1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 int sysctl_tcp_mtu_probing __read_mostly = 0; 63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 64 65 /* By default, RFC2861 behavior. */ 66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 67 68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 69 int push_one, gfp_t gfp); 70 71 /* Account for new data that has been sent to the network. */ 72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 73 { 74 struct inet_connection_sock *icsk = inet_csk(sk); 75 struct tcp_sock *tp = tcp_sk(sk); 76 unsigned int prior_packets = tp->packets_out; 77 78 tcp_advance_send_head(sk, skb); 79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 80 81 tp->packets_out += tcp_skb_pcount(skb); 82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 84 tcp_rearm_rto(sk); 85 } 86 } 87 88 /* SND.NXT, if window was not shrunk. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 99 return tp->snd_nxt; 100 else 101 return tcp_wnd_end(tp); 102 } 103 104 /* Calculate mss to advertise in SYN segment. 105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 106 * 107 * 1. It is independent of path mtu. 108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 110 * attached devices, because some buggy hosts are confused by 111 * large MSS. 112 * 4. We do not make 3, we advertise MSS, calculated from first 113 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 114 * This may be overridden via information stored in routing table. 115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 116 * probably even Jumbo". 117 */ 118 static __u16 tcp_advertise_mss(struct sock *sk) 119 { 120 struct tcp_sock *tp = tcp_sk(sk); 121 const struct dst_entry *dst = __sk_dst_get(sk); 122 int mss = tp->advmss; 123 124 if (dst) { 125 unsigned int metric = dst_metric_advmss(dst); 126 127 if (metric < mss) { 128 mss = metric; 129 tp->advmss = mss; 130 } 131 } 132 133 return (__u16)mss; 134 } 135 136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 137 * This is the first part of cwnd validation mechanism. */ 138 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 139 { 140 struct tcp_sock *tp = tcp_sk(sk); 141 s32 delta = tcp_time_stamp - tp->lsndtime; 142 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 143 u32 cwnd = tp->snd_cwnd; 144 145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 146 147 tp->snd_ssthresh = tcp_current_ssthresh(sk); 148 restart_cwnd = min(restart_cwnd, cwnd); 149 150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 151 cwnd >>= 1; 152 tp->snd_cwnd = max(cwnd, restart_cwnd); 153 tp->snd_cwnd_stamp = tcp_time_stamp; 154 tp->snd_cwnd_used = 0; 155 } 156 157 /* Congestion state accounting after a packet has been sent. */ 158 static void tcp_event_data_sent(struct tcp_sock *tp, 159 struct sock *sk) 160 { 161 struct inet_connection_sock *icsk = inet_csk(sk); 162 const u32 now = tcp_time_stamp; 163 164 if (sysctl_tcp_slow_start_after_idle && 165 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 166 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 167 168 tp->lsndtime = now; 169 170 /* If it is a reply for ato after last received 171 * packet, enter pingpong mode. 172 */ 173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 174 icsk->icsk_ack.pingpong = 1; 175 } 176 177 /* Account for an ACK we sent. */ 178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 179 { 180 tcp_dec_quickack_mode(sk, pkts); 181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 182 } 183 184 /* Determine a window scaling and initial window to offer. 185 * Based on the assumption that the given amount of space 186 * will be offered. Store the results in the tp structure. 187 * NOTE: for smooth operation initial space offering should 188 * be a multiple of mss if possible. We assume here that mss >= 1. 189 * This MUST be enforced by all callers. 190 */ 191 void tcp_select_initial_window(int __space, __u32 mss, 192 __u32 *rcv_wnd, __u32 *window_clamp, 193 int wscale_ok, __u8 *rcv_wscale, 194 __u32 init_rcv_wnd) 195 { 196 unsigned int space = (__space < 0 ? 0 : __space); 197 198 /* If no clamp set the clamp to the max possible scaled window */ 199 if (*window_clamp == 0) 200 (*window_clamp) = (65535 << 14); 201 space = min(*window_clamp, space); 202 203 /* Quantize space offering to a multiple of mss if possible. */ 204 if (space > mss) 205 space = (space / mss) * mss; 206 207 /* NOTE: offering an initial window larger than 32767 208 * will break some buggy TCP stacks. If the admin tells us 209 * it is likely we could be speaking with such a buggy stack 210 * we will truncate our initial window offering to 32K-1 211 * unless the remote has sent us a window scaling option, 212 * which we interpret as a sign the remote TCP is not 213 * misinterpreting the window field as a signed quantity. 214 */ 215 if (sysctl_tcp_workaround_signed_windows) 216 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 217 else 218 (*rcv_wnd) = space; 219 220 (*rcv_wscale) = 0; 221 if (wscale_ok) { 222 /* Set window scaling on max possible window 223 * See RFC1323 for an explanation of the limit to 14 224 */ 225 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 226 space = min_t(u32, space, *window_clamp); 227 while (space > 65535 && (*rcv_wscale) < 14) { 228 space >>= 1; 229 (*rcv_wscale)++; 230 } 231 } 232 233 /* Set initial window to a value enough for senders starting with 234 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place 235 * a limit on the initial window when mss is larger than 1460. 236 */ 237 if (mss > (1 << *rcv_wscale)) { 238 int init_cwnd = TCP_DEFAULT_INIT_RCVWND; 239 if (mss > 1460) 240 init_cwnd = 241 max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2); 242 /* when initializing use the value from init_rcv_wnd 243 * rather than the default from above 244 */ 245 if (init_rcv_wnd) 246 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 247 else 248 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss); 249 } 250 251 /* Set the clamp no higher than max representable value */ 252 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 253 } 254 EXPORT_SYMBOL(tcp_select_initial_window); 255 256 /* Chose a new window to advertise, update state in tcp_sock for the 257 * socket, and return result with RFC1323 scaling applied. The return 258 * value can be stuffed directly into th->window for an outgoing 259 * frame. 260 */ 261 static u16 tcp_select_window(struct sock *sk) 262 { 263 struct tcp_sock *tp = tcp_sk(sk); 264 u32 cur_win = tcp_receive_window(tp); 265 u32 new_win = __tcp_select_window(sk); 266 267 /* Never shrink the offered window */ 268 if (new_win < cur_win) { 269 /* Danger Will Robinson! 270 * Don't update rcv_wup/rcv_wnd here or else 271 * we will not be able to advertise a zero 272 * window in time. --DaveM 273 * 274 * Relax Will Robinson. 275 */ 276 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 277 } 278 tp->rcv_wnd = new_win; 279 tp->rcv_wup = tp->rcv_nxt; 280 281 /* Make sure we do not exceed the maximum possible 282 * scaled window. 283 */ 284 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 285 new_win = min(new_win, MAX_TCP_WINDOW); 286 else 287 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 288 289 /* RFC1323 scaling applied */ 290 new_win >>= tp->rx_opt.rcv_wscale; 291 292 /* If we advertise zero window, disable fast path. */ 293 if (new_win == 0) 294 tp->pred_flags = 0; 295 296 return new_win; 297 } 298 299 /* Packet ECN state for a SYN-ACK */ 300 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb) 301 { 302 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 303 if (!(tp->ecn_flags & TCP_ECN_OK)) 304 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 305 } 306 307 /* Packet ECN state for a SYN. */ 308 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 309 { 310 struct tcp_sock *tp = tcp_sk(sk); 311 312 tp->ecn_flags = 0; 313 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) { 314 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 315 tp->ecn_flags = TCP_ECN_OK; 316 } 317 } 318 319 static __inline__ void 320 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th) 321 { 322 if (inet_rsk(req)->ecn_ok) 323 th->ece = 1; 324 } 325 326 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 327 * be sent. 328 */ 329 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 330 int tcp_header_len) 331 { 332 struct tcp_sock *tp = tcp_sk(sk); 333 334 if (tp->ecn_flags & TCP_ECN_OK) { 335 /* Not-retransmitted data segment: set ECT and inject CWR. */ 336 if (skb->len != tcp_header_len && 337 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 338 INET_ECN_xmit(sk); 339 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 340 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 341 tcp_hdr(skb)->cwr = 1; 342 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 343 } 344 } else { 345 /* ACK or retransmitted segment: clear ECT|CE */ 346 INET_ECN_dontxmit(sk); 347 } 348 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 349 tcp_hdr(skb)->ece = 1; 350 } 351 } 352 353 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 354 * auto increment end seqno. 355 */ 356 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 357 { 358 skb->ip_summed = CHECKSUM_PARTIAL; 359 skb->csum = 0; 360 361 TCP_SKB_CB(skb)->tcp_flags = flags; 362 TCP_SKB_CB(skb)->sacked = 0; 363 364 skb_shinfo(skb)->gso_segs = 1; 365 skb_shinfo(skb)->gso_size = 0; 366 skb_shinfo(skb)->gso_type = 0; 367 368 TCP_SKB_CB(skb)->seq = seq; 369 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 370 seq++; 371 TCP_SKB_CB(skb)->end_seq = seq; 372 } 373 374 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 375 { 376 return tp->snd_una != tp->snd_up; 377 } 378 379 #define OPTION_SACK_ADVERTISE (1 << 0) 380 #define OPTION_TS (1 << 1) 381 #define OPTION_MD5 (1 << 2) 382 #define OPTION_WSCALE (1 << 3) 383 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 384 385 struct tcp_out_options { 386 u16 options; /* bit field of OPTION_* */ 387 u16 mss; /* 0 to disable */ 388 u8 ws; /* window scale, 0 to disable */ 389 u8 num_sack_blocks; /* number of SACK blocks to include */ 390 u8 hash_size; /* bytes in hash_location */ 391 __u8 *hash_location; /* temporary pointer, overloaded */ 392 __u32 tsval, tsecr; /* need to include OPTION_TS */ 393 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 394 }; 395 396 /* Write previously computed TCP options to the packet. 397 * 398 * Beware: Something in the Internet is very sensitive to the ordering of 399 * TCP options, we learned this through the hard way, so be careful here. 400 * Luckily we can at least blame others for their non-compliance but from 401 * inter-operatibility perspective it seems that we're somewhat stuck with 402 * the ordering which we have been using if we want to keep working with 403 * those broken things (not that it currently hurts anybody as there isn't 404 * particular reason why the ordering would need to be changed). 405 * 406 * At least SACK_PERM as the first option is known to lead to a disaster 407 * (but it may well be that other scenarios fail similarly). 408 */ 409 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 410 struct tcp_out_options *opts) 411 { 412 u16 options = opts->options; /* mungable copy */ 413 414 if (unlikely(OPTION_MD5 & options)) { 415 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 416 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 417 /* overload cookie hash location */ 418 opts->hash_location = (__u8 *)ptr; 419 ptr += 4; 420 } 421 422 if (unlikely(opts->mss)) { 423 *ptr++ = htonl((TCPOPT_MSS << 24) | 424 (TCPOLEN_MSS << 16) | 425 opts->mss); 426 } 427 428 if (likely(OPTION_TS & options)) { 429 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 430 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 431 (TCPOLEN_SACK_PERM << 16) | 432 (TCPOPT_TIMESTAMP << 8) | 433 TCPOLEN_TIMESTAMP); 434 options &= ~OPTION_SACK_ADVERTISE; 435 } else { 436 *ptr++ = htonl((TCPOPT_NOP << 24) | 437 (TCPOPT_NOP << 16) | 438 (TCPOPT_TIMESTAMP << 8) | 439 TCPOLEN_TIMESTAMP); 440 } 441 *ptr++ = htonl(opts->tsval); 442 *ptr++ = htonl(opts->tsecr); 443 } 444 445 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 446 *ptr++ = htonl((TCPOPT_NOP << 24) | 447 (TCPOPT_NOP << 16) | 448 (TCPOPT_SACK_PERM << 8) | 449 TCPOLEN_SACK_PERM); 450 } 451 452 if (unlikely(OPTION_WSCALE & options)) { 453 *ptr++ = htonl((TCPOPT_NOP << 24) | 454 (TCPOPT_WINDOW << 16) | 455 (TCPOLEN_WINDOW << 8) | 456 opts->ws); 457 } 458 459 if (unlikely(opts->num_sack_blocks)) { 460 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 461 tp->duplicate_sack : tp->selective_acks; 462 int this_sack; 463 464 *ptr++ = htonl((TCPOPT_NOP << 24) | 465 (TCPOPT_NOP << 16) | 466 (TCPOPT_SACK << 8) | 467 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 468 TCPOLEN_SACK_PERBLOCK))); 469 470 for (this_sack = 0; this_sack < opts->num_sack_blocks; 471 ++this_sack) { 472 *ptr++ = htonl(sp[this_sack].start_seq); 473 *ptr++ = htonl(sp[this_sack].end_seq); 474 } 475 476 tp->rx_opt.dsack = 0; 477 } 478 479 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 480 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 481 482 *ptr++ = htonl((TCPOPT_EXP << 24) | 483 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) | 484 TCPOPT_FASTOPEN_MAGIC); 485 486 memcpy(ptr, foc->val, foc->len); 487 if ((foc->len & 3) == 2) { 488 u8 *align = ((u8 *)ptr) + foc->len; 489 align[0] = align[1] = TCPOPT_NOP; 490 } 491 ptr += (foc->len + 3) >> 2; 492 } 493 } 494 495 /* Compute TCP options for SYN packets. This is not the final 496 * network wire format yet. 497 */ 498 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 499 struct tcp_out_options *opts, 500 struct tcp_md5sig_key **md5) 501 { 502 struct tcp_sock *tp = tcp_sk(sk); 503 unsigned int remaining = MAX_TCP_OPTION_SPACE; 504 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 505 506 #ifdef CONFIG_TCP_MD5SIG 507 *md5 = tp->af_specific->md5_lookup(sk, sk); 508 if (*md5) { 509 opts->options |= OPTION_MD5; 510 remaining -= TCPOLEN_MD5SIG_ALIGNED; 511 } 512 #else 513 *md5 = NULL; 514 #endif 515 516 /* We always get an MSS option. The option bytes which will be seen in 517 * normal data packets should timestamps be used, must be in the MSS 518 * advertised. But we subtract them from tp->mss_cache so that 519 * calculations in tcp_sendmsg are simpler etc. So account for this 520 * fact here if necessary. If we don't do this correctly, as a 521 * receiver we won't recognize data packets as being full sized when we 522 * should, and thus we won't abide by the delayed ACK rules correctly. 523 * SACKs don't matter, we never delay an ACK when we have any of those 524 * going out. */ 525 opts->mss = tcp_advertise_mss(sk); 526 remaining -= TCPOLEN_MSS_ALIGNED; 527 528 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 529 opts->options |= OPTION_TS; 530 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset; 531 opts->tsecr = tp->rx_opt.ts_recent; 532 remaining -= TCPOLEN_TSTAMP_ALIGNED; 533 } 534 if (likely(sysctl_tcp_window_scaling)) { 535 opts->ws = tp->rx_opt.rcv_wscale; 536 opts->options |= OPTION_WSCALE; 537 remaining -= TCPOLEN_WSCALE_ALIGNED; 538 } 539 if (likely(sysctl_tcp_sack)) { 540 opts->options |= OPTION_SACK_ADVERTISE; 541 if (unlikely(!(OPTION_TS & opts->options))) 542 remaining -= TCPOLEN_SACKPERM_ALIGNED; 543 } 544 545 if (fastopen && fastopen->cookie.len >= 0) { 546 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len; 547 need = (need + 3) & ~3U; /* Align to 32 bits */ 548 if (remaining >= need) { 549 opts->options |= OPTION_FAST_OPEN_COOKIE; 550 opts->fastopen_cookie = &fastopen->cookie; 551 remaining -= need; 552 tp->syn_fastopen = 1; 553 } 554 } 555 556 return MAX_TCP_OPTION_SPACE - remaining; 557 } 558 559 /* Set up TCP options for SYN-ACKs. */ 560 static unsigned int tcp_synack_options(struct sock *sk, 561 struct request_sock *req, 562 unsigned int mss, struct sk_buff *skb, 563 struct tcp_out_options *opts, 564 struct tcp_md5sig_key **md5, 565 struct tcp_fastopen_cookie *foc) 566 { 567 struct inet_request_sock *ireq = inet_rsk(req); 568 unsigned int remaining = MAX_TCP_OPTION_SPACE; 569 570 #ifdef CONFIG_TCP_MD5SIG 571 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 572 if (*md5) { 573 opts->options |= OPTION_MD5; 574 remaining -= TCPOLEN_MD5SIG_ALIGNED; 575 576 /* We can't fit any SACK blocks in a packet with MD5 + TS 577 * options. There was discussion about disabling SACK 578 * rather than TS in order to fit in better with old, 579 * buggy kernels, but that was deemed to be unnecessary. 580 */ 581 ireq->tstamp_ok &= !ireq->sack_ok; 582 } 583 #else 584 *md5 = NULL; 585 #endif 586 587 /* We always send an MSS option. */ 588 opts->mss = mss; 589 remaining -= TCPOLEN_MSS_ALIGNED; 590 591 if (likely(ireq->wscale_ok)) { 592 opts->ws = ireq->rcv_wscale; 593 opts->options |= OPTION_WSCALE; 594 remaining -= TCPOLEN_WSCALE_ALIGNED; 595 } 596 if (likely(ireq->tstamp_ok)) { 597 opts->options |= OPTION_TS; 598 opts->tsval = TCP_SKB_CB(skb)->when; 599 opts->tsecr = req->ts_recent; 600 remaining -= TCPOLEN_TSTAMP_ALIGNED; 601 } 602 if (likely(ireq->sack_ok)) { 603 opts->options |= OPTION_SACK_ADVERTISE; 604 if (unlikely(!ireq->tstamp_ok)) 605 remaining -= TCPOLEN_SACKPERM_ALIGNED; 606 } 607 if (foc != NULL) { 608 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 609 need = (need + 3) & ~3U; /* Align to 32 bits */ 610 if (remaining >= need) { 611 opts->options |= OPTION_FAST_OPEN_COOKIE; 612 opts->fastopen_cookie = foc; 613 remaining -= need; 614 } 615 } 616 617 return MAX_TCP_OPTION_SPACE - remaining; 618 } 619 620 /* Compute TCP options for ESTABLISHED sockets. This is not the 621 * final wire format yet. 622 */ 623 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 624 struct tcp_out_options *opts, 625 struct tcp_md5sig_key **md5) 626 { 627 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 628 struct tcp_sock *tp = tcp_sk(sk); 629 unsigned int size = 0; 630 unsigned int eff_sacks; 631 632 #ifdef CONFIG_TCP_MD5SIG 633 *md5 = tp->af_specific->md5_lookup(sk, sk); 634 if (unlikely(*md5)) { 635 opts->options |= OPTION_MD5; 636 size += TCPOLEN_MD5SIG_ALIGNED; 637 } 638 #else 639 *md5 = NULL; 640 #endif 641 642 if (likely(tp->rx_opt.tstamp_ok)) { 643 opts->options |= OPTION_TS; 644 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0; 645 opts->tsecr = tp->rx_opt.ts_recent; 646 size += TCPOLEN_TSTAMP_ALIGNED; 647 } 648 649 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 650 if (unlikely(eff_sacks)) { 651 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 652 opts->num_sack_blocks = 653 min_t(unsigned int, eff_sacks, 654 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 655 TCPOLEN_SACK_PERBLOCK); 656 size += TCPOLEN_SACK_BASE_ALIGNED + 657 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 658 } 659 660 return size; 661 } 662 663 664 /* TCP SMALL QUEUES (TSQ) 665 * 666 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 667 * to reduce RTT and bufferbloat. 668 * We do this using a special skb destructor (tcp_wfree). 669 * 670 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 671 * needs to be reallocated in a driver. 672 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc 673 * 674 * Since transmit from skb destructor is forbidden, we use a tasklet 675 * to process all sockets that eventually need to send more skbs. 676 * We use one tasklet per cpu, with its own queue of sockets. 677 */ 678 struct tsq_tasklet { 679 struct tasklet_struct tasklet; 680 struct list_head head; /* queue of tcp sockets */ 681 }; 682 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 683 684 static void tcp_tsq_handler(struct sock *sk) 685 { 686 if ((1 << sk->sk_state) & 687 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 688 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 689 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC); 690 } 691 /* 692 * One tasklest per cpu tries to send more skbs. 693 * We run in tasklet context but need to disable irqs when 694 * transfering tsq->head because tcp_wfree() might 695 * interrupt us (non NAPI drivers) 696 */ 697 static void tcp_tasklet_func(unsigned long data) 698 { 699 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 700 LIST_HEAD(list); 701 unsigned long flags; 702 struct list_head *q, *n; 703 struct tcp_sock *tp; 704 struct sock *sk; 705 706 local_irq_save(flags); 707 list_splice_init(&tsq->head, &list); 708 local_irq_restore(flags); 709 710 list_for_each_safe(q, n, &list) { 711 tp = list_entry(q, struct tcp_sock, tsq_node); 712 list_del(&tp->tsq_node); 713 714 sk = (struct sock *)tp; 715 bh_lock_sock(sk); 716 717 if (!sock_owned_by_user(sk)) { 718 tcp_tsq_handler(sk); 719 } else { 720 /* defer the work to tcp_release_cb() */ 721 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 722 } 723 bh_unlock_sock(sk); 724 725 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 726 sk_free(sk); 727 } 728 } 729 730 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 731 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 732 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 733 (1UL << TCP_MTU_REDUCED_DEFERRED)) 734 /** 735 * tcp_release_cb - tcp release_sock() callback 736 * @sk: socket 737 * 738 * called from release_sock() to perform protocol dependent 739 * actions before socket release. 740 */ 741 void tcp_release_cb(struct sock *sk) 742 { 743 struct tcp_sock *tp = tcp_sk(sk); 744 unsigned long flags, nflags; 745 746 /* perform an atomic operation only if at least one flag is set */ 747 do { 748 flags = tp->tsq_flags; 749 if (!(flags & TCP_DEFERRED_ALL)) 750 return; 751 nflags = flags & ~TCP_DEFERRED_ALL; 752 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 753 754 if (flags & (1UL << TCP_TSQ_DEFERRED)) 755 tcp_tsq_handler(sk); 756 757 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 758 tcp_write_timer_handler(sk); 759 __sock_put(sk); 760 } 761 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 762 tcp_delack_timer_handler(sk); 763 __sock_put(sk); 764 } 765 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 766 sk->sk_prot->mtu_reduced(sk); 767 __sock_put(sk); 768 } 769 } 770 EXPORT_SYMBOL(tcp_release_cb); 771 772 void __init tcp_tasklet_init(void) 773 { 774 int i; 775 776 for_each_possible_cpu(i) { 777 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 778 779 INIT_LIST_HEAD(&tsq->head); 780 tasklet_init(&tsq->tasklet, 781 tcp_tasklet_func, 782 (unsigned long)tsq); 783 } 784 } 785 786 /* 787 * Write buffer destructor automatically called from kfree_skb. 788 * We cant xmit new skbs from this context, as we might already 789 * hold qdisc lock. 790 */ 791 void tcp_wfree(struct sk_buff *skb) 792 { 793 struct sock *sk = skb->sk; 794 struct tcp_sock *tp = tcp_sk(sk); 795 796 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 797 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 798 unsigned long flags; 799 struct tsq_tasklet *tsq; 800 801 /* Keep a ref on socket. 802 * This last ref will be released in tcp_tasklet_func() 803 */ 804 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc); 805 806 /* queue this socket to tasklet queue */ 807 local_irq_save(flags); 808 tsq = &__get_cpu_var(tsq_tasklet); 809 list_add(&tp->tsq_node, &tsq->head); 810 tasklet_schedule(&tsq->tasklet); 811 local_irq_restore(flags); 812 } else { 813 sock_wfree(skb); 814 } 815 } 816 817 /* This routine actually transmits TCP packets queued in by 818 * tcp_do_sendmsg(). This is used by both the initial 819 * transmission and possible later retransmissions. 820 * All SKB's seen here are completely headerless. It is our 821 * job to build the TCP header, and pass the packet down to 822 * IP so it can do the same plus pass the packet off to the 823 * device. 824 * 825 * We are working here with either a clone of the original 826 * SKB, or a fresh unique copy made by the retransmit engine. 827 */ 828 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 829 gfp_t gfp_mask) 830 { 831 const struct inet_connection_sock *icsk = inet_csk(sk); 832 struct inet_sock *inet; 833 struct tcp_sock *tp; 834 struct tcp_skb_cb *tcb; 835 struct tcp_out_options opts; 836 unsigned int tcp_options_size, tcp_header_size; 837 struct tcp_md5sig_key *md5; 838 struct tcphdr *th; 839 int err; 840 841 BUG_ON(!skb || !tcp_skb_pcount(skb)); 842 843 /* If congestion control is doing timestamping, we must 844 * take such a timestamp before we potentially clone/copy. 845 */ 846 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP) 847 __net_timestamp(skb); 848 849 if (likely(clone_it)) { 850 const struct sk_buff *fclone = skb + 1; 851 852 if (unlikely(skb->fclone == SKB_FCLONE_ORIG && 853 fclone->fclone == SKB_FCLONE_CLONE)) 854 NET_INC_STATS_BH(sock_net(sk), 855 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 856 857 if (unlikely(skb_cloned(skb))) 858 skb = pskb_copy(skb, gfp_mask); 859 else 860 skb = skb_clone(skb, gfp_mask); 861 if (unlikely(!skb)) 862 return -ENOBUFS; 863 } 864 865 inet = inet_sk(sk); 866 tp = tcp_sk(sk); 867 tcb = TCP_SKB_CB(skb); 868 memset(&opts, 0, sizeof(opts)); 869 870 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 871 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 872 else 873 tcp_options_size = tcp_established_options(sk, skb, &opts, 874 &md5); 875 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 876 877 if (tcp_packets_in_flight(tp) == 0) { 878 tcp_ca_event(sk, CA_EVENT_TX_START); 879 skb->ooo_okay = 1; 880 } else 881 skb->ooo_okay = 0; 882 883 skb_push(skb, tcp_header_size); 884 skb_reset_transport_header(skb); 885 886 skb_orphan(skb); 887 skb->sk = sk; 888 skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ? 889 tcp_wfree : sock_wfree; 890 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 891 892 /* Build TCP header and checksum it. */ 893 th = tcp_hdr(skb); 894 th->source = inet->inet_sport; 895 th->dest = inet->inet_dport; 896 th->seq = htonl(tcb->seq); 897 th->ack_seq = htonl(tp->rcv_nxt); 898 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 899 tcb->tcp_flags); 900 901 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 902 /* RFC1323: The window in SYN & SYN/ACK segments 903 * is never scaled. 904 */ 905 th->window = htons(min(tp->rcv_wnd, 65535U)); 906 } else { 907 th->window = htons(tcp_select_window(sk)); 908 } 909 th->check = 0; 910 th->urg_ptr = 0; 911 912 /* The urg_mode check is necessary during a below snd_una win probe */ 913 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 914 if (before(tp->snd_up, tcb->seq + 0x10000)) { 915 th->urg_ptr = htons(tp->snd_up - tcb->seq); 916 th->urg = 1; 917 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 918 th->urg_ptr = htons(0xFFFF); 919 th->urg = 1; 920 } 921 } 922 923 tcp_options_write((__be32 *)(th + 1), tp, &opts); 924 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 925 TCP_ECN_send(sk, skb, tcp_header_size); 926 927 #ifdef CONFIG_TCP_MD5SIG 928 /* Calculate the MD5 hash, as we have all we need now */ 929 if (md5) { 930 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 931 tp->af_specific->calc_md5_hash(opts.hash_location, 932 md5, sk, NULL, skb); 933 } 934 #endif 935 936 icsk->icsk_af_ops->send_check(sk, skb); 937 938 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 939 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 940 941 if (skb->len != tcp_header_size) 942 tcp_event_data_sent(tp, sk); 943 944 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 945 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 946 tcp_skb_pcount(skb)); 947 948 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl); 949 if (likely(err <= 0)) 950 return err; 951 952 tcp_enter_cwr(sk, 1); 953 954 return net_xmit_eval(err); 955 } 956 957 /* This routine just queues the buffer for sending. 958 * 959 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 960 * otherwise socket can stall. 961 */ 962 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 963 { 964 struct tcp_sock *tp = tcp_sk(sk); 965 966 /* Advance write_seq and place onto the write_queue. */ 967 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 968 skb_header_release(skb); 969 tcp_add_write_queue_tail(sk, skb); 970 sk->sk_wmem_queued += skb->truesize; 971 sk_mem_charge(sk, skb->truesize); 972 } 973 974 /* Initialize TSO segments for a packet. */ 975 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 976 unsigned int mss_now) 977 { 978 if (skb->len <= mss_now || !sk_can_gso(sk) || 979 skb->ip_summed == CHECKSUM_NONE) { 980 /* Avoid the costly divide in the normal 981 * non-TSO case. 982 */ 983 skb_shinfo(skb)->gso_segs = 1; 984 skb_shinfo(skb)->gso_size = 0; 985 skb_shinfo(skb)->gso_type = 0; 986 } else { 987 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 988 skb_shinfo(skb)->gso_size = mss_now; 989 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 990 } 991 } 992 993 /* When a modification to fackets out becomes necessary, we need to check 994 * skb is counted to fackets_out or not. 995 */ 996 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 997 int decr) 998 { 999 struct tcp_sock *tp = tcp_sk(sk); 1000 1001 if (!tp->sacked_out || tcp_is_reno(tp)) 1002 return; 1003 1004 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1005 tp->fackets_out -= decr; 1006 } 1007 1008 /* Pcount in the middle of the write queue got changed, we need to do various 1009 * tweaks to fix counters 1010 */ 1011 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1012 { 1013 struct tcp_sock *tp = tcp_sk(sk); 1014 1015 tp->packets_out -= decr; 1016 1017 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1018 tp->sacked_out -= decr; 1019 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1020 tp->retrans_out -= decr; 1021 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1022 tp->lost_out -= decr; 1023 1024 /* Reno case is special. Sigh... */ 1025 if (tcp_is_reno(tp) && decr > 0) 1026 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1027 1028 tcp_adjust_fackets_out(sk, skb, decr); 1029 1030 if (tp->lost_skb_hint && 1031 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1032 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1033 tp->lost_cnt_hint -= decr; 1034 1035 tcp_verify_left_out(tp); 1036 } 1037 1038 /* Function to create two new TCP segments. Shrinks the given segment 1039 * to the specified size and appends a new segment with the rest of the 1040 * packet to the list. This won't be called frequently, I hope. 1041 * Remember, these are still headerless SKBs at this point. 1042 */ 1043 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1044 unsigned int mss_now) 1045 { 1046 struct tcp_sock *tp = tcp_sk(sk); 1047 struct sk_buff *buff; 1048 int nsize, old_factor; 1049 int nlen; 1050 u8 flags; 1051 1052 if (WARN_ON(len > skb->len)) 1053 return -EINVAL; 1054 1055 nsize = skb_headlen(skb) - len; 1056 if (nsize < 0) 1057 nsize = 0; 1058 1059 if (skb_cloned(skb) && 1060 skb_is_nonlinear(skb) && 1061 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1062 return -ENOMEM; 1063 1064 /* Get a new skb... force flag on. */ 1065 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 1066 if (buff == NULL) 1067 return -ENOMEM; /* We'll just try again later. */ 1068 1069 sk->sk_wmem_queued += buff->truesize; 1070 sk_mem_charge(sk, buff->truesize); 1071 nlen = skb->len - len - nsize; 1072 buff->truesize += nlen; 1073 skb->truesize -= nlen; 1074 1075 /* Correct the sequence numbers. */ 1076 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1077 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1078 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1079 1080 /* PSH and FIN should only be set in the second packet. */ 1081 flags = TCP_SKB_CB(skb)->tcp_flags; 1082 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1083 TCP_SKB_CB(buff)->tcp_flags = flags; 1084 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1085 1086 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1087 /* Copy and checksum data tail into the new buffer. */ 1088 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1089 skb_put(buff, nsize), 1090 nsize, 0); 1091 1092 skb_trim(skb, len); 1093 1094 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1095 } else { 1096 skb->ip_summed = CHECKSUM_PARTIAL; 1097 skb_split(skb, buff, len); 1098 } 1099 1100 buff->ip_summed = skb->ip_summed; 1101 1102 /* Looks stupid, but our code really uses when of 1103 * skbs, which it never sent before. --ANK 1104 */ 1105 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 1106 buff->tstamp = skb->tstamp; 1107 1108 old_factor = tcp_skb_pcount(skb); 1109 1110 /* Fix up tso_factor for both original and new SKB. */ 1111 tcp_set_skb_tso_segs(sk, skb, mss_now); 1112 tcp_set_skb_tso_segs(sk, buff, mss_now); 1113 1114 /* If this packet has been sent out already, we must 1115 * adjust the various packet counters. 1116 */ 1117 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1118 int diff = old_factor - tcp_skb_pcount(skb) - 1119 tcp_skb_pcount(buff); 1120 1121 if (diff) 1122 tcp_adjust_pcount(sk, skb, diff); 1123 } 1124 1125 /* Link BUFF into the send queue. */ 1126 skb_header_release(buff); 1127 tcp_insert_write_queue_after(skb, buff, sk); 1128 1129 return 0; 1130 } 1131 1132 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1133 * eventually). The difference is that pulled data not copied, but 1134 * immediately discarded. 1135 */ 1136 static void __pskb_trim_head(struct sk_buff *skb, int len) 1137 { 1138 int i, k, eat; 1139 1140 eat = min_t(int, len, skb_headlen(skb)); 1141 if (eat) { 1142 __skb_pull(skb, eat); 1143 len -= eat; 1144 if (!len) 1145 return; 1146 } 1147 eat = len; 1148 k = 0; 1149 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1150 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1151 1152 if (size <= eat) { 1153 skb_frag_unref(skb, i); 1154 eat -= size; 1155 } else { 1156 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1157 if (eat) { 1158 skb_shinfo(skb)->frags[k].page_offset += eat; 1159 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1160 eat = 0; 1161 } 1162 k++; 1163 } 1164 } 1165 skb_shinfo(skb)->nr_frags = k; 1166 1167 skb_reset_tail_pointer(skb); 1168 skb->data_len -= len; 1169 skb->len = skb->data_len; 1170 } 1171 1172 /* Remove acked data from a packet in the transmit queue. */ 1173 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1174 { 1175 if (skb_unclone(skb, GFP_ATOMIC)) 1176 return -ENOMEM; 1177 1178 __pskb_trim_head(skb, len); 1179 1180 TCP_SKB_CB(skb)->seq += len; 1181 skb->ip_summed = CHECKSUM_PARTIAL; 1182 1183 skb->truesize -= len; 1184 sk->sk_wmem_queued -= len; 1185 sk_mem_uncharge(sk, len); 1186 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1187 1188 /* Any change of skb->len requires recalculation of tso factor. */ 1189 if (tcp_skb_pcount(skb) > 1) 1190 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1191 1192 return 0; 1193 } 1194 1195 /* Calculate MSS not accounting any TCP options. */ 1196 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1197 { 1198 const struct tcp_sock *tp = tcp_sk(sk); 1199 const struct inet_connection_sock *icsk = inet_csk(sk); 1200 int mss_now; 1201 1202 /* Calculate base mss without TCP options: 1203 It is MMS_S - sizeof(tcphdr) of rfc1122 1204 */ 1205 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1206 1207 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1208 if (icsk->icsk_af_ops->net_frag_header_len) { 1209 const struct dst_entry *dst = __sk_dst_get(sk); 1210 1211 if (dst && dst_allfrag(dst)) 1212 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1213 } 1214 1215 /* Clamp it (mss_clamp does not include tcp options) */ 1216 if (mss_now > tp->rx_opt.mss_clamp) 1217 mss_now = tp->rx_opt.mss_clamp; 1218 1219 /* Now subtract optional transport overhead */ 1220 mss_now -= icsk->icsk_ext_hdr_len; 1221 1222 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1223 if (mss_now < 48) 1224 mss_now = 48; 1225 return mss_now; 1226 } 1227 1228 /* Calculate MSS. Not accounting for SACKs here. */ 1229 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1230 { 1231 /* Subtract TCP options size, not including SACKs */ 1232 return __tcp_mtu_to_mss(sk, pmtu) - 1233 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1234 } 1235 1236 /* Inverse of above */ 1237 int tcp_mss_to_mtu(struct sock *sk, int mss) 1238 { 1239 const struct tcp_sock *tp = tcp_sk(sk); 1240 const struct inet_connection_sock *icsk = inet_csk(sk); 1241 int mtu; 1242 1243 mtu = mss + 1244 tp->tcp_header_len + 1245 icsk->icsk_ext_hdr_len + 1246 icsk->icsk_af_ops->net_header_len; 1247 1248 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1249 if (icsk->icsk_af_ops->net_frag_header_len) { 1250 const struct dst_entry *dst = __sk_dst_get(sk); 1251 1252 if (dst && dst_allfrag(dst)) 1253 mtu += icsk->icsk_af_ops->net_frag_header_len; 1254 } 1255 return mtu; 1256 } 1257 1258 /* MTU probing init per socket */ 1259 void tcp_mtup_init(struct sock *sk) 1260 { 1261 struct tcp_sock *tp = tcp_sk(sk); 1262 struct inet_connection_sock *icsk = inet_csk(sk); 1263 1264 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1265 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1266 icsk->icsk_af_ops->net_header_len; 1267 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1268 icsk->icsk_mtup.probe_size = 0; 1269 } 1270 EXPORT_SYMBOL(tcp_mtup_init); 1271 1272 /* This function synchronize snd mss to current pmtu/exthdr set. 1273 1274 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1275 for TCP options, but includes only bare TCP header. 1276 1277 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1278 It is minimum of user_mss and mss received with SYN. 1279 It also does not include TCP options. 1280 1281 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1282 1283 tp->mss_cache is current effective sending mss, including 1284 all tcp options except for SACKs. It is evaluated, 1285 taking into account current pmtu, but never exceeds 1286 tp->rx_opt.mss_clamp. 1287 1288 NOTE1. rfc1122 clearly states that advertised MSS 1289 DOES NOT include either tcp or ip options. 1290 1291 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1292 are READ ONLY outside this function. --ANK (980731) 1293 */ 1294 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1295 { 1296 struct tcp_sock *tp = tcp_sk(sk); 1297 struct inet_connection_sock *icsk = inet_csk(sk); 1298 int mss_now; 1299 1300 if (icsk->icsk_mtup.search_high > pmtu) 1301 icsk->icsk_mtup.search_high = pmtu; 1302 1303 mss_now = tcp_mtu_to_mss(sk, pmtu); 1304 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1305 1306 /* And store cached results */ 1307 icsk->icsk_pmtu_cookie = pmtu; 1308 if (icsk->icsk_mtup.enabled) 1309 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1310 tp->mss_cache = mss_now; 1311 1312 return mss_now; 1313 } 1314 EXPORT_SYMBOL(tcp_sync_mss); 1315 1316 /* Compute the current effective MSS, taking SACKs and IP options, 1317 * and even PMTU discovery events into account. 1318 */ 1319 unsigned int tcp_current_mss(struct sock *sk) 1320 { 1321 const struct tcp_sock *tp = tcp_sk(sk); 1322 const struct dst_entry *dst = __sk_dst_get(sk); 1323 u32 mss_now; 1324 unsigned int header_len; 1325 struct tcp_out_options opts; 1326 struct tcp_md5sig_key *md5; 1327 1328 mss_now = tp->mss_cache; 1329 1330 if (dst) { 1331 u32 mtu = dst_mtu(dst); 1332 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1333 mss_now = tcp_sync_mss(sk, mtu); 1334 } 1335 1336 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1337 sizeof(struct tcphdr); 1338 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1339 * some common options. If this is an odd packet (because we have SACK 1340 * blocks etc) then our calculated header_len will be different, and 1341 * we have to adjust mss_now correspondingly */ 1342 if (header_len != tp->tcp_header_len) { 1343 int delta = (int) header_len - tp->tcp_header_len; 1344 mss_now -= delta; 1345 } 1346 1347 return mss_now; 1348 } 1349 1350 /* Congestion window validation. (RFC2861) */ 1351 static void tcp_cwnd_validate(struct sock *sk) 1352 { 1353 struct tcp_sock *tp = tcp_sk(sk); 1354 1355 if (tp->packets_out >= tp->snd_cwnd) { 1356 /* Network is feed fully. */ 1357 tp->snd_cwnd_used = 0; 1358 tp->snd_cwnd_stamp = tcp_time_stamp; 1359 } else { 1360 /* Network starves. */ 1361 if (tp->packets_out > tp->snd_cwnd_used) 1362 tp->snd_cwnd_used = tp->packets_out; 1363 1364 if (sysctl_tcp_slow_start_after_idle && 1365 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1366 tcp_cwnd_application_limited(sk); 1367 } 1368 } 1369 1370 /* Returns the portion of skb which can be sent right away without 1371 * introducing MSS oddities to segment boundaries. In rare cases where 1372 * mss_now != mss_cache, we will request caller to create a small skb 1373 * per input skb which could be mostly avoided here (if desired). 1374 * 1375 * We explicitly want to create a request for splitting write queue tail 1376 * to a small skb for Nagle purposes while avoiding unnecessary modulos, 1377 * thus all the complexity (cwnd_len is always MSS multiple which we 1378 * return whenever allowed by the other factors). Basically we need the 1379 * modulo only when the receiver window alone is the limiting factor or 1380 * when we would be allowed to send the split-due-to-Nagle skb fully. 1381 */ 1382 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb, 1383 unsigned int mss_now, unsigned int max_segs) 1384 { 1385 const struct tcp_sock *tp = tcp_sk(sk); 1386 u32 needed, window, max_len; 1387 1388 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1389 max_len = mss_now * max_segs; 1390 1391 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1392 return max_len; 1393 1394 needed = min(skb->len, window); 1395 1396 if (max_len <= needed) 1397 return max_len; 1398 1399 return needed - needed % mss_now; 1400 } 1401 1402 /* Can at least one segment of SKB be sent right now, according to the 1403 * congestion window rules? If so, return how many segments are allowed. 1404 */ 1405 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1406 const struct sk_buff *skb) 1407 { 1408 u32 in_flight, cwnd; 1409 1410 /* Don't be strict about the congestion window for the final FIN. */ 1411 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1412 tcp_skb_pcount(skb) == 1) 1413 return 1; 1414 1415 in_flight = tcp_packets_in_flight(tp); 1416 cwnd = tp->snd_cwnd; 1417 if (in_flight < cwnd) 1418 return (cwnd - in_flight); 1419 1420 return 0; 1421 } 1422 1423 /* Initialize TSO state of a skb. 1424 * This must be invoked the first time we consider transmitting 1425 * SKB onto the wire. 1426 */ 1427 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1428 unsigned int mss_now) 1429 { 1430 int tso_segs = tcp_skb_pcount(skb); 1431 1432 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1433 tcp_set_skb_tso_segs(sk, skb, mss_now); 1434 tso_segs = tcp_skb_pcount(skb); 1435 } 1436 return tso_segs; 1437 } 1438 1439 /* Minshall's variant of the Nagle send check. */ 1440 static inline bool tcp_minshall_check(const struct tcp_sock *tp) 1441 { 1442 return after(tp->snd_sml, tp->snd_una) && 1443 !after(tp->snd_sml, tp->snd_nxt); 1444 } 1445 1446 /* Return false, if packet can be sent now without violation Nagle's rules: 1447 * 1. It is full sized. 1448 * 2. Or it contains FIN. (already checked by caller) 1449 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1450 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1451 * With Minshall's modification: all sent small packets are ACKed. 1452 */ 1453 static inline bool tcp_nagle_check(const struct tcp_sock *tp, 1454 const struct sk_buff *skb, 1455 unsigned int mss_now, int nonagle) 1456 { 1457 return skb->len < mss_now && 1458 ((nonagle & TCP_NAGLE_CORK) || 1459 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1460 } 1461 1462 /* Return true if the Nagle test allows this packet to be 1463 * sent now. 1464 */ 1465 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1466 unsigned int cur_mss, int nonagle) 1467 { 1468 /* Nagle rule does not apply to frames, which sit in the middle of the 1469 * write_queue (they have no chances to get new data). 1470 * 1471 * This is implemented in the callers, where they modify the 'nonagle' 1472 * argument based upon the location of SKB in the send queue. 1473 */ 1474 if (nonagle & TCP_NAGLE_PUSH) 1475 return true; 1476 1477 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1478 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1479 return true; 1480 1481 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 1482 return true; 1483 1484 return false; 1485 } 1486 1487 /* Does at least the first segment of SKB fit into the send window? */ 1488 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1489 const struct sk_buff *skb, 1490 unsigned int cur_mss) 1491 { 1492 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1493 1494 if (skb->len > cur_mss) 1495 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1496 1497 return !after(end_seq, tcp_wnd_end(tp)); 1498 } 1499 1500 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1501 * should be put on the wire right now. If so, it returns the number of 1502 * packets allowed by the congestion window. 1503 */ 1504 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1505 unsigned int cur_mss, int nonagle) 1506 { 1507 const struct tcp_sock *tp = tcp_sk(sk); 1508 unsigned int cwnd_quota; 1509 1510 tcp_init_tso_segs(sk, skb, cur_mss); 1511 1512 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1513 return 0; 1514 1515 cwnd_quota = tcp_cwnd_test(tp, skb); 1516 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1517 cwnd_quota = 0; 1518 1519 return cwnd_quota; 1520 } 1521 1522 /* Test if sending is allowed right now. */ 1523 bool tcp_may_send_now(struct sock *sk) 1524 { 1525 const struct tcp_sock *tp = tcp_sk(sk); 1526 struct sk_buff *skb = tcp_send_head(sk); 1527 1528 return skb && 1529 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1530 (tcp_skb_is_last(sk, skb) ? 1531 tp->nonagle : TCP_NAGLE_PUSH)); 1532 } 1533 1534 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1535 * which is put after SKB on the list. It is very much like 1536 * tcp_fragment() except that it may make several kinds of assumptions 1537 * in order to speed up the splitting operation. In particular, we 1538 * know that all the data is in scatter-gather pages, and that the 1539 * packet has never been sent out before (and thus is not cloned). 1540 */ 1541 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1542 unsigned int mss_now, gfp_t gfp) 1543 { 1544 struct sk_buff *buff; 1545 int nlen = skb->len - len; 1546 u8 flags; 1547 1548 /* All of a TSO frame must be composed of paged data. */ 1549 if (skb->len != skb->data_len) 1550 return tcp_fragment(sk, skb, len, mss_now); 1551 1552 buff = sk_stream_alloc_skb(sk, 0, gfp); 1553 if (unlikely(buff == NULL)) 1554 return -ENOMEM; 1555 1556 sk->sk_wmem_queued += buff->truesize; 1557 sk_mem_charge(sk, buff->truesize); 1558 buff->truesize += nlen; 1559 skb->truesize -= nlen; 1560 1561 /* Correct the sequence numbers. */ 1562 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1563 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1564 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1565 1566 /* PSH and FIN should only be set in the second packet. */ 1567 flags = TCP_SKB_CB(skb)->tcp_flags; 1568 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1569 TCP_SKB_CB(buff)->tcp_flags = flags; 1570 1571 /* This packet was never sent out yet, so no SACK bits. */ 1572 TCP_SKB_CB(buff)->sacked = 0; 1573 1574 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1575 skb_split(skb, buff, len); 1576 1577 /* Fix up tso_factor for both original and new SKB. */ 1578 tcp_set_skb_tso_segs(sk, skb, mss_now); 1579 tcp_set_skb_tso_segs(sk, buff, mss_now); 1580 1581 /* Link BUFF into the send queue. */ 1582 skb_header_release(buff); 1583 tcp_insert_write_queue_after(skb, buff, sk); 1584 1585 return 0; 1586 } 1587 1588 /* Try to defer sending, if possible, in order to minimize the amount 1589 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1590 * 1591 * This algorithm is from John Heffner. 1592 */ 1593 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb) 1594 { 1595 struct tcp_sock *tp = tcp_sk(sk); 1596 const struct inet_connection_sock *icsk = inet_csk(sk); 1597 u32 send_win, cong_win, limit, in_flight; 1598 int win_divisor; 1599 1600 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1601 goto send_now; 1602 1603 if (icsk->icsk_ca_state != TCP_CA_Open) 1604 goto send_now; 1605 1606 /* Defer for less than two clock ticks. */ 1607 if (tp->tso_deferred && 1608 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1609 goto send_now; 1610 1611 in_flight = tcp_packets_in_flight(tp); 1612 1613 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1614 1615 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1616 1617 /* From in_flight test above, we know that cwnd > in_flight. */ 1618 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1619 1620 limit = min(send_win, cong_win); 1621 1622 /* If a full-sized TSO skb can be sent, do it. */ 1623 if (limit >= min_t(unsigned int, sk->sk_gso_max_size, 1624 sk->sk_gso_max_segs * tp->mss_cache)) 1625 goto send_now; 1626 1627 /* Middle in queue won't get any more data, full sendable already? */ 1628 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1629 goto send_now; 1630 1631 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1632 if (win_divisor) { 1633 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1634 1635 /* If at least some fraction of a window is available, 1636 * just use it. 1637 */ 1638 chunk /= win_divisor; 1639 if (limit >= chunk) 1640 goto send_now; 1641 } else { 1642 /* Different approach, try not to defer past a single 1643 * ACK. Receiver should ACK every other full sized 1644 * frame, so if we have space for more than 3 frames 1645 * then send now. 1646 */ 1647 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1648 goto send_now; 1649 } 1650 1651 /* Ok, it looks like it is advisable to defer. 1652 * Do not rearm the timer if already set to not break TCP ACK clocking. 1653 */ 1654 if (!tp->tso_deferred) 1655 tp->tso_deferred = 1 | (jiffies << 1); 1656 1657 return true; 1658 1659 send_now: 1660 tp->tso_deferred = 0; 1661 return false; 1662 } 1663 1664 /* Create a new MTU probe if we are ready. 1665 * MTU probe is regularly attempting to increase the path MTU by 1666 * deliberately sending larger packets. This discovers routing 1667 * changes resulting in larger path MTUs. 1668 * 1669 * Returns 0 if we should wait to probe (no cwnd available), 1670 * 1 if a probe was sent, 1671 * -1 otherwise 1672 */ 1673 static int tcp_mtu_probe(struct sock *sk) 1674 { 1675 struct tcp_sock *tp = tcp_sk(sk); 1676 struct inet_connection_sock *icsk = inet_csk(sk); 1677 struct sk_buff *skb, *nskb, *next; 1678 int len; 1679 int probe_size; 1680 int size_needed; 1681 int copy; 1682 int mss_now; 1683 1684 /* Not currently probing/verifying, 1685 * not in recovery, 1686 * have enough cwnd, and 1687 * not SACKing (the variable headers throw things off) */ 1688 if (!icsk->icsk_mtup.enabled || 1689 icsk->icsk_mtup.probe_size || 1690 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1691 tp->snd_cwnd < 11 || 1692 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1693 return -1; 1694 1695 /* Very simple search strategy: just double the MSS. */ 1696 mss_now = tcp_current_mss(sk); 1697 probe_size = 2 * tp->mss_cache; 1698 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1699 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1700 /* TODO: set timer for probe_converge_event */ 1701 return -1; 1702 } 1703 1704 /* Have enough data in the send queue to probe? */ 1705 if (tp->write_seq - tp->snd_nxt < size_needed) 1706 return -1; 1707 1708 if (tp->snd_wnd < size_needed) 1709 return -1; 1710 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1711 return 0; 1712 1713 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1714 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1715 if (!tcp_packets_in_flight(tp)) 1716 return -1; 1717 else 1718 return 0; 1719 } 1720 1721 /* We're allowed to probe. Build it now. */ 1722 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1723 return -1; 1724 sk->sk_wmem_queued += nskb->truesize; 1725 sk_mem_charge(sk, nskb->truesize); 1726 1727 skb = tcp_send_head(sk); 1728 1729 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1730 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1731 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1732 TCP_SKB_CB(nskb)->sacked = 0; 1733 nskb->csum = 0; 1734 nskb->ip_summed = skb->ip_summed; 1735 1736 tcp_insert_write_queue_before(nskb, skb, sk); 1737 1738 len = 0; 1739 tcp_for_write_queue_from_safe(skb, next, sk) { 1740 copy = min_t(int, skb->len, probe_size - len); 1741 if (nskb->ip_summed) 1742 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1743 else 1744 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1745 skb_put(nskb, copy), 1746 copy, nskb->csum); 1747 1748 if (skb->len <= copy) { 1749 /* We've eaten all the data from this skb. 1750 * Throw it away. */ 1751 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1752 tcp_unlink_write_queue(skb, sk); 1753 sk_wmem_free_skb(sk, skb); 1754 } else { 1755 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1756 ~(TCPHDR_FIN|TCPHDR_PSH); 1757 if (!skb_shinfo(skb)->nr_frags) { 1758 skb_pull(skb, copy); 1759 if (skb->ip_summed != CHECKSUM_PARTIAL) 1760 skb->csum = csum_partial(skb->data, 1761 skb->len, 0); 1762 } else { 1763 __pskb_trim_head(skb, copy); 1764 tcp_set_skb_tso_segs(sk, skb, mss_now); 1765 } 1766 TCP_SKB_CB(skb)->seq += copy; 1767 } 1768 1769 len += copy; 1770 1771 if (len >= probe_size) 1772 break; 1773 } 1774 tcp_init_tso_segs(sk, nskb, nskb->len); 1775 1776 /* We're ready to send. If this fails, the probe will 1777 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1778 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1779 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1780 /* Decrement cwnd here because we are sending 1781 * effectively two packets. */ 1782 tp->snd_cwnd--; 1783 tcp_event_new_data_sent(sk, nskb); 1784 1785 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1786 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1787 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1788 1789 return 1; 1790 } 1791 1792 return -1; 1793 } 1794 1795 /* This routine writes packets to the network. It advances the 1796 * send_head. This happens as incoming acks open up the remote 1797 * window for us. 1798 * 1799 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1800 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1801 * account rare use of URG, this is not a big flaw. 1802 * 1803 * Send at most one packet when push_one > 0. Temporarily ignore 1804 * cwnd limit to force at most one packet out when push_one == 2. 1805 1806 * Returns true, if no segments are in flight and we have queued segments, 1807 * but cannot send anything now because of SWS or another problem. 1808 */ 1809 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1810 int push_one, gfp_t gfp) 1811 { 1812 struct tcp_sock *tp = tcp_sk(sk); 1813 struct sk_buff *skb; 1814 unsigned int tso_segs, sent_pkts; 1815 int cwnd_quota; 1816 int result; 1817 1818 sent_pkts = 0; 1819 1820 if (!push_one) { 1821 /* Do MTU probing. */ 1822 result = tcp_mtu_probe(sk); 1823 if (!result) { 1824 return false; 1825 } else if (result > 0) { 1826 sent_pkts = 1; 1827 } 1828 } 1829 1830 while ((skb = tcp_send_head(sk))) { 1831 unsigned int limit; 1832 1833 1834 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1835 BUG_ON(!tso_segs); 1836 1837 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) 1838 goto repair; /* Skip network transmission */ 1839 1840 cwnd_quota = tcp_cwnd_test(tp, skb); 1841 if (!cwnd_quota) { 1842 if (push_one == 2) 1843 /* Force out a loss probe pkt. */ 1844 cwnd_quota = 1; 1845 else 1846 break; 1847 } 1848 1849 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1850 break; 1851 1852 if (tso_segs == 1) { 1853 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1854 (tcp_skb_is_last(sk, skb) ? 1855 nonagle : TCP_NAGLE_PUSH)))) 1856 break; 1857 } else { 1858 if (!push_one && tcp_tso_should_defer(sk, skb)) 1859 break; 1860 } 1861 1862 /* TSQ : sk_wmem_alloc accounts skb truesize, 1863 * including skb overhead. But thats OK. 1864 */ 1865 if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) { 1866 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 1867 break; 1868 } 1869 limit = mss_now; 1870 if (tso_segs > 1 && !tcp_urg_mode(tp)) 1871 limit = tcp_mss_split_point(sk, skb, mss_now, 1872 min_t(unsigned int, 1873 cwnd_quota, 1874 sk->sk_gso_max_segs)); 1875 1876 if (skb->len > limit && 1877 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 1878 break; 1879 1880 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1881 1882 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 1883 break; 1884 1885 repair: 1886 /* Advance the send_head. This one is sent out. 1887 * This call will increment packets_out. 1888 */ 1889 tcp_event_new_data_sent(sk, skb); 1890 1891 tcp_minshall_update(tp, mss_now, skb); 1892 sent_pkts += tcp_skb_pcount(skb); 1893 1894 if (push_one) 1895 break; 1896 } 1897 1898 if (likely(sent_pkts)) { 1899 if (tcp_in_cwnd_reduction(sk)) 1900 tp->prr_out += sent_pkts; 1901 1902 /* Send one loss probe per tail loss episode. */ 1903 if (push_one != 2) 1904 tcp_schedule_loss_probe(sk); 1905 tcp_cwnd_validate(sk); 1906 return false; 1907 } 1908 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk)); 1909 } 1910 1911 bool tcp_schedule_loss_probe(struct sock *sk) 1912 { 1913 struct inet_connection_sock *icsk = inet_csk(sk); 1914 struct tcp_sock *tp = tcp_sk(sk); 1915 u32 timeout, tlp_time_stamp, rto_time_stamp; 1916 u32 rtt = tp->srtt >> 3; 1917 1918 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 1919 return false; 1920 /* No consecutive loss probes. */ 1921 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 1922 tcp_rearm_rto(sk); 1923 return false; 1924 } 1925 /* Don't do any loss probe on a Fast Open connection before 3WHS 1926 * finishes. 1927 */ 1928 if (sk->sk_state == TCP_SYN_RECV) 1929 return false; 1930 1931 /* TLP is only scheduled when next timer event is RTO. */ 1932 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 1933 return false; 1934 1935 /* Schedule a loss probe in 2*RTT for SACK capable connections 1936 * in Open state, that are either limited by cwnd or application. 1937 */ 1938 if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out || 1939 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 1940 return false; 1941 1942 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 1943 tcp_send_head(sk)) 1944 return false; 1945 1946 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 1947 * for delayed ack when there's one outstanding packet. 1948 */ 1949 timeout = rtt << 1; 1950 if (tp->packets_out == 1) 1951 timeout = max_t(u32, timeout, 1952 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 1953 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 1954 1955 /* If RTO is shorter, just schedule TLP in its place. */ 1956 tlp_time_stamp = tcp_time_stamp + timeout; 1957 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 1958 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 1959 s32 delta = rto_time_stamp - tcp_time_stamp; 1960 if (delta > 0) 1961 timeout = delta; 1962 } 1963 1964 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 1965 TCP_RTO_MAX); 1966 return true; 1967 } 1968 1969 /* When probe timeout (PTO) fires, send a new segment if one exists, else 1970 * retransmit the last segment. 1971 */ 1972 void tcp_send_loss_probe(struct sock *sk) 1973 { 1974 struct tcp_sock *tp = tcp_sk(sk); 1975 struct sk_buff *skb; 1976 int pcount; 1977 int mss = tcp_current_mss(sk); 1978 int err = -1; 1979 1980 if (tcp_send_head(sk) != NULL) { 1981 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 1982 goto rearm_timer; 1983 } 1984 1985 /* At most one outstanding TLP retransmission. */ 1986 if (tp->tlp_high_seq) 1987 goto rearm_timer; 1988 1989 /* Retransmit last segment. */ 1990 skb = tcp_write_queue_tail(sk); 1991 if (WARN_ON(!skb)) 1992 goto rearm_timer; 1993 1994 pcount = tcp_skb_pcount(skb); 1995 if (WARN_ON(!pcount)) 1996 goto rearm_timer; 1997 1998 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 1999 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss))) 2000 goto rearm_timer; 2001 skb = tcp_write_queue_tail(sk); 2002 } 2003 2004 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2005 goto rearm_timer; 2006 2007 /* Probe with zero data doesn't trigger fast recovery. */ 2008 if (skb->len > 0) 2009 err = __tcp_retransmit_skb(sk, skb); 2010 2011 /* Record snd_nxt for loss detection. */ 2012 if (likely(!err)) 2013 tp->tlp_high_seq = tp->snd_nxt; 2014 2015 rearm_timer: 2016 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2017 inet_csk(sk)->icsk_rto, 2018 TCP_RTO_MAX); 2019 2020 if (likely(!err)) 2021 NET_INC_STATS_BH(sock_net(sk), 2022 LINUX_MIB_TCPLOSSPROBES); 2023 return; 2024 } 2025 2026 /* Push out any pending frames which were held back due to 2027 * TCP_CORK or attempt at coalescing tiny packets. 2028 * The socket must be locked by the caller. 2029 */ 2030 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2031 int nonagle) 2032 { 2033 /* If we are closed, the bytes will have to remain here. 2034 * In time closedown will finish, we empty the write queue and 2035 * all will be happy. 2036 */ 2037 if (unlikely(sk->sk_state == TCP_CLOSE)) 2038 return; 2039 2040 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2041 sk_gfp_atomic(sk, GFP_ATOMIC))) 2042 tcp_check_probe_timer(sk); 2043 } 2044 2045 /* Send _single_ skb sitting at the send head. This function requires 2046 * true push pending frames to setup probe timer etc. 2047 */ 2048 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2049 { 2050 struct sk_buff *skb = tcp_send_head(sk); 2051 2052 BUG_ON(!skb || skb->len < mss_now); 2053 2054 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2055 } 2056 2057 /* This function returns the amount that we can raise the 2058 * usable window based on the following constraints 2059 * 2060 * 1. The window can never be shrunk once it is offered (RFC 793) 2061 * 2. We limit memory per socket 2062 * 2063 * RFC 1122: 2064 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2065 * RECV.NEXT + RCV.WIN fixed until: 2066 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2067 * 2068 * i.e. don't raise the right edge of the window until you can raise 2069 * it at least MSS bytes. 2070 * 2071 * Unfortunately, the recommended algorithm breaks header prediction, 2072 * since header prediction assumes th->window stays fixed. 2073 * 2074 * Strictly speaking, keeping th->window fixed violates the receiver 2075 * side SWS prevention criteria. The problem is that under this rule 2076 * a stream of single byte packets will cause the right side of the 2077 * window to always advance by a single byte. 2078 * 2079 * Of course, if the sender implements sender side SWS prevention 2080 * then this will not be a problem. 2081 * 2082 * BSD seems to make the following compromise: 2083 * 2084 * If the free space is less than the 1/4 of the maximum 2085 * space available and the free space is less than 1/2 mss, 2086 * then set the window to 0. 2087 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2088 * Otherwise, just prevent the window from shrinking 2089 * and from being larger than the largest representable value. 2090 * 2091 * This prevents incremental opening of the window in the regime 2092 * where TCP is limited by the speed of the reader side taking 2093 * data out of the TCP receive queue. It does nothing about 2094 * those cases where the window is constrained on the sender side 2095 * because the pipeline is full. 2096 * 2097 * BSD also seems to "accidentally" limit itself to windows that are a 2098 * multiple of MSS, at least until the free space gets quite small. 2099 * This would appear to be a side effect of the mbuf implementation. 2100 * Combining these two algorithms results in the observed behavior 2101 * of having a fixed window size at almost all times. 2102 * 2103 * Below we obtain similar behavior by forcing the offered window to 2104 * a multiple of the mss when it is feasible to do so. 2105 * 2106 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2107 * Regular options like TIMESTAMP are taken into account. 2108 */ 2109 u32 __tcp_select_window(struct sock *sk) 2110 { 2111 struct inet_connection_sock *icsk = inet_csk(sk); 2112 struct tcp_sock *tp = tcp_sk(sk); 2113 /* MSS for the peer's data. Previous versions used mss_clamp 2114 * here. I don't know if the value based on our guesses 2115 * of peer's MSS is better for the performance. It's more correct 2116 * but may be worse for the performance because of rcv_mss 2117 * fluctuations. --SAW 1998/11/1 2118 */ 2119 int mss = icsk->icsk_ack.rcv_mss; 2120 int free_space = tcp_space(sk); 2121 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 2122 int window; 2123 2124 if (mss > full_space) 2125 mss = full_space; 2126 2127 if (free_space < (full_space >> 1)) { 2128 icsk->icsk_ack.quick = 0; 2129 2130 if (sk_under_memory_pressure(sk)) 2131 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2132 4U * tp->advmss); 2133 2134 if (free_space < mss) 2135 return 0; 2136 } 2137 2138 if (free_space > tp->rcv_ssthresh) 2139 free_space = tp->rcv_ssthresh; 2140 2141 /* Don't do rounding if we are using window scaling, since the 2142 * scaled window will not line up with the MSS boundary anyway. 2143 */ 2144 window = tp->rcv_wnd; 2145 if (tp->rx_opt.rcv_wscale) { 2146 window = free_space; 2147 2148 /* Advertise enough space so that it won't get scaled away. 2149 * Import case: prevent zero window announcement if 2150 * 1<<rcv_wscale > mss. 2151 */ 2152 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2153 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2154 << tp->rx_opt.rcv_wscale); 2155 } else { 2156 /* Get the largest window that is a nice multiple of mss. 2157 * Window clamp already applied above. 2158 * If our current window offering is within 1 mss of the 2159 * free space we just keep it. This prevents the divide 2160 * and multiply from happening most of the time. 2161 * We also don't do any window rounding when the free space 2162 * is too small. 2163 */ 2164 if (window <= free_space - mss || window > free_space) 2165 window = (free_space / mss) * mss; 2166 else if (mss == full_space && 2167 free_space > window + (full_space >> 1)) 2168 window = free_space; 2169 } 2170 2171 return window; 2172 } 2173 2174 /* Collapses two adjacent SKB's during retransmission. */ 2175 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2176 { 2177 struct tcp_sock *tp = tcp_sk(sk); 2178 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2179 int skb_size, next_skb_size; 2180 2181 skb_size = skb->len; 2182 next_skb_size = next_skb->len; 2183 2184 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2185 2186 tcp_highest_sack_combine(sk, next_skb, skb); 2187 2188 tcp_unlink_write_queue(next_skb, sk); 2189 2190 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2191 next_skb_size); 2192 2193 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2194 skb->ip_summed = CHECKSUM_PARTIAL; 2195 2196 if (skb->ip_summed != CHECKSUM_PARTIAL) 2197 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2198 2199 /* Update sequence range on original skb. */ 2200 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2201 2202 /* Merge over control information. This moves PSH/FIN etc. over */ 2203 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2204 2205 /* All done, get rid of second SKB and account for it so 2206 * packet counting does not break. 2207 */ 2208 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2209 2210 /* changed transmit queue under us so clear hints */ 2211 tcp_clear_retrans_hints_partial(tp); 2212 if (next_skb == tp->retransmit_skb_hint) 2213 tp->retransmit_skb_hint = skb; 2214 2215 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2216 2217 sk_wmem_free_skb(sk, next_skb); 2218 } 2219 2220 /* Check if coalescing SKBs is legal. */ 2221 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2222 { 2223 if (tcp_skb_pcount(skb) > 1) 2224 return false; 2225 /* TODO: SACK collapsing could be used to remove this condition */ 2226 if (skb_shinfo(skb)->nr_frags != 0) 2227 return false; 2228 if (skb_cloned(skb)) 2229 return false; 2230 if (skb == tcp_send_head(sk)) 2231 return false; 2232 /* Some heurestics for collapsing over SACK'd could be invented */ 2233 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2234 return false; 2235 2236 return true; 2237 } 2238 2239 /* Collapse packets in the retransmit queue to make to create 2240 * less packets on the wire. This is only done on retransmission. 2241 */ 2242 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2243 int space) 2244 { 2245 struct tcp_sock *tp = tcp_sk(sk); 2246 struct sk_buff *skb = to, *tmp; 2247 bool first = true; 2248 2249 if (!sysctl_tcp_retrans_collapse) 2250 return; 2251 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2252 return; 2253 2254 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2255 if (!tcp_can_collapse(sk, skb)) 2256 break; 2257 2258 space -= skb->len; 2259 2260 if (first) { 2261 first = false; 2262 continue; 2263 } 2264 2265 if (space < 0) 2266 break; 2267 /* Punt if not enough space exists in the first SKB for 2268 * the data in the second 2269 */ 2270 if (skb->len > skb_availroom(to)) 2271 break; 2272 2273 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2274 break; 2275 2276 tcp_collapse_retrans(sk, to); 2277 } 2278 } 2279 2280 /* This retransmits one SKB. Policy decisions and retransmit queue 2281 * state updates are done by the caller. Returns non-zero if an 2282 * error occurred which prevented the send. 2283 */ 2284 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2285 { 2286 struct tcp_sock *tp = tcp_sk(sk); 2287 struct inet_connection_sock *icsk = inet_csk(sk); 2288 unsigned int cur_mss; 2289 2290 /* Inconslusive MTU probe */ 2291 if (icsk->icsk_mtup.probe_size) { 2292 icsk->icsk_mtup.probe_size = 0; 2293 } 2294 2295 /* Do not sent more than we queued. 1/4 is reserved for possible 2296 * copying overhead: fragmentation, tunneling, mangling etc. 2297 */ 2298 if (atomic_read(&sk->sk_wmem_alloc) > 2299 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2300 return -EAGAIN; 2301 2302 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2303 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2304 BUG(); 2305 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2306 return -ENOMEM; 2307 } 2308 2309 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2310 return -EHOSTUNREACH; /* Routing failure or similar. */ 2311 2312 cur_mss = tcp_current_mss(sk); 2313 2314 /* If receiver has shrunk his window, and skb is out of 2315 * new window, do not retransmit it. The exception is the 2316 * case, when window is shrunk to zero. In this case 2317 * our retransmit serves as a zero window probe. 2318 */ 2319 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2320 TCP_SKB_CB(skb)->seq != tp->snd_una) 2321 return -EAGAIN; 2322 2323 if (skb->len > cur_mss) { 2324 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 2325 return -ENOMEM; /* We'll try again later. */ 2326 } else { 2327 int oldpcount = tcp_skb_pcount(skb); 2328 2329 if (unlikely(oldpcount > 1)) { 2330 tcp_init_tso_segs(sk, skb, cur_mss); 2331 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2332 } 2333 } 2334 2335 tcp_retrans_try_collapse(sk, skb, cur_mss); 2336 2337 /* Some Solaris stacks overoptimize and ignore the FIN on a 2338 * retransmit when old data is attached. So strip it off 2339 * since it is cheap to do so and saves bytes on the network. 2340 */ 2341 if (skb->len > 0 && 2342 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2343 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 2344 if (!pskb_trim(skb, 0)) { 2345 /* Reuse, even though it does some unnecessary work */ 2346 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1, 2347 TCP_SKB_CB(skb)->tcp_flags); 2348 skb->ip_summed = CHECKSUM_NONE; 2349 } 2350 } 2351 2352 /* Make a copy, if the first transmission SKB clone we made 2353 * is still in somebody's hands, else make a clone. 2354 */ 2355 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2356 2357 /* make sure skb->data is aligned on arches that require it 2358 * and check if ack-trimming & collapsing extended the headroom 2359 * beyond what csum_start can cover. 2360 */ 2361 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2362 skb_headroom(skb) >= 0xFFFF)) { 2363 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2364 GFP_ATOMIC); 2365 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2366 -ENOBUFS; 2367 } else { 2368 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2369 } 2370 } 2371 2372 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2373 { 2374 struct tcp_sock *tp = tcp_sk(sk); 2375 int err = __tcp_retransmit_skb(sk, skb); 2376 2377 if (err == 0) { 2378 /* Update global TCP statistics. */ 2379 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2380 2381 tp->total_retrans++; 2382 2383 #if FASTRETRANS_DEBUG > 0 2384 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2385 net_dbg_ratelimited("retrans_out leaked\n"); 2386 } 2387 #endif 2388 if (!tp->retrans_out) 2389 tp->lost_retrans_low = tp->snd_nxt; 2390 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2391 tp->retrans_out += tcp_skb_pcount(skb); 2392 2393 /* Save stamp of the first retransmit. */ 2394 if (!tp->retrans_stamp) 2395 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 2396 2397 tp->undo_retrans += tcp_skb_pcount(skb); 2398 2399 /* snd_nxt is stored to detect loss of retransmitted segment, 2400 * see tcp_input.c tcp_sacktag_write_queue(). 2401 */ 2402 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2403 } 2404 return err; 2405 } 2406 2407 /* Check if we forward retransmits are possible in the current 2408 * window/congestion state. 2409 */ 2410 static bool tcp_can_forward_retransmit(struct sock *sk) 2411 { 2412 const struct inet_connection_sock *icsk = inet_csk(sk); 2413 const struct tcp_sock *tp = tcp_sk(sk); 2414 2415 /* Forward retransmissions are possible only during Recovery. */ 2416 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2417 return false; 2418 2419 /* No forward retransmissions in Reno are possible. */ 2420 if (tcp_is_reno(tp)) 2421 return false; 2422 2423 /* Yeah, we have to make difficult choice between forward transmission 2424 * and retransmission... Both ways have their merits... 2425 * 2426 * For now we do not retransmit anything, while we have some new 2427 * segments to send. In the other cases, follow rule 3 for 2428 * NextSeg() specified in RFC3517. 2429 */ 2430 2431 if (tcp_may_send_now(sk)) 2432 return false; 2433 2434 return true; 2435 } 2436 2437 /* This gets called after a retransmit timeout, and the initially 2438 * retransmitted data is acknowledged. It tries to continue 2439 * resending the rest of the retransmit queue, until either 2440 * we've sent it all or the congestion window limit is reached. 2441 * If doing SACK, the first ACK which comes back for a timeout 2442 * based retransmit packet might feed us FACK information again. 2443 * If so, we use it to avoid unnecessarily retransmissions. 2444 */ 2445 void tcp_xmit_retransmit_queue(struct sock *sk) 2446 { 2447 const struct inet_connection_sock *icsk = inet_csk(sk); 2448 struct tcp_sock *tp = tcp_sk(sk); 2449 struct sk_buff *skb; 2450 struct sk_buff *hole = NULL; 2451 u32 last_lost; 2452 int mib_idx; 2453 int fwd_rexmitting = 0; 2454 2455 if (!tp->packets_out) 2456 return; 2457 2458 if (!tp->lost_out) 2459 tp->retransmit_high = tp->snd_una; 2460 2461 if (tp->retransmit_skb_hint) { 2462 skb = tp->retransmit_skb_hint; 2463 last_lost = TCP_SKB_CB(skb)->end_seq; 2464 if (after(last_lost, tp->retransmit_high)) 2465 last_lost = tp->retransmit_high; 2466 } else { 2467 skb = tcp_write_queue_head(sk); 2468 last_lost = tp->snd_una; 2469 } 2470 2471 tcp_for_write_queue_from(skb, sk) { 2472 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2473 2474 if (skb == tcp_send_head(sk)) 2475 break; 2476 /* we could do better than to assign each time */ 2477 if (hole == NULL) 2478 tp->retransmit_skb_hint = skb; 2479 2480 /* Assume this retransmit will generate 2481 * only one packet for congestion window 2482 * calculation purposes. This works because 2483 * tcp_retransmit_skb() will chop up the 2484 * packet to be MSS sized and all the 2485 * packet counting works out. 2486 */ 2487 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2488 return; 2489 2490 if (fwd_rexmitting) { 2491 begin_fwd: 2492 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2493 break; 2494 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2495 2496 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2497 tp->retransmit_high = last_lost; 2498 if (!tcp_can_forward_retransmit(sk)) 2499 break; 2500 /* Backtrack if necessary to non-L'ed skb */ 2501 if (hole != NULL) { 2502 skb = hole; 2503 hole = NULL; 2504 } 2505 fwd_rexmitting = 1; 2506 goto begin_fwd; 2507 2508 } else if (!(sacked & TCPCB_LOST)) { 2509 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2510 hole = skb; 2511 continue; 2512 2513 } else { 2514 last_lost = TCP_SKB_CB(skb)->end_seq; 2515 if (icsk->icsk_ca_state != TCP_CA_Loss) 2516 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2517 else 2518 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2519 } 2520 2521 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2522 continue; 2523 2524 if (tcp_retransmit_skb(sk, skb)) { 2525 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2526 return; 2527 } 2528 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2529 2530 if (tcp_in_cwnd_reduction(sk)) 2531 tp->prr_out += tcp_skb_pcount(skb); 2532 2533 if (skb == tcp_write_queue_head(sk)) 2534 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2535 inet_csk(sk)->icsk_rto, 2536 TCP_RTO_MAX); 2537 } 2538 } 2539 2540 /* Send a fin. The caller locks the socket for us. This cannot be 2541 * allowed to fail queueing a FIN frame under any circumstances. 2542 */ 2543 void tcp_send_fin(struct sock *sk) 2544 { 2545 struct tcp_sock *tp = tcp_sk(sk); 2546 struct sk_buff *skb = tcp_write_queue_tail(sk); 2547 int mss_now; 2548 2549 /* Optimization, tack on the FIN if we have a queue of 2550 * unsent frames. But be careful about outgoing SACKS 2551 * and IP options. 2552 */ 2553 mss_now = tcp_current_mss(sk); 2554 2555 if (tcp_send_head(sk) != NULL) { 2556 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2557 TCP_SKB_CB(skb)->end_seq++; 2558 tp->write_seq++; 2559 } else { 2560 /* Socket is locked, keep trying until memory is available. */ 2561 for (;;) { 2562 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2563 sk->sk_allocation); 2564 if (skb) 2565 break; 2566 yield(); 2567 } 2568 2569 /* Reserve space for headers and prepare control bits. */ 2570 skb_reserve(skb, MAX_TCP_HEADER); 2571 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2572 tcp_init_nondata_skb(skb, tp->write_seq, 2573 TCPHDR_ACK | TCPHDR_FIN); 2574 tcp_queue_skb(sk, skb); 2575 } 2576 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2577 } 2578 2579 /* We get here when a process closes a file descriptor (either due to 2580 * an explicit close() or as a byproduct of exit()'ing) and there 2581 * was unread data in the receive queue. This behavior is recommended 2582 * by RFC 2525, section 2.17. -DaveM 2583 */ 2584 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2585 { 2586 struct sk_buff *skb; 2587 2588 /* NOTE: No TCP options attached and we never retransmit this. */ 2589 skb = alloc_skb(MAX_TCP_HEADER, priority); 2590 if (!skb) { 2591 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2592 return; 2593 } 2594 2595 /* Reserve space for headers and prepare control bits. */ 2596 skb_reserve(skb, MAX_TCP_HEADER); 2597 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2598 TCPHDR_ACK | TCPHDR_RST); 2599 /* Send it off. */ 2600 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2601 if (tcp_transmit_skb(sk, skb, 0, priority)) 2602 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2603 2604 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2605 } 2606 2607 /* Send a crossed SYN-ACK during socket establishment. 2608 * WARNING: This routine must only be called when we have already sent 2609 * a SYN packet that crossed the incoming SYN that caused this routine 2610 * to get called. If this assumption fails then the initial rcv_wnd 2611 * and rcv_wscale values will not be correct. 2612 */ 2613 int tcp_send_synack(struct sock *sk) 2614 { 2615 struct sk_buff *skb; 2616 2617 skb = tcp_write_queue_head(sk); 2618 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2619 pr_debug("%s: wrong queue state\n", __func__); 2620 return -EFAULT; 2621 } 2622 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2623 if (skb_cloned(skb)) { 2624 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2625 if (nskb == NULL) 2626 return -ENOMEM; 2627 tcp_unlink_write_queue(skb, sk); 2628 skb_header_release(nskb); 2629 __tcp_add_write_queue_head(sk, nskb); 2630 sk_wmem_free_skb(sk, skb); 2631 sk->sk_wmem_queued += nskb->truesize; 2632 sk_mem_charge(sk, nskb->truesize); 2633 skb = nskb; 2634 } 2635 2636 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2637 TCP_ECN_send_synack(tcp_sk(sk), skb); 2638 } 2639 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2640 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2641 } 2642 2643 /** 2644 * tcp_make_synack - Prepare a SYN-ACK. 2645 * sk: listener socket 2646 * dst: dst entry attached to the SYNACK 2647 * req: request_sock pointer 2648 * 2649 * Allocate one skb and build a SYNACK packet. 2650 * @dst is consumed : Caller should not use it again. 2651 */ 2652 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2653 struct request_sock *req, 2654 struct tcp_fastopen_cookie *foc) 2655 { 2656 struct tcp_out_options opts; 2657 struct inet_request_sock *ireq = inet_rsk(req); 2658 struct tcp_sock *tp = tcp_sk(sk); 2659 struct tcphdr *th; 2660 struct sk_buff *skb; 2661 struct tcp_md5sig_key *md5; 2662 int tcp_header_size; 2663 int mss; 2664 2665 skb = alloc_skb(MAX_TCP_HEADER + 15, sk_gfp_atomic(sk, GFP_ATOMIC)); 2666 if (unlikely(!skb)) { 2667 dst_release(dst); 2668 return NULL; 2669 } 2670 /* Reserve space for headers. */ 2671 skb_reserve(skb, MAX_TCP_HEADER); 2672 2673 skb_dst_set(skb, dst); 2674 security_skb_owned_by(skb, sk); 2675 2676 mss = dst_metric_advmss(dst); 2677 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2678 mss = tp->rx_opt.user_mss; 2679 2680 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2681 __u8 rcv_wscale; 2682 /* Set this up on the first call only */ 2683 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2684 2685 /* limit the window selection if the user enforce a smaller rx buffer */ 2686 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2687 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0)) 2688 req->window_clamp = tcp_full_space(sk); 2689 2690 /* tcp_full_space because it is guaranteed to be the first packet */ 2691 tcp_select_initial_window(tcp_full_space(sk), 2692 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2693 &req->rcv_wnd, 2694 &req->window_clamp, 2695 ireq->wscale_ok, 2696 &rcv_wscale, 2697 dst_metric(dst, RTAX_INITRWND)); 2698 ireq->rcv_wscale = rcv_wscale; 2699 } 2700 2701 memset(&opts, 0, sizeof(opts)); 2702 #ifdef CONFIG_SYN_COOKIES 2703 if (unlikely(req->cookie_ts)) 2704 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2705 else 2706 #endif 2707 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2708 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5, 2709 foc) + sizeof(*th); 2710 2711 skb_push(skb, tcp_header_size); 2712 skb_reset_transport_header(skb); 2713 2714 th = tcp_hdr(skb); 2715 memset(th, 0, sizeof(struct tcphdr)); 2716 th->syn = 1; 2717 th->ack = 1; 2718 TCP_ECN_make_synack(req, th); 2719 th->source = ireq->loc_port; 2720 th->dest = ireq->rmt_port; 2721 /* Setting of flags are superfluous here for callers (and ECE is 2722 * not even correctly set) 2723 */ 2724 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2725 TCPHDR_SYN | TCPHDR_ACK); 2726 2727 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2728 /* XXX data is queued and acked as is. No buffer/window check */ 2729 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 2730 2731 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2732 th->window = htons(min(req->rcv_wnd, 65535U)); 2733 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2734 th->doff = (tcp_header_size >> 2); 2735 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb)); 2736 2737 #ifdef CONFIG_TCP_MD5SIG 2738 /* Okay, we have all we need - do the md5 hash if needed */ 2739 if (md5) { 2740 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2741 md5, NULL, req, skb); 2742 } 2743 #endif 2744 2745 return skb; 2746 } 2747 EXPORT_SYMBOL(tcp_make_synack); 2748 2749 /* Do all connect socket setups that can be done AF independent. */ 2750 void tcp_connect_init(struct sock *sk) 2751 { 2752 const struct dst_entry *dst = __sk_dst_get(sk); 2753 struct tcp_sock *tp = tcp_sk(sk); 2754 __u8 rcv_wscale; 2755 2756 /* We'll fix this up when we get a response from the other end. 2757 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2758 */ 2759 tp->tcp_header_len = sizeof(struct tcphdr) + 2760 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2761 2762 #ifdef CONFIG_TCP_MD5SIG 2763 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2764 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2765 #endif 2766 2767 /* If user gave his TCP_MAXSEG, record it to clamp */ 2768 if (tp->rx_opt.user_mss) 2769 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2770 tp->max_window = 0; 2771 tcp_mtup_init(sk); 2772 tcp_sync_mss(sk, dst_mtu(dst)); 2773 2774 if (!tp->window_clamp) 2775 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2776 tp->advmss = dst_metric_advmss(dst); 2777 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2778 tp->advmss = tp->rx_opt.user_mss; 2779 2780 tcp_initialize_rcv_mss(sk); 2781 2782 /* limit the window selection if the user enforce a smaller rx buffer */ 2783 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2784 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2785 tp->window_clamp = tcp_full_space(sk); 2786 2787 tcp_select_initial_window(tcp_full_space(sk), 2788 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2789 &tp->rcv_wnd, 2790 &tp->window_clamp, 2791 sysctl_tcp_window_scaling, 2792 &rcv_wscale, 2793 dst_metric(dst, RTAX_INITRWND)); 2794 2795 tp->rx_opt.rcv_wscale = rcv_wscale; 2796 tp->rcv_ssthresh = tp->rcv_wnd; 2797 2798 sk->sk_err = 0; 2799 sock_reset_flag(sk, SOCK_DONE); 2800 tp->snd_wnd = 0; 2801 tcp_init_wl(tp, 0); 2802 tp->snd_una = tp->write_seq; 2803 tp->snd_sml = tp->write_seq; 2804 tp->snd_up = tp->write_seq; 2805 tp->snd_nxt = tp->write_seq; 2806 2807 if (likely(!tp->repair)) 2808 tp->rcv_nxt = 0; 2809 tp->rcv_wup = tp->rcv_nxt; 2810 tp->copied_seq = tp->rcv_nxt; 2811 2812 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2813 inet_csk(sk)->icsk_retransmits = 0; 2814 tcp_clear_retrans(tp); 2815 } 2816 2817 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 2818 { 2819 struct tcp_sock *tp = tcp_sk(sk); 2820 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 2821 2822 tcb->end_seq += skb->len; 2823 skb_header_release(skb); 2824 __tcp_add_write_queue_tail(sk, skb); 2825 sk->sk_wmem_queued += skb->truesize; 2826 sk_mem_charge(sk, skb->truesize); 2827 tp->write_seq = tcb->end_seq; 2828 tp->packets_out += tcp_skb_pcount(skb); 2829 } 2830 2831 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 2832 * queue a data-only packet after the regular SYN, such that regular SYNs 2833 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 2834 * only the SYN sequence, the data are retransmitted in the first ACK. 2835 * If cookie is not cached or other error occurs, falls back to send a 2836 * regular SYN with Fast Open cookie request option. 2837 */ 2838 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 2839 { 2840 struct tcp_sock *tp = tcp_sk(sk); 2841 struct tcp_fastopen_request *fo = tp->fastopen_req; 2842 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen; 2843 struct sk_buff *syn_data = NULL, *data; 2844 unsigned long last_syn_loss = 0; 2845 2846 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 2847 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 2848 &syn_loss, &last_syn_loss); 2849 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 2850 if (syn_loss > 1 && 2851 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 2852 fo->cookie.len = -1; 2853 goto fallback; 2854 } 2855 2856 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 2857 fo->cookie.len = -1; 2858 else if (fo->cookie.len <= 0) 2859 goto fallback; 2860 2861 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 2862 * user-MSS. Reserve maximum option space for middleboxes that add 2863 * private TCP options. The cost is reduced data space in SYN :( 2864 */ 2865 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 2866 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2867 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 2868 MAX_TCP_OPTION_SPACE; 2869 2870 syn_data = skb_copy_expand(syn, skb_headroom(syn), space, 2871 sk->sk_allocation); 2872 if (syn_data == NULL) 2873 goto fallback; 2874 2875 for (i = 0; i < iovlen && syn_data->len < space; ++i) { 2876 struct iovec *iov = &fo->data->msg_iov[i]; 2877 unsigned char __user *from = iov->iov_base; 2878 int len = iov->iov_len; 2879 2880 if (syn_data->len + len > space) 2881 len = space - syn_data->len; 2882 else if (i + 1 == iovlen) 2883 /* No more data pending in inet_wait_for_connect() */ 2884 fo->data = NULL; 2885 2886 if (skb_add_data(syn_data, from, len)) 2887 goto fallback; 2888 } 2889 2890 /* Queue a data-only packet after the regular SYN for retransmission */ 2891 data = pskb_copy(syn_data, sk->sk_allocation); 2892 if (data == NULL) 2893 goto fallback; 2894 TCP_SKB_CB(data)->seq++; 2895 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN; 2896 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH); 2897 tcp_connect_queue_skb(sk, data); 2898 fo->copied = data->len; 2899 2900 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) { 2901 tp->syn_data = (fo->copied > 0); 2902 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 2903 goto done; 2904 } 2905 syn_data = NULL; 2906 2907 fallback: 2908 /* Send a regular SYN with Fast Open cookie request option */ 2909 if (fo->cookie.len > 0) 2910 fo->cookie.len = 0; 2911 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 2912 if (err) 2913 tp->syn_fastopen = 0; 2914 kfree_skb(syn_data); 2915 done: 2916 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 2917 return err; 2918 } 2919 2920 /* Build a SYN and send it off. */ 2921 int tcp_connect(struct sock *sk) 2922 { 2923 struct tcp_sock *tp = tcp_sk(sk); 2924 struct sk_buff *buff; 2925 int err; 2926 2927 tcp_connect_init(sk); 2928 2929 if (unlikely(tp->repair)) { 2930 tcp_finish_connect(sk, NULL); 2931 return 0; 2932 } 2933 2934 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 2935 if (unlikely(buff == NULL)) 2936 return -ENOBUFS; 2937 2938 /* Reserve space for headers. */ 2939 skb_reserve(buff, MAX_TCP_HEADER); 2940 2941 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 2942 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp; 2943 tcp_connect_queue_skb(sk, buff); 2944 TCP_ECN_send_syn(sk, buff); 2945 2946 /* Send off SYN; include data in Fast Open. */ 2947 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 2948 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 2949 if (err == -ECONNREFUSED) 2950 return err; 2951 2952 /* We change tp->snd_nxt after the tcp_transmit_skb() call 2953 * in order to make this packet get counted in tcpOutSegs. 2954 */ 2955 tp->snd_nxt = tp->write_seq; 2956 tp->pushed_seq = tp->write_seq; 2957 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 2958 2959 /* Timer for repeating the SYN until an answer. */ 2960 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2961 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2962 return 0; 2963 } 2964 EXPORT_SYMBOL(tcp_connect); 2965 2966 /* Send out a delayed ack, the caller does the policy checking 2967 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 2968 * for details. 2969 */ 2970 void tcp_send_delayed_ack(struct sock *sk) 2971 { 2972 struct inet_connection_sock *icsk = inet_csk(sk); 2973 int ato = icsk->icsk_ack.ato; 2974 unsigned long timeout; 2975 2976 if (ato > TCP_DELACK_MIN) { 2977 const struct tcp_sock *tp = tcp_sk(sk); 2978 int max_ato = HZ / 2; 2979 2980 if (icsk->icsk_ack.pingpong || 2981 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 2982 max_ato = TCP_DELACK_MAX; 2983 2984 /* Slow path, intersegment interval is "high". */ 2985 2986 /* If some rtt estimate is known, use it to bound delayed ack. 2987 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 2988 * directly. 2989 */ 2990 if (tp->srtt) { 2991 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN); 2992 2993 if (rtt < max_ato) 2994 max_ato = rtt; 2995 } 2996 2997 ato = min(ato, max_ato); 2998 } 2999 3000 /* Stay within the limit we were given */ 3001 timeout = jiffies + ato; 3002 3003 /* Use new timeout only if there wasn't a older one earlier. */ 3004 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3005 /* If delack timer was blocked or is about to expire, 3006 * send ACK now. 3007 */ 3008 if (icsk->icsk_ack.blocked || 3009 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3010 tcp_send_ack(sk); 3011 return; 3012 } 3013 3014 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3015 timeout = icsk->icsk_ack.timeout; 3016 } 3017 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3018 icsk->icsk_ack.timeout = timeout; 3019 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3020 } 3021 3022 /* This routine sends an ack and also updates the window. */ 3023 void tcp_send_ack(struct sock *sk) 3024 { 3025 struct sk_buff *buff; 3026 3027 /* If we have been reset, we may not send again. */ 3028 if (sk->sk_state == TCP_CLOSE) 3029 return; 3030 3031 /* We are not putting this on the write queue, so 3032 * tcp_transmit_skb() will set the ownership to this 3033 * sock. 3034 */ 3035 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3036 if (buff == NULL) { 3037 inet_csk_schedule_ack(sk); 3038 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3039 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3040 TCP_DELACK_MAX, TCP_RTO_MAX); 3041 return; 3042 } 3043 3044 /* Reserve space for headers and prepare control bits. */ 3045 skb_reserve(buff, MAX_TCP_HEADER); 3046 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3047 3048 /* Send it off, this clears delayed acks for us. */ 3049 TCP_SKB_CB(buff)->when = tcp_time_stamp; 3050 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3051 } 3052 3053 /* This routine sends a packet with an out of date sequence 3054 * number. It assumes the other end will try to ack it. 3055 * 3056 * Question: what should we make while urgent mode? 3057 * 4.4BSD forces sending single byte of data. We cannot send 3058 * out of window data, because we have SND.NXT==SND.MAX... 3059 * 3060 * Current solution: to send TWO zero-length segments in urgent mode: 3061 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3062 * out-of-date with SND.UNA-1 to probe window. 3063 */ 3064 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3065 { 3066 struct tcp_sock *tp = tcp_sk(sk); 3067 struct sk_buff *skb; 3068 3069 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3070 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3071 if (skb == NULL) 3072 return -1; 3073 3074 /* Reserve space for headers and set control bits. */ 3075 skb_reserve(skb, MAX_TCP_HEADER); 3076 /* Use a previous sequence. This should cause the other 3077 * end to send an ack. Don't queue or clone SKB, just 3078 * send it. 3079 */ 3080 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3081 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3082 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3083 } 3084 3085 void tcp_send_window_probe(struct sock *sk) 3086 { 3087 if (sk->sk_state == TCP_ESTABLISHED) { 3088 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3089 tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq; 3090 tcp_xmit_probe_skb(sk, 0); 3091 } 3092 } 3093 3094 /* Initiate keepalive or window probe from timer. */ 3095 int tcp_write_wakeup(struct sock *sk) 3096 { 3097 struct tcp_sock *tp = tcp_sk(sk); 3098 struct sk_buff *skb; 3099 3100 if (sk->sk_state == TCP_CLOSE) 3101 return -1; 3102 3103 if ((skb = tcp_send_head(sk)) != NULL && 3104 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3105 int err; 3106 unsigned int mss = tcp_current_mss(sk); 3107 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3108 3109 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3110 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3111 3112 /* We are probing the opening of a window 3113 * but the window size is != 0 3114 * must have been a result SWS avoidance ( sender ) 3115 */ 3116 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3117 skb->len > mss) { 3118 seg_size = min(seg_size, mss); 3119 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3120 if (tcp_fragment(sk, skb, seg_size, mss)) 3121 return -1; 3122 } else if (!tcp_skb_pcount(skb)) 3123 tcp_set_skb_tso_segs(sk, skb, mss); 3124 3125 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3126 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3127 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3128 if (!err) 3129 tcp_event_new_data_sent(sk, skb); 3130 return err; 3131 } else { 3132 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3133 tcp_xmit_probe_skb(sk, 1); 3134 return tcp_xmit_probe_skb(sk, 0); 3135 } 3136 } 3137 3138 /* A window probe timeout has occurred. If window is not closed send 3139 * a partial packet else a zero probe. 3140 */ 3141 void tcp_send_probe0(struct sock *sk) 3142 { 3143 struct inet_connection_sock *icsk = inet_csk(sk); 3144 struct tcp_sock *tp = tcp_sk(sk); 3145 int err; 3146 3147 err = tcp_write_wakeup(sk); 3148 3149 if (tp->packets_out || !tcp_send_head(sk)) { 3150 /* Cancel probe timer, if it is not required. */ 3151 icsk->icsk_probes_out = 0; 3152 icsk->icsk_backoff = 0; 3153 return; 3154 } 3155 3156 if (err <= 0) { 3157 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3158 icsk->icsk_backoff++; 3159 icsk->icsk_probes_out++; 3160 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3161 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3162 TCP_RTO_MAX); 3163 } else { 3164 /* If packet was not sent due to local congestion, 3165 * do not backoff and do not remember icsk_probes_out. 3166 * Let local senders to fight for local resources. 3167 * 3168 * Use accumulated backoff yet. 3169 */ 3170 if (!icsk->icsk_probes_out) 3171 icsk->icsk_probes_out = 1; 3172 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3173 min(icsk->icsk_rto << icsk->icsk_backoff, 3174 TCP_RESOURCE_PROBE_INTERVAL), 3175 TCP_RTO_MAX); 3176 } 3177 } 3178