1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 } 86 87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 88 * window scaling factor due to loss of precision. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 99 (tp->rx_opt.wscale_ok && 100 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 101 return tp->snd_nxt; 102 else 103 return tcp_wnd_end(tp); 104 } 105 106 /* Calculate mss to advertise in SYN segment. 107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 108 * 109 * 1. It is independent of path mtu. 110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 112 * attached devices, because some buggy hosts are confused by 113 * large MSS. 114 * 4. We do not make 3, we advertise MSS, calculated from first 115 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 116 * This may be overridden via information stored in routing table. 117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 118 * probably even Jumbo". 119 */ 120 static __u16 tcp_advertise_mss(struct sock *sk) 121 { 122 struct tcp_sock *tp = tcp_sk(sk); 123 const struct dst_entry *dst = __sk_dst_get(sk); 124 int mss = tp->advmss; 125 126 if (dst) { 127 unsigned int metric = dst_metric_advmss(dst); 128 129 if (metric < mss) { 130 mss = metric; 131 tp->advmss = mss; 132 } 133 } 134 135 return (__u16)mss; 136 } 137 138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 139 * This is the first part of cwnd validation mechanism. 140 */ 141 void tcp_cwnd_restart(struct sock *sk, s32 delta) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 145 u32 cwnd = tp->snd_cwnd; 146 147 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 148 149 tp->snd_ssthresh = tcp_current_ssthresh(sk); 150 restart_cwnd = min(restart_cwnd, cwnd); 151 152 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 153 cwnd >>= 1; 154 tp->snd_cwnd = max(cwnd, restart_cwnd); 155 tp->snd_cwnd_stamp = tcp_jiffies32; 156 tp->snd_cwnd_used = 0; 157 } 158 159 /* Congestion state accounting after a packet has been sent. */ 160 static void tcp_event_data_sent(struct tcp_sock *tp, 161 struct sock *sk) 162 { 163 struct inet_connection_sock *icsk = inet_csk(sk); 164 const u32 now = tcp_jiffies32; 165 166 if (tcp_packets_in_flight(tp) == 0) 167 tcp_ca_event(sk, CA_EVENT_TX_START); 168 169 /* If this is the first data packet sent in response to the 170 * previous received data, 171 * and it is a reply for ato after last received packet, 172 * increase pingpong count. 173 */ 174 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 175 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_inc_pingpong_cnt(sk); 177 178 tp->lsndtime = now; 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 183 u32 rcv_nxt) 184 { 185 struct tcp_sock *tp = tcp_sk(sk); 186 187 if (unlikely(tp->compressed_ack)) { 188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 189 tp->compressed_ack); 190 tp->compressed_ack = 0; 191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 192 __sock_put(sk); 193 } 194 195 if (unlikely(rcv_nxt != tp->rcv_nxt)) 196 return; /* Special ACK sent by DCTCP to reflect ECN */ 197 tcp_dec_quickack_mode(sk, pkts); 198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 199 } 200 201 /* Determine a window scaling and initial window to offer. 202 * Based on the assumption that the given amount of space 203 * will be offered. Store the results in the tp structure. 204 * NOTE: for smooth operation initial space offering should 205 * be a multiple of mss if possible. We assume here that mss >= 1. 206 * This MUST be enforced by all callers. 207 */ 208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 209 __u32 *rcv_wnd, __u32 *window_clamp, 210 int wscale_ok, __u8 *rcv_wscale, 211 __u32 init_rcv_wnd) 212 { 213 unsigned int space = (__space < 0 ? 0 : __space); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (*window_clamp == 0) 217 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 218 space = min(*window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = rounddown(space, mss); 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = min_t(u32, space, U16_MAX); 236 237 if (init_rcv_wnd) 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 240 *rcv_wscale = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window */ 243 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 244 space = max_t(u32, space, sysctl_rmem_max); 245 space = min_t(u32, space, *window_clamp); 246 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 247 0, TCP_MAX_WSCALE); 248 } 249 /* Set the clamp no higher than max representable value */ 250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 251 } 252 EXPORT_SYMBOL(tcp_select_initial_window); 253 254 /* Chose a new window to advertise, update state in tcp_sock for the 255 * socket, and return result with RFC1323 scaling applied. The return 256 * value can be stuffed directly into th->window for an outgoing 257 * frame. 258 */ 259 static u16 tcp_select_window(struct sock *sk) 260 { 261 struct tcp_sock *tp = tcp_sk(sk); 262 u32 old_win = tp->rcv_wnd; 263 u32 cur_win = tcp_receive_window(tp); 264 u32 new_win = __tcp_select_window(sk); 265 266 /* Never shrink the offered window */ 267 if (new_win < cur_win) { 268 /* Danger Will Robinson! 269 * Don't update rcv_wup/rcv_wnd here or else 270 * we will not be able to advertise a zero 271 * window in time. --DaveM 272 * 273 * Relax Will Robinson. 274 */ 275 if (new_win == 0) 276 NET_INC_STATS(sock_net(sk), 277 LINUX_MIB_TCPWANTZEROWINDOWADV); 278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 279 } 280 tp->rcv_wnd = new_win; 281 tp->rcv_wup = tp->rcv_nxt; 282 283 /* Make sure we do not exceed the maximum possible 284 * scaled window. 285 */ 286 if (!tp->rx_opt.rcv_wscale && 287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 288 new_win = min(new_win, MAX_TCP_WINDOW); 289 else 290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 291 292 /* RFC1323 scaling applied */ 293 new_win >>= tp->rx_opt.rcv_wscale; 294 295 /* If we advertise zero window, disable fast path. */ 296 if (new_win == 0) { 297 tp->pred_flags = 0; 298 if (old_win) 299 NET_INC_STATS(sock_net(sk), 300 LINUX_MIB_TCPTOZEROWINDOWADV); 301 } else if (old_win == 0) { 302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 303 } 304 305 return new_win; 306 } 307 308 /* Packet ECN state for a SYN-ACK */ 309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 314 if (!(tp->ecn_flags & TCP_ECN_OK)) 315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 316 else if (tcp_ca_needs_ecn(sk) || 317 tcp_bpf_ca_needs_ecn(sk)) 318 INET_ECN_xmit(sk); 319 } 320 321 /* Packet ECN state for a SYN. */ 322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 328 329 if (!use_ecn) { 330 const struct dst_entry *dst = __sk_dst_get(sk); 331 332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 333 use_ecn = true; 334 } 335 336 tp->ecn_flags = 0; 337 338 if (use_ecn) { 339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 340 tp->ecn_flags = TCP_ECN_OK; 341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 342 INET_ECN_xmit(sk); 343 } 344 } 345 346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 347 { 348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 349 /* tp->ecn_flags are cleared at a later point in time when 350 * SYN ACK is ultimatively being received. 351 */ 352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 353 } 354 355 static void 356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 357 { 358 if (inet_rsk(req)->ecn_ok) 359 th->ece = 1; 360 } 361 362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 363 * be sent. 364 */ 365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 366 struct tcphdr *th, int tcp_header_len) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 370 if (tp->ecn_flags & TCP_ECN_OK) { 371 /* Not-retransmitted data segment: set ECT and inject CWR. */ 372 if (skb->len != tcp_header_len && 373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 374 INET_ECN_xmit(sk); 375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 377 th->cwr = 1; 378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 379 } 380 } else if (!tcp_ca_needs_ecn(sk)) { 381 /* ACK or retransmitted segment: clear ECT|CE */ 382 INET_ECN_dontxmit(sk); 383 } 384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 385 th->ece = 1; 386 } 387 } 388 389 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 390 * auto increment end seqno. 391 */ 392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 393 { 394 skb->ip_summed = CHECKSUM_PARTIAL; 395 396 TCP_SKB_CB(skb)->tcp_flags = flags; 397 TCP_SKB_CB(skb)->sacked = 0; 398 399 tcp_skb_pcount_set(skb, 1); 400 401 TCP_SKB_CB(skb)->seq = seq; 402 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 403 seq++; 404 TCP_SKB_CB(skb)->end_seq = seq; 405 } 406 407 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 408 { 409 return tp->snd_una != tp->snd_up; 410 } 411 412 #define OPTION_SACK_ADVERTISE (1 << 0) 413 #define OPTION_TS (1 << 1) 414 #define OPTION_MD5 (1 << 2) 415 #define OPTION_WSCALE (1 << 3) 416 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 417 #define OPTION_SMC (1 << 9) 418 #define OPTION_MPTCP (1 << 10) 419 420 static void smc_options_write(__be32 *ptr, u16 *options) 421 { 422 #if IS_ENABLED(CONFIG_SMC) 423 if (static_branch_unlikely(&tcp_have_smc)) { 424 if (unlikely(OPTION_SMC & *options)) { 425 *ptr++ = htonl((TCPOPT_NOP << 24) | 426 (TCPOPT_NOP << 16) | 427 (TCPOPT_EXP << 8) | 428 (TCPOLEN_EXP_SMC_BASE)); 429 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 430 } 431 } 432 #endif 433 } 434 435 struct tcp_out_options { 436 u16 options; /* bit field of OPTION_* */ 437 u16 mss; /* 0 to disable */ 438 u8 ws; /* window scale, 0 to disable */ 439 u8 num_sack_blocks; /* number of SACK blocks to include */ 440 u8 hash_size; /* bytes in hash_location */ 441 __u8 *hash_location; /* temporary pointer, overloaded */ 442 __u32 tsval, tsecr; /* need to include OPTION_TS */ 443 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 444 struct mptcp_out_options mptcp; 445 }; 446 447 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts) 448 { 449 #if IS_ENABLED(CONFIG_MPTCP) 450 if (unlikely(OPTION_MPTCP & opts->options)) 451 mptcp_write_options(ptr, &opts->mptcp); 452 #endif 453 } 454 455 /* Write previously computed TCP options to the packet. 456 * 457 * Beware: Something in the Internet is very sensitive to the ordering of 458 * TCP options, we learned this through the hard way, so be careful here. 459 * Luckily we can at least blame others for their non-compliance but from 460 * inter-operability perspective it seems that we're somewhat stuck with 461 * the ordering which we have been using if we want to keep working with 462 * those broken things (not that it currently hurts anybody as there isn't 463 * particular reason why the ordering would need to be changed). 464 * 465 * At least SACK_PERM as the first option is known to lead to a disaster 466 * (but it may well be that other scenarios fail similarly). 467 */ 468 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 469 struct tcp_out_options *opts) 470 { 471 u16 options = opts->options; /* mungable copy */ 472 473 if (unlikely(OPTION_MD5 & options)) { 474 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 475 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 476 /* overload cookie hash location */ 477 opts->hash_location = (__u8 *)ptr; 478 ptr += 4; 479 } 480 481 if (unlikely(opts->mss)) { 482 *ptr++ = htonl((TCPOPT_MSS << 24) | 483 (TCPOLEN_MSS << 16) | 484 opts->mss); 485 } 486 487 if (likely(OPTION_TS & options)) { 488 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 489 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 490 (TCPOLEN_SACK_PERM << 16) | 491 (TCPOPT_TIMESTAMP << 8) | 492 TCPOLEN_TIMESTAMP); 493 options &= ~OPTION_SACK_ADVERTISE; 494 } else { 495 *ptr++ = htonl((TCPOPT_NOP << 24) | 496 (TCPOPT_NOP << 16) | 497 (TCPOPT_TIMESTAMP << 8) | 498 TCPOLEN_TIMESTAMP); 499 } 500 *ptr++ = htonl(opts->tsval); 501 *ptr++ = htonl(opts->tsecr); 502 } 503 504 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 505 *ptr++ = htonl((TCPOPT_NOP << 24) | 506 (TCPOPT_NOP << 16) | 507 (TCPOPT_SACK_PERM << 8) | 508 TCPOLEN_SACK_PERM); 509 } 510 511 if (unlikely(OPTION_WSCALE & options)) { 512 *ptr++ = htonl((TCPOPT_NOP << 24) | 513 (TCPOPT_WINDOW << 16) | 514 (TCPOLEN_WINDOW << 8) | 515 opts->ws); 516 } 517 518 if (unlikely(opts->num_sack_blocks)) { 519 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 520 tp->duplicate_sack : tp->selective_acks; 521 int this_sack; 522 523 *ptr++ = htonl((TCPOPT_NOP << 24) | 524 (TCPOPT_NOP << 16) | 525 (TCPOPT_SACK << 8) | 526 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 527 TCPOLEN_SACK_PERBLOCK))); 528 529 for (this_sack = 0; this_sack < opts->num_sack_blocks; 530 ++this_sack) { 531 *ptr++ = htonl(sp[this_sack].start_seq); 532 *ptr++ = htonl(sp[this_sack].end_seq); 533 } 534 535 tp->rx_opt.dsack = 0; 536 } 537 538 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 539 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 540 u8 *p = (u8 *)ptr; 541 u32 len; /* Fast Open option length */ 542 543 if (foc->exp) { 544 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 545 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 546 TCPOPT_FASTOPEN_MAGIC); 547 p += TCPOLEN_EXP_FASTOPEN_BASE; 548 } else { 549 len = TCPOLEN_FASTOPEN_BASE + foc->len; 550 *p++ = TCPOPT_FASTOPEN; 551 *p++ = len; 552 } 553 554 memcpy(p, foc->val, foc->len); 555 if ((len & 3) == 2) { 556 p[foc->len] = TCPOPT_NOP; 557 p[foc->len + 1] = TCPOPT_NOP; 558 } 559 ptr += (len + 3) >> 2; 560 } 561 562 smc_options_write(ptr, &options); 563 564 mptcp_options_write(ptr, opts); 565 } 566 567 static void smc_set_option(const struct tcp_sock *tp, 568 struct tcp_out_options *opts, 569 unsigned int *remaining) 570 { 571 #if IS_ENABLED(CONFIG_SMC) 572 if (static_branch_unlikely(&tcp_have_smc)) { 573 if (tp->syn_smc) { 574 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 575 opts->options |= OPTION_SMC; 576 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 577 } 578 } 579 } 580 #endif 581 } 582 583 static void smc_set_option_cond(const struct tcp_sock *tp, 584 const struct inet_request_sock *ireq, 585 struct tcp_out_options *opts, 586 unsigned int *remaining) 587 { 588 #if IS_ENABLED(CONFIG_SMC) 589 if (static_branch_unlikely(&tcp_have_smc)) { 590 if (tp->syn_smc && ireq->smc_ok) { 591 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 592 opts->options |= OPTION_SMC; 593 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 594 } 595 } 596 } 597 #endif 598 } 599 600 static void mptcp_set_option_cond(const struct request_sock *req, 601 struct tcp_out_options *opts, 602 unsigned int *remaining) 603 { 604 if (rsk_is_mptcp(req)) { 605 unsigned int size; 606 607 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 608 if (*remaining >= size) { 609 opts->options |= OPTION_MPTCP; 610 *remaining -= size; 611 } 612 } 613 } 614 } 615 616 /* Compute TCP options for SYN packets. This is not the final 617 * network wire format yet. 618 */ 619 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 620 struct tcp_out_options *opts, 621 struct tcp_md5sig_key **md5) 622 { 623 struct tcp_sock *tp = tcp_sk(sk); 624 unsigned int remaining = MAX_TCP_OPTION_SPACE; 625 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 626 627 *md5 = NULL; 628 #ifdef CONFIG_TCP_MD5SIG 629 if (static_branch_unlikely(&tcp_md5_needed) && 630 rcu_access_pointer(tp->md5sig_info)) { 631 *md5 = tp->af_specific->md5_lookup(sk, sk); 632 if (*md5) { 633 opts->options |= OPTION_MD5; 634 remaining -= TCPOLEN_MD5SIG_ALIGNED; 635 } 636 } 637 #endif 638 639 /* We always get an MSS option. The option bytes which will be seen in 640 * normal data packets should timestamps be used, must be in the MSS 641 * advertised. But we subtract them from tp->mss_cache so that 642 * calculations in tcp_sendmsg are simpler etc. So account for this 643 * fact here if necessary. If we don't do this correctly, as a 644 * receiver we won't recognize data packets as being full sized when we 645 * should, and thus we won't abide by the delayed ACK rules correctly. 646 * SACKs don't matter, we never delay an ACK when we have any of those 647 * going out. */ 648 opts->mss = tcp_advertise_mss(sk); 649 remaining -= TCPOLEN_MSS_ALIGNED; 650 651 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 652 opts->options |= OPTION_TS; 653 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 654 opts->tsecr = tp->rx_opt.ts_recent; 655 remaining -= TCPOLEN_TSTAMP_ALIGNED; 656 } 657 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 658 opts->ws = tp->rx_opt.rcv_wscale; 659 opts->options |= OPTION_WSCALE; 660 remaining -= TCPOLEN_WSCALE_ALIGNED; 661 } 662 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 663 opts->options |= OPTION_SACK_ADVERTISE; 664 if (unlikely(!(OPTION_TS & opts->options))) 665 remaining -= TCPOLEN_SACKPERM_ALIGNED; 666 } 667 668 if (fastopen && fastopen->cookie.len >= 0) { 669 u32 need = fastopen->cookie.len; 670 671 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 672 TCPOLEN_FASTOPEN_BASE; 673 need = (need + 3) & ~3U; /* Align to 32 bits */ 674 if (remaining >= need) { 675 opts->options |= OPTION_FAST_OPEN_COOKIE; 676 opts->fastopen_cookie = &fastopen->cookie; 677 remaining -= need; 678 tp->syn_fastopen = 1; 679 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 680 } 681 } 682 683 smc_set_option(tp, opts, &remaining); 684 685 if (sk_is_mptcp(sk)) { 686 unsigned int size; 687 688 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 689 opts->options |= OPTION_MPTCP; 690 remaining -= size; 691 } 692 } 693 694 return MAX_TCP_OPTION_SPACE - remaining; 695 } 696 697 /* Set up TCP options for SYN-ACKs. */ 698 static unsigned int tcp_synack_options(const struct sock *sk, 699 struct request_sock *req, 700 unsigned int mss, struct sk_buff *skb, 701 struct tcp_out_options *opts, 702 const struct tcp_md5sig_key *md5, 703 struct tcp_fastopen_cookie *foc) 704 { 705 struct inet_request_sock *ireq = inet_rsk(req); 706 unsigned int remaining = MAX_TCP_OPTION_SPACE; 707 708 #ifdef CONFIG_TCP_MD5SIG 709 if (md5) { 710 opts->options |= OPTION_MD5; 711 remaining -= TCPOLEN_MD5SIG_ALIGNED; 712 713 /* We can't fit any SACK blocks in a packet with MD5 + TS 714 * options. There was discussion about disabling SACK 715 * rather than TS in order to fit in better with old, 716 * buggy kernels, but that was deemed to be unnecessary. 717 */ 718 ireq->tstamp_ok &= !ireq->sack_ok; 719 } 720 #endif 721 722 /* We always send an MSS option. */ 723 opts->mss = mss; 724 remaining -= TCPOLEN_MSS_ALIGNED; 725 726 if (likely(ireq->wscale_ok)) { 727 opts->ws = ireq->rcv_wscale; 728 opts->options |= OPTION_WSCALE; 729 remaining -= TCPOLEN_WSCALE_ALIGNED; 730 } 731 if (likely(ireq->tstamp_ok)) { 732 opts->options |= OPTION_TS; 733 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 734 opts->tsecr = req->ts_recent; 735 remaining -= TCPOLEN_TSTAMP_ALIGNED; 736 } 737 if (likely(ireq->sack_ok)) { 738 opts->options |= OPTION_SACK_ADVERTISE; 739 if (unlikely(!ireq->tstamp_ok)) 740 remaining -= TCPOLEN_SACKPERM_ALIGNED; 741 } 742 if (foc != NULL && foc->len >= 0) { 743 u32 need = foc->len; 744 745 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 746 TCPOLEN_FASTOPEN_BASE; 747 need = (need + 3) & ~3U; /* Align to 32 bits */ 748 if (remaining >= need) { 749 opts->options |= OPTION_FAST_OPEN_COOKIE; 750 opts->fastopen_cookie = foc; 751 remaining -= need; 752 } 753 } 754 755 mptcp_set_option_cond(req, opts, &remaining); 756 757 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 758 759 return MAX_TCP_OPTION_SPACE - remaining; 760 } 761 762 /* Compute TCP options for ESTABLISHED sockets. This is not the 763 * final wire format yet. 764 */ 765 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 766 struct tcp_out_options *opts, 767 struct tcp_md5sig_key **md5) 768 { 769 struct tcp_sock *tp = tcp_sk(sk); 770 unsigned int size = 0; 771 unsigned int eff_sacks; 772 773 opts->options = 0; 774 775 *md5 = NULL; 776 #ifdef CONFIG_TCP_MD5SIG 777 if (static_branch_unlikely(&tcp_md5_needed) && 778 rcu_access_pointer(tp->md5sig_info)) { 779 *md5 = tp->af_specific->md5_lookup(sk, sk); 780 if (*md5) { 781 opts->options |= OPTION_MD5; 782 size += TCPOLEN_MD5SIG_ALIGNED; 783 } 784 } 785 #endif 786 787 if (likely(tp->rx_opt.tstamp_ok)) { 788 opts->options |= OPTION_TS; 789 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 790 opts->tsecr = tp->rx_opt.ts_recent; 791 size += TCPOLEN_TSTAMP_ALIGNED; 792 } 793 794 /* MPTCP options have precedence over SACK for the limited TCP 795 * option space because a MPTCP connection would be forced to 796 * fall back to regular TCP if a required multipath option is 797 * missing. SACK still gets a chance to use whatever space is 798 * left. 799 */ 800 if (sk_is_mptcp(sk)) { 801 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 802 unsigned int opt_size = 0; 803 804 if (mptcp_established_options(sk, skb, &opt_size, remaining, 805 &opts->mptcp)) { 806 opts->options |= OPTION_MPTCP; 807 size += opt_size; 808 } 809 } 810 811 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 812 if (unlikely(eff_sacks)) { 813 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 814 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 815 TCPOLEN_SACK_PERBLOCK)) 816 return size; 817 818 opts->num_sack_blocks = 819 min_t(unsigned int, eff_sacks, 820 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 821 TCPOLEN_SACK_PERBLOCK); 822 823 size += TCPOLEN_SACK_BASE_ALIGNED + 824 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 825 } 826 827 return size; 828 } 829 830 831 /* TCP SMALL QUEUES (TSQ) 832 * 833 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 834 * to reduce RTT and bufferbloat. 835 * We do this using a special skb destructor (tcp_wfree). 836 * 837 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 838 * needs to be reallocated in a driver. 839 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 840 * 841 * Since transmit from skb destructor is forbidden, we use a tasklet 842 * to process all sockets that eventually need to send more skbs. 843 * We use one tasklet per cpu, with its own queue of sockets. 844 */ 845 struct tsq_tasklet { 846 struct tasklet_struct tasklet; 847 struct list_head head; /* queue of tcp sockets */ 848 }; 849 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 850 851 static void tcp_tsq_write(struct sock *sk) 852 { 853 if ((1 << sk->sk_state) & 854 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 855 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 856 struct tcp_sock *tp = tcp_sk(sk); 857 858 if (tp->lost_out > tp->retrans_out && 859 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 860 tcp_mstamp_refresh(tp); 861 tcp_xmit_retransmit_queue(sk); 862 } 863 864 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 865 0, GFP_ATOMIC); 866 } 867 } 868 869 static void tcp_tsq_handler(struct sock *sk) 870 { 871 bh_lock_sock(sk); 872 if (!sock_owned_by_user(sk)) 873 tcp_tsq_write(sk); 874 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 875 sock_hold(sk); 876 bh_unlock_sock(sk); 877 } 878 /* 879 * One tasklet per cpu tries to send more skbs. 880 * We run in tasklet context but need to disable irqs when 881 * transferring tsq->head because tcp_wfree() might 882 * interrupt us (non NAPI drivers) 883 */ 884 static void tcp_tasklet_func(unsigned long data) 885 { 886 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 887 LIST_HEAD(list); 888 unsigned long flags; 889 struct list_head *q, *n; 890 struct tcp_sock *tp; 891 struct sock *sk; 892 893 local_irq_save(flags); 894 list_splice_init(&tsq->head, &list); 895 local_irq_restore(flags); 896 897 list_for_each_safe(q, n, &list) { 898 tp = list_entry(q, struct tcp_sock, tsq_node); 899 list_del(&tp->tsq_node); 900 901 sk = (struct sock *)tp; 902 smp_mb__before_atomic(); 903 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 904 905 tcp_tsq_handler(sk); 906 sk_free(sk); 907 } 908 } 909 910 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 911 TCPF_WRITE_TIMER_DEFERRED | \ 912 TCPF_DELACK_TIMER_DEFERRED | \ 913 TCPF_MTU_REDUCED_DEFERRED) 914 /** 915 * tcp_release_cb - tcp release_sock() callback 916 * @sk: socket 917 * 918 * called from release_sock() to perform protocol dependent 919 * actions before socket release. 920 */ 921 void tcp_release_cb(struct sock *sk) 922 { 923 unsigned long flags, nflags; 924 925 /* perform an atomic operation only if at least one flag is set */ 926 do { 927 flags = sk->sk_tsq_flags; 928 if (!(flags & TCP_DEFERRED_ALL)) 929 return; 930 nflags = flags & ~TCP_DEFERRED_ALL; 931 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 932 933 if (flags & TCPF_TSQ_DEFERRED) { 934 tcp_tsq_write(sk); 935 __sock_put(sk); 936 } 937 /* Here begins the tricky part : 938 * We are called from release_sock() with : 939 * 1) BH disabled 940 * 2) sk_lock.slock spinlock held 941 * 3) socket owned by us (sk->sk_lock.owned == 1) 942 * 943 * But following code is meant to be called from BH handlers, 944 * so we should keep BH disabled, but early release socket ownership 945 */ 946 sock_release_ownership(sk); 947 948 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 949 tcp_write_timer_handler(sk); 950 __sock_put(sk); 951 } 952 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 953 tcp_delack_timer_handler(sk); 954 __sock_put(sk); 955 } 956 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 957 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 958 __sock_put(sk); 959 } 960 } 961 EXPORT_SYMBOL(tcp_release_cb); 962 963 void __init tcp_tasklet_init(void) 964 { 965 int i; 966 967 for_each_possible_cpu(i) { 968 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 969 970 INIT_LIST_HEAD(&tsq->head); 971 tasklet_init(&tsq->tasklet, 972 tcp_tasklet_func, 973 (unsigned long)tsq); 974 } 975 } 976 977 /* 978 * Write buffer destructor automatically called from kfree_skb. 979 * We can't xmit new skbs from this context, as we might already 980 * hold qdisc lock. 981 */ 982 void tcp_wfree(struct sk_buff *skb) 983 { 984 struct sock *sk = skb->sk; 985 struct tcp_sock *tp = tcp_sk(sk); 986 unsigned long flags, nval, oval; 987 988 /* Keep one reference on sk_wmem_alloc. 989 * Will be released by sk_free() from here or tcp_tasklet_func() 990 */ 991 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 992 993 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 994 * Wait until our queues (qdisc + devices) are drained. 995 * This gives : 996 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 997 * - chance for incoming ACK (processed by another cpu maybe) 998 * to migrate this flow (skb->ooo_okay will be eventually set) 999 */ 1000 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1001 goto out; 1002 1003 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 1004 struct tsq_tasklet *tsq; 1005 bool empty; 1006 1007 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1008 goto out; 1009 1010 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1011 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 1012 if (nval != oval) 1013 continue; 1014 1015 /* queue this socket to tasklet queue */ 1016 local_irq_save(flags); 1017 tsq = this_cpu_ptr(&tsq_tasklet); 1018 empty = list_empty(&tsq->head); 1019 list_add(&tp->tsq_node, &tsq->head); 1020 if (empty) 1021 tasklet_schedule(&tsq->tasklet); 1022 local_irq_restore(flags); 1023 return; 1024 } 1025 out: 1026 sk_free(sk); 1027 } 1028 1029 /* Note: Called under soft irq. 1030 * We can call TCP stack right away, unless socket is owned by user. 1031 */ 1032 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1033 { 1034 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1035 struct sock *sk = (struct sock *)tp; 1036 1037 tcp_tsq_handler(sk); 1038 sock_put(sk); 1039 1040 return HRTIMER_NORESTART; 1041 } 1042 1043 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1044 u64 prior_wstamp) 1045 { 1046 struct tcp_sock *tp = tcp_sk(sk); 1047 1048 if (sk->sk_pacing_status != SK_PACING_NONE) { 1049 unsigned long rate = sk->sk_pacing_rate; 1050 1051 /* Original sch_fq does not pace first 10 MSS 1052 * Note that tp->data_segs_out overflows after 2^32 packets, 1053 * this is a minor annoyance. 1054 */ 1055 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1056 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1057 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1058 1059 /* take into account OS jitter */ 1060 len_ns -= min_t(u64, len_ns / 2, credit); 1061 tp->tcp_wstamp_ns += len_ns; 1062 } 1063 } 1064 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1065 } 1066 1067 /* This routine actually transmits TCP packets queued in by 1068 * tcp_do_sendmsg(). This is used by both the initial 1069 * transmission and possible later retransmissions. 1070 * All SKB's seen here are completely headerless. It is our 1071 * job to build the TCP header, and pass the packet down to 1072 * IP so it can do the same plus pass the packet off to the 1073 * device. 1074 * 1075 * We are working here with either a clone of the original 1076 * SKB, or a fresh unique copy made by the retransmit engine. 1077 */ 1078 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1079 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1080 { 1081 const struct inet_connection_sock *icsk = inet_csk(sk); 1082 struct inet_sock *inet; 1083 struct tcp_sock *tp; 1084 struct tcp_skb_cb *tcb; 1085 struct tcp_out_options opts; 1086 unsigned int tcp_options_size, tcp_header_size; 1087 struct sk_buff *oskb = NULL; 1088 struct tcp_md5sig_key *md5; 1089 struct tcphdr *th; 1090 u64 prior_wstamp; 1091 int err; 1092 1093 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1094 tp = tcp_sk(sk); 1095 prior_wstamp = tp->tcp_wstamp_ns; 1096 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1097 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1098 if (clone_it) { 1099 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1100 - tp->snd_una; 1101 oskb = skb; 1102 1103 tcp_skb_tsorted_save(oskb) { 1104 if (unlikely(skb_cloned(oskb))) 1105 skb = pskb_copy(oskb, gfp_mask); 1106 else 1107 skb = skb_clone(oskb, gfp_mask); 1108 } tcp_skb_tsorted_restore(oskb); 1109 1110 if (unlikely(!skb)) 1111 return -ENOBUFS; 1112 /* retransmit skbs might have a non zero value in skb->dev 1113 * because skb->dev is aliased with skb->rbnode.rb_left 1114 */ 1115 skb->dev = NULL; 1116 } 1117 1118 inet = inet_sk(sk); 1119 tcb = TCP_SKB_CB(skb); 1120 memset(&opts, 0, sizeof(opts)); 1121 1122 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1123 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1124 } else { 1125 tcp_options_size = tcp_established_options(sk, skb, &opts, 1126 &md5); 1127 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1128 * at receiver : This slightly improve GRO performance. 1129 * Note that we do not force the PSH flag for non GSO packets, 1130 * because they might be sent under high congestion events, 1131 * and in this case it is better to delay the delivery of 1-MSS 1132 * packets and thus the corresponding ACK packet that would 1133 * release the following packet. 1134 */ 1135 if (tcp_skb_pcount(skb) > 1) 1136 tcb->tcp_flags |= TCPHDR_PSH; 1137 } 1138 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1139 1140 /* if no packet is in qdisc/device queue, then allow XPS to select 1141 * another queue. We can be called from tcp_tsq_handler() 1142 * which holds one reference to sk. 1143 * 1144 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1145 * One way to get this would be to set skb->truesize = 2 on them. 1146 */ 1147 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1148 1149 /* If we had to use memory reserve to allocate this skb, 1150 * this might cause drops if packet is looped back : 1151 * Other socket might not have SOCK_MEMALLOC. 1152 * Packets not looped back do not care about pfmemalloc. 1153 */ 1154 skb->pfmemalloc = 0; 1155 1156 skb_push(skb, tcp_header_size); 1157 skb_reset_transport_header(skb); 1158 1159 skb_orphan(skb); 1160 skb->sk = sk; 1161 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1162 skb_set_hash_from_sk(skb, sk); 1163 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1164 1165 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1166 1167 /* Build TCP header and checksum it. */ 1168 th = (struct tcphdr *)skb->data; 1169 th->source = inet->inet_sport; 1170 th->dest = inet->inet_dport; 1171 th->seq = htonl(tcb->seq); 1172 th->ack_seq = htonl(rcv_nxt); 1173 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1174 tcb->tcp_flags); 1175 1176 th->check = 0; 1177 th->urg_ptr = 0; 1178 1179 /* The urg_mode check is necessary during a below snd_una win probe */ 1180 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1181 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1182 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1183 th->urg = 1; 1184 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1185 th->urg_ptr = htons(0xFFFF); 1186 th->urg = 1; 1187 } 1188 } 1189 1190 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1191 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1192 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1193 th->window = htons(tcp_select_window(sk)); 1194 tcp_ecn_send(sk, skb, th, tcp_header_size); 1195 } else { 1196 /* RFC1323: The window in SYN & SYN/ACK segments 1197 * is never scaled. 1198 */ 1199 th->window = htons(min(tp->rcv_wnd, 65535U)); 1200 } 1201 #ifdef CONFIG_TCP_MD5SIG 1202 /* Calculate the MD5 hash, as we have all we need now */ 1203 if (md5) { 1204 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1205 tp->af_specific->calc_md5_hash(opts.hash_location, 1206 md5, sk, skb); 1207 } 1208 #endif 1209 1210 icsk->icsk_af_ops->send_check(sk, skb); 1211 1212 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1213 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1214 1215 if (skb->len != tcp_header_size) { 1216 tcp_event_data_sent(tp, sk); 1217 tp->data_segs_out += tcp_skb_pcount(skb); 1218 tp->bytes_sent += skb->len - tcp_header_size; 1219 } 1220 1221 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1222 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1223 tcp_skb_pcount(skb)); 1224 1225 tp->segs_out += tcp_skb_pcount(skb); 1226 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1227 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1228 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1229 1230 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1231 1232 /* Cleanup our debris for IP stacks */ 1233 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1234 sizeof(struct inet6_skb_parm))); 1235 1236 tcp_add_tx_delay(skb, tp); 1237 1238 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1239 1240 if (unlikely(err > 0)) { 1241 tcp_enter_cwr(sk); 1242 err = net_xmit_eval(err); 1243 } 1244 if (!err && oskb) { 1245 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1246 tcp_rate_skb_sent(sk, oskb); 1247 } 1248 return err; 1249 } 1250 1251 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1252 gfp_t gfp_mask) 1253 { 1254 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1255 tcp_sk(sk)->rcv_nxt); 1256 } 1257 1258 /* This routine just queues the buffer for sending. 1259 * 1260 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1261 * otherwise socket can stall. 1262 */ 1263 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1264 { 1265 struct tcp_sock *tp = tcp_sk(sk); 1266 1267 /* Advance write_seq and place onto the write_queue. */ 1268 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1269 __skb_header_release(skb); 1270 tcp_add_write_queue_tail(sk, skb); 1271 sk_wmem_queued_add(sk, skb->truesize); 1272 sk_mem_charge(sk, skb->truesize); 1273 } 1274 1275 /* Initialize TSO segments for a packet. */ 1276 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1277 { 1278 if (skb->len <= mss_now) { 1279 /* Avoid the costly divide in the normal 1280 * non-TSO case. 1281 */ 1282 tcp_skb_pcount_set(skb, 1); 1283 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1284 } else { 1285 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1286 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1287 } 1288 } 1289 1290 /* Pcount in the middle of the write queue got changed, we need to do various 1291 * tweaks to fix counters 1292 */ 1293 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1294 { 1295 struct tcp_sock *tp = tcp_sk(sk); 1296 1297 tp->packets_out -= decr; 1298 1299 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1300 tp->sacked_out -= decr; 1301 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1302 tp->retrans_out -= decr; 1303 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1304 tp->lost_out -= decr; 1305 1306 /* Reno case is special. Sigh... */ 1307 if (tcp_is_reno(tp) && decr > 0) 1308 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1309 1310 if (tp->lost_skb_hint && 1311 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1312 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1313 tp->lost_cnt_hint -= decr; 1314 1315 tcp_verify_left_out(tp); 1316 } 1317 1318 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1319 { 1320 return TCP_SKB_CB(skb)->txstamp_ack || 1321 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1322 } 1323 1324 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1325 { 1326 struct skb_shared_info *shinfo = skb_shinfo(skb); 1327 1328 if (unlikely(tcp_has_tx_tstamp(skb)) && 1329 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1330 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1331 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1332 1333 shinfo->tx_flags &= ~tsflags; 1334 shinfo2->tx_flags |= tsflags; 1335 swap(shinfo->tskey, shinfo2->tskey); 1336 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1337 TCP_SKB_CB(skb)->txstamp_ack = 0; 1338 } 1339 } 1340 1341 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1342 { 1343 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1344 TCP_SKB_CB(skb)->eor = 0; 1345 } 1346 1347 /* Insert buff after skb on the write or rtx queue of sk. */ 1348 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1349 struct sk_buff *buff, 1350 struct sock *sk, 1351 enum tcp_queue tcp_queue) 1352 { 1353 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1354 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1355 else 1356 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1357 } 1358 1359 /* Function to create two new TCP segments. Shrinks the given segment 1360 * to the specified size and appends a new segment with the rest of the 1361 * packet to the list. This won't be called frequently, I hope. 1362 * Remember, these are still headerless SKBs at this point. 1363 */ 1364 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1365 struct sk_buff *skb, u32 len, 1366 unsigned int mss_now, gfp_t gfp) 1367 { 1368 struct tcp_sock *tp = tcp_sk(sk); 1369 struct sk_buff *buff; 1370 int nsize, old_factor; 1371 long limit; 1372 int nlen; 1373 u8 flags; 1374 1375 if (WARN_ON(len > skb->len)) 1376 return -EINVAL; 1377 1378 nsize = skb_headlen(skb) - len; 1379 if (nsize < 0) 1380 nsize = 0; 1381 1382 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1383 * We need some allowance to not penalize applications setting small 1384 * SO_SNDBUF values. 1385 * Also allow first and last skb in retransmit queue to be split. 1386 */ 1387 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE); 1388 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1389 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1390 skb != tcp_rtx_queue_head(sk) && 1391 skb != tcp_rtx_queue_tail(sk))) { 1392 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1393 return -ENOMEM; 1394 } 1395 1396 if (skb_unclone(skb, gfp)) 1397 return -ENOMEM; 1398 1399 /* Get a new skb... force flag on. */ 1400 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1401 if (!buff) 1402 return -ENOMEM; /* We'll just try again later. */ 1403 skb_copy_decrypted(buff, skb); 1404 1405 sk_wmem_queued_add(sk, buff->truesize); 1406 sk_mem_charge(sk, buff->truesize); 1407 nlen = skb->len - len - nsize; 1408 buff->truesize += nlen; 1409 skb->truesize -= nlen; 1410 1411 /* Correct the sequence numbers. */ 1412 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1413 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1414 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1415 1416 /* PSH and FIN should only be set in the second packet. */ 1417 flags = TCP_SKB_CB(skb)->tcp_flags; 1418 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1419 TCP_SKB_CB(buff)->tcp_flags = flags; 1420 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1421 tcp_skb_fragment_eor(skb, buff); 1422 1423 skb_split(skb, buff, len); 1424 1425 buff->ip_summed = CHECKSUM_PARTIAL; 1426 1427 buff->tstamp = skb->tstamp; 1428 tcp_fragment_tstamp(skb, buff); 1429 1430 old_factor = tcp_skb_pcount(skb); 1431 1432 /* Fix up tso_factor for both original and new SKB. */ 1433 tcp_set_skb_tso_segs(skb, mss_now); 1434 tcp_set_skb_tso_segs(buff, mss_now); 1435 1436 /* Update delivered info for the new segment */ 1437 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1438 1439 /* If this packet has been sent out already, we must 1440 * adjust the various packet counters. 1441 */ 1442 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1443 int diff = old_factor - tcp_skb_pcount(skb) - 1444 tcp_skb_pcount(buff); 1445 1446 if (diff) 1447 tcp_adjust_pcount(sk, skb, diff); 1448 } 1449 1450 /* Link BUFF into the send queue. */ 1451 __skb_header_release(buff); 1452 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1453 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1454 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1455 1456 return 0; 1457 } 1458 1459 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1460 * data is not copied, but immediately discarded. 1461 */ 1462 static int __pskb_trim_head(struct sk_buff *skb, int len) 1463 { 1464 struct skb_shared_info *shinfo; 1465 int i, k, eat; 1466 1467 eat = min_t(int, len, skb_headlen(skb)); 1468 if (eat) { 1469 __skb_pull(skb, eat); 1470 len -= eat; 1471 if (!len) 1472 return 0; 1473 } 1474 eat = len; 1475 k = 0; 1476 shinfo = skb_shinfo(skb); 1477 for (i = 0; i < shinfo->nr_frags; i++) { 1478 int size = skb_frag_size(&shinfo->frags[i]); 1479 1480 if (size <= eat) { 1481 skb_frag_unref(skb, i); 1482 eat -= size; 1483 } else { 1484 shinfo->frags[k] = shinfo->frags[i]; 1485 if (eat) { 1486 skb_frag_off_add(&shinfo->frags[k], eat); 1487 skb_frag_size_sub(&shinfo->frags[k], eat); 1488 eat = 0; 1489 } 1490 k++; 1491 } 1492 } 1493 shinfo->nr_frags = k; 1494 1495 skb->data_len -= len; 1496 skb->len = skb->data_len; 1497 return len; 1498 } 1499 1500 /* Remove acked data from a packet in the transmit queue. */ 1501 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1502 { 1503 u32 delta_truesize; 1504 1505 if (skb_unclone(skb, GFP_ATOMIC)) 1506 return -ENOMEM; 1507 1508 delta_truesize = __pskb_trim_head(skb, len); 1509 1510 TCP_SKB_CB(skb)->seq += len; 1511 skb->ip_summed = CHECKSUM_PARTIAL; 1512 1513 if (delta_truesize) { 1514 skb->truesize -= delta_truesize; 1515 sk_wmem_queued_add(sk, -delta_truesize); 1516 sk_mem_uncharge(sk, delta_truesize); 1517 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1518 } 1519 1520 /* Any change of skb->len requires recalculation of tso factor. */ 1521 if (tcp_skb_pcount(skb) > 1) 1522 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1523 1524 return 0; 1525 } 1526 1527 /* Calculate MSS not accounting any TCP options. */ 1528 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1529 { 1530 const struct tcp_sock *tp = tcp_sk(sk); 1531 const struct inet_connection_sock *icsk = inet_csk(sk); 1532 int mss_now; 1533 1534 /* Calculate base mss without TCP options: 1535 It is MMS_S - sizeof(tcphdr) of rfc1122 1536 */ 1537 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1538 1539 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1540 if (icsk->icsk_af_ops->net_frag_header_len) { 1541 const struct dst_entry *dst = __sk_dst_get(sk); 1542 1543 if (dst && dst_allfrag(dst)) 1544 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1545 } 1546 1547 /* Clamp it (mss_clamp does not include tcp options) */ 1548 if (mss_now > tp->rx_opt.mss_clamp) 1549 mss_now = tp->rx_opt.mss_clamp; 1550 1551 /* Now subtract optional transport overhead */ 1552 mss_now -= icsk->icsk_ext_hdr_len; 1553 1554 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1555 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss); 1556 return mss_now; 1557 } 1558 1559 /* Calculate MSS. Not accounting for SACKs here. */ 1560 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1561 { 1562 /* Subtract TCP options size, not including SACKs */ 1563 return __tcp_mtu_to_mss(sk, pmtu) - 1564 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1565 } 1566 1567 /* Inverse of above */ 1568 int tcp_mss_to_mtu(struct sock *sk, int mss) 1569 { 1570 const struct tcp_sock *tp = tcp_sk(sk); 1571 const struct inet_connection_sock *icsk = inet_csk(sk); 1572 int mtu; 1573 1574 mtu = mss + 1575 tp->tcp_header_len + 1576 icsk->icsk_ext_hdr_len + 1577 icsk->icsk_af_ops->net_header_len; 1578 1579 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1580 if (icsk->icsk_af_ops->net_frag_header_len) { 1581 const struct dst_entry *dst = __sk_dst_get(sk); 1582 1583 if (dst && dst_allfrag(dst)) 1584 mtu += icsk->icsk_af_ops->net_frag_header_len; 1585 } 1586 return mtu; 1587 } 1588 EXPORT_SYMBOL(tcp_mss_to_mtu); 1589 1590 /* MTU probing init per socket */ 1591 void tcp_mtup_init(struct sock *sk) 1592 { 1593 struct tcp_sock *tp = tcp_sk(sk); 1594 struct inet_connection_sock *icsk = inet_csk(sk); 1595 struct net *net = sock_net(sk); 1596 1597 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1598 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1599 icsk->icsk_af_ops->net_header_len; 1600 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1601 icsk->icsk_mtup.probe_size = 0; 1602 if (icsk->icsk_mtup.enabled) 1603 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1604 } 1605 EXPORT_SYMBOL(tcp_mtup_init); 1606 1607 /* This function synchronize snd mss to current pmtu/exthdr set. 1608 1609 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1610 for TCP options, but includes only bare TCP header. 1611 1612 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1613 It is minimum of user_mss and mss received with SYN. 1614 It also does not include TCP options. 1615 1616 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1617 1618 tp->mss_cache is current effective sending mss, including 1619 all tcp options except for SACKs. It is evaluated, 1620 taking into account current pmtu, but never exceeds 1621 tp->rx_opt.mss_clamp. 1622 1623 NOTE1. rfc1122 clearly states that advertised MSS 1624 DOES NOT include either tcp or ip options. 1625 1626 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1627 are READ ONLY outside this function. --ANK (980731) 1628 */ 1629 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1630 { 1631 struct tcp_sock *tp = tcp_sk(sk); 1632 struct inet_connection_sock *icsk = inet_csk(sk); 1633 int mss_now; 1634 1635 if (icsk->icsk_mtup.search_high > pmtu) 1636 icsk->icsk_mtup.search_high = pmtu; 1637 1638 mss_now = tcp_mtu_to_mss(sk, pmtu); 1639 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1640 1641 /* And store cached results */ 1642 icsk->icsk_pmtu_cookie = pmtu; 1643 if (icsk->icsk_mtup.enabled) 1644 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1645 tp->mss_cache = mss_now; 1646 1647 return mss_now; 1648 } 1649 EXPORT_SYMBOL(tcp_sync_mss); 1650 1651 /* Compute the current effective MSS, taking SACKs and IP options, 1652 * and even PMTU discovery events into account. 1653 */ 1654 unsigned int tcp_current_mss(struct sock *sk) 1655 { 1656 const struct tcp_sock *tp = tcp_sk(sk); 1657 const struct dst_entry *dst = __sk_dst_get(sk); 1658 u32 mss_now; 1659 unsigned int header_len; 1660 struct tcp_out_options opts; 1661 struct tcp_md5sig_key *md5; 1662 1663 mss_now = tp->mss_cache; 1664 1665 if (dst) { 1666 u32 mtu = dst_mtu(dst); 1667 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1668 mss_now = tcp_sync_mss(sk, mtu); 1669 } 1670 1671 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1672 sizeof(struct tcphdr); 1673 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1674 * some common options. If this is an odd packet (because we have SACK 1675 * blocks etc) then our calculated header_len will be different, and 1676 * we have to adjust mss_now correspondingly */ 1677 if (header_len != tp->tcp_header_len) { 1678 int delta = (int) header_len - tp->tcp_header_len; 1679 mss_now -= delta; 1680 } 1681 1682 return mss_now; 1683 } 1684 1685 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1686 * As additional protections, we do not touch cwnd in retransmission phases, 1687 * and if application hit its sndbuf limit recently. 1688 */ 1689 static void tcp_cwnd_application_limited(struct sock *sk) 1690 { 1691 struct tcp_sock *tp = tcp_sk(sk); 1692 1693 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1694 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1695 /* Limited by application or receiver window. */ 1696 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1697 u32 win_used = max(tp->snd_cwnd_used, init_win); 1698 if (win_used < tp->snd_cwnd) { 1699 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1700 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1701 } 1702 tp->snd_cwnd_used = 0; 1703 } 1704 tp->snd_cwnd_stamp = tcp_jiffies32; 1705 } 1706 1707 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1708 { 1709 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1710 struct tcp_sock *tp = tcp_sk(sk); 1711 1712 /* Track the maximum number of outstanding packets in each 1713 * window, and remember whether we were cwnd-limited then. 1714 */ 1715 if (!before(tp->snd_una, tp->max_packets_seq) || 1716 tp->packets_out > tp->max_packets_out) { 1717 tp->max_packets_out = tp->packets_out; 1718 tp->max_packets_seq = tp->snd_nxt; 1719 tp->is_cwnd_limited = is_cwnd_limited; 1720 } 1721 1722 if (tcp_is_cwnd_limited(sk)) { 1723 /* Network is feed fully. */ 1724 tp->snd_cwnd_used = 0; 1725 tp->snd_cwnd_stamp = tcp_jiffies32; 1726 } else { 1727 /* Network starves. */ 1728 if (tp->packets_out > tp->snd_cwnd_used) 1729 tp->snd_cwnd_used = tp->packets_out; 1730 1731 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1732 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1733 !ca_ops->cong_control) 1734 tcp_cwnd_application_limited(sk); 1735 1736 /* The following conditions together indicate the starvation 1737 * is caused by insufficient sender buffer: 1738 * 1) just sent some data (see tcp_write_xmit) 1739 * 2) not cwnd limited (this else condition) 1740 * 3) no more data to send (tcp_write_queue_empty()) 1741 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1742 */ 1743 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1744 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1745 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1746 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1747 } 1748 } 1749 1750 /* Minshall's variant of the Nagle send check. */ 1751 static bool tcp_minshall_check(const struct tcp_sock *tp) 1752 { 1753 return after(tp->snd_sml, tp->snd_una) && 1754 !after(tp->snd_sml, tp->snd_nxt); 1755 } 1756 1757 /* Update snd_sml if this skb is under mss 1758 * Note that a TSO packet might end with a sub-mss segment 1759 * The test is really : 1760 * if ((skb->len % mss) != 0) 1761 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1762 * But we can avoid doing the divide again given we already have 1763 * skb_pcount = skb->len / mss_now 1764 */ 1765 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1766 const struct sk_buff *skb) 1767 { 1768 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1769 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1770 } 1771 1772 /* Return false, if packet can be sent now without violation Nagle's rules: 1773 * 1. It is full sized. (provided by caller in %partial bool) 1774 * 2. Or it contains FIN. (already checked by caller) 1775 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1776 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1777 * With Minshall's modification: all sent small packets are ACKed. 1778 */ 1779 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1780 int nonagle) 1781 { 1782 return partial && 1783 ((nonagle & TCP_NAGLE_CORK) || 1784 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1785 } 1786 1787 /* Return how many segs we'd like on a TSO packet, 1788 * to send one TSO packet per ms 1789 */ 1790 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1791 int min_tso_segs) 1792 { 1793 u32 bytes, segs; 1794 1795 bytes = min_t(unsigned long, 1796 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift), 1797 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1798 1799 /* Goal is to send at least one packet per ms, 1800 * not one big TSO packet every 100 ms. 1801 * This preserves ACK clocking and is consistent 1802 * with tcp_tso_should_defer() heuristic. 1803 */ 1804 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1805 1806 return segs; 1807 } 1808 1809 /* Return the number of segments we want in the skb we are transmitting. 1810 * See if congestion control module wants to decide; otherwise, autosize. 1811 */ 1812 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1813 { 1814 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1815 u32 min_tso, tso_segs; 1816 1817 min_tso = ca_ops->min_tso_segs ? 1818 ca_ops->min_tso_segs(sk) : 1819 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1820 1821 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1822 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1823 } 1824 1825 /* Returns the portion of skb which can be sent right away */ 1826 static unsigned int tcp_mss_split_point(const struct sock *sk, 1827 const struct sk_buff *skb, 1828 unsigned int mss_now, 1829 unsigned int max_segs, 1830 int nonagle) 1831 { 1832 const struct tcp_sock *tp = tcp_sk(sk); 1833 u32 partial, needed, window, max_len; 1834 1835 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1836 max_len = mss_now * max_segs; 1837 1838 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1839 return max_len; 1840 1841 needed = min(skb->len, window); 1842 1843 if (max_len <= needed) 1844 return max_len; 1845 1846 partial = needed % mss_now; 1847 /* If last segment is not a full MSS, check if Nagle rules allow us 1848 * to include this last segment in this skb. 1849 * Otherwise, we'll split the skb at last MSS boundary 1850 */ 1851 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1852 return needed - partial; 1853 1854 return needed; 1855 } 1856 1857 /* Can at least one segment of SKB be sent right now, according to the 1858 * congestion window rules? If so, return how many segments are allowed. 1859 */ 1860 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1861 const struct sk_buff *skb) 1862 { 1863 u32 in_flight, cwnd, halfcwnd; 1864 1865 /* Don't be strict about the congestion window for the final FIN. */ 1866 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1867 tcp_skb_pcount(skb) == 1) 1868 return 1; 1869 1870 in_flight = tcp_packets_in_flight(tp); 1871 cwnd = tp->snd_cwnd; 1872 if (in_flight >= cwnd) 1873 return 0; 1874 1875 /* For better scheduling, ensure we have at least 1876 * 2 GSO packets in flight. 1877 */ 1878 halfcwnd = max(cwnd >> 1, 1U); 1879 return min(halfcwnd, cwnd - in_flight); 1880 } 1881 1882 /* Initialize TSO state of a skb. 1883 * This must be invoked the first time we consider transmitting 1884 * SKB onto the wire. 1885 */ 1886 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1887 { 1888 int tso_segs = tcp_skb_pcount(skb); 1889 1890 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1891 tcp_set_skb_tso_segs(skb, mss_now); 1892 tso_segs = tcp_skb_pcount(skb); 1893 } 1894 return tso_segs; 1895 } 1896 1897 1898 /* Return true if the Nagle test allows this packet to be 1899 * sent now. 1900 */ 1901 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1902 unsigned int cur_mss, int nonagle) 1903 { 1904 /* Nagle rule does not apply to frames, which sit in the middle of the 1905 * write_queue (they have no chances to get new data). 1906 * 1907 * This is implemented in the callers, where they modify the 'nonagle' 1908 * argument based upon the location of SKB in the send queue. 1909 */ 1910 if (nonagle & TCP_NAGLE_PUSH) 1911 return true; 1912 1913 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1914 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1915 return true; 1916 1917 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1918 return true; 1919 1920 return false; 1921 } 1922 1923 /* Does at least the first segment of SKB fit into the send window? */ 1924 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1925 const struct sk_buff *skb, 1926 unsigned int cur_mss) 1927 { 1928 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1929 1930 if (skb->len > cur_mss) 1931 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1932 1933 return !after(end_seq, tcp_wnd_end(tp)); 1934 } 1935 1936 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1937 * which is put after SKB on the list. It is very much like 1938 * tcp_fragment() except that it may make several kinds of assumptions 1939 * in order to speed up the splitting operation. In particular, we 1940 * know that all the data is in scatter-gather pages, and that the 1941 * packet has never been sent out before (and thus is not cloned). 1942 */ 1943 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1944 unsigned int mss_now, gfp_t gfp) 1945 { 1946 int nlen = skb->len - len; 1947 struct sk_buff *buff; 1948 u8 flags; 1949 1950 /* All of a TSO frame must be composed of paged data. */ 1951 if (skb->len != skb->data_len) 1952 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 1953 skb, len, mss_now, gfp); 1954 1955 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1956 if (unlikely(!buff)) 1957 return -ENOMEM; 1958 skb_copy_decrypted(buff, skb); 1959 1960 sk_wmem_queued_add(sk, buff->truesize); 1961 sk_mem_charge(sk, buff->truesize); 1962 buff->truesize += nlen; 1963 skb->truesize -= nlen; 1964 1965 /* Correct the sequence numbers. */ 1966 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1967 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1968 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1969 1970 /* PSH and FIN should only be set in the second packet. */ 1971 flags = TCP_SKB_CB(skb)->tcp_flags; 1972 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1973 TCP_SKB_CB(buff)->tcp_flags = flags; 1974 1975 /* This packet was never sent out yet, so no SACK bits. */ 1976 TCP_SKB_CB(buff)->sacked = 0; 1977 1978 tcp_skb_fragment_eor(skb, buff); 1979 1980 buff->ip_summed = CHECKSUM_PARTIAL; 1981 skb_split(skb, buff, len); 1982 tcp_fragment_tstamp(skb, buff); 1983 1984 /* Fix up tso_factor for both original and new SKB. */ 1985 tcp_set_skb_tso_segs(skb, mss_now); 1986 tcp_set_skb_tso_segs(buff, mss_now); 1987 1988 /* Link BUFF into the send queue. */ 1989 __skb_header_release(buff); 1990 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 1991 1992 return 0; 1993 } 1994 1995 /* Try to defer sending, if possible, in order to minimize the amount 1996 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1997 * 1998 * This algorithm is from John Heffner. 1999 */ 2000 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2001 bool *is_cwnd_limited, 2002 bool *is_rwnd_limited, 2003 u32 max_segs) 2004 { 2005 const struct inet_connection_sock *icsk = inet_csk(sk); 2006 u32 send_win, cong_win, limit, in_flight; 2007 struct tcp_sock *tp = tcp_sk(sk); 2008 struct sk_buff *head; 2009 int win_divisor; 2010 s64 delta; 2011 2012 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2013 goto send_now; 2014 2015 /* Avoid bursty behavior by allowing defer 2016 * only if the last write was recent (1 ms). 2017 * Note that tp->tcp_wstamp_ns can be in the future if we have 2018 * packets waiting in a qdisc or device for EDT delivery. 2019 */ 2020 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2021 if (delta > 0) 2022 goto send_now; 2023 2024 in_flight = tcp_packets_in_flight(tp); 2025 2026 BUG_ON(tcp_skb_pcount(skb) <= 1); 2027 BUG_ON(tp->snd_cwnd <= in_flight); 2028 2029 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2030 2031 /* From in_flight test above, we know that cwnd > in_flight. */ 2032 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 2033 2034 limit = min(send_win, cong_win); 2035 2036 /* If a full-sized TSO skb can be sent, do it. */ 2037 if (limit >= max_segs * tp->mss_cache) 2038 goto send_now; 2039 2040 /* Middle in queue won't get any more data, full sendable already? */ 2041 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2042 goto send_now; 2043 2044 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2045 if (win_divisor) { 2046 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 2047 2048 /* If at least some fraction of a window is available, 2049 * just use it. 2050 */ 2051 chunk /= win_divisor; 2052 if (limit >= chunk) 2053 goto send_now; 2054 } else { 2055 /* Different approach, try not to defer past a single 2056 * ACK. Receiver should ACK every other full sized 2057 * frame, so if we have space for more than 3 frames 2058 * then send now. 2059 */ 2060 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2061 goto send_now; 2062 } 2063 2064 /* TODO : use tsorted_sent_queue ? */ 2065 head = tcp_rtx_queue_head(sk); 2066 if (!head) 2067 goto send_now; 2068 delta = tp->tcp_clock_cache - head->tstamp; 2069 /* If next ACK is likely to come too late (half srtt), do not defer */ 2070 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2071 goto send_now; 2072 2073 /* Ok, it looks like it is advisable to defer. 2074 * Three cases are tracked : 2075 * 1) We are cwnd-limited 2076 * 2) We are rwnd-limited 2077 * 3) We are application limited. 2078 */ 2079 if (cong_win < send_win) { 2080 if (cong_win <= skb->len) { 2081 *is_cwnd_limited = true; 2082 return true; 2083 } 2084 } else { 2085 if (send_win <= skb->len) { 2086 *is_rwnd_limited = true; 2087 return true; 2088 } 2089 } 2090 2091 /* If this packet won't get more data, do not wait. */ 2092 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2093 TCP_SKB_CB(skb)->eor) 2094 goto send_now; 2095 2096 return true; 2097 2098 send_now: 2099 return false; 2100 } 2101 2102 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2103 { 2104 struct inet_connection_sock *icsk = inet_csk(sk); 2105 struct tcp_sock *tp = tcp_sk(sk); 2106 struct net *net = sock_net(sk); 2107 u32 interval; 2108 s32 delta; 2109 2110 interval = net->ipv4.sysctl_tcp_probe_interval; 2111 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2112 if (unlikely(delta >= interval * HZ)) { 2113 int mss = tcp_current_mss(sk); 2114 2115 /* Update current search range */ 2116 icsk->icsk_mtup.probe_size = 0; 2117 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2118 sizeof(struct tcphdr) + 2119 icsk->icsk_af_ops->net_header_len; 2120 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2121 2122 /* Update probe time stamp */ 2123 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2124 } 2125 } 2126 2127 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2128 { 2129 struct sk_buff *skb, *next; 2130 2131 skb = tcp_send_head(sk); 2132 tcp_for_write_queue_from_safe(skb, next, sk) { 2133 if (len <= skb->len) 2134 break; 2135 2136 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb)) 2137 return false; 2138 2139 len -= skb->len; 2140 } 2141 2142 return true; 2143 } 2144 2145 /* Create a new MTU probe if we are ready. 2146 * MTU probe is regularly attempting to increase the path MTU by 2147 * deliberately sending larger packets. This discovers routing 2148 * changes resulting in larger path MTUs. 2149 * 2150 * Returns 0 if we should wait to probe (no cwnd available), 2151 * 1 if a probe was sent, 2152 * -1 otherwise 2153 */ 2154 static int tcp_mtu_probe(struct sock *sk) 2155 { 2156 struct inet_connection_sock *icsk = inet_csk(sk); 2157 struct tcp_sock *tp = tcp_sk(sk); 2158 struct sk_buff *skb, *nskb, *next; 2159 struct net *net = sock_net(sk); 2160 int probe_size; 2161 int size_needed; 2162 int copy, len; 2163 int mss_now; 2164 int interval; 2165 2166 /* Not currently probing/verifying, 2167 * not in recovery, 2168 * have enough cwnd, and 2169 * not SACKing (the variable headers throw things off) 2170 */ 2171 if (likely(!icsk->icsk_mtup.enabled || 2172 icsk->icsk_mtup.probe_size || 2173 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2174 tp->snd_cwnd < 11 || 2175 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2176 return -1; 2177 2178 /* Use binary search for probe_size between tcp_mss_base, 2179 * and current mss_clamp. if (search_high - search_low) 2180 * smaller than a threshold, backoff from probing. 2181 */ 2182 mss_now = tcp_current_mss(sk); 2183 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2184 icsk->icsk_mtup.search_low) >> 1); 2185 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2186 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2187 /* When misfortune happens, we are reprobing actively, 2188 * and then reprobe timer has expired. We stick with current 2189 * probing process by not resetting search range to its orignal. 2190 */ 2191 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2192 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2193 /* Check whether enough time has elaplased for 2194 * another round of probing. 2195 */ 2196 tcp_mtu_check_reprobe(sk); 2197 return -1; 2198 } 2199 2200 /* Have enough data in the send queue to probe? */ 2201 if (tp->write_seq - tp->snd_nxt < size_needed) 2202 return -1; 2203 2204 if (tp->snd_wnd < size_needed) 2205 return -1; 2206 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2207 return 0; 2208 2209 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2210 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2211 if (!tcp_packets_in_flight(tp)) 2212 return -1; 2213 else 2214 return 0; 2215 } 2216 2217 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2218 return -1; 2219 2220 /* We're allowed to probe. Build it now. */ 2221 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2222 if (!nskb) 2223 return -1; 2224 sk_wmem_queued_add(sk, nskb->truesize); 2225 sk_mem_charge(sk, nskb->truesize); 2226 2227 skb = tcp_send_head(sk); 2228 skb_copy_decrypted(nskb, skb); 2229 2230 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2231 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2232 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2233 TCP_SKB_CB(nskb)->sacked = 0; 2234 nskb->csum = 0; 2235 nskb->ip_summed = CHECKSUM_PARTIAL; 2236 2237 tcp_insert_write_queue_before(nskb, skb, sk); 2238 tcp_highest_sack_replace(sk, skb, nskb); 2239 2240 len = 0; 2241 tcp_for_write_queue_from_safe(skb, next, sk) { 2242 copy = min_t(int, skb->len, probe_size - len); 2243 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2244 2245 if (skb->len <= copy) { 2246 /* We've eaten all the data from this skb. 2247 * Throw it away. */ 2248 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2249 /* If this is the last SKB we copy and eor is set 2250 * we need to propagate it to the new skb. 2251 */ 2252 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2253 tcp_skb_collapse_tstamp(nskb, skb); 2254 tcp_unlink_write_queue(skb, sk); 2255 sk_wmem_free_skb(sk, skb); 2256 } else { 2257 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2258 ~(TCPHDR_FIN|TCPHDR_PSH); 2259 if (!skb_shinfo(skb)->nr_frags) { 2260 skb_pull(skb, copy); 2261 } else { 2262 __pskb_trim_head(skb, copy); 2263 tcp_set_skb_tso_segs(skb, mss_now); 2264 } 2265 TCP_SKB_CB(skb)->seq += copy; 2266 } 2267 2268 len += copy; 2269 2270 if (len >= probe_size) 2271 break; 2272 } 2273 tcp_init_tso_segs(nskb, nskb->len); 2274 2275 /* We're ready to send. If this fails, the probe will 2276 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2277 */ 2278 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2279 /* Decrement cwnd here because we are sending 2280 * effectively two packets. */ 2281 tp->snd_cwnd--; 2282 tcp_event_new_data_sent(sk, nskb); 2283 2284 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2285 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2286 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2287 2288 return 1; 2289 } 2290 2291 return -1; 2292 } 2293 2294 static bool tcp_pacing_check(struct sock *sk) 2295 { 2296 struct tcp_sock *tp = tcp_sk(sk); 2297 2298 if (!tcp_needs_internal_pacing(sk)) 2299 return false; 2300 2301 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2302 return false; 2303 2304 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2305 hrtimer_start(&tp->pacing_timer, 2306 ns_to_ktime(tp->tcp_wstamp_ns), 2307 HRTIMER_MODE_ABS_PINNED_SOFT); 2308 sock_hold(sk); 2309 } 2310 return true; 2311 } 2312 2313 /* TCP Small Queues : 2314 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2315 * (These limits are doubled for retransmits) 2316 * This allows for : 2317 * - better RTT estimation and ACK scheduling 2318 * - faster recovery 2319 * - high rates 2320 * Alas, some drivers / subsystems require a fair amount 2321 * of queued bytes to ensure line rate. 2322 * One example is wifi aggregation (802.11 AMPDU) 2323 */ 2324 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2325 unsigned int factor) 2326 { 2327 unsigned long limit; 2328 2329 limit = max_t(unsigned long, 2330 2 * skb->truesize, 2331 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2332 if (sk->sk_pacing_status == SK_PACING_NONE) 2333 limit = min_t(unsigned long, limit, 2334 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2335 limit <<= factor; 2336 2337 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2338 tcp_sk(sk)->tcp_tx_delay) { 2339 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2340 2341 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2342 * approximate our needs assuming an ~100% skb->truesize overhead. 2343 * USEC_PER_SEC is approximated by 2^20. 2344 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2345 */ 2346 extra_bytes >>= (20 - 1); 2347 limit += extra_bytes; 2348 } 2349 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2350 /* Always send skb if rtx queue is empty. 2351 * No need to wait for TX completion to call us back, 2352 * after softirq/tasklet schedule. 2353 * This helps when TX completions are delayed too much. 2354 */ 2355 if (tcp_rtx_queue_empty(sk)) 2356 return false; 2357 2358 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2359 /* It is possible TX completion already happened 2360 * before we set TSQ_THROTTLED, so we must 2361 * test again the condition. 2362 */ 2363 smp_mb__after_atomic(); 2364 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2365 return true; 2366 } 2367 return false; 2368 } 2369 2370 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2371 { 2372 const u32 now = tcp_jiffies32; 2373 enum tcp_chrono old = tp->chrono_type; 2374 2375 if (old > TCP_CHRONO_UNSPEC) 2376 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2377 tp->chrono_start = now; 2378 tp->chrono_type = new; 2379 } 2380 2381 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2382 { 2383 struct tcp_sock *tp = tcp_sk(sk); 2384 2385 /* If there are multiple conditions worthy of tracking in a 2386 * chronograph then the highest priority enum takes precedence 2387 * over the other conditions. So that if something "more interesting" 2388 * starts happening, stop the previous chrono and start a new one. 2389 */ 2390 if (type > tp->chrono_type) 2391 tcp_chrono_set(tp, type); 2392 } 2393 2394 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2395 { 2396 struct tcp_sock *tp = tcp_sk(sk); 2397 2398 2399 /* There are multiple conditions worthy of tracking in a 2400 * chronograph, so that the highest priority enum takes 2401 * precedence over the other conditions (see tcp_chrono_start). 2402 * If a condition stops, we only stop chrono tracking if 2403 * it's the "most interesting" or current chrono we are 2404 * tracking and starts busy chrono if we have pending data. 2405 */ 2406 if (tcp_rtx_and_write_queues_empty(sk)) 2407 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2408 else if (type == tp->chrono_type) 2409 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2410 } 2411 2412 /* This routine writes packets to the network. It advances the 2413 * send_head. This happens as incoming acks open up the remote 2414 * window for us. 2415 * 2416 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2417 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2418 * account rare use of URG, this is not a big flaw. 2419 * 2420 * Send at most one packet when push_one > 0. Temporarily ignore 2421 * cwnd limit to force at most one packet out when push_one == 2. 2422 2423 * Returns true, if no segments are in flight and we have queued segments, 2424 * but cannot send anything now because of SWS or another problem. 2425 */ 2426 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2427 int push_one, gfp_t gfp) 2428 { 2429 struct tcp_sock *tp = tcp_sk(sk); 2430 struct sk_buff *skb; 2431 unsigned int tso_segs, sent_pkts; 2432 int cwnd_quota; 2433 int result; 2434 bool is_cwnd_limited = false, is_rwnd_limited = false; 2435 u32 max_segs; 2436 2437 sent_pkts = 0; 2438 2439 tcp_mstamp_refresh(tp); 2440 if (!push_one) { 2441 /* Do MTU probing. */ 2442 result = tcp_mtu_probe(sk); 2443 if (!result) { 2444 return false; 2445 } else if (result > 0) { 2446 sent_pkts = 1; 2447 } 2448 } 2449 2450 max_segs = tcp_tso_segs(sk, mss_now); 2451 while ((skb = tcp_send_head(sk))) { 2452 unsigned int limit; 2453 2454 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2455 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2456 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2457 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2458 tcp_init_tso_segs(skb, mss_now); 2459 goto repair; /* Skip network transmission */ 2460 } 2461 2462 if (tcp_pacing_check(sk)) 2463 break; 2464 2465 tso_segs = tcp_init_tso_segs(skb, mss_now); 2466 BUG_ON(!tso_segs); 2467 2468 cwnd_quota = tcp_cwnd_test(tp, skb); 2469 if (!cwnd_quota) { 2470 if (push_one == 2) 2471 /* Force out a loss probe pkt. */ 2472 cwnd_quota = 1; 2473 else 2474 break; 2475 } 2476 2477 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2478 is_rwnd_limited = true; 2479 break; 2480 } 2481 2482 if (tso_segs == 1) { 2483 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2484 (tcp_skb_is_last(sk, skb) ? 2485 nonagle : TCP_NAGLE_PUSH)))) 2486 break; 2487 } else { 2488 if (!push_one && 2489 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2490 &is_rwnd_limited, max_segs)) 2491 break; 2492 } 2493 2494 limit = mss_now; 2495 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2496 limit = tcp_mss_split_point(sk, skb, mss_now, 2497 min_t(unsigned int, 2498 cwnd_quota, 2499 max_segs), 2500 nonagle); 2501 2502 if (skb->len > limit && 2503 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2504 break; 2505 2506 if (tcp_small_queue_check(sk, skb, 0)) 2507 break; 2508 2509 /* Argh, we hit an empty skb(), presumably a thread 2510 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2511 * We do not want to send a pure-ack packet and have 2512 * a strange looking rtx queue with empty packet(s). 2513 */ 2514 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2515 break; 2516 2517 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2518 break; 2519 2520 repair: 2521 /* Advance the send_head. This one is sent out. 2522 * This call will increment packets_out. 2523 */ 2524 tcp_event_new_data_sent(sk, skb); 2525 2526 tcp_minshall_update(tp, mss_now, skb); 2527 sent_pkts += tcp_skb_pcount(skb); 2528 2529 if (push_one) 2530 break; 2531 } 2532 2533 if (is_rwnd_limited) 2534 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2535 else 2536 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2537 2538 if (likely(sent_pkts)) { 2539 if (tcp_in_cwnd_reduction(sk)) 2540 tp->prr_out += sent_pkts; 2541 2542 /* Send one loss probe per tail loss episode. */ 2543 if (push_one != 2) 2544 tcp_schedule_loss_probe(sk, false); 2545 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2546 tcp_cwnd_validate(sk, is_cwnd_limited); 2547 return false; 2548 } 2549 return !tp->packets_out && !tcp_write_queue_empty(sk); 2550 } 2551 2552 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2553 { 2554 struct inet_connection_sock *icsk = inet_csk(sk); 2555 struct tcp_sock *tp = tcp_sk(sk); 2556 u32 timeout, rto_delta_us; 2557 int early_retrans; 2558 2559 /* Don't do any loss probe on a Fast Open connection before 3WHS 2560 * finishes. 2561 */ 2562 if (rcu_access_pointer(tp->fastopen_rsk)) 2563 return false; 2564 2565 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2566 /* Schedule a loss probe in 2*RTT for SACK capable connections 2567 * not in loss recovery, that are either limited by cwnd or application. 2568 */ 2569 if ((early_retrans != 3 && early_retrans != 4) || 2570 !tp->packets_out || !tcp_is_sack(tp) || 2571 (icsk->icsk_ca_state != TCP_CA_Open && 2572 icsk->icsk_ca_state != TCP_CA_CWR)) 2573 return false; 2574 2575 /* Probe timeout is 2*rtt. Add minimum RTO to account 2576 * for delayed ack when there's one outstanding packet. If no RTT 2577 * sample is available then probe after TCP_TIMEOUT_INIT. 2578 */ 2579 if (tp->srtt_us) { 2580 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2581 if (tp->packets_out == 1) 2582 timeout += TCP_RTO_MIN; 2583 else 2584 timeout += TCP_TIMEOUT_MIN; 2585 } else { 2586 timeout = TCP_TIMEOUT_INIT; 2587 } 2588 2589 /* If the RTO formula yields an earlier time, then use that time. */ 2590 rto_delta_us = advancing_rto ? 2591 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2592 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2593 if (rto_delta_us > 0) 2594 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2595 2596 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2597 return true; 2598 } 2599 2600 /* Thanks to skb fast clones, we can detect if a prior transmit of 2601 * a packet is still in a qdisc or driver queue. 2602 * In this case, there is very little point doing a retransmit ! 2603 */ 2604 static bool skb_still_in_host_queue(const struct sock *sk, 2605 const struct sk_buff *skb) 2606 { 2607 if (unlikely(skb_fclone_busy(sk, skb))) { 2608 NET_INC_STATS(sock_net(sk), 2609 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2610 return true; 2611 } 2612 return false; 2613 } 2614 2615 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2616 * retransmit the last segment. 2617 */ 2618 void tcp_send_loss_probe(struct sock *sk) 2619 { 2620 struct tcp_sock *tp = tcp_sk(sk); 2621 struct sk_buff *skb; 2622 int pcount; 2623 int mss = tcp_current_mss(sk); 2624 2625 skb = tcp_send_head(sk); 2626 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2627 pcount = tp->packets_out; 2628 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2629 if (tp->packets_out > pcount) 2630 goto probe_sent; 2631 goto rearm_timer; 2632 } 2633 skb = skb_rb_last(&sk->tcp_rtx_queue); 2634 if (unlikely(!skb)) { 2635 WARN_ONCE(tp->packets_out, 2636 "invalid inflight: %u state %u cwnd %u mss %d\n", 2637 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2638 inet_csk(sk)->icsk_pending = 0; 2639 return; 2640 } 2641 2642 /* At most one outstanding TLP retransmission. */ 2643 if (tp->tlp_high_seq) 2644 goto rearm_timer; 2645 2646 if (skb_still_in_host_queue(sk, skb)) 2647 goto rearm_timer; 2648 2649 pcount = tcp_skb_pcount(skb); 2650 if (WARN_ON(!pcount)) 2651 goto rearm_timer; 2652 2653 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2654 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2655 (pcount - 1) * mss, mss, 2656 GFP_ATOMIC))) 2657 goto rearm_timer; 2658 skb = skb_rb_next(skb); 2659 } 2660 2661 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2662 goto rearm_timer; 2663 2664 if (__tcp_retransmit_skb(sk, skb, 1)) 2665 goto rearm_timer; 2666 2667 /* Record snd_nxt for loss detection. */ 2668 tp->tlp_high_seq = tp->snd_nxt; 2669 2670 probe_sent: 2671 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2672 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2673 inet_csk(sk)->icsk_pending = 0; 2674 rearm_timer: 2675 tcp_rearm_rto(sk); 2676 } 2677 2678 /* Push out any pending frames which were held back due to 2679 * TCP_CORK or attempt at coalescing tiny packets. 2680 * The socket must be locked by the caller. 2681 */ 2682 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2683 int nonagle) 2684 { 2685 /* If we are closed, the bytes will have to remain here. 2686 * In time closedown will finish, we empty the write queue and 2687 * all will be happy. 2688 */ 2689 if (unlikely(sk->sk_state == TCP_CLOSE)) 2690 return; 2691 2692 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2693 sk_gfp_mask(sk, GFP_ATOMIC))) 2694 tcp_check_probe_timer(sk); 2695 } 2696 2697 /* Send _single_ skb sitting at the send head. This function requires 2698 * true push pending frames to setup probe timer etc. 2699 */ 2700 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2701 { 2702 struct sk_buff *skb = tcp_send_head(sk); 2703 2704 BUG_ON(!skb || skb->len < mss_now); 2705 2706 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2707 } 2708 2709 /* This function returns the amount that we can raise the 2710 * usable window based on the following constraints 2711 * 2712 * 1. The window can never be shrunk once it is offered (RFC 793) 2713 * 2. We limit memory per socket 2714 * 2715 * RFC 1122: 2716 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2717 * RECV.NEXT + RCV.WIN fixed until: 2718 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2719 * 2720 * i.e. don't raise the right edge of the window until you can raise 2721 * it at least MSS bytes. 2722 * 2723 * Unfortunately, the recommended algorithm breaks header prediction, 2724 * since header prediction assumes th->window stays fixed. 2725 * 2726 * Strictly speaking, keeping th->window fixed violates the receiver 2727 * side SWS prevention criteria. The problem is that under this rule 2728 * a stream of single byte packets will cause the right side of the 2729 * window to always advance by a single byte. 2730 * 2731 * Of course, if the sender implements sender side SWS prevention 2732 * then this will not be a problem. 2733 * 2734 * BSD seems to make the following compromise: 2735 * 2736 * If the free space is less than the 1/4 of the maximum 2737 * space available and the free space is less than 1/2 mss, 2738 * then set the window to 0. 2739 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2740 * Otherwise, just prevent the window from shrinking 2741 * and from being larger than the largest representable value. 2742 * 2743 * This prevents incremental opening of the window in the regime 2744 * where TCP is limited by the speed of the reader side taking 2745 * data out of the TCP receive queue. It does nothing about 2746 * those cases where the window is constrained on the sender side 2747 * because the pipeline is full. 2748 * 2749 * BSD also seems to "accidentally" limit itself to windows that are a 2750 * multiple of MSS, at least until the free space gets quite small. 2751 * This would appear to be a side effect of the mbuf implementation. 2752 * Combining these two algorithms results in the observed behavior 2753 * of having a fixed window size at almost all times. 2754 * 2755 * Below we obtain similar behavior by forcing the offered window to 2756 * a multiple of the mss when it is feasible to do so. 2757 * 2758 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2759 * Regular options like TIMESTAMP are taken into account. 2760 */ 2761 u32 __tcp_select_window(struct sock *sk) 2762 { 2763 struct inet_connection_sock *icsk = inet_csk(sk); 2764 struct tcp_sock *tp = tcp_sk(sk); 2765 /* MSS for the peer's data. Previous versions used mss_clamp 2766 * here. I don't know if the value based on our guesses 2767 * of peer's MSS is better for the performance. It's more correct 2768 * but may be worse for the performance because of rcv_mss 2769 * fluctuations. --SAW 1998/11/1 2770 */ 2771 int mss = icsk->icsk_ack.rcv_mss; 2772 int free_space = tcp_space(sk); 2773 int allowed_space = tcp_full_space(sk); 2774 int full_space, window; 2775 2776 if (sk_is_mptcp(sk)) 2777 mptcp_space(sk, &free_space, &allowed_space); 2778 2779 full_space = min_t(int, tp->window_clamp, allowed_space); 2780 2781 if (unlikely(mss > full_space)) { 2782 mss = full_space; 2783 if (mss <= 0) 2784 return 0; 2785 } 2786 if (free_space < (full_space >> 1)) { 2787 icsk->icsk_ack.quick = 0; 2788 2789 if (tcp_under_memory_pressure(sk)) 2790 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2791 4U * tp->advmss); 2792 2793 /* free_space might become our new window, make sure we don't 2794 * increase it due to wscale. 2795 */ 2796 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2797 2798 /* if free space is less than mss estimate, or is below 1/16th 2799 * of the maximum allowed, try to move to zero-window, else 2800 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2801 * new incoming data is dropped due to memory limits. 2802 * With large window, mss test triggers way too late in order 2803 * to announce zero window in time before rmem limit kicks in. 2804 */ 2805 if (free_space < (allowed_space >> 4) || free_space < mss) 2806 return 0; 2807 } 2808 2809 if (free_space > tp->rcv_ssthresh) 2810 free_space = tp->rcv_ssthresh; 2811 2812 /* Don't do rounding if we are using window scaling, since the 2813 * scaled window will not line up with the MSS boundary anyway. 2814 */ 2815 if (tp->rx_opt.rcv_wscale) { 2816 window = free_space; 2817 2818 /* Advertise enough space so that it won't get scaled away. 2819 * Import case: prevent zero window announcement if 2820 * 1<<rcv_wscale > mss. 2821 */ 2822 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2823 } else { 2824 window = tp->rcv_wnd; 2825 /* Get the largest window that is a nice multiple of mss. 2826 * Window clamp already applied above. 2827 * If our current window offering is within 1 mss of the 2828 * free space we just keep it. This prevents the divide 2829 * and multiply from happening most of the time. 2830 * We also don't do any window rounding when the free space 2831 * is too small. 2832 */ 2833 if (window <= free_space - mss || window > free_space) 2834 window = rounddown(free_space, mss); 2835 else if (mss == full_space && 2836 free_space > window + (full_space >> 1)) 2837 window = free_space; 2838 } 2839 2840 return window; 2841 } 2842 2843 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2844 const struct sk_buff *next_skb) 2845 { 2846 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2847 const struct skb_shared_info *next_shinfo = 2848 skb_shinfo(next_skb); 2849 struct skb_shared_info *shinfo = skb_shinfo(skb); 2850 2851 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2852 shinfo->tskey = next_shinfo->tskey; 2853 TCP_SKB_CB(skb)->txstamp_ack |= 2854 TCP_SKB_CB(next_skb)->txstamp_ack; 2855 } 2856 } 2857 2858 /* Collapses two adjacent SKB's during retransmission. */ 2859 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2860 { 2861 struct tcp_sock *tp = tcp_sk(sk); 2862 struct sk_buff *next_skb = skb_rb_next(skb); 2863 int next_skb_size; 2864 2865 next_skb_size = next_skb->len; 2866 2867 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2868 2869 if (next_skb_size) { 2870 if (next_skb_size <= skb_availroom(skb)) 2871 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2872 next_skb_size); 2873 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 2874 return false; 2875 } 2876 tcp_highest_sack_replace(sk, next_skb, skb); 2877 2878 /* Update sequence range on original skb. */ 2879 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2880 2881 /* Merge over control information. This moves PSH/FIN etc. over */ 2882 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2883 2884 /* All done, get rid of second SKB and account for it so 2885 * packet counting does not break. 2886 */ 2887 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2888 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2889 2890 /* changed transmit queue under us so clear hints */ 2891 tcp_clear_retrans_hints_partial(tp); 2892 if (next_skb == tp->retransmit_skb_hint) 2893 tp->retransmit_skb_hint = skb; 2894 2895 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2896 2897 tcp_skb_collapse_tstamp(skb, next_skb); 2898 2899 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2900 return true; 2901 } 2902 2903 /* Check if coalescing SKBs is legal. */ 2904 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2905 { 2906 if (tcp_skb_pcount(skb) > 1) 2907 return false; 2908 if (skb_cloned(skb)) 2909 return false; 2910 /* Some heuristics for collapsing over SACK'd could be invented */ 2911 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2912 return false; 2913 2914 return true; 2915 } 2916 2917 /* Collapse packets in the retransmit queue to make to create 2918 * less packets on the wire. This is only done on retransmission. 2919 */ 2920 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2921 int space) 2922 { 2923 struct tcp_sock *tp = tcp_sk(sk); 2924 struct sk_buff *skb = to, *tmp; 2925 bool first = true; 2926 2927 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2928 return; 2929 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2930 return; 2931 2932 skb_rbtree_walk_from_safe(skb, tmp) { 2933 if (!tcp_can_collapse(sk, skb)) 2934 break; 2935 2936 if (!tcp_skb_can_collapse(to, skb)) 2937 break; 2938 2939 space -= skb->len; 2940 2941 if (first) { 2942 first = false; 2943 continue; 2944 } 2945 2946 if (space < 0) 2947 break; 2948 2949 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2950 break; 2951 2952 if (!tcp_collapse_retrans(sk, to)) 2953 break; 2954 } 2955 } 2956 2957 /* This retransmits one SKB. Policy decisions and retransmit queue 2958 * state updates are done by the caller. Returns non-zero if an 2959 * error occurred which prevented the send. 2960 */ 2961 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2962 { 2963 struct inet_connection_sock *icsk = inet_csk(sk); 2964 struct tcp_sock *tp = tcp_sk(sk); 2965 unsigned int cur_mss; 2966 int diff, len, err; 2967 2968 2969 /* Inconclusive MTU probe */ 2970 if (icsk->icsk_mtup.probe_size) 2971 icsk->icsk_mtup.probe_size = 0; 2972 2973 /* Do not sent more than we queued. 1/4 is reserved for possible 2974 * copying overhead: fragmentation, tunneling, mangling etc. 2975 */ 2976 if (refcount_read(&sk->sk_wmem_alloc) > 2977 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2978 sk->sk_sndbuf)) 2979 return -EAGAIN; 2980 2981 if (skb_still_in_host_queue(sk, skb)) 2982 return -EBUSY; 2983 2984 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2985 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2986 WARN_ON_ONCE(1); 2987 return -EINVAL; 2988 } 2989 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2990 return -ENOMEM; 2991 } 2992 2993 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2994 return -EHOSTUNREACH; /* Routing failure or similar. */ 2995 2996 cur_mss = tcp_current_mss(sk); 2997 2998 /* If receiver has shrunk his window, and skb is out of 2999 * new window, do not retransmit it. The exception is the 3000 * case, when window is shrunk to zero. In this case 3001 * our retransmit serves as a zero window probe. 3002 */ 3003 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 3004 TCP_SKB_CB(skb)->seq != tp->snd_una) 3005 return -EAGAIN; 3006 3007 len = cur_mss * segs; 3008 if (skb->len > len) { 3009 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3010 cur_mss, GFP_ATOMIC)) 3011 return -ENOMEM; /* We'll try again later. */ 3012 } else { 3013 if (skb_unclone(skb, GFP_ATOMIC)) 3014 return -ENOMEM; 3015 3016 diff = tcp_skb_pcount(skb); 3017 tcp_set_skb_tso_segs(skb, cur_mss); 3018 diff -= tcp_skb_pcount(skb); 3019 if (diff) 3020 tcp_adjust_pcount(sk, skb, diff); 3021 if (skb->len < cur_mss) 3022 tcp_retrans_try_collapse(sk, skb, cur_mss); 3023 } 3024 3025 /* RFC3168, section 6.1.1.1. ECN fallback */ 3026 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3027 tcp_ecn_clear_syn(sk, skb); 3028 3029 /* Update global and local TCP statistics. */ 3030 segs = tcp_skb_pcount(skb); 3031 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3032 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3033 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3034 tp->total_retrans += segs; 3035 tp->bytes_retrans += skb->len; 3036 3037 /* make sure skb->data is aligned on arches that require it 3038 * and check if ack-trimming & collapsing extended the headroom 3039 * beyond what csum_start can cover. 3040 */ 3041 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3042 skb_headroom(skb) >= 0xFFFF)) { 3043 struct sk_buff *nskb; 3044 3045 tcp_skb_tsorted_save(skb) { 3046 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3047 if (nskb) { 3048 nskb->dev = NULL; 3049 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3050 } else { 3051 err = -ENOBUFS; 3052 } 3053 } tcp_skb_tsorted_restore(skb); 3054 3055 if (!err) { 3056 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3057 tcp_rate_skb_sent(sk, skb); 3058 } 3059 } else { 3060 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3061 } 3062 3063 /* To avoid taking spuriously low RTT samples based on a timestamp 3064 * for a transmit that never happened, always mark EVER_RETRANS 3065 */ 3066 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3067 3068 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3069 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3070 TCP_SKB_CB(skb)->seq, segs, err); 3071 3072 if (likely(!err)) { 3073 trace_tcp_retransmit_skb(sk, skb); 3074 } else if (err != -EBUSY) { 3075 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3076 } 3077 return err; 3078 } 3079 3080 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3081 { 3082 struct tcp_sock *tp = tcp_sk(sk); 3083 int err = __tcp_retransmit_skb(sk, skb, segs); 3084 3085 if (err == 0) { 3086 #if FASTRETRANS_DEBUG > 0 3087 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3088 net_dbg_ratelimited("retrans_out leaked\n"); 3089 } 3090 #endif 3091 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3092 tp->retrans_out += tcp_skb_pcount(skb); 3093 } 3094 3095 /* Save stamp of the first (attempted) retransmit. */ 3096 if (!tp->retrans_stamp) 3097 tp->retrans_stamp = tcp_skb_timestamp(skb); 3098 3099 if (tp->undo_retrans < 0) 3100 tp->undo_retrans = 0; 3101 tp->undo_retrans += tcp_skb_pcount(skb); 3102 return err; 3103 } 3104 3105 /* This gets called after a retransmit timeout, and the initially 3106 * retransmitted data is acknowledged. It tries to continue 3107 * resending the rest of the retransmit queue, until either 3108 * we've sent it all or the congestion window limit is reached. 3109 */ 3110 void tcp_xmit_retransmit_queue(struct sock *sk) 3111 { 3112 const struct inet_connection_sock *icsk = inet_csk(sk); 3113 struct sk_buff *skb, *rtx_head, *hole = NULL; 3114 struct tcp_sock *tp = tcp_sk(sk); 3115 bool rearm_timer = false; 3116 u32 max_segs; 3117 int mib_idx; 3118 3119 if (!tp->packets_out) 3120 return; 3121 3122 rtx_head = tcp_rtx_queue_head(sk); 3123 skb = tp->retransmit_skb_hint ?: rtx_head; 3124 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3125 skb_rbtree_walk_from(skb) { 3126 __u8 sacked; 3127 int segs; 3128 3129 if (tcp_pacing_check(sk)) 3130 break; 3131 3132 /* we could do better than to assign each time */ 3133 if (!hole) 3134 tp->retransmit_skb_hint = skb; 3135 3136 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3137 if (segs <= 0) 3138 break; 3139 sacked = TCP_SKB_CB(skb)->sacked; 3140 /* In case tcp_shift_skb_data() have aggregated large skbs, 3141 * we need to make sure not sending too bigs TSO packets 3142 */ 3143 segs = min_t(int, segs, max_segs); 3144 3145 if (tp->retrans_out >= tp->lost_out) { 3146 break; 3147 } else if (!(sacked & TCPCB_LOST)) { 3148 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3149 hole = skb; 3150 continue; 3151 3152 } else { 3153 if (icsk->icsk_ca_state != TCP_CA_Loss) 3154 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3155 else 3156 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3157 } 3158 3159 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3160 continue; 3161 3162 if (tcp_small_queue_check(sk, skb, 1)) 3163 break; 3164 3165 if (tcp_retransmit_skb(sk, skb, segs)) 3166 break; 3167 3168 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3169 3170 if (tcp_in_cwnd_reduction(sk)) 3171 tp->prr_out += tcp_skb_pcount(skb); 3172 3173 if (skb == rtx_head && 3174 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3175 rearm_timer = true; 3176 3177 } 3178 if (rearm_timer) 3179 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3180 inet_csk(sk)->icsk_rto, 3181 TCP_RTO_MAX); 3182 } 3183 3184 /* We allow to exceed memory limits for FIN packets to expedite 3185 * connection tear down and (memory) recovery. 3186 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3187 * or even be forced to close flow without any FIN. 3188 * In general, we want to allow one skb per socket to avoid hangs 3189 * with edge trigger epoll() 3190 */ 3191 void sk_forced_mem_schedule(struct sock *sk, int size) 3192 { 3193 int amt; 3194 3195 if (size <= sk->sk_forward_alloc) 3196 return; 3197 amt = sk_mem_pages(size); 3198 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3199 sk_memory_allocated_add(sk, amt); 3200 3201 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3202 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3203 } 3204 3205 /* Send a FIN. The caller locks the socket for us. 3206 * We should try to send a FIN packet really hard, but eventually give up. 3207 */ 3208 void tcp_send_fin(struct sock *sk) 3209 { 3210 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3211 struct tcp_sock *tp = tcp_sk(sk); 3212 3213 /* Optimization, tack on the FIN if we have one skb in write queue and 3214 * this skb was not yet sent, or we are under memory pressure. 3215 * Note: in the latter case, FIN packet will be sent after a timeout, 3216 * as TCP stack thinks it has already been transmitted. 3217 */ 3218 tskb = tail; 3219 if (!tskb && tcp_under_memory_pressure(sk)) 3220 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3221 3222 if (tskb) { 3223 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3224 TCP_SKB_CB(tskb)->end_seq++; 3225 tp->write_seq++; 3226 if (!tail) { 3227 /* This means tskb was already sent. 3228 * Pretend we included the FIN on previous transmit. 3229 * We need to set tp->snd_nxt to the value it would have 3230 * if FIN had been sent. This is because retransmit path 3231 * does not change tp->snd_nxt. 3232 */ 3233 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3234 return; 3235 } 3236 } else { 3237 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3238 if (unlikely(!skb)) 3239 return; 3240 3241 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3242 skb_reserve(skb, MAX_TCP_HEADER); 3243 sk_forced_mem_schedule(sk, skb->truesize); 3244 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3245 tcp_init_nondata_skb(skb, tp->write_seq, 3246 TCPHDR_ACK | TCPHDR_FIN); 3247 tcp_queue_skb(sk, skb); 3248 } 3249 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3250 } 3251 3252 /* We get here when a process closes a file descriptor (either due to 3253 * an explicit close() or as a byproduct of exit()'ing) and there 3254 * was unread data in the receive queue. This behavior is recommended 3255 * by RFC 2525, section 2.17. -DaveM 3256 */ 3257 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3258 { 3259 struct sk_buff *skb; 3260 3261 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3262 3263 /* NOTE: No TCP options attached and we never retransmit this. */ 3264 skb = alloc_skb(MAX_TCP_HEADER, priority); 3265 if (!skb) { 3266 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3267 return; 3268 } 3269 3270 /* Reserve space for headers and prepare control bits. */ 3271 skb_reserve(skb, MAX_TCP_HEADER); 3272 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3273 TCPHDR_ACK | TCPHDR_RST); 3274 tcp_mstamp_refresh(tcp_sk(sk)); 3275 /* Send it off. */ 3276 if (tcp_transmit_skb(sk, skb, 0, priority)) 3277 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3278 3279 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3280 * skb here is different to the troublesome skb, so use NULL 3281 */ 3282 trace_tcp_send_reset(sk, NULL); 3283 } 3284 3285 /* Send a crossed SYN-ACK during socket establishment. 3286 * WARNING: This routine must only be called when we have already sent 3287 * a SYN packet that crossed the incoming SYN that caused this routine 3288 * to get called. If this assumption fails then the initial rcv_wnd 3289 * and rcv_wscale values will not be correct. 3290 */ 3291 int tcp_send_synack(struct sock *sk) 3292 { 3293 struct sk_buff *skb; 3294 3295 skb = tcp_rtx_queue_head(sk); 3296 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3297 pr_err("%s: wrong queue state\n", __func__); 3298 return -EFAULT; 3299 } 3300 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3301 if (skb_cloned(skb)) { 3302 struct sk_buff *nskb; 3303 3304 tcp_skb_tsorted_save(skb) { 3305 nskb = skb_copy(skb, GFP_ATOMIC); 3306 } tcp_skb_tsorted_restore(skb); 3307 if (!nskb) 3308 return -ENOMEM; 3309 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3310 tcp_highest_sack_replace(sk, skb, nskb); 3311 tcp_rtx_queue_unlink_and_free(skb, sk); 3312 __skb_header_release(nskb); 3313 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3314 sk_wmem_queued_add(sk, nskb->truesize); 3315 sk_mem_charge(sk, nskb->truesize); 3316 skb = nskb; 3317 } 3318 3319 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3320 tcp_ecn_send_synack(sk, skb); 3321 } 3322 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3323 } 3324 3325 /** 3326 * tcp_make_synack - Prepare a SYN-ACK. 3327 * sk: listener socket 3328 * dst: dst entry attached to the SYNACK 3329 * req: request_sock pointer 3330 * 3331 * Allocate one skb and build a SYNACK packet. 3332 * @dst is consumed : Caller should not use it again. 3333 */ 3334 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3335 struct request_sock *req, 3336 struct tcp_fastopen_cookie *foc, 3337 enum tcp_synack_type synack_type) 3338 { 3339 struct inet_request_sock *ireq = inet_rsk(req); 3340 const struct tcp_sock *tp = tcp_sk(sk); 3341 struct tcp_md5sig_key *md5 = NULL; 3342 struct tcp_out_options opts; 3343 struct sk_buff *skb; 3344 int tcp_header_size; 3345 struct tcphdr *th; 3346 int mss; 3347 u64 now; 3348 3349 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3350 if (unlikely(!skb)) { 3351 dst_release(dst); 3352 return NULL; 3353 } 3354 /* Reserve space for headers. */ 3355 skb_reserve(skb, MAX_TCP_HEADER); 3356 3357 switch (synack_type) { 3358 case TCP_SYNACK_NORMAL: 3359 skb_set_owner_w(skb, req_to_sk(req)); 3360 break; 3361 case TCP_SYNACK_COOKIE: 3362 /* Under synflood, we do not attach skb to a socket, 3363 * to avoid false sharing. 3364 */ 3365 break; 3366 case TCP_SYNACK_FASTOPEN: 3367 /* sk is a const pointer, because we want to express multiple 3368 * cpu might call us concurrently. 3369 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3370 */ 3371 skb_set_owner_w(skb, (struct sock *)sk); 3372 break; 3373 } 3374 skb_dst_set(skb, dst); 3375 3376 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3377 3378 memset(&opts, 0, sizeof(opts)); 3379 now = tcp_clock_ns(); 3380 #ifdef CONFIG_SYN_COOKIES 3381 if (unlikely(req->cookie_ts)) 3382 skb->skb_mstamp_ns = cookie_init_timestamp(req, now); 3383 else 3384 #endif 3385 { 3386 skb->skb_mstamp_ns = now; 3387 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3388 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3389 } 3390 3391 #ifdef CONFIG_TCP_MD5SIG 3392 rcu_read_lock(); 3393 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3394 #endif 3395 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3396 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3397 foc) + sizeof(*th); 3398 3399 skb_push(skb, tcp_header_size); 3400 skb_reset_transport_header(skb); 3401 3402 th = (struct tcphdr *)skb->data; 3403 memset(th, 0, sizeof(struct tcphdr)); 3404 th->syn = 1; 3405 th->ack = 1; 3406 tcp_ecn_make_synack(req, th); 3407 th->source = htons(ireq->ir_num); 3408 th->dest = ireq->ir_rmt_port; 3409 skb->mark = ireq->ir_mark; 3410 skb->ip_summed = CHECKSUM_PARTIAL; 3411 th->seq = htonl(tcp_rsk(req)->snt_isn); 3412 /* XXX data is queued and acked as is. No buffer/window check */ 3413 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3414 3415 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3416 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3417 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3418 th->doff = (tcp_header_size >> 2); 3419 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3420 3421 #ifdef CONFIG_TCP_MD5SIG 3422 /* Okay, we have all we need - do the md5 hash if needed */ 3423 if (md5) 3424 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3425 md5, req_to_sk(req), skb); 3426 rcu_read_unlock(); 3427 #endif 3428 3429 skb->skb_mstamp_ns = now; 3430 tcp_add_tx_delay(skb, tp); 3431 3432 return skb; 3433 } 3434 EXPORT_SYMBOL(tcp_make_synack); 3435 3436 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3437 { 3438 struct inet_connection_sock *icsk = inet_csk(sk); 3439 const struct tcp_congestion_ops *ca; 3440 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3441 3442 if (ca_key == TCP_CA_UNSPEC) 3443 return; 3444 3445 rcu_read_lock(); 3446 ca = tcp_ca_find_key(ca_key); 3447 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3448 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3449 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3450 icsk->icsk_ca_ops = ca; 3451 } 3452 rcu_read_unlock(); 3453 } 3454 3455 /* Do all connect socket setups that can be done AF independent. */ 3456 static void tcp_connect_init(struct sock *sk) 3457 { 3458 const struct dst_entry *dst = __sk_dst_get(sk); 3459 struct tcp_sock *tp = tcp_sk(sk); 3460 __u8 rcv_wscale; 3461 u32 rcv_wnd; 3462 3463 /* We'll fix this up when we get a response from the other end. 3464 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3465 */ 3466 tp->tcp_header_len = sizeof(struct tcphdr); 3467 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3468 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3469 3470 #ifdef CONFIG_TCP_MD5SIG 3471 if (tp->af_specific->md5_lookup(sk, sk)) 3472 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3473 #endif 3474 3475 /* If user gave his TCP_MAXSEG, record it to clamp */ 3476 if (tp->rx_opt.user_mss) 3477 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3478 tp->max_window = 0; 3479 tcp_mtup_init(sk); 3480 tcp_sync_mss(sk, dst_mtu(dst)); 3481 3482 tcp_ca_dst_init(sk, dst); 3483 3484 if (!tp->window_clamp) 3485 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3486 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3487 3488 tcp_initialize_rcv_mss(sk); 3489 3490 /* limit the window selection if the user enforce a smaller rx buffer */ 3491 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3492 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3493 tp->window_clamp = tcp_full_space(sk); 3494 3495 rcv_wnd = tcp_rwnd_init_bpf(sk); 3496 if (rcv_wnd == 0) 3497 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3498 3499 tcp_select_initial_window(sk, tcp_full_space(sk), 3500 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3501 &tp->rcv_wnd, 3502 &tp->window_clamp, 3503 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3504 &rcv_wscale, 3505 rcv_wnd); 3506 3507 tp->rx_opt.rcv_wscale = rcv_wscale; 3508 tp->rcv_ssthresh = tp->rcv_wnd; 3509 3510 sk->sk_err = 0; 3511 sock_reset_flag(sk, SOCK_DONE); 3512 tp->snd_wnd = 0; 3513 tcp_init_wl(tp, 0); 3514 tcp_write_queue_purge(sk); 3515 tp->snd_una = tp->write_seq; 3516 tp->snd_sml = tp->write_seq; 3517 tp->snd_up = tp->write_seq; 3518 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3519 3520 if (likely(!tp->repair)) 3521 tp->rcv_nxt = 0; 3522 else 3523 tp->rcv_tstamp = tcp_jiffies32; 3524 tp->rcv_wup = tp->rcv_nxt; 3525 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3526 3527 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3528 inet_csk(sk)->icsk_retransmits = 0; 3529 tcp_clear_retrans(tp); 3530 } 3531 3532 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3533 { 3534 struct tcp_sock *tp = tcp_sk(sk); 3535 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3536 3537 tcb->end_seq += skb->len; 3538 __skb_header_release(skb); 3539 sk_wmem_queued_add(sk, skb->truesize); 3540 sk_mem_charge(sk, skb->truesize); 3541 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3542 tp->packets_out += tcp_skb_pcount(skb); 3543 } 3544 3545 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3546 * queue a data-only packet after the regular SYN, such that regular SYNs 3547 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3548 * only the SYN sequence, the data are retransmitted in the first ACK. 3549 * If cookie is not cached or other error occurs, falls back to send a 3550 * regular SYN with Fast Open cookie request option. 3551 */ 3552 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3553 { 3554 struct tcp_sock *tp = tcp_sk(sk); 3555 struct tcp_fastopen_request *fo = tp->fastopen_req; 3556 int space, err = 0; 3557 struct sk_buff *syn_data; 3558 3559 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3560 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3561 goto fallback; 3562 3563 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3564 * user-MSS. Reserve maximum option space for middleboxes that add 3565 * private TCP options. The cost is reduced data space in SYN :( 3566 */ 3567 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3568 3569 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3570 MAX_TCP_OPTION_SPACE; 3571 3572 space = min_t(size_t, space, fo->size); 3573 3574 /* limit to order-0 allocations */ 3575 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3576 3577 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3578 if (!syn_data) 3579 goto fallback; 3580 syn_data->ip_summed = CHECKSUM_PARTIAL; 3581 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3582 if (space) { 3583 int copied = copy_from_iter(skb_put(syn_data, space), space, 3584 &fo->data->msg_iter); 3585 if (unlikely(!copied)) { 3586 tcp_skb_tsorted_anchor_cleanup(syn_data); 3587 kfree_skb(syn_data); 3588 goto fallback; 3589 } 3590 if (copied != space) { 3591 skb_trim(syn_data, copied); 3592 space = copied; 3593 } 3594 skb_zcopy_set(syn_data, fo->uarg, NULL); 3595 } 3596 /* No more data pending in inet_wait_for_connect() */ 3597 if (space == fo->size) 3598 fo->data = NULL; 3599 fo->copied = space; 3600 3601 tcp_connect_queue_skb(sk, syn_data); 3602 if (syn_data->len) 3603 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3604 3605 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3606 3607 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3608 3609 /* Now full SYN+DATA was cloned and sent (or not), 3610 * remove the SYN from the original skb (syn_data) 3611 * we keep in write queue in case of a retransmit, as we 3612 * also have the SYN packet (with no data) in the same queue. 3613 */ 3614 TCP_SKB_CB(syn_data)->seq++; 3615 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3616 if (!err) { 3617 tp->syn_data = (fo->copied > 0); 3618 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3619 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3620 goto done; 3621 } 3622 3623 /* data was not sent, put it in write_queue */ 3624 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3625 tp->packets_out -= tcp_skb_pcount(syn_data); 3626 3627 fallback: 3628 /* Send a regular SYN with Fast Open cookie request option */ 3629 if (fo->cookie.len > 0) 3630 fo->cookie.len = 0; 3631 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3632 if (err) 3633 tp->syn_fastopen = 0; 3634 done: 3635 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3636 return err; 3637 } 3638 3639 /* Build a SYN and send it off. */ 3640 int tcp_connect(struct sock *sk) 3641 { 3642 struct tcp_sock *tp = tcp_sk(sk); 3643 struct sk_buff *buff; 3644 int err; 3645 3646 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3647 3648 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3649 return -EHOSTUNREACH; /* Routing failure or similar. */ 3650 3651 tcp_connect_init(sk); 3652 3653 if (unlikely(tp->repair)) { 3654 tcp_finish_connect(sk, NULL); 3655 return 0; 3656 } 3657 3658 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3659 if (unlikely(!buff)) 3660 return -ENOBUFS; 3661 3662 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3663 tcp_mstamp_refresh(tp); 3664 tp->retrans_stamp = tcp_time_stamp(tp); 3665 tcp_connect_queue_skb(sk, buff); 3666 tcp_ecn_send_syn(sk, buff); 3667 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3668 3669 /* Send off SYN; include data in Fast Open. */ 3670 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3671 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3672 if (err == -ECONNREFUSED) 3673 return err; 3674 3675 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3676 * in order to make this packet get counted in tcpOutSegs. 3677 */ 3678 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3679 tp->pushed_seq = tp->write_seq; 3680 buff = tcp_send_head(sk); 3681 if (unlikely(buff)) { 3682 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3683 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3684 } 3685 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3686 3687 /* Timer for repeating the SYN until an answer. */ 3688 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3689 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3690 return 0; 3691 } 3692 EXPORT_SYMBOL(tcp_connect); 3693 3694 /* Send out a delayed ack, the caller does the policy checking 3695 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3696 * for details. 3697 */ 3698 void tcp_send_delayed_ack(struct sock *sk) 3699 { 3700 struct inet_connection_sock *icsk = inet_csk(sk); 3701 int ato = icsk->icsk_ack.ato; 3702 unsigned long timeout; 3703 3704 if (ato > TCP_DELACK_MIN) { 3705 const struct tcp_sock *tp = tcp_sk(sk); 3706 int max_ato = HZ / 2; 3707 3708 if (inet_csk_in_pingpong_mode(sk) || 3709 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3710 max_ato = TCP_DELACK_MAX; 3711 3712 /* Slow path, intersegment interval is "high". */ 3713 3714 /* If some rtt estimate is known, use it to bound delayed ack. 3715 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3716 * directly. 3717 */ 3718 if (tp->srtt_us) { 3719 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3720 TCP_DELACK_MIN); 3721 3722 if (rtt < max_ato) 3723 max_ato = rtt; 3724 } 3725 3726 ato = min(ato, max_ato); 3727 } 3728 3729 /* Stay within the limit we were given */ 3730 timeout = jiffies + ato; 3731 3732 /* Use new timeout only if there wasn't a older one earlier. */ 3733 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3734 /* If delack timer was blocked or is about to expire, 3735 * send ACK now. 3736 */ 3737 if (icsk->icsk_ack.blocked || 3738 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3739 tcp_send_ack(sk); 3740 return; 3741 } 3742 3743 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3744 timeout = icsk->icsk_ack.timeout; 3745 } 3746 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3747 icsk->icsk_ack.timeout = timeout; 3748 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3749 } 3750 3751 /* This routine sends an ack and also updates the window. */ 3752 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3753 { 3754 struct sk_buff *buff; 3755 3756 /* If we have been reset, we may not send again. */ 3757 if (sk->sk_state == TCP_CLOSE) 3758 return; 3759 3760 /* We are not putting this on the write queue, so 3761 * tcp_transmit_skb() will set the ownership to this 3762 * sock. 3763 */ 3764 buff = alloc_skb(MAX_TCP_HEADER, 3765 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3766 if (unlikely(!buff)) { 3767 inet_csk_schedule_ack(sk); 3768 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3769 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3770 TCP_DELACK_MAX, TCP_RTO_MAX); 3771 return; 3772 } 3773 3774 /* Reserve space for headers and prepare control bits. */ 3775 skb_reserve(buff, MAX_TCP_HEADER); 3776 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3777 3778 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3779 * too much. 3780 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3781 */ 3782 skb_set_tcp_pure_ack(buff); 3783 3784 /* Send it off, this clears delayed acks for us. */ 3785 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3786 } 3787 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3788 3789 void tcp_send_ack(struct sock *sk) 3790 { 3791 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3792 } 3793 3794 /* This routine sends a packet with an out of date sequence 3795 * number. It assumes the other end will try to ack it. 3796 * 3797 * Question: what should we make while urgent mode? 3798 * 4.4BSD forces sending single byte of data. We cannot send 3799 * out of window data, because we have SND.NXT==SND.MAX... 3800 * 3801 * Current solution: to send TWO zero-length segments in urgent mode: 3802 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3803 * out-of-date with SND.UNA-1 to probe window. 3804 */ 3805 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3806 { 3807 struct tcp_sock *tp = tcp_sk(sk); 3808 struct sk_buff *skb; 3809 3810 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3811 skb = alloc_skb(MAX_TCP_HEADER, 3812 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3813 if (!skb) 3814 return -1; 3815 3816 /* Reserve space for headers and set control bits. */ 3817 skb_reserve(skb, MAX_TCP_HEADER); 3818 /* Use a previous sequence. This should cause the other 3819 * end to send an ack. Don't queue or clone SKB, just 3820 * send it. 3821 */ 3822 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3823 NET_INC_STATS(sock_net(sk), mib); 3824 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3825 } 3826 3827 /* Called from setsockopt( ... TCP_REPAIR ) */ 3828 void tcp_send_window_probe(struct sock *sk) 3829 { 3830 if (sk->sk_state == TCP_ESTABLISHED) { 3831 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3832 tcp_mstamp_refresh(tcp_sk(sk)); 3833 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3834 } 3835 } 3836 3837 /* Initiate keepalive or window probe from timer. */ 3838 int tcp_write_wakeup(struct sock *sk, int mib) 3839 { 3840 struct tcp_sock *tp = tcp_sk(sk); 3841 struct sk_buff *skb; 3842 3843 if (sk->sk_state == TCP_CLOSE) 3844 return -1; 3845 3846 skb = tcp_send_head(sk); 3847 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3848 int err; 3849 unsigned int mss = tcp_current_mss(sk); 3850 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3851 3852 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3853 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3854 3855 /* We are probing the opening of a window 3856 * but the window size is != 0 3857 * must have been a result SWS avoidance ( sender ) 3858 */ 3859 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3860 skb->len > mss) { 3861 seg_size = min(seg_size, mss); 3862 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3863 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3864 skb, seg_size, mss, GFP_ATOMIC)) 3865 return -1; 3866 } else if (!tcp_skb_pcount(skb)) 3867 tcp_set_skb_tso_segs(skb, mss); 3868 3869 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3870 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3871 if (!err) 3872 tcp_event_new_data_sent(sk, skb); 3873 return err; 3874 } else { 3875 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3876 tcp_xmit_probe_skb(sk, 1, mib); 3877 return tcp_xmit_probe_skb(sk, 0, mib); 3878 } 3879 } 3880 3881 /* A window probe timeout has occurred. If window is not closed send 3882 * a partial packet else a zero probe. 3883 */ 3884 void tcp_send_probe0(struct sock *sk) 3885 { 3886 struct inet_connection_sock *icsk = inet_csk(sk); 3887 struct tcp_sock *tp = tcp_sk(sk); 3888 struct net *net = sock_net(sk); 3889 unsigned long timeout; 3890 int err; 3891 3892 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3893 3894 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3895 /* Cancel probe timer, if it is not required. */ 3896 icsk->icsk_probes_out = 0; 3897 icsk->icsk_backoff = 0; 3898 return; 3899 } 3900 3901 icsk->icsk_probes_out++; 3902 if (err <= 0) { 3903 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3904 icsk->icsk_backoff++; 3905 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 3906 } else { 3907 /* If packet was not sent due to local congestion, 3908 * Let senders fight for local resources conservatively. 3909 */ 3910 timeout = TCP_RESOURCE_PROBE_INTERVAL; 3911 } 3912 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 3913 } 3914 3915 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3916 { 3917 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3918 struct flowi fl; 3919 int res; 3920 3921 tcp_rsk(req)->txhash = net_tx_rndhash(); 3922 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3923 if (!res) { 3924 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3925 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3926 if (unlikely(tcp_passive_fastopen(sk))) 3927 tcp_sk(sk)->total_retrans++; 3928 trace_tcp_retransmit_synack(sk, req); 3929 } 3930 return res; 3931 } 3932 EXPORT_SYMBOL(tcp_rtx_synack); 3933