1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #include <net/tcp.h> 38 39 #include <linux/compiler.h> 40 #include <linux/module.h> 41 42 /* People can turn this off for buggy TCP's found in printers etc. */ 43 int sysctl_tcp_retrans_collapse __read_mostly = 1; 44 45 /* People can turn this on to work with those rare, broken TCPs that 46 * interpret the window field as a signed quantity. 47 */ 48 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 49 50 /* This limits the percentage of the congestion window which we 51 * will allow a single TSO frame to consume. Building TSO frames 52 * which are too large can cause TCP streams to be bursty. 53 */ 54 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 55 56 int sysctl_tcp_mtu_probing __read_mostly = 0; 57 int sysctl_tcp_base_mss __read_mostly = 512; 58 59 /* By default, RFC2861 behavior. */ 60 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 61 62 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 63 { 64 struct tcp_sock *tp = tcp_sk(sk); 65 unsigned int prior_packets = tp->packets_out; 66 67 tcp_advance_send_head(sk, skb); 68 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 69 70 /* Don't override Nagle indefinately with F-RTO */ 71 if (tp->frto_counter == 2) 72 tp->frto_counter = 3; 73 74 tp->packets_out += tcp_skb_pcount(skb); 75 if (!prior_packets) 76 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 77 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 78 } 79 80 /* SND.NXT, if window was not shrunk. 81 * If window has been shrunk, what should we make? It is not clear at all. 82 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 83 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 84 * invalid. OK, let's make this for now: 85 */ 86 static inline __u32 tcp_acceptable_seq(struct sock *sk) 87 { 88 struct tcp_sock *tp = tcp_sk(sk); 89 90 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 91 return tp->snd_nxt; 92 else 93 return tcp_wnd_end(tp); 94 } 95 96 /* Calculate mss to advertise in SYN segment. 97 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 98 * 99 * 1. It is independent of path mtu. 100 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 101 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 102 * attached devices, because some buggy hosts are confused by 103 * large MSS. 104 * 4. We do not make 3, we advertise MSS, calculated from first 105 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 106 * This may be overridden via information stored in routing table. 107 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 108 * probably even Jumbo". 109 */ 110 static __u16 tcp_advertise_mss(struct sock *sk) 111 { 112 struct tcp_sock *tp = tcp_sk(sk); 113 struct dst_entry *dst = __sk_dst_get(sk); 114 int mss = tp->advmss; 115 116 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { 117 mss = dst_metric(dst, RTAX_ADVMSS); 118 tp->advmss = mss; 119 } 120 121 return (__u16)mss; 122 } 123 124 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 125 * This is the first part of cwnd validation mechanism. */ 126 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst) 127 { 128 struct tcp_sock *tp = tcp_sk(sk); 129 s32 delta = tcp_time_stamp - tp->lsndtime; 130 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 131 u32 cwnd = tp->snd_cwnd; 132 133 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 134 135 tp->snd_ssthresh = tcp_current_ssthresh(sk); 136 restart_cwnd = min(restart_cwnd, cwnd); 137 138 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 139 cwnd >>= 1; 140 tp->snd_cwnd = max(cwnd, restart_cwnd); 141 tp->snd_cwnd_stamp = tcp_time_stamp; 142 tp->snd_cwnd_used = 0; 143 } 144 145 static void tcp_event_data_sent(struct tcp_sock *tp, 146 struct sk_buff *skb, struct sock *sk) 147 { 148 struct inet_connection_sock *icsk = inet_csk(sk); 149 const u32 now = tcp_time_stamp; 150 151 if (sysctl_tcp_slow_start_after_idle && 152 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 153 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 154 155 tp->lsndtime = now; 156 157 /* If it is a reply for ato after last received 158 * packet, enter pingpong mode. 159 */ 160 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 161 icsk->icsk_ack.pingpong = 1; 162 } 163 164 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 165 { 166 tcp_dec_quickack_mode(sk, pkts); 167 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 168 } 169 170 /* Determine a window scaling and initial window to offer. 171 * Based on the assumption that the given amount of space 172 * will be offered. Store the results in the tp structure. 173 * NOTE: for smooth operation initial space offering should 174 * be a multiple of mss if possible. We assume here that mss >= 1. 175 * This MUST be enforced by all callers. 176 */ 177 void tcp_select_initial_window(int __space, __u32 mss, 178 __u32 *rcv_wnd, __u32 *window_clamp, 179 int wscale_ok, __u8 *rcv_wscale) 180 { 181 unsigned int space = (__space < 0 ? 0 : __space); 182 183 /* If no clamp set the clamp to the max possible scaled window */ 184 if (*window_clamp == 0) 185 (*window_clamp) = (65535 << 14); 186 space = min(*window_clamp, space); 187 188 /* Quantize space offering to a multiple of mss if possible. */ 189 if (space > mss) 190 space = (space / mss) * mss; 191 192 /* NOTE: offering an initial window larger than 32767 193 * will break some buggy TCP stacks. If the admin tells us 194 * it is likely we could be speaking with such a buggy stack 195 * we will truncate our initial window offering to 32K-1 196 * unless the remote has sent us a window scaling option, 197 * which we interpret as a sign the remote TCP is not 198 * misinterpreting the window field as a signed quantity. 199 */ 200 if (sysctl_tcp_workaround_signed_windows) 201 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 202 else 203 (*rcv_wnd) = space; 204 205 (*rcv_wscale) = 0; 206 if (wscale_ok) { 207 /* Set window scaling on max possible window 208 * See RFC1323 for an explanation of the limit to 14 209 */ 210 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 211 space = min_t(u32, space, *window_clamp); 212 while (space > 65535 && (*rcv_wscale) < 14) { 213 space >>= 1; 214 (*rcv_wscale)++; 215 } 216 } 217 218 /* Set initial window to value enough for senders, 219 * following RFC2414. Senders, not following this RFC, 220 * will be satisfied with 2. 221 */ 222 if (mss > (1 << *rcv_wscale)) { 223 int init_cwnd = 4; 224 if (mss > 1460 * 3) 225 init_cwnd = 2; 226 else if (mss > 1460) 227 init_cwnd = 3; 228 if (*rcv_wnd > init_cwnd * mss) 229 *rcv_wnd = init_cwnd * mss; 230 } 231 232 /* Set the clamp no higher than max representable value */ 233 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 234 } 235 236 /* Chose a new window to advertise, update state in tcp_sock for the 237 * socket, and return result with RFC1323 scaling applied. The return 238 * value can be stuffed directly into th->window for an outgoing 239 * frame. 240 */ 241 static u16 tcp_select_window(struct sock *sk) 242 { 243 struct tcp_sock *tp = tcp_sk(sk); 244 u32 cur_win = tcp_receive_window(tp); 245 u32 new_win = __tcp_select_window(sk); 246 247 /* Never shrink the offered window */ 248 if (new_win < cur_win) { 249 /* Danger Will Robinson! 250 * Don't update rcv_wup/rcv_wnd here or else 251 * we will not be able to advertise a zero 252 * window in time. --DaveM 253 * 254 * Relax Will Robinson. 255 */ 256 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 257 } 258 tp->rcv_wnd = new_win; 259 tp->rcv_wup = tp->rcv_nxt; 260 261 /* Make sure we do not exceed the maximum possible 262 * scaled window. 263 */ 264 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 265 new_win = min(new_win, MAX_TCP_WINDOW); 266 else 267 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 268 269 /* RFC1323 scaling applied */ 270 new_win >>= tp->rx_opt.rcv_wscale; 271 272 /* If we advertise zero window, disable fast path. */ 273 if (new_win == 0) 274 tp->pred_flags = 0; 275 276 return new_win; 277 } 278 279 static inline void TCP_ECN_send_synack(struct tcp_sock *tp, struct sk_buff *skb) 280 { 281 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_CWR; 282 if (!(tp->ecn_flags & TCP_ECN_OK)) 283 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_ECE; 284 } 285 286 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 287 { 288 struct tcp_sock *tp = tcp_sk(sk); 289 290 tp->ecn_flags = 0; 291 if (sysctl_tcp_ecn) { 292 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ECE | TCPCB_FLAG_CWR; 293 tp->ecn_flags = TCP_ECN_OK; 294 } 295 } 296 297 static __inline__ void 298 TCP_ECN_make_synack(struct request_sock *req, struct tcphdr *th) 299 { 300 if (inet_rsk(req)->ecn_ok) 301 th->ece = 1; 302 } 303 304 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 305 int tcp_header_len) 306 { 307 struct tcp_sock *tp = tcp_sk(sk); 308 309 if (tp->ecn_flags & TCP_ECN_OK) { 310 /* Not-retransmitted data segment: set ECT and inject CWR. */ 311 if (skb->len != tcp_header_len && 312 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 313 INET_ECN_xmit(sk); 314 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 315 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 316 tcp_hdr(skb)->cwr = 1; 317 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 318 } 319 } else { 320 /* ACK or retransmitted segment: clear ECT|CE */ 321 INET_ECN_dontxmit(sk); 322 } 323 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 324 tcp_hdr(skb)->ece = 1; 325 } 326 } 327 328 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 329 * auto increment end seqno. 330 */ 331 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 332 { 333 skb->csum = 0; 334 335 TCP_SKB_CB(skb)->flags = flags; 336 TCP_SKB_CB(skb)->sacked = 0; 337 338 skb_shinfo(skb)->gso_segs = 1; 339 skb_shinfo(skb)->gso_size = 0; 340 skb_shinfo(skb)->gso_type = 0; 341 342 TCP_SKB_CB(skb)->seq = seq; 343 if (flags & (TCPCB_FLAG_SYN | TCPCB_FLAG_FIN)) 344 seq++; 345 TCP_SKB_CB(skb)->end_seq = seq; 346 } 347 348 #define OPTION_SACK_ADVERTISE (1 << 0) 349 #define OPTION_TS (1 << 1) 350 #define OPTION_MD5 (1 << 2) 351 352 struct tcp_out_options { 353 u8 options; /* bit field of OPTION_* */ 354 u8 ws; /* window scale, 0 to disable */ 355 u8 num_sack_blocks; /* number of SACK blocks to include */ 356 u16 mss; /* 0 to disable */ 357 __u32 tsval, tsecr; /* need to include OPTION_TS */ 358 }; 359 360 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 361 const struct tcp_out_options *opts, 362 __u8 **md5_hash) { 363 if (unlikely(OPTION_MD5 & opts->options)) { 364 *ptr++ = htonl((TCPOPT_NOP << 24) | 365 (TCPOPT_NOP << 16) | 366 (TCPOPT_MD5SIG << 8) | 367 TCPOLEN_MD5SIG); 368 *md5_hash = (__u8 *)ptr; 369 ptr += 4; 370 } else { 371 *md5_hash = NULL; 372 } 373 374 if (likely(OPTION_TS & opts->options)) { 375 if (unlikely(OPTION_SACK_ADVERTISE & opts->options)) { 376 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 377 (TCPOLEN_SACK_PERM << 16) | 378 (TCPOPT_TIMESTAMP << 8) | 379 TCPOLEN_TIMESTAMP); 380 } else { 381 *ptr++ = htonl((TCPOPT_NOP << 24) | 382 (TCPOPT_NOP << 16) | 383 (TCPOPT_TIMESTAMP << 8) | 384 TCPOLEN_TIMESTAMP); 385 } 386 *ptr++ = htonl(opts->tsval); 387 *ptr++ = htonl(opts->tsecr); 388 } 389 390 if (unlikely(opts->mss)) { 391 *ptr++ = htonl((TCPOPT_MSS << 24) | 392 (TCPOLEN_MSS << 16) | 393 opts->mss); 394 } 395 396 if (unlikely(OPTION_SACK_ADVERTISE & opts->options && 397 !(OPTION_TS & opts->options))) { 398 *ptr++ = htonl((TCPOPT_NOP << 24) | 399 (TCPOPT_NOP << 16) | 400 (TCPOPT_SACK_PERM << 8) | 401 TCPOLEN_SACK_PERM); 402 } 403 404 if (unlikely(opts->ws)) { 405 *ptr++ = htonl((TCPOPT_NOP << 24) | 406 (TCPOPT_WINDOW << 16) | 407 (TCPOLEN_WINDOW << 8) | 408 opts->ws); 409 } 410 411 if (unlikely(opts->num_sack_blocks)) { 412 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 413 tp->duplicate_sack : tp->selective_acks; 414 int this_sack; 415 416 *ptr++ = htonl((TCPOPT_NOP << 24) | 417 (TCPOPT_NOP << 16) | 418 (TCPOPT_SACK << 8) | 419 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 420 TCPOLEN_SACK_PERBLOCK))); 421 422 for (this_sack = 0; this_sack < opts->num_sack_blocks; 423 ++this_sack) { 424 *ptr++ = htonl(sp[this_sack].start_seq); 425 *ptr++ = htonl(sp[this_sack].end_seq); 426 } 427 428 if (tp->rx_opt.dsack) { 429 tp->rx_opt.dsack = 0; 430 tp->rx_opt.eff_sacks--; 431 } 432 } 433 } 434 435 static unsigned tcp_syn_options(struct sock *sk, struct sk_buff *skb, 436 struct tcp_out_options *opts, 437 struct tcp_md5sig_key **md5) { 438 struct tcp_sock *tp = tcp_sk(sk); 439 unsigned size = 0; 440 441 #ifdef CONFIG_TCP_MD5SIG 442 *md5 = tp->af_specific->md5_lookup(sk, sk); 443 if (*md5) { 444 opts->options |= OPTION_MD5; 445 size += TCPOLEN_MD5SIG_ALIGNED; 446 } 447 #else 448 *md5 = NULL; 449 #endif 450 451 /* We always get an MSS option. The option bytes which will be seen in 452 * normal data packets should timestamps be used, must be in the MSS 453 * advertised. But we subtract them from tp->mss_cache so that 454 * calculations in tcp_sendmsg are simpler etc. So account for this 455 * fact here if necessary. If we don't do this correctly, as a 456 * receiver we won't recognize data packets as being full sized when we 457 * should, and thus we won't abide by the delayed ACK rules correctly. 458 * SACKs don't matter, we never delay an ACK when we have any of those 459 * going out. */ 460 opts->mss = tcp_advertise_mss(sk); 461 size += TCPOLEN_MSS_ALIGNED; 462 463 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 464 opts->options |= OPTION_TS; 465 opts->tsval = TCP_SKB_CB(skb)->when; 466 opts->tsecr = tp->rx_opt.ts_recent; 467 size += TCPOLEN_TSTAMP_ALIGNED; 468 } 469 if (likely(sysctl_tcp_window_scaling)) { 470 opts->ws = tp->rx_opt.rcv_wscale; 471 size += TCPOLEN_WSCALE_ALIGNED; 472 } 473 if (likely(sysctl_tcp_sack)) { 474 opts->options |= OPTION_SACK_ADVERTISE; 475 if (unlikely(!(OPTION_TS & opts->options))) 476 size += TCPOLEN_SACKPERM_ALIGNED; 477 } 478 479 return size; 480 } 481 482 static unsigned tcp_synack_options(struct sock *sk, 483 struct request_sock *req, 484 unsigned mss, struct sk_buff *skb, 485 struct tcp_out_options *opts, 486 struct tcp_md5sig_key **md5) { 487 unsigned size = 0; 488 struct inet_request_sock *ireq = inet_rsk(req); 489 char doing_ts; 490 491 #ifdef CONFIG_TCP_MD5SIG 492 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 493 if (*md5) { 494 opts->options |= OPTION_MD5; 495 size += TCPOLEN_MD5SIG_ALIGNED; 496 } 497 #else 498 *md5 = NULL; 499 #endif 500 501 /* we can't fit any SACK blocks in a packet with MD5 + TS 502 options. There was discussion about disabling SACK rather than TS in 503 order to fit in better with old, buggy kernels, but that was deemed 504 to be unnecessary. */ 505 doing_ts = ireq->tstamp_ok && !(*md5 && ireq->sack_ok); 506 507 opts->mss = mss; 508 size += TCPOLEN_MSS_ALIGNED; 509 510 if (likely(ireq->wscale_ok)) { 511 opts->ws = ireq->rcv_wscale; 512 size += TCPOLEN_WSCALE_ALIGNED; 513 } 514 if (likely(doing_ts)) { 515 opts->options |= OPTION_TS; 516 opts->tsval = TCP_SKB_CB(skb)->when; 517 opts->tsecr = req->ts_recent; 518 size += TCPOLEN_TSTAMP_ALIGNED; 519 } 520 if (likely(ireq->sack_ok)) { 521 opts->options |= OPTION_SACK_ADVERTISE; 522 if (unlikely(!doing_ts)) 523 size += TCPOLEN_SACKPERM_ALIGNED; 524 } 525 526 return size; 527 } 528 529 static unsigned tcp_established_options(struct sock *sk, struct sk_buff *skb, 530 struct tcp_out_options *opts, 531 struct tcp_md5sig_key **md5) { 532 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 533 struct tcp_sock *tp = tcp_sk(sk); 534 unsigned size = 0; 535 536 #ifdef CONFIG_TCP_MD5SIG 537 *md5 = tp->af_specific->md5_lookup(sk, sk); 538 if (unlikely(*md5)) { 539 opts->options |= OPTION_MD5; 540 size += TCPOLEN_MD5SIG_ALIGNED; 541 } 542 #else 543 *md5 = NULL; 544 #endif 545 546 if (likely(tp->rx_opt.tstamp_ok)) { 547 opts->options |= OPTION_TS; 548 opts->tsval = tcb ? tcb->when : 0; 549 opts->tsecr = tp->rx_opt.ts_recent; 550 size += TCPOLEN_TSTAMP_ALIGNED; 551 } 552 553 if (unlikely(tp->rx_opt.eff_sacks)) { 554 const unsigned remaining = MAX_TCP_OPTION_SPACE - size; 555 opts->num_sack_blocks = 556 min_t(unsigned, tp->rx_opt.eff_sacks, 557 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 558 TCPOLEN_SACK_PERBLOCK); 559 size += TCPOLEN_SACK_BASE_ALIGNED + 560 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 561 } 562 563 return size; 564 } 565 566 /* This routine actually transmits TCP packets queued in by 567 * tcp_do_sendmsg(). This is used by both the initial 568 * transmission and possible later retransmissions. 569 * All SKB's seen here are completely headerless. It is our 570 * job to build the TCP header, and pass the packet down to 571 * IP so it can do the same plus pass the packet off to the 572 * device. 573 * 574 * We are working here with either a clone of the original 575 * SKB, or a fresh unique copy made by the retransmit engine. 576 */ 577 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 578 gfp_t gfp_mask) 579 { 580 const struct inet_connection_sock *icsk = inet_csk(sk); 581 struct inet_sock *inet; 582 struct tcp_sock *tp; 583 struct tcp_skb_cb *tcb; 584 struct tcp_out_options opts; 585 unsigned tcp_options_size, tcp_header_size; 586 struct tcp_md5sig_key *md5; 587 __u8 *md5_hash_location; 588 struct tcphdr *th; 589 int err; 590 591 BUG_ON(!skb || !tcp_skb_pcount(skb)); 592 593 /* If congestion control is doing timestamping, we must 594 * take such a timestamp before we potentially clone/copy. 595 */ 596 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP) 597 __net_timestamp(skb); 598 599 if (likely(clone_it)) { 600 if (unlikely(skb_cloned(skb))) 601 skb = pskb_copy(skb, gfp_mask); 602 else 603 skb = skb_clone(skb, gfp_mask); 604 if (unlikely(!skb)) 605 return -ENOBUFS; 606 } 607 608 inet = inet_sk(sk); 609 tp = tcp_sk(sk); 610 tcb = TCP_SKB_CB(skb); 611 memset(&opts, 0, sizeof(opts)); 612 613 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) 614 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 615 else 616 tcp_options_size = tcp_established_options(sk, skb, &opts, 617 &md5); 618 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 619 620 if (tcp_packets_in_flight(tp) == 0) 621 tcp_ca_event(sk, CA_EVENT_TX_START); 622 623 skb_push(skb, tcp_header_size); 624 skb_reset_transport_header(skb); 625 skb_set_owner_w(skb, sk); 626 627 /* Build TCP header and checksum it. */ 628 th = tcp_hdr(skb); 629 th->source = inet->sport; 630 th->dest = inet->dport; 631 th->seq = htonl(tcb->seq); 632 th->ack_seq = htonl(tp->rcv_nxt); 633 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 634 tcb->flags); 635 636 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { 637 /* RFC1323: The window in SYN & SYN/ACK segments 638 * is never scaled. 639 */ 640 th->window = htons(min(tp->rcv_wnd, 65535U)); 641 } else { 642 th->window = htons(tcp_select_window(sk)); 643 } 644 th->check = 0; 645 th->urg_ptr = 0; 646 647 if (unlikely(tp->urg_mode && 648 between(tp->snd_up, tcb->seq + 1, tcb->seq + 0xFFFF))) { 649 th->urg_ptr = htons(tp->snd_up - tcb->seq); 650 th->urg = 1; 651 } 652 653 tcp_options_write((__be32 *)(th + 1), tp, &opts, &md5_hash_location); 654 if (likely((tcb->flags & TCPCB_FLAG_SYN) == 0)) 655 TCP_ECN_send(sk, skb, tcp_header_size); 656 657 #ifdef CONFIG_TCP_MD5SIG 658 /* Calculate the MD5 hash, as we have all we need now */ 659 if (md5) { 660 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 661 tp->af_specific->calc_md5_hash(md5_hash_location, 662 md5, sk, NULL, skb); 663 } 664 #endif 665 666 icsk->icsk_af_ops->send_check(sk, skb->len, skb); 667 668 if (likely(tcb->flags & TCPCB_FLAG_ACK)) 669 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 670 671 if (skb->len != tcp_header_size) 672 tcp_event_data_sent(tp, skb, sk); 673 674 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 675 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 676 677 err = icsk->icsk_af_ops->queue_xmit(skb, 0); 678 if (likely(err <= 0)) 679 return err; 680 681 tcp_enter_cwr(sk, 1); 682 683 return net_xmit_eval(err); 684 } 685 686 /* This routine just queue's the buffer 687 * 688 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 689 * otherwise socket can stall. 690 */ 691 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 692 { 693 struct tcp_sock *tp = tcp_sk(sk); 694 695 /* Advance write_seq and place onto the write_queue. */ 696 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 697 skb_header_release(skb); 698 tcp_add_write_queue_tail(sk, skb); 699 sk->sk_wmem_queued += skb->truesize; 700 sk_mem_charge(sk, skb->truesize); 701 } 702 703 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, 704 unsigned int mss_now) 705 { 706 if (skb->len <= mss_now || !sk_can_gso(sk)) { 707 /* Avoid the costly divide in the normal 708 * non-TSO case. 709 */ 710 skb_shinfo(skb)->gso_segs = 1; 711 skb_shinfo(skb)->gso_size = 0; 712 skb_shinfo(skb)->gso_type = 0; 713 } else { 714 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 715 skb_shinfo(skb)->gso_size = mss_now; 716 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 717 } 718 } 719 720 /* When a modification to fackets out becomes necessary, we need to check 721 * skb is counted to fackets_out or not. 722 */ 723 static void tcp_adjust_fackets_out(struct sock *sk, struct sk_buff *skb, 724 int decr) 725 { 726 struct tcp_sock *tp = tcp_sk(sk); 727 728 if (!tp->sacked_out || tcp_is_reno(tp)) 729 return; 730 731 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 732 tp->fackets_out -= decr; 733 } 734 735 /* Function to create two new TCP segments. Shrinks the given segment 736 * to the specified size and appends a new segment with the rest of the 737 * packet to the list. This won't be called frequently, I hope. 738 * Remember, these are still headerless SKBs at this point. 739 */ 740 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 741 unsigned int mss_now) 742 { 743 struct tcp_sock *tp = tcp_sk(sk); 744 struct sk_buff *buff; 745 int nsize, old_factor; 746 int nlen; 747 u16 flags; 748 749 BUG_ON(len > skb->len); 750 751 tcp_clear_retrans_hints_partial(tp); 752 nsize = skb_headlen(skb) - len; 753 if (nsize < 0) 754 nsize = 0; 755 756 if (skb_cloned(skb) && 757 skb_is_nonlinear(skb) && 758 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 759 return -ENOMEM; 760 761 /* Get a new skb... force flag on. */ 762 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 763 if (buff == NULL) 764 return -ENOMEM; /* We'll just try again later. */ 765 766 sk->sk_wmem_queued += buff->truesize; 767 sk_mem_charge(sk, buff->truesize); 768 nlen = skb->len - len - nsize; 769 buff->truesize += nlen; 770 skb->truesize -= nlen; 771 772 /* Correct the sequence numbers. */ 773 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 774 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 775 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 776 777 /* PSH and FIN should only be set in the second packet. */ 778 flags = TCP_SKB_CB(skb)->flags; 779 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH); 780 TCP_SKB_CB(buff)->flags = flags; 781 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 782 783 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 784 /* Copy and checksum data tail into the new buffer. */ 785 buff->csum = csum_partial_copy_nocheck(skb->data + len, 786 skb_put(buff, nsize), 787 nsize, 0); 788 789 skb_trim(skb, len); 790 791 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 792 } else { 793 skb->ip_summed = CHECKSUM_PARTIAL; 794 skb_split(skb, buff, len); 795 } 796 797 buff->ip_summed = skb->ip_summed; 798 799 /* Looks stupid, but our code really uses when of 800 * skbs, which it never sent before. --ANK 801 */ 802 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 803 buff->tstamp = skb->tstamp; 804 805 old_factor = tcp_skb_pcount(skb); 806 807 /* Fix up tso_factor for both original and new SKB. */ 808 tcp_set_skb_tso_segs(sk, skb, mss_now); 809 tcp_set_skb_tso_segs(sk, buff, mss_now); 810 811 /* If this packet has been sent out already, we must 812 * adjust the various packet counters. 813 */ 814 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 815 int diff = old_factor - tcp_skb_pcount(skb) - 816 tcp_skb_pcount(buff); 817 818 tp->packets_out -= diff; 819 820 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 821 tp->sacked_out -= diff; 822 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 823 tp->retrans_out -= diff; 824 825 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 826 tp->lost_out -= diff; 827 828 /* Adjust Reno SACK estimate. */ 829 if (tcp_is_reno(tp) && diff > 0) { 830 tcp_dec_pcount_approx_int(&tp->sacked_out, diff); 831 tcp_verify_left_out(tp); 832 } 833 tcp_adjust_fackets_out(sk, skb, diff); 834 } 835 836 /* Link BUFF into the send queue. */ 837 skb_header_release(buff); 838 tcp_insert_write_queue_after(skb, buff, sk); 839 840 return 0; 841 } 842 843 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 844 * eventually). The difference is that pulled data not copied, but 845 * immediately discarded. 846 */ 847 static void __pskb_trim_head(struct sk_buff *skb, int len) 848 { 849 int i, k, eat; 850 851 eat = len; 852 k = 0; 853 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 854 if (skb_shinfo(skb)->frags[i].size <= eat) { 855 put_page(skb_shinfo(skb)->frags[i].page); 856 eat -= skb_shinfo(skb)->frags[i].size; 857 } else { 858 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 859 if (eat) { 860 skb_shinfo(skb)->frags[k].page_offset += eat; 861 skb_shinfo(skb)->frags[k].size -= eat; 862 eat = 0; 863 } 864 k++; 865 } 866 } 867 skb_shinfo(skb)->nr_frags = k; 868 869 skb_reset_tail_pointer(skb); 870 skb->data_len -= len; 871 skb->len = skb->data_len; 872 } 873 874 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 875 { 876 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 877 return -ENOMEM; 878 879 /* If len == headlen, we avoid __skb_pull to preserve alignment. */ 880 if (unlikely(len < skb_headlen(skb))) 881 __skb_pull(skb, len); 882 else 883 __pskb_trim_head(skb, len - skb_headlen(skb)); 884 885 TCP_SKB_CB(skb)->seq += len; 886 skb->ip_summed = CHECKSUM_PARTIAL; 887 888 skb->truesize -= len; 889 sk->sk_wmem_queued -= len; 890 sk_mem_uncharge(sk, len); 891 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 892 893 /* Any change of skb->len requires recalculation of tso 894 * factor and mss. 895 */ 896 if (tcp_skb_pcount(skb) > 1) 897 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1)); 898 899 return 0; 900 } 901 902 /* Not accounting for SACKs here. */ 903 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 904 { 905 struct tcp_sock *tp = tcp_sk(sk); 906 struct inet_connection_sock *icsk = inet_csk(sk); 907 int mss_now; 908 909 /* Calculate base mss without TCP options: 910 It is MMS_S - sizeof(tcphdr) of rfc1122 911 */ 912 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 913 914 /* Clamp it (mss_clamp does not include tcp options) */ 915 if (mss_now > tp->rx_opt.mss_clamp) 916 mss_now = tp->rx_opt.mss_clamp; 917 918 /* Now subtract optional transport overhead */ 919 mss_now -= icsk->icsk_ext_hdr_len; 920 921 /* Then reserve room for full set of TCP options and 8 bytes of data */ 922 if (mss_now < 48) 923 mss_now = 48; 924 925 /* Now subtract TCP options size, not including SACKs */ 926 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); 927 928 return mss_now; 929 } 930 931 /* Inverse of above */ 932 int tcp_mss_to_mtu(struct sock *sk, int mss) 933 { 934 struct tcp_sock *tp = tcp_sk(sk); 935 struct inet_connection_sock *icsk = inet_csk(sk); 936 int mtu; 937 938 mtu = mss + 939 tp->tcp_header_len + 940 icsk->icsk_ext_hdr_len + 941 icsk->icsk_af_ops->net_header_len; 942 943 return mtu; 944 } 945 946 void tcp_mtup_init(struct sock *sk) 947 { 948 struct tcp_sock *tp = tcp_sk(sk); 949 struct inet_connection_sock *icsk = inet_csk(sk); 950 951 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 952 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 953 icsk->icsk_af_ops->net_header_len; 954 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 955 icsk->icsk_mtup.probe_size = 0; 956 } 957 958 /* Bound MSS / TSO packet size with the half of the window */ 959 static int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 960 { 961 if (tp->max_window && pktsize > (tp->max_window >> 1)) 962 return max(tp->max_window >> 1, 68U - tp->tcp_header_len); 963 else 964 return pktsize; 965 } 966 967 /* This function synchronize snd mss to current pmtu/exthdr set. 968 969 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 970 for TCP options, but includes only bare TCP header. 971 972 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 973 It is minimum of user_mss and mss received with SYN. 974 It also does not include TCP options. 975 976 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 977 978 tp->mss_cache is current effective sending mss, including 979 all tcp options except for SACKs. It is evaluated, 980 taking into account current pmtu, but never exceeds 981 tp->rx_opt.mss_clamp. 982 983 NOTE1. rfc1122 clearly states that advertised MSS 984 DOES NOT include either tcp or ip options. 985 986 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 987 are READ ONLY outside this function. --ANK (980731) 988 */ 989 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 990 { 991 struct tcp_sock *tp = tcp_sk(sk); 992 struct inet_connection_sock *icsk = inet_csk(sk); 993 int mss_now; 994 995 if (icsk->icsk_mtup.search_high > pmtu) 996 icsk->icsk_mtup.search_high = pmtu; 997 998 mss_now = tcp_mtu_to_mss(sk, pmtu); 999 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1000 1001 /* And store cached results */ 1002 icsk->icsk_pmtu_cookie = pmtu; 1003 if (icsk->icsk_mtup.enabled) 1004 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1005 tp->mss_cache = mss_now; 1006 1007 return mss_now; 1008 } 1009 1010 /* Compute the current effective MSS, taking SACKs and IP options, 1011 * and even PMTU discovery events into account. 1012 * 1013 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up 1014 * cannot be large. However, taking into account rare use of URG, this 1015 * is not a big flaw. 1016 */ 1017 unsigned int tcp_current_mss(struct sock *sk, int large_allowed) 1018 { 1019 struct tcp_sock *tp = tcp_sk(sk); 1020 struct dst_entry *dst = __sk_dst_get(sk); 1021 u32 mss_now; 1022 u16 xmit_size_goal; 1023 int doing_tso = 0; 1024 unsigned header_len; 1025 struct tcp_out_options opts; 1026 struct tcp_md5sig_key *md5; 1027 1028 mss_now = tp->mss_cache; 1029 1030 if (large_allowed && sk_can_gso(sk) && !tp->urg_mode) 1031 doing_tso = 1; 1032 1033 if (dst) { 1034 u32 mtu = dst_mtu(dst); 1035 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1036 mss_now = tcp_sync_mss(sk, mtu); 1037 } 1038 1039 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1040 sizeof(struct tcphdr); 1041 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1042 * some common options. If this is an odd packet (because we have SACK 1043 * blocks etc) then our calculated header_len will be different, and 1044 * we have to adjust mss_now correspondingly */ 1045 if (header_len != tp->tcp_header_len) { 1046 int delta = (int) header_len - tp->tcp_header_len; 1047 mss_now -= delta; 1048 } 1049 1050 xmit_size_goal = mss_now; 1051 1052 if (doing_tso) { 1053 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 1054 inet_csk(sk)->icsk_af_ops->net_header_len - 1055 inet_csk(sk)->icsk_ext_hdr_len - 1056 tp->tcp_header_len); 1057 1058 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 1059 xmit_size_goal -= (xmit_size_goal % mss_now); 1060 } 1061 tp->xmit_size_goal = xmit_size_goal; 1062 1063 return mss_now; 1064 } 1065 1066 /* Congestion window validation. (RFC2861) */ 1067 static void tcp_cwnd_validate(struct sock *sk) 1068 { 1069 struct tcp_sock *tp = tcp_sk(sk); 1070 1071 if (tp->packets_out >= tp->snd_cwnd) { 1072 /* Network is feed fully. */ 1073 tp->snd_cwnd_used = 0; 1074 tp->snd_cwnd_stamp = tcp_time_stamp; 1075 } else { 1076 /* Network starves. */ 1077 if (tp->packets_out > tp->snd_cwnd_used) 1078 tp->snd_cwnd_used = tp->packets_out; 1079 1080 if (sysctl_tcp_slow_start_after_idle && 1081 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1082 tcp_cwnd_application_limited(sk); 1083 } 1084 } 1085 1086 /* Returns the portion of skb which can be sent right away without 1087 * introducing MSS oddities to segment boundaries. In rare cases where 1088 * mss_now != mss_cache, we will request caller to create a small skb 1089 * per input skb which could be mostly avoided here (if desired). 1090 * 1091 * We explicitly want to create a request for splitting write queue tail 1092 * to a small skb for Nagle purposes while avoiding unnecessary modulos, 1093 * thus all the complexity (cwnd_len is always MSS multiple which we 1094 * return whenever allowed by the other factors). Basically we need the 1095 * modulo only when the receiver window alone is the limiting factor or 1096 * when we would be allowed to send the split-due-to-Nagle skb fully. 1097 */ 1098 static unsigned int tcp_mss_split_point(struct sock *sk, struct sk_buff *skb, 1099 unsigned int mss_now, unsigned int cwnd) 1100 { 1101 struct tcp_sock *tp = tcp_sk(sk); 1102 u32 needed, window, cwnd_len; 1103 1104 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1105 cwnd_len = mss_now * cwnd; 1106 1107 if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk))) 1108 return cwnd_len; 1109 1110 needed = min(skb->len, window); 1111 1112 if (cwnd_len <= needed) 1113 return cwnd_len; 1114 1115 return needed - needed % mss_now; 1116 } 1117 1118 /* Can at least one segment of SKB be sent right now, according to the 1119 * congestion window rules? If so, return how many segments are allowed. 1120 */ 1121 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, 1122 struct sk_buff *skb) 1123 { 1124 u32 in_flight, cwnd; 1125 1126 /* Don't be strict about the congestion window for the final FIN. */ 1127 if ((TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && 1128 tcp_skb_pcount(skb) == 1) 1129 return 1; 1130 1131 in_flight = tcp_packets_in_flight(tp); 1132 cwnd = tp->snd_cwnd; 1133 if (in_flight < cwnd) 1134 return (cwnd - in_flight); 1135 1136 return 0; 1137 } 1138 1139 /* This must be invoked the first time we consider transmitting 1140 * SKB onto the wire. 1141 */ 1142 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, 1143 unsigned int mss_now) 1144 { 1145 int tso_segs = tcp_skb_pcount(skb); 1146 1147 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1148 tcp_set_skb_tso_segs(sk, skb, mss_now); 1149 tso_segs = tcp_skb_pcount(skb); 1150 } 1151 return tso_segs; 1152 } 1153 1154 static inline int tcp_minshall_check(const struct tcp_sock *tp) 1155 { 1156 return after(tp->snd_sml,tp->snd_una) && 1157 !after(tp->snd_sml, tp->snd_nxt); 1158 } 1159 1160 /* Return 0, if packet can be sent now without violation Nagle's rules: 1161 * 1. It is full sized. 1162 * 2. Or it contains FIN. (already checked by caller) 1163 * 3. Or TCP_NODELAY was set. 1164 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1165 * With Minshall's modification: all sent small packets are ACKed. 1166 */ 1167 static inline int tcp_nagle_check(const struct tcp_sock *tp, 1168 const struct sk_buff *skb, 1169 unsigned mss_now, int nonagle) 1170 { 1171 return (skb->len < mss_now && 1172 ((nonagle & TCP_NAGLE_CORK) || 1173 (!nonagle && tp->packets_out && tcp_minshall_check(tp)))); 1174 } 1175 1176 /* Return non-zero if the Nagle test allows this packet to be 1177 * sent now. 1178 */ 1179 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb, 1180 unsigned int cur_mss, int nonagle) 1181 { 1182 /* Nagle rule does not apply to frames, which sit in the middle of the 1183 * write_queue (they have no chances to get new data). 1184 * 1185 * This is implemented in the callers, where they modify the 'nonagle' 1186 * argument based upon the location of SKB in the send queue. 1187 */ 1188 if (nonagle & TCP_NAGLE_PUSH) 1189 return 1; 1190 1191 /* Don't use the nagle rule for urgent data (or for the final FIN). 1192 * Nagle can be ignored during F-RTO too (see RFC4138). 1193 */ 1194 if (tp->urg_mode || (tp->frto_counter == 2) || 1195 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) 1196 return 1; 1197 1198 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 1199 return 1; 1200 1201 return 0; 1202 } 1203 1204 /* Does at least the first segment of SKB fit into the send window? */ 1205 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, 1206 unsigned int cur_mss) 1207 { 1208 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1209 1210 if (skb->len > cur_mss) 1211 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1212 1213 return !after(end_seq, tcp_wnd_end(tp)); 1214 } 1215 1216 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1217 * should be put on the wire right now. If so, it returns the number of 1218 * packets allowed by the congestion window. 1219 */ 1220 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb, 1221 unsigned int cur_mss, int nonagle) 1222 { 1223 struct tcp_sock *tp = tcp_sk(sk); 1224 unsigned int cwnd_quota; 1225 1226 tcp_init_tso_segs(sk, skb, cur_mss); 1227 1228 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1229 return 0; 1230 1231 cwnd_quota = tcp_cwnd_test(tp, skb); 1232 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1233 cwnd_quota = 0; 1234 1235 return cwnd_quota; 1236 } 1237 1238 int tcp_may_send_now(struct sock *sk) 1239 { 1240 struct tcp_sock *tp = tcp_sk(sk); 1241 struct sk_buff *skb = tcp_send_head(sk); 1242 1243 return (skb && 1244 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1), 1245 (tcp_skb_is_last(sk, skb) ? 1246 tp->nonagle : TCP_NAGLE_PUSH))); 1247 } 1248 1249 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1250 * which is put after SKB on the list. It is very much like 1251 * tcp_fragment() except that it may make several kinds of assumptions 1252 * in order to speed up the splitting operation. In particular, we 1253 * know that all the data is in scatter-gather pages, and that the 1254 * packet has never been sent out before (and thus is not cloned). 1255 */ 1256 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1257 unsigned int mss_now) 1258 { 1259 struct sk_buff *buff; 1260 int nlen = skb->len - len; 1261 u16 flags; 1262 1263 /* All of a TSO frame must be composed of paged data. */ 1264 if (skb->len != skb->data_len) 1265 return tcp_fragment(sk, skb, len, mss_now); 1266 1267 buff = sk_stream_alloc_skb(sk, 0, GFP_ATOMIC); 1268 if (unlikely(buff == NULL)) 1269 return -ENOMEM; 1270 1271 sk->sk_wmem_queued += buff->truesize; 1272 sk_mem_charge(sk, buff->truesize); 1273 buff->truesize += nlen; 1274 skb->truesize -= nlen; 1275 1276 /* Correct the sequence numbers. */ 1277 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1278 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1279 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1280 1281 /* PSH and FIN should only be set in the second packet. */ 1282 flags = TCP_SKB_CB(skb)->flags; 1283 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH); 1284 TCP_SKB_CB(buff)->flags = flags; 1285 1286 /* This packet was never sent out yet, so no SACK bits. */ 1287 TCP_SKB_CB(buff)->sacked = 0; 1288 1289 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1290 skb_split(skb, buff, len); 1291 1292 /* Fix up tso_factor for both original and new SKB. */ 1293 tcp_set_skb_tso_segs(sk, skb, mss_now); 1294 tcp_set_skb_tso_segs(sk, buff, mss_now); 1295 1296 /* Link BUFF into the send queue. */ 1297 skb_header_release(buff); 1298 tcp_insert_write_queue_after(skb, buff, sk); 1299 1300 return 0; 1301 } 1302 1303 /* Try to defer sending, if possible, in order to minimize the amount 1304 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1305 * 1306 * This algorithm is from John Heffner. 1307 */ 1308 static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb) 1309 { 1310 struct tcp_sock *tp = tcp_sk(sk); 1311 const struct inet_connection_sock *icsk = inet_csk(sk); 1312 u32 send_win, cong_win, limit, in_flight; 1313 1314 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 1315 goto send_now; 1316 1317 if (icsk->icsk_ca_state != TCP_CA_Open) 1318 goto send_now; 1319 1320 /* Defer for less than two clock ticks. */ 1321 if (tp->tso_deferred && 1322 ((jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1323 goto send_now; 1324 1325 in_flight = tcp_packets_in_flight(tp); 1326 1327 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1328 1329 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1330 1331 /* From in_flight test above, we know that cwnd > in_flight. */ 1332 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1333 1334 limit = min(send_win, cong_win); 1335 1336 /* If a full-sized TSO skb can be sent, do it. */ 1337 if (limit >= sk->sk_gso_max_size) 1338 goto send_now; 1339 1340 if (sysctl_tcp_tso_win_divisor) { 1341 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1342 1343 /* If at least some fraction of a window is available, 1344 * just use it. 1345 */ 1346 chunk /= sysctl_tcp_tso_win_divisor; 1347 if (limit >= chunk) 1348 goto send_now; 1349 } else { 1350 /* Different approach, try not to defer past a single 1351 * ACK. Receiver should ACK every other full sized 1352 * frame, so if we have space for more than 3 frames 1353 * then send now. 1354 */ 1355 if (limit > tcp_max_burst(tp) * tp->mss_cache) 1356 goto send_now; 1357 } 1358 1359 /* Ok, it looks like it is advisable to defer. */ 1360 tp->tso_deferred = 1 | (jiffies << 1); 1361 1362 return 1; 1363 1364 send_now: 1365 tp->tso_deferred = 0; 1366 return 0; 1367 } 1368 1369 /* Create a new MTU probe if we are ready. 1370 * Returns 0 if we should wait to probe (no cwnd available), 1371 * 1 if a probe was sent, 1372 * -1 otherwise 1373 */ 1374 static int tcp_mtu_probe(struct sock *sk) 1375 { 1376 struct tcp_sock *tp = tcp_sk(sk); 1377 struct inet_connection_sock *icsk = inet_csk(sk); 1378 struct sk_buff *skb, *nskb, *next; 1379 int len; 1380 int probe_size; 1381 int size_needed; 1382 int copy; 1383 int mss_now; 1384 1385 /* Not currently probing/verifying, 1386 * not in recovery, 1387 * have enough cwnd, and 1388 * not SACKing (the variable headers throw things off) */ 1389 if (!icsk->icsk_mtup.enabled || 1390 icsk->icsk_mtup.probe_size || 1391 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1392 tp->snd_cwnd < 11 || 1393 tp->rx_opt.eff_sacks) 1394 return -1; 1395 1396 /* Very simple search strategy: just double the MSS. */ 1397 mss_now = tcp_current_mss(sk, 0); 1398 probe_size = 2 * tp->mss_cache; 1399 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1400 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1401 /* TODO: set timer for probe_converge_event */ 1402 return -1; 1403 } 1404 1405 /* Have enough data in the send queue to probe? */ 1406 if (tp->write_seq - tp->snd_nxt < size_needed) 1407 return -1; 1408 1409 if (tp->snd_wnd < size_needed) 1410 return -1; 1411 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1412 return 0; 1413 1414 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1415 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1416 if (!tcp_packets_in_flight(tp)) 1417 return -1; 1418 else 1419 return 0; 1420 } 1421 1422 /* We're allowed to probe. Build it now. */ 1423 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1424 return -1; 1425 sk->sk_wmem_queued += nskb->truesize; 1426 sk_mem_charge(sk, nskb->truesize); 1427 1428 skb = tcp_send_head(sk); 1429 1430 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1431 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1432 TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK; 1433 TCP_SKB_CB(nskb)->sacked = 0; 1434 nskb->csum = 0; 1435 nskb->ip_summed = skb->ip_summed; 1436 1437 tcp_insert_write_queue_before(nskb, skb, sk); 1438 1439 len = 0; 1440 tcp_for_write_queue_from_safe(skb, next, sk) { 1441 copy = min_t(int, skb->len, probe_size - len); 1442 if (nskb->ip_summed) 1443 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1444 else 1445 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1446 skb_put(nskb, copy), 1447 copy, nskb->csum); 1448 1449 if (skb->len <= copy) { 1450 /* We've eaten all the data from this skb. 1451 * Throw it away. */ 1452 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags; 1453 tcp_unlink_write_queue(skb, sk); 1454 sk_wmem_free_skb(sk, skb); 1455 } else { 1456 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags & 1457 ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 1458 if (!skb_shinfo(skb)->nr_frags) { 1459 skb_pull(skb, copy); 1460 if (skb->ip_summed != CHECKSUM_PARTIAL) 1461 skb->csum = csum_partial(skb->data, 1462 skb->len, 0); 1463 } else { 1464 __pskb_trim_head(skb, copy); 1465 tcp_set_skb_tso_segs(sk, skb, mss_now); 1466 } 1467 TCP_SKB_CB(skb)->seq += copy; 1468 } 1469 1470 len += copy; 1471 1472 if (len >= probe_size) 1473 break; 1474 } 1475 tcp_init_tso_segs(sk, nskb, nskb->len); 1476 1477 /* We're ready to send. If this fails, the probe will 1478 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1479 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1480 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1481 /* Decrement cwnd here because we are sending 1482 * effectively two packets. */ 1483 tp->snd_cwnd--; 1484 tcp_event_new_data_sent(sk, nskb); 1485 1486 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1487 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1488 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1489 1490 return 1; 1491 } 1492 1493 return -1; 1494 } 1495 1496 /* This routine writes packets to the network. It advances the 1497 * send_head. This happens as incoming acks open up the remote 1498 * window for us. 1499 * 1500 * Returns 1, if no segments are in flight and we have queued segments, but 1501 * cannot send anything now because of SWS or another problem. 1502 */ 1503 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle) 1504 { 1505 struct tcp_sock *tp = tcp_sk(sk); 1506 struct sk_buff *skb; 1507 unsigned int tso_segs, sent_pkts; 1508 int cwnd_quota; 1509 int result; 1510 1511 /* If we are closed, the bytes will have to remain here. 1512 * In time closedown will finish, we empty the write queue and all 1513 * will be happy. 1514 */ 1515 if (unlikely(sk->sk_state == TCP_CLOSE)) 1516 return 0; 1517 1518 sent_pkts = 0; 1519 1520 /* Do MTU probing. */ 1521 if ((result = tcp_mtu_probe(sk)) == 0) { 1522 return 0; 1523 } else if (result > 0) { 1524 sent_pkts = 1; 1525 } 1526 1527 while ((skb = tcp_send_head(sk))) { 1528 unsigned int limit; 1529 1530 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1531 BUG_ON(!tso_segs); 1532 1533 cwnd_quota = tcp_cwnd_test(tp, skb); 1534 if (!cwnd_quota) 1535 break; 1536 1537 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1538 break; 1539 1540 if (tso_segs == 1) { 1541 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1542 (tcp_skb_is_last(sk, skb) ? 1543 nonagle : TCP_NAGLE_PUSH)))) 1544 break; 1545 } else { 1546 if (tcp_tso_should_defer(sk, skb)) 1547 break; 1548 } 1549 1550 limit = mss_now; 1551 if (tso_segs > 1) 1552 limit = tcp_mss_split_point(sk, skb, mss_now, 1553 cwnd_quota); 1554 1555 if (skb->len > limit && 1556 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1557 break; 1558 1559 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1560 1561 if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC))) 1562 break; 1563 1564 /* Advance the send_head. This one is sent out. 1565 * This call will increment packets_out. 1566 */ 1567 tcp_event_new_data_sent(sk, skb); 1568 1569 tcp_minshall_update(tp, mss_now, skb); 1570 sent_pkts++; 1571 } 1572 1573 if (likely(sent_pkts)) { 1574 tcp_cwnd_validate(sk); 1575 return 0; 1576 } 1577 return !tp->packets_out && tcp_send_head(sk); 1578 } 1579 1580 /* Push out any pending frames which were held back due to 1581 * TCP_CORK or attempt at coalescing tiny packets. 1582 * The socket must be locked by the caller. 1583 */ 1584 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 1585 int nonagle) 1586 { 1587 struct sk_buff *skb = tcp_send_head(sk); 1588 1589 if (skb) { 1590 if (tcp_write_xmit(sk, cur_mss, nonagle)) 1591 tcp_check_probe_timer(sk); 1592 } 1593 } 1594 1595 /* Send _single_ skb sitting at the send head. This function requires 1596 * true push pending frames to setup probe timer etc. 1597 */ 1598 void tcp_push_one(struct sock *sk, unsigned int mss_now) 1599 { 1600 struct sk_buff *skb = tcp_send_head(sk); 1601 unsigned int tso_segs, cwnd_quota; 1602 1603 BUG_ON(!skb || skb->len < mss_now); 1604 1605 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1606 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH); 1607 1608 if (likely(cwnd_quota)) { 1609 unsigned int limit; 1610 1611 BUG_ON(!tso_segs); 1612 1613 limit = mss_now; 1614 if (tso_segs > 1) 1615 limit = tcp_mss_split_point(sk, skb, mss_now, 1616 cwnd_quota); 1617 1618 if (skb->len > limit && 1619 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1620 return; 1621 1622 /* Send it out now. */ 1623 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1624 1625 if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) { 1626 tcp_event_new_data_sent(sk, skb); 1627 tcp_cwnd_validate(sk); 1628 return; 1629 } 1630 } 1631 } 1632 1633 /* This function returns the amount that we can raise the 1634 * usable window based on the following constraints 1635 * 1636 * 1. The window can never be shrunk once it is offered (RFC 793) 1637 * 2. We limit memory per socket 1638 * 1639 * RFC 1122: 1640 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 1641 * RECV.NEXT + RCV.WIN fixed until: 1642 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 1643 * 1644 * i.e. don't raise the right edge of the window until you can raise 1645 * it at least MSS bytes. 1646 * 1647 * Unfortunately, the recommended algorithm breaks header prediction, 1648 * since header prediction assumes th->window stays fixed. 1649 * 1650 * Strictly speaking, keeping th->window fixed violates the receiver 1651 * side SWS prevention criteria. The problem is that under this rule 1652 * a stream of single byte packets will cause the right side of the 1653 * window to always advance by a single byte. 1654 * 1655 * Of course, if the sender implements sender side SWS prevention 1656 * then this will not be a problem. 1657 * 1658 * BSD seems to make the following compromise: 1659 * 1660 * If the free space is less than the 1/4 of the maximum 1661 * space available and the free space is less than 1/2 mss, 1662 * then set the window to 0. 1663 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 1664 * Otherwise, just prevent the window from shrinking 1665 * and from being larger than the largest representable value. 1666 * 1667 * This prevents incremental opening of the window in the regime 1668 * where TCP is limited by the speed of the reader side taking 1669 * data out of the TCP receive queue. It does nothing about 1670 * those cases where the window is constrained on the sender side 1671 * because the pipeline is full. 1672 * 1673 * BSD also seems to "accidentally" limit itself to windows that are a 1674 * multiple of MSS, at least until the free space gets quite small. 1675 * This would appear to be a side effect of the mbuf implementation. 1676 * Combining these two algorithms results in the observed behavior 1677 * of having a fixed window size at almost all times. 1678 * 1679 * Below we obtain similar behavior by forcing the offered window to 1680 * a multiple of the mss when it is feasible to do so. 1681 * 1682 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 1683 * Regular options like TIMESTAMP are taken into account. 1684 */ 1685 u32 __tcp_select_window(struct sock *sk) 1686 { 1687 struct inet_connection_sock *icsk = inet_csk(sk); 1688 struct tcp_sock *tp = tcp_sk(sk); 1689 /* MSS for the peer's data. Previous versions used mss_clamp 1690 * here. I don't know if the value based on our guesses 1691 * of peer's MSS is better for the performance. It's more correct 1692 * but may be worse for the performance because of rcv_mss 1693 * fluctuations. --SAW 1998/11/1 1694 */ 1695 int mss = icsk->icsk_ack.rcv_mss; 1696 int free_space = tcp_space(sk); 1697 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 1698 int window; 1699 1700 if (mss > full_space) 1701 mss = full_space; 1702 1703 if (free_space < (full_space >> 1)) { 1704 icsk->icsk_ack.quick = 0; 1705 1706 if (tcp_memory_pressure) 1707 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 1708 4U * tp->advmss); 1709 1710 if (free_space < mss) 1711 return 0; 1712 } 1713 1714 if (free_space > tp->rcv_ssthresh) 1715 free_space = tp->rcv_ssthresh; 1716 1717 /* Don't do rounding if we are using window scaling, since the 1718 * scaled window will not line up with the MSS boundary anyway. 1719 */ 1720 window = tp->rcv_wnd; 1721 if (tp->rx_opt.rcv_wscale) { 1722 window = free_space; 1723 1724 /* Advertise enough space so that it won't get scaled away. 1725 * Import case: prevent zero window announcement if 1726 * 1<<rcv_wscale > mss. 1727 */ 1728 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 1729 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 1730 << tp->rx_opt.rcv_wscale); 1731 } else { 1732 /* Get the largest window that is a nice multiple of mss. 1733 * Window clamp already applied above. 1734 * If our current window offering is within 1 mss of the 1735 * free space we just keep it. This prevents the divide 1736 * and multiply from happening most of the time. 1737 * We also don't do any window rounding when the free space 1738 * is too small. 1739 */ 1740 if (window <= free_space - mss || window > free_space) 1741 window = (free_space / mss) * mss; 1742 else if (mss == full_space && 1743 free_space > window + (full_space >> 1)) 1744 window = free_space; 1745 } 1746 1747 return window; 1748 } 1749 1750 /* Attempt to collapse two adjacent SKB's during retransmission. */ 1751 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, 1752 int mss_now) 1753 { 1754 struct tcp_sock *tp = tcp_sk(sk); 1755 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 1756 int skb_size, next_skb_size; 1757 u16 flags; 1758 1759 /* The first test we must make is that neither of these two 1760 * SKB's are still referenced by someone else. 1761 */ 1762 if (skb_cloned(skb) || skb_cloned(next_skb)) 1763 return; 1764 1765 skb_size = skb->len; 1766 next_skb_size = next_skb->len; 1767 flags = TCP_SKB_CB(skb)->flags; 1768 1769 /* Also punt if next skb has been SACK'd. */ 1770 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) 1771 return; 1772 1773 /* Next skb is out of window. */ 1774 if (after(TCP_SKB_CB(next_skb)->end_seq, tcp_wnd_end(tp))) 1775 return; 1776 1777 /* Punt if not enough space exists in the first SKB for 1778 * the data in the second, or the total combined payload 1779 * would exceed the MSS. 1780 */ 1781 if ((next_skb_size > skb_tailroom(skb)) || 1782 ((skb_size + next_skb_size) > mss_now)) 1783 return; 1784 1785 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 1786 1787 tcp_highest_sack_combine(sk, next_skb, skb); 1788 1789 /* Ok. We will be able to collapse the packet. */ 1790 tcp_unlink_write_queue(next_skb, sk); 1791 1792 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 1793 next_skb_size); 1794 1795 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 1796 skb->ip_summed = CHECKSUM_PARTIAL; 1797 1798 if (skb->ip_summed != CHECKSUM_PARTIAL) 1799 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 1800 1801 /* Update sequence range on original skb. */ 1802 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 1803 1804 /* Merge over control information. */ 1805 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ 1806 TCP_SKB_CB(skb)->flags = flags; 1807 1808 /* All done, get rid of second SKB and account for it so 1809 * packet counting does not break. 1810 */ 1811 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 1812 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_RETRANS) 1813 tp->retrans_out -= tcp_skb_pcount(next_skb); 1814 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_LOST) 1815 tp->lost_out -= tcp_skb_pcount(next_skb); 1816 /* Reno case is special. Sigh... */ 1817 if (tcp_is_reno(tp) && tp->sacked_out) 1818 tcp_dec_pcount_approx(&tp->sacked_out, next_skb); 1819 1820 tcp_adjust_fackets_out(sk, next_skb, tcp_skb_pcount(next_skb)); 1821 tp->packets_out -= tcp_skb_pcount(next_skb); 1822 1823 /* changed transmit queue under us so clear hints */ 1824 tcp_clear_retrans_hints_partial(tp); 1825 1826 sk_wmem_free_skb(sk, next_skb); 1827 } 1828 1829 /* Do a simple retransmit without using the backoff mechanisms in 1830 * tcp_timer. This is used for path mtu discovery. 1831 * The socket is already locked here. 1832 */ 1833 void tcp_simple_retransmit(struct sock *sk) 1834 { 1835 const struct inet_connection_sock *icsk = inet_csk(sk); 1836 struct tcp_sock *tp = tcp_sk(sk); 1837 struct sk_buff *skb; 1838 unsigned int mss = tcp_current_mss(sk, 0); 1839 int lost = 0; 1840 1841 tcp_for_write_queue(skb, sk) { 1842 if (skb == tcp_send_head(sk)) 1843 break; 1844 if (skb->len > mss && 1845 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1846 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 1847 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1848 tp->retrans_out -= tcp_skb_pcount(skb); 1849 } 1850 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) { 1851 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1852 tp->lost_out += tcp_skb_pcount(skb); 1853 lost = 1; 1854 } 1855 } 1856 } 1857 1858 tcp_clear_all_retrans_hints(tp); 1859 1860 if (!lost) 1861 return; 1862 1863 if (tcp_is_reno(tp)) 1864 tcp_limit_reno_sacked(tp); 1865 1866 tcp_verify_left_out(tp); 1867 1868 /* Don't muck with the congestion window here. 1869 * Reason is that we do not increase amount of _data_ 1870 * in network, but units changed and effective 1871 * cwnd/ssthresh really reduced now. 1872 */ 1873 if (icsk->icsk_ca_state != TCP_CA_Loss) { 1874 tp->high_seq = tp->snd_nxt; 1875 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1876 tp->prior_ssthresh = 0; 1877 tp->undo_marker = 0; 1878 tcp_set_ca_state(sk, TCP_CA_Loss); 1879 } 1880 tcp_xmit_retransmit_queue(sk); 1881 } 1882 1883 /* This retransmits one SKB. Policy decisions and retransmit queue 1884 * state updates are done by the caller. Returns non-zero if an 1885 * error occurred which prevented the send. 1886 */ 1887 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 1888 { 1889 struct tcp_sock *tp = tcp_sk(sk); 1890 struct inet_connection_sock *icsk = inet_csk(sk); 1891 unsigned int cur_mss; 1892 int err; 1893 1894 /* Inconslusive MTU probe */ 1895 if (icsk->icsk_mtup.probe_size) { 1896 icsk->icsk_mtup.probe_size = 0; 1897 } 1898 1899 /* Do not sent more than we queued. 1/4 is reserved for possible 1900 * copying overhead: fragmentation, tunneling, mangling etc. 1901 */ 1902 if (atomic_read(&sk->sk_wmem_alloc) > 1903 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 1904 return -EAGAIN; 1905 1906 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 1907 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1908 BUG(); 1909 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 1910 return -ENOMEM; 1911 } 1912 1913 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 1914 return -EHOSTUNREACH; /* Routing failure or similar. */ 1915 1916 cur_mss = tcp_current_mss(sk, 0); 1917 1918 /* If receiver has shrunk his window, and skb is out of 1919 * new window, do not retransmit it. The exception is the 1920 * case, when window is shrunk to zero. In this case 1921 * our retransmit serves as a zero window probe. 1922 */ 1923 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) 1924 && TCP_SKB_CB(skb)->seq != tp->snd_una) 1925 return -EAGAIN; 1926 1927 if (skb->len > cur_mss) { 1928 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 1929 return -ENOMEM; /* We'll try again later. */ 1930 } 1931 1932 /* Collapse two adjacent packets if worthwhile and we can. */ 1933 if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && 1934 (skb->len < (cur_mss >> 1)) && 1935 (tcp_write_queue_next(sk, skb) != tcp_send_head(sk)) && 1936 (!tcp_skb_is_last(sk, skb)) && 1937 (skb_shinfo(skb)->nr_frags == 0 && 1938 skb_shinfo(tcp_write_queue_next(sk, skb))->nr_frags == 0) && 1939 (tcp_skb_pcount(skb) == 1 && 1940 tcp_skb_pcount(tcp_write_queue_next(sk, skb)) == 1) && 1941 (sysctl_tcp_retrans_collapse != 0)) 1942 tcp_retrans_try_collapse(sk, skb, cur_mss); 1943 1944 /* Some Solaris stacks overoptimize and ignore the FIN on a 1945 * retransmit when old data is attached. So strip it off 1946 * since it is cheap to do so and saves bytes on the network. 1947 */ 1948 if (skb->len > 0 && 1949 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && 1950 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 1951 if (!pskb_trim(skb, 0)) { 1952 /* Reuse, even though it does some unnecessary work */ 1953 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1, 1954 TCP_SKB_CB(skb)->flags); 1955 skb->ip_summed = CHECKSUM_NONE; 1956 } 1957 } 1958 1959 /* Make a copy, if the first transmission SKB clone we made 1960 * is still in somebody's hands, else make a clone. 1961 */ 1962 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1963 1964 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 1965 1966 if (err == 0) { 1967 /* Update global TCP statistics. */ 1968 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 1969 1970 tp->total_retrans++; 1971 1972 #if FASTRETRANS_DEBUG > 0 1973 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 1974 if (net_ratelimit()) 1975 printk(KERN_DEBUG "retrans_out leaked.\n"); 1976 } 1977 #endif 1978 if (!tp->retrans_out) 1979 tp->lost_retrans_low = tp->snd_nxt; 1980 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 1981 tp->retrans_out += tcp_skb_pcount(skb); 1982 1983 /* Save stamp of the first retransmit. */ 1984 if (!tp->retrans_stamp) 1985 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 1986 1987 tp->undo_retrans++; 1988 1989 /* snd_nxt is stored to detect loss of retransmitted segment, 1990 * see tcp_input.c tcp_sacktag_write_queue(). 1991 */ 1992 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 1993 } 1994 return err; 1995 } 1996 1997 /* This gets called after a retransmit timeout, and the initially 1998 * retransmitted data is acknowledged. It tries to continue 1999 * resending the rest of the retransmit queue, until either 2000 * we've sent it all or the congestion window limit is reached. 2001 * If doing SACK, the first ACK which comes back for a timeout 2002 * based retransmit packet might feed us FACK information again. 2003 * If so, we use it to avoid unnecessarily retransmissions. 2004 */ 2005 void tcp_xmit_retransmit_queue(struct sock *sk) 2006 { 2007 const struct inet_connection_sock *icsk = inet_csk(sk); 2008 struct tcp_sock *tp = tcp_sk(sk); 2009 struct sk_buff *skb; 2010 int packet_cnt; 2011 2012 if (tp->retransmit_skb_hint) { 2013 skb = tp->retransmit_skb_hint; 2014 packet_cnt = tp->retransmit_cnt_hint; 2015 } else { 2016 skb = tcp_write_queue_head(sk); 2017 packet_cnt = 0; 2018 } 2019 2020 /* First pass: retransmit lost packets. */ 2021 if (tp->lost_out) { 2022 tcp_for_write_queue_from(skb, sk) { 2023 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2024 2025 if (skb == tcp_send_head(sk)) 2026 break; 2027 /* we could do better than to assign each time */ 2028 tp->retransmit_skb_hint = skb; 2029 tp->retransmit_cnt_hint = packet_cnt; 2030 2031 /* Assume this retransmit will generate 2032 * only one packet for congestion window 2033 * calculation purposes. This works because 2034 * tcp_retransmit_skb() will chop up the 2035 * packet to be MSS sized and all the 2036 * packet counting works out. 2037 */ 2038 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2039 return; 2040 2041 if (sacked & TCPCB_LOST) { 2042 if (!(sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { 2043 int mib_idx; 2044 2045 if (tcp_retransmit_skb(sk, skb)) { 2046 tp->retransmit_skb_hint = NULL; 2047 return; 2048 } 2049 if (icsk->icsk_ca_state != TCP_CA_Loss) 2050 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2051 else 2052 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2053 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2054 2055 if (skb == tcp_write_queue_head(sk)) 2056 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2057 inet_csk(sk)->icsk_rto, 2058 TCP_RTO_MAX); 2059 } 2060 2061 packet_cnt += tcp_skb_pcount(skb); 2062 if (packet_cnt >= tp->lost_out) 2063 break; 2064 } 2065 } 2066 } 2067 2068 /* OK, demanded retransmission is finished. */ 2069 2070 /* Forward retransmissions are possible only during Recovery. */ 2071 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2072 return; 2073 2074 /* No forward retransmissions in Reno are possible. */ 2075 if (tcp_is_reno(tp)) 2076 return; 2077 2078 /* Yeah, we have to make difficult choice between forward transmission 2079 * and retransmission... Both ways have their merits... 2080 * 2081 * For now we do not retransmit anything, while we have some new 2082 * segments to send. In the other cases, follow rule 3 for 2083 * NextSeg() specified in RFC3517. 2084 */ 2085 2086 if (tcp_may_send_now(sk)) 2087 return; 2088 2089 /* If nothing is SACKed, highest_sack in the loop won't be valid */ 2090 if (!tp->sacked_out) 2091 return; 2092 2093 if (tp->forward_skb_hint) 2094 skb = tp->forward_skb_hint; 2095 else 2096 skb = tcp_write_queue_head(sk); 2097 2098 tcp_for_write_queue_from(skb, sk) { 2099 if (skb == tcp_send_head(sk)) 2100 break; 2101 tp->forward_skb_hint = skb; 2102 2103 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2104 break; 2105 2106 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2107 break; 2108 2109 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) 2110 continue; 2111 2112 /* Ok, retransmit it. */ 2113 if (tcp_retransmit_skb(sk, skb)) { 2114 tp->forward_skb_hint = NULL; 2115 break; 2116 } 2117 2118 if (skb == tcp_write_queue_head(sk)) 2119 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2120 inet_csk(sk)->icsk_rto, 2121 TCP_RTO_MAX); 2122 2123 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFORWARDRETRANS); 2124 } 2125 } 2126 2127 /* Send a fin. The caller locks the socket for us. This cannot be 2128 * allowed to fail queueing a FIN frame under any circumstances. 2129 */ 2130 void tcp_send_fin(struct sock *sk) 2131 { 2132 struct tcp_sock *tp = tcp_sk(sk); 2133 struct sk_buff *skb = tcp_write_queue_tail(sk); 2134 int mss_now; 2135 2136 /* Optimization, tack on the FIN if we have a queue of 2137 * unsent frames. But be careful about outgoing SACKS 2138 * and IP options. 2139 */ 2140 mss_now = tcp_current_mss(sk, 1); 2141 2142 if (tcp_send_head(sk) != NULL) { 2143 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; 2144 TCP_SKB_CB(skb)->end_seq++; 2145 tp->write_seq++; 2146 } else { 2147 /* Socket is locked, keep trying until memory is available. */ 2148 for (;;) { 2149 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL); 2150 if (skb) 2151 break; 2152 yield(); 2153 } 2154 2155 /* Reserve space for headers and prepare control bits. */ 2156 skb_reserve(skb, MAX_TCP_HEADER); 2157 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2158 tcp_init_nondata_skb(skb, tp->write_seq, 2159 TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); 2160 tcp_queue_skb(sk, skb); 2161 } 2162 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2163 } 2164 2165 /* We get here when a process closes a file descriptor (either due to 2166 * an explicit close() or as a byproduct of exit()'ing) and there 2167 * was unread data in the receive queue. This behavior is recommended 2168 * by RFC 2525, section 2.17. -DaveM 2169 */ 2170 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2171 { 2172 struct sk_buff *skb; 2173 2174 /* NOTE: No TCP options attached and we never retransmit this. */ 2175 skb = alloc_skb(MAX_TCP_HEADER, priority); 2176 if (!skb) { 2177 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2178 return; 2179 } 2180 2181 /* Reserve space for headers and prepare control bits. */ 2182 skb_reserve(skb, MAX_TCP_HEADER); 2183 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2184 TCPCB_FLAG_ACK | TCPCB_FLAG_RST); 2185 /* Send it off. */ 2186 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2187 if (tcp_transmit_skb(sk, skb, 0, priority)) 2188 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2189 2190 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2191 } 2192 2193 /* WARNING: This routine must only be called when we have already sent 2194 * a SYN packet that crossed the incoming SYN that caused this routine 2195 * to get called. If this assumption fails then the initial rcv_wnd 2196 * and rcv_wscale values will not be correct. 2197 */ 2198 int tcp_send_synack(struct sock *sk) 2199 { 2200 struct sk_buff *skb; 2201 2202 skb = tcp_write_queue_head(sk); 2203 if (skb == NULL || !(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)) { 2204 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); 2205 return -EFAULT; 2206 } 2207 if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_ACK)) { 2208 if (skb_cloned(skb)) { 2209 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2210 if (nskb == NULL) 2211 return -ENOMEM; 2212 tcp_unlink_write_queue(skb, sk); 2213 skb_header_release(nskb); 2214 __tcp_add_write_queue_head(sk, nskb); 2215 sk_wmem_free_skb(sk, skb); 2216 sk->sk_wmem_queued += nskb->truesize; 2217 sk_mem_charge(sk, nskb->truesize); 2218 skb = nskb; 2219 } 2220 2221 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; 2222 TCP_ECN_send_synack(tcp_sk(sk), skb); 2223 } 2224 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2225 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2226 } 2227 2228 /* 2229 * Prepare a SYN-ACK. 2230 */ 2231 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2232 struct request_sock *req) 2233 { 2234 struct inet_request_sock *ireq = inet_rsk(req); 2235 struct tcp_sock *tp = tcp_sk(sk); 2236 struct tcphdr *th; 2237 int tcp_header_size; 2238 struct tcp_out_options opts; 2239 struct sk_buff *skb; 2240 struct tcp_md5sig_key *md5; 2241 __u8 *md5_hash_location; 2242 2243 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); 2244 if (skb == NULL) 2245 return NULL; 2246 2247 /* Reserve space for headers. */ 2248 skb_reserve(skb, MAX_TCP_HEADER); 2249 2250 skb->dst = dst_clone(dst); 2251 2252 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2253 __u8 rcv_wscale; 2254 /* Set this up on the first call only */ 2255 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2256 /* tcp_full_space because it is guaranteed to be the first packet */ 2257 tcp_select_initial_window(tcp_full_space(sk), 2258 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2259 &req->rcv_wnd, 2260 &req->window_clamp, 2261 ireq->wscale_ok, 2262 &rcv_wscale); 2263 ireq->rcv_wscale = rcv_wscale; 2264 } 2265 2266 memset(&opts, 0, sizeof(opts)); 2267 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2268 tcp_header_size = tcp_synack_options(sk, req, 2269 dst_metric(dst, RTAX_ADVMSS), 2270 skb, &opts, &md5) + 2271 sizeof(struct tcphdr); 2272 2273 skb_push(skb, tcp_header_size); 2274 skb_reset_transport_header(skb); 2275 2276 th = tcp_hdr(skb); 2277 memset(th, 0, sizeof(struct tcphdr)); 2278 th->syn = 1; 2279 th->ack = 1; 2280 TCP_ECN_make_synack(req, th); 2281 th->source = inet_sk(sk)->sport; 2282 th->dest = ireq->rmt_port; 2283 /* Setting of flags are superfluous here for callers (and ECE is 2284 * not even correctly set) 2285 */ 2286 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2287 TCPCB_FLAG_SYN | TCPCB_FLAG_ACK); 2288 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2289 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); 2290 2291 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2292 th->window = htons(min(req->rcv_wnd, 65535U)); 2293 #ifdef CONFIG_SYN_COOKIES 2294 if (unlikely(req->cookie_ts)) 2295 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2296 else 2297 #endif 2298 tcp_options_write((__be32 *)(th + 1), tp, &opts, &md5_hash_location); 2299 th->doff = (tcp_header_size >> 2); 2300 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 2301 2302 #ifdef CONFIG_TCP_MD5SIG 2303 /* Okay, we have all we need - do the md5 hash if needed */ 2304 if (md5) { 2305 tp->af_specific->calc_md5_hash(md5_hash_location, 2306 md5, NULL, req, skb); 2307 } 2308 #endif 2309 2310 return skb; 2311 } 2312 2313 /* 2314 * Do all connect socket setups that can be done AF independent. 2315 */ 2316 static void tcp_connect_init(struct sock *sk) 2317 { 2318 struct dst_entry *dst = __sk_dst_get(sk); 2319 struct tcp_sock *tp = tcp_sk(sk); 2320 __u8 rcv_wscale; 2321 2322 /* We'll fix this up when we get a response from the other end. 2323 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2324 */ 2325 tp->tcp_header_len = sizeof(struct tcphdr) + 2326 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2327 2328 #ifdef CONFIG_TCP_MD5SIG 2329 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2330 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2331 #endif 2332 2333 /* If user gave his TCP_MAXSEG, record it to clamp */ 2334 if (tp->rx_opt.user_mss) 2335 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2336 tp->max_window = 0; 2337 tcp_mtup_init(sk); 2338 tcp_sync_mss(sk, dst_mtu(dst)); 2339 2340 if (!tp->window_clamp) 2341 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2342 tp->advmss = dst_metric(dst, RTAX_ADVMSS); 2343 tcp_initialize_rcv_mss(sk); 2344 2345 tcp_select_initial_window(tcp_full_space(sk), 2346 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2347 &tp->rcv_wnd, 2348 &tp->window_clamp, 2349 sysctl_tcp_window_scaling, 2350 &rcv_wscale); 2351 2352 tp->rx_opt.rcv_wscale = rcv_wscale; 2353 tp->rcv_ssthresh = tp->rcv_wnd; 2354 2355 sk->sk_err = 0; 2356 sock_reset_flag(sk, SOCK_DONE); 2357 tp->snd_wnd = 0; 2358 tcp_init_wl(tp, tp->write_seq, 0); 2359 tp->snd_una = tp->write_seq; 2360 tp->snd_sml = tp->write_seq; 2361 tp->rcv_nxt = 0; 2362 tp->rcv_wup = 0; 2363 tp->copied_seq = 0; 2364 2365 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2366 inet_csk(sk)->icsk_retransmits = 0; 2367 tcp_clear_retrans(tp); 2368 } 2369 2370 /* 2371 * Build a SYN and send it off. 2372 */ 2373 int tcp_connect(struct sock *sk) 2374 { 2375 struct tcp_sock *tp = tcp_sk(sk); 2376 struct sk_buff *buff; 2377 2378 tcp_connect_init(sk); 2379 2380 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 2381 if (unlikely(buff == NULL)) 2382 return -ENOBUFS; 2383 2384 /* Reserve space for headers. */ 2385 skb_reserve(buff, MAX_TCP_HEADER); 2386 2387 tp->snd_nxt = tp->write_seq; 2388 tcp_init_nondata_skb(buff, tp->write_seq++, TCPCB_FLAG_SYN); 2389 TCP_ECN_send_syn(sk, buff); 2390 2391 /* Send it off. */ 2392 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2393 tp->retrans_stamp = TCP_SKB_CB(buff)->when; 2394 skb_header_release(buff); 2395 __tcp_add_write_queue_tail(sk, buff); 2396 sk->sk_wmem_queued += buff->truesize; 2397 sk_mem_charge(sk, buff->truesize); 2398 tp->packets_out += tcp_skb_pcount(buff); 2399 tcp_transmit_skb(sk, buff, 1, GFP_KERNEL); 2400 2401 /* We change tp->snd_nxt after the tcp_transmit_skb() call 2402 * in order to make this packet get counted in tcpOutSegs. 2403 */ 2404 tp->snd_nxt = tp->write_seq; 2405 tp->pushed_seq = tp->write_seq; 2406 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 2407 2408 /* Timer for repeating the SYN until an answer. */ 2409 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2410 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2411 return 0; 2412 } 2413 2414 /* Send out a delayed ack, the caller does the policy checking 2415 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 2416 * for details. 2417 */ 2418 void tcp_send_delayed_ack(struct sock *sk) 2419 { 2420 struct inet_connection_sock *icsk = inet_csk(sk); 2421 int ato = icsk->icsk_ack.ato; 2422 unsigned long timeout; 2423 2424 if (ato > TCP_DELACK_MIN) { 2425 const struct tcp_sock *tp = tcp_sk(sk); 2426 int max_ato = HZ / 2; 2427 2428 if (icsk->icsk_ack.pingpong || 2429 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 2430 max_ato = TCP_DELACK_MAX; 2431 2432 /* Slow path, intersegment interval is "high". */ 2433 2434 /* If some rtt estimate is known, use it to bound delayed ack. 2435 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 2436 * directly. 2437 */ 2438 if (tp->srtt) { 2439 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN); 2440 2441 if (rtt < max_ato) 2442 max_ato = rtt; 2443 } 2444 2445 ato = min(ato, max_ato); 2446 } 2447 2448 /* Stay within the limit we were given */ 2449 timeout = jiffies + ato; 2450 2451 /* Use new timeout only if there wasn't a older one earlier. */ 2452 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 2453 /* If delack timer was blocked or is about to expire, 2454 * send ACK now. 2455 */ 2456 if (icsk->icsk_ack.blocked || 2457 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 2458 tcp_send_ack(sk); 2459 return; 2460 } 2461 2462 if (!time_before(timeout, icsk->icsk_ack.timeout)) 2463 timeout = icsk->icsk_ack.timeout; 2464 } 2465 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 2466 icsk->icsk_ack.timeout = timeout; 2467 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 2468 } 2469 2470 /* This routine sends an ack and also updates the window. */ 2471 void tcp_send_ack(struct sock *sk) 2472 { 2473 struct sk_buff *buff; 2474 2475 /* If we have been reset, we may not send again. */ 2476 if (sk->sk_state == TCP_CLOSE) 2477 return; 2478 2479 /* We are not putting this on the write queue, so 2480 * tcp_transmit_skb() will set the ownership to this 2481 * sock. 2482 */ 2483 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2484 if (buff == NULL) { 2485 inet_csk_schedule_ack(sk); 2486 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 2487 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 2488 TCP_DELACK_MAX, TCP_RTO_MAX); 2489 return; 2490 } 2491 2492 /* Reserve space for headers and prepare control bits. */ 2493 skb_reserve(buff, MAX_TCP_HEADER); 2494 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPCB_FLAG_ACK); 2495 2496 /* Send it off, this clears delayed acks for us. */ 2497 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2498 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC); 2499 } 2500 2501 /* This routine sends a packet with an out of date sequence 2502 * number. It assumes the other end will try to ack it. 2503 * 2504 * Question: what should we make while urgent mode? 2505 * 4.4BSD forces sending single byte of data. We cannot send 2506 * out of window data, because we have SND.NXT==SND.MAX... 2507 * 2508 * Current solution: to send TWO zero-length segments in urgent mode: 2509 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 2510 * out-of-date with SND.UNA-1 to probe window. 2511 */ 2512 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 2513 { 2514 struct tcp_sock *tp = tcp_sk(sk); 2515 struct sk_buff *skb; 2516 2517 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 2518 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2519 if (skb == NULL) 2520 return -1; 2521 2522 /* Reserve space for headers and set control bits. */ 2523 skb_reserve(skb, MAX_TCP_HEADER); 2524 /* Use a previous sequence. This should cause the other 2525 * end to send an ack. Don't queue or clone SKB, just 2526 * send it. 2527 */ 2528 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPCB_FLAG_ACK); 2529 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2530 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 2531 } 2532 2533 int tcp_write_wakeup(struct sock *sk) 2534 { 2535 struct tcp_sock *tp = tcp_sk(sk); 2536 struct sk_buff *skb; 2537 2538 if (sk->sk_state == TCP_CLOSE) 2539 return -1; 2540 2541 if ((skb = tcp_send_head(sk)) != NULL && 2542 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 2543 int err; 2544 unsigned int mss = tcp_current_mss(sk, 0); 2545 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2546 2547 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 2548 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 2549 2550 /* We are probing the opening of a window 2551 * but the window size is != 0 2552 * must have been a result SWS avoidance ( sender ) 2553 */ 2554 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 2555 skb->len > mss) { 2556 seg_size = min(seg_size, mss); 2557 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2558 if (tcp_fragment(sk, skb, seg_size, mss)) 2559 return -1; 2560 } else if (!tcp_skb_pcount(skb)) 2561 tcp_set_skb_tso_segs(sk, skb, mss); 2562 2563 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2564 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2565 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2566 if (!err) 2567 tcp_event_new_data_sent(sk, skb); 2568 return err; 2569 } else { 2570 if (tp->urg_mode && 2571 between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 2572 tcp_xmit_probe_skb(sk, 1); 2573 return tcp_xmit_probe_skb(sk, 0); 2574 } 2575 } 2576 2577 /* A window probe timeout has occurred. If window is not closed send 2578 * a partial packet else a zero probe. 2579 */ 2580 void tcp_send_probe0(struct sock *sk) 2581 { 2582 struct inet_connection_sock *icsk = inet_csk(sk); 2583 struct tcp_sock *tp = tcp_sk(sk); 2584 int err; 2585 2586 err = tcp_write_wakeup(sk); 2587 2588 if (tp->packets_out || !tcp_send_head(sk)) { 2589 /* Cancel probe timer, if it is not required. */ 2590 icsk->icsk_probes_out = 0; 2591 icsk->icsk_backoff = 0; 2592 return; 2593 } 2594 2595 if (err <= 0) { 2596 if (icsk->icsk_backoff < sysctl_tcp_retries2) 2597 icsk->icsk_backoff++; 2598 icsk->icsk_probes_out++; 2599 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2600 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2601 TCP_RTO_MAX); 2602 } else { 2603 /* If packet was not sent due to local congestion, 2604 * do not backoff and do not remember icsk_probes_out. 2605 * Let local senders to fight for local resources. 2606 * 2607 * Use accumulated backoff yet. 2608 */ 2609 if (!icsk->icsk_probes_out) 2610 icsk->icsk_probes_out = 1; 2611 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2612 min(icsk->icsk_rto << icsk->icsk_backoff, 2613 TCP_RESOURCE_PROBE_INTERVAL), 2614 TCP_RTO_MAX); 2615 } 2616 } 2617 2618 EXPORT_SYMBOL(tcp_select_initial_window); 2619 EXPORT_SYMBOL(tcp_connect); 2620 EXPORT_SYMBOL(tcp_make_synack); 2621 EXPORT_SYMBOL(tcp_simple_retransmit); 2622 EXPORT_SYMBOL(tcp_sync_mss); 2623 EXPORT_SYMBOL(tcp_mtup_init); 2624