_push(skb, tcp_header_size);
658 	skb_reset_transport_header(skb);
659 	skb_set_owner_w(skb, sk);
660 
661 	/* Build TCP header and checksum it. */
662 	th = tcp_hdr(skb);
663 	th->source		= inet->sport;
664 	th->dest		= inet->dport;
665 	th->seq			= htonl(tcb->seq);
666 	th->ack_seq		= htonl(tp->rcv_nxt);
667 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
668 					tcb->flags);
669 
670 	if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
671 		/* RFC1323: The window in SYN & SYN/ACK segments
672 		 * is never scaled.
673 		 */
674 		th->window	= htons(min(tp->rcv_wnd, 65535U));
675 	} else {
676 		th->window	= htons(tcp_select_window(sk));
677 	}
678 	th->check		= 0;
679 	th->urg_ptr		= 0;
680 
681 	/* The urg_mode check is necessary during a below snd_una win probe */
682 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
683 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
684 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
685 			th->urg = 1;
686 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
687 			th->urg_ptr = 0xFFFF;
688 			th->urg = 1;
689 		}
690 	}
691 
692 	tcp_options_write((__be32 *)(th + 1), tp, &opts, &md5_hash_location);
693 	if (likely((tcb->flags & TCPCB_FLAG_SYN) == 0))
694 		TCP_ECN_send(sk, skb, tcp_header_size);
695 
696 #ifdef CONFIG_TCP_MD5SIG
697 	/* Calculate the MD5 hash, as we have all we need now */
698 	if (md5) {
699 		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
700 		tp->af_specific->calc_md5_hash(md5_hash_location,
701 					       md5, sk, NULL, skb);
702 	}
703 #endif
704 
705 	icsk->icsk_af_ops->send_check(sk, skb->len, skb);
706 
707 	if (likely(tcb->flags & TCPCB_FLAG_ACK))
708 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
709 
710 	if (skb->len != tcp_header_size)
711 		tcp_event_data_sent(tp, skb, sk);
712 
713 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
714 		TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
715 
716 	err = icsk->icsk_af_ops->queue_xmit(skb, 0);
717 	if (likely(err <= 0))
718 		return err;
719 
720 	tcp_enter_cwr(sk, 1);
721 
722 	return net_xmit_eval(err);
723 }
724 
725 /* This routine just queues the buffer for sending.
726  *
727  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
728  * otherwise socket can stall.
729  */
730 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
731 {
732 	struct tcp_sock *tp = tcp_sk(sk);
733 
734 	/* Advance write_seq and place onto the write_queue. */
735 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
736 	skb_header_release(skb);
737 	tcp_add_write_queue_tail(sk, skb);
738 	sk->sk_wmem_queued += skb->truesize;
739 	sk_mem_charge(sk, skb->truesize);
740 }
741 
742 /* Initialize TSO segments for a packet. */
743 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb,
744 				 unsigned int mss_now)
745 {
746 	if (skb->len <= mss_now || !sk_can_gso(sk) ||
747 	    skb->ip_summed == CHECKSUM_NONE) {
748 		/* Avoid the costly divide in the normal
749 		 * non-TSO case.
750 		 */
751 		skb_shinfo(skb)->gso_segs = 1;
752 		skb_shinfo(skb)->gso_size = 0;
753 		skb_shinfo(skb)->gso_type = 0;
754 	} else {
755 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
756 		skb_shinfo(skb)->gso_size = mss_now;
757 		skb_shinfo(skb)->gso_type = sk->sk_gso_type;
758 	}
759 }
760 
761 /* When a modification to fackets out becomes necessary, we need to check
762  * skb is counted to fackets_out or not.
763  */
764 static void tcp_adjust_fackets_out(struct sock *sk, struct sk_buff *skb,
765 				   int decr)
766 {
767 	struct tcp_sock *tp = tcp_sk(sk);
768 
769 	if (!tp->sacked_out || tcp_is_reno(tp))
770 		return;
771 
772 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
773 		tp->fackets_out -= decr;
774 }
775 
776 /* Pcount in the middle of the write queue got changed, we need to do various
777  * tweaks to fix counters
778  */
779 static void tcp_adjust_pcount(struct sock *sk, struct sk_buff *skb, int decr)
780 {
781 	struct tcp_sock *tp = tcp_sk(sk);
782 
783 	tp->packets_out -= decr;
784 
785 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
786 		tp->sacked_out -= decr;
787 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
788 		tp->retrans_out -= decr;
789 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
790 		tp->lost_out -= decr;
791 
792 	/* Reno case is special. Sigh... */
793 	if (tcp_is_reno(tp) && decr > 0)
794 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
795 
796 	tcp_adjust_fackets_out(sk, skb, decr);
797 
798 	if (tp->lost_skb_hint &&
799 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
800 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
801 		tp->lost_cnt_hint -= decr;
802 
803 	tcp_verify_left_out(tp);
804 }
805 
806 /* Function to create two new TCP segments.  Shrinks the given segment
807  * to the specified size and appends a new segment with the rest of the
808  * packet to the list.  This won't be called frequently, I hope.
809  * Remember, these are still headerless SKBs at this point.
810  */
811 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
812 		 unsigned int mss_now)
813 {
814 	struct tcp_sock *tp = tcp_sk(sk);
815 	struct sk_buff *buff;
816 	int nsize, old_factor;
817 	int nlen;
818 	u8 flags;
819 
820 	BUG_ON(len > skb->len);
821 
822 	nsize = skb_headlen(skb) - len;
823 	if (nsize < 0)
824 		nsize = 0;
825 
826 	if (skb_cloned(skb) &&
827 	    skb_is_nonlinear(skb) &&
828 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
829 		return -ENOMEM;
830 
831 	/* Get a new skb... force flag on. */
832 	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
833 	if (buff == NULL)
834 		return -ENOMEM; /* We'll just try again later. */
835 
836 	sk->sk_wmem_queued += buff->truesize;
837 	sk_mem_charge(sk, buff->truesize);
838 	nlen = skb->len - len - nsize;
839 	buff->truesize += nlen;
840 	skb->truesize -= nlen;
841 
842 	/* Correct the sequence numbers. */
843 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
844 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
845 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
846 
847 	/* PSH and FIN should only be set in the second packet. */
848 	flags = TCP_SKB_CB(skb)->flags;
849 	TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
850 	TCP_SKB_CB(buff)->flags = flags;
851 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
852 
853 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
854 		/* Copy and checksum data tail into the new buffer. */
855 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
856 						       skb_put(buff, nsize),
857 						       nsize, 0);
858 
859 		skb_trim(skb, len);
860 
861 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
862 	} else {
863 		skb->ip_summed = CHECKSUM_PARTIAL;
864 		skb_split(skb, buff, len);
865 	}
866 
867 	buff->ip_summed = skb->ip_summed;
868 
869 	/* Looks stupid, but our code really uses when of
870 	 * skbs, which it never sent before. --ANK
871 	 */
872 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
873 	buff->tstamp = skb->tstamp;
874 
875 	old_factor = tcp_skb_pcount(skb);
876 
877 	/* Fix up tso_factor for both original and new SKB.  */
878 	tcp_set_skb_tso_segs(sk, skb, mss_now);
879 	tcp_set_skb_tso_segs(sk, buff, mss_now);
880 
881 	/* If this packet has been sent out already, we must
882 	 * adjust the various packet counters.
883 	 */
884 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
885 		int diff = old_factor - tcp_skb_pcount(skb) -
886 			tcp_skb_pcount(buff);
887 
888 		if (diff)
889 			tcp_adjust_pcount(sk, skb, diff);
890 	}
891 
892 	/* Link BUFF into the send queue. */
893 	skb_header_release(buff);
894 	tcp_insert_write_queue_after(skb, buff, sk);
895 
896 	return 0;
897 }
898 
899 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
900  * eventually). The difference is that pulled data not copied, but
901  * immediately discarded.
902  */
903 static void __pskb_trim_head(struct sk_buff *skb, int len)
904 {
905 	int i, k, eat;
906 
907 	eat = len;
908 	k = 0;
909 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
910 		if (skb_shinfo(skb)->frags[i].size <= eat) {
911 			put_page(skb_shinfo(skb)->frags[i].page);
912 			eat -= skb_shinfo(skb)->frags[i].size;
913 		} else {
914 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
915 			if (eat) {
916 				skb_shinfo(skb)->frags[k].page_offset += eat;
917 				skb_shinfo(skb)->frags[k].size -= eat;
918 				eat = 0;
919 			}
920 			k++;
921 		}
922 	}
923 	skb_shinfo(skb)->nr_frags = k;
924 
925 	skb_reset_tail_pointer(skb);
926 	skb->data_len -= len;
927 	skb->len = skb->data_len;
928 }
929 
930 /* Remove acked data from a packet in the transmit queue. */
931 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
932 {
933 	if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
934 		return -ENOMEM;
935 
936 	/* If len == headlen, we avoid __skb_pull to preserve alignment. */
937 	if (unlikely(len < skb_headlen(skb)))
938 		__skb_pull(skb, len);
939 	else
940 		__pskb_trim_head(skb, len - skb_headlen(skb));
941 
942 	TCP_SKB_CB(skb)->seq += len;
943 	skb->ip_summed = CHECKSUM_PARTIAL;
944 
945 	skb->truesize	     -= len;
946 	sk->sk_wmem_queued   -= len;
947 	sk_mem_uncharge(sk, len);
948 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
949 
950 	/* Any change of skb->len requires recalculation of tso
951 	 * factor and mss.
952 	 */
953 	if (tcp_skb_pcount(skb) > 1)
954 		tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk));
955 
956 	return 0;
957 }
958 
959 /* Calculate MSS. Not accounting for SACKs here.  */
960 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
961 {
962 	struct tcp_sock *tp = tcp_sk(sk);
963 	struct inet_connection_sock *icsk = inet_csk(sk);
964 	int mss_now;
965 
966 	/* Calculate base mss without TCP options:
967 	   It is MMS_S - sizeof(tcphdr) of rfc1122
968 	 */
969 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
970 
971 	/* Clamp it (mss_clamp does not include tcp options) */
972 	if (mss_now > tp->rx_opt.mss_clamp)
973 		mss_now = tp->rx_opt.mss_clamp;
974 
975 	/* Now subtract optional transport overhead */
976 	mss_now -= icsk->icsk_ext_hdr_len;
977 
978 	/* Then reserve room for full set of TCP options and 8 bytes of data */
979 	if (mss_now < 48)
980 		mss_now = 48;
981 
982 	/* Now subtract TCP options size, not including SACKs */
983 	mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
984 
985 	return mss_now;
986 }
987 
988 /* Inverse of above */
989 int tcp_mss_to_mtu(struct sock *sk, int mss)
990 {
991 	struct tcp_sock *tp = tcp_sk(sk);
992 	struct inet_connection_sock *icsk = inet_csk(sk);
993 	int mtu;
994 
995 	mtu = mss +
996 	      tp->tcp_header_len +
997 	      icsk->icsk_ext_hdr_len +
998 	      icsk->icsk_af_ops->net_header_len;
999 
1000 	return mtu;
1001 }
1002 
1003 /* MTU probing init per socket */
1004 void tcp_mtup_init(struct sock *sk)
1005 {
1006 	struct tcp_sock *tp = tcp_sk(sk);
1007 	struct inet_connection_sock *icsk = inet_csk(sk);
1008 
1009 	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1010 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1011 			       icsk->icsk_af_ops->net_header_len;
1012 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1013 	icsk->icsk_mtup.probe_size = 0;
1014 }
1015 
1016 /* This function synchronize snd mss to current pmtu/exthdr set.
1017 
1018    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1019    for TCP options, but includes only bare TCP header.
1020 
1021    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1022    It is minimum of user_mss and mss received with SYN.
1023    It also does not include TCP options.
1024 
1025    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1026 
1027    tp->mss_cache is current effective sending mss, including
1028    all tcp options except for SACKs. It is evaluated,
1029    taking into account current pmtu, but never exceeds
1030    tp->rx_opt.mss_clamp.
1031 
1032    NOTE1. rfc1122 clearly states that advertised MSS
1033    DOES NOT include either tcp or ip options.
1034 
1035    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1036    are READ ONLY outside this function.		--ANK (980731)
1037  */
1038 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1039 {
1040 	struct tcp_sock *tp = tcp_sk(sk);
1041 	struct inet_connection_sock *icsk = inet_csk(sk);
1042 	int mss_now;
1043 
1044 	if (icsk->icsk_mtup.search_high > pmtu)
1045 		icsk->icsk_mtup.search_high = pmtu;
1046 
1047 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1048 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1049 
1050 	/* And store cached results */
1051 	icsk->icsk_pmtu_cookie = pmtu;
1052 	if (icsk->icsk_mtup.enabled)
1053 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1054 	tp->mss_cache = mss_now;
1055 
1056 	return mss_now;
1057 }
1058 
1059 /* Compute the current effective MSS, taking SACKs and IP options,
1060  * and even PMTU discovery events into account.
1061  */
1062 unsigned int tcp_current_mss(struct sock *sk)
1063 {
1064 	struct tcp_sock *tp = tcp_sk(sk);
1065 	struct dst_entry *dst = __sk_dst_get(sk);
1066 	u32 mss_now;
1067 	unsigned header_len;
1068 	struct tcp_out_options opts;
1069 	struct tcp_md5sig_key *md5;
1070 
1071 	mss_now = tp->mss_cache;
1072 
1073 	if (dst) {
1074 		u32 mtu = dst_mtu(dst);
1075 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1076 			mss_now = tcp_sync_mss(sk, mtu);
1077 	}
1078 
1079 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1080 		     sizeof(struct tcphdr);
1081 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1082 	 * some common options. If this is an odd packet (because we have SACK
1083 	 * blocks etc) then our calculated header_len will be different, and
1084 	 * we have to adjust mss_now correspondingly */
1085 	if (header_len != tp->tcp_header_len) {
1086 		int delta = (int) header_len - tp->tcp_header_len;
1087 		mss_now -= delta;
1088 	}
1089 
1090 	return mss_now;
1091 }
1092 
1093 /* Congestion window validation. (RFC2861) */
1094 static void tcp_cwnd_validate(struct sock *sk)
1095 {
1096 	struct tcp_sock *tp = tcp_sk(sk);
1097 
1098 	if (tp->packets_out >= tp->snd_cwnd) {
1099 		/* Network is feed fully. */
1100 		tp->snd_cwnd_used = 0;
1101 		tp->snd_cwnd_stamp = tcp_time_stamp;
1102 	} else {
1103 		/* Network starves. */
1104 		if (tp->packets_out > tp->snd_cwnd_used)
1105 			tp->snd_cwnd_used = tp->packets_out;
1106 
1107 		if (sysctl_tcp_slow_start_after_idle &&
1108 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1109 			tcp_cwnd_application_limited(sk);
1110 	}
1111 }
1112 
1113 /* Returns the portion of skb which can be sent right away without
1114  * introducing MSS oddities to segment boundaries. In rare cases where
1115  * mss_now != mss_cache, we will request caller to create a small skb
1116  * per input skb which could be mostly avoided here (if desired).
1117  *
1118  * We explicitly want to create a request for splitting write queue tail
1119  * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1120  * thus all the complexity (cwnd_len is always MSS multiple which we
1121  * return whenever allowed by the other factors). Basically we need the
1122  * modulo only when the receiver window alone is the limiting factor or
1123  * when we would be allowed to send the split-due-to-Nagle skb fully.
1124  */
1125 static unsigned int tcp_mss_split_point(struct sock *sk, struct sk_buff *skb,
1126 					unsigned int mss_now, unsigned int cwnd)
1127 {
1128 	struct tcp_sock *tp = tcp_sk(sk);
1129 	u32 needed, window, cwnd_len;
1130 
1131 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1132 	cwnd_len = mss_now * cwnd;
1133 
1134 	if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk)))
1135 		return cwnd_len;
1136 
1137 	needed = min(skb->len, window);
1138 
1139 	if (cwnd_len <= needed)
1140 		return cwnd_len;
1141 
1142 	return needed - needed % mss_now;
1143 }
1144 
1145 /* Can at least one segment of SKB be sent right now, according to the
1146  * congestion window rules?  If so, return how many segments are allowed.
1147  */
1148 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp,
1149 					 struct sk_buff *skb)
1150 {
1151 	u32 in_flight, cwnd;
1152 
1153 	/* Don't be strict about the congestion window for the final FIN.  */
1154 	if ((TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1155 	    tcp_skb_pcount(skb) == 1)
1156 		return 1;
1157 
1158 	in_flight = tcp_packets_in_flight(tp);
1159 	cwnd = tp->snd_cwnd;
1160 	if (in_flight < cwnd)
1161 		return (cwnd - in_flight);
1162 
1163 	return 0;
1164 }
1165 
1166 /* Intialize TSO state of a skb.
1167  * This must be invoked the first time we consider transmitting
1168  * SKB onto the wire.
1169  */
1170 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb,
1171 			     unsigned int mss_now)
1172 {
1173 	int tso_segs = tcp_skb_pcount(skb);
1174 
1175 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1176 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1177 		tso_segs = tcp_skb_pcount(skb);
1178 	}
1179 	return tso_segs;
1180 }
1181 
1182 /* Minshall's variant of the Nagle send check. */
1183 static inline int tcp_minshall_check(const struct tcp_sock *tp)
1184 {
1185 	return after(tp->snd_sml, tp->snd_una) &&
1186 		!after(tp->snd_sml, tp->snd_nxt);
1187 }
1188 
1189 /* Return 0, if packet can be sent now without violation Nagle's rules:
1190  * 1. It is full sized.
1191  * 2. Or it contains FIN. (already checked by caller)
1192  * 3. Or TCP_NODELAY was set.
1193  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1194  *    With Minshall's modification: all sent small packets are ACKed.
1195  */
1196 static inline int tcp_nagle_check(const struct tcp_sock *tp,
1197 				  const struct sk_buff *skb,
1198 				  unsigned mss_now, int nonagle)
1199 {
1200 	return (skb->len < mss_now &&
1201 		((nonagle & TCP_NAGLE_CORK) ||
1202 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp))));
1203 }
1204 
1205 /* Return non-zero if the Nagle test allows this packet to be
1206  * sent now.
1207  */
1208 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
1209 				 unsigned int cur_mss, int nonagle)
1210 {
1211 	/* Nagle rule does not apply to frames, which sit in the middle of the
1212 	 * write_queue (they have no chances to get new data).
1213 	 *
1214 	 * This is implemented in the callers, where they modify the 'nonagle'
1215 	 * argument based upon the location of SKB in the send queue.
1216 	 */
1217 	if (nonagle & TCP_NAGLE_PUSH)
1218 		return 1;
1219 
1220 	/* Don't use the nagle rule for urgent data (or for the final FIN).
1221 	 * Nagle can be ignored during F-RTO too (see RFC4138).
1222 	 */
1223 	if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
1224 	    (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
1225 		return 1;
1226 
1227 	if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1228 		return 1;
1229 
1230 	return 0;
1231 }
1232 
1233 /* Does at least the first segment of SKB fit into the send window? */
1234 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb,
1235 				   unsigned int cur_mss)
1236 {
1237 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1238 
1239 	if (skb->len > cur_mss)
1240 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1241 
1242 	return !after(end_seq, tcp_wnd_end(tp));
1243 }
1244 
1245 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1246  * should be put on the wire right now.  If so, it returns the number of
1247  * packets allowed by the congestion window.
1248  */
1249 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
1250 				 unsigned int cur_mss, int nonagle)
1251 {
1252 	struct tcp_sock *tp = tcp_sk(sk);
1253 	unsigned int cwnd_quota;
1254 
1255 	tcp_init_tso_segs(sk, skb, cur_mss);
1256 
1257 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1258 		return 0;
1259 
1260 	cwnd_quota = tcp_cwnd_test(tp, skb);
1261 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1262 		cwnd_quota = 0;
1263 
1264 	return cwnd_quota;
1265 }
1266 
1267 /* Test if sending is allowed right now. */
1268 int tcp_may_send_now(struct sock *sk)
1269 {
1270 	struct tcp_sock *tp = tcp_sk(sk);
1271 	struct sk_buff *skb = tcp_send_head(sk);
1272 
1273 	return (skb &&
1274 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1275 			     (tcp_skb_is_last(sk, skb) ?
1276 			      tp->nonagle : TCP_NAGLE_PUSH)));
1277 }
1278 
1279 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1280  * which is put after SKB on the list.  It is very much like
1281  * tcp_fragment() except that it may make several kinds of assumptions
1282  * in order to speed up the splitting operation.  In particular, we
1283  * know that all the data is in scatter-gather pages, and that the
1284  * packet has never been sent out before (and thus is not cloned).
1285  */
1286 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1287 			unsigned int mss_now)
1288 {
1289 	struct sk_buff *buff;
1290 	int nlen = skb->len - len;
1291 	u8 flags;
1292 
1293 	/* All of a TSO frame must be composed of paged data.  */
1294 	if (skb->len != skb->data_len)
1295 		return tcp_fragment(sk, skb, len, mss_now);
1296 
1297 	buff = sk_stream_alloc_skb(sk, 0, GFP_ATOMIC);
1298 	if (unlikely(buff == NULL))
1299 		return -ENOMEM;
1300 
1301 	sk->sk_wmem_queued += buff->truesize;
1302 	sk_mem_charge(sk, buff->truesize);
1303 	buff->truesize += nlen;
1304 	skb->truesize -= nlen;
1305 
1306 	/* Correct the sequence numbers. */
1307 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1308 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1309 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1310 
1311 	/* PSH and FIN should only be set in the second packet. */
1312 	flags = TCP_SKB_CB(skb)->flags;
1313 	TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
1314 	TCP_SKB_CB(buff)->flags = flags;
1315 
1316 	/* This packet was never sent out yet, so no SACK bits. */
1317 	TCP_SKB_CB(buff)->sacked = 0;
1318 
1319 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1320 	skb_split(skb, buff, len);
1321 
1322 	/* Fix up tso_factor for both original and new SKB.  */
1323 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1324 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1325 
1326 	/* Link BUFF into the send queue. */
1327 	skb_header_release(buff);
1328 	tcp_insert_write_queue_after(skb, buff, sk);
1329 
1330 	return 0;
1331 }
1332 
1333 /* Try to defer sending, if possible, in order to minimize the amount
1334  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1335  *
1336  * This algorithm is from John Heffner.
1337  */
1338 static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1339 {
1340 	struct tcp_sock *tp = tcp_sk(sk);
1341 	const struct inet_connection_sock *icsk = inet_csk(sk);
1342 	u32 send_win, cong_win, limit, in_flight;
1343 
1344 	if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
1345 		goto send_now;
1346 
1347 	if (icsk->icsk_ca_state != TCP_CA_Open)
1348 		goto send_now;
1349 
1350 	/* Defer for less than two clock ticks. */
1351 	if (tp->tso_deferred &&
1352 	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1353 		goto send_now;
1354 
1355 	in_flight = tcp_packets_in_flight(tp);
1356 
1357 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1358 
1359 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1360 
1361 	/* From in_flight test above, we know that cwnd > in_flight.  */
1362 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1363 
1364 	limit = min(send_win, cong_win);
1365 
1366 	/* If a full-sized TSO skb can be sent, do it. */
1367 	if (limit >= sk->sk_gso_max_size)
1368 		goto send_now;
1369 
1370 	/* Middle in queue won't get any more data, full sendable already? */
1371 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1372 		goto send_now;
1373 
1374 	if (sysctl_tcp_tso_win_divisor) {
1375 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1376 
1377 		/* If at least some fraction of a window is available,
1378 		 * just use it.
1379 		 */
1380 		chunk /= sysctl_tcp_tso_win_divisor;
1381 		if (limit >= chunk)
1382 			goto send_now;
1383 	} else {
1384 		/* Different approach, try not to defer past a single
1385 		 * ACK.  Receiver should ACK every other full sized
1386 		 * frame, so if we have space for more than 3 frames
1387 		 * then send now.
1388 		 */
1389 		if (limit > tcp_max_burst(tp) * tp->mss_cache)
1390 			goto send_now;
1391 	}
1392 
1393 	/* Ok, it looks like it is advisable to defer.  */
1394 	tp->tso_deferred = 1 | (jiffies << 1);
1395 
1396 	return 1;
1397 
1398 send_now:
1399 	tp->tso_deferred = 0;
1400 	return 0;
1401 }
1402 
1403 /* Create a new MTU probe if we are ready.
1404  * MTU probe is regularly attempting to increase the path MTU by
1405  * deliberately sending larger packets.  This discovers routing
1406  * changes resulting in larger path MTUs.
1407  *
1408  * Returns 0 if we should wait to probe (no cwnd available),
1409  *         1 if a probe was sent,
1410  *         -1 otherwise
1411  */
1412 static int tcp_mtu_probe(struct sock *sk)
1413 {
1414 	struct tcp_sock *tp = tcp_sk(sk);
1415 	struct inet_connection_sock *icsk = inet_csk(sk);
1416 	struct sk_buff *skb, *nskb, *next;
1417 	int len;
1418 	int probe_size;
1419 	int size_needed;
1420 	int copy;
1421 	int mss_now;
1422 
1423 	/* Not currently probing/verifying,
1424 	 * not in recovery,
1425 	 * have enough cwnd, and
1426 	 * not SACKing (the variable headers throw things off) */
1427 	if (!icsk->icsk_mtup.enabled ||
1428 	    icsk->icsk_mtup.probe_size ||
1429 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1430 	    tp->snd_cwnd < 11 ||
1431 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1432 		return -1;
1433 
1434 	/* Very simple search strategy: just double the MSS. */
1435 	mss_now = tcp_current_mss(sk);
1436 	probe_size = 2 * tp->mss_cache;
1437 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1438 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1439 		/* TODO: set timer for probe_converge_event */
1440 		return -1;
1441 	}
1442 
1443 	/* Have enough data in the send queue to probe? */
1444 	if (tp->write_seq - tp->snd_nxt < size_needed)
1445 		return -1;
1446 
1447 	if (tp->snd_wnd < size_needed)
1448 		return -1;
1449 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1450 		return 0;
1451 
1452 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1453 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1454 		if (!tcp_packets_in_flight(tp))
1455 			return -1;
1456 		else
1457 			return 0;
1458 	}
1459 
1460 	/* We're allowed to probe.  Build it now. */
1461 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1462 		return -1;
1463 	sk->sk_wmem_queued += nskb->truesize;
1464 	sk_mem_charge(sk, nskb->truesize);
1465 
1466 	skb = tcp_send_head(sk);
1467 
1468 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1469 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1470 	TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK;
1471 	TCP_SKB_CB(nskb)->sacked = 0;
1472 	nskb->csum = 0;
1473 	nskb->ip_summed = skb->ip_summed;
1474 
1475 	tcp_insert_write_queue_before(nskb, skb, sk);
1476 
1477 	len = 0;
1478 	tcp_for_write_queue_from_safe(skb, next, sk) {
1479 		copy = min_t(int, skb->len, probe_size - len);
1480 		if (nskb->ip_summed)
1481 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1482 		else
1483 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1484 							    skb_put(nskb, copy),
1485 							    copy, nskb->csum);
1486 
1487 		if (skb->len <= copy) {
1488 			/* We've eaten all the data from this skb.
1489 			 * Throw it away. */
1490 			TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags;
1491 			tcp_unlink_write_queue(skb, sk);
1492 			sk_wmem_free_skb(sk, skb);
1493 		} else {
1494 			TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags &
1495 						   ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
1496 			if (!skb_shinfo(skb)->nr_frags) {
1497 				skb_pull(skb, copy);
1498 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1499 					skb->csum = csum_partial(skb->data,
1500 								 skb->len, 0);
1501 			} else {
1502 				__pskb_trim_head(skb, copy);
1503 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1504 			}
1505 			TCP_SKB_CB(skb)->seq += copy;
1506 		}
1507 
1508 		len += copy;
1509 
1510 		if (len >= probe_size)
1511 			break;
1512 	}
1513 	tcp_init_tso_segs(sk, nskb, nskb->len);
1514 
1515 	/* We're ready to send.  If this fails, the probe will
1516 	 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1517 	TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1518 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1519 		/* Decrement cwnd here because we are sending
1520 		 * effectively two packets. */
1521 		tp->snd_cwnd--;
1522 		tcp_event_new_data_sent(sk, nskb);
1523 
1524 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1525 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1526 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1527 
1528 		return 1;
1529 	}
1530 
1531 	return -1;
1532 }
1533 
1534 /* This routine writes packets to the network.  It advances the
1535  * send_head.  This happens as incoming acks open up the remote
1536  * window for us.
1537  *
1538  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1539  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1540  * account rare use of URG, this is not a big flaw.
1541  *
1542  * Returns 1, if no segments are in flight and we have queued segments, but
1543  * cannot send anything now because of SWS or another problem.
1544  */
1545 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1546 			  int push_one, gfp_t gfp)
1547 {
1548 	struct tcp_sock *tp = tcp_sk(sk);
1549 	struct sk_buff *skb;
1550 	unsigned int tso_segs, sent_pkts;
1551 	int cwnd_quota;
1552 	int result;
1553 
1554 	sent_pkts = 0;
1555 
1556 	if (!push_one) {
1557 		/* Do MTU probing. */
1558 		result = tcp_mtu_probe(sk);
1559 		if (!result) {
1560 			return 0;
1561 		} else if (result > 0) {
1562 			sent_pkts = 1;
1563 		}
1564 	}
1565 
1566 	while ((skb = tcp_send_head(sk))) {
1567 		unsigned int limit;
1568 
1569 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1570 		BUG_ON(!tso_segs);
1571 
1572 		cwnd_quota = tcp_cwnd_test(tp, skb);
1573 		if (!cwnd_quota)
1574 			break;
1575 
1576 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1577 			break;
1578 
1579 		if (tso_segs == 1) {
1580 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1581 						     (tcp_skb_is_last(sk, skb) ?
1582 						      nonagle : TCP_NAGLE_PUSH))))
1583 				break;
1584 		} else {
1585 			if (!push_one && tcp_tso_should_defer(sk, skb))
1586 				break;
1587 		}
1588 
1589 		limit = mss_now;
1590 		if (tso_segs > 1 && !tcp_urg_mode(tp))
1591 			limit = tcp_mss_split_point(sk, skb, mss_now,
1592 						    cwnd_quota);
1593 
1594 		if (skb->len > limit &&
1595 		    unlikely(tso_fragment(sk, skb, limit, mss_now)))
1596 			break;
1597 
1598 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1599 
1600 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1601 			break;
1602 
1603 		/* Advance the send_head.  This one is sent out.
1604 		 * This call will increment packets_out.
1605 		 */
1606 		tcp_event_new_data_sent(sk, skb);
1607 
1608 		tcp_minshall_update(tp, mss_now, skb);
1609 		sent_pkts++;
1610 
1611 		if (push_one)
1612 			break;
1613 	}
1614 
1615 	if (likely(sent_pkts)) {
1616 		tcp_cwnd_validate(sk);
1617 		return 0;
1618 	}
1619 	return !tp->packets_out && tcp_send_head(sk);
1620 }
1621 
1622 /* Push out any pending frames which were held back due to
1623  * TCP_CORK or attempt at coalescing tiny packets.
1624  * The socket must be locked by the caller.
1625  */
1626 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
1627 			       int nonagle)
1628 {
1629 	struct sk_buff *skb = tcp_send_head(sk);
1630 
1631 	if (!skb)
1632 		return;
1633 
1634 	/* If we are closed, the bytes will have to remain here.
1635 	 * In time closedown will finish, we empty the write queue and
1636 	 * all will be happy.
1637 	 */
1638 	if (unlikely(sk->sk_state == TCP_CLOSE))
1639 		return;
1640 
1641 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0, GFP_ATOMIC))
1642 		tcp_check_probe_timer(sk);
1643 }
1644 
1645 /* Send _single_ skb sitting at the send head. This function requires
1646  * true push pending frames to setup probe timer etc.
1647  */
1648 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1649 {
1650 	struct sk_buff *skb = tcp_send_head(sk);
1651 
1652 	BUG_ON(!skb || skb->len < mss_now);
1653 
1654 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
1655 }
1656 
1657 /* This function returns the amount that we can raise the
1658  * usable window based on the following constraints
1659  *
1660  * 1. The window can never be shrunk once it is offered (RFC 793)
1661  * 2. We limit memory per socket
1662  *
1663  * RFC 1122:
1664  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1665  *  RECV.NEXT + RCV.WIN fixed until:
1666  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1667  *
1668  * i.e. don't raise the right edge of the window until you can raise
1669  * it at least MSS bytes.
1670  *
1671  * Unfortunately, the recommended algorithm breaks header prediction,
1672  * since header prediction assumes th->window stays fixed.
1673  *
1674  * Strictly speaking, keeping th->window fixed violates the receiver
1675  * side SWS prevention criteria. The problem is that under this rule
1676  * a stream of single byte packets will cause the right side of the
1677  * window to always advance by a single byte.
1678  *
1679  * Of course, if the sender implements sender side SWS prevention
1680  * then this will not be a problem.
1681  *
1682  * BSD seems to make the following compromise:
1683  *
1684  *	If the free space is less than the 1/4 of the maximum
1685  *	space available and the free space is less than 1/2 mss,
1686  *	then set the window to 0.
1687  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1688  *	Otherwise, just prevent the window from shrinking
1689  *	and from being larger than the largest representable value.
1690  *
1691  * This prevents incremental opening of the window in the regime
1692  * where TCP is limited by the speed of the reader side taking
1693  * data out of the TCP receive queue. It does nothing about
1694  * those cases where the window is constrained on the sender side
1695  * because the pipeline is full.
1696  *
1697  * BSD also seems to "accidentally" limit itself to windows that are a
1698  * multiple of MSS, at least until the free space gets quite small.
1699  * This would appear to be a side effect of the mbuf implementation.
1700  * Combining these two algorithms results in the observed behavior
1701  * of having a fixed window size at almost all times.
1702  *
1703  * Below we obtain similar behavior by forcing the offered window to
1704  * a multiple of the mss when it is feasible to do so.
1705  *
1706  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1707  * Regular options like TIMESTAMP are taken into account.
1708  */
1709 u32 __tcp_select_window(struct sock *sk)
1710 {
1711 	struct inet_connection_sock *icsk = inet_csk(sk);
1712 	struct tcp_sock *tp = tcp_sk(sk);
1713 	/* MSS for the peer's data.  Previous versions used mss_clamp
1714 	 * here.  I don't know if the value based on our guesses
1715 	 * of peer's MSS is better for the performance.  It's more correct
1716 	 * but may be worse for the performance because of rcv_mss
1717 	 * fluctuations.  --SAW  1998/11/1
1718 	 */
1719 	int mss = icsk->icsk_ack.rcv_mss;
1720 	int free_space = tcp_space(sk);
1721 	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1722 	int window;
1723 
1724 	if (mss > full_space)
1725 		mss = full_space;
1726 
1727 	if (free_space < (full_space >> 1)) {
1728 		icsk->icsk_ack.quick = 0;
1729 
1730 		if (tcp_memory_pressure)
1731 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
1732 					       4U * tp->advmss);
1733 
1734 		if (free_space < mss)
1735 			return 0;
1736 	}
1737 
1738 	if (free_space > tp->rcv_ssthresh)
1739 		free_space = tp->rcv_ssthresh;
1740 
1741 	/* Don't do rounding if we are using window scaling, since the
1742 	 * scaled window will not line up with the MSS boundary anyway.
1743 	 */
1744 	window = tp->rcv_wnd;
1745 	if (tp->rx_opt.rcv_wscale) {
1746 		window = free_space;
1747 
1748 		/* Advertise enough space so that it won't get scaled away.
1749 		 * Import case: prevent zero window announcement if
1750 		 * 1<<rcv_wscale > mss.
1751 		 */
1752 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1753 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1754 				  << tp->rx_opt.rcv_wscale);
1755 	} else {
1756 		/* Get the largest window that is a nice multiple of mss.
1757 		 * Window clamp already applied above.
1758 		 * If our current window offering is within 1 mss of the
1759 		 * free space we just keep it. This prevents the divide
1760 		 * and multiply from happening most of the time.
1761 		 * We also don't do any window rounding when the free space
1762 		 * is too small.
1763 		 */
1764 		if (window <= free_space - mss || window > free_space)
1765 			window = (free_space / mss) * mss;
1766 		else if (mss == full_space &&
1767 			 free_space > window + (full_space >> 1))
1768 			window = free_space;
1769 	}
1770 
1771 	return window;
1772 }
1773 
1774 /* Collapses two adjacent SKB's during retransmission. */
1775 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
1776 {
1777 	struct tcp_sock *tp = tcp_sk(sk);
1778 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
1779 	int skb_size, next_skb_size;
1780 
1781 	skb_size = skb->len;
1782 	next_skb_size = next_skb->len;
1783 
1784 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
1785 
1786 	tcp_highest_sack_combine(sk, next_skb, skb);
1787 
1788 	tcp_unlink_write_queue(next_skb, sk);
1789 
1790 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
1791 				  next_skb_size);
1792 
1793 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
1794 		skb->ip_summed = CHECKSUM_PARTIAL;
1795 
1796 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1797 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1798 
1799 	/* Update sequence range on original skb. */
1800 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1801 
1802 	/* Merge over control information. This moves PSH/FIN etc. over */
1803 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(next_skb)->flags;
1804 
1805 	/* All done, get rid of second SKB and account for it so
1806 	 * packet counting does not break.
1807 	 */
1808 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
1809 
1810 	/* changed transmit queue under us so clear hints */
1811 	tcp_clear_retrans_hints_partial(tp);
1812 	if (next_skb == tp->retransmit_skb_hint)
1813 		tp->retransmit_skb_hint = skb;
1814 
1815 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
1816 
1817 	sk_wmem_free_skb(sk, next_skb);
1818 }
1819 
1820 /* Check if coalescing SKBs is legal. */
1821 static int tcp_can_collapse(struct sock *sk, struct sk_buff *skb)
1822 {
1823 	if (tcp_skb_pcount(skb) > 1)
1824 		return 0;
1825 	/* TODO: SACK collapsing could be used to remove this condition */
1826 	if (skb_shinfo(skb)->nr_frags != 0)
1827 		return 0;
1828 	if (skb_cloned(skb))
1829 		return 0;
1830 	if (skb == tcp_send_head(sk))
1831 		return 0;
1832 	/* Some heurestics for collapsing over SACK'd could be invented */
1833 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1834 		return 0;
1835 
1836 	return 1;
1837 }
1838 
1839 /* Collapse packets in the retransmit queue to make to create
1840  * less packets on the wire. This is only done on retransmission.
1841  */
1842 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
1843 				     int space)
1844 {
1845 	struct tcp_sock *tp = tcp_sk(sk);
1846 	struct sk_buff *skb = to, *tmp;
1847 	int first = 1;
1848 
1849 	if (!sysctl_tcp_retrans_collapse)
1850 		return;
1851 	if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)
1852 		return;
1853 
1854 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
1855 		if (!tcp_can_collapse(sk, skb))
1856 			break;
1857 
1858 		space -= skb->len;
1859 
1860 		if (first) {
1861 			first = 0;
1862 			continue;
1863 		}
1864 
1865 		if (space < 0)
1866 			break;
1867 		/* Punt if not enough space exists in the first SKB for
1868 		 * the data in the second
1869 		 */
1870 		if (skb->len > skb_tailroom(to))
1871 			break;
1872 
1873 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
1874 			break;
1875 
1876 		tcp_collapse_retrans(sk, to);
1877 	}
1878 }
1879 
1880 /* This retransmits one SKB.  Policy decisions and retransmit queue
1881  * state updates are done by the caller.  Returns non-zero if an
1882  * error occurred which prevented the send.
1883  */
1884 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1885 {
1886 	struct tcp_sock *tp = tcp_sk(sk);
1887 	struct inet_connection_sock *icsk = inet_csk(sk);
1888 	unsigned int cur_mss;
1889 	int err;
1890 
1891 	/* Inconslusive MTU probe */
1892 	if (icsk->icsk_mtup.probe_size) {
1893 		icsk->icsk_mtup.probe_size = 0;
1894 	}
1895 
1896 	/* Do not sent more than we queued. 1/4 is reserved for possible
1897 	 * copying overhead: fragmentation, tunneling, mangling etc.
1898 	 */
1899 	if (atomic_read(&sk->sk_wmem_alloc) >
1900 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1901 		return -EAGAIN;
1902 
1903 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1904 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1905 			BUG();
1906 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1907 			return -ENOMEM;
1908 	}
1909 
1910 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
1911 		return -EHOSTUNREACH; /* Routing failure or similar. */
1912 
1913 	cur_mss = tcp_current_mss(sk);
1914 
1915 	/* If receiver has shrunk his window, and skb is out of
1916 	 * new window, do not retransmit it. The exception is the
1917 	 * case, when window is shrunk to zero. In this case
1918 	 * our retransmit serves as a zero window probe.
1919 	 */
1920 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))
1921 	    && TCP_SKB_CB(skb)->seq != tp->snd_una)
1922 		return -EAGAIN;
1923 
1924 	if (skb->len > cur_mss) {
1925 		if (tcp_fragment(sk, skb, cur_mss, cur_mss))
1926 			return -ENOMEM; /* We'll try again later. */
1927 	} else {
1928 		int oldpcount = tcp_skb_pcount(skb);
1929 
1930 		if (unlikely(oldpcount > 1)) {
1931 			tcp_init_tso_segs(sk, skb, cur_mss);
1932 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
1933 		}
1934 	}
1935 
1936 	tcp_retrans_try_collapse(sk, skb, cur_mss);
1937 
1938 	/* Some Solaris stacks overoptimize and ignore the FIN on a
1939 	 * retransmit when old data is attached.  So strip it off
1940 	 * since it is cheap to do so and saves bytes on the network.
1941 	 */
1942 	if (skb->len > 0 &&
1943 	    (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1944 	    tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1945 		if (!pskb_trim(skb, 0)) {
1946 			/* Reuse, even though it does some unnecessary work */
1947 			tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
1948 					     TCP_SKB_CB(skb)->flags);
1949 			skb->ip_summed = CHECKSUM_NONE;
1950 		}
1951 	}
1952 
1953 	/* Make a copy, if the first transmission SKB clone we made
1954 	 * is still in somebody's hands, else make a clone.
1955 	 */
1956 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1957 
1958 	err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
1959 
1960 	if (err == 0) {
1961 		/* Update global TCP statistics. */
1962 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
1963 
1964 		tp->total_retrans++;
1965 
1966 #if FASTRETRANS_DEBUG > 0
1967 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1968 			if (net_ratelimit())
1969 				printk(KERN_DEBUG "retrans_out leaked.\n");
1970 		}
1971 #endif
1972 		if (!tp->retrans_out)
1973 			tp->lost_retrans_low = tp->snd_nxt;
1974 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1975 		tp->retrans_out += tcp_skb_pcount(skb);
1976 
1977 		/* Save stamp of the first retransmit. */
1978 		if (!tp->retrans_stamp)
1979 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1980 
1981 		tp->undo_retrans++;
1982 
1983 		/* snd_nxt is stored to detect loss of retransmitted segment,
1984 		 * see tcp_input.c tcp_sacktag_write_queue().
1985 		 */
1986 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1987 	}
1988 	return err;
1989 }
1990 
1991 /* Check if we forward retransmits are possible in the current
1992  * window/congestion state.
1993  */
1994 static int tcp_can_forward_retransmit(struct sock *sk)
1995 {
1996 	const struct inet_connection_sock *icsk = inet_csk(sk);
1997 	struct tcp_sock *tp = tcp_sk(sk);
1998 
1999 	/* Forward retransmissions are possible only during Recovery. */
2000 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2001 		return 0;
2002 
2003 	/* No forward retransmissions in Reno are possible. */
2004 	if (tcp_is_reno(tp))
2005 		return 0;
2006 
2007 	/* Yeah, we have to make difficult choice between forward transmission
2008 	 * and retransmission... Both ways have their merits...
2009 	 *
2010 	 * For now we do not retransmit anything, while we have some new
2011 	 * segments to send. In the other cases, follow rule 3 for
2012 	 * NextSeg() specified in RFC3517.
2013 	 */
2014 
2015 	if (tcp_may_send_now(sk))
2016 		return 0;
2017 
2018 	return 1;
2019 }
2020 
2021 /* This gets called after a retransmit timeout, and the initially
2022  * retransmitted data is acknowledged.  It tries to continue
2023  * resending the rest of the retransmit queue, until either
2024  * we've sent it all or the congestion window limit is reached.
2025  * If doing SACK, the first ACK which comes back for a timeout
2026  * based retransmit packet might feed us FACK information again.
2027  * If so, we use it to avoid unnecessarily retransmissions.
2028  */
2029 void tcp_xmit_retransmit_queue(struct sock *sk)
2030 {
2031 	const struct inet_connection_sock *icsk = inet_csk(sk);
2032 	struct tcp_sock *tp = tcp_sk(sk);
2033 	struct sk_buff *skb;
2034 	struct sk_buff *hole = NULL;
2035 	u32 last_lost;
2036 	int mib_idx;
2037 	int fwd_rexmitting = 0;
2038 
2039 	if (!tp->lost_out)
2040 		tp->retransmit_high = tp->snd_una;
2041 
2042 	if (tp->retransmit_skb_hint) {
2043 		skb = tp->retransmit_skb_hint;
2044 		last_lost = TCP_SKB_CB(skb)->end_seq;
2045 		if (after(last_lost, tp->retransmit_high))
2046 			last_lost = tp->retransmit_high;
2047 	} else {
2048 		skb = tcp_write_queue_head(sk);
2049 		last_lost = tp->snd_una;
2050 	}
2051 
2052 	tcp_for_write_queue_from(skb, sk) {
2053 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2054 
2055 		if (skb == tcp_send_head(sk))
2056 			break;
2057 		/* we could do better than to assign each time */
2058 		if (hole == NULL)
2059 			tp->retransmit_skb_hint = skb;
2060 
2061 		/* Assume this retransmit will generate
2062 		 * only one packet for congestion window
2063 		 * calculation purposes.  This works because
2064 		 * tcp_retransmit_skb() will chop up the
2065 		 * packet to be MSS sized and all the
2066 		 * packet counting works out.
2067 		 */
2068 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2069 			return;
2070 
2071 		if (fwd_rexmitting) {
2072 begin_fwd:
2073 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2074 				break;
2075 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2076 
2077 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2078 			tp->retransmit_high = last_lost;
2079 			if (!tcp_can_forward_retransmit(sk))
2080 				break;
2081 			/* Backtrack if necessary to non-L'ed skb */
2082 			if (hole != NULL) {
2083 				skb = hole;
2084 				hole = NULL;
2085 			}
2086 			fwd_rexmitting = 1;
2087 			goto begin_fwd;
2088 
2089 		} else if (!(sacked & TCPCB_LOST)) {
2090 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2091 				hole = skb;
2092 			continue;
2093 
2094 		} else {
2095 			last_lost = TCP_SKB_CB(skb)->end_seq;
2096 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2097 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2098 			else
2099 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2100 		}
2101 
2102 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2103 			continue;
2104 
2105 		if (tcp_retransmit_skb(sk, skb))
2106 			return;
2107 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2108 
2109 		if (skb == tcp_write_queue_head(sk))
2110 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2111 						  inet_csk(sk)->icsk_rto,
2112 						  TCP_RTO_MAX);
2113 	}
2114 }
2115 
2116 /* Send a fin.  The caller locks the socket for us.  This cannot be
2117  * allowed to fail queueing a FIN frame under any circumstances.
2118  */
2119 void tcp_send_fin(struct sock *sk)
2120 {
2121 	struct tcp_sock *tp = tcp_sk(sk);
2122 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2123 	int mss_now;
2124 
2125 	/* Optimization, tack on the FIN if we have a queue of
2126 	 * unsent frames.  But be careful about outgoing SACKS
2127 	 * and IP options.
2128 	 */
2129 	mss_now = tcp_current_mss(sk);
2130 
2131 	if (tcp_send_head(sk) != NULL) {
2132 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
2133 		TCP_SKB_CB(skb)->end_seq++;
2134 		tp->write_seq++;
2135 	} else {
2136 		/* Socket is locked, keep trying until memory is available. */
2137 		for (;;) {
2138 			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2139 					       sk->sk_allocation);
2140 			if (skb)
2141 				break;
2142 			yield();
2143 		}
2144 
2145 		/* Reserve space for headers and prepare control bits. */
2146 		skb_reserve(skb, MAX_TCP_HEADER);
2147 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2148 		tcp_init_nondata_skb(skb, tp->write_seq,
2149 				     TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
2150 		tcp_queue_skb(sk, skb);
2151 	}
2152 	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2153 }
2154 
2155 /* We get here when a process closes a file descriptor (either due to
2156  * an explicit close() or as a byproduct of exit()'ing) and there
2157  * was unread data in the receive queue.  This behavior is recommended
2158  * by RFC 2525, section 2.17.  -DaveM
2159  */
2160 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2161 {
2162 	struct sk_buff *skb;
2163 
2164 	/* NOTE: No TCP options attached and we never retransmit this. */
2165 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2166 	if (!skb) {
2167 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2168 		return;
2169 	}
2170 
2171 	/* Reserve space for headers and prepare control bits. */
2172 	skb_reserve(skb, MAX_TCP_HEADER);
2173 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2174 			     TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
2175 	/* Send it off. */
2176 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2177 	if (tcp_transmit_skb(sk, skb, 0, priority))
2178 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2179 
2180 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2181 }
2182 
2183 /* Send a crossed SYN-ACK during socket establishment.
2184  * WARNING: This routine must only be called when we have already sent
2185  * a SYN packet that crossed the incoming SYN that caused this routine
2186  * to get called. If this assumption fails then the initial rcv_wnd
2187  * and rcv_wscale values will not be correct.
2188  */
2189 int tcp_send_synack(struct sock *sk)
2190 {
2191 	struct sk_buff *skb;
2192 
2193 	skb = tcp_write_queue_head(sk);
2194 	if (skb == NULL || !(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)) {
2195 		printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
2196 		return -EFAULT;
2197 	}
2198 	if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_ACK)) {
2199 		if (skb_cloned(skb)) {
2200 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2201 			if (nskb == NULL)
2202 				return -ENOMEM;
2203 			tcp_unlink_write_queue(skb, sk);
2204 			skb_header_release(nskb);
2205 			__tcp_add_write_queue_head(sk, nskb);
2206 			sk_wmem_free_skb(sk, skb);
2207 			sk->sk_wmem_queued += nskb->truesize;
2208 			sk_mem_charge(sk, nskb->truesize);
2209 			skb = nskb;
2210 		}
2211 
2212 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
2213 		TCP_ECN_send_synack(tcp_sk(sk), skb);
2214 	}
2215 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2216 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2217 }
2218 
2219 /* Prepare a SYN-ACK. */
2220 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2221 				struct request_sock *req)
2222 {
2223 	struct inet_request_sock *ireq = inet_rsk(req);
2224 	struct tcp_sock *tp = tcp_sk(sk);
2225 	struct tcphdr *th;
2226 	int tcp_header_size;
2227 	struct tcp_out_options opts;
2228 	struct sk_buff *skb;
2229 	struct tcp_md5sig_key *md5;
2230 	__u8 *md5_hash_location;
2231 	int mss;
2232 
2233 	skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2234 	if (skb == NULL)
2235 		return NULL;
2236 
2237 	/* Reserve space for headers. */
2238 	skb_reserve(skb, MAX_TCP_HEADER);
2239 
2240 	skb_dst_set(skb, dst_clone(dst));
2241 
2242 	mss = dst_metric(dst, RTAX_ADVMSS);
2243 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2244 		mss = tp->rx_opt.user_mss;
2245 
2246 	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2247 		__u8 rcv_wscale;
2248 		/* Set this up on the first call only */
2249 		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2250 		/* tcp_full_space because it is guaranteed to be the first packet */
2251 		tcp_select_initial_window(tcp_full_space(sk),
2252 			mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2253 			&req->rcv_wnd,
2254 			&req->window_clamp,
2255 			ireq->wscale_ok,
2256 			&rcv_wscale);
2257 		ireq->rcv_wscale = rcv_wscale;
2258 	}
2259 
2260 	memset(&opts, 0, sizeof(opts));
2261 #ifdef CONFIG_SYN_COOKIES
2262 	if (unlikely(req->cookie_ts))
2263 		TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2264 	else
2265 #endif
2266 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2267 	tcp_header_size = tcp_synack_options(sk, req, mss,
2268 					     skb, &opts, &md5) +
2269 			  sizeof(struct tcphdr);
2270 
2271 	skb_push(skb, tcp_header_size);
2272 	skb_reset_transport_header(skb);
2273 
2274 	th = tcp_hdr(skb);
2275 	memset(th, 0, sizeof(struct tcphdr));
2276 	th->syn = 1;
2277 	th->ack = 1;
2278 	TCP_ECN_make_synack(req, th);
2279 	th->source = ireq->loc_port;
2280 	th->dest = ireq->rmt_port;
2281 	/* Setting of flags are superfluous here for callers (and ECE is
2282 	 * not even correctly set)
2283 	 */
2284 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2285 			     TCPCB_FLAG_SYN | TCPCB_FLAG_ACK);
2286 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2287 	th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
2288 
2289 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2290 	th->window = htons(min(req->rcv_wnd, 65535U));
2291 	tcp_options_write((__be32 *)(th + 1), tp, &opts, &md5_hash_location);
2292 	th->doff = (tcp_header_size >> 2);
2293 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
2294 
2295 #ifdef CONFIG_TCP_MD5SIG
2296 	/* Okay, we have all we need - do the md5 hash if needed */
2297 	if (md5) {
2298 		tcp_rsk(req)->af_specific->calc_md5_hash(md5_hash_location,
2299 					       md5, NULL, req, skb);
2300 	}
2301 #endif
2302 
2303 	return skb;
2304 }
2305 
2306 /* Do all connect socket setups that can be done AF independent. */
2307 static void tcp_connect_init(struct sock *sk)
2308 {
2309 	struct dst_entry *dst = __sk_dst_get(sk);
2310 	struct tcp_sock *tp = tcp_sk(sk);
2311 	__u8 rcv_wscale;
2312 
2313 	/* We'll fix this up when we get a response from the other end.
2314 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2315 	 */
2316 	tp->tcp_header_len = sizeof(struct tcphdr) +
2317 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2318 
2319 #ifdef CONFIG_TCP_MD5SIG
2320 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2321 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2322 #endif
2323 
2324 	/* If user gave his TCP_MAXSEG, record it to clamp */
2325 	if (tp->rx_opt.user_mss)
2326 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2327 	tp->max_window = 0;
2328 	tcp_mtup_init(sk);
2329 	tcp_sync_mss(sk, dst_mtu(dst));
2330 
2331 	if (!tp->window_clamp)
2332 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2333 	tp->advmss = dst_metric(dst, RTAX_ADVMSS);
2334 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2335 		tp->advmss = tp->rx_opt.user_mss;
2336 
2337 	tcp_initialize_rcv_mss(sk);
2338 
2339 	tcp_select_initial_window(tcp_full_space(sk),
2340 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2341 				  &tp->rcv_wnd,
2342 				  &tp->window_clamp,
2343 				  sysctl_tcp_window_scaling,
2344 				  &rcv_wscale);
2345 
2346 	tp->rx_opt.rcv_wscale = rcv_wscale;
2347 	tp->rcv_ssthresh = tp->rcv_wnd;
2348 
2349 	sk->sk_err = 0;
2350 	sock_reset_flag(sk, SOCK_DONE);
2351 	tp->snd_wnd = 0;
2352 	tcp_init_wl(tp, 0);
2353 	tp->snd_una = tp->write_seq;
2354 	tp->snd_sml = tp->write_seq;
2355 	tp->snd_up = tp->write_seq;
2356 	tp->rcv_nxt = 0;
2357 	tp->rcv_wup = 0;
2358 	tp->copied_seq = 0;
2359 
2360 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2361 	inet_csk(sk)->icsk_retransmits = 0;
2362 	tcp_clear_retrans(tp);
2363 }
2364 
2365 /* Build a SYN and send it off. */
2366 int tcp_connect(struct sock *sk)
2367 {
2368 	struct tcp_sock *tp = tcp_sk(sk);
2369 	struct sk_buff *buff;
2370 
2371 	tcp_connect_init(sk);
2372 
2373 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2374 	if (unlikely(buff == NULL))
2375 		return -ENOBUFS;
2376 
2377 	/* Reserve space for headers. */
2378 	skb_reserve(buff, MAX_TCP_HEADER);
2379 
2380 	tp->snd_nxt = tp->write_seq;
2381 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPCB_FLAG_SYN);
2382 	TCP_ECN_send_syn(sk, buff);
2383 
2384 	/* Send it off. */
2385 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
2386 	tp->retrans_stamp = TCP_SKB_CB(buff)->when;
2387 	skb_header_release(buff);
2388 	__tcp_add_write_queue_tail(sk, buff);
2389 	sk->sk_wmem_queued += buff->truesize;
2390 	sk_mem_charge(sk, buff->truesize);
2391 	tp->packets_out += tcp_skb_pcount(buff);
2392 	tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2393 
2394 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
2395 	 * in order to make this packet get counted in tcpOutSegs.
2396 	 */
2397 	tp->snd_nxt = tp->write_seq;
2398 	tp->pushed_seq = tp->write_seq;
2399 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2400 
2401 	/* Timer for repeating the SYN until an answer. */
2402 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2403 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2404 	return 0;
2405 }
2406 
2407 /* Send out a delayed ack, the caller does the policy checking
2408  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
2409  * for details.
2410  */
2411 void tcp_send_delayed_ack(struct sock *sk)
2412 {
2413 	struct inet_connection_sock *icsk = inet_csk(sk);
2414 	int ato = icsk->icsk_ack.ato;
2415 	unsigned long timeout;
2416 
2417 	if (ato > TCP_DELACK_MIN) {
2418 		const struct tcp_sock *tp = tcp_sk(sk);
2419 		int max_ato = HZ / 2;
2420 
2421 		if (icsk->icsk_ack.pingpong ||
2422 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2423 			max_ato = TCP_DELACK_MAX;
2424 
2425 		/* Slow path, intersegment interval is "high". */
2426 
2427 		/* If some rtt estimate is known, use it to bound delayed ack.
2428 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2429 		 * directly.
2430 		 */
2431 		if (tp->srtt) {
2432 			int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
2433 
2434 			if (rtt < max_ato)
2435 				max_ato = rtt;
2436 		}
2437 
2438 		ato = min(ato, max_ato);
2439 	}
2440 
2441 	/* Stay within the limit we were given */
2442 	timeout = jiffies + ato;
2443 
2444 	/* Use new timeout only if there wasn't a older one earlier. */
2445 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
2446 		/* If delack timer was blocked or is about to expire,
2447 		 * send ACK now.
2448 		 */
2449 		if (icsk->icsk_ack.blocked ||
2450 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
2451 			tcp_send_ack(sk);
2452 			return;
2453 		}
2454 
2455 		if (!time_before(timeout, icsk->icsk_ack.timeout))
2456 			timeout = icsk->icsk_ack.timeout;
2457 	}
2458 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
2459 	icsk->icsk_ack.timeout = timeout;
2460 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
2461 }
2462 
2463 /* This routine sends an ack and also updates the window. */
2464 void tcp_send_ack(struct sock *sk)
2465 {
2466 	struct sk_buff *buff;
2467 
2468 	/* If we have been reset, we may not send again. */
2469 	if (sk->sk_state == TCP_CLOSE)
2470 		return;
2471 
2472 	/* We are not putting this on the write queue, so
2473 	 * tcp_transmit_skb() will set the ownership to this
2474 	 * sock.
2475 	 */
2476 	buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2477 	if (buff == NULL) {
2478 		inet_csk_schedule_ack(sk);
2479 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
2480 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
2481 					  TCP_DELACK_MAX, TCP_RTO_MAX);
2482 		return;
2483 	}
2484 
2485 	/* Reserve space for headers and prepare control bits. */
2486 	skb_reserve(buff, MAX_TCP_HEADER);
2487 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPCB_FLAG_ACK);
2488 
2489 	/* Send it off, this clears delayed acks for us. */
2490 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
2491 	tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
2492 }
2493 
2494 /* This routine sends a packet with an out of date sequence
2495  * number. It assumes the other end will try to ack it.
2496  *
2497  * Question: what should we make while urgent mode?
2498  * 4.4BSD forces sending single byte of data. We cannot send
2499  * out of window data, because we have SND.NXT==SND.MAX...
2500  *
2501  * Current solution: to send TWO zero-length segments in urgent mode:
2502  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2503  * out-of-date with SND.UNA-1 to probe window.
2504  */
2505 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
2506 {
2507 	struct tcp_sock *tp = tcp_sk(sk);
2508 	struct sk_buff *skb;
2509 
2510 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
2511 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2512 	if (skb == NULL)
2513 		return -1;
2514 
2515 	/* Reserve space for headers and set control bits. */
2516 	skb_reserve(skb, MAX_TCP_HEADER);
2517 	/* Use a previous sequence.  This should cause the other
2518 	 * end to send an ack.  Don't queue or clone SKB, just
2519 	 * send it.
2520 	 */
2521 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPCB_FLAG_ACK);
2522 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2523 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
2524 }
2525 
2526 /* Initiate keepalive or window probe from timer. */
2527 int tcp_write_wakeup(struct sock *sk)
2528 {
2529 	struct tcp_sock *tp = tcp_sk(sk);
2530 	struct sk_buff *skb;
2531 
2532 	if (sk->sk_state == TCP_CLOSE)
2533 		return -1;
2534 
2535 	if ((skb = tcp_send_head(sk)) != NULL &&
2536 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
2537 		int err;
2538 		unsigned int mss = tcp_current_mss(sk);
2539 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2540 
2541 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
2542 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
2543 
2544 		/* We are probing the opening of a window
2545 		 * but the window size is != 0
2546 		 * must have been a result SWS avoidance ( sender )
2547 		 */
2548 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
2549 		    skb->len > mss) {
2550 			seg_size = min(seg_size, mss);
2551 			TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2552 			if (tcp_fragment(sk, skb, seg_size, mss))
2553 				return -1;
2554 		} else if (!tcp_skb_pcount(skb))
2555 			tcp_set_skb_tso_segs(sk, skb, mss);
2556 
2557 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2558 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
2559 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2560 		if (!err)
2561 			tcp_event_new_data_sent(sk, skb);
2562 		return err;
2563 	} else {
2564 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
2565 			tcp_xmit_probe_skb(sk, 1);
2566 		return tcp_xmit_probe_skb(sk, 0);
2567 	}
2568 }
2569 
2570 /* A window probe timeout has occurred.  If window is not closed send
2571  * a partial packet else a zero probe.
2572  */
2573 void tcp_send_probe0(struct sock *sk)
2574 {
2575 	struct inet_connection_sock *icsk = inet_csk(sk);
2576 	struct tcp_sock *tp = tcp_sk(sk);
2577 	int err;
2578 
2579 	err = tcp_write_wakeup(sk);
2580 
2581 	if (tp->packets_out || !tcp_send_head(sk)) {
2582 		/* Cancel probe timer, if it is not required. */
2583 		icsk->icsk_probes_out = 0;
2584 		icsk->icsk_backoff = 0;
2585 		return;
2586 	}
2587 
2588 	if (err <= 0) {
2589 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
2590 			icsk->icsk_backoff++;
2591 		icsk->icsk_probes_out++;
2592 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2593 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2594 					  TCP_RTO_MAX);
2595 	} else {
2596 		/* If packet was not sent due to local congestion,
2597 		 * do not backoff and do not remember icsk_probes_out.
2598 		 * Let local senders to fight for local resources.
2599 		 *
2600 		 * Use accumulated backoff yet.
2601 		 */
2602 		if (!icsk->icsk_probes_out)
2603 			icsk->icsk_probes_out = 1;
2604 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2605 					  min(icsk->icsk_rto << icsk->icsk_backoff,
2606 					      TCP_RESOURCE_PROBE_INTERVAL),
2607 					  TCP_RTO_MAX);
2608 	}
2609 }
2610 
2611 EXPORT_SYMBOL(tcp_select_initial_window);
2612 EXPORT_SYMBOL(tcp_connect);
2613 EXPORT_SYMBOL(tcp_make_synack);
2614 EXPORT_SYMBOL(tcp_simple_retransmit);
2615 EXPORT_SYMBOL(tcp_sync_mss);
2616 EXPORT_SYMBOL(tcp_mtup_init);
2617