1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 } 86 87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 88 * window scaling factor due to loss of precision. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 99 (tp->rx_opt.wscale_ok && 100 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 101 return tp->snd_nxt; 102 else 103 return tcp_wnd_end(tp); 104 } 105 106 /* Calculate mss to advertise in SYN segment. 107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 108 * 109 * 1. It is independent of path mtu. 110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 112 * attached devices, because some buggy hosts are confused by 113 * large MSS. 114 * 4. We do not make 3, we advertise MSS, calculated from first 115 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 116 * This may be overridden via information stored in routing table. 117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 118 * probably even Jumbo". 119 */ 120 static __u16 tcp_advertise_mss(struct sock *sk) 121 { 122 struct tcp_sock *tp = tcp_sk(sk); 123 const struct dst_entry *dst = __sk_dst_get(sk); 124 int mss = tp->advmss; 125 126 if (dst) { 127 unsigned int metric = dst_metric_advmss(dst); 128 129 if (metric < mss) { 130 mss = metric; 131 tp->advmss = mss; 132 } 133 } 134 135 return (__u16)mss; 136 } 137 138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 139 * This is the first part of cwnd validation mechanism. 140 */ 141 void tcp_cwnd_restart(struct sock *sk, s32 delta) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 145 u32 cwnd = tp->snd_cwnd; 146 147 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 148 149 tp->snd_ssthresh = tcp_current_ssthresh(sk); 150 restart_cwnd = min(restart_cwnd, cwnd); 151 152 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 153 cwnd >>= 1; 154 tp->snd_cwnd = max(cwnd, restart_cwnd); 155 tp->snd_cwnd_stamp = tcp_jiffies32; 156 tp->snd_cwnd_used = 0; 157 } 158 159 /* Congestion state accounting after a packet has been sent. */ 160 static void tcp_event_data_sent(struct tcp_sock *tp, 161 struct sock *sk) 162 { 163 struct inet_connection_sock *icsk = inet_csk(sk); 164 const u32 now = tcp_jiffies32; 165 166 if (tcp_packets_in_flight(tp) == 0) 167 tcp_ca_event(sk, CA_EVENT_TX_START); 168 169 /* If this is the first data packet sent in response to the 170 * previous received data, 171 * and it is a reply for ato after last received packet, 172 * increase pingpong count. 173 */ 174 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 175 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_inc_pingpong_cnt(sk); 177 178 tp->lsndtime = now; 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 183 u32 rcv_nxt) 184 { 185 struct tcp_sock *tp = tcp_sk(sk); 186 187 if (unlikely(tp->compressed_ack)) { 188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 189 tp->compressed_ack); 190 tp->compressed_ack = 0; 191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 192 __sock_put(sk); 193 } 194 195 if (unlikely(rcv_nxt != tp->rcv_nxt)) 196 return; /* Special ACK sent by DCTCP to reflect ECN */ 197 tcp_dec_quickack_mode(sk, pkts); 198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 199 } 200 201 /* Determine a window scaling and initial window to offer. 202 * Based on the assumption that the given amount of space 203 * will be offered. Store the results in the tp structure. 204 * NOTE: for smooth operation initial space offering should 205 * be a multiple of mss if possible. We assume here that mss >= 1. 206 * This MUST be enforced by all callers. 207 */ 208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 209 __u32 *rcv_wnd, __u32 *window_clamp, 210 int wscale_ok, __u8 *rcv_wscale, 211 __u32 init_rcv_wnd) 212 { 213 unsigned int space = (__space < 0 ? 0 : __space); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (*window_clamp == 0) 217 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 218 space = min(*window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = rounddown(space, mss); 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = min_t(u32, space, U16_MAX); 236 237 if (init_rcv_wnd) 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 240 *rcv_wscale = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window */ 243 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 244 space = max_t(u32, space, sysctl_rmem_max); 245 space = min_t(u32, space, *window_clamp); 246 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 247 0, TCP_MAX_WSCALE); 248 } 249 /* Set the clamp no higher than max representable value */ 250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 251 } 252 EXPORT_SYMBOL(tcp_select_initial_window); 253 254 /* Chose a new window to advertise, update state in tcp_sock for the 255 * socket, and return result with RFC1323 scaling applied. The return 256 * value can be stuffed directly into th->window for an outgoing 257 * frame. 258 */ 259 static u16 tcp_select_window(struct sock *sk) 260 { 261 struct tcp_sock *tp = tcp_sk(sk); 262 u32 old_win = tp->rcv_wnd; 263 u32 cur_win = tcp_receive_window(tp); 264 u32 new_win = __tcp_select_window(sk); 265 266 /* Never shrink the offered window */ 267 if (new_win < cur_win) { 268 /* Danger Will Robinson! 269 * Don't update rcv_wup/rcv_wnd here or else 270 * we will not be able to advertise a zero 271 * window in time. --DaveM 272 * 273 * Relax Will Robinson. 274 */ 275 if (new_win == 0) 276 NET_INC_STATS(sock_net(sk), 277 LINUX_MIB_TCPWANTZEROWINDOWADV); 278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 279 } 280 tp->rcv_wnd = new_win; 281 tp->rcv_wup = tp->rcv_nxt; 282 283 /* Make sure we do not exceed the maximum possible 284 * scaled window. 285 */ 286 if (!tp->rx_opt.rcv_wscale && 287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 288 new_win = min(new_win, MAX_TCP_WINDOW); 289 else 290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 291 292 /* RFC1323 scaling applied */ 293 new_win >>= tp->rx_opt.rcv_wscale; 294 295 /* If we advertise zero window, disable fast path. */ 296 if (new_win == 0) { 297 tp->pred_flags = 0; 298 if (old_win) 299 NET_INC_STATS(sock_net(sk), 300 LINUX_MIB_TCPTOZEROWINDOWADV); 301 } else if (old_win == 0) { 302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 303 } 304 305 return new_win; 306 } 307 308 /* Packet ECN state for a SYN-ACK */ 309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 314 if (!(tp->ecn_flags & TCP_ECN_OK)) 315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 316 else if (tcp_ca_needs_ecn(sk) || 317 tcp_bpf_ca_needs_ecn(sk)) 318 INET_ECN_xmit(sk); 319 } 320 321 /* Packet ECN state for a SYN. */ 322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 328 329 if (!use_ecn) { 330 const struct dst_entry *dst = __sk_dst_get(sk); 331 332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 333 use_ecn = true; 334 } 335 336 tp->ecn_flags = 0; 337 338 if (use_ecn) { 339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 340 tp->ecn_flags = TCP_ECN_OK; 341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 342 INET_ECN_xmit(sk); 343 } 344 } 345 346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 347 { 348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 349 /* tp->ecn_flags are cleared at a later point in time when 350 * SYN ACK is ultimatively being received. 351 */ 352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 353 } 354 355 static void 356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 357 { 358 if (inet_rsk(req)->ecn_ok) 359 th->ece = 1; 360 } 361 362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 363 * be sent. 364 */ 365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 366 struct tcphdr *th, int tcp_header_len) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 370 if (tp->ecn_flags & TCP_ECN_OK) { 371 /* Not-retransmitted data segment: set ECT and inject CWR. */ 372 if (skb->len != tcp_header_len && 373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 374 INET_ECN_xmit(sk); 375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 377 th->cwr = 1; 378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 379 } 380 } else if (!tcp_ca_needs_ecn(sk)) { 381 /* ACK or retransmitted segment: clear ECT|CE */ 382 INET_ECN_dontxmit(sk); 383 } 384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 385 th->ece = 1; 386 } 387 } 388 389 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 390 * auto increment end seqno. 391 */ 392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 393 { 394 skb->ip_summed = CHECKSUM_PARTIAL; 395 396 TCP_SKB_CB(skb)->tcp_flags = flags; 397 TCP_SKB_CB(skb)->sacked = 0; 398 399 tcp_skb_pcount_set(skb, 1); 400 401 TCP_SKB_CB(skb)->seq = seq; 402 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 403 seq++; 404 TCP_SKB_CB(skb)->end_seq = seq; 405 } 406 407 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 408 { 409 return tp->snd_una != tp->snd_up; 410 } 411 412 #define OPTION_SACK_ADVERTISE (1 << 0) 413 #define OPTION_TS (1 << 1) 414 #define OPTION_MD5 (1 << 2) 415 #define OPTION_WSCALE (1 << 3) 416 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 417 #define OPTION_SMC (1 << 9) 418 #define OPTION_MPTCP (1 << 10) 419 420 static void smc_options_write(__be32 *ptr, u16 *options) 421 { 422 #if IS_ENABLED(CONFIG_SMC) 423 if (static_branch_unlikely(&tcp_have_smc)) { 424 if (unlikely(OPTION_SMC & *options)) { 425 *ptr++ = htonl((TCPOPT_NOP << 24) | 426 (TCPOPT_NOP << 16) | 427 (TCPOPT_EXP << 8) | 428 (TCPOLEN_EXP_SMC_BASE)); 429 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 430 } 431 } 432 #endif 433 } 434 435 struct tcp_out_options { 436 u16 options; /* bit field of OPTION_* */ 437 u16 mss; /* 0 to disable */ 438 u8 ws; /* window scale, 0 to disable */ 439 u8 num_sack_blocks; /* number of SACK blocks to include */ 440 u8 hash_size; /* bytes in hash_location */ 441 u8 bpf_opt_len; /* length of BPF hdr option */ 442 __u8 *hash_location; /* temporary pointer, overloaded */ 443 __u32 tsval, tsecr; /* need to include OPTION_TS */ 444 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 445 struct mptcp_out_options mptcp; 446 }; 447 448 static void mptcp_options_write(__be32 *ptr, const struct tcp_sock *tp, 449 struct tcp_out_options *opts) 450 { 451 #if IS_ENABLED(CONFIG_MPTCP) 452 if (unlikely(OPTION_MPTCP & opts->options)) 453 mptcp_write_options(ptr, tp, &opts->mptcp); 454 #endif 455 } 456 457 #ifdef CONFIG_CGROUP_BPF 458 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 459 enum tcp_synack_type synack_type) 460 { 461 if (unlikely(!skb)) 462 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 463 464 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 465 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 466 467 return 0; 468 } 469 470 /* req, syn_skb and synack_type are used when writing synack */ 471 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 472 struct request_sock *req, 473 struct sk_buff *syn_skb, 474 enum tcp_synack_type synack_type, 475 struct tcp_out_options *opts, 476 unsigned int *remaining) 477 { 478 struct bpf_sock_ops_kern sock_ops; 479 int err; 480 481 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 482 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 483 !*remaining) 484 return; 485 486 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 487 488 /* init sock_ops */ 489 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 490 491 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 492 493 if (req) { 494 /* The listen "sk" cannot be passed here because 495 * it is not locked. It would not make too much 496 * sense to do bpf_setsockopt(listen_sk) based 497 * on individual connection request also. 498 * 499 * Thus, "req" is passed here and the cgroup-bpf-progs 500 * of the listen "sk" will be run. 501 * 502 * "req" is also used here for fastopen even the "sk" here is 503 * a fullsock "child" sk. It is to keep the behavior 504 * consistent between fastopen and non-fastopen on 505 * the bpf programming side. 506 */ 507 sock_ops.sk = (struct sock *)req; 508 sock_ops.syn_skb = syn_skb; 509 } else { 510 sock_owned_by_me(sk); 511 512 sock_ops.is_fullsock = 1; 513 sock_ops.sk = sk; 514 } 515 516 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 517 sock_ops.remaining_opt_len = *remaining; 518 /* tcp_current_mss() does not pass a skb */ 519 if (skb) 520 bpf_skops_init_skb(&sock_ops, skb, 0); 521 522 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 523 524 if (err || sock_ops.remaining_opt_len == *remaining) 525 return; 526 527 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 528 /* round up to 4 bytes */ 529 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 530 531 *remaining -= opts->bpf_opt_len; 532 } 533 534 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 535 struct request_sock *req, 536 struct sk_buff *syn_skb, 537 enum tcp_synack_type synack_type, 538 struct tcp_out_options *opts) 539 { 540 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 541 struct bpf_sock_ops_kern sock_ops; 542 int err; 543 544 if (likely(!max_opt_len)) 545 return; 546 547 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 548 549 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 550 551 if (req) { 552 sock_ops.sk = (struct sock *)req; 553 sock_ops.syn_skb = syn_skb; 554 } else { 555 sock_owned_by_me(sk); 556 557 sock_ops.is_fullsock = 1; 558 sock_ops.sk = sk; 559 } 560 561 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 562 sock_ops.remaining_opt_len = max_opt_len; 563 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 564 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 565 566 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 567 568 if (err) 569 nr_written = 0; 570 else 571 nr_written = max_opt_len - sock_ops.remaining_opt_len; 572 573 if (nr_written < max_opt_len) 574 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 575 max_opt_len - nr_written); 576 } 577 #else 578 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 579 struct request_sock *req, 580 struct sk_buff *syn_skb, 581 enum tcp_synack_type synack_type, 582 struct tcp_out_options *opts, 583 unsigned int *remaining) 584 { 585 } 586 587 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 588 struct request_sock *req, 589 struct sk_buff *syn_skb, 590 enum tcp_synack_type synack_type, 591 struct tcp_out_options *opts) 592 { 593 } 594 #endif 595 596 /* Write previously computed TCP options to the packet. 597 * 598 * Beware: Something in the Internet is very sensitive to the ordering of 599 * TCP options, we learned this through the hard way, so be careful here. 600 * Luckily we can at least blame others for their non-compliance but from 601 * inter-operability perspective it seems that we're somewhat stuck with 602 * the ordering which we have been using if we want to keep working with 603 * those broken things (not that it currently hurts anybody as there isn't 604 * particular reason why the ordering would need to be changed). 605 * 606 * At least SACK_PERM as the first option is known to lead to a disaster 607 * (but it may well be that other scenarios fail similarly). 608 */ 609 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 610 struct tcp_out_options *opts) 611 { 612 u16 options = opts->options; /* mungable copy */ 613 614 if (unlikely(OPTION_MD5 & options)) { 615 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 616 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 617 /* overload cookie hash location */ 618 opts->hash_location = (__u8 *)ptr; 619 ptr += 4; 620 } 621 622 if (unlikely(opts->mss)) { 623 *ptr++ = htonl((TCPOPT_MSS << 24) | 624 (TCPOLEN_MSS << 16) | 625 opts->mss); 626 } 627 628 if (likely(OPTION_TS & options)) { 629 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 630 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 631 (TCPOLEN_SACK_PERM << 16) | 632 (TCPOPT_TIMESTAMP << 8) | 633 TCPOLEN_TIMESTAMP); 634 options &= ~OPTION_SACK_ADVERTISE; 635 } else { 636 *ptr++ = htonl((TCPOPT_NOP << 24) | 637 (TCPOPT_NOP << 16) | 638 (TCPOPT_TIMESTAMP << 8) | 639 TCPOLEN_TIMESTAMP); 640 } 641 *ptr++ = htonl(opts->tsval); 642 *ptr++ = htonl(opts->tsecr); 643 } 644 645 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 646 *ptr++ = htonl((TCPOPT_NOP << 24) | 647 (TCPOPT_NOP << 16) | 648 (TCPOPT_SACK_PERM << 8) | 649 TCPOLEN_SACK_PERM); 650 } 651 652 if (unlikely(OPTION_WSCALE & options)) { 653 *ptr++ = htonl((TCPOPT_NOP << 24) | 654 (TCPOPT_WINDOW << 16) | 655 (TCPOLEN_WINDOW << 8) | 656 opts->ws); 657 } 658 659 if (unlikely(opts->num_sack_blocks)) { 660 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 661 tp->duplicate_sack : tp->selective_acks; 662 int this_sack; 663 664 *ptr++ = htonl((TCPOPT_NOP << 24) | 665 (TCPOPT_NOP << 16) | 666 (TCPOPT_SACK << 8) | 667 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 668 TCPOLEN_SACK_PERBLOCK))); 669 670 for (this_sack = 0; this_sack < opts->num_sack_blocks; 671 ++this_sack) { 672 *ptr++ = htonl(sp[this_sack].start_seq); 673 *ptr++ = htonl(sp[this_sack].end_seq); 674 } 675 676 tp->rx_opt.dsack = 0; 677 } 678 679 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 680 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 681 u8 *p = (u8 *)ptr; 682 u32 len; /* Fast Open option length */ 683 684 if (foc->exp) { 685 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 686 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 687 TCPOPT_FASTOPEN_MAGIC); 688 p += TCPOLEN_EXP_FASTOPEN_BASE; 689 } else { 690 len = TCPOLEN_FASTOPEN_BASE + foc->len; 691 *p++ = TCPOPT_FASTOPEN; 692 *p++ = len; 693 } 694 695 memcpy(p, foc->val, foc->len); 696 if ((len & 3) == 2) { 697 p[foc->len] = TCPOPT_NOP; 698 p[foc->len + 1] = TCPOPT_NOP; 699 } 700 ptr += (len + 3) >> 2; 701 } 702 703 smc_options_write(ptr, &options); 704 705 mptcp_options_write(ptr, tp, opts); 706 } 707 708 static void smc_set_option(const struct tcp_sock *tp, 709 struct tcp_out_options *opts, 710 unsigned int *remaining) 711 { 712 #if IS_ENABLED(CONFIG_SMC) 713 if (static_branch_unlikely(&tcp_have_smc)) { 714 if (tp->syn_smc) { 715 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 716 opts->options |= OPTION_SMC; 717 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 718 } 719 } 720 } 721 #endif 722 } 723 724 static void smc_set_option_cond(const struct tcp_sock *tp, 725 const struct inet_request_sock *ireq, 726 struct tcp_out_options *opts, 727 unsigned int *remaining) 728 { 729 #if IS_ENABLED(CONFIG_SMC) 730 if (static_branch_unlikely(&tcp_have_smc)) { 731 if (tp->syn_smc && ireq->smc_ok) { 732 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 733 opts->options |= OPTION_SMC; 734 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 735 } 736 } 737 } 738 #endif 739 } 740 741 static void mptcp_set_option_cond(const struct request_sock *req, 742 struct tcp_out_options *opts, 743 unsigned int *remaining) 744 { 745 if (rsk_is_mptcp(req)) { 746 unsigned int size; 747 748 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 749 if (*remaining >= size) { 750 opts->options |= OPTION_MPTCP; 751 *remaining -= size; 752 } 753 } 754 } 755 } 756 757 /* Compute TCP options for SYN packets. This is not the final 758 * network wire format yet. 759 */ 760 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 761 struct tcp_out_options *opts, 762 struct tcp_md5sig_key **md5) 763 { 764 struct tcp_sock *tp = tcp_sk(sk); 765 unsigned int remaining = MAX_TCP_OPTION_SPACE; 766 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 767 768 *md5 = NULL; 769 #ifdef CONFIG_TCP_MD5SIG 770 if (static_branch_unlikely(&tcp_md5_needed) && 771 rcu_access_pointer(tp->md5sig_info)) { 772 *md5 = tp->af_specific->md5_lookup(sk, sk); 773 if (*md5) { 774 opts->options |= OPTION_MD5; 775 remaining -= TCPOLEN_MD5SIG_ALIGNED; 776 } 777 } 778 #endif 779 780 /* We always get an MSS option. The option bytes which will be seen in 781 * normal data packets should timestamps be used, must be in the MSS 782 * advertised. But we subtract them from tp->mss_cache so that 783 * calculations in tcp_sendmsg are simpler etc. So account for this 784 * fact here if necessary. If we don't do this correctly, as a 785 * receiver we won't recognize data packets as being full sized when we 786 * should, and thus we won't abide by the delayed ACK rules correctly. 787 * SACKs don't matter, we never delay an ACK when we have any of those 788 * going out. */ 789 opts->mss = tcp_advertise_mss(sk); 790 remaining -= TCPOLEN_MSS_ALIGNED; 791 792 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 793 opts->options |= OPTION_TS; 794 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 795 opts->tsecr = tp->rx_opt.ts_recent; 796 remaining -= TCPOLEN_TSTAMP_ALIGNED; 797 } 798 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 799 opts->ws = tp->rx_opt.rcv_wscale; 800 opts->options |= OPTION_WSCALE; 801 remaining -= TCPOLEN_WSCALE_ALIGNED; 802 } 803 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 804 opts->options |= OPTION_SACK_ADVERTISE; 805 if (unlikely(!(OPTION_TS & opts->options))) 806 remaining -= TCPOLEN_SACKPERM_ALIGNED; 807 } 808 809 if (fastopen && fastopen->cookie.len >= 0) { 810 u32 need = fastopen->cookie.len; 811 812 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 813 TCPOLEN_FASTOPEN_BASE; 814 need = (need + 3) & ~3U; /* Align to 32 bits */ 815 if (remaining >= need) { 816 opts->options |= OPTION_FAST_OPEN_COOKIE; 817 opts->fastopen_cookie = &fastopen->cookie; 818 remaining -= need; 819 tp->syn_fastopen = 1; 820 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 821 } 822 } 823 824 smc_set_option(tp, opts, &remaining); 825 826 if (sk_is_mptcp(sk)) { 827 unsigned int size; 828 829 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 830 opts->options |= OPTION_MPTCP; 831 remaining -= size; 832 } 833 } 834 835 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 836 837 return MAX_TCP_OPTION_SPACE - remaining; 838 } 839 840 /* Set up TCP options for SYN-ACKs. */ 841 static unsigned int tcp_synack_options(const struct sock *sk, 842 struct request_sock *req, 843 unsigned int mss, struct sk_buff *skb, 844 struct tcp_out_options *opts, 845 const struct tcp_md5sig_key *md5, 846 struct tcp_fastopen_cookie *foc, 847 enum tcp_synack_type synack_type, 848 struct sk_buff *syn_skb) 849 { 850 struct inet_request_sock *ireq = inet_rsk(req); 851 unsigned int remaining = MAX_TCP_OPTION_SPACE; 852 853 #ifdef CONFIG_TCP_MD5SIG 854 if (md5) { 855 opts->options |= OPTION_MD5; 856 remaining -= TCPOLEN_MD5SIG_ALIGNED; 857 858 /* We can't fit any SACK blocks in a packet with MD5 + TS 859 * options. There was discussion about disabling SACK 860 * rather than TS in order to fit in better with old, 861 * buggy kernels, but that was deemed to be unnecessary. 862 */ 863 if (synack_type != TCP_SYNACK_COOKIE) 864 ireq->tstamp_ok &= !ireq->sack_ok; 865 } 866 #endif 867 868 /* We always send an MSS option. */ 869 opts->mss = mss; 870 remaining -= TCPOLEN_MSS_ALIGNED; 871 872 if (likely(ireq->wscale_ok)) { 873 opts->ws = ireq->rcv_wscale; 874 opts->options |= OPTION_WSCALE; 875 remaining -= TCPOLEN_WSCALE_ALIGNED; 876 } 877 if (likely(ireq->tstamp_ok)) { 878 opts->options |= OPTION_TS; 879 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 880 opts->tsecr = req->ts_recent; 881 remaining -= TCPOLEN_TSTAMP_ALIGNED; 882 } 883 if (likely(ireq->sack_ok)) { 884 opts->options |= OPTION_SACK_ADVERTISE; 885 if (unlikely(!ireq->tstamp_ok)) 886 remaining -= TCPOLEN_SACKPERM_ALIGNED; 887 } 888 if (foc != NULL && foc->len >= 0) { 889 u32 need = foc->len; 890 891 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 892 TCPOLEN_FASTOPEN_BASE; 893 need = (need + 3) & ~3U; /* Align to 32 bits */ 894 if (remaining >= need) { 895 opts->options |= OPTION_FAST_OPEN_COOKIE; 896 opts->fastopen_cookie = foc; 897 remaining -= need; 898 } 899 } 900 901 mptcp_set_option_cond(req, opts, &remaining); 902 903 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 904 905 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 906 synack_type, opts, &remaining); 907 908 return MAX_TCP_OPTION_SPACE - remaining; 909 } 910 911 /* Compute TCP options for ESTABLISHED sockets. This is not the 912 * final wire format yet. 913 */ 914 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 915 struct tcp_out_options *opts, 916 struct tcp_md5sig_key **md5) 917 { 918 struct tcp_sock *tp = tcp_sk(sk); 919 unsigned int size = 0; 920 unsigned int eff_sacks; 921 922 opts->options = 0; 923 924 *md5 = NULL; 925 #ifdef CONFIG_TCP_MD5SIG 926 if (static_branch_unlikely(&tcp_md5_needed) && 927 rcu_access_pointer(tp->md5sig_info)) { 928 *md5 = tp->af_specific->md5_lookup(sk, sk); 929 if (*md5) { 930 opts->options |= OPTION_MD5; 931 size += TCPOLEN_MD5SIG_ALIGNED; 932 } 933 } 934 #endif 935 936 if (likely(tp->rx_opt.tstamp_ok)) { 937 opts->options |= OPTION_TS; 938 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 939 opts->tsecr = tp->rx_opt.ts_recent; 940 size += TCPOLEN_TSTAMP_ALIGNED; 941 } 942 943 /* MPTCP options have precedence over SACK for the limited TCP 944 * option space because a MPTCP connection would be forced to 945 * fall back to regular TCP if a required multipath option is 946 * missing. SACK still gets a chance to use whatever space is 947 * left. 948 */ 949 if (sk_is_mptcp(sk)) { 950 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 951 unsigned int opt_size = 0; 952 953 if (mptcp_established_options(sk, skb, &opt_size, remaining, 954 &opts->mptcp)) { 955 opts->options |= OPTION_MPTCP; 956 size += opt_size; 957 } 958 } 959 960 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 961 if (unlikely(eff_sacks)) { 962 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 963 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 964 TCPOLEN_SACK_PERBLOCK)) 965 return size; 966 967 opts->num_sack_blocks = 968 min_t(unsigned int, eff_sacks, 969 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 970 TCPOLEN_SACK_PERBLOCK); 971 972 size += TCPOLEN_SACK_BASE_ALIGNED + 973 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 974 } 975 976 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 977 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 978 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 979 980 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 981 982 size = MAX_TCP_OPTION_SPACE - remaining; 983 } 984 985 return size; 986 } 987 988 989 /* TCP SMALL QUEUES (TSQ) 990 * 991 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 992 * to reduce RTT and bufferbloat. 993 * We do this using a special skb destructor (tcp_wfree). 994 * 995 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 996 * needs to be reallocated in a driver. 997 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 998 * 999 * Since transmit from skb destructor is forbidden, we use a tasklet 1000 * to process all sockets that eventually need to send more skbs. 1001 * We use one tasklet per cpu, with its own queue of sockets. 1002 */ 1003 struct tsq_tasklet { 1004 struct tasklet_struct tasklet; 1005 struct list_head head; /* queue of tcp sockets */ 1006 }; 1007 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1008 1009 static void tcp_tsq_write(struct sock *sk) 1010 { 1011 if ((1 << sk->sk_state) & 1012 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1013 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1014 struct tcp_sock *tp = tcp_sk(sk); 1015 1016 if (tp->lost_out > tp->retrans_out && 1017 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 1018 tcp_mstamp_refresh(tp); 1019 tcp_xmit_retransmit_queue(sk); 1020 } 1021 1022 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1023 0, GFP_ATOMIC); 1024 } 1025 } 1026 1027 static void tcp_tsq_handler(struct sock *sk) 1028 { 1029 bh_lock_sock(sk); 1030 if (!sock_owned_by_user(sk)) 1031 tcp_tsq_write(sk); 1032 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1033 sock_hold(sk); 1034 bh_unlock_sock(sk); 1035 } 1036 /* 1037 * One tasklet per cpu tries to send more skbs. 1038 * We run in tasklet context but need to disable irqs when 1039 * transferring tsq->head because tcp_wfree() might 1040 * interrupt us (non NAPI drivers) 1041 */ 1042 static void tcp_tasklet_func(struct tasklet_struct *t) 1043 { 1044 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1045 LIST_HEAD(list); 1046 unsigned long flags; 1047 struct list_head *q, *n; 1048 struct tcp_sock *tp; 1049 struct sock *sk; 1050 1051 local_irq_save(flags); 1052 list_splice_init(&tsq->head, &list); 1053 local_irq_restore(flags); 1054 1055 list_for_each_safe(q, n, &list) { 1056 tp = list_entry(q, struct tcp_sock, tsq_node); 1057 list_del(&tp->tsq_node); 1058 1059 sk = (struct sock *)tp; 1060 smp_mb__before_atomic(); 1061 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1062 1063 tcp_tsq_handler(sk); 1064 sk_free(sk); 1065 } 1066 } 1067 1068 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1069 TCPF_WRITE_TIMER_DEFERRED | \ 1070 TCPF_DELACK_TIMER_DEFERRED | \ 1071 TCPF_MTU_REDUCED_DEFERRED) 1072 /** 1073 * tcp_release_cb - tcp release_sock() callback 1074 * @sk: socket 1075 * 1076 * called from release_sock() to perform protocol dependent 1077 * actions before socket release. 1078 */ 1079 void tcp_release_cb(struct sock *sk) 1080 { 1081 unsigned long flags, nflags; 1082 1083 /* perform an atomic operation only if at least one flag is set */ 1084 do { 1085 flags = sk->sk_tsq_flags; 1086 if (!(flags & TCP_DEFERRED_ALL)) 1087 return; 1088 nflags = flags & ~TCP_DEFERRED_ALL; 1089 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 1090 1091 if (flags & TCPF_TSQ_DEFERRED) { 1092 tcp_tsq_write(sk); 1093 __sock_put(sk); 1094 } 1095 /* Here begins the tricky part : 1096 * We are called from release_sock() with : 1097 * 1) BH disabled 1098 * 2) sk_lock.slock spinlock held 1099 * 3) socket owned by us (sk->sk_lock.owned == 1) 1100 * 1101 * But following code is meant to be called from BH handlers, 1102 * so we should keep BH disabled, but early release socket ownership 1103 */ 1104 sock_release_ownership(sk); 1105 1106 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1107 tcp_write_timer_handler(sk); 1108 __sock_put(sk); 1109 } 1110 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1111 tcp_delack_timer_handler(sk); 1112 __sock_put(sk); 1113 } 1114 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1115 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1116 __sock_put(sk); 1117 } 1118 } 1119 EXPORT_SYMBOL(tcp_release_cb); 1120 1121 void __init tcp_tasklet_init(void) 1122 { 1123 int i; 1124 1125 for_each_possible_cpu(i) { 1126 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1127 1128 INIT_LIST_HEAD(&tsq->head); 1129 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1130 } 1131 } 1132 1133 /* 1134 * Write buffer destructor automatically called from kfree_skb. 1135 * We can't xmit new skbs from this context, as we might already 1136 * hold qdisc lock. 1137 */ 1138 void tcp_wfree(struct sk_buff *skb) 1139 { 1140 struct sock *sk = skb->sk; 1141 struct tcp_sock *tp = tcp_sk(sk); 1142 unsigned long flags, nval, oval; 1143 1144 /* Keep one reference on sk_wmem_alloc. 1145 * Will be released by sk_free() from here or tcp_tasklet_func() 1146 */ 1147 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1148 1149 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1150 * Wait until our queues (qdisc + devices) are drained. 1151 * This gives : 1152 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1153 * - chance for incoming ACK (processed by another cpu maybe) 1154 * to migrate this flow (skb->ooo_okay will be eventually set) 1155 */ 1156 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1157 goto out; 1158 1159 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 1160 struct tsq_tasklet *tsq; 1161 bool empty; 1162 1163 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1164 goto out; 1165 1166 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1167 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 1168 if (nval != oval) 1169 continue; 1170 1171 /* queue this socket to tasklet queue */ 1172 local_irq_save(flags); 1173 tsq = this_cpu_ptr(&tsq_tasklet); 1174 empty = list_empty(&tsq->head); 1175 list_add(&tp->tsq_node, &tsq->head); 1176 if (empty) 1177 tasklet_schedule(&tsq->tasklet); 1178 local_irq_restore(flags); 1179 return; 1180 } 1181 out: 1182 sk_free(sk); 1183 } 1184 1185 /* Note: Called under soft irq. 1186 * We can call TCP stack right away, unless socket is owned by user. 1187 */ 1188 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1189 { 1190 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1191 struct sock *sk = (struct sock *)tp; 1192 1193 tcp_tsq_handler(sk); 1194 sock_put(sk); 1195 1196 return HRTIMER_NORESTART; 1197 } 1198 1199 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1200 u64 prior_wstamp) 1201 { 1202 struct tcp_sock *tp = tcp_sk(sk); 1203 1204 if (sk->sk_pacing_status != SK_PACING_NONE) { 1205 unsigned long rate = sk->sk_pacing_rate; 1206 1207 /* Original sch_fq does not pace first 10 MSS 1208 * Note that tp->data_segs_out overflows after 2^32 packets, 1209 * this is a minor annoyance. 1210 */ 1211 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1212 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1213 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1214 1215 /* take into account OS jitter */ 1216 len_ns -= min_t(u64, len_ns / 2, credit); 1217 tp->tcp_wstamp_ns += len_ns; 1218 } 1219 } 1220 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1221 } 1222 1223 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1224 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1225 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1226 1227 /* This routine actually transmits TCP packets queued in by 1228 * tcp_do_sendmsg(). This is used by both the initial 1229 * transmission and possible later retransmissions. 1230 * All SKB's seen here are completely headerless. It is our 1231 * job to build the TCP header, and pass the packet down to 1232 * IP so it can do the same plus pass the packet off to the 1233 * device. 1234 * 1235 * We are working here with either a clone of the original 1236 * SKB, or a fresh unique copy made by the retransmit engine. 1237 */ 1238 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1239 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1240 { 1241 const struct inet_connection_sock *icsk = inet_csk(sk); 1242 struct inet_sock *inet; 1243 struct tcp_sock *tp; 1244 struct tcp_skb_cb *tcb; 1245 struct tcp_out_options opts; 1246 unsigned int tcp_options_size, tcp_header_size; 1247 struct sk_buff *oskb = NULL; 1248 struct tcp_md5sig_key *md5; 1249 struct tcphdr *th; 1250 u64 prior_wstamp; 1251 int err; 1252 1253 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1254 tp = tcp_sk(sk); 1255 prior_wstamp = tp->tcp_wstamp_ns; 1256 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1257 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1258 if (clone_it) { 1259 oskb = skb; 1260 1261 tcp_skb_tsorted_save(oskb) { 1262 if (unlikely(skb_cloned(oskb))) 1263 skb = pskb_copy(oskb, gfp_mask); 1264 else 1265 skb = skb_clone(oskb, gfp_mask); 1266 } tcp_skb_tsorted_restore(oskb); 1267 1268 if (unlikely(!skb)) 1269 return -ENOBUFS; 1270 /* retransmit skbs might have a non zero value in skb->dev 1271 * because skb->dev is aliased with skb->rbnode.rb_left 1272 */ 1273 skb->dev = NULL; 1274 } 1275 1276 inet = inet_sk(sk); 1277 tcb = TCP_SKB_CB(skb); 1278 memset(&opts, 0, sizeof(opts)); 1279 1280 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1281 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1282 } else { 1283 tcp_options_size = tcp_established_options(sk, skb, &opts, 1284 &md5); 1285 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1286 * at receiver : This slightly improve GRO performance. 1287 * Note that we do not force the PSH flag for non GSO packets, 1288 * because they might be sent under high congestion events, 1289 * and in this case it is better to delay the delivery of 1-MSS 1290 * packets and thus the corresponding ACK packet that would 1291 * release the following packet. 1292 */ 1293 if (tcp_skb_pcount(skb) > 1) 1294 tcb->tcp_flags |= TCPHDR_PSH; 1295 } 1296 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1297 1298 /* if no packet is in qdisc/device queue, then allow XPS to select 1299 * another queue. We can be called from tcp_tsq_handler() 1300 * which holds one reference to sk. 1301 * 1302 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1303 * One way to get this would be to set skb->truesize = 2 on them. 1304 */ 1305 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1306 1307 /* If we had to use memory reserve to allocate this skb, 1308 * this might cause drops if packet is looped back : 1309 * Other socket might not have SOCK_MEMALLOC. 1310 * Packets not looped back do not care about pfmemalloc. 1311 */ 1312 skb->pfmemalloc = 0; 1313 1314 skb_push(skb, tcp_header_size); 1315 skb_reset_transport_header(skb); 1316 1317 skb_orphan(skb); 1318 skb->sk = sk; 1319 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1320 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1321 1322 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1323 1324 /* Build TCP header and checksum it. */ 1325 th = (struct tcphdr *)skb->data; 1326 th->source = inet->inet_sport; 1327 th->dest = inet->inet_dport; 1328 th->seq = htonl(tcb->seq); 1329 th->ack_seq = htonl(rcv_nxt); 1330 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1331 tcb->tcp_flags); 1332 1333 th->check = 0; 1334 th->urg_ptr = 0; 1335 1336 /* The urg_mode check is necessary during a below snd_una win probe */ 1337 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1338 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1339 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1340 th->urg = 1; 1341 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1342 th->urg_ptr = htons(0xFFFF); 1343 th->urg = 1; 1344 } 1345 } 1346 1347 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1348 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1349 th->window = htons(tcp_select_window(sk)); 1350 tcp_ecn_send(sk, skb, th, tcp_header_size); 1351 } else { 1352 /* RFC1323: The window in SYN & SYN/ACK segments 1353 * is never scaled. 1354 */ 1355 th->window = htons(min(tp->rcv_wnd, 65535U)); 1356 } 1357 1358 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1359 1360 #ifdef CONFIG_TCP_MD5SIG 1361 /* Calculate the MD5 hash, as we have all we need now */ 1362 if (md5) { 1363 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1364 tp->af_specific->calc_md5_hash(opts.hash_location, 1365 md5, sk, skb); 1366 } 1367 #endif 1368 1369 /* BPF prog is the last one writing header option */ 1370 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1371 1372 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1373 tcp_v6_send_check, tcp_v4_send_check, 1374 sk, skb); 1375 1376 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1377 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1378 1379 if (skb->len != tcp_header_size) { 1380 tcp_event_data_sent(tp, sk); 1381 tp->data_segs_out += tcp_skb_pcount(skb); 1382 tp->bytes_sent += skb->len - tcp_header_size; 1383 } 1384 1385 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1386 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1387 tcp_skb_pcount(skb)); 1388 1389 tp->segs_out += tcp_skb_pcount(skb); 1390 skb_set_hash_from_sk(skb, sk); 1391 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1392 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1393 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1394 1395 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1396 1397 /* Cleanup our debris for IP stacks */ 1398 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1399 sizeof(struct inet6_skb_parm))); 1400 1401 tcp_add_tx_delay(skb, tp); 1402 1403 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1404 inet6_csk_xmit, ip_queue_xmit, 1405 sk, skb, &inet->cork.fl); 1406 1407 if (unlikely(err > 0)) { 1408 tcp_enter_cwr(sk); 1409 err = net_xmit_eval(err); 1410 } 1411 if (!err && oskb) { 1412 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1413 tcp_rate_skb_sent(sk, oskb); 1414 } 1415 return err; 1416 } 1417 1418 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1419 gfp_t gfp_mask) 1420 { 1421 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1422 tcp_sk(sk)->rcv_nxt); 1423 } 1424 1425 /* This routine just queues the buffer for sending. 1426 * 1427 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1428 * otherwise socket can stall. 1429 */ 1430 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1431 { 1432 struct tcp_sock *tp = tcp_sk(sk); 1433 1434 /* Advance write_seq and place onto the write_queue. */ 1435 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1436 __skb_header_release(skb); 1437 tcp_add_write_queue_tail(sk, skb); 1438 sk_wmem_queued_add(sk, skb->truesize); 1439 sk_mem_charge(sk, skb->truesize); 1440 } 1441 1442 /* Initialize TSO segments for a packet. */ 1443 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1444 { 1445 if (skb->len <= mss_now) { 1446 /* Avoid the costly divide in the normal 1447 * non-TSO case. 1448 */ 1449 tcp_skb_pcount_set(skb, 1); 1450 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1451 } else { 1452 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1453 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1454 } 1455 } 1456 1457 /* Pcount in the middle of the write queue got changed, we need to do various 1458 * tweaks to fix counters 1459 */ 1460 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1461 { 1462 struct tcp_sock *tp = tcp_sk(sk); 1463 1464 tp->packets_out -= decr; 1465 1466 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1467 tp->sacked_out -= decr; 1468 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1469 tp->retrans_out -= decr; 1470 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1471 tp->lost_out -= decr; 1472 1473 /* Reno case is special. Sigh... */ 1474 if (tcp_is_reno(tp) && decr > 0) 1475 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1476 1477 if (tp->lost_skb_hint && 1478 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1479 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1480 tp->lost_cnt_hint -= decr; 1481 1482 tcp_verify_left_out(tp); 1483 } 1484 1485 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1486 { 1487 return TCP_SKB_CB(skb)->txstamp_ack || 1488 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1489 } 1490 1491 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1492 { 1493 struct skb_shared_info *shinfo = skb_shinfo(skb); 1494 1495 if (unlikely(tcp_has_tx_tstamp(skb)) && 1496 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1497 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1498 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1499 1500 shinfo->tx_flags &= ~tsflags; 1501 shinfo2->tx_flags |= tsflags; 1502 swap(shinfo->tskey, shinfo2->tskey); 1503 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1504 TCP_SKB_CB(skb)->txstamp_ack = 0; 1505 } 1506 } 1507 1508 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1509 { 1510 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1511 TCP_SKB_CB(skb)->eor = 0; 1512 } 1513 1514 /* Insert buff after skb on the write or rtx queue of sk. */ 1515 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1516 struct sk_buff *buff, 1517 struct sock *sk, 1518 enum tcp_queue tcp_queue) 1519 { 1520 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1521 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1522 else 1523 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1524 } 1525 1526 /* Function to create two new TCP segments. Shrinks the given segment 1527 * to the specified size and appends a new segment with the rest of the 1528 * packet to the list. This won't be called frequently, I hope. 1529 * Remember, these are still headerless SKBs at this point. 1530 */ 1531 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1532 struct sk_buff *skb, u32 len, 1533 unsigned int mss_now, gfp_t gfp) 1534 { 1535 struct tcp_sock *tp = tcp_sk(sk); 1536 struct sk_buff *buff; 1537 int nsize, old_factor; 1538 long limit; 1539 int nlen; 1540 u8 flags; 1541 1542 if (WARN_ON(len > skb->len)) 1543 return -EINVAL; 1544 1545 nsize = skb_headlen(skb) - len; 1546 if (nsize < 0) 1547 nsize = 0; 1548 1549 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1550 * We need some allowance to not penalize applications setting small 1551 * SO_SNDBUF values. 1552 * Also allow first and last skb in retransmit queue to be split. 1553 */ 1554 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE); 1555 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1556 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1557 skb != tcp_rtx_queue_head(sk) && 1558 skb != tcp_rtx_queue_tail(sk))) { 1559 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1560 return -ENOMEM; 1561 } 1562 1563 if (skb_unclone(skb, gfp)) 1564 return -ENOMEM; 1565 1566 /* Get a new skb... force flag on. */ 1567 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1568 if (!buff) 1569 return -ENOMEM; /* We'll just try again later. */ 1570 skb_copy_decrypted(buff, skb); 1571 mptcp_skb_ext_copy(buff, skb); 1572 1573 sk_wmem_queued_add(sk, buff->truesize); 1574 sk_mem_charge(sk, buff->truesize); 1575 nlen = skb->len - len - nsize; 1576 buff->truesize += nlen; 1577 skb->truesize -= nlen; 1578 1579 /* Correct the sequence numbers. */ 1580 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1581 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1582 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1583 1584 /* PSH and FIN should only be set in the second packet. */ 1585 flags = TCP_SKB_CB(skb)->tcp_flags; 1586 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1587 TCP_SKB_CB(buff)->tcp_flags = flags; 1588 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1589 tcp_skb_fragment_eor(skb, buff); 1590 1591 skb_split(skb, buff, len); 1592 1593 buff->ip_summed = CHECKSUM_PARTIAL; 1594 1595 buff->tstamp = skb->tstamp; 1596 tcp_fragment_tstamp(skb, buff); 1597 1598 old_factor = tcp_skb_pcount(skb); 1599 1600 /* Fix up tso_factor for both original and new SKB. */ 1601 tcp_set_skb_tso_segs(skb, mss_now); 1602 tcp_set_skb_tso_segs(buff, mss_now); 1603 1604 /* Update delivered info for the new segment */ 1605 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1606 1607 /* If this packet has been sent out already, we must 1608 * adjust the various packet counters. 1609 */ 1610 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1611 int diff = old_factor - tcp_skb_pcount(skb) - 1612 tcp_skb_pcount(buff); 1613 1614 if (diff) 1615 tcp_adjust_pcount(sk, skb, diff); 1616 } 1617 1618 /* Link BUFF into the send queue. */ 1619 __skb_header_release(buff); 1620 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1621 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1622 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1623 1624 return 0; 1625 } 1626 1627 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1628 * data is not copied, but immediately discarded. 1629 */ 1630 static int __pskb_trim_head(struct sk_buff *skb, int len) 1631 { 1632 struct skb_shared_info *shinfo; 1633 int i, k, eat; 1634 1635 eat = min_t(int, len, skb_headlen(skb)); 1636 if (eat) { 1637 __skb_pull(skb, eat); 1638 len -= eat; 1639 if (!len) 1640 return 0; 1641 } 1642 eat = len; 1643 k = 0; 1644 shinfo = skb_shinfo(skb); 1645 for (i = 0; i < shinfo->nr_frags; i++) { 1646 int size = skb_frag_size(&shinfo->frags[i]); 1647 1648 if (size <= eat) { 1649 skb_frag_unref(skb, i); 1650 eat -= size; 1651 } else { 1652 shinfo->frags[k] = shinfo->frags[i]; 1653 if (eat) { 1654 skb_frag_off_add(&shinfo->frags[k], eat); 1655 skb_frag_size_sub(&shinfo->frags[k], eat); 1656 eat = 0; 1657 } 1658 k++; 1659 } 1660 } 1661 shinfo->nr_frags = k; 1662 1663 skb->data_len -= len; 1664 skb->len = skb->data_len; 1665 return len; 1666 } 1667 1668 /* Remove acked data from a packet in the transmit queue. */ 1669 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1670 { 1671 u32 delta_truesize; 1672 1673 if (skb_unclone(skb, GFP_ATOMIC)) 1674 return -ENOMEM; 1675 1676 delta_truesize = __pskb_trim_head(skb, len); 1677 1678 TCP_SKB_CB(skb)->seq += len; 1679 skb->ip_summed = CHECKSUM_PARTIAL; 1680 1681 if (delta_truesize) { 1682 skb->truesize -= delta_truesize; 1683 sk_wmem_queued_add(sk, -delta_truesize); 1684 sk_mem_uncharge(sk, delta_truesize); 1685 } 1686 1687 /* Any change of skb->len requires recalculation of tso factor. */ 1688 if (tcp_skb_pcount(skb) > 1) 1689 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1690 1691 return 0; 1692 } 1693 1694 /* Calculate MSS not accounting any TCP options. */ 1695 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1696 { 1697 const struct tcp_sock *tp = tcp_sk(sk); 1698 const struct inet_connection_sock *icsk = inet_csk(sk); 1699 int mss_now; 1700 1701 /* Calculate base mss without TCP options: 1702 It is MMS_S - sizeof(tcphdr) of rfc1122 1703 */ 1704 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1705 1706 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1707 if (icsk->icsk_af_ops->net_frag_header_len) { 1708 const struct dst_entry *dst = __sk_dst_get(sk); 1709 1710 if (dst && dst_allfrag(dst)) 1711 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1712 } 1713 1714 /* Clamp it (mss_clamp does not include tcp options) */ 1715 if (mss_now > tp->rx_opt.mss_clamp) 1716 mss_now = tp->rx_opt.mss_clamp; 1717 1718 /* Now subtract optional transport overhead */ 1719 mss_now -= icsk->icsk_ext_hdr_len; 1720 1721 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1722 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss); 1723 return mss_now; 1724 } 1725 1726 /* Calculate MSS. Not accounting for SACKs here. */ 1727 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1728 { 1729 /* Subtract TCP options size, not including SACKs */ 1730 return __tcp_mtu_to_mss(sk, pmtu) - 1731 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1732 } 1733 EXPORT_SYMBOL(tcp_mtu_to_mss); 1734 1735 /* Inverse of above */ 1736 int tcp_mss_to_mtu(struct sock *sk, int mss) 1737 { 1738 const struct tcp_sock *tp = tcp_sk(sk); 1739 const struct inet_connection_sock *icsk = inet_csk(sk); 1740 int mtu; 1741 1742 mtu = mss + 1743 tp->tcp_header_len + 1744 icsk->icsk_ext_hdr_len + 1745 icsk->icsk_af_ops->net_header_len; 1746 1747 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1748 if (icsk->icsk_af_ops->net_frag_header_len) { 1749 const struct dst_entry *dst = __sk_dst_get(sk); 1750 1751 if (dst && dst_allfrag(dst)) 1752 mtu += icsk->icsk_af_ops->net_frag_header_len; 1753 } 1754 return mtu; 1755 } 1756 EXPORT_SYMBOL(tcp_mss_to_mtu); 1757 1758 /* MTU probing init per socket */ 1759 void tcp_mtup_init(struct sock *sk) 1760 { 1761 struct tcp_sock *tp = tcp_sk(sk); 1762 struct inet_connection_sock *icsk = inet_csk(sk); 1763 struct net *net = sock_net(sk); 1764 1765 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1766 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1767 icsk->icsk_af_ops->net_header_len; 1768 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1769 icsk->icsk_mtup.probe_size = 0; 1770 if (icsk->icsk_mtup.enabled) 1771 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1772 } 1773 EXPORT_SYMBOL(tcp_mtup_init); 1774 1775 /* This function synchronize snd mss to current pmtu/exthdr set. 1776 1777 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1778 for TCP options, but includes only bare TCP header. 1779 1780 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1781 It is minimum of user_mss and mss received with SYN. 1782 It also does not include TCP options. 1783 1784 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1785 1786 tp->mss_cache is current effective sending mss, including 1787 all tcp options except for SACKs. It is evaluated, 1788 taking into account current pmtu, but never exceeds 1789 tp->rx_opt.mss_clamp. 1790 1791 NOTE1. rfc1122 clearly states that advertised MSS 1792 DOES NOT include either tcp or ip options. 1793 1794 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1795 are READ ONLY outside this function. --ANK (980731) 1796 */ 1797 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1798 { 1799 struct tcp_sock *tp = tcp_sk(sk); 1800 struct inet_connection_sock *icsk = inet_csk(sk); 1801 int mss_now; 1802 1803 if (icsk->icsk_mtup.search_high > pmtu) 1804 icsk->icsk_mtup.search_high = pmtu; 1805 1806 mss_now = tcp_mtu_to_mss(sk, pmtu); 1807 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1808 1809 /* And store cached results */ 1810 icsk->icsk_pmtu_cookie = pmtu; 1811 if (icsk->icsk_mtup.enabled) 1812 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1813 tp->mss_cache = mss_now; 1814 1815 return mss_now; 1816 } 1817 EXPORT_SYMBOL(tcp_sync_mss); 1818 1819 /* Compute the current effective MSS, taking SACKs and IP options, 1820 * and even PMTU discovery events into account. 1821 */ 1822 unsigned int tcp_current_mss(struct sock *sk) 1823 { 1824 const struct tcp_sock *tp = tcp_sk(sk); 1825 const struct dst_entry *dst = __sk_dst_get(sk); 1826 u32 mss_now; 1827 unsigned int header_len; 1828 struct tcp_out_options opts; 1829 struct tcp_md5sig_key *md5; 1830 1831 mss_now = tp->mss_cache; 1832 1833 if (dst) { 1834 u32 mtu = dst_mtu(dst); 1835 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1836 mss_now = tcp_sync_mss(sk, mtu); 1837 } 1838 1839 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1840 sizeof(struct tcphdr); 1841 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1842 * some common options. If this is an odd packet (because we have SACK 1843 * blocks etc) then our calculated header_len will be different, and 1844 * we have to adjust mss_now correspondingly */ 1845 if (header_len != tp->tcp_header_len) { 1846 int delta = (int) header_len - tp->tcp_header_len; 1847 mss_now -= delta; 1848 } 1849 1850 return mss_now; 1851 } 1852 1853 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1854 * As additional protections, we do not touch cwnd in retransmission phases, 1855 * and if application hit its sndbuf limit recently. 1856 */ 1857 static void tcp_cwnd_application_limited(struct sock *sk) 1858 { 1859 struct tcp_sock *tp = tcp_sk(sk); 1860 1861 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1862 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1863 /* Limited by application or receiver window. */ 1864 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1865 u32 win_used = max(tp->snd_cwnd_used, init_win); 1866 if (win_used < tp->snd_cwnd) { 1867 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1868 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1869 } 1870 tp->snd_cwnd_used = 0; 1871 } 1872 tp->snd_cwnd_stamp = tcp_jiffies32; 1873 } 1874 1875 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1876 { 1877 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1878 struct tcp_sock *tp = tcp_sk(sk); 1879 1880 /* Track the maximum number of outstanding packets in each 1881 * window, and remember whether we were cwnd-limited then. 1882 */ 1883 if (!before(tp->snd_una, tp->max_packets_seq) || 1884 tp->packets_out > tp->max_packets_out || 1885 is_cwnd_limited) { 1886 tp->max_packets_out = tp->packets_out; 1887 tp->max_packets_seq = tp->snd_nxt; 1888 tp->is_cwnd_limited = is_cwnd_limited; 1889 } 1890 1891 if (tcp_is_cwnd_limited(sk)) { 1892 /* Network is feed fully. */ 1893 tp->snd_cwnd_used = 0; 1894 tp->snd_cwnd_stamp = tcp_jiffies32; 1895 } else { 1896 /* Network starves. */ 1897 if (tp->packets_out > tp->snd_cwnd_used) 1898 tp->snd_cwnd_used = tp->packets_out; 1899 1900 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1901 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1902 !ca_ops->cong_control) 1903 tcp_cwnd_application_limited(sk); 1904 1905 /* The following conditions together indicate the starvation 1906 * is caused by insufficient sender buffer: 1907 * 1) just sent some data (see tcp_write_xmit) 1908 * 2) not cwnd limited (this else condition) 1909 * 3) no more data to send (tcp_write_queue_empty()) 1910 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1911 */ 1912 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1913 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1914 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1915 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1916 } 1917 } 1918 1919 /* Minshall's variant of the Nagle send check. */ 1920 static bool tcp_minshall_check(const struct tcp_sock *tp) 1921 { 1922 return after(tp->snd_sml, tp->snd_una) && 1923 !after(tp->snd_sml, tp->snd_nxt); 1924 } 1925 1926 /* Update snd_sml if this skb is under mss 1927 * Note that a TSO packet might end with a sub-mss segment 1928 * The test is really : 1929 * if ((skb->len % mss) != 0) 1930 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1931 * But we can avoid doing the divide again given we already have 1932 * skb_pcount = skb->len / mss_now 1933 */ 1934 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1935 const struct sk_buff *skb) 1936 { 1937 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1938 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1939 } 1940 1941 /* Return false, if packet can be sent now without violation Nagle's rules: 1942 * 1. It is full sized. (provided by caller in %partial bool) 1943 * 2. Or it contains FIN. (already checked by caller) 1944 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1945 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1946 * With Minshall's modification: all sent small packets are ACKed. 1947 */ 1948 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1949 int nonagle) 1950 { 1951 return partial && 1952 ((nonagle & TCP_NAGLE_CORK) || 1953 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1954 } 1955 1956 /* Return how many segs we'd like on a TSO packet, 1957 * to send one TSO packet per ms 1958 */ 1959 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1960 int min_tso_segs) 1961 { 1962 u32 bytes, segs; 1963 1964 bytes = min_t(unsigned long, 1965 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift), 1966 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1967 1968 /* Goal is to send at least one packet per ms, 1969 * not one big TSO packet every 100 ms. 1970 * This preserves ACK clocking and is consistent 1971 * with tcp_tso_should_defer() heuristic. 1972 */ 1973 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1974 1975 return segs; 1976 } 1977 1978 /* Return the number of segments we want in the skb we are transmitting. 1979 * See if congestion control module wants to decide; otherwise, autosize. 1980 */ 1981 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1982 { 1983 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1984 u32 min_tso, tso_segs; 1985 1986 min_tso = ca_ops->min_tso_segs ? 1987 ca_ops->min_tso_segs(sk) : 1988 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1989 1990 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1991 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1992 } 1993 1994 /* Returns the portion of skb which can be sent right away */ 1995 static unsigned int tcp_mss_split_point(const struct sock *sk, 1996 const struct sk_buff *skb, 1997 unsigned int mss_now, 1998 unsigned int max_segs, 1999 int nonagle) 2000 { 2001 const struct tcp_sock *tp = tcp_sk(sk); 2002 u32 partial, needed, window, max_len; 2003 2004 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2005 max_len = mss_now * max_segs; 2006 2007 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2008 return max_len; 2009 2010 needed = min(skb->len, window); 2011 2012 if (max_len <= needed) 2013 return max_len; 2014 2015 partial = needed % mss_now; 2016 /* If last segment is not a full MSS, check if Nagle rules allow us 2017 * to include this last segment in this skb. 2018 * Otherwise, we'll split the skb at last MSS boundary 2019 */ 2020 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2021 return needed - partial; 2022 2023 return needed; 2024 } 2025 2026 /* Can at least one segment of SKB be sent right now, according to the 2027 * congestion window rules? If so, return how many segments are allowed. 2028 */ 2029 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 2030 const struct sk_buff *skb) 2031 { 2032 u32 in_flight, cwnd, halfcwnd; 2033 2034 /* Don't be strict about the congestion window for the final FIN. */ 2035 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2036 tcp_skb_pcount(skb) == 1) 2037 return 1; 2038 2039 in_flight = tcp_packets_in_flight(tp); 2040 cwnd = tp->snd_cwnd; 2041 if (in_flight >= cwnd) 2042 return 0; 2043 2044 /* For better scheduling, ensure we have at least 2045 * 2 GSO packets in flight. 2046 */ 2047 halfcwnd = max(cwnd >> 1, 1U); 2048 return min(halfcwnd, cwnd - in_flight); 2049 } 2050 2051 /* Initialize TSO state of a skb. 2052 * This must be invoked the first time we consider transmitting 2053 * SKB onto the wire. 2054 */ 2055 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2056 { 2057 int tso_segs = tcp_skb_pcount(skb); 2058 2059 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 2060 tcp_set_skb_tso_segs(skb, mss_now); 2061 tso_segs = tcp_skb_pcount(skb); 2062 } 2063 return tso_segs; 2064 } 2065 2066 2067 /* Return true if the Nagle test allows this packet to be 2068 * sent now. 2069 */ 2070 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2071 unsigned int cur_mss, int nonagle) 2072 { 2073 /* Nagle rule does not apply to frames, which sit in the middle of the 2074 * write_queue (they have no chances to get new data). 2075 * 2076 * This is implemented in the callers, where they modify the 'nonagle' 2077 * argument based upon the location of SKB in the send queue. 2078 */ 2079 if (nonagle & TCP_NAGLE_PUSH) 2080 return true; 2081 2082 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2083 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2084 return true; 2085 2086 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2087 return true; 2088 2089 return false; 2090 } 2091 2092 /* Does at least the first segment of SKB fit into the send window? */ 2093 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2094 const struct sk_buff *skb, 2095 unsigned int cur_mss) 2096 { 2097 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2098 2099 if (skb->len > cur_mss) 2100 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2101 2102 return !after(end_seq, tcp_wnd_end(tp)); 2103 } 2104 2105 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2106 * which is put after SKB on the list. It is very much like 2107 * tcp_fragment() except that it may make several kinds of assumptions 2108 * in order to speed up the splitting operation. In particular, we 2109 * know that all the data is in scatter-gather pages, and that the 2110 * packet has never been sent out before (and thus is not cloned). 2111 */ 2112 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2113 unsigned int mss_now, gfp_t gfp) 2114 { 2115 int nlen = skb->len - len; 2116 struct sk_buff *buff; 2117 u8 flags; 2118 2119 /* All of a TSO frame must be composed of paged data. */ 2120 if (skb->len != skb->data_len) 2121 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2122 skb, len, mss_now, gfp); 2123 2124 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 2125 if (unlikely(!buff)) 2126 return -ENOMEM; 2127 skb_copy_decrypted(buff, skb); 2128 mptcp_skb_ext_copy(buff, skb); 2129 2130 sk_wmem_queued_add(sk, buff->truesize); 2131 sk_mem_charge(sk, buff->truesize); 2132 buff->truesize += nlen; 2133 skb->truesize -= nlen; 2134 2135 /* Correct the sequence numbers. */ 2136 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2137 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2138 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2139 2140 /* PSH and FIN should only be set in the second packet. */ 2141 flags = TCP_SKB_CB(skb)->tcp_flags; 2142 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2143 TCP_SKB_CB(buff)->tcp_flags = flags; 2144 2145 /* This packet was never sent out yet, so no SACK bits. */ 2146 TCP_SKB_CB(buff)->sacked = 0; 2147 2148 tcp_skb_fragment_eor(skb, buff); 2149 2150 buff->ip_summed = CHECKSUM_PARTIAL; 2151 skb_split(skb, buff, len); 2152 tcp_fragment_tstamp(skb, buff); 2153 2154 /* Fix up tso_factor for both original and new SKB. */ 2155 tcp_set_skb_tso_segs(skb, mss_now); 2156 tcp_set_skb_tso_segs(buff, mss_now); 2157 2158 /* Link BUFF into the send queue. */ 2159 __skb_header_release(buff); 2160 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2161 2162 return 0; 2163 } 2164 2165 /* Try to defer sending, if possible, in order to minimize the amount 2166 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2167 * 2168 * This algorithm is from John Heffner. 2169 */ 2170 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2171 bool *is_cwnd_limited, 2172 bool *is_rwnd_limited, 2173 u32 max_segs) 2174 { 2175 const struct inet_connection_sock *icsk = inet_csk(sk); 2176 u32 send_win, cong_win, limit, in_flight; 2177 struct tcp_sock *tp = tcp_sk(sk); 2178 struct sk_buff *head; 2179 int win_divisor; 2180 s64 delta; 2181 2182 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2183 goto send_now; 2184 2185 /* Avoid bursty behavior by allowing defer 2186 * only if the last write was recent (1 ms). 2187 * Note that tp->tcp_wstamp_ns can be in the future if we have 2188 * packets waiting in a qdisc or device for EDT delivery. 2189 */ 2190 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2191 if (delta > 0) 2192 goto send_now; 2193 2194 in_flight = tcp_packets_in_flight(tp); 2195 2196 BUG_ON(tcp_skb_pcount(skb) <= 1); 2197 BUG_ON(tp->snd_cwnd <= in_flight); 2198 2199 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2200 2201 /* From in_flight test above, we know that cwnd > in_flight. */ 2202 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 2203 2204 limit = min(send_win, cong_win); 2205 2206 /* If a full-sized TSO skb can be sent, do it. */ 2207 if (limit >= max_segs * tp->mss_cache) 2208 goto send_now; 2209 2210 /* Middle in queue won't get any more data, full sendable already? */ 2211 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2212 goto send_now; 2213 2214 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2215 if (win_divisor) { 2216 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 2217 2218 /* If at least some fraction of a window is available, 2219 * just use it. 2220 */ 2221 chunk /= win_divisor; 2222 if (limit >= chunk) 2223 goto send_now; 2224 } else { 2225 /* Different approach, try not to defer past a single 2226 * ACK. Receiver should ACK every other full sized 2227 * frame, so if we have space for more than 3 frames 2228 * then send now. 2229 */ 2230 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2231 goto send_now; 2232 } 2233 2234 /* TODO : use tsorted_sent_queue ? */ 2235 head = tcp_rtx_queue_head(sk); 2236 if (!head) 2237 goto send_now; 2238 delta = tp->tcp_clock_cache - head->tstamp; 2239 /* If next ACK is likely to come too late (half srtt), do not defer */ 2240 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2241 goto send_now; 2242 2243 /* Ok, it looks like it is advisable to defer. 2244 * Three cases are tracked : 2245 * 1) We are cwnd-limited 2246 * 2) We are rwnd-limited 2247 * 3) We are application limited. 2248 */ 2249 if (cong_win < send_win) { 2250 if (cong_win <= skb->len) { 2251 *is_cwnd_limited = true; 2252 return true; 2253 } 2254 } else { 2255 if (send_win <= skb->len) { 2256 *is_rwnd_limited = true; 2257 return true; 2258 } 2259 } 2260 2261 /* If this packet won't get more data, do not wait. */ 2262 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2263 TCP_SKB_CB(skb)->eor) 2264 goto send_now; 2265 2266 return true; 2267 2268 send_now: 2269 return false; 2270 } 2271 2272 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2273 { 2274 struct inet_connection_sock *icsk = inet_csk(sk); 2275 struct tcp_sock *tp = tcp_sk(sk); 2276 struct net *net = sock_net(sk); 2277 u32 interval; 2278 s32 delta; 2279 2280 interval = net->ipv4.sysctl_tcp_probe_interval; 2281 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2282 if (unlikely(delta >= interval * HZ)) { 2283 int mss = tcp_current_mss(sk); 2284 2285 /* Update current search range */ 2286 icsk->icsk_mtup.probe_size = 0; 2287 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2288 sizeof(struct tcphdr) + 2289 icsk->icsk_af_ops->net_header_len; 2290 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2291 2292 /* Update probe time stamp */ 2293 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2294 } 2295 } 2296 2297 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2298 { 2299 struct sk_buff *skb, *next; 2300 2301 skb = tcp_send_head(sk); 2302 tcp_for_write_queue_from_safe(skb, next, sk) { 2303 if (len <= skb->len) 2304 break; 2305 2306 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb)) 2307 return false; 2308 2309 len -= skb->len; 2310 } 2311 2312 return true; 2313 } 2314 2315 /* Create a new MTU probe if we are ready. 2316 * MTU probe is regularly attempting to increase the path MTU by 2317 * deliberately sending larger packets. This discovers routing 2318 * changes resulting in larger path MTUs. 2319 * 2320 * Returns 0 if we should wait to probe (no cwnd available), 2321 * 1 if a probe was sent, 2322 * -1 otherwise 2323 */ 2324 static int tcp_mtu_probe(struct sock *sk) 2325 { 2326 struct inet_connection_sock *icsk = inet_csk(sk); 2327 struct tcp_sock *tp = tcp_sk(sk); 2328 struct sk_buff *skb, *nskb, *next; 2329 struct net *net = sock_net(sk); 2330 int probe_size; 2331 int size_needed; 2332 int copy, len; 2333 int mss_now; 2334 int interval; 2335 2336 /* Not currently probing/verifying, 2337 * not in recovery, 2338 * have enough cwnd, and 2339 * not SACKing (the variable headers throw things off) 2340 */ 2341 if (likely(!icsk->icsk_mtup.enabled || 2342 icsk->icsk_mtup.probe_size || 2343 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2344 tp->snd_cwnd < 11 || 2345 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2346 return -1; 2347 2348 /* Use binary search for probe_size between tcp_mss_base, 2349 * and current mss_clamp. if (search_high - search_low) 2350 * smaller than a threshold, backoff from probing. 2351 */ 2352 mss_now = tcp_current_mss(sk); 2353 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2354 icsk->icsk_mtup.search_low) >> 1); 2355 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2356 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2357 /* When misfortune happens, we are reprobing actively, 2358 * and then reprobe timer has expired. We stick with current 2359 * probing process by not resetting search range to its orignal. 2360 */ 2361 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2362 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2363 /* Check whether enough time has elaplased for 2364 * another round of probing. 2365 */ 2366 tcp_mtu_check_reprobe(sk); 2367 return -1; 2368 } 2369 2370 /* Have enough data in the send queue to probe? */ 2371 if (tp->write_seq - tp->snd_nxt < size_needed) 2372 return -1; 2373 2374 if (tp->snd_wnd < size_needed) 2375 return -1; 2376 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2377 return 0; 2378 2379 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2380 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2381 if (!tcp_packets_in_flight(tp)) 2382 return -1; 2383 else 2384 return 0; 2385 } 2386 2387 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2388 return -1; 2389 2390 /* We're allowed to probe. Build it now. */ 2391 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2392 if (!nskb) 2393 return -1; 2394 sk_wmem_queued_add(sk, nskb->truesize); 2395 sk_mem_charge(sk, nskb->truesize); 2396 2397 skb = tcp_send_head(sk); 2398 skb_copy_decrypted(nskb, skb); 2399 mptcp_skb_ext_copy(nskb, skb); 2400 2401 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2402 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2403 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2404 TCP_SKB_CB(nskb)->sacked = 0; 2405 nskb->csum = 0; 2406 nskb->ip_summed = CHECKSUM_PARTIAL; 2407 2408 tcp_insert_write_queue_before(nskb, skb, sk); 2409 tcp_highest_sack_replace(sk, skb, nskb); 2410 2411 len = 0; 2412 tcp_for_write_queue_from_safe(skb, next, sk) { 2413 copy = min_t(int, skb->len, probe_size - len); 2414 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2415 2416 if (skb->len <= copy) { 2417 /* We've eaten all the data from this skb. 2418 * Throw it away. */ 2419 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2420 /* If this is the last SKB we copy and eor is set 2421 * we need to propagate it to the new skb. 2422 */ 2423 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2424 tcp_skb_collapse_tstamp(nskb, skb); 2425 tcp_unlink_write_queue(skb, sk); 2426 sk_wmem_free_skb(sk, skb); 2427 } else { 2428 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2429 ~(TCPHDR_FIN|TCPHDR_PSH); 2430 if (!skb_shinfo(skb)->nr_frags) { 2431 skb_pull(skb, copy); 2432 } else { 2433 __pskb_trim_head(skb, copy); 2434 tcp_set_skb_tso_segs(skb, mss_now); 2435 } 2436 TCP_SKB_CB(skb)->seq += copy; 2437 } 2438 2439 len += copy; 2440 2441 if (len >= probe_size) 2442 break; 2443 } 2444 tcp_init_tso_segs(nskb, nskb->len); 2445 2446 /* We're ready to send. If this fails, the probe will 2447 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2448 */ 2449 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2450 /* Decrement cwnd here because we are sending 2451 * effectively two packets. */ 2452 tp->snd_cwnd--; 2453 tcp_event_new_data_sent(sk, nskb); 2454 2455 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2456 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2457 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2458 2459 return 1; 2460 } 2461 2462 return -1; 2463 } 2464 2465 static bool tcp_pacing_check(struct sock *sk) 2466 { 2467 struct tcp_sock *tp = tcp_sk(sk); 2468 2469 if (!tcp_needs_internal_pacing(sk)) 2470 return false; 2471 2472 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2473 return false; 2474 2475 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2476 hrtimer_start(&tp->pacing_timer, 2477 ns_to_ktime(tp->tcp_wstamp_ns), 2478 HRTIMER_MODE_ABS_PINNED_SOFT); 2479 sock_hold(sk); 2480 } 2481 return true; 2482 } 2483 2484 /* TCP Small Queues : 2485 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2486 * (These limits are doubled for retransmits) 2487 * This allows for : 2488 * - better RTT estimation and ACK scheduling 2489 * - faster recovery 2490 * - high rates 2491 * Alas, some drivers / subsystems require a fair amount 2492 * of queued bytes to ensure line rate. 2493 * One example is wifi aggregation (802.11 AMPDU) 2494 */ 2495 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2496 unsigned int factor) 2497 { 2498 unsigned long limit; 2499 2500 limit = max_t(unsigned long, 2501 2 * skb->truesize, 2502 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2503 if (sk->sk_pacing_status == SK_PACING_NONE) 2504 limit = min_t(unsigned long, limit, 2505 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2506 limit <<= factor; 2507 2508 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2509 tcp_sk(sk)->tcp_tx_delay) { 2510 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2511 2512 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2513 * approximate our needs assuming an ~100% skb->truesize overhead. 2514 * USEC_PER_SEC is approximated by 2^20. 2515 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2516 */ 2517 extra_bytes >>= (20 - 1); 2518 limit += extra_bytes; 2519 } 2520 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2521 /* Always send skb if rtx queue is empty. 2522 * No need to wait for TX completion to call us back, 2523 * after softirq/tasklet schedule. 2524 * This helps when TX completions are delayed too much. 2525 */ 2526 if (tcp_rtx_queue_empty(sk)) 2527 return false; 2528 2529 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2530 /* It is possible TX completion already happened 2531 * before we set TSQ_THROTTLED, so we must 2532 * test again the condition. 2533 */ 2534 smp_mb__after_atomic(); 2535 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2536 return true; 2537 } 2538 return false; 2539 } 2540 2541 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2542 { 2543 const u32 now = tcp_jiffies32; 2544 enum tcp_chrono old = tp->chrono_type; 2545 2546 if (old > TCP_CHRONO_UNSPEC) 2547 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2548 tp->chrono_start = now; 2549 tp->chrono_type = new; 2550 } 2551 2552 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2553 { 2554 struct tcp_sock *tp = tcp_sk(sk); 2555 2556 /* If there are multiple conditions worthy of tracking in a 2557 * chronograph then the highest priority enum takes precedence 2558 * over the other conditions. So that if something "more interesting" 2559 * starts happening, stop the previous chrono and start a new one. 2560 */ 2561 if (type > tp->chrono_type) 2562 tcp_chrono_set(tp, type); 2563 } 2564 2565 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2566 { 2567 struct tcp_sock *tp = tcp_sk(sk); 2568 2569 2570 /* There are multiple conditions worthy of tracking in a 2571 * chronograph, so that the highest priority enum takes 2572 * precedence over the other conditions (see tcp_chrono_start). 2573 * If a condition stops, we only stop chrono tracking if 2574 * it's the "most interesting" or current chrono we are 2575 * tracking and starts busy chrono if we have pending data. 2576 */ 2577 if (tcp_rtx_and_write_queues_empty(sk)) 2578 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2579 else if (type == tp->chrono_type) 2580 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2581 } 2582 2583 /* This routine writes packets to the network. It advances the 2584 * send_head. This happens as incoming acks open up the remote 2585 * window for us. 2586 * 2587 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2588 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2589 * account rare use of URG, this is not a big flaw. 2590 * 2591 * Send at most one packet when push_one > 0. Temporarily ignore 2592 * cwnd limit to force at most one packet out when push_one == 2. 2593 2594 * Returns true, if no segments are in flight and we have queued segments, 2595 * but cannot send anything now because of SWS or another problem. 2596 */ 2597 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2598 int push_one, gfp_t gfp) 2599 { 2600 struct tcp_sock *tp = tcp_sk(sk); 2601 struct sk_buff *skb; 2602 unsigned int tso_segs, sent_pkts; 2603 int cwnd_quota; 2604 int result; 2605 bool is_cwnd_limited = false, is_rwnd_limited = false; 2606 u32 max_segs; 2607 2608 sent_pkts = 0; 2609 2610 tcp_mstamp_refresh(tp); 2611 if (!push_one) { 2612 /* Do MTU probing. */ 2613 result = tcp_mtu_probe(sk); 2614 if (!result) { 2615 return false; 2616 } else if (result > 0) { 2617 sent_pkts = 1; 2618 } 2619 } 2620 2621 max_segs = tcp_tso_segs(sk, mss_now); 2622 while ((skb = tcp_send_head(sk))) { 2623 unsigned int limit; 2624 2625 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2626 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2627 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2628 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2629 tcp_init_tso_segs(skb, mss_now); 2630 goto repair; /* Skip network transmission */ 2631 } 2632 2633 if (tcp_pacing_check(sk)) 2634 break; 2635 2636 tso_segs = tcp_init_tso_segs(skb, mss_now); 2637 BUG_ON(!tso_segs); 2638 2639 cwnd_quota = tcp_cwnd_test(tp, skb); 2640 if (!cwnd_quota) { 2641 if (push_one == 2) 2642 /* Force out a loss probe pkt. */ 2643 cwnd_quota = 1; 2644 else 2645 break; 2646 } 2647 2648 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2649 is_rwnd_limited = true; 2650 break; 2651 } 2652 2653 if (tso_segs == 1) { 2654 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2655 (tcp_skb_is_last(sk, skb) ? 2656 nonagle : TCP_NAGLE_PUSH)))) 2657 break; 2658 } else { 2659 if (!push_one && 2660 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2661 &is_rwnd_limited, max_segs)) 2662 break; 2663 } 2664 2665 limit = mss_now; 2666 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2667 limit = tcp_mss_split_point(sk, skb, mss_now, 2668 min_t(unsigned int, 2669 cwnd_quota, 2670 max_segs), 2671 nonagle); 2672 2673 if (skb->len > limit && 2674 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2675 break; 2676 2677 if (tcp_small_queue_check(sk, skb, 0)) 2678 break; 2679 2680 /* Argh, we hit an empty skb(), presumably a thread 2681 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2682 * We do not want to send a pure-ack packet and have 2683 * a strange looking rtx queue with empty packet(s). 2684 */ 2685 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2686 break; 2687 2688 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2689 break; 2690 2691 repair: 2692 /* Advance the send_head. This one is sent out. 2693 * This call will increment packets_out. 2694 */ 2695 tcp_event_new_data_sent(sk, skb); 2696 2697 tcp_minshall_update(tp, mss_now, skb); 2698 sent_pkts += tcp_skb_pcount(skb); 2699 2700 if (push_one) 2701 break; 2702 } 2703 2704 if (is_rwnd_limited) 2705 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2706 else 2707 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2708 2709 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2710 if (likely(sent_pkts || is_cwnd_limited)) 2711 tcp_cwnd_validate(sk, is_cwnd_limited); 2712 2713 if (likely(sent_pkts)) { 2714 if (tcp_in_cwnd_reduction(sk)) 2715 tp->prr_out += sent_pkts; 2716 2717 /* Send one loss probe per tail loss episode. */ 2718 if (push_one != 2) 2719 tcp_schedule_loss_probe(sk, false); 2720 return false; 2721 } 2722 return !tp->packets_out && !tcp_write_queue_empty(sk); 2723 } 2724 2725 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2726 { 2727 struct inet_connection_sock *icsk = inet_csk(sk); 2728 struct tcp_sock *tp = tcp_sk(sk); 2729 u32 timeout, rto_delta_us; 2730 int early_retrans; 2731 2732 /* Don't do any loss probe on a Fast Open connection before 3WHS 2733 * finishes. 2734 */ 2735 if (rcu_access_pointer(tp->fastopen_rsk)) 2736 return false; 2737 2738 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2739 /* Schedule a loss probe in 2*RTT for SACK capable connections 2740 * not in loss recovery, that are either limited by cwnd or application. 2741 */ 2742 if ((early_retrans != 3 && early_retrans != 4) || 2743 !tp->packets_out || !tcp_is_sack(tp) || 2744 (icsk->icsk_ca_state != TCP_CA_Open && 2745 icsk->icsk_ca_state != TCP_CA_CWR)) 2746 return false; 2747 2748 /* Probe timeout is 2*rtt. Add minimum RTO to account 2749 * for delayed ack when there's one outstanding packet. If no RTT 2750 * sample is available then probe after TCP_TIMEOUT_INIT. 2751 */ 2752 if (tp->srtt_us) { 2753 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2754 if (tp->packets_out == 1) 2755 timeout += TCP_RTO_MIN; 2756 else 2757 timeout += TCP_TIMEOUT_MIN; 2758 } else { 2759 timeout = TCP_TIMEOUT_INIT; 2760 } 2761 2762 /* If the RTO formula yields an earlier time, then use that time. */ 2763 rto_delta_us = advancing_rto ? 2764 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2765 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2766 if (rto_delta_us > 0) 2767 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2768 2769 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2770 return true; 2771 } 2772 2773 /* Thanks to skb fast clones, we can detect if a prior transmit of 2774 * a packet is still in a qdisc or driver queue. 2775 * In this case, there is very little point doing a retransmit ! 2776 */ 2777 static bool skb_still_in_host_queue(struct sock *sk, 2778 const struct sk_buff *skb) 2779 { 2780 if (unlikely(skb_fclone_busy(sk, skb))) { 2781 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2782 smp_mb__after_atomic(); 2783 if (skb_fclone_busy(sk, skb)) { 2784 NET_INC_STATS(sock_net(sk), 2785 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2786 return true; 2787 } 2788 } 2789 return false; 2790 } 2791 2792 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2793 * retransmit the last segment. 2794 */ 2795 void tcp_send_loss_probe(struct sock *sk) 2796 { 2797 struct tcp_sock *tp = tcp_sk(sk); 2798 struct sk_buff *skb; 2799 int pcount; 2800 int mss = tcp_current_mss(sk); 2801 2802 /* At most one outstanding TLP */ 2803 if (tp->tlp_high_seq) 2804 goto rearm_timer; 2805 2806 tp->tlp_retrans = 0; 2807 skb = tcp_send_head(sk); 2808 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2809 pcount = tp->packets_out; 2810 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2811 if (tp->packets_out > pcount) 2812 goto probe_sent; 2813 goto rearm_timer; 2814 } 2815 skb = skb_rb_last(&sk->tcp_rtx_queue); 2816 if (unlikely(!skb)) { 2817 WARN_ONCE(tp->packets_out, 2818 "invalid inflight: %u state %u cwnd %u mss %d\n", 2819 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2820 inet_csk(sk)->icsk_pending = 0; 2821 return; 2822 } 2823 2824 if (skb_still_in_host_queue(sk, skb)) 2825 goto rearm_timer; 2826 2827 pcount = tcp_skb_pcount(skb); 2828 if (WARN_ON(!pcount)) 2829 goto rearm_timer; 2830 2831 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2832 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2833 (pcount - 1) * mss, mss, 2834 GFP_ATOMIC))) 2835 goto rearm_timer; 2836 skb = skb_rb_next(skb); 2837 } 2838 2839 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2840 goto rearm_timer; 2841 2842 if (__tcp_retransmit_skb(sk, skb, 1)) 2843 goto rearm_timer; 2844 2845 tp->tlp_retrans = 1; 2846 2847 probe_sent: 2848 /* Record snd_nxt for loss detection. */ 2849 tp->tlp_high_seq = tp->snd_nxt; 2850 2851 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2852 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2853 inet_csk(sk)->icsk_pending = 0; 2854 rearm_timer: 2855 tcp_rearm_rto(sk); 2856 } 2857 2858 /* Push out any pending frames which were held back due to 2859 * TCP_CORK or attempt at coalescing tiny packets. 2860 * The socket must be locked by the caller. 2861 */ 2862 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2863 int nonagle) 2864 { 2865 /* If we are closed, the bytes will have to remain here. 2866 * In time closedown will finish, we empty the write queue and 2867 * all will be happy. 2868 */ 2869 if (unlikely(sk->sk_state == TCP_CLOSE)) 2870 return; 2871 2872 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2873 sk_gfp_mask(sk, GFP_ATOMIC))) 2874 tcp_check_probe_timer(sk); 2875 } 2876 2877 /* Send _single_ skb sitting at the send head. This function requires 2878 * true push pending frames to setup probe timer etc. 2879 */ 2880 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2881 { 2882 struct sk_buff *skb = tcp_send_head(sk); 2883 2884 BUG_ON(!skb || skb->len < mss_now); 2885 2886 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2887 } 2888 2889 /* This function returns the amount that we can raise the 2890 * usable window based on the following constraints 2891 * 2892 * 1. The window can never be shrunk once it is offered (RFC 793) 2893 * 2. We limit memory per socket 2894 * 2895 * RFC 1122: 2896 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2897 * RECV.NEXT + RCV.WIN fixed until: 2898 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2899 * 2900 * i.e. don't raise the right edge of the window until you can raise 2901 * it at least MSS bytes. 2902 * 2903 * Unfortunately, the recommended algorithm breaks header prediction, 2904 * since header prediction assumes th->window stays fixed. 2905 * 2906 * Strictly speaking, keeping th->window fixed violates the receiver 2907 * side SWS prevention criteria. The problem is that under this rule 2908 * a stream of single byte packets will cause the right side of the 2909 * window to always advance by a single byte. 2910 * 2911 * Of course, if the sender implements sender side SWS prevention 2912 * then this will not be a problem. 2913 * 2914 * BSD seems to make the following compromise: 2915 * 2916 * If the free space is less than the 1/4 of the maximum 2917 * space available and the free space is less than 1/2 mss, 2918 * then set the window to 0. 2919 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2920 * Otherwise, just prevent the window from shrinking 2921 * and from being larger than the largest representable value. 2922 * 2923 * This prevents incremental opening of the window in the regime 2924 * where TCP is limited by the speed of the reader side taking 2925 * data out of the TCP receive queue. It does nothing about 2926 * those cases where the window is constrained on the sender side 2927 * because the pipeline is full. 2928 * 2929 * BSD also seems to "accidentally" limit itself to windows that are a 2930 * multiple of MSS, at least until the free space gets quite small. 2931 * This would appear to be a side effect of the mbuf implementation. 2932 * Combining these two algorithms results in the observed behavior 2933 * of having a fixed window size at almost all times. 2934 * 2935 * Below we obtain similar behavior by forcing the offered window to 2936 * a multiple of the mss when it is feasible to do so. 2937 * 2938 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2939 * Regular options like TIMESTAMP are taken into account. 2940 */ 2941 u32 __tcp_select_window(struct sock *sk) 2942 { 2943 struct inet_connection_sock *icsk = inet_csk(sk); 2944 struct tcp_sock *tp = tcp_sk(sk); 2945 /* MSS for the peer's data. Previous versions used mss_clamp 2946 * here. I don't know if the value based on our guesses 2947 * of peer's MSS is better for the performance. It's more correct 2948 * but may be worse for the performance because of rcv_mss 2949 * fluctuations. --SAW 1998/11/1 2950 */ 2951 int mss = icsk->icsk_ack.rcv_mss; 2952 int free_space = tcp_space(sk); 2953 int allowed_space = tcp_full_space(sk); 2954 int full_space, window; 2955 2956 if (sk_is_mptcp(sk)) 2957 mptcp_space(sk, &free_space, &allowed_space); 2958 2959 full_space = min_t(int, tp->window_clamp, allowed_space); 2960 2961 if (unlikely(mss > full_space)) { 2962 mss = full_space; 2963 if (mss <= 0) 2964 return 0; 2965 } 2966 if (free_space < (full_space >> 1)) { 2967 icsk->icsk_ack.quick = 0; 2968 2969 if (tcp_under_memory_pressure(sk)) 2970 tcp_adjust_rcv_ssthresh(sk); 2971 2972 /* free_space might become our new window, make sure we don't 2973 * increase it due to wscale. 2974 */ 2975 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2976 2977 /* if free space is less than mss estimate, or is below 1/16th 2978 * of the maximum allowed, try to move to zero-window, else 2979 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2980 * new incoming data is dropped due to memory limits. 2981 * With large window, mss test triggers way too late in order 2982 * to announce zero window in time before rmem limit kicks in. 2983 */ 2984 if (free_space < (allowed_space >> 4) || free_space < mss) 2985 return 0; 2986 } 2987 2988 if (free_space > tp->rcv_ssthresh) 2989 free_space = tp->rcv_ssthresh; 2990 2991 /* Don't do rounding if we are using window scaling, since the 2992 * scaled window will not line up with the MSS boundary anyway. 2993 */ 2994 if (tp->rx_opt.rcv_wscale) { 2995 window = free_space; 2996 2997 /* Advertise enough space so that it won't get scaled away. 2998 * Import case: prevent zero window announcement if 2999 * 1<<rcv_wscale > mss. 3000 */ 3001 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3002 } else { 3003 window = tp->rcv_wnd; 3004 /* Get the largest window that is a nice multiple of mss. 3005 * Window clamp already applied above. 3006 * If our current window offering is within 1 mss of the 3007 * free space we just keep it. This prevents the divide 3008 * and multiply from happening most of the time. 3009 * We also don't do any window rounding when the free space 3010 * is too small. 3011 */ 3012 if (window <= free_space - mss || window > free_space) 3013 window = rounddown(free_space, mss); 3014 else if (mss == full_space && 3015 free_space > window + (full_space >> 1)) 3016 window = free_space; 3017 } 3018 3019 return window; 3020 } 3021 3022 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3023 const struct sk_buff *next_skb) 3024 { 3025 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3026 const struct skb_shared_info *next_shinfo = 3027 skb_shinfo(next_skb); 3028 struct skb_shared_info *shinfo = skb_shinfo(skb); 3029 3030 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3031 shinfo->tskey = next_shinfo->tskey; 3032 TCP_SKB_CB(skb)->txstamp_ack |= 3033 TCP_SKB_CB(next_skb)->txstamp_ack; 3034 } 3035 } 3036 3037 /* Collapses two adjacent SKB's during retransmission. */ 3038 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3039 { 3040 struct tcp_sock *tp = tcp_sk(sk); 3041 struct sk_buff *next_skb = skb_rb_next(skb); 3042 int next_skb_size; 3043 3044 next_skb_size = next_skb->len; 3045 3046 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3047 3048 if (next_skb_size) { 3049 if (next_skb_size <= skb_availroom(skb)) 3050 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 3051 next_skb_size); 3052 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3053 return false; 3054 } 3055 tcp_highest_sack_replace(sk, next_skb, skb); 3056 3057 /* Update sequence range on original skb. */ 3058 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3059 3060 /* Merge over control information. This moves PSH/FIN etc. over */ 3061 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3062 3063 /* All done, get rid of second SKB and account for it so 3064 * packet counting does not break. 3065 */ 3066 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3067 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3068 3069 /* changed transmit queue under us so clear hints */ 3070 tcp_clear_retrans_hints_partial(tp); 3071 if (next_skb == tp->retransmit_skb_hint) 3072 tp->retransmit_skb_hint = skb; 3073 3074 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3075 3076 tcp_skb_collapse_tstamp(skb, next_skb); 3077 3078 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3079 return true; 3080 } 3081 3082 /* Check if coalescing SKBs is legal. */ 3083 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3084 { 3085 if (tcp_skb_pcount(skb) > 1) 3086 return false; 3087 if (skb_cloned(skb)) 3088 return false; 3089 /* Some heuristics for collapsing over SACK'd could be invented */ 3090 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3091 return false; 3092 3093 return true; 3094 } 3095 3096 /* Collapse packets in the retransmit queue to make to create 3097 * less packets on the wire. This is only done on retransmission. 3098 */ 3099 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3100 int space) 3101 { 3102 struct tcp_sock *tp = tcp_sk(sk); 3103 struct sk_buff *skb = to, *tmp; 3104 bool first = true; 3105 3106 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 3107 return; 3108 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3109 return; 3110 3111 skb_rbtree_walk_from_safe(skb, tmp) { 3112 if (!tcp_can_collapse(sk, skb)) 3113 break; 3114 3115 if (!tcp_skb_can_collapse(to, skb)) 3116 break; 3117 3118 space -= skb->len; 3119 3120 if (first) { 3121 first = false; 3122 continue; 3123 } 3124 3125 if (space < 0) 3126 break; 3127 3128 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3129 break; 3130 3131 if (!tcp_collapse_retrans(sk, to)) 3132 break; 3133 } 3134 } 3135 3136 /* This retransmits one SKB. Policy decisions and retransmit queue 3137 * state updates are done by the caller. Returns non-zero if an 3138 * error occurred which prevented the send. 3139 */ 3140 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3141 { 3142 struct inet_connection_sock *icsk = inet_csk(sk); 3143 struct tcp_sock *tp = tcp_sk(sk); 3144 unsigned int cur_mss; 3145 int diff, len, err; 3146 3147 3148 /* Inconclusive MTU probe */ 3149 if (icsk->icsk_mtup.probe_size) 3150 icsk->icsk_mtup.probe_size = 0; 3151 3152 if (skb_still_in_host_queue(sk, skb)) 3153 return -EBUSY; 3154 3155 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3156 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3157 WARN_ON_ONCE(1); 3158 return -EINVAL; 3159 } 3160 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3161 return -ENOMEM; 3162 } 3163 3164 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3165 return -EHOSTUNREACH; /* Routing failure or similar. */ 3166 3167 cur_mss = tcp_current_mss(sk); 3168 3169 /* If receiver has shrunk his window, and skb is out of 3170 * new window, do not retransmit it. The exception is the 3171 * case, when window is shrunk to zero. In this case 3172 * our retransmit serves as a zero window probe. 3173 */ 3174 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 3175 TCP_SKB_CB(skb)->seq != tp->snd_una) 3176 return -EAGAIN; 3177 3178 len = cur_mss * segs; 3179 if (skb->len > len) { 3180 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3181 cur_mss, GFP_ATOMIC)) 3182 return -ENOMEM; /* We'll try again later. */ 3183 } else { 3184 if (skb_unclone(skb, GFP_ATOMIC)) 3185 return -ENOMEM; 3186 3187 diff = tcp_skb_pcount(skb); 3188 tcp_set_skb_tso_segs(skb, cur_mss); 3189 diff -= tcp_skb_pcount(skb); 3190 if (diff) 3191 tcp_adjust_pcount(sk, skb, diff); 3192 if (skb->len < cur_mss) 3193 tcp_retrans_try_collapse(sk, skb, cur_mss); 3194 } 3195 3196 /* RFC3168, section 6.1.1.1. ECN fallback */ 3197 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3198 tcp_ecn_clear_syn(sk, skb); 3199 3200 /* Update global and local TCP statistics. */ 3201 segs = tcp_skb_pcount(skb); 3202 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3203 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3204 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3205 tp->total_retrans += segs; 3206 tp->bytes_retrans += skb->len; 3207 3208 /* make sure skb->data is aligned on arches that require it 3209 * and check if ack-trimming & collapsing extended the headroom 3210 * beyond what csum_start can cover. 3211 */ 3212 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3213 skb_headroom(skb) >= 0xFFFF)) { 3214 struct sk_buff *nskb; 3215 3216 tcp_skb_tsorted_save(skb) { 3217 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3218 if (nskb) { 3219 nskb->dev = NULL; 3220 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3221 } else { 3222 err = -ENOBUFS; 3223 } 3224 } tcp_skb_tsorted_restore(skb); 3225 3226 if (!err) { 3227 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3228 tcp_rate_skb_sent(sk, skb); 3229 } 3230 } else { 3231 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3232 } 3233 3234 /* To avoid taking spuriously low RTT samples based on a timestamp 3235 * for a transmit that never happened, always mark EVER_RETRANS 3236 */ 3237 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3238 3239 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3240 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3241 TCP_SKB_CB(skb)->seq, segs, err); 3242 3243 if (likely(!err)) { 3244 trace_tcp_retransmit_skb(sk, skb); 3245 } else if (err != -EBUSY) { 3246 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3247 } 3248 return err; 3249 } 3250 3251 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3252 { 3253 struct tcp_sock *tp = tcp_sk(sk); 3254 int err = __tcp_retransmit_skb(sk, skb, segs); 3255 3256 if (err == 0) { 3257 #if FASTRETRANS_DEBUG > 0 3258 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3259 net_dbg_ratelimited("retrans_out leaked\n"); 3260 } 3261 #endif 3262 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3263 tp->retrans_out += tcp_skb_pcount(skb); 3264 } 3265 3266 /* Save stamp of the first (attempted) retransmit. */ 3267 if (!tp->retrans_stamp) 3268 tp->retrans_stamp = tcp_skb_timestamp(skb); 3269 3270 if (tp->undo_retrans < 0) 3271 tp->undo_retrans = 0; 3272 tp->undo_retrans += tcp_skb_pcount(skb); 3273 return err; 3274 } 3275 3276 /* This gets called after a retransmit timeout, and the initially 3277 * retransmitted data is acknowledged. It tries to continue 3278 * resending the rest of the retransmit queue, until either 3279 * we've sent it all or the congestion window limit is reached. 3280 */ 3281 void tcp_xmit_retransmit_queue(struct sock *sk) 3282 { 3283 const struct inet_connection_sock *icsk = inet_csk(sk); 3284 struct sk_buff *skb, *rtx_head, *hole = NULL; 3285 struct tcp_sock *tp = tcp_sk(sk); 3286 bool rearm_timer = false; 3287 u32 max_segs; 3288 int mib_idx; 3289 3290 if (!tp->packets_out) 3291 return; 3292 3293 rtx_head = tcp_rtx_queue_head(sk); 3294 skb = tp->retransmit_skb_hint ?: rtx_head; 3295 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3296 skb_rbtree_walk_from(skb) { 3297 __u8 sacked; 3298 int segs; 3299 3300 if (tcp_pacing_check(sk)) 3301 break; 3302 3303 /* we could do better than to assign each time */ 3304 if (!hole) 3305 tp->retransmit_skb_hint = skb; 3306 3307 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3308 if (segs <= 0) 3309 break; 3310 sacked = TCP_SKB_CB(skb)->sacked; 3311 /* In case tcp_shift_skb_data() have aggregated large skbs, 3312 * we need to make sure not sending too bigs TSO packets 3313 */ 3314 segs = min_t(int, segs, max_segs); 3315 3316 if (tp->retrans_out >= tp->lost_out) { 3317 break; 3318 } else if (!(sacked & TCPCB_LOST)) { 3319 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3320 hole = skb; 3321 continue; 3322 3323 } else { 3324 if (icsk->icsk_ca_state != TCP_CA_Loss) 3325 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3326 else 3327 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3328 } 3329 3330 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3331 continue; 3332 3333 if (tcp_small_queue_check(sk, skb, 1)) 3334 break; 3335 3336 if (tcp_retransmit_skb(sk, skb, segs)) 3337 break; 3338 3339 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3340 3341 if (tcp_in_cwnd_reduction(sk)) 3342 tp->prr_out += tcp_skb_pcount(skb); 3343 3344 if (skb == rtx_head && 3345 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3346 rearm_timer = true; 3347 3348 } 3349 if (rearm_timer) 3350 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3351 inet_csk(sk)->icsk_rto, 3352 TCP_RTO_MAX); 3353 } 3354 3355 /* We allow to exceed memory limits for FIN packets to expedite 3356 * connection tear down and (memory) recovery. 3357 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3358 * or even be forced to close flow without any FIN. 3359 * In general, we want to allow one skb per socket to avoid hangs 3360 * with edge trigger epoll() 3361 */ 3362 void sk_forced_mem_schedule(struct sock *sk, int size) 3363 { 3364 int amt; 3365 3366 if (size <= sk->sk_forward_alloc) 3367 return; 3368 amt = sk_mem_pages(size); 3369 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3370 sk_memory_allocated_add(sk, amt); 3371 3372 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3373 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3374 gfp_memcg_charge() | __GFP_NOFAIL); 3375 } 3376 3377 /* Send a FIN. The caller locks the socket for us. 3378 * We should try to send a FIN packet really hard, but eventually give up. 3379 */ 3380 void tcp_send_fin(struct sock *sk) 3381 { 3382 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3383 struct tcp_sock *tp = tcp_sk(sk); 3384 3385 /* Optimization, tack on the FIN if we have one skb in write queue and 3386 * this skb was not yet sent, or we are under memory pressure. 3387 * Note: in the latter case, FIN packet will be sent after a timeout, 3388 * as TCP stack thinks it has already been transmitted. 3389 */ 3390 tskb = tail; 3391 if (!tskb && tcp_under_memory_pressure(sk)) 3392 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3393 3394 if (tskb) { 3395 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3396 TCP_SKB_CB(tskb)->end_seq++; 3397 tp->write_seq++; 3398 if (!tail) { 3399 /* This means tskb was already sent. 3400 * Pretend we included the FIN on previous transmit. 3401 * We need to set tp->snd_nxt to the value it would have 3402 * if FIN had been sent. This is because retransmit path 3403 * does not change tp->snd_nxt. 3404 */ 3405 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3406 return; 3407 } 3408 } else { 3409 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3410 if (unlikely(!skb)) 3411 return; 3412 3413 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3414 skb_reserve(skb, MAX_TCP_HEADER); 3415 sk_forced_mem_schedule(sk, skb->truesize); 3416 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3417 tcp_init_nondata_skb(skb, tp->write_seq, 3418 TCPHDR_ACK | TCPHDR_FIN); 3419 tcp_queue_skb(sk, skb); 3420 } 3421 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3422 } 3423 3424 /* We get here when a process closes a file descriptor (either due to 3425 * an explicit close() or as a byproduct of exit()'ing) and there 3426 * was unread data in the receive queue. This behavior is recommended 3427 * by RFC 2525, section 2.17. -DaveM 3428 */ 3429 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3430 { 3431 struct sk_buff *skb; 3432 3433 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3434 3435 /* NOTE: No TCP options attached and we never retransmit this. */ 3436 skb = alloc_skb(MAX_TCP_HEADER, priority); 3437 if (!skb) { 3438 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3439 return; 3440 } 3441 3442 /* Reserve space for headers and prepare control bits. */ 3443 skb_reserve(skb, MAX_TCP_HEADER); 3444 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3445 TCPHDR_ACK | TCPHDR_RST); 3446 tcp_mstamp_refresh(tcp_sk(sk)); 3447 /* Send it off. */ 3448 if (tcp_transmit_skb(sk, skb, 0, priority)) 3449 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3450 3451 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3452 * skb here is different to the troublesome skb, so use NULL 3453 */ 3454 trace_tcp_send_reset(sk, NULL); 3455 } 3456 3457 /* Send a crossed SYN-ACK during socket establishment. 3458 * WARNING: This routine must only be called when we have already sent 3459 * a SYN packet that crossed the incoming SYN that caused this routine 3460 * to get called. If this assumption fails then the initial rcv_wnd 3461 * and rcv_wscale values will not be correct. 3462 */ 3463 int tcp_send_synack(struct sock *sk) 3464 { 3465 struct sk_buff *skb; 3466 3467 skb = tcp_rtx_queue_head(sk); 3468 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3469 pr_err("%s: wrong queue state\n", __func__); 3470 return -EFAULT; 3471 } 3472 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3473 if (skb_cloned(skb)) { 3474 struct sk_buff *nskb; 3475 3476 tcp_skb_tsorted_save(skb) { 3477 nskb = skb_copy(skb, GFP_ATOMIC); 3478 } tcp_skb_tsorted_restore(skb); 3479 if (!nskb) 3480 return -ENOMEM; 3481 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3482 tcp_highest_sack_replace(sk, skb, nskb); 3483 tcp_rtx_queue_unlink_and_free(skb, sk); 3484 __skb_header_release(nskb); 3485 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3486 sk_wmem_queued_add(sk, nskb->truesize); 3487 sk_mem_charge(sk, nskb->truesize); 3488 skb = nskb; 3489 } 3490 3491 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3492 tcp_ecn_send_synack(sk, skb); 3493 } 3494 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3495 } 3496 3497 /** 3498 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3499 * @sk: listener socket 3500 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3501 * should not use it again. 3502 * @req: request_sock pointer 3503 * @foc: cookie for tcp fast open 3504 * @synack_type: Type of synack to prepare 3505 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3506 */ 3507 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3508 struct request_sock *req, 3509 struct tcp_fastopen_cookie *foc, 3510 enum tcp_synack_type synack_type, 3511 struct sk_buff *syn_skb) 3512 { 3513 struct inet_request_sock *ireq = inet_rsk(req); 3514 const struct tcp_sock *tp = tcp_sk(sk); 3515 struct tcp_md5sig_key *md5 = NULL; 3516 struct tcp_out_options opts; 3517 struct sk_buff *skb; 3518 int tcp_header_size; 3519 struct tcphdr *th; 3520 int mss; 3521 u64 now; 3522 3523 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3524 if (unlikely(!skb)) { 3525 dst_release(dst); 3526 return NULL; 3527 } 3528 /* Reserve space for headers. */ 3529 skb_reserve(skb, MAX_TCP_HEADER); 3530 3531 switch (synack_type) { 3532 case TCP_SYNACK_NORMAL: 3533 skb_set_owner_w(skb, req_to_sk(req)); 3534 break; 3535 case TCP_SYNACK_COOKIE: 3536 /* Under synflood, we do not attach skb to a socket, 3537 * to avoid false sharing. 3538 */ 3539 break; 3540 case TCP_SYNACK_FASTOPEN: 3541 /* sk is a const pointer, because we want to express multiple 3542 * cpu might call us concurrently. 3543 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3544 */ 3545 skb_set_owner_w(skb, (struct sock *)sk); 3546 break; 3547 } 3548 skb_dst_set(skb, dst); 3549 3550 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3551 3552 memset(&opts, 0, sizeof(opts)); 3553 now = tcp_clock_ns(); 3554 #ifdef CONFIG_SYN_COOKIES 3555 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3556 skb->skb_mstamp_ns = cookie_init_timestamp(req, now); 3557 else 3558 #endif 3559 { 3560 skb->skb_mstamp_ns = now; 3561 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3562 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3563 } 3564 3565 #ifdef CONFIG_TCP_MD5SIG 3566 rcu_read_lock(); 3567 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3568 #endif 3569 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3570 /* bpf program will be interested in the tcp_flags */ 3571 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3572 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3573 foc, synack_type, 3574 syn_skb) + sizeof(*th); 3575 3576 skb_push(skb, tcp_header_size); 3577 skb_reset_transport_header(skb); 3578 3579 th = (struct tcphdr *)skb->data; 3580 memset(th, 0, sizeof(struct tcphdr)); 3581 th->syn = 1; 3582 th->ack = 1; 3583 tcp_ecn_make_synack(req, th); 3584 th->source = htons(ireq->ir_num); 3585 th->dest = ireq->ir_rmt_port; 3586 skb->mark = ireq->ir_mark; 3587 skb->ip_summed = CHECKSUM_PARTIAL; 3588 th->seq = htonl(tcp_rsk(req)->snt_isn); 3589 /* XXX data is queued and acked as is. No buffer/window check */ 3590 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3591 3592 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3593 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3594 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3595 th->doff = (tcp_header_size >> 2); 3596 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3597 3598 #ifdef CONFIG_TCP_MD5SIG 3599 /* Okay, we have all we need - do the md5 hash if needed */ 3600 if (md5) 3601 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3602 md5, req_to_sk(req), skb); 3603 rcu_read_unlock(); 3604 #endif 3605 3606 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3607 synack_type, &opts); 3608 3609 skb->skb_mstamp_ns = now; 3610 tcp_add_tx_delay(skb, tp); 3611 3612 return skb; 3613 } 3614 EXPORT_SYMBOL(tcp_make_synack); 3615 3616 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3617 { 3618 struct inet_connection_sock *icsk = inet_csk(sk); 3619 const struct tcp_congestion_ops *ca; 3620 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3621 3622 if (ca_key == TCP_CA_UNSPEC) 3623 return; 3624 3625 rcu_read_lock(); 3626 ca = tcp_ca_find_key(ca_key); 3627 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3628 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3629 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3630 icsk->icsk_ca_ops = ca; 3631 } 3632 rcu_read_unlock(); 3633 } 3634 3635 /* Do all connect socket setups that can be done AF independent. */ 3636 static void tcp_connect_init(struct sock *sk) 3637 { 3638 const struct dst_entry *dst = __sk_dst_get(sk); 3639 struct tcp_sock *tp = tcp_sk(sk); 3640 __u8 rcv_wscale; 3641 u32 rcv_wnd; 3642 3643 /* We'll fix this up when we get a response from the other end. 3644 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3645 */ 3646 tp->tcp_header_len = sizeof(struct tcphdr); 3647 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3648 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3649 3650 #ifdef CONFIG_TCP_MD5SIG 3651 if (tp->af_specific->md5_lookup(sk, sk)) 3652 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3653 #endif 3654 3655 /* If user gave his TCP_MAXSEG, record it to clamp */ 3656 if (tp->rx_opt.user_mss) 3657 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3658 tp->max_window = 0; 3659 tcp_mtup_init(sk); 3660 tcp_sync_mss(sk, dst_mtu(dst)); 3661 3662 tcp_ca_dst_init(sk, dst); 3663 3664 if (!tp->window_clamp) 3665 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3666 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3667 3668 tcp_initialize_rcv_mss(sk); 3669 3670 /* limit the window selection if the user enforce a smaller rx buffer */ 3671 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3672 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3673 tp->window_clamp = tcp_full_space(sk); 3674 3675 rcv_wnd = tcp_rwnd_init_bpf(sk); 3676 if (rcv_wnd == 0) 3677 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3678 3679 tcp_select_initial_window(sk, tcp_full_space(sk), 3680 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3681 &tp->rcv_wnd, 3682 &tp->window_clamp, 3683 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3684 &rcv_wscale, 3685 rcv_wnd); 3686 3687 tp->rx_opt.rcv_wscale = rcv_wscale; 3688 tp->rcv_ssthresh = tp->rcv_wnd; 3689 3690 sk->sk_err = 0; 3691 sock_reset_flag(sk, SOCK_DONE); 3692 tp->snd_wnd = 0; 3693 tcp_init_wl(tp, 0); 3694 tcp_write_queue_purge(sk); 3695 tp->snd_una = tp->write_seq; 3696 tp->snd_sml = tp->write_seq; 3697 tp->snd_up = tp->write_seq; 3698 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3699 3700 if (likely(!tp->repair)) 3701 tp->rcv_nxt = 0; 3702 else 3703 tp->rcv_tstamp = tcp_jiffies32; 3704 tp->rcv_wup = tp->rcv_nxt; 3705 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3706 3707 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3708 inet_csk(sk)->icsk_retransmits = 0; 3709 tcp_clear_retrans(tp); 3710 } 3711 3712 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3713 { 3714 struct tcp_sock *tp = tcp_sk(sk); 3715 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3716 3717 tcb->end_seq += skb->len; 3718 __skb_header_release(skb); 3719 sk_wmem_queued_add(sk, skb->truesize); 3720 sk_mem_charge(sk, skb->truesize); 3721 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3722 tp->packets_out += tcp_skb_pcount(skb); 3723 } 3724 3725 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3726 * queue a data-only packet after the regular SYN, such that regular SYNs 3727 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3728 * only the SYN sequence, the data are retransmitted in the first ACK. 3729 * If cookie is not cached or other error occurs, falls back to send a 3730 * regular SYN with Fast Open cookie request option. 3731 */ 3732 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3733 { 3734 struct tcp_sock *tp = tcp_sk(sk); 3735 struct tcp_fastopen_request *fo = tp->fastopen_req; 3736 int space, err = 0; 3737 struct sk_buff *syn_data; 3738 3739 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3740 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3741 goto fallback; 3742 3743 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3744 * user-MSS. Reserve maximum option space for middleboxes that add 3745 * private TCP options. The cost is reduced data space in SYN :( 3746 */ 3747 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3748 3749 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3750 MAX_TCP_OPTION_SPACE; 3751 3752 space = min_t(size_t, space, fo->size); 3753 3754 /* limit to order-0 allocations */ 3755 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3756 3757 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3758 if (!syn_data) 3759 goto fallback; 3760 syn_data->ip_summed = CHECKSUM_PARTIAL; 3761 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3762 if (space) { 3763 int copied = copy_from_iter(skb_put(syn_data, space), space, 3764 &fo->data->msg_iter); 3765 if (unlikely(!copied)) { 3766 tcp_skb_tsorted_anchor_cleanup(syn_data); 3767 kfree_skb(syn_data); 3768 goto fallback; 3769 } 3770 if (copied != space) { 3771 skb_trim(syn_data, copied); 3772 space = copied; 3773 } 3774 skb_zcopy_set(syn_data, fo->uarg, NULL); 3775 } 3776 /* No more data pending in inet_wait_for_connect() */ 3777 if (space == fo->size) 3778 fo->data = NULL; 3779 fo->copied = space; 3780 3781 tcp_connect_queue_skb(sk, syn_data); 3782 if (syn_data->len) 3783 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3784 3785 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3786 3787 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3788 3789 /* Now full SYN+DATA was cloned and sent (or not), 3790 * remove the SYN from the original skb (syn_data) 3791 * we keep in write queue in case of a retransmit, as we 3792 * also have the SYN packet (with no data) in the same queue. 3793 */ 3794 TCP_SKB_CB(syn_data)->seq++; 3795 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3796 if (!err) { 3797 tp->syn_data = (fo->copied > 0); 3798 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3799 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3800 goto done; 3801 } 3802 3803 /* data was not sent, put it in write_queue */ 3804 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3805 tp->packets_out -= tcp_skb_pcount(syn_data); 3806 3807 fallback: 3808 /* Send a regular SYN with Fast Open cookie request option */ 3809 if (fo->cookie.len > 0) 3810 fo->cookie.len = 0; 3811 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3812 if (err) 3813 tp->syn_fastopen = 0; 3814 done: 3815 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3816 return err; 3817 } 3818 3819 /* Build a SYN and send it off. */ 3820 int tcp_connect(struct sock *sk) 3821 { 3822 struct tcp_sock *tp = tcp_sk(sk); 3823 struct sk_buff *buff; 3824 int err; 3825 3826 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3827 3828 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3829 return -EHOSTUNREACH; /* Routing failure or similar. */ 3830 3831 tcp_connect_init(sk); 3832 3833 if (unlikely(tp->repair)) { 3834 tcp_finish_connect(sk, NULL); 3835 return 0; 3836 } 3837 3838 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3839 if (unlikely(!buff)) 3840 return -ENOBUFS; 3841 3842 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3843 tcp_mstamp_refresh(tp); 3844 tp->retrans_stamp = tcp_time_stamp(tp); 3845 tcp_connect_queue_skb(sk, buff); 3846 tcp_ecn_send_syn(sk, buff); 3847 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3848 3849 /* Send off SYN; include data in Fast Open. */ 3850 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3851 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3852 if (err == -ECONNREFUSED) 3853 return err; 3854 3855 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3856 * in order to make this packet get counted in tcpOutSegs. 3857 */ 3858 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3859 tp->pushed_seq = tp->write_seq; 3860 buff = tcp_send_head(sk); 3861 if (unlikely(buff)) { 3862 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3863 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3864 } 3865 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3866 3867 /* Timer for repeating the SYN until an answer. */ 3868 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3869 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3870 return 0; 3871 } 3872 EXPORT_SYMBOL(tcp_connect); 3873 3874 /* Send out a delayed ack, the caller does the policy checking 3875 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3876 * for details. 3877 */ 3878 void tcp_send_delayed_ack(struct sock *sk) 3879 { 3880 struct inet_connection_sock *icsk = inet_csk(sk); 3881 int ato = icsk->icsk_ack.ato; 3882 unsigned long timeout; 3883 3884 if (ato > TCP_DELACK_MIN) { 3885 const struct tcp_sock *tp = tcp_sk(sk); 3886 int max_ato = HZ / 2; 3887 3888 if (inet_csk_in_pingpong_mode(sk) || 3889 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3890 max_ato = TCP_DELACK_MAX; 3891 3892 /* Slow path, intersegment interval is "high". */ 3893 3894 /* If some rtt estimate is known, use it to bound delayed ack. 3895 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3896 * directly. 3897 */ 3898 if (tp->srtt_us) { 3899 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3900 TCP_DELACK_MIN); 3901 3902 if (rtt < max_ato) 3903 max_ato = rtt; 3904 } 3905 3906 ato = min(ato, max_ato); 3907 } 3908 3909 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max); 3910 3911 /* Stay within the limit we were given */ 3912 timeout = jiffies + ato; 3913 3914 /* Use new timeout only if there wasn't a older one earlier. */ 3915 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3916 /* If delack timer is about to expire, send ACK now. */ 3917 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3918 tcp_send_ack(sk); 3919 return; 3920 } 3921 3922 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3923 timeout = icsk->icsk_ack.timeout; 3924 } 3925 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3926 icsk->icsk_ack.timeout = timeout; 3927 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3928 } 3929 3930 /* This routine sends an ack and also updates the window. */ 3931 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3932 { 3933 struct sk_buff *buff; 3934 3935 /* If we have been reset, we may not send again. */ 3936 if (sk->sk_state == TCP_CLOSE) 3937 return; 3938 3939 /* We are not putting this on the write queue, so 3940 * tcp_transmit_skb() will set the ownership to this 3941 * sock. 3942 */ 3943 buff = alloc_skb(MAX_TCP_HEADER, 3944 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3945 if (unlikely(!buff)) { 3946 struct inet_connection_sock *icsk = inet_csk(sk); 3947 unsigned long delay; 3948 3949 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 3950 if (delay < TCP_RTO_MAX) 3951 icsk->icsk_ack.retry++; 3952 inet_csk_schedule_ack(sk); 3953 icsk->icsk_ack.ato = TCP_ATO_MIN; 3954 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 3955 return; 3956 } 3957 3958 /* Reserve space for headers and prepare control bits. */ 3959 skb_reserve(buff, MAX_TCP_HEADER); 3960 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3961 3962 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3963 * too much. 3964 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3965 */ 3966 skb_set_tcp_pure_ack(buff); 3967 3968 /* Send it off, this clears delayed acks for us. */ 3969 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3970 } 3971 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3972 3973 void tcp_send_ack(struct sock *sk) 3974 { 3975 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3976 } 3977 3978 /* This routine sends a packet with an out of date sequence 3979 * number. It assumes the other end will try to ack it. 3980 * 3981 * Question: what should we make while urgent mode? 3982 * 4.4BSD forces sending single byte of data. We cannot send 3983 * out of window data, because we have SND.NXT==SND.MAX... 3984 * 3985 * Current solution: to send TWO zero-length segments in urgent mode: 3986 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3987 * out-of-date with SND.UNA-1 to probe window. 3988 */ 3989 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3990 { 3991 struct tcp_sock *tp = tcp_sk(sk); 3992 struct sk_buff *skb; 3993 3994 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3995 skb = alloc_skb(MAX_TCP_HEADER, 3996 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3997 if (!skb) 3998 return -1; 3999 4000 /* Reserve space for headers and set control bits. */ 4001 skb_reserve(skb, MAX_TCP_HEADER); 4002 /* Use a previous sequence. This should cause the other 4003 * end to send an ack. Don't queue or clone SKB, just 4004 * send it. 4005 */ 4006 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4007 NET_INC_STATS(sock_net(sk), mib); 4008 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4009 } 4010 4011 /* Called from setsockopt( ... TCP_REPAIR ) */ 4012 void tcp_send_window_probe(struct sock *sk) 4013 { 4014 if (sk->sk_state == TCP_ESTABLISHED) { 4015 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4016 tcp_mstamp_refresh(tcp_sk(sk)); 4017 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4018 } 4019 } 4020 4021 /* Initiate keepalive or window probe from timer. */ 4022 int tcp_write_wakeup(struct sock *sk, int mib) 4023 { 4024 struct tcp_sock *tp = tcp_sk(sk); 4025 struct sk_buff *skb; 4026 4027 if (sk->sk_state == TCP_CLOSE) 4028 return -1; 4029 4030 skb = tcp_send_head(sk); 4031 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4032 int err; 4033 unsigned int mss = tcp_current_mss(sk); 4034 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4035 4036 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4037 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4038 4039 /* We are probing the opening of a window 4040 * but the window size is != 0 4041 * must have been a result SWS avoidance ( sender ) 4042 */ 4043 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4044 skb->len > mss) { 4045 seg_size = min(seg_size, mss); 4046 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4047 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4048 skb, seg_size, mss, GFP_ATOMIC)) 4049 return -1; 4050 } else if (!tcp_skb_pcount(skb)) 4051 tcp_set_skb_tso_segs(skb, mss); 4052 4053 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4054 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4055 if (!err) 4056 tcp_event_new_data_sent(sk, skb); 4057 return err; 4058 } else { 4059 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4060 tcp_xmit_probe_skb(sk, 1, mib); 4061 return tcp_xmit_probe_skb(sk, 0, mib); 4062 } 4063 } 4064 4065 /* A window probe timeout has occurred. If window is not closed send 4066 * a partial packet else a zero probe. 4067 */ 4068 void tcp_send_probe0(struct sock *sk) 4069 { 4070 struct inet_connection_sock *icsk = inet_csk(sk); 4071 struct tcp_sock *tp = tcp_sk(sk); 4072 struct net *net = sock_net(sk); 4073 unsigned long timeout; 4074 int err; 4075 4076 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4077 4078 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4079 /* Cancel probe timer, if it is not required. */ 4080 icsk->icsk_probes_out = 0; 4081 icsk->icsk_backoff = 0; 4082 icsk->icsk_probes_tstamp = 0; 4083 return; 4084 } 4085 4086 icsk->icsk_probes_out++; 4087 if (err <= 0) { 4088 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 4089 icsk->icsk_backoff++; 4090 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4091 } else { 4092 /* If packet was not sent due to local congestion, 4093 * Let senders fight for local resources conservatively. 4094 */ 4095 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4096 } 4097 4098 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4099 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4100 } 4101 4102 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4103 { 4104 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4105 struct flowi fl; 4106 int res; 4107 4108 tcp_rsk(req)->txhash = net_tx_rndhash(); 4109 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4110 NULL); 4111 if (!res) { 4112 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4113 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4114 if (unlikely(tcp_passive_fastopen(sk))) 4115 tcp_sk(sk)->total_retrans++; 4116 trace_tcp_retransmit_synack(sk, req); 4117 } 4118 return res; 4119 } 4120 EXPORT_SYMBOL(tcp_rtx_synack); 4121